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Abstract

MapReduce programming model has achieved great success over the past decade. With its

recognized merits such as superior scalability and strong fault tolerance, MapReduce has thrived

as a primary processing engine adopted by leading enterprises for analyzing gigantic datasets and

driving cloud services. Recently, in order for companies to pursue high quality-of-service and

fulfill requests from many customers, the demand for enhancing MapReduce frameworks so that

they can leverage the best performance from underlying systems and support multi-tenancy is

growing. However, many challenges exist in optimizing contemporary MapReduce frameworks

to deliver fast job completion, fairness among many users, high cluster utilization, as well as

platform-aware adaptability.

This dissertation focuses on pushing forward the evolution of contemporary MapReduce

frameworks. We have comprehensively analyzed several major MapReduce systems on differ-

ent platforms, identified their limitations, and explored various optimization techniques to enhance

their performance. In particular, this dissertation aims to address three major challenges that pre-

vent MapReduce frameworks from achieving the optimal performance. These three challenges

include (1) exploiting the design of a high-performance I/O services for accelerating the interme-

diate data movement for MapReduce frameworks; (2) enhancing task management to provision

ideal quality-of-service in terms of efficiency and fairness in multi-tenant MapReduce clusters; (3)

improving the adaptability of MapReduce frameworks for platforms featuring high performance

characteristics. To address these challenges, in this dissertation, we have introduced a novel Net-

work Levitated Merge algorithm, along with a Hadoop Acceleration framework for MapReduce to

provide a high-performance I/O layer. Built on top of these techniques, MapReduce can efficiently

move a deluge amount of intermediate data among a large number of nodes and yield effective
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performance improvement than the otherwise. In addition, to provision satisfactory quality-of-

service, this dissertation has also designed a lightweight work-conserving Preemptive ReduceTask

and Fast Completion Scheduler to enhance the task management so that MapReduce can deliver

both fast job execution and fairness for multi-tenant MapReduce clusters. Our evaluation with

a diverse collection of workloads adequately demonstrate that our solutions can efficiently out-

perform the state-of-the-art MapReduce schedulers. Furthermore, to cope with the demand for

leveraging MapReduce frameworks to process gigantic simulation results from scientific applica-

tions, this dissertation has thoroughly characterized MapReduce frameworks on High-Performance

Computing (HPC) systems. Based on our findings, we have concluded that existing MapReduce

frameworks lack the capability to fully exploit the advantages of high-performance computing

facilities. Accordingly, we have introduced several enhancement techniques to optimize the adapt-

ability of MapReduce for these platforms. Our performance examination sufficiently corroborates

the effectiveness of our techniques.

Through systematic experiments and comprehensive evaluation and analysis described in this

dissertation, we have demonstrated the efficacy of our innovations, meanwhile revealing many

optimization spaces as well as opportunities for future research on MapReduce frameworks.

Keywords: MapReduce, Big Data, Distributed Computing, Preemptive Scheduling
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Chapter 1

Introduction

MapReduce programming model [33], introduced by Google, has now been the de facto

processing engine for analyzing massive scale datasets. Nowadays, various implementations of

MapReduce, including Hadoop [3], Dyrad [64], Spark [103], MR-MPI [12], and M3R [78] have

obtained broad attention from both industry and academia. For example, Hadoop [3], an open-

source implementation of MapReduce, has been recently endorsed by many leading IT compa-

nies, including IBM, Intel, Amazon, Yahoo!, etc, and applied by different organizations to support

numerous challenging applications, such as large-scale graph processing [2], genomics computa-

tion [6], mining massive astrophysical datasets [74] as well as facial similarity and recognition [52].

According to the 2011 IDC report [17], the market of MapReduce and its ecosystems will continue

expanding and become a multi-billion business by 2016.

Three superior characteristics of MapReduce have greatly contributed to its success. First of

all, MapReduce programming model intelligently exposes simple map and reduce interfaces to

application developers, meanwhile hiding the complexities, such as fault-handling, intermediate

data shuffling, etc. Therefore, it substantially relieves the development burden from the system

designers who can then focus on business logic to satisfy the needs from customers. Secondly,

MapReduce aims to be fault-tolerant. Recognizing that failure is the norm, MapReduce frame-

works assume that the underlying systems are unreliable, thus has enabled fault handling through-

out the entire system design. From a high-level perspective, contemporary MapReduce systems

generally rely on fine-grained job partitioning and task failure-over to resist common failure scenar-

ios. Meanwhile, due to inherent task independence, MapReduce can avoid expensive job abortions

when failures occur. Thirdly, via minimizing the coupling among tasks, MapReduce programming

model exhibits superior scalability. A recent report [19] from Yahoo!, showing the deployment of

1



YARN MapReduce [13] across 30,000 nodes is the best testaments of such characteristic. Under

such unprecedented scale, MapReduce applications are empowered to harness the computation ca-

pability of large clusters and address many challenges that will open up new horizons for making

more discoveries.

Following the widespread popularity of MapReduce is the growing demand to further op-

timize its performance for various purposes. In particular, accelerating the data movement and

enhancing task management are becoming critical since they fundamentally determine whether

the frameworks can achieve the performance goals in different use cases. Diverting from the initial

design goal that MapReduce is mainly used for batch jobs, contemporary MapReduce frameworks

are being broadly employed to process interactive queries [84, 65] and streaming data [105] on

platforms featuring distinct performance characteristics, including multi-tenant environments and

High-Performance Computing (HPC) clusters. However, these use cases require MapReduce to

possess the capabilities to quickly circulate data and provision fairness via efficiently utilizing

clusters so that the latency of interactive queries can be minimized and no user or job is penalized

due to unfair treatment.

In response to these challenges, the focus of this dissertation is on investigating the obstacles

and opportunities to simultaneously optimize MapReduce frameworks from many sides, includ-

ing speeding up single job execution, balancing fairness among concurrent workloads, meanwhile

improving cluster utilization. It aims to achieve this goal via shedding light on the inefficiencies

and bottlenecks in MapReduce frameworks, designing noval algorithms to exploit the performance

from underlying infrastructures and balance the tradeoff among multiple performance objectives,

respectively. In particular, this dissertation introduces several techniques to accelerate the interme-

diate data movement and enhance fairness within task management. In the rest of this chapter, we

provide high-level description of the background of MapReduce frameworks and the challenges

involved in the optimization, then we discuss our research contributions.
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1.1 Overview of MapReduce Architectures

In this section, we describe the MapReduce programming model, and several implementations

of MapReduce to help better comprehend the challenges. Given that Hadoop [3] and Spark [103]

are two of the most recognized MapReduce implementations, this dissertation concentrates on

optimizing these two frameworks from the perspective of intermediate data movement and task

management. While the techniques are also applicable to other MapReduce implementations.

1.1.1 Data Movement in MapReduce

IBM T.J Watson Research 1 

Master 

Map Map Map Map 
(2) 

Workers 

Reduce Reduce 

DFS 

(3) 

Workers 

Distributed FileSystem 

Figure 1.1: An Overview of Data Processing in MapReduce framework

Efficient data movement is critical for MapReduce frameworks. A general MapReduce frame-

work consists of two categories of components to facilitate the data movement: a Master, and many

Workers, as shown in the Figure 1.1. After users submit jobs to the Master, the Master commands

Workers to process data in parallel through two main functions: map and reduce. Across this pro-

cess, the Master is in charge of scheduling map tasks and reduce tasks from concurrently running

jobs to Workers via following certain scheduling policies, such as First-In-First-Out (FIFO) or Fair

Sharing. Meanwhile, it also monitors their progresses, collects run-time execution statistics, and

handles possible faults and errors through task re-execution.
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From the view of pipelined data processing, a MapReduce job needs to complete three major

execution phases: map, shuffle/merge, and reduce, respectively. In the map phase, the Master

selects a number of Workers and schedules them to run the map function. Each Worker launches

several map tasks, one per split of data that is retrieved from the distributed file system, such as

Hadoop Distributed File System [79] or Google File System [37, 31]. In each split, user data is

organized as many records of <key,val> pairs. The mapping function in a map task converts the

original records into intermediate results, which are data records in the form of <key’,val’> pairs.

These new data records are stored as a map output file stored on local file system, such as ext3.

In the shuffle/merge phase, when some map outputs become available, the Master selects

another set of Workers to run reduce tasks. Each reduce task starts by fetching a partition that is

intended for it from a map output file (also called segment). Typically, there is one segment in each

map output for every reduce task. So, a reduce task needs to fetch such segments from all map

output files. Globally, these fetch operations lead to an all-to-all shuffling of data segments among

all the map and reduce tasks. While the data segments are being shuffled, they are also merged

within each reduce task based on the order of keys in the data records, As more remote segments

are fetched and merged locally, a reduce task has to spill, i.e., store, some segments to local disks in

order to alleviate memory pressure. Due to the concurrent execution nature of shuffle and merge,

this stage is also commonly referred as the shuffle/merge phase.

In the reduce phase, each reduce task loads and processes the merged segments using the

reduce function. The final result is then stored back to the distributed file system. Although several

MapReduce implementations [103, 78] allow caching the final output in the memory, we deem

them as implementation details.

Hadoop [3] is an open-source implementation of MapReduce, Its design bears strong simi-

larity to original MapReduce as described above with different names for major components: a

JobTracker, a.k.a. Master and many TaskTrackers, a.k.a. Workers. The JobTracker commands

TaskTrackers to process data in parallel through MapTasks and ReduceTasks, following the same

data processing pipeline depicted above.
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1.1.2 Task Management in MapReduce
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Figure 1.2: An Example of Managing Slots among Jobs

Fairness has become a primary performance goals that MapReduce schedulers strive to opti-

mize [102, 38]. Taken Hadoop Fair scheduler as an example, the JobTracker assigns available map

and reduce slots separately to jobs in the queue, one slot per task. Figure 1.2 shows an example of

scheduling three jobs (represented by shaped blocks in three colors) on a system with three reduce

slots and five map slots. A job when running alone can satisfy its needs with all reduce slots, but it

has to share the slots when other jobs arrive. Once granted a slot, a ReduceTask has to fetch data

produced by all MapTasks before it completes. In the figure, Job 1 first arrives by itself. It grabs

3 map slots and 2 reduce slots for itself and completes execution. Job 2 then takes the rest of map

and reduce slots. When Job 2 needs more map or reduce slots, it has to share, because Job 3 has

arrived.

Current MapReduce schedulers greedily launch as many ReduceTasks as permitted for each

job to maximize the chance of overlapping the shuffling of available intermediate data with re-

maining map phase. However, such design can lead to monopolization behavior we will illustrate

in Chapter 2. Although Hadoop allows an option (slowstart.completed.maps) in configuration to
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delay the launch of ReduceTasks so that the small jobs after the large jobs can have chances to

share the reduce slots, it does not address the issue.

1.1.3 Memory-Resident MapReduce

Spark is another highly popular MapReduce implementation introduced by UC Berkeley [5].

Recently, it has also gained broad attention from scientists at the leadership computing facilities

as a promising solution to analyze gigantic simulation results. Similar to original MapReduce, it

consists of two categories of components: a scheduler and many executors. The scheduler is in

charge of scheduling tasks, monitoring their progress, and fault handling through task re-execution.

The executors are responsible for executing the actual computing and data processing tasks. As

many MapReduce implementations, Spark usually works together with distributed file systems

that are designed to co-locate the storage resource (i.e., DataNode) with the compute resources

(i.e., tasks launched by Executors) as shown in Figure 5.1(b). For example, Spark relies on the

HDFS [79] to manage the flow of data. HDFS is composed of a master NameNode and many

slave DataNodes. Google’s MapReduce has a similar reliance on the Colossus, the latest version

of Google file system. Such co-localization of DataNodes and Executors realizes a data-centric

computing model to minimize data movement between computation tasks and the storage system.

Compared to other MapReduce implementations such as Hadoop [3], Spark provides two

key features. First, Spark leverages the distributed memory from all slave nodes to store most

intermediate data during job execution and the final execution results at job completion. By doing

so, it avoids the file system, retaining most data resident in distributed memory across phases in

the same job and/or different jobs. Such memory-resident feature benefits many applications such

as machine learning or iterative algorithms that require extensive reuse of results among multiple

MapReduce jobs. Second, Spark introduces resilient distributed datasets (RDDs) to facilitate the

programming of parallel applications. Each RDD represents a collection of data partitions that

spread across the cluster. A rich set of operations are provided to manipulate RDDs (e.g., map,
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flatMap, groupBy, and reduce, etc). Overall, those operations can be categorized into two types,

which are transformation and action, respectively.

Split	
  

Split	
  

……	
  

Split	
  

HDFS	
  
Hadoop 

RDD 
Filtered

RDD 
FlatMapped 

RDD 

Disk	
  

Disk	
  

Disk	
  

Disk	
  

Shuffled 
RDD 

filter flatMap groupByKey 

Mapped 
RDD 

map 

Figure 1.3: MapReduce processing pipeline via using RDDs.

A transformation converts a source RDD to a destination RDD by applying User-Defined

Functions (UDF) to each partition contained in the former. Figure 1.3 illustrates an example of

a Spark MapReduce job, in which an HDFS file is transformed to the final MappedRDD through

four transformations: filter, flatMap, groupByKey and map. When Spark is deployed on a cluster

featuring compute-centric paradigm, HadoopRDD can be replaced by system dependent RDD,

such as LustreRDD, to retrieve input from HPC parallel file system.

Spark’s actions include reduce, count, collect, etc. An action triggers Spark to construct an

execution plan represented internally as a directed acyclic graph (DAG) that consists of multiple

stages. Each stage includes many transformations that can be pipelined. Stages are connected

through the shuffle operations for intermediate data shuffling. An implicit stage is embedded into

the DAG for every shuffle operation. For example, filter and flatMap in Figure 1.3 are grouped into

a same stage, while the groupByKey is in an independent stage. Sparks launches stages within the

DAG in a serialized manner.
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The shuffling of intermediate data is a major performance bottleneck of MapReduce imple-

mentations, including Spark. However, such shuffle operation widely exists in many critical op-

erations, such as join, reduceByKey, and groupBy, etc. To avoid substantial overhead and provide

reliable job execution, Spark materializes partitions onto the local file system. When a shuffle op-

eration is encountered, Spark will undertake two phases for moving intermediate data: storing and

shuffling. In the storing phase, Spark schedules a round of ShuffleMapTasks to flush in-memory

output from the previous stage to the file system. Then in the shuffling phase, a ShuffledRDD is

introduced to transfer the intermediate data across the network.

1.2 Overview of Technical Challenges

This dissertation aims to comprehensively optimize the design of MapReduce frameworks

from three aspects: (1) exploiting high-performance I/O layer for accelerating intermediate data

movement, (2) enhance task management for provisioning quality-of-service to concurrent work-

loads in multi-tenant MapReduce environments, (3) optimizing the adaptability of MapReduce on

HPC platforms. By addressing these three challenges, our optimization can effectively enhance the

performance from three dimensions, including job execution time, fairness, and cluster utilization.

1.2.1 How to Optimize Intermediate Data Movement

MapReduce systems have been highly optimized by many designs [102, 67, 80] to reduce

the amount of network traffic when reading input data for MapTasks and writing output from

ReduceTasks. For instance, delay scheduling [102] helps improve the data locality and reduce data

movement in the network. According to their experiment report on many large clusters, up to 98%

MapTasks can be launched with inputs on local disks. In addition, ReduceTasks usually generate

and store the final outputs to the disks local to themselves in the distributed file systems.

However, intermediate data shuffling causes a large volume of network traffic and remains as

a critical bottleneck of MapReduce systems. Every ReduceTask fetches data segments from all

map outputs, resulting in a network traffic pattern from all MapTasks to all ReduceTasks, which
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grows in the order of O(N2), assuming that MapTasks and ReduceTasks are both a factor of N total

tasks. As reported by [71] from Yahoo!, the intermediate data shuffling from 5% of large jobs can

consume more than 98% network bandwidth in a production cluster, and worse yet, MapReduce

performance degrades non-linearly with the increase of intermediate data sizes. Also, as reported

by [32], network bandwidth oversubscription can quickly saturate the network links of those ma-

chines that participate in the reduce phase, This intermediate data shuffling essentially becomes

the dominant source of network traffic and performance bottleneck in MapReduce.

Furthermore, at the receiving end of the data shuffling, many well-recognized MapReduce

implementations, including [3, 13], resort to disks to absorb fetched intermediate data while Spark

leaves merging option to users. However, due to slow performance of disk devices, intermediate

data merging is substantially detrimental to the performance of ReduceTasks as pointed out by

many studies [57, 90], leading to severely degraded job performance. Slow merging process can

significantly delay the progress of ReduceTask to enter into the reduce phase and also incur large

amount of small random read during the computation stage. Although leveraging memory can

relieve the disk bottleneck issue, how to efficiently use limited storage space is challenging.

1.2.2 How to Achieve both Efficiency and Fairness

Existing MapReduce clusters are no longer solely used for single user single job environment.

Instead, they are being shared among many users and running a mix of diverse types of concurrent

workloads, including batch jobs and interactive queries in parallel. Such sharing is motivated by

many desirable features, such as statistical multiplexing [86] and data consolidation.

To cope with such trend, many scheduling policies [102, 46, 92, 87] have been proposed to

optimize multiple metrics, sometimes conflicting, simultaneously for the concurrent MapReduce

workloads so that they can deliver good quality-of-services. However, little work has been carried

out to improve both job execution time and fairness among multiple jobs these two most critical

performance metrics together due to the complexity. Improving the performance of a single job

generally requires provisioning more resources to accelerate the processing of its tasks. While, on
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the contrary, maintaining the fairness deprives jobs of available resources, leading to degraded job

execution times. Thus, it is challenging to balance between efficiency and fairness. Hadoop Fair

Scheduler [10] introduced by Facebook and Hadoop Capacity Schedulers [9] initiated by Yahoo!

are two notable effort to improve both these metrics, however, our studies show that they are still

far away from delivering the optimal performance.

Many issues are hindering MapReduce schedulers from gaining both efficiency and fairness.

Firstly, existing solutions assume tasks are short, thereby only assigning tasks when the resources

are released by previous tasks. However, the oblivity of distinct execution patterns between Map

and Reduce tasks can cause job monopolization problem, penalizing both efficiency and fairness.

Secondly, current fair scheduling policies rigidly balance resources among jobs in a weighted fair

sharing manner without considering the progress of each individual job and leveraging the lessons

from previous scheduling research [40, 83]. However, when certain small jobs are very close to

complete, prioritizing them can effectively improve the efficiency with negligible fairness viola-

tion. Therefore, current solutions lack the capability to opportunistically enhance the efficiency.

Thirdly, once tasks are assigned, they occupy the resource until completion or failure, and existing

schedulers do not take account of the utilization of the taken resources, thus incurring resource

underutilization when tasks are long running and exhibit intermittent I/O execution patterns.

1.2.3 How to Optimize MapReduce for HPC Platforms

Although MapReduce was initially introduced for commodity clusters, it has also gained

broad attention from scientists at the leadership computing facilities as a promising solution to

analyze gigantic simulation results. Thus, there is a growing demand for adapting MapReduce

systems for High-Performance Computing (HPC) platforms widely deployed in the national labo-

ratories over the past few years.

However, the performance characteristics of MapReduce running on HPC environments re-

main unknown with little documented literature research [35, 75]. More importantly, the design

paradigm of MapReduce frameworks diverges from that of HPC systems substantially. In sum,
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there are two key distinctions between MapReduce frameworks and HPC systems. First, there is

a key difference on the deployment of compute and storage resources. Second, there is a major

difference in terms of the impact of task scheduling and data locality.

Given these distinctions, it is challenging to adapt MapReduce frameworks for HPC plat-

forms since simply deploying MapReduce on the systems is unable to fully exploit the perfor-

mance advantages of HPC clusters. Thus, in order to enhance the adaptability, it is imperative

to characterize the performance of MapReduce on HPC platforms. In particular, it is critical to

comprehend the impact of HPC storage systems on the input retrieving, intermediate data storing

and shuffling, as well as output sinking. Besides, different from traditional MapReduce clusters

that are usually equipped with commodity Gigabit Ethernets, HPC systems, in generally, contain

high-performance interconnects, such as InfiniBand, which indicate different performance impact

on the locality-oriented scheduling. Therefore, it is also important to obtain understanding how

this distinction can affect conventional MapReduce task management policies. Furthermore, HPC

systems are evolving to be suitable for MapReduce model. One example is that many HPC clusters

are embracing a hierarchy of different types of storage devices on traditional memory-only com-

pute nodes. Thus, it is also of critical importance to study the performance impact of such trend on

the MapReduce frameworks.

1.3 Research Contributions

In this dissertation, we have thoroughly investigated the performance of existing MapReduce

frameworks on different platforms, revealed their key limitations and bottlenecks, and compared

the performance of our solutions with the state-of-the-art. In particular, this dissertation has made

following three contributions.

1.3.1 Network Levitated Merge Algorithm

We optimize the intermediate data processing pipeline via introducing a novel Network Levi-

tated Merge algorithm [90, 99], along with a Hadoop Acceleration framework [7]. The new merge
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algorithm overcomes three major inefficiencies in ReduceTask. These include (1) a serialization

barrier that delays the reduce phase, (2) repetitive merges and disk access that incur excessive

I/O, and (3) the lack of capability to leverage high-performance network protocols. Its feats in-

clude merging all the intermediate data entirely in memory and enabling a full pipeline of shuffle,

merge, and reduce three phases, thereby efficiently eliminating the disk bottleneck existing in the

ReduceTasks and accelerating the progress of entire job. Our experimental results show that the

new merge algorithm and Hadoop accelerating framework together double the data processing

throughput of Hadoop, reduce CPU utilization, meanwhile maintaining comparable scalability as

original Hadoop MapReduce. In addition, Hadoop Acceleration framework has laid down a solid

foundation for future research on improving the I/O performance of MapReduce, the work built on

top of it has been published in [90, 89, 96, 59, 68, 100, 99, 94]

1.3.2 Preemptive ReduceTask based Fast Completion Scheduler

MapReduce adopts a two-phase (map and reduce) scheme to schedule tasks among data-

intensive applications. However, under this scheme, Hadoop schedulers, such Hadoop Fair Sched-

uler [10] and Hadoop Capacity Schedulers [9], do not work effectively for both phases. We reveal

that there exists a serious fairness issue among jobs of different sizes, leading to prolonged exe-

cution for small jobs, which are starving for reduce slots held by large jobs. Therefore,they are

insufficient to deliver the optimal quality-of-service under multi-tenant MapReduce clusters. To

solve this fairness issue and ensure fast completion for all jobs, we have designed the Preemptive

ReduceTask mechanism and the Fair Completion scheduler [91, 82]. Preemptive ReduceTask is a

mechanism that corrects the monopolizing behavior of long running reduce tasks from large jobs.

Based on the Preemptive ReduceTask, the Fair Completion Scheduler dynamically balances the

execution of different jobs for fair and fast completion. Experimental results with a diverse collec-

tion of concurrent workloads demonstrate that these techniques together speed up the average job
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execution by as much as 39.7%, and improve fairness by up to 66.7%. A comprehensive theoret-

ical analysis of the benefits provisioned by preemptive scheduler for MapReduce have also been

documented in [82, 83].

1.3.3 Characterizing and Optimizing MapReduce on HPC Platforms

Recently, MapReduce has gained broad attention from scientists at the U.S. leadership com-

puting facilities as a promising solution to process gigantic simulation results. However, conven-

tional high-end computing systems are constructed based on the compute-centric paradigm while

MapReduce frameworks prefer a data-centric paradigm. In this dissertation, we have characterized

the performance impact of key differences between compute- and data-centric paradigms and then

provided optimizations to enable a dual-purpose HPC system that can efficiently support conven-

tional HPC applications and new data analytics applications, thus, enhancing the adaptability of

MapReduce frameworks for the HPC environments to increase cluster utilization. Using Spark and

the Hyperion system at Lawrence Livermore National Laboratory, we have thoroughly examined

the impact of different storage architectures, locality-oriented scheduling to the memory-resident

MapReduce jobs. Based on our characterization and findings of the performance behaviors, we

have introduced two optimization techniques, namely Enhanced Load Balancer and Congestion-

Aware Task Dispatching, to improve the performance of Spark applications via better utilizing the

resources provisioned by HPC clusters.

1.3.4 Publication Contributions

During my Ph.D. study, my research has contributed to the following pulications (listed in the

chronological order):

1. Yuan Tian, Scott Klasky, Jay Lofstead, Ray Grout, Norbert Podhorszki, Qing Liu, Yandong

Wang, Weikuan Yu. EDO: Improving Read Performance for Scientific Applications Through

Elastic Data Organization. IEEE Cluster Computing 2011 [85].
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2. Yandong Wang, Xinyu Que, Weikuan Yu, Dror Goldenberg, Dhiraj Sehgal. Hadoop Ac-

celeration Through Network Levitated Merge. IEEE/ACM the International Conference for

High Performance Computing, Networking, Storage and Analysis 2011 [90].

3. Xinyu Que, Yandong Wang, Cong Xu, Weikuan Yu. Hierarchical Merge for Scalable MapRe-

duce. Workshop on Management of Big Data Systems, in conjunction with ICAC 2012 [68].

4. Weikuan Yu, Yandong Wang, Xinyu Que. Design and Evaluation of Network Levitated

Merge for Hadoop Acceleration. IEEE Transactions on Parallel and Distributed System

2012 [99].

5. Yandong Wang, Yizheng Jiao, Cong Xu, Xiaobing Li, Teng Wang, Xinyu Que, Cristi Cira,

Bin Wang, Zhuo Liu, Bliss Bailey, Weikuan Yu. Assessing the Performance Impact of High-

Speed Interconnects on MapReduce Programs. Third Workshop on Big Data Benchmarking

2013 (Invited Book Chapter) [89].

6. Zhuo Liu, Bin Wang, Teng Wang, Yuan Tian, Cong Xu, Yandong Wang, Weikuan Yu. Pro-

filing and Improving I/O Performance of a Large-Scale Climate Scientific Application. the

22nd International Conference on Computer Communication and Networks 2013 [61].

7. Cong Xu, Manjunath Venkata, Richard Graham, Yandong Wang, Zhuo Liu, Weikuan Yu.

SLOAVx: Scalable LOgarithmic AlltoallV Algorithm for Hierarchical Multicore Systems.

the 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing 2013 [95].

8. Yandong Wang, Cong Xu, Xiaobing Li, Weikuan Yu. JVM-bypassing Shuffling for Hadoop

Acceleration. the 27th IEEE International Parallel and Distributed Processing Symposium

2013 [96].

9. Yandong Wang, Jian Tan, Weikuan Yu, Li Zhang, Xiaoqiao Meng. Preemptive ReduceTask

Scheduling for Fair and Fast Job Completion. USENIX Symposium on International Con-

ference on Autonomic Computing 2013 [91].
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10. Xiaobing Li, Yandong Wang, Yizheng Jiao, Cong Xu, Weikuan Yu. CooMR: Cross-Task

Coordination for Efficient Data Management in MapReduce Programs. IEEE/ACM The In-

ternational Conference for High Performance Computing Networking, Storage and Analysis

2013 [59].

11. Weikuan Yu, Yandong Wang, Xinyu Que, Cong Xu. Virtual Shuffling for Efficient Data

Movement in MapReduce. IEEE Transactions on Computers 2014 [82].

12. Yandong Wang, Robin Goldstone, Weikuan Yu, Teng Wang. Characterization and Optimiza-

tion of Memory-Resident MapReduce on HPC Systems. the 28th IEEE International Parallel

and Distributed Processing Symposium 2014 [97].

13. Jian Tan, Yandong Wang, Weikuan Yu, Li Zhang. Non-work-conserving Effects in MapRe-

duce: Diffusion Limit and Criticality. ACM Sigmetrics 2014 [83].

14. Yandong Wang, Jian Tan, Weikuan Yu, Li Zhang. Achieving Fair and Fast Completion

Through Work-Conserving ReduceTask Preemption (under review).

15. Zhuo Liu, Fang Zhou, Yandong Wang, Xiaoning Ding, Weikuan Yu. Two-Level Scheduling

of Analytic Queries Through Cross-Layer Semantics Percolation (under review).

16. Teng Wang, Sarp Oral, Yandong Wang, Brad Settlemyer, Scott Atchley, Weikuan Yu. Burst-

Mem: A High-Performance Burst Buffer System for Scientific Applications (under review).

1.4 Dissertation Overview

In the rest of this dissertation, we detail the problems that prevent MapReduce frameworks

from achieving the optimal performance, and then provide detailed description of our techniques.

Every chapter focuses on presenting one solution, along with a thorough examination of the per-

formance comparison between our solution and the state-of-the-art techniques.

In Chapter 2, we comprehensively examine the performance and design issues in contempo-

rary MapReduce frameworks to motivate our innovations.
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In Chapter 3, we introduce Hadoop Acceleration framework and the novel Network Levitated

Merge algorithm that conquer three issues, including serialization barrier, repetitive disk-based

merge, and lack of the capability to leverage fast network protocols. Our performance evaluation

demonstrates that our solutions can efficiently improve the performance of MapReduce from the

perspective of job execution time without sacrificing the other desirable performance metrics.

In Chapter 4, we introduce a lightweight work-conserving Preemptive ReduceTask that pro-

vides flexible task execution control and Fast Completion scheduler that leverages the advantage

of Preemptive ReduceTasks to provide both efficiency and fairness to jobs of different sizes. Our

experiments with different types of concurrent workloads demonstrate the effectiveness of our so-

lutions to improve these two conflicting performance metrics.

In Chapter 5, we thoroughly investigate the performance of Spark on the HPC platforms. As

a result of the performance investigation, we reveal many unknown characteristics of MapReduce

frameworks when they are deployed on HPC environments. In particular, we have studied the

performance implication of different storage architectures, consistency guarantee from parallel file

systems, and locality-oriented scheduling policies. Based on our finding, we introduce several opti-

mization techniques to enhance the adaptability of MapReduce frameworks for the HPC platforms

to increase cluster utilization.

Eventually, We conclude this dissertation and present opportunities for future work in Chap-

ter 6 and Chapter 7.
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Chapter 2

Problem Statement

This chapter discusses the detailed issues that prevent contemporary MapReduce frameworks

from overcoming the aforementioned challenges in Chapter 1.2. First, it reveals the issues in

Hadoop intermediate data processing pipeline that hinder Hadoop from efficiently moving the

intermediate data. Then it explains the design inefficiencies in Hadoop schedulers that result in

job starvation and resource underutilization, leading to degraded job execution time and unfairness

among concurrent workloads. Finally, it discusses the issues involved for adapting MapReduce

frameworks for HPC platforms.

2.1 Issues Preventing Efficient Data Movement

Hadoop’s MapReduce implementation enables a convenient and easy-to-use data processing

framework. However, with an extensive examination of Hadoop MapReduce framework, par-

ticularly its ReduceTasks, we reveal that the original architecture faces a number of challenging

issues to exploit the best performance from the underlying system: (1) To ensure the correctness of

MapReduce, no ReduceTasks can start reducing data until all intermediate data have been fetched

to local and merged together. This results in a serialization barrier that significantly delays the

reduce operation of ReduceTasks. (2) More importantly, the current merge algorithm in Hadoop

merges intermediate data segments from MapTasks when the number of available segments (in-

cluding those that are already merged) goes over a threshold. These segments are spilled to local

disk storage when their total size is bigger than the available memory. While, this algorithm can

cause data segments to be merged repetitively, and therefore multiple rounds of disk accesses of the

same data, leading to excessive disk I/O. (3) Current Hadoop architecture can only support TCP/IP

protocol to transfer the intermediate data without the capability to leverage the high-performance
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network protocols commonly used in High-Performance Computing community. In this following,

we discuss these three issues in detail.

2.1.1 A Serialization Barrier in Data Processing

Time%

shuffle% merge%

reduce%map%

Start% First%MOF% Serializa.on%

ReduceTask%1%

ReduceTask%2%

ReduceTask%3%

Figure 2.1: Serialization between Shuffle/Merge and Reduce Phases

Hadoop strives to pipeline the processing of large datasets. It is indeed able to do so, particu-

larly for map and shuffle/merge phases. As shown in Figure 2.1, after a brief initialization period,

a pool of concurrent MapTasks starts the map function on the first set of data splits. As soon as the

Map Output Files (MOFs) are generated from these splits, a pool of ReduceTasks starts to fetch

partitions from these MOFs. Within each ReduceTask, there are multiple merging threads running

in the background, when the number of segments is larger than a threshold, or when their total data

size is more than a memory threshold, the smallest segments are merged.

To guarantee correctness of the MapReduce programming model, it is necessary to ensure

that the reduce phase does not start until the map phase is done for all data splits. However, the

pipeline as shown in Figure 2.1 contains an implicit serialization. At each ReduceTask, not until

all its segments are available and merged, will the reduce phase start to process data segments via

the reduce function. These essentially enforce a serialization between the shuffle/merge phase and

the reduce phase. When there are many segments to process (which is often the case), it takes a
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significant amount of time for a ReduceTask to shuffle and merge them. As a result, the reduce

phase will be significantly delayed. Our analysis (c.f. Section 3.4.3) has revealed that this can

delay the reduce phase by 668 seconds, i.e., more than 39.4% of the total execution time for a

Hadoop program that sorts 192GB of data on 24 nodes (c.f. the last row of Table 3.2).

2.1.2 Repetitive Merges and Excessive Disk Access

more 
1: merge 

3: merge 

2: insert 

more 

4: merged again 

Figure 2.2: Repetitive Merging and Disk Access

As mentioned earlier in the overview, ReduceTasks merge data segments when the number of

segments or their total size goes over a threshold. A newly merged segment has to be spilled to

local disks due to memory pressure. However, the current merge algorithm in Hadoop often leads

to repetitive merges, thus extra disk accesses. Figure 2.2 shows a common sequence of merge

operations in Hadoop. For the purpose of illustration, we hereby choose a very small threshold

parameter io.sort.factor = 3 (parameter is defined as mapreduce.task.io.sort.factor in latest YARN

MapReduce that suffers from the same repetitive merge issue). A ReduceTask fetches its data

segments and arranges them in the order of their size. When the number of data segments reaches

six, i.e., twice the threshold, the smallest three segments are merged, shown as Step 1 in Figure 2.2.
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Under memory pressure, this will incur disk access. The resulting segment is inserted back into

the heap based on its relative size.

When more segments arrive (as shown in Step 2), the threshold will be broken again. It is

then necessary to merge another set of segments, shown as Step 3. This again causes additional

disk access, let alone the need to read some segments if they have been stored on local disks.

Depending on its relative size, a previously merged segment is likely to be grouped into another

set and merged again, shown as Step 4. Since the smallest segments are usually selected for merge,

chances are rather high for a segment to be merged repetitively. Furthermore, any segment merged

from a subset of segments eventually needs to be merged for final results. Altogether, this means

repetitive merges and disk access, therefore degraded performance for Hadoop.

Table 2.1: Profile of Excessive I/O During Merging

Total Number of Segments 480
Intermediate data per ReduceTask 5.69GB
Percentage of segments that are merged once 100%
Percentage of segments that are merged Twice 98.1%

To illustrate the excessive I/O caused by the existing merge algorithm in Hadoop, we have

conducted an experiment running TeraSort with 120GB input data across 20 nodes. We count

the number of partitions that are merged at least once and measure the data size involved in the

merging process. Table 2.1 shows the profiling results. On average, each ReduceTask needs to

fetch 480 partitions from all the MapTasks and processes up to 6GB intermediate data. Before a

ReduceTask starts its reduce phase, we observe that all the partitions are merged at least once from

memory to disk and up to 98.1% of partitions are merged twice. With an average intermediate

data size of 5.69GB, each ReduceTask has to write such data to and read from the disks several

times. Such excessive I/O aggravates the interference among tasks and delay the execution of

entire MapReduce programs.

It is tempting to choose a different policy for merge. This can lead to a similar problem of

essentially the same nature. The key constraint is that, if any merge happens before a global order
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of segments is established, it ought to be re-merged into the final result before the reduce function.

Therefore, an alternative merge algorithm is critical for Hadoop to mitigate the impact of repetitive

merges and their associated excessive disk access behavior.

2.1.3 Unable to Leverage RDMA Interconnects

Furthermore, Hadoop does not take advantage of high-performance RDMA [72] interconnect

technologies such as InfiniBand [44] that have matured in the HPC community. For example, a

node in a hierarchical Hadoop cluster is typically equipped with one or more Gigabit Ethernet

(GigE) network interface cards and connected to the lowest tier GigE switch. With this configu-

ration, one card can only add an upper bound of 125 MB/sec to the data movement throughput of

Hadoop. Given a multi-socket and multi-core server, such capacity has to be shared and very thinly

divided amongst all cores. Worse yet, advances in processor technology will soon deliver compute

servers with hundreds of cores to the mass market. Furthermore, RDMA supports high bandwidth

data movement with very little CPU involvement. Simply replacing the network hardware with

the latest interconnect technologies such as InfiniBand and 10 Gigabit Ethernet, and continuing

to run Hadoop on TCP/IP will not enable Hadoop to leverage the strengths of RDMA. Thus, the

lack of support for RDMA interconnects will become a severe threat for Hadoop to keep up with

the advances of other computer technologies, particularly when more highly capable processors,

storage, and interconnect devices are deployed to various computing and data centers.

2.2 Issues in Hadoop Task Management

To support many users and jobs (large batch jobs and small interactive queries), Hadoop

MapReduce adopts a two-phase (map and reduce) scheme to schedule tasks for data-intensive

applications. The Hadoop Fair Scheduler (HFS) [10] and Hadoop Capacity Scheduler (HCS) [9]

have focused on fairness among MapTasks. These schedulers strive to maximize the use of system

capacity and ensure fairness among different jobs. However, they do not work effectively for both

phases. What complicates the matter is the distinct execution behaviors between MapTasks and
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Figure 2.3: Unfair Execution among Different Size Jobs

ReduceTasks. Unlike MapTasks which are generally very short-lived and launched one group after

the other to process data splits, ReduceTasks have a different execution pattern. As shown by the

Facebook trace [102], the execution time of average ReduceTask is longer than that of MapTasks

by one order of magnitude. In addition, once a ReduceTask is launched, it occupies the reduce slot

until completion or failure.

We have examined the performance of Hadoop schedulers using a synthetic workload of jobs

submitted to a shared MapReduce cluster. Jobs are divided into 7 groups based on their increasing

data sizes; jobs in the same group are identical. They arrive according to a Poisson random process.

Figure 2.3 shows the comparison of the normalized execution time, which is defined as the ratio

between a job’s actual execution time and its stand-alone execution time (the time when a job is

running in the system alone). As shown in the figure, the stand-alone execution time of jobs in each

group increases in proportion to their input data size. However, the completion of these jobs varies

dramatically with HFS. Jobs in the smaller groups have much worse normalized execution times,

suggesting that they must wait very long (as much as 52× longer than the stand-alone execution

time). Worse performance results have been observed with HCS, thus we omit its performance for

succinctness. Such scheduling behavior contradicts users’ intuitive expectation that smaller jobs

should be completed faster and turned around more quickly, indicating severe unfairness issue in

existing Hadoop MapReduce schedulers.
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2.2.1 Unfair Reduce Slot Allocation
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Figure 2.4: Run-Time Allocation Profile of Map and Reduce Slots.

To more closely examine the unfairness issue between different jobs, we conduct another

experiment on a cluster of 20 nodes. 40 map slots are created on 10 nodes, and 20 reduce slots

on another 10 nodes. 8 jobs are sequentially submitted into the cluster every 60 seconds. Job 3 is

a large job that requires 20 ReduceTasks. Figure 2.4 shows the usage of map and reduce slots by

8 jobs. Map slots are efficiently shared among jobs over time as jobs arrive and leave, but reduce

slots are all occupied by Job 3. As a result, Jobs 4-8 cannot get a share until Job 3 completes, even

if they have successfully finished all their MapTasks. On average, Jobs 4-8 are severely slowed

down by 1486%, compared to their stand-alone execution times. This reveals that Hadoop Fair

Scheduler is not able to achieve fair normalized execution times for all jobs. A similar behavior

has also been reported by an IBM study [81]. Note that there exists a dramatic variance among the

normalized execution time for different jobs in the same pool and in different tests (c.f. Figure 2.3

and Figure 2.4).
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Figure 2.5: Inefficient Usage of Reduce Slot

2.2.2 Resource Underutilization within ReduceTasks

Existing schedulers are also oblivious of the resource underutilization issue incurred by long

running ReduceTasks. When the generation rate of intermediate data is low, even when long

running ReduceTasks are occupying the slots, they do not efficiently utilize the resources, and

ReduceTasks periodically enter into the idle state, causing severe resource underutilization. In this

section, we demonstrate such problem.

During the shuffle phase, ReduceTasks only fetch intermediate data from remote MapTasks

when there are available map outputs. When intermediate data is unavailable, a ReduceTask enters

into the idle status. But it still occupies the slot, blocking other jobs from acquiring the resource

and degrading the overall system efficiency. Figure 2.5 presents the average CPU utilization and

disk write bandwidth on the machines that host Job 3 in the previous experiment. We can see that,

between 235th second and 1135th second (the execution period of Job 3’s ReduceTasks), CPUs

and disks frequently become idle and are only periodically activated, even though another 5 jobs

are still waiting in the queue. In addition, we also observe that network is highly underutilized in
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this scenario. On average, during 87.6% of Job 3’s ReduceTask execution time, CPUs and disks

are idle and waiting for the intermediate data. This problem can be more exacerbated when a

large job is competing for map slots with other jobs. This competition for map slots prolongs the

execution of the large job and slowers its generation rate of intermediate data, hence further delays

the release of reduce slots, stretching all other jobs’ wait time.

2.2.3 Insufficiency in Existing Solutions

The monopolizing behavior of ReduceTasks has been documented earlier as a reason to cause

small jobs starve for reduce slots [92, 81, 101]. Hadoop provides a slowstart configuration option

that can delay the launch of ReduceTasks and mitigate this situation, but at the cost of slowing

down the shuffle phase, thus it can significantly prolong the execution times of small jobs. Za-

haria et al. [101] proposed a copy-compute splitting mechanism, but it does not fully resolve this

issue. Tan et al. [81] proposed a coupling scheduler to launch reducers gradually by coupling the

progresses of map and reduce tasks in the same job. With this scheduler, a large job can spare

reduce slots for other jobs when its map phase has not progressed much. But when a large job

finishes its map phase, it still takes all available reduce slots and causes the starvation of small

jobs. Like the slowstart option, the coupling scheduler delays and mitigates the monopolization of

reduce slots by large jobs. But it does not solve the monopolization of reduce slots by large jobs,

instead let it progressively happen. In view of these issues, existing solutions are insufficient to

address unfairness and inefficiency issue.

2.3 Issues in Adapting MapReduce for HPC Platforms

Many organizations have been embracing MapReduce and deploying its different implemen-

tations to meet their needs of massive computation and analysis of enormous datasets, thereby

mining critical knowledge for their business.

In this modern rush for gold from data, different organizations are facing very different consid-

erations when it comes to a decision on their data analytics systems. With the prevalence of cloud
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platforms and commercial computing services, many customers can leave that decision to their

system providers. But the system providers really have to juggle between two choices: should they

construct from scratch dedicated systems for data analytics, or should they evolve their systems to

meet the demands of data analytics applications while continuing to support existing applications

and customers? The latter is a particularly perplexing situation faced by the users and adminis-

trators at the leadership computing facilities who have been relying on traditional HPC systems

for their scientific applications. Accompanying this dilemma is that there is a hidden paradigm

shift along with the emergent focus on big data. For the first few decades of computer history,

computing power has been a scarce resource. Thus conventional systems are constructed based on

a compute-centric paradigm while the grand objective is to aggregate as much computing power

as possible in terms of the number of floating-point operations per second. The need to analyze

big data has actually pushed the transition of computer systems into a data-centric paradigm for

which the grand objective is to attain the fastest analytics power in terms of the number of bytes

and records processed per second. In the following, we further describe the paradigm distinctions

between HPC systems and MapReduce model.

2.3.1 Conflict between Design Paradigms
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Figure 2.6: Data-centric and compute-centric paradigms.
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Figure 2.6 shows a comparison between compute- and data-centric paradigms. There are two

key distinctions between these paradigms. First, there is a key difference on the placement of com-

pute and storage resources. The conventional compute-centric paradigm has separated compute

and storage resources in the form of a computer cluster and a parallel file system that are connected

via high speed networks. In contrast, the data-centric paradigm provides co-located compute and

storage resources on the same node. Second, there is a key difference in terms of the impact of task

scheduling and data placement. In the compute-centric paradigm, tasks on compute nodes are, in

general, equally distant from the backend storage system. HPC systems are Typical manifestations

of this paradigm. In the data-centric paradigm, tasks have strong affinity to the nodes containing

their datasets. Because of these distinctions, on compute-centric paradigm, applications sharing

the same data often involve repetitive data movement between the computing resource and the

storage backend. In contrast, the data-centric paradigm provides co-located compute and storage

resources on the same node to facilitate locality-oriented task scheduling. By scheduling comput-

ing tasks to where data resides, data movement can be minimized for applications sharing the data,

benefiting the MapReduce frameworks substantially on commodity clusters.

These distinctions between compute- and data-centric paradigms have significant performance

implications to different types of application workloads. For system providers who are eager to

support more MapReduce-based analytics applications on HPC platforms, it is imperative to char-

acterize the performance of key architectural components in these two different paradigms. Par-

ticularly, how does the configuration of storage resources such as parallel file systems affect job

scalability and throughput? What is the impact of data placement and task scheduling? And how to

reconcile and converge the architectural differences between the two paradigms so that one system

can be configured and tuned for productive sharing by both conventional HPC applications and the

emergent MapReduce-based analytics applications.
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2.4 Summary

In summary, this chapter has revealed the issues that lead to poor intermediate data processing

pipeline, unfairness among concurrent workloads, and conflict between the design paradigms of

MapReduce and HPC systems. Therefore, this dissertation is devoted to addressing those issues,

thus achieving simultaneous multi-dimensional performance improvement for MapReduce frame-

works. To be more specific, this dissertation seeks optimization solutions to tackle above issues

from the following three directions.

• Fast data processing pipeline for MapReduce frameworks

• Efficient job scheduling for provisioning both efficiency and fairness

• Enhancing the adaptability of MapReduce for HPC platforms

The solutions are:

• Hadoop Acceleration framework and Network Levitated Merge algorithm

• Preemptive ReduceTask based Fast Completion Scheduler

• Characterizing and Optimizing MapReduce for HPC Platforms
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Chapter 3

Network Levitated Merge Algorithm

3.1 Introduction

As described in Chapter 1.1.2, Hadoop [3] is an open-source implementation of MapReduce,

currently maintained by the Apache Foundation, and endorsed by many leading IT companies.

Hadoop implements MapReduce framework with two major categories of components: a Job-

Tracker and many TaskTrackers. The JobTracker commands TaskTrackers to process data in paral-

lel through two map and reduce functions. In this process, the JobTracker is in charge of scheduling

MapTasks and ReduceTasks to TaskTrackers, meanwhile monitoring their progress, collects run-

time execution statistics, and handles possible faults and errors through task re-execution.

Performance and scalability are critical to ensure Hadoop’s continuing success to various

industry and scientific users. A number of studies have been carried out to improve the performance

of Hadoop MapReduce framework. Jiang et al. [48] have tuned the parameters of Hadoop for

better performance. Condie et al. [30] have proposed the MapReduce Online architecture to open

up direct network channels between MapTasks and ReduceTasks and speed up the delivery of data

from MapTasks to ReduceTasks. While their work reduces job completion time and improves

system utilization, it cannot cope with a gigantic dataset that does not fit in memory, and also

complicates the fault tolerance handling of Hadoop tasks. Furthermore, it demands a large number

of network channels for data movement. For these reasons, MapReduce Online has to fall back

onto the default MapReduce execution mode.

Furthermore, little work has been carried out to examine the relationship of Hadoop MapRe-

duce’s three data processing phases, i.e., shuffle, merge, and reduce, and their implication to the

efficiency of Hadoop. As illustrated in Chapter 2.1. Current Hadoop intermediate data processing

pipeline suffers from three critical performance issues, including (1) a serialization barrier between

29



shuffle/merge and reduce phases that can severely delays the progress of reduce phase. (2) repeti-

tive merge and excessive disk I/O issue in merge algorithm used by current ReduceTasks. (3) the

incapability to leverage high-performance network protocols, such as RDMA.

To address these critical issues for Hadoop MapReduce Framework, we have designed Hadoop-

A, an acceleration framework that can take advantage of plugin components for performance en-

hancement and protocol optimizations. Several enhancements are introduced: (1) a novel Network

Levitated Merge algorithm that enables ReduceTasks to perform data merging without repetitive

merges and disk access; (2) this new merge algorithm also enables a full pipeline that overlaps

the shuffle, merge and reduce phases for ReduceTasks; and (3) besides the TCP/IP protocol in the

original Hadoop, an alternative protocol is introduced in Hadoop-A to enable data movement via

RDMA (Remote Direct Memory Access). Since ReduceTasks are able to merge data by staying

above local disks, we refer to this new algorithm as Network Levitated Merge. We have carried

out an extensive set of experiments to evaluate the performance of Network Levitated Merge and

Hadoop-A compared to the original Hadoop. Our evaluation demonstrates that the new merge al-

gorithm is able to remove the serialization barrier and effectively overlap data merge and reduce

operations for Hadoop ReduceTasks. Overall, Hadoop-A is able to improve the throughput of

Hadoop data processing by more than 100%. Its RDMA-based data movement also reduces CPU

utilization by more than 36%.

The rest of the chapter is organized as follows. We firstly describe the Hadoop-A acceleration

framework in Section 3.2, followed by Section 3.3 that details the network-levitated merge algo-

rithm. Section 3.4 provides experimental results. Section 3.5 provides a review of related work.

Finally, we summarize this chapter in Section 3.6.

3.2 Design of Hadoop Acceleration

In view of the issues discussed in Section 2.1, we deem that it is important to design a solution

that can accelerate Hadoop’s MapReduce framework and overcome existing limitations. We have
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designed Hadoop-A, an acceleration framework that allows Hadoop to take advantage of RDMA-

capable interconnects, experiment with different plugin merge algorithms, and retain the same user

interface. In this section, we will describe the architecture of Hadoop-A, and the exploitation of

RDMA for data shuffling.

3.2.1 Software Architecture of Hadoop-A
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Figure 3.1: Software Architecture of Hadoop-A

Figure 3.1 shows the architecture of Hadoop-A. Two new user-configurable plugin compo-

nents, MOFSupplier and NetMerger, are introduced to leverage RDMA-capable interconnects and

enable alternative data merge algorithms. Both MOFSupplier and NetMerger are threaded C++

implementations, with all components following the object-oriented principle. The choice of C++

over Java is to avoid the overhead of the Java Virtual Machine (JVM) in data processing and allow

flexible choice of new connection mechanisms such as RDMA, which is not yet available in Java.
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We briefly describe several features of this acceleration framework without going too much into

the technical details of their implementations.

User-Transparent Plugins – A primary requirement of Hadoop-A is to maintain the same

programming and control interfaces for users. To this end, we design the MOFSupplier and Net-

Merger plugins as C++ programs that can be launched by TaskTrackers. A user can choose to en-

able or disable the acceleration, which is controlled by a parameter in the configuration file. With

these run-time plugins, we ensure that Hadoop-A is user-transparent in two ways: (1) no changes

are introduced for the scheduling and monitoring interface between TaskTracker and MapTask, and

the same for TaskTracker and ReduceTask; and (2) no modification is made to the submission and

control interface between a user program and the JobTracker. All MapReduce programs written

for Hadoop will continue to function with Hadoop-A.

Multithreaded and Componentized MOFSupplier and Netmerger – MOFSupplier con-

tains an RDMA server that handles fetch requests from ReduceTasks. It also contains a data

engine that manages the index and data files for all MOFs that are generated by local MapTasks.

Both components are implemented with multiple threads in MOFSupplier. NetMerger is also a

multithreaded program. It provides one thread for each Java ReduceTask. It also contains other

threads, including an RDMA client that fetches data partitions and a staging thread that uploads

data to the Java-side ReduceTask.

Event-Driven Progress and Coordination – To synchronize with Java-side components, we

provide event channels between MOFSupplier/NetMerger plugins and Hadoop. These event chan-

nels are also used to coordinate activities and monitor progress for internal components of MOF-

Supplier and NetMerger. All channels are implemented through asynchronous loopback sockets

that can wake up threads when there are tasks, and allow them to go back to sleep when tasks

are not available. Run-time progress reports and execution statistics are collected and stored as a

part of Hadoop logging files. Such logging utilities are capable of monitoring and dissecting the

execution of Hadoop jobs. For example, results in Section 3.4.3 are collected by using this feature.
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3.2.2 RDMA-Accelerated Data Shuffling
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Figure 3.2: RDMA-Accelerated Data Shuffling

As mentioned in Section 2.1.3, Hadoop cannot make use of RDMA interconnects such as

InfiniBand. The left half of Figure 3.2 shows the communication stack currently used for Hadoop

data shuffling. When notified of the completion of a MOF, Hadoop ReduceTasks invoke a copy

thread to fetch its data partition through a Java-based HTTP GET request. On the server side, a

Java-based HTTP server is launched by every TaskTracker. A specific HTTP servlet is attached to

this server to handle HTTP GET requests and serve data partitions from the MOF files accordingly.

Hadoop-A component architecture allows us to introduce alternative communication proto-

cols for data shuffling in Hadoop. To exploit the benefit of RDMA-capable interconnects, we

design our RDMA-based data shuffling protocol completely in the native C++ language, as shown

on the right of Figure 3.2. The new protocol directly builds the RDMA-based communication on

top of the verbs protocol, and completely avoids the overhead of JVM for Hadoop data shuffling.

RDMA-based shuffling protocol consists of an RDMA server in the MOFSupplier and an

RDMA client in the NetMerger. InfiniBand Reliable Connected (RC) service are established on

a per-node basis for RDMA clients and servers. The RDMA CM protocol is used for connec-

tion establishment. Connections are retained for the lifetime of an RDMA client, and will be torn
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down and re-established for a revived client. Once connected, RDMA clients and servers commu-

nicate data through pre-registered memory buffers. The data engine in the MOFSupplier always

prefetches data segments. It retrieves data from disk when the requested data is not yet available in

memory. Such data movement is realized through a direct request and reply protocol. An RDMA

client sends a request along with the information of the available memory buffer, and the RDMA

server locates the data and writes it to the client buffer via a zero-copy RDMA write operation.

More implementation details of the RDMA protocol (and the data engine) are omitted here as they

are not the focus of this paper.

3.3 A Network-Levitated Shuffle, Merge and Reduce Pipeline

As discussed in Section 2.1.1 and Section 2.1.2, there exist two critical issues in Hadoop: (1)

the serialization barrier between shuffle/merge and reduce phases, and (2) repeated merges and

disk access. We first describe a network-levitated merge algorithm that avoids repeated merges,

and then detail the construction of a new pipeline to eliminate the serialization.
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Figure 3.3: A Network-Levitated Merge Algorithm
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3.3.1 Network-Levitated Data Merge

Hadoop resorts to repetitive merges because of limited memory compared to the size of data.

For each remotely completed MOF, it invokes an HTTP GET request to query the partition length,

pull the entire data, and store locally in memory or on disk. This incurs many memory loads/stores

and/or disk I/O operations. With the performance of RDMA interconnects comes so close to mem-

ory, it is now unnecessary, even unwise, to pull data partitions locally before merging. Therefore

we design an algorithm that can merge all data partitions exactly once, and at the same time stay

levitated above local disks.

Figure 3.3 shows our network-levitated merge algorithm. Our algorithm is modified from

Hadoop’s Priority Queue-based merge sort algorithm. The key idea is to leave data on remote

disks until it is time to merge the intended data records.

As shown in Figure 3.3(a), three remote segments S1, S2, and S3 are to be fetched and merged.

Instead of fetching them to local disks, our new algorithm only fetches a small header from each

segment. Each header is specially constructed to contain partition length, offset, and the first pair

of <key,val>. These <key,val> pairs are sufficient to construct a Priority Queue (PQ) to organize

these segments. More records after the first <key,val> pair can be fetched as allowed by the

available memory. Because it fetches only a small amount of data per segment, this algorithm

does not have to store or merge segments onto local disks. Instead of merging segments when the

number of segments is over a threshold, we keep building up the PQ until all headers arrive and

are integrated. As soon as the PQ has been set up, the merge phase starts. The leading <key,val>

pair will be the beginning point of merge operations for individual segments, i.e., the merge point.

This is shown in Figure 3.3(b).

Our algorithm merges the available <key,val> pairs in the same way as is done in Hadoop.

Each segment is a part of a MOF produced by the map function of Hadoop, which means that it is

composed of data records ordered by their keys. Thus the root of a complete PQ is the first record

among all segments. So, it is safe to store this root record as the first record in the final merged data.

When the PQ is updated, the next root will be the first <key,val> among all remaining segments.
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It is then stored to the final merged data as well. When the available data records in a segment are

depleted, our algorithm can fetch the next set of records to resume the merge operation. In fact,

our algorithm always ensures that the fetching of upcoming records happens concurrently with the

merging of available records. As shown in Figure 3.3(c), the headers of all three segments are

safely merged; more data records are fetched, and the merge points are relocated accordingly.

Concurrent data fetching and merging continue until all records are merged. Note that data

records are merged exactly once and stored as part of the merged results. Figure 3.3(d) shows a

possible state of the three segments when their merge completes. Naturally, one may ask where

the merged data is stored and what happens if it cannot be contained in memory. Since the merge

data has the final order for all records, we can safely deliver the available data to the Java-side

ReduceTask where it is then consumed by the reduce function. Further details are available below

in Section 3.3.2.

3.3.2 Pipelined Shuffle, Merge and Reduce

Besides avoiding repetitive merges, our algorithm removes the serialization barrier between

merge and reduce. As described in Section 3.3.1, the merged data has <key,val> records ordered

in their final order, and can be delivered to the Java-side ReduceTask as soon as they are available.

Thus the reduce phase no longer has to wait until the end of the merge phase.

In view of the possibility to closely couple the shuffle, merge and reduce phases, we design

Hadoop-A with a full pipeline, which is shown in Figure 3.4. In this pipeline, MapTasks map data

splits as soon as they can. When the first MOF is available, ReduceTasks fetch the headers and

build up the PQ. These activities are pipelined. Header fetching and PQ setup are pipelined and

overlapped with the map function, but they are very light-weight, compared to shuffle and merge

operations. As soon as the last MOF is available, completed PQs are constructed. The full pipeline

of shuffle, merge, and reduce then starts. One may notice that there is still a serialization between

the availability of the last MOF and the beginning of this pipeline. This is inevitable in order for

Hadoop to conform to the correctness of the MapReduce programming model. Simply stated, it is
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Figure 3.4: Pipelined Shuffle, Merge and Reduce

erroneous to send any data to the reduce function (for final results), while the intermediate result

is yet to be produced by the map function.

Therefore our pipeline is able to shuffle, merge and reduce data records as soon as all MOFs

are available. This eliminates the previous serialization barrier in Hadoop, and allows intermediate

results to be reduced as soon as possible for final results.

3.4 Experimental Results

In this section, we show experimental results from our evaluation of Hadoop-A on InfiniBand,

compared to the original Hadoop on Gigabit Ethernet and IPoIB.

3.4.1 Testbed Environment

We conduct our experiments on a cluster of 26 nodes. Each node is equipped with dual-socket

quad-core 2.13GHz Intel Xeon processors and 8 GB of DDR2 800 MHz memory, along with 8x

PCI-Express Gen 2.0 bus. Four cores on a socket share 4 MB L2 cache. These nodes run Linux
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Table 3.1: Comparison of Network Performance

Devices
Bandwidth (MB/sec)

Java C
IB (RDMA) – 3239.21
IB (IPoIB) 1078.40 1220.39
Gigabit Ethernet 122.31 124.13

2.6.18-164.el5 kernels. All nodes are equipped with Mellanox ConnectX-2 QDR Host Channel

Adaptors and are connected to a 36-port InfiniBand QDR switch. We use the InfiniBand software

stack, OFED [14] version 1.5.2, as released by Mellanox. Each node has a 250GB, 7200 RPM,

Western Digital SATA hard drive.

The performance of RDMA is measured using the perf test from OFED [14], that of IPoIB

and Gigabit Ethernet (GigE) using the netperf [18] benchmark. For the performance of IPoIB and

Gigabit Ethernet in Java, we use a Java-based TTCP benchmark [16].

Table 3.1 shows the comparison of peak throughput for three network protocols: RDMA,

IPoIB and GigE. RDMA delivers much higher throughput in the C environment, but it is not

available in a Java environment. IPoIB can achieve a peak performance of 1078.40 MB/sec and

1220.39 MB/sec, respectively, when running in Java and C. For all our tests, we use the default

connected mode of IPoIB. GigE can achieve a peak of 122.31 MB/sec and 124.13 MB/sec in Java

and C, respectively. Note that compute nodes in our system have relatively slow processors and

memory buses compared to the best available in the market. Thus these numbers may differ slightly

from vendors’ advertised performance numbers. Nonetheless, these network protocols provide a

good set to compare the performance of Hadoop and Hadoop-A.

3.4.2 Overall Performance

We run Hadoop TeraSort and WordCount programs with different data sizes and different

numbers of slave nodes. We choose the data size per split as 256MB. Each slave has 8 Map-

Tasks and 4 ReduceTasks. Figure 3.5 shows the performance comparison between Hadoop-A and

Hadoop for TeraSort and WordCount programs. The Y-axis shows the percentage of completion
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Figure 3.5: Progress Diagrams of TeraSort and WordCount Benchmarks

for Map and Reduce Tasks. The X-axis shows the progress of time during execution. As shown by

(a) and (b), Hadoop-A speeds up the total execution time significantly for the TeraSort program,

by more than 47% compared to Hadoop over IPoIB or GigE. WordCount, on the other hand, does

not benefit much from Hadoop-A because of the small size of its intermediate data and low re-

quirement on data movement, as shown by (c) and (d). We focus on TeraSort for the rest of the

performance evaluation.

Figure 3.5(a) shows that MapTasks of TeraSort complete much faster with Hadoop-A, espe-

cially when the percentage of completion goes over 50%. This is because Hadoop-A only performs
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light-weight operations such as fetching headers and setting up PQ, thereby leaving more resources

such as disk bandwidth for MapTasks. Note that Hadoop reports the progress of ReduceTasks as

soon as data is being merged. Hadoop-A implements the same. Because Hadoop-A waits until the

completion of last MOF before merge, this results in seemingly slow progress of ReduceTasks in

Hadoop-A. Hadoop-A still makes progress on ReduceTasks. Once it begins reporting, its progress

in terms of percentage jumps up quickly, as shown by (b) and (d) for TeraSort and WordCount,

respectively.

3.4.3 Dissection of ReduceTask Execution

Table 3.2: Time Breakdown of ReduceTask Execution (Seconds)

Slaves
Hadoop on GigE Hadoop on IPoIB Hadoop-A

Shuffle/Merge Reduce Shuffle/Merge Reduce PQ Setup Pipeline
4 1238 (66.2%) 633 (33.8%) 1179 (65.7%) 615 (34.3%) 452 (42.5%) 613 (57.5%)
6 1066 (67.7%) 522 (32.3%) 1152 (65.7%) 602 (34.3%) 426 (45.5%) 511 (54.5%)
8 1016 (65.0%) 551 (35.0%) 1190 (65.0%) 641 (35.0%) 441 (44.2%) 556 (55.8%)
10 1137 (64.1%) 629 (36.0%) 1208 (65.1%) 649 (34.9%) 437 (44.6%) 543 (55.4%)
12 1143 (65.0%) 607 (35.0%) 1208 (65.4%) 639 (34.6%) 442 (45.1%) 538 (54.9%)
14 1194 (66.0%) 622 (34.1%) 1166 (65.6%) 612 (34.4%) 446 (45.3%) 539 (54.7%)
16 1182 (65.7%) 616 (34.2%) 1169 (64.9%) 631 (35.0%) 455 (47.6%) 501 (52.4%)
18 1192 (65.6%) 624 (34.4%) 1195 (65.6%) 628 (34.4%) 461 (45.7%) 547 (54.3%)
20 1158 (65.8%) 602 (34.2%) 1178 (65.7%) 614 (34.3%) 461 (46.3%) 535 (53.7%)
22 1164 (66.3%) 593 (33.7%) 1170 (65.8%) 608 (34.2%) 463 (45.2%) 563 (54.8%)
24 1150 (65.0%) 599 (35.0%) 1148 (65.9%) 597 (34.1%) 460 (47.4%) 509 (52.6%)

As shown in Figures 2.1 and 3.4, Hadoop-A avoids the serialization barrier between shuf-

fle/merge and reduce phases of Hadoop ReduceTasks. Instead, it has a separate, light-weight phase

to fetch headers and set up PQ. To shed light on how well the full pipeline of shuffle, merge and

reduce in Hadoop-A benefits the performance of Hadoop, we run TeraSort with 4GB per Reduc-

eTask and measure the time of different phases in Hadoop and Hadoop-A. The way that Hadoop

and Hadoop-A maintain their execution statistics makes it possible and greatly simplifies this mea-

surement. We collect timestamps at the begin and end of individual phases, and calculate the
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elapsed time. The timestamps across different ReduceTasks are close to each other. We take the

average across different ReduceTasks.

Table 3.2 shows our measurement results, including both the absolute time in seconds and

the percentage of different phases during the execution of ReduceTasks. Note that the execution

of ReduceTasks differs from that of the entire program by only a small duration, roughly the time

taken to complete the first MOF. This can also be validated from Figures 2.1 and 3.4.

Hadoop-A significantly cuts down on the execution time of ReduceTasks. The shuffle/merge

phase in Hadoop dominates the execution of ReduceTasks. Hadoop-A avoids shuffle/merge and

performs only light-weight tasks such as header fetching and PQ setup. The PQ setup phase

(including header fetching) is much faster compared to the shuffle/merge phase in Hadoop. Inter-

estingly, even though Hadoop-A delays the start of merge until the completion of last MOF and

overlaps the merge operation together with shuffle and reduce, the execution of the full pipeline for

ReduceTasks can still be as much as 18% faster than the stand-alone reduce phase in Hadoop. This

is mainly because our merge algorithm is levitated above local disks and avoids repetitive merges.

3.4.4 CPU Utilization
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Figure 3.6: Comparison of CPU Utilization
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We measure CPU utilization during the execution of TeraSort every 2 seconds. The percentage

of CPU usage for 8 cores is recorded. We then take the average across all slaves at the same

timestamp. Figure 3.6(a) shows the comparison of the average CPU utilization between Hadoop-

A and Hadoop on IPoIB. Figure 3.6(b) shows that of Hadoop on GigE. These results are from a

TeraSort program on 20 slave nodes. Similar comparisons are observed for TeraSort on different

number of nodes. Clearly, Hadoop-A has less CPU utilization compared to Hadoop. Cumulatively,

Hadoop-A has a CPU utilization of 18.7% at the time of its job completion, compared to 29.3% and

33.5% for Hadoop-IPoIB and Hadoop-GigE, respectively, at the same time point. Relatively, the

reduction is 36.2% and 44.2%, respectively. Note that Hadoop-A has higher CPU usage towards

the end of its completion, during which it is running a pipeline of shuffle/merge/reduce operations.

The CPU utilization curve reveals that Hadoop-A is able to leverage system resource and sustain

this pipeline, thereby shortening the execution time of TeraSort.

3.4.5 Scalability of Hadoop-A
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Figure 3.7: Hadoop-A Scalability.

Being able to leverage more nodes to process large amounts of data is an essential feature of

Hadoop. We want to ensure Hadoop-A can deliver scalability in a similar manner. So we measure
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the total execution time of TeraSort in two scaling patterns: one with fixed amount of total data

(128GB) and increasing number of nodes, and the other with fixed data (4GB) per ReduceTask

and increasing number of nodes. The aggregated throughput is calculated by dividing the total size

with the program execution time.

Figure 3.7 (a) shows the scalability comparison between Hadoop-A and Hadoop with a fixed

data size per node. Both Hadoop and Hadoop-A can achieve linear scalability. Hadoop-A can

cut the execution time by approximately 50% and therefore double the throughput. Figure 3.7 (b)

shows the scalability comparison between Hadoop-A and Hadoop with a fixed size of total data.

Again both Hadoop and Hadoop-A can achieve good scalability. Hadoop-A can cut the execution

time by up to 40% and 43%, compared to Hadoop on IPoIB and GigE, respectively. Conversely,

this results in an throughput improvement of 66.7%, and 75.4%, respectively. These results ad-

equately demonstrate better scalability of Hadoop-A for large-scale data processing compared to

the original Hadoop.

3.4.6 Performance on Multiple Disks
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Figure 3.8: Tuning of I/O Performance

Slave nodes in a Hadoop cluster may be equipped with multiple disks, therefore Hadoop Map-

Tasks and ReduceTasks are designed to utilize the bandwidth of all local disks. When several tasks
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(either MapTask or ReduceTask) are running on the same node, their intermediate data are spread

among all disks in a round robin manner. Thus the I/O traffic to any single disk can be greatly

reduced. This can help shorten the wait time of I/O requests. For this reason, Hadoop-A is also

implemented with multiple I/O threads to support data accesses to multiple disks. Accordingly, we

have measured the performance of Hadoop and Hadoop-A when multiple disks are used to store

the intermediate data.

Figure 3.8 shows the results of running TeraSort with different input sizes on 16 slave nodes.

Increasing the number of disks can improve the performance of both Hadoop and Hadoop-A. When

2 disks are used for storing intermediate data, although the disk I/O bottleneck problem is signifi-

cantly alleviated in Hadoop, Hadoop-A is still able to provide up to 21.9% better performance for

256GB data. In addition, we observe that the improvement of Hadoop-A increases with bigger

data size. This is because bigger data size leads to more I/O requests, which causes a more severe

I/O bottleneck at the disk. Therefore Hadoop-A can exploit benefits from the network-levitated

merge algorithm.

In addition, we also notice that when multiple disks are used to store intermediate data, it is

inefficient to use only one thread to read the data from all disks. This can cause underutilization

of some disks while others are busy. Therefore we implement multiple I/O threads to serve the

fetch requests in parallel. We measure the performance of Hadoop-A when several threads are

used within the MOFSupplier. Figure 3.8(b) shows that multiple I/O threads can accelerate the

processing of fetch requests and the improvement can be up to 18% when 8 threads are used.

However, for tests with only one disk, increasing the number of threads has slightly degraded

the performance. This is because the only disk is already overloaded. More threads actually

introduce higher interferences among requests. Overall, our experiments demonstrate that Hadoop-

A is capable of effectively utilizing multiple disks to improve the performance of Hadoop clusters.

It is worth noting that adding more disks improves the performance of Hadoop through re-

ducing the disk I/O contention. This applies to additional investment in other resources as well
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besides an investment on disks. However, our work is complementary to such hardware invest-

ments. Hadoop-A not only makes good use of the network, but also reduces the contention on disk

bandwidth, thereby increasing the efficiency of I/O.

3.4.7 Improvement on Disk Accesses

Table 3.3: I/O Blocks

READ (MB) WRITE (MB)
Hadoop 5,426 36,427
Hadoop-A 2,441 22,713

Hadoop-A aims to lift the data shuffling and merging above disks for ReduceTasks through

network-levitated merge algorithm. It avoids fetching the intermediate data to local disks. Instead,

it leaves data on remote disks and only fetches small-size headers that can be stored in memory.

In addition, the new merge algorithm sorts and merges all <key, val> pairs in memory. To assess

the effectiveness of network-levitated merge, we have also measured the disk accesses during data

shuffling under Hadoop-A, and compared the results with that of Hadoop. We run TeraSort on 20

slave nodes with 160GB as input size, each slave node has 4 MapTasks and 2 ReduceTasks. On

each node we run vmstat and iostat to collect I/O statistics and trace the output every 2 seconds.

Table 3.3 shows the comparison of the number of bytes read and written by Hadoop and

Hadoop-A into local disks per slave node. Overall, Hadoop-A significantly reduces the number of

read blocks by 55.1% and write blocks by 37.6%. This effectively demonstrates that Hadoop-A

reduces the number of I/O operations and relieves the load of underlying disks.

Figure 3.9 shows the progressive profile of read and write bytes during the job execution. Dur-

ing the first 200 seconds in which MapTasks are active, there is no substantial difference between

Hadoop and Hadoop-A in terms of disk I/O traffic. After the first 200 seconds, ReduceTasks start

fetching and merging the intermediate data actively. Because Hadoop-A uses the network-levitated

merge algorithm which completely eliminates the disk access for the shuffling and merging of data
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segments, we observe that Hadoop-A effectively reduces the number of bytes read from or written

to the disks. Therefore, disk I/O traffic is significantly reduced during this period.
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Figure 3.9: I/O Improvement

When disk bandwidth is a scarce resource, high disk I/O traffic can lead to long queuing

time of I/O requests. This degrades the performance of the original Hadoop. In order to further

analyze the benefit from the reduced disk accesses, we measure the service time and wait time of

I/O requests for Hadoop and Hadoop-A. The service time is the time taken to complete one I/O

request and the wait time includes an I/O request’s queuing time and its service time. The result

is shown in Figure 3.10. A couple of I/O behaviors can be observed from this figure. First, there

is a big gap between Hadoop’s service time and wait time, which indicates that most I/O requests

have spent a huge amount of time waiting in the disk’s queue. Second, the I/O service time is

comparable between Hadoop and Hadoop-A. Figure 3.10 shows that Hadoop-A leads to similar or

lower I/O wait time during the first 200 seconds, which corresponds to the mapping phase of the

execution. As the execution progresses, the I/O wait time of Hadoop-A is significantly reduced

when job enters into the shuffle/merge and reduce phases. This demonstrates that the reduction

of disk accesses contributes to the reduction of I/O wait time. Taken together, these experiments
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indicate that Hadoop-A with network-levitated merge can effectively improve the I/O performance

in Hadoop, thereby effectively shortening job execution time.
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3.4.8 Benefits of Merge Algorithm and RDMA
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Figure 3.11: Performance benefit from Network Levitated Merge and RDMA, respectively

To investigate the respective improvement brought by Network Levitated Merge (NLM) and

RDMA respectively, we compare the performance of Hadoop-A with different network protocols
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on InfiniBand. When running on top of TCP/IP, performance improvement is mainly attributed

to the NLM. We compare the performance of Hadoop-A when it is running on RDMA with that

of running on IPoIB to quantify the improvement introduced by RDMA. The results are shown in

Figure 3.11. As shown in the figure, on average, Hadoop-A on IPoIB efficiently reduces the job

execution time by 18.9% when compared to Hadoop on IPoIB. This demonstrates that NLM is

effective at improving the performance of Hadoop by reducing disk accesses on the ReduceTask

side and forming a pipelined shuffle, merge and reduce phases. Figure 3.11 also shows that, by

leveraging RDMA, Hadoop-A can further lower the job execution time. Compared to Hadoop-

A on IPoIB, Hadoop-A on RDMA cuts down on the execution time by 19.9% on average. In

addition, Figure 3.11 also shows that running Hadoop-A on 10 Gigabit Ethernet with TCP/IP

achieves similar performance as Hadoop-A on IPoIB.

3.5 Related Work

MapReduce is a programming model for large-scale arbitrary data processing. The model

popularized by Google provides very simple but powerful interfaces, while hiding complex details

of parallelizing computation, fault-tolerance, distributing data and load balancing [33]. Its open-

source implementation, Hadoop, provides a software framework for distributed processing of large

datasets [3].

A rich set of research has been published on improving the performance of MapReduce re-

cently. Originally, the Hadoop scheduler assumed that all nodes in a cluster were homogeneous

and made progress with the same speed. Jiang et al. [48] conducted a comprehensive performance

study of MapReduce (Hadoop), concluding that the total performance could be improved by a

factor of 2.5 to 3.5 by carefully tuning the factors, including: I/O mode, indexing, data parsing,

grouping schemes and block-level scheduling. Zaharia et al. [106] designed a new scheduling al-

gorithm, Longest Approximate Time to End (LATE), for heterogeneous environments where ideal

application environment might not be available. To fully take advantage of the multicore and mul-

tiprocessor systems, Ranger et al. [70] designed Phoenix, a programming API and runtime system
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for shared-memory systems. In Phoenix, users only need to write simple parallel code without con-

sidering the complexity of thread creation, dynamic task scheduling, data partitioning, and fault

tolerance across processor nodes. Considering the fact that original data structure used to group

key/value pairs would be a primary performance bottleneck on the clusters of multicore architec-

ture, Kaashoek et al. [62] designed a new MapReduce library with a compromised data structure,

which outperforms its simpler peers, including Phoenix. Seo et al. [76] has leveraged prefetching

and pre-shuffling techniques into MapReduce. They have shown that these techniques can im-

prove the overall performance of Hadoop in shared environment. In [43], Sun engineers describe

their work on running Hadoop over Lustre File System. Camdoop [32] is designed to decrease the

network traffic caused by intermediate data shuffling through applying a hierarchical aggregation

during the data forwarding. However, Camdoop is only effective in special network topology, such

as 3D torus network, and its performance degrades sharply in common network topologies adopted

by data centers.

The closest work to ours is MapReduce online as proposed by Condie et al. [30]. MapRe-

duce online attempts to leverage push model to directly send the intermediate data from MapTasks

to ReduceTasks to avoid touching disks on the MapTasks sides. In order to do so, it requires

large number of sustained TCP/IP connections between MapTasks and ReduceTasks. However, it

severely restricts the scalability of Hadoop MapReduce. In addition, when the data size is large

and network cannot keep up with the MapTask processing speed, intermediate data still needs to

be spilled to disks. Furthermore, it fails to identify the I/O bottleneck problem in HttpServlet

and MOFCopier. So for the above reasons, MapReduce online has to fall back onto the original

Hadoop execution mode. Our work addresses the similar performance issue of data movement,

but differs from these studies by enabling network-levitated merge to avoid disk access and over-

lapping merge and reduce at ReduceTasks. Meanwhile, via continuing using request-driven, a.k.a

pulling model, Hadoop Acceleration framework can maintain comparable scalability as original

Hadoop MapReduce.
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Leveraging RDMA from high speed networks for high-performance data movement has been

very popular in various programming models and storage paradigms. Liu et al. [60] designed

RDMA-based MPI over InfiniBand. Implementations of PVFS [66] on top of RDMA networks

such as InfiniBand and Quadrics were described in [49] and [98], respectively. A recent eval-

uation [73] of Hadoop Distributed File system (HDFS) used the SDP [45] and IPoIB protocols

of InfiniBand [?], and the authors showed that MapReduce is still unable to leverage the RDMA

(Remote Direct Memory Access) communication mechanism available from high-performance

RDMA interconnects such as InfiniBand and RoCE [41] (RDMA over Converged Ethernet). Our

acceleration framework uses RDMA as its first communication protocol besides the TCP/IP proto-

col in the original Hadoop. Our work complements previous efforts to enable RDMA for Hadoop

large-scale data processing programming model. Particularly, we show that RDMA is very benefi-

cial in reducing Hadoop CPU utilization. Huang et al. [42] designed an RDMA-based HBase over

InfiniBand. In addition, they also mentioned the disadvantages of using Java Socket Interfaces.

Jose et al.[51, 50] implemented a scalable memcache through taking advantage of performance

benefits provided by high-speed interconnects. Furthermore, Islam et al. [47] enhances the HDFS

using RDMA over InfiniBand via JNI interfaces. Although Hadoop MapReduce is a fundamental

basis of Hadoop ecosystem, there is lack of research on how to efficiently leverage high perfor-

mance interconnects in Hadoop MapReduce.

3.6 Summary

In this chapter, we have examined the design and architecture of Hadoop’s MapReduce frame-

work in great detail. Particularly, our analysis has focused on data processing inside ReduceTasks.

We reveal that there are several critical issues faced by the existing Hadoop implementation, in-

cluding its merge algorithm, its pipeline of shuffle, merge, and reduce operations, as well as its lack

of support for RDMA interconnects. Accordingly, we have designed and implemented Hadoop-A

as an extensible acceleration framework that can allow plugin components to address all these is-

sues. By introducing a new network-levitated algorithm that merges data without touching disks
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and designing a full pipeline of shuffle, merge, and reduce phases for ReduceTasks, we have suc-

cessfully accomplished an accelerated Hadoop framework, Hadoop-A. Our experimental results

show that Hadoop-A doubles the data processing throughput of Hadoop, and also reduces CPU

utilization by more than 36% by leveraging RDMA-based data movement.
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Chapter 4

Preemptive ReduceTask based Fast Completion Scheduler

4.1 Introduction

To address the fairness issue revealed in Chapter 2.2 and ensure fast completion for jobs of

various sizes, we design a combination of two techniques: the Preemptive ReduceTask mechanism

and the Fair Completion Scheduler. Preemptive ReduceTask is a solution to correct the monop-

olizing behavior of long ReduceTasks. By enabling a lightweight working-conserving option to

preempt ReduceTasks, Preemptive ReduceTask offers a mechanism to dynamically change the al-

location of reduce slots. On top of this preemptive mechanism, the Fair Completion Scheduler is

designed to allocate and balance the reduce slots among jobs of different sizes. In summary, we

make the following contributions on the scheduling of jobs in data centers for fair and fast job

completion in this chapter.

• We introduce the Preemptive ReduceTask mechanism for lightweight, work-conserving pre-

emption, on top of which we design the Fair Completion Scheduler that improves both the

fairness and execution efficiency of MapReduce jobs.

• We have conducted a systematic evaluation of Fair Completion Scheduler. Our results

demonstrate that it can reduce the average execution time of workloads by up to 39.7%

and improves the fairness by as much as 66.7%, when compared to Hadoop Fair Scheduler

(HFS), meanwhile achieving significant performance improvement over Hadoop Capacity

Scheduler (HCS).

4.2 Preemptive ReduceTask

A preemptive mechanism needs to be efficient and lightweight so that it can react fast enough

to dynamic system workloads. But a ReduceTask often consumes the bulk of processing time
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due to its main responsibilities of fetching and merging intermediate data from all MapTasks and

performing user-defined reduce computation on the merged data. In this section, we introduce

our Preemptive ReduceTask mechanism that can preempt a ReduceTask at any time during its

execution, with low overhead and negligible delay to the job progress.

4.2.1 Work-Conserving Self Preemption

Preemption is usually an OS utility to threads and processes running on a system. Operating

systems such as Linux are equipped with a sophisticated thread/process table along with virtual

memory to record the progresses of threads/processes and support lightweight preemption. How-

ever, there is no such utility in Hadoop to keep the ReduceTask around as a process after its pre-

emption. Although Hadoop currently provides a killing based preemption mechanism, our results

show that killing is a poor preemption option that can significantly delay the progress of entire job.

A naive checkpoint/start mechanism is also not suitable because it dumps all memory of a Reduc-

eTask (it can be several GB) to persistent storage and incurs very high costs. Instead we introduce

a work-conserving self preemption mechanism. When requested, a ReduceTask will conserve its

work and then preempt itself, i.e., exit and release reduce slot. Note that our preemptive Reduc-

eTask keeps current APIs of Hadoop and HDFS intact, so all existing Hadoop applications can still

function without any modification.

During the shuffle phase, a ReduceTask fetches all the segments that belong to it from all

intermediate map outputs. According to the sizes of the segments, ReduceTask stores them either

to local disks or in memory. Meanwhile, multiple merging threads merge fetched segments into

larger segments and store them to the persistent storage. During the reduce phase, a ReduceTask

organizes all the segments in a Minimum Priority Queue (MPQ, which has a heap structure), in

which the segment that has the minimum first <key,value> pair is positioned at the head of MPQ.

As the reduce phase progresses, <key,value> pairs are continually popped out from the MPQ and

supplied to the reduce function.
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4.2.2 Preemption during Shuffle/Merge Phase
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Figure 4.1: Preemption and Resumption during Shuffle/Merge Phase

Figure 4.1 shows our design of work-conserving preemption when a ReduceTask is in the

shuffle phase. Before preemption, a ReduceTask has a mixture of one on-disk segment and two

in-memory segments, organized in a heap. Preserving the state of shuffle phase is to keep track

of the shuffling status of all segments. Upon receiving a preemption request, this ReduceTask

merges the in-memory segments and flushes the results to the disks (Step 1) while leaves on-disk

segments untouched. The parent TaskTracker maintains an index record on the locations of fetched

segments, one per preempted ReduceTask. Then the ReduceTask preempts itself and releases the

slot. When the ReduceTask is later resumed (Step 2), it retrieves the index record from the parent

TaskTracker, then restores the heap structure before the preemption. After that, this ReduceTask

continue to fetch the rest segments from remaining map outputs (Step 3).

4.2.3 Preemption during Reduce Phase

To conserve the work before preemption in the reduce phase, a ReduceTask needs to store

the current results to HDFS besides recording the positions of input segments in the MPQ. In

other words, ReduceTask needs to preserve the state of reduce computation at the end of each

intermediate <key,val> pair, and remember the index of the last intermediate <key,val> pair at
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Figure 4.2: Preemption and Resumption during Reduce Phase

the time of preemption. Figure 4.2 shows our strategy for work-conserving preemption during

the reduce phase. A ReduceTask is drawing <key,val> pairs from the MPQ that consists of three

segments. When it receives a preemption request, it stops the reduce computation at the boundaries

of <key,val> pairs (Step 1). Available results for previous <key,val> pairs are stored to HDFS.

The parent TaskTracker again helps in this process by storing an index record for a preempted

ReduceTask, and later provides it for preempted ReduceTask to resume its execution (Step 2). After

resumption, the ReduceTask restores the MPQ again and proceeds further from the next <key,val>

pair without any loss or repetition of reduce computation and intermediate data re-shuffling (Step

3). During this process, to allow multiple preempted/resumed ReduceTasks to write to the same

HDFS files, we let TaskTracker maintain the output streams for the HDFS files, therefore they can

be shared by many ReduceTasks with the same Id, and only the last ReduceTask closes the stream.

In addition, Task migration is also possible for a preempted ReduceTask but it requires data to be

re-fetched over the network.

55



 3000

 4000

 5000

 6000

 7000

 8000

10% 30% 50% 70% 90%

J
o

b
 E

x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Finished Percentage of ReduceTask

Work-Conserving Preemption

Killing Preemption

No Preemption (Baseline)

Figure 4.3: Measurements of Preemption Overhead

4.2.4 Work-Conserving Preemption Impact

To quantify the overhead of preemption at different points during the execution of Reduc-

eTask, we employ a shuffle and reduce intensive Terasort benchmark [15], and run 512GB Terasort

input data on 20 nodes (the average of 3 runs are reported).

In the experiment, we preempt every ReduceTask of a job at different stages and resume them

after one heartbeat interval (3sec). The increases in the job execution times indicate the overhead

imposed by these preemptions. Figure 4.3 shows that, compared to the execution without any

preemption, our work-conserving mechanism can efficiently preempt and resume ReduceTasks

with negligible overhead. The job execution time is kept nearly the same when ReduceTasks are

preempted before their progress reaches 70% completion. Preempting ReduceTasks when they

reach 90% progress causes noticeable overheads. This is because, when preemption happens at

a later stage, storing larger partially completed results to HDFS can cause longer delay to the

job progress. So in our current design, a ReduceTask is not preempted once its progress reaches

70% (c.f. the proposed scheduling algorithm in section 4.3). Also included in the comparison

is the preemption based on existing killing mechanism. As shown in the figure, killing is a poor

preemption option, it causes significant overhead even when ReduceTask is preempted at very

early stage. We have also measured the impact of repetitive preemptions on job progress and
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have observed similar results (not shown for conciseness here). These measurements adequately

demonstrate that our work-conserving Preemptive ReduceTask is a viable lightweight preemption

mechanism for task management.

4.3 Fair Completion Scheduler

Algorithm 1 FCS: Selecting ReduceTask to Preempt

1: Lrunning: {a list of running jobs of decreasing remaining work.}
2: Ji: {a job requesting new reduce slots.}
3: Demand(Ji)← {Ji’s demand for reduce slots.}
4: if Available reduce slots < Demand(Ji) then
5: m← Demand(Ji) - Available reduce slots
6: for all j ∈ Lrunning ∧ IsPreemptable(J j) ∧(m > 0) do
7: if (J j.Trs > Ji.Trs) ∨ ((J j.Trs == Ji.Trs) ∧ (J j.Rle f t > Ji.Rle f t) then
8: RLn← {J j’s list of running ReduceTasks}
9: for all r ∈ RLn ∧(m > 0) do

10: preempt r
11: m← m−1
12: end for
13: end if
14: end for
15: end if

To efficiently balance the reduce slots among a large number of jobs of different sizes, we

introduce a novel preemptive ReduceTask scheduling policy via considering the remaining Re-

duceTasks workload of all the jobs. Meanwhile, MapTasks can be scheduled under independent

scheduling policies, such as max-min fair, or FLEX [92]. Because of the benefits in achieving

fairness for jobs of different sizes (c.f. Section 5), we refer to it as Fair Completion Scheduler

(FCS).

As a preemptive scheduler, FCS must be equipped with two algorithms: one to automatically

select a ReduceTask to preempt and the other to select a ReduceTask to launch. We first describe

the selection policy for preemption. To select a suitable ReduceTask and achieve fair execution, we

need to evaluate the run-time progress of jobs. However, the relative progress and the remaining
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processing time of ReduceTasks are not available before they start. We choose the following

approximations to estimate the progress.

Remaining shuffle time:

This is estimated as Trs through the function: Trs = (
Mle f t
Mrate

)×Tmavg, where Mle f t stands for the

number of remaining MapTasks, Mrate is the average rate in completing MapTasks, and Tmavg is

the average execution time of MapTasks that have completed or in progress. As a job is making

progress in its execution, we dynamically update Mrate accordingly.

Remaining reduce data:

This is estimated as Rle f t through the function: Rle f t = Rtotal −Rdone, where Rtotal stands

for the total intermediate data to reduce, and Rdone the data that has been reduced. The latter is

available during the progress of reduce phase, and the former is available when the reduce phase

starts.

Execution Slackness:

This is estimated as Eslack through the function: Eslack =
Ttotal
Test

, where Ttotal is a ReduceTask’s

total execution time since its beginning and Test is its estimated execution time based on its progress

without preemption. We calculate it as Test =
Tsvc

Cpctg
, where Tsvc is the actual execution time exclud-

ing preemption and Cpctg is the percentage of completed work.

FCS is designed with policies to balance reduce slots between small jobs and large jobs. On

the one hand, it compares a job that has the largest amount of remaining work to a job requesting

reduce slots, as shown in Line 7 of Algorithm 1. Its ReduceTasks are preempted if it has more

work than the requesting job (Line 10). Essentially, this allows small jobs to preempt large jobs,

solving the monopolizing behavior of long-running jobs and reducing the delay of small jobs. On

the other hand, we monitor the execution slackness of a ReduceTask since its beginning. If its

execution slackness has reached a configurable upperbound (5 by default), a ReduceTask will not

be preemptable, i.e. IsPreemptable returns false. This enables large jobs with an option to escape

preemption–keeping their reduce slots–and avoid starvation. Note that the execution slackness is

a calculated number at run-time, which offers a better choice than a static parameter, for example,
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the number of times a ReduceTask can be preempted. Its sole purpose is to guarantee that a

long job would not get seriously delayed because of frequent preemption by other jobs. Besides

taking into account of execution slackness, we avoid preempting a newly launched ReduceTask or

a ReduceTask whose progress has gone over 70% to avoid overhead.

Algorithm 2 FCS: Selecting ReduceTask to Launch

1: {Receiving a heartbeat from node n with an empty slot.}
2: Lrem: {a sorted list of jobs of increasing remaining work.}
3: for all j ∈ Lrem do
4: if (Task r is j’s reduce task either preempted from n or never launched) then
5: r.migration = 0
6: launch r on n
7: return
8: end if
9: Tprt ← {j’s preempted ReduceTasks (oldest first)}

10: for all r ∈ Tprt do
11: if r.migration >D then
12: migrate r to n
13: r.migration = 0
14: return
15: end if
16: r.migration += 1
17: end for
18: end for

Then we describe briefly the policy for selecting a ReduceTask to launch, which is shown as

Algorithm 2. In making this selection, FCS favors the jobs with the least amount of remaining

work as shown in Line 2 of Algorithm 2. Jobs are firstly sorted according to their Trs values, when

two Trs values are equal, they are sorted according to Rle f t . In addition, it takes the data locality

into account, trying to launch a preempted ReduceTask on the same node that it has executed

before (Line 4). A preempted ReduceTask that cannot achieve data locality will be delayed (Line

16). However, if a preempted ReduceTask has been delayed for too long because it is not able

to resume on its previous node (Line 11), then FCS migrates it to another node that has available

reduce slots (Line 12). In this algorithm, D is an approximation of −M× ln( 1−L
1+(1−L)), a similar

parameter employed in the delay scheduling [102], where M is the number of nodes in the cluster

59



and L is the expected data locality. For example, on a cluster of 20 nodes, with the expected data

locality L = 0.95, then D≈ 61. With this algorithm, we fit the same delay scheduling policy (and

its parameter D) nicely into FCS, and delay the launching of a ReduceTask for a future possibility

to resume it on the node it was preempted, i.e., better locality. This parameter allows us to consider

the tradeoff between the need of resuming ReduceTask for data locality and the need of migrating

ReduceTasks for free slot utilization. In Section 4.4.2, we show that careful tuning of D can indeed

lead to a good tradeoff between these two factors.

4.4 Evaluation Results

This section presents a systematic performance evaluation of Fair Completion scheduler (FCS)

using a diverse sets of workloads, including Map-heavy workload, Reduce-heavy workload, Mixed

workload. Furthermore, we conduct stress tests through Gridmix2 [8]. We compare the perfor-

mance of FCS to the Hadoop Fair Scheduler (HFS) and Hadoop Capacity Scheduler (HCS). Sev-

eral versions of Hadoop are available. Particularly, YARN as a successor of Hadoop provides a new

framework for task management. However, through code examination and perform evaluation, we

have found that YARN adopts the same task schedulers, thus facing the same fairness issues as

Hadoop. In addition, YARN is still not yet ready for large-scale stable execution. Therefore, our

evaluation is based on the stable version Hadoop 1.0.4.

4.4.1 Experimental Environment

Cluster Setup: Experiments are conducted in a cluster of 46 nodes. One node is dedicated

as both the Namenode of HDFS and the JobTracker of the Hadoop. Each node is equipped with

four 2.67GHz hex-core Intel Xeon X5650 CPUs, 24GB memory, and two 500GB Western Digital

SATA hard drives.

Hadoop Setup: We configure 8 map slots and 4 reduce slots per node, based on the number

of cores and memory available on each node. We assign 1024MB heap memory to each map and
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reduce task, respectively. The HDFS block size is set to suggested 128MB [102] to balance the

parallelism and performance for MapTasks. We use the best tuned configuration for our cluster.

Benchmarks: We employ the well-known GridMix2 and Tarazu benchmarks [21] to demon-

strate that FCS is suitable for various types of workloads.

Tarazu benchmarks represent typical jobs in production clusters. Meanwhile, Different bench-

marks emphasize different workload characteristics. Map-heavy jobs generate a small amount of

intermediate data, thus resulting in lighter ReduceTasks compared to the relatively heavier Map-

Tasks. This group includes Wordcount, TermVector, InvertedIndex and Kmeans. On the other

hand, Reduce-heavy jobs generate a large amount of intermediate data, thus causing heavy network

shuffling and reduce computation at the ReduceTasks. This group includes TeraSort, SelfJoin, Se-

quenceCount, and RankedInvertedIndex. We omit the description of GridMix2 here for saving

space, but it worth mentioning that we configure the submission of GridMix2 jobs as a Poisson

random process with a configurable arriving interval.

Evaluation Metrics: A number of performance metrics are used in our presentation. They

are:

• Average execution time: This is the plain average of execution time among a group of jobs,

reflecting the efficiency of schedulers to a system.

• Maximum slowdown: We refer to slowdown as the normalized execution time, which is

defined earlier. Maximum slowdown is then the biggest slowdown among a group of jobs.

This reflects the fairness to jobs of different characteristics.

• ReduceTask wait time: It is defined as the time spent by a ReduceTask in waiting for reduce

slots after the same job’s MapTasks (i.e. the entire map phase) have all completed. If the

ReduceTask gets a slot before that, then the wait time is 0. This aims to reflect the delay

experienced by ReduceTasks.

• Average preemption times: This is the average number of preemptions experienced by a

group of jobs with similar job sizes. This quantifies the distribution and frequency of pre-

emptions to jobs of different groups that differ in job sizes.
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4.4.2 Evaluating Design Choices of FCS

The design of FCS includes a couple of important design choices such as the threshold param-

eter that allows task migration to resume a preempted ReduceTask, and the choice of Preemptive

ReduceTask instead of killing as the preemption mechanism. In this section, we conduct experi-

ments to evaluate these design choices and elaborate their importance.

Opportunistic ReduceTask Migration
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Figure 4.4: Evaluation of Design Choices

As mentioned in section 4.3, FCS is designed with an opportunistic parameter D that controls

the tradeoff between keeping ReduceTasks on their original node for data locality and migration

ReduceTasks to other available slots for resource utilization. A very large D allows a ReduceTask

to be delayed many times and become sticky to their original nodes, achieving better data locality

for the resumed ReduceTask but at the cost of underutilization of other reduce slots. In contrast,

a very small D leads to better resource utilization but also incurs more data movement. In this

section, we assess the impact of D by executing a pool of Gridmix2 jobs. Also, job submission is

configured to follow a Poisson random process with an average inter-arrival time of 30 seconds.
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In the experiment, we increase the D from 20 to 140, and compare the performance results

of FCS with migration to that of FCS without task migration. As shown in the Figure 4.4(a), FCS

with migration can lead to the best average execution time when D equals 60, with an improvement

of 9.6%. Neither a small D of 20 or a large D of 140 can achieve a good balance between data

locality and resource utilization. This experiment confirms that opportunistically allowing task

migration as controlled by D can lead to good system performance. In the following sections, we

use 60 as the value for D.

Benefits of Preemptive ReduceTask

We investigate the efficiency of FCS when preemption is enabled with either the Preemptive

ReduceTask or the killing-based approach. We use three GridMix2 workloads of different numbers

of jobs (80 for Workload-1, 130 for Workload-2 and 180 for Workload-3). Figure 4.4(b) shows

the results. Compared to FCS with killing-based preemption, FCS with Preemptive ReduceTask

effectively reduces the average execution time by 11.3%, 21.8% and 25.7% for three Workloads

respectively. This demonstrates that FCS performs more efficiently with Preemptive ReduceTask

than with the killing approach. So in the rest of this paper, we focus on further evaluation of FCS

with the Preemptive ReduceTask.

4.4.3 Results of Map-heavy Workload

We now present the evaluation results on Map-heavy workload. The workload composition

is shown in Table 4.1, featuring two basic characteristics. First, as shown in empirical trace stud-

ies [29, 53] that realistic workloads exhibit a heavy-tailed distribution for job sizes, translated into

the number of MapTasks in the job. Second, to capture the effect that jobs arrive to the MapReduce

cluster according to a random process, their arrival interval follows a Poisson random process with

an average inter-arrival time of 30 seconds. For ease of presentation, we sort the jobs according

to their input sizes and the requested number of tasks, then divide them into 10 different groups
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Table 4.1: Job Composition of Map-heavy Workload

Group Benchmark Maps Reduces Jobs
1 WordCount 10 1 50
2 TermVector 20 2 40
3 InvertedIndex 50 4 30
4 TermVector 100 8 20
5 Kmeans 500 10 10
6 TermVector 1000 20 8
7 Kmeans 5000 20 6
8 InvertedIndex 10000 60 4
9 TermVector 15000 120 2
10 InvertedIndex 20000 180 1

Total Jobs 171

Table 4.2: Performance of Map-heavy Workload

In Seconds FCS HFS HCS
Average Execution Time 247 359 1061

of increasing sizes. This categorization means to help understand the scheduling effects on jobs of

different sizes.

Table 4.2 shows the average execution time for all jobs in Map-heavy workload with different

schedulers. Both FCS and HFS significantly outperform HCS, which groups jobs into a small

number of job queues, within each queue, HCS adopts FIFO scheduling policy that is known to

bias against small jobs and cause long average execution times. Thus we focus on the comparisons

between FCS with HFS in the rest performance tests on Map-heavy workload. Overall, FCS speeds

up the average execution time by 31% compared to HFS.

To shed light on how FCS treats jobs of different sizes, we crystallize the average execution

times for the 10 different job groups inside workload. Figure 4.5 shows that FCS effectively

reduces the average execution time for 9 different groups compared to HFS, achieving up to 2.4×

speedup for jobs in group 2. Only jobs in Group 9 are negatively affected by FCS, at an average

ratio of 0.79.
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Figure 4.5: Average Execution Times of Jobs in Different Groups of Map-heavy Workload

We also perform an analysis on how these jobs are completed by the system over time. Fig-

ure 4.6 shows the CDF (Cumulative Distribution Function) of job completion for the workload

grouped into three subsets: small (Groups 1-4), medium (Groups 5-7) and large (Groups 8-10).

As shown in the figure, FCS significantly accelerates the completion of small jobs, moderately

improves the jobs of medium sizes, and also helps large jobs reach higher completion rate at the

beginning. In contrast, HFS severely delays above 15% small jobs in Groups 1-4 with a long

distribution tail stretching beyond 600 seconds. These results again confirm that large jobs can

monopolize reduce slots under HFS, depriving small jobs of a good share. FCS corrects such be-

havior in general, and helps small jobs in particular without much degradation for large jobs in the

Map-heavy workload.

FCS improves system performance by mitigating the starvation of small jobs. It prioritizes

jobs whose shuffle phases are about to complete, thus reducing the ReduceTask wait times. Fig-

ure 4.7 demonstrates the efficiency of FCS via showing the average ReduceTask wait time for all

jobs in 10 groups. As we can see, the average wait time is dramatically cut down for the first eight

groups by as much as 32.2× for group 5. Only for the last two groups, the wait times are stretched

slightly.
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Figure 4.6: CDF of Job Completion Times of Jobs in Different Groups of Map-heavy Workload

To further obtain insights on how FCS has triggered preemptions to different jobs, we record

the preemptions experienced by all ReduceTasks. Figure 4.8(a) shows the distribution of preemp-

tions to different groups of jobs in the workload. As shown in the figure, preemptions have not

happened to Groups 1-4. Groups 5-10 have experienced a small number of preemptions. This

corroborates that FCS can be effective in delivering fair and fast completion without imposing

excessive preemptions.

We have measured the maximum slowdown of all jobs to evaluate the fairness of schedulers

to different jobs. As shown in Figure 4.8(b), FCS efficiently improves the fairness by 66.7%,

compared to HFS, and achieves nearly uniform maximum slowdown across 10 groups. In contrast,

HFS causes serious unfairness to small jobs. In the worse case, a job in Group 3 is slowed down

by 16 times.

4.4.4 Results of Reduce-heavy Workload

Map-heavy workload represents jobs that generate small amount of intermediate data. In this

section, we continue our evaluation with Reduce-heavy workload, in which jobs generate a large

amount of intermediate data, resulting in long running ReduceTasks. The ratio of intermediate data
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Figure 4.7: Average ReduceTask Wait Times of Jobs in Different Groups of Map-heavy Workload.

size to input size of those jobs is from 1 : 1 to 3 : 1. The job composition in the workload is listed

in Table 4.3. We adopt the same distributions for job sizes and their arrival times as described in

section 4.4.3.

We conduct the same set of experiments for Reduce-heavy workload as done for the Map-

heavy workload to demonstrate that FCS can schedule different workloads effectively. For suc-

cinctness, we avoid redundant description, omit some figures, and only highlight the differences.

Table 4.4 shows the overall performance under three schedulers. FCS speeds up the average ex-

ecution time of the workload by 28% when compared to the HFS, and HCS still performs worse

than the other two.

Figure 4.9 shows that FCS speeds up the average execution times of all 10 different groups in

the workload. This differs from the Map-heavy workload. In addition, CDFs in Figure 4.10 show

that FCS improves the completion rate for all three sets of job groups. Different from the experi-

ment for the same set jobs in Map-heavy workload, FCS even delivers better improvements to large

jobs in Groups 8−10 of Reduce-heavy workload. This is because in Reduce-heavy workload, map

phases of large jobs run much longer to generate intermediate data. When small jobs arrive, they

preempt those long running ReduceTasks whose jobs are still mainly in the map phases. As a
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Figure 4.8: Measurement of Preemption Frequency and Fairness among Jobs in Map-heavy Work-
load

result, such preemptions cause little performance impact on large jobs, but efficiently accelerate

the small jobs. As small jobs quickly leave the cluster, large jobs obtain more resources to achieve

faster job completion. Thus we observe faster large jobs.

Significantly shortened ReduceTask wait time contributes to the fast job completion. Fig-

ure 4.11(a) compares the average ReduceTask wait times between FCS and HFS. For Groups 9

and 10, FCS leads to a slightly longer delay, up to 15%. For Groups 3 and 8, FCS and HFS are

comparable. Group 1 has zero wait time in both cases. FCS drastically reduces the wait time down

to 0 for Groups 2,4, and 5. For Groups 6-7, FCS efficiently cuts down the average ReduceTask

wait time, thus speeding up the job completion. Figure 4.11(b) shows that FCS not only reduces

the average execution time but also efficiently improves the fairness by 35.2% on average when

compared to the HFS for the Reduce-heavy workload.

4.4.5 Results of Mixed Workload

Lastly, we generate two mixed workloads using all of the benchmarks from Tarazu. We omit

the job composition table here and directly shows the results for saving space. Different from

previous workloads, we derive our mixed workloads from the Facebook and Microsoft Bing traces
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Table 4.3: Job Composition of Reduce-heavy Workload

Group Benchmark Maps Reduces Jobs
1 TeraSort 10 2 50
2 SelfJoin 20 4 40
3 SequenceCount 50 8 30
4 TeraSort 100 16 20
5 SelfJoin 500 32 10
6 RankInvertedIdx 1000 64 8
7 TeraSort 5000 128 6
8 SequenceCount 10000 256 4
9 TeraSort 15000 512 2

10 SequenceCount 20000 1024 1
Total Jobs 171

Table 4.4: Performance of Reduce-heavy Workload

In Seconds FCS HFS HCS
Average Execution Time 978 1364 8829

described in [24] to mimic the jobs on real production clusters. These two sets of workloads have

different distributions: the Facebook workload consists of mostly small jobs at a percentage of

85%, while Bing workload contains more medium and large size jobs (57%).

Here, we only include some results for a succinct representation. Table 4.6 shows that com-

pared to HFS, FCS reduces the average execution time by 20.2% for Facebook workload, and

34.8% for Bing workload. CDFs in Figure 4.12 further reveal that FCS speeds up small jobs

in the Bing workload more efficiently. For the Facebook workload, FCS provides moderate im-

provements, since small jobs have a dominant presence in the workload with very few large jobs

submitted very late, small jobs’ requirement for reduce slots can be quickly satisfied, leaving less

room for our scheduler to improve. Figure 4.13 again demonstrates that FCS can enhance the fair-

ness by 41.1% for Facebook workload, and 46.4% for Bing workload. In both cases, the variation

of maximum slowdown is much higher under HFS than under FCS due to the unpredictability of

incoming jobs in terms of both job size and arrival rate. We also observe fluctuated slowdown

among different groups of jobs under FCS, we deem it as a natural dynamic behavior of scheduler

when dealing with a pool of randomly-arrived jobs.
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Figure 4.9: Average Execution Times of Jobs in Different Groups of Reduce-heavy Workload
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Figure 4.10: CDF of Job Completion Times of Jobs in Different Groups of Reduce-heavy Work-
load

4.4.6 Evaluation of Scalability

The workloads submitted to a production cluster varies over different periods of time. The

capability of efficiently scheduling a large number of random arriving jobs is critical for a Hadoop

scheduler, especially when the system is heavily loaded. We evaluate the scalability of FCS by

varying the number of GridMix jobs from 60 to 300 and maintain the same distribution of job

sizes. The experimental results are shown in Figure 4.14. Compared to HFS, FCS consistently

reduces the average execution times of different experiments. On average, FCS reduces the average

execution time by 39.7%. More importantly, FCS shows stable performance improvement when
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Figure 4.11: Measurement of Average ReduceTask Wait Time and Fairness among Jobs in Reduce-
heavy Workload

the number of jobs increases. Furthermore, when the number of jobs increases, no noticeable

scheduling overhead is observed in the JobTracker.

4.5 Related Work

Many MapReduce schedulers have been proposed over the past few years trying to maximize

the resource utilization in the shared MapReduce clusters. Zaharia et al. introduced delay schedul-

ing [102] that speculatively postpones the scheduling of the head-of-line tasks and ameliorate the

locality degradation in the default Hadoop Fair scheduler [10]. In addition, Zaharia also proposed

Longest Approximate Time to End (LATE) [106] scheduling policy to mitigate the deficiency of

Hadoop scheduler in coping with the heterogeneity across virtual machines in a cloud environ-

ment. But either of these two scheduling policies supports task preemption for jobs in the same

pool, thus unable to correct the monopolizing behavior of long-running ReduceTasks. Mantri [?]

was designed to mitigate the impact of outliers in MapReduce cluster, it monitors task execution

with real-time remaining work estimation, and accordingly take measures such as restarting out-

liers, placing tasks with network awareness and conserving valuable work from the tasks. But

Mantri does not identify the resource monopolizing issue among large number of concurrent jobs
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Table 4.5: Job Composition of Mixed Workloads

Group Benchmark Maps Reduces Facebook Bing
1 WordCount 8 1 28 20
2 TermVector 8 2 28 12
3 InvertedIndex 8 2 29 11
4 SelfJoin 30 16 2 4
5 Kmeans 30 20 2 4
6 TeraSort 110 40 4 12
7 RII 100 50 4 12
8 SC 248 128 1 12
9 TermVector 300 180 1 11

10 SC 3600 256 1 2
Total Jobs 100 100

Table 4.6: Performance of Mixed Workloads

Facebook Bing
FCS HFS FCS HFS

Average Execution 95 119 531 814

caused by long-running ReduceTasks and does not provide lightweight preemption solution. Ah-

mad [21] proposed communication-aware placement and scheduling of MapTasks and predictive

load-balancing for ReduceTasks as part of Tarazu to reduce the network traffic of Hadoop on het-

erogeneous clusters. But it also does not address the fairness and monopolization issues. Isard et al.

[46] introduced the Quincy scheduler, which adopts min-cost flow algorithm to achieve a balance

between fairness and data locality for the Dryad. But their use of killing as preemption mecha-

nism can cause significant resource waste. Verma [87] introduced ARIA to allocate appropriate

amount of resources to MapReduce job so that it can meet SLO. Based on ARIA, Zhang et al. [107]

further studied the estimation of required resources for completing a Pig program to meet SLO.

Lama [56] proposed AROMA to automatically determine the system configuration for Hadoop

jobs to achieve quality of service goal. FLEX [92] aims to optimize different given scheduling

metrics based on a performance model between slots and job execution time. However, none of
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Figure 4.13: Fairness of Mixed Workloads

above four work considers the resource contention issue (reduce slot contention) among continu-

ously incoming jobs in shared MapReduce clusters. In [22], Ananthanarayanan proposed Amoeba

which supports lightweight elastic tasks that can release the slots without losing previous I/O and

computation. This bears strong similarity to our preemptive ReduceTask. However, it imposes

many constraints such as safe points on task processing so that tasks can be interfered without

losing previous work. However no overhead measurement is reported in the article. In addition,

no corresponding scheduling policy is designed to leverage the benefits provided by elastic task.
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Figure 4.14: Scalability Evaluation with GridMix2

Recently, YARN [13] has been proposed by Yahoo! as the next generation MapReduce. It

separates the JobTracker into ResourceManager and ApplicationManager, and removes task slot

concept. Instead, it adopts resource container concept that encapsulates the general resources, such

as memory, CPU and disk I/O into the schedulable unit (current YARN only supports memory).

But our initial evaluation discovers that monopolization behavior of long-running ReduceTasks

still exist in such framework as long as schedulers greedily allocate as many resources as permitted

to one job. Therefore, our Preemptive ReduceTasks and Fair Completion Scheduler can be very

beneficial in the new framework. In future, we plan to incorporate our techniques into the YARN.

4.6 Summary

In this chapter, we have revealed that there exists a serious fairness issue for the current

MapReduce schedulers due to the lack of a lightweight preemption mechanism for ReduceTasks.

Accordingly, we have designed and implemented the Preemptive ReduceTask as a work-conserving

preemption mechanism, on top of which we have designed the Fair Completion Scheduler. The

introduction of the new preemption mechanism and the novel ReduceTask scheduling policy have

solved the fairness issue to small jobs, resulting in improved resource utilization and fast average
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job completion for all jobs. Our design of Fair Completion Scheduler, compared to the Hadoop

Fair Scheduler and Capacity Scheduler, can reduce the average job execution time by up to 39.7%

and 88.9%, respectively. Furthermore, the Fair Completion Scheduler improves the fairness among

different jobs by up to 66.7%, compared to the Hadoop Fair Scheduler.
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Chapter 5

Enhancing the Adaptability of MapReduce for HPC Platforms

5.1 Introduction

Recall from section 2.3 that MapReduce and HPC systems exhibit distinct design paradigms.

These distinctions between compute- and data-centric paradigms have significant performance im-

plications to different types of MapReduce workloads. Therefore, it is imperative to characterize

the performance of key architectural components in these two different paradigms. In this chapter,

we aim to answer how does the configuration of storage resources such as parallel file systems

affect job scalability and throughput? What is the impact of data placement and task scheduling?

And how to reconcile and converge the architectural differences between the two paradigms so that

one system can be configured and tuned for productive sharing by both conventional HPC applica-

tions and the emergent MapReduce-based analytics applications. Meanwhile, we can enhance the

adaptability of MapReduce frameworks on HPC platforms.

In this chapter, we undertake an effort with intensive experiments to characterize the per-

formance, identify the inefficiency of a MapReduce-based framework on the compute-centric

paradigm, and compare its performance with that on the data-centric paradigm. Accordingly, we

also introduce several optimizations targeting at compute-centric HPC systems.

Among many MapReduce frameworks, we have chosen Spark [103], which is a memory-

resident implementation shown to outperform Hadoop for many applications by orders of magni-

tude [103, 93]. We leverage the Hyperion [11] system at Lawrence Livermore National Laboratory

with two distinct configurations: one under the compute-centric paradigm and the other under the

data-centric paradigm.

In summary, we conduct a comprehensive investigation to characterize the performance criti-

cal aspects of compute- and data-centric paradigms and shed light on how to build a dual-purpose
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HPC system to enable fast data analytics. We have made the following contributions in this re-

search.

• We have studied the impact of storage architecture to the performance of different types of

MapReduce jobs, and revealed that their performance on HPC systems is highly dependent

on their computation intensity.

• We have characterized the importance of intermediate data placement and the benefits of

hierarchical storage media to Spark applications. Particularly, we show that MapReduce

applications need to be aware of the performance implications of storage consistency mech-

anisms on HPC systems and avoid the cascading effects of lock contention from HPC file

systems such as Lustre.

• We have evaluated the impact of locality-oriented scheduling techniques for MapReduce

jobs on compute-centric HPC systems. We show that maximizing data locality is not so

critical, and delay scheduling [102], a popular strategy to delay tasks for data locality can

even cause performance degradation.

• We have introduced two optimization techniques: Enhanced Load Balancer and Congestion-

Aware Task Dispatching. The former takes into account performance variation and imbal-

anced data distribution when scheduling tasks, resulting an improvement of 26% on job exe-

cution time. The latter recognizes the existing oblivity of Spark to new storage devices such

as SSD, throttles the launch of Spark tasks and mitigates the congestion, thereby achieving

a performance gain up to 41.2%.

5.2 Comparison Between Compute- and Data-Centric Paradigms

In this section, we aim to provide a direct comparison between the compute-centric and

data-centric processing paradigms. We have used HPC systems to represent the compute-centric
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paradigm, while using Spark, introduced in Section 1.1.3, as a representative framework of Data-

Centric Paradigm. However, to avoid repeating the description in Section 1.1.3, we omit its de-

scription here.

5.2.1 HPC Systems Representing the Compute-Centric Paradigm

 MDS  OSS 

Interconnect 

 OSS 

 OSS 

 OSS 

 OSS 

 OSS 

Datanode 
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Executor 
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(a): A typical compute-centric HPC system. (b): A typical data-centric big data analytics system. 

Figure 5.1: Detailed comparison between compute- and data-centric paradigms.

Figure 5.1(a) shows a diagram of typical compute-centric HPC systems. The core of such

systems consists of a large collection of compute nodes, i.e., processing elements (PEs), which

offer the bulk of computing power. Via a high-speed interconnect, these PEs are connected to a

parallel file system from the storage backend for data I/O. Lustre is a typical file system used on

HPC systems. It is a POSIX-compliant, object-based parallel file system, offering parallel I/O

services to the clients (PEs) through a MetaData Server (MDS) and many Object Storage Servers

(OSSes).

Lustre provides fine-grained parallel file services with its distributed lock management. To

guarantee file consistency, it serializes data accesses to a file or file extents using a distributed

lock management mechanism. Because of the need for maintaining file consistency, all processes
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first have to acquire locks before they can update a shared file or an overlapped file block. Thus,

when all processes are accessing the same file, their I/O performance is dependent not only on

the aggregated physical bandwidth from the storage devices, but on the amount of lock contention

among them as well.

5.3 Methodology

5.3.1 Experimental Testbed

Table 5.1: List of key Spark configuration parameters.

Parameter Name Value
spark.reducer.maxMbInFlight 1GB
spark.rdd.compress false
spark.shuffle.compress true
spark.buffer.size 8MB
spark.default.parallelism application dependent

Unless otherwise specified, our experiments are carried out on the Hyperion cluster [11] with

101 compute nodes at Lawrence Livermore National Laboratory. One node serves as the master

of the Spark and the NameNode of HDFS. Each compute node is equipped with two 2.60GHz

Intel E5-2670 processors (16 cores per node) and 64 GB of RAM. We allocate 30 GB per node

for Spark jobs and reserve 32 GB for RAMDisk. On each node, there is one SATA-based SSD of

128 GB storage space mounted via ext4 file system. Its peak sequential write and read bandwidths

reach 387 MB/sec and 507 MB/sec, respectively. All compute nodes span across two racks and

are fully connected through InfiniBand QDR which delivers up to 32 Gpbs link bandwidth. A

centralized Lustre file system providing 47 GB/sec aggregated bandwidth is mounted on all the

compute nodes.

All compute nodes run Linux 2.6.32 kernels. Spark 0.7.0, along with Scala 2.9.2 and Oracle

Java 1.7.0 are used. The HDFS block size is set as 128 MB. We have also carefully tuned Spark on

Hyperion. Table 5.1 summarizes main parameters that have noticeable performance impact. For

all tests, we report the median of five test runs.
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5.3.2 Benchmarks

We have selected three representative benchmarks including GroupBy, Grep, and Logistic

Regression (LR). They are described as follows.

Stage&2:&Storing&
Intermediate&data&&

Stage&1:&
Computa4on&&

Stage&3:&Shuffling&
Intermediate&data&&

(a):&GroupBy& (c):&Logis>c&Regression&

Stage&1:&
Computa4on&&

Stage&2:&
Computa4on&&

Stage&3:&
Computa4on&&

Stage&2:&Storing&
Intermediate&data&&

Stage&1:&
Computa4on&&

Stage&3:&Shuffling&
Intermediate&data&&

(b):&Grep&

Figure 5.2: Execution plans of three representative benchmarks.

GroupBy is a critical operation used by many applications, including kMeans, wordcount,

and calculating transitive closure of a graph, etc. It helps reveal the pattern of shuffle opera-

tions. Figure 5.2(a) depicts the execution plan of GroupBy. It consists of three stages. In the

first computation stage, each task generates <key, value> pairs in memory. In the second stage,

Spark schedules ShuffleMapTasks to partition the intermediate data and store them into the file

systems. In the last stage, fetching tasks shuffle intermediate data over the network. Across such

data processing pipeline, the intermediate data size is equal to the input size.

Grep searches a string that matches a regular expression from a set of documents. It represents

a wide range of data analytics applications, such as logQuery and select, etc. Grep’s execution plan

as shown in Figure 5.2(b) bears some similarity to that of GroupBy. However, it generates much

less intermediate data, requiring very little shuffling of data. Its intermediate data size ranges from

1 MB to 200 MB in our test cases.
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Logistic Regression (LR) is an iterative application that predicts the value of a vector accord-

ing to a qualitative response model. It can leverage the strength of Spark in caching job results

in memory. As shown in Figure 5.2(c), we run three iterations for LR. Every iteration is trans-

lated into one Spark job that is executed in one stage. Multiple stages are not pipelined in this

benchmark.

5.4 The Impact of Storage Architecture

As discussed in the introduction, the storage architecture is a key distinction between data- and

compute-centric paradigms. In the data-centric paradigm computation tasks are co-located with

the storage resources, while in compute-centric paradigm tasks need to access a separate storage

subsystem via interconnect. In this section, we characterize the impact of storage architecture on

MapReduce jobs. To have a storage architecture for the data-centric paradigm, we configure an

HDFS file system with 32 GB RAMDisk as the storage for each DataNode on Hyperion. For the

storage architecture of the compute-centric paradigm, we directly use the Lustre file system of

Hyperion.

5.4.1 Location of Data Source

Among the three benchmarks, both Grep and LR work with a varying amount of input data.

But they differ significantly in terms of their analytics computation. Grep generates a small amount

of intermediate data, for which shuffling is required; and LR does mostly computation. We run

both benchmarks with their input coming from the compute-centric Lustre-based configuration and

the data-centric HDFS-based configuration.

Figure 5.3 shows the comparison of the job execution time of Grep and LR benchmarks for

both configurations. Overall, we have observed that the extent of impact is highly dependent on the

computational intensity of MapReduce tasks. For Grep jobs with low computation, such as simply

scanning of the input, the Lustre configuration results in severe performance penalty. Figure 5.3(a)

shows that, with 32 MB split size, the compute-centric Lustre configuration performs up to 5.7×
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Figure 5.3: Performance of retrieving inputs from HDFS and Lustre.

worse than HDFS on average. For the Lustre configuration, increasing the split size from 32 MB to

128 MB reduces the job execution time by 15.9% due to less scheduling overhead. But there is still

a significant performance loss when running Grep on the compute-centric Lustre configuration.

On the contrary, for the computation-intensive jobs, such as multidimensional vector multipli-

cation in LR, the cost of retrieving input from Lustre is not as significant as shown in Figure 5.3(b).

Furthermore, as shown in the figure, the Lustre configuration outperforms HDFS by 12.7% on av-

erage for a 32 MB split size. This improvement is consistent across different split sizes. The

performance difference is caused by delay scheduling policy [102] adopted by Spark, which will

be further analyzed in Section 5.5.1.

Taken together, the impact of the storage architecture to MapReduce applications depends

on the characteristic of the applications’ computation tasks. For LR-type computation-intensive

jobs, the impact is negligible. But for Grep-based jobs with low computation requirements, the

compute-centric Lustre configuration negatively affects the performance.
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5.4.2 Location of Intermediate Data

The location of intermediate data is another critical issue. It directly determines the perfor-

mance of intermediate data shuffling. To investigate this factor, we use the GroupBy benchmark

that allows flexible tuning of the intermediate data size. During the evaluation, we run GroupBy

and store the intermediate data to the two different storage configurations.

Network	
  
Server	
  

Shuffling	
  
Task	
  

FetchRequest  1
2

3
Send data 

Lustre	
  

Compute Node 

(a): Lustre-local Case 

ShuffleMap 
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Shuffling	
  
Task	
  

Shuffling
Task	
  

ShuffleMap 
Task 

ShuffleMap 
Task 

(b): Lustre-shared Case 

1 Write   

2 Read 

Figure 5.4: Two approaches to use Lustre to conduct intermediate data shuffling.

Fig. 5.5(a) illustrates the performance of GroupBy when intermediate data resides in different

storage architectures. Overall, the data-centric HDFS configuration exhibits significant advantage

over the compute-centric alternative. It outperforms the optimal Lustre case (Lustre-local) by up

to 6.5× on average, and the improvement ratio increases linearly with the size of intermediate

data. However, due to the limited storage spaces, HDFS can only support a maximum of 1.2 TB

intermediate data size.

However, in many scenarios, compute nodes in HPC clusters are not equipped with any local

persistent storage systems, for which placing intermediate data on the compute-centric Lustre-

based storage is the only choice.

Lustre-local and Lustre-shared, as shown in Fig. 5.4, illustrate two approaches to use Lustre

for intermediate data shuffling. In the Lustre-local case, fetching tasks that need to shuffle the

intermediate data are unaware of the existence of the Lustre. Thus they initiate FetchRequests to
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the remote servers which in turn retrieve the data from their local Lustre directories and send them

back across the network. However, since data retrieval from Lustre requires a movement over the

network, Lustre-local can cause repetitive data movements, wasting the network bandwidth.

We have examined the alternative Lustre-shared approach, in which each fetching task directly

retrieves intermediate data from Lustre. Although this approach seemingly addresses the issue of

repetitive data movement within Lustre-local, it suffers from tremendous performance degradation

due to file consistency ensured by Lustre.

Fig. 5.5(a) illustrates that Lustre-shared performs worse than Lustre-local by up to 3.8× with

GroupBy benchmark. The detailed dissection in Fig. 5.5(b) further reveals that, although the two

approaches perform comparably in the data storing phase, the shuffling phase of Lustre-shared is

inferior to that of Lustre-local by up to one order of magnitude. The main reason for the inferi-

ority of Lustre-shared is that retrieving intermediate data written by remote servers incurs costly

metadata operations at the OSSes due to the need to maintain the storage consistency.

In the Lustre-local approach, the server that handles the FetchRequests simply retrieves the

intermediate data written by the tasks on the same node. Meanwhile, due to the effect of large

buffer cache in a compute node, it is likely that those intermediate data and corresponding meta-

data, such as write locks, still reside in the local memory. Thus, they can be quickly retrieved to

serve the FetchRequests without involving expensive internal operations of Lustre for maintaining

the data consistency.

On the contrary, in the Lustre-shared case, each fetching task accesses Lustre to retrieve the

data written by remote nodes. Such design requires the Distributed Lock Manager of Lustre to

revoke the write locks. After lock revocation, intermediate data cached remotely is forced to be

flushed to the OSSes before they become available to fetching tasks. This sequence of internal op-

erations substantially delays the intermediate data movement. Furthermore, current Spark launches

fetching tasks of a job simultaneously during the shuffling phase, forcing all the intermediate data

to be flushed to the OSSes around the same time. As a result, such behavior can cause serious

contention at Lustre, significantly degrading the performance of the shuffling phase.
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Figure 5.5: Performance when intermediate data resides in Lustre.

In summary, the data-centric HDFS configuration shows dramatic advantage over the compute-

centric configuration when used for storing the intermediate data. In the compute-centric case with

a shared file system such as Lustre, fetching tasks can avoid costly metadata operation for better

performance if they are oblivious to the features of the shared file system.

5.4.3 Leveraging Solid State Disks

Many HPC systems are embracing a hierarchical stack of different storage devices in order to

support both data-centric and compute-centric paradigms, so that they can support both traditional

HPC applications and emerging data analytics programs. A major effort to achieve such goal is the

trend to integrate high-performance Solid State Drives (SSD) to the compute nodes. An immediate

impact to MapReduce is that they can efficiently facilitate the processing of intermediate data. To

understand such performance implication, we have conducted a set of experiments to study the

performance impact of SSD on MapReduce jobs with similar data-centric HDFS configuration

as that in Section 5.4.2. The performance of using RAMDisk as the local persistent storage is

employed for performance comparison. We continue to use GroupBy as the benchmark for this

study.
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Figure 5.6: Performance when SSD is used for storing the intermediate data.

Figure 5.6(a) presents the job execution time of GroupBy when intermediate data is stored on

RAMDisk and SDD, respectively. Overall, using SSD for intermediate data achieves comparable

performance as RAMDisk when the data size ranges from 100 GB to 600 GB due to the caching

effects from the file system. Once the data size exceeds 700 GB, RAMDisk performs substantially

better than SSD. Note that SSD can support jobs with much larger intermediate data sizes than

RAMDisk due to the capacity advantage of SSD.

Figure 5.6(b) further shows a detailed dissection of job execution time when SSD is employed.

Data shuffling is shown as the key bottleneck when data size ≤ 600 GB, in which the throughput

is bounded by the network bandwidth. When the data size is between 700 GB and 900 GB, the

cache can no longer satisfy all the write operations during the storing phase. As a result, both

storing and shuffling of intermediate data contribute equally to the job execution. When the data

size increases further beyond 900 GB, we observe sharp drops on the performance of storing and

shuffling phases due to the degraded performance of SSD write and read operations. In addition,

the write performance falls more drastically than that of read. When the storing phase of inter-

mediate data becomes the major bottleneck of job execution, the throughput of data shuffling then

becomes SSD-bound.
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5.4.4 Inefficiency in Utilizing SSD
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Figure 5.7: Detailed analysis of tasks that write to and shuffle data from SSDs.

In our experiments with SSD, there is a significant performance variation among ShuffleMap-

Tasks writing intermediate data to SSDs as shown in Figure 5.7(a). The performance gap between

the fastest and the slowest tasks can be as wide as 18× when the data size reaches 1.5 TB. On

the contrary, the performance variation among shuffling tasks is moderate (not shown for brevity),

indicating a mild interference among SSD read operations.

The dramatic variations among ShuffleMapTasks is because Spark aggressively launches tasks

as they arrive in order to reduce the latency. This is oblivious to the congestion of underlying SSDs.

When multiple data-intensive tasks are running and issuing a large number of write requests, such

oblivity can result in substantial interference amony tasks. To gain insight into this issue, we

have profiled the execution times of all ShuffleMapTasks in the 1.5 TB test case. We plot the

execution times of these tasks based on the order of their launch time in Figure5.7(b). As shown

in the figure, early tasks can take advantage of write buffer and clean blocks on SSDs. They can

quickly complete their work. When the buffer gradually fills up and clean SSD blocks are depleted,

internal operations for delayed write and garbage collection are activated. These operations start
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to interfere with the execution of ShuffleMapTasks. Thus we observe a degraded performance for

Tasks ranging from 3100 to 4500. However, Spark is unaware of such interference and continues

to insert tasks. This behavior further exacerbates the contention on the SSDs and leads to severer

interference among Tasks from 4800 to 6400.

In summary, our study reveals that the lack of awareness on the unique features of SSD can

lead to inefficient utilization of resource when in the storage of intermediate data. Fortunately,

the inefficiency of congestion-oblivious write has also been documented by many prior studies

on SSD [4, 28, 77]. In Section 5.6.2, we will demonstrate that an optimization using a throttling

mechanism can effectively mitigate the interference and improve the storing phase by 41.2%.

5.5 The Impact of Data Locality and Task Scheduling

5.5.1 Locality-Oriented Scheduling
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Figure 5.8: Performance degradation caused by delay scheduling.

Maximizing data locality has been a critical objective of MapReduce schedulers [102, 88, 91,

67]. Delay scheduling [102], adopted by Spark, is a notable effort for obtaining high data locality

for MapReduce frameworks in the environments where network bandwidth is a scarce resource.
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Using the same compute- and data-centric configurations as described in Section 5.4, we conduct

an experiment to characterize the importance of locality-oriented scheduling.

Figure 5.8 shows the experiment results when we activate delay scheduling for the data-centric

HDFS configuration. When the split size is equal to 32 MB, job execution time degrades by 42.7%

and 9.9% on average for Grep and LR, respectively. Similar degradation occurs for other split

sizes as well. In contrast, with the compute-centric Lustre configuration, tasks can be immediately

launched on available compute nodes since there is no locality constraint. All the computation

tasks are roughly at the same distance from storage resources. Thus, compared to the data-centric

configuration that favors the use of delay scheduling for better data locality of tasks, this setting

can benefit the computation-intensive MapReduce jobs as shown in Figure 5.3(b),
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Figure 5.9: Task execution time of three benchmarks.

In addition, Spark pipelines computation with data input, further diminishing any benefit of

data locality. Figure 5.9 demonstrates such argument. It shows the comparison of average task

execution times along with maximum and minimum values of three different benchmarks. “Task

with local data” denotes that the data input is obtained locally, while “Task with remote data”

indicates the data input from remote servers. As shown in the figure, enforcing tasks to achieve

100% locality provides little performance gain for all three benchmarks.
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Taken together, our evaluation and characterization of locality-oriented scheduling for the

compute- and data-centric configurations suggest that (1) scheduling for good locality may not be

effective in improving the performance of MapReduce jobs in HPC environments, and (2) intro-

ducing delays for better task locality is even detrimental on compute-centric systems because of

the uniform reachability of storage resources to all computation tasks.

5.5.2 Load Balance of MapReduce Tasks

N1	
   N2	
   N3	
  

Storing Phase 

Straggler 
N4	
   N5	
  

Straggler 

Shuffling Phase 

N3	
  N2	
  N1	
  

Figure 5.10: Straggler issue caused by imbalanced intermediate data distribution during I/O inten-
sive shuffle operation.

Although the compute nodes in a compute-centric environment are homogeneous, there exist

performance variations among compute nodes due to the skew of workloads over time. As a result,

fast nodes tend to be assigned with more tasks by the scheduler. When each of these tasks deposits

a unit of intermediate data, fast nodes end up with much more data to shuffle or move. This leads to

imbalanced distribution of intermediate data. When a shuffle operation is needed, such imbalanced

distribution can cause straggler issue [25] that prolongs the ensuing I/O-intensive data storing and

shuffling phases as depicted in Figure 5.10.

To investigate this issue, we use GroupBy as the benchmark with a split size of 256 MB. Three

sets of experiments are conducted to run 2500 tasks on 50 nodes, 5000 tasks on 100 nodes, and

7500 tasks on 150 nodes, respectively. Figure 5.11 (a) and (b) illustrate the cumulative distribution

functions (CDF) of task and intermediate data distributions.
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Figure 5.11: Unbalanced task assignment leads to unbalanced intermediate data distribution.

As shown in Figure 5.11 (a), the workload among compute nodes varies substantially. In the

case of 100 nodes, for the first 3% nodes at the head of the distribution, each machine only hosts

7 GB of intermediate data. While for the last 10% nodes at the tail of the distribution, each node

accommodates more than 14 GB, i.e., 2× of workload difference. Because the execution time of

storing and shuffling phases are directly determined by the slowest tasks, those nodes with the most

intermediate data can severely drag down the performance regardless of how fast other tasks have

achieved.

In summary, performance variations and workload skews on compute-centric systems can

lead to imbalanced distribution of both MapReduce tasks and their intermediate data. Without an

appropriate solution, such issue can hinder MapReduce systems from achieving the best perfor-

mance on compute-centric HPC systems. We will demonstrate in Section 5.6.1 that, by taking into

account of the intermediate data size, the shuffle operation can be effectively accelerated.

5.6 Optimizations for Spark on Compute-Centric HPC Systems

Based on the characterization from Sections 5.4 and 5.5, we have shown that there are two

performance issues that need to be addressed for the memory-resident Spark framework in order
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for it to be effectively supported by the compute-centric HPC systems. Firstly, the scheduler should

take into account of the need to balance the intermediate data among compute nodes and mitigate

the variations of task execution, thereby avoiding stragglers. Secondly, the MapReduce workers

should be aware of the unique features of hierarchical storage devices such as SSDs to effectively

utilize them. Accordingly, we introduce two optimizations: namely Enhanced Load Balancer

(ELB) and Congestion-Aware task Dispatching (CAD), to address these issues.

5.6.1 Enhanced Load Balancer (ELB)
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Figure 5.12: Dissection of GroupBy job execution time.

We design ELB to address the issue of imbalanced distribution of intermediate data. It consid-

ers the size of intermediate data generated by tasks before making further task assignment decision.

When a job starts, ELB-enabled scheduler assigns tasks to the workers in a round-robin manner.

During the job execution, ELB records the amount of intermediate data generated by each com-

pleted task and monitors the average data size among all nodes. When the size on a node goes

beyond the average by a threshold (25% currently), ELB notifies the scheduler to stop assigning

more tasks to that worker node. Instead, it picks the nodes hosting the least amount of intermediate
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data to execute the pending tasks. Once the average size goes up, ELB resumes to assign more

tasks to the original heavily loaded worker.

Although ELB can balance the size of intermediate data among compute nodes, two issues

arise under such design. Firstly, ELB may conflict with the data locality, since the nodes hosting

the least amount of intermediate data may not possess the input for the tasks. However, as shown in

Section 5.5.1, enforcing data locality has negligible impacts on the task execution time in the HPC

environment. Thus it is desirable to trade off the locality of task scheduling for a balance of data

distribution. Secondly, ELB can cause the idling of certain workers when they have completed their

share of computation tasks, and the entire computation phase can be consequently delayed due to

the slowest task. However, we have observed that the cost of waiting for the slowest computation

task is much less than the cost of waiting for the slowest I/O tasks.

In this context, to demonstrate the performance improvement of ELB-enabled scheduler to

communication and storage bottlenecks during the shuffle operations, the GroupBy benchmark is

used. To create a scenario of storage bottlenecks, SSD is used as the local storage device. In

Hyperion, we are not allowed to use other networks other than InfiniBand. So to create a scenario

of network bottlenecks, we reduce the data size set in FetchRequest from 1 GB to 128 KB. Thus,

many more requests are needed to shuffle the same amount of data, and the network bandwidth is

consequently narrowed (due to space constraint, we only present the dissection of job execution

and omit execution time of computation phases for clearness).

Storage Bottlenecks: Figure 5.12(a) shows that when the data size≤ 900 GB, Spark and ELB

perform similarly. However, ELB outperforms Spark by 26% on average in terms of job execution

time when the data size is between 1 TB and 1.5 TB. Such improvement is mainly attributed to

the accelerated staging phase introduced by the ELB. When data sizes reach beyond 1 TB, Spark

performs worse than ELB by 2.2× on average in the staging phase. On the contrary, computation

phases from both remain nearly the same.

Network Bottlenecks: Spark performs 14.8% worse than ELB on average in terms of job

execution time. Moreover, when the network is the bottleneck, unbalanced distribution has severe
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impact on small datasets, showing up to 17.5% degradation when data size is 400 GB. Such differ-

ence is strongly determined by the shuffling phases as shown in Figure 5.12(b). On average, Spark

shuffles data slower than ELB by 29.1% when the input size ranges from 400 GB to 1.2 TB.

Taken together, our ELB demonstrates that unbalanced distribution of intermediate data can

prevent memory-resident Spark from achieving the optimal performance in the HPC environment.

5.6.2 Congestion-Aware Dispatching (CAD) of Tasks
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Figure 5.13: Performance of Congestion-Aware task Dispatching.

We design CAD as a feedback control algorithm that aims to mitigate the task interference

when SSD is used as the storage device for intermediate data. CAD speculates the congestion sta-

tus of SSD devices by monitoring the task execution time of completed ShuffleMapTasks. When a

significant jump of execution time is detected, it throttles the dispatching of tasks by introducing a

delay interval before each dispatching step. In the current design, we increase the interval by 50 ms

whenever the average execution time increases by 2× (these are empirically chosen during our tun-

ing process). Conversely, we reduce the interval accordingly when the average task execution time

drops by half. Though simple, we have observed that such mechanism is effective in optimizing

the SSD writes. This is because such delay interval allows more time for outstanding operations
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inside SSD to complete their work without worsening the congestion. In addition, it also provides

more opportunity to group many small writes, which are harmful to SSD, thus further reducing the

interference.

Figure 5.13 compares the performance of the original Spark with our CAD-enabled Spark by

using the GroupBy benchmark with different input sizes. Overall, CAD effectively accelerates the

intermediate data storing phase once the data size goes beyond 600 GB. It achieves this without

affecting another two phases as shown in Figure 5.13(b). On average, CAD reduces the storing

phase by up to 41.2% when the data size ranges from 700 GB to 1.5 TB. Such acceleration is

reflected in the job execution time as shown in Figure 5.13(a). The average improvement ratio

reaches 19.8%.

5.7 Discussion

In this section, we summarize our major findings and discuss their implications to the design

of future systems.

The Impact of Storage Architecture: Computation intensity of MapReduce tasks deter-

mines how much impact the storage architecture of HPC systems will have on the job execution.

For computation-intensive applications, there is little impact between the storage architectures of

data- and compute-centric paradigms. In addition, there is no locality to the storage for com-

pute nodes on compute-centric systems; tasks can be launched on any node with little loss of

performance, or even better performance compared to the data-centric environment. However the

data-centric paradigm still exhibits superior performance for applications with low computation in-

tensity and high data intensity. Therefore, it is critical to consider the characteristics of MapReduce

jobs before making data placement decisions. This is important for system providers in planning

the evolvement of their compute-centric HPC systems for data-centric analytics applications.

In addition, the storage architecture may use distributed locking mechanism for maintaining

file consistency, which can severely degrade the performance of intermediate data movement. So

we show that designing shuffling mechanisms can avoid the cascading effects of locking contention
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and keep the efficiency of intermediate data shuffling. Users need to avoid a pitfall to use traditional

HPC parallel file system as a bridge for fast storage of intermediate data.

When SSDs are used as the storage device for intermediate data, our analysis shows that Spark

is currently incapable of utilizing them efficiently. Uncoordinated resource utilization can cause

severe congestion on the device, leading to significant task interference, as also shown in [59].

Our findings suggest that comprehensive examinations are needed to assure the performance of

MapReduce applications while evolving the underlying storage of a system to SSDs. Optimization

strategies, such as task throttling as shown by our study, can be leveraged to improve the efficiency

of SSD device utilization.

The Effectiveness of Locality-Oriented MapReduce Schedulers in HPC Environment:

Our characterization reveals that, when a data-centric storage architecture is configured for com-

puter nodes of an HPC system, MapReduce schedulers that strive for maximum data locality is

not critical. Moreover, they may even hurt the performance by forcing a task delay for future op-

portunistic locality. We have also revealed that while HPC systems generally have homogeneous

computer nodes, load imbalance can still arise. The current scheduler is oblivious to the size of

intermediate data generated by computation tasks, leading to imbalanced data distribution that can

cause many stragglers during shuffle operations. Our study demonstrates that such imbalanced

distribution can cause suboptimal performance to MapReduce jobs. MapReduce applications on

HPC systems shall not focus on locality-oriented task scheduling but other critical factors such as

balancing distribution of intermediate data.

5.8 Related Work

Spark is a critical cornerstone of Berkeley Data Analytics Stack (BDAS) [5] that aims to com-

pete with the open-source Hadoop. It plays a pivotal role in many industry and academia projects

[93, 105, 104, 20, 58] etc. Shark [93] is a query processing framework on top of Spark. It com-

piles user-submitted SQL queries into Spark jobs and leverages optimization strategies commonly

used in database systems to optimize the execution plan. Also coupled with Spark, BlinkDB [20]
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is another approximate query engine that trades query accuracy for response time so that it can

delivery near instant response for interactive queries over massive scale datasets. Spark stream-

ing [105, 104] exploits the potential of Spark to process real-time streaming data. It partitions

streaming computations into small-sized deterministic batch jobs to fit the computation model of

Spark. Sparkler [58] optimizes the Spark to support large-scale matrix factorization more effi-

ciently. It identifies a major inefficiency existing in current Spark’s broadcast variable and in-

troduces a Carousel Maps to spread large dataset via using distributed hash table. Our work is

orthogonal to those efforts. In addition, Zaharia et al. have introduced LATE [106]. Anantha-

narayanan et al. have introduced Mantri [25] and small job cloning [23] to mitigate the impact of

stragglers. However, none of them considers the imbalanced intermediate data distribution issue.

Many parties have tried to incorporate MapReduce frameworks with distributed file systems

for compute-centric paradigm. Ananthanarayanan et al. [26] evaluated MapReduce when it runs

with HDFS and GPFS. Maltzahn et al. [27] studied the combination of Hadoop with Ceph file

system. Panasas [1] is also delivering the support for Hadoop. Our analysis in this work pro-

vides researchers with the first hand data about absorbing MapReduce into compute-centric HPC

paradigm that relies on above high-performance file systems.

Many efforts have been conducted to investigate the performance of HPC applications on data-

centric cloud. Evangelinos et al., [34] analyzed a scientific HPC application on Amazon EC2 and

revealed that the performance of network in cloud is worse than that of HPC by one to two orders of

magnitude. Gupta et al., [39] observed similar performance on different cloud platforms. Though

raw performance difference between compute-centric HPC and data-centric cloud is pronounced,

Marathe et al., [63] pointed out that queue wait time is another critical factor to consider when

choosing which environment is the best for the applications. Our work stands on the other side of

the spectrum by investigating the data-centric analytics framework on compute-centric paradigm.
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5.9 Summary

While many existing HPC facilities are evolving new capabilities to support efficient analytics

of big data, the research in this chapter addresses an important question on how to support the tra-

ditional compute-centric paradigm for HPC applications and the emerging data-centric paradigm

for big data analytics applications on the same HPC systems. We have examined the design and

architecture of a state-of-the-art MapReduce framework – Spark – on HPC systems. Our work

sheds light on the performance issues and design inefficiency when running Spark jobs on HPC

systems with distinct data-centric and compute-centric configurations. In particular, we have in-

vestigated the impact of storage architecture, locality-oriented scheduling, and emerging storage

devices to memory-resident MapReduce applications on HPC systems. Based on the experimental

results, our optimization techniques, including the Enhanced Load Balancer and the Congestion-

Aware Task Dispatching, can efficiently improve the performance of Spark applications on HPC

systems.
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Chapter 6

Conclusion

To this end, this dissertation stands as a substantial effort to optimize contemporary MapRe-

duce systems from three dimensions simultaneously, including optimizing single job execution,

provisioning both fairness and efficiency, as well as enhancing HPC cluster utilization. Mean-

while, it has holistically examined, quantified and elucidated the limitations, bottlenecks, and

design inefficiencies in major MapReduce frameworks, including Hadoop and Spark. Based on

the comprehensive analysis results, this dissertation has made following three key contributions to

better prepare next-generation MapReduce systems for addressing the big data challenge.

Network Levitated Merge Algorithm: This dissertation has provided MapReduce systems

with high-performance I/O services to efficiently accelerate their intermediate data movement. It

introduces a novel Network Levitated Merge algorithm in Chapter 3, along with a Hadoop Acceler-

ation framework that together overcome three critical performance issues, including a serialization

barrier between shuffle/merge and reduce phases, repetitive merge within the ReduceTasks, and

lack of capability to leverage fast networks. By completely merging intermediate data in memory

and supporting high-performance network protocol to transfer data, Network Levitated Merge al-

gorithm significantly improves job execution time, reduces the CPU utilization, meanwhile achiev-

ing comparable scalability as original Hadoop MapReduce. Furthermore, Hadoop Acceleration

project has also laid down a solid foundation for future researches on improving the I/O perfor-

mance of MapReduce. The publications from this project include [90, 89, 96, 59, 68, 100, 99]

Preemptive ReduceTask based Fast Completion Scheduler: This dissertation has revealed

that current MapReduce schedulers are insufficient to deliver ideal quality-of-service in a multi-

tenant MapReduce clusters. In particular, this dissertation has identified and quantified the over-

head imposed by the job starvation and resource underutilization problems raised by non-preemptive
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long running ReduceTasks. In addition, it has also recognized the fundamental inefficiency that

contemporary schedulers treat ReduceTasks similarly to MapTasks without regard to their dis-

tinct execution patterns, in which ReduceTasks aim to attain as much I/O efficiency as possible

while MapTasks aim to obtain the fastest computation. Consequently, MapReduce schedulers can

significantly penalize small jobs under concurrent workloads, causing severe unfairness towards

small jobs in the multi-tenant MapReduce clusters. Accordingly, this dissertation has introduced

Preemptive ReduceTask and Fast Completion Scheduler in the Chapter 4 to address those issues.

Preemptive ReduceTask is a lightweight work-conserving preemption mechanism that allows Re-

duceTasks to be preempted at anytime during their execution without losing accomplished I/O and

computation work. Therefore, it enables flexible task execution control to prioritize short Reduc-

eTasks from small jobs. Leveraging the advantages of Preemptive ReduceTask, this dissertation

has further introduced Fast Completion Scheduler that considers both efficiency and fairness when

scheduling concurrently running jobs. Our experimental evaluation with a diverse collection of

workloads adequately demonstrate that Fast Completion Scheduler substantially outperforms the

state-of-the-art scheduling policies in terms of quality-of-services.

Enhancing the Adaptability of MapReduce on HPC Platforms: MapReduce has been re-

garded by scientists in leadership computing facilities as a promising solutions to process gigantic

simulation results. However, there is a lack of research to study the performance characteristics

of MapReduce systems on HPC platforms. This dissertation has filled this void by thoroughly

analyzing the performance impact of different storage architectures, consistency guarantees pro-

visioned by parallel file systems, storage devices and locality-oriented scheduling on various of

MapReduce jobs in the Chapter 5. Our evaluation results suggest that even the state-of-the-art

MapReduce system is unable to exploit the optimal performance from the HPC systems. Ac-

cordingly, this dissertation has introduced two optimization solutions, named as Enhanced Load

Balancer and Congestion-Aware task Dispatching, to enhance the adaptability of MapReduce for

HPC platforms. Our performance investigation further demonstrates that with the equipment of

above two enhancements, Spark can achieve much higher throughput than the otherwise.
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Chapter 7

Future Work

This dissertation has also opened up many opportunities for future MapReduce research. Par-

ticularly, the following three future studies.

Enhancing Failure Recovery: Although MapReduce frameworks are designed as fault-

tolerant systems, little research has been carried out to comprehensively investigate the perfor-

mance of MapReduce under various failure scenarios. While, our experience of dealing with dif-

ferent types of failures during studying the aforementioned techniques indicates that significant

performance penalty can be imposed on job execution time when failures occurs.

However, conventional wisdoms in designing contemporary MapReduce frameworks simply

employ task re-execution with several tries regardless of the root causes of the failures. When

tasks exhibit long-running, multi-phases execution patterns, such solution can severely degrade

the performance of MapReduce programs. Although several studies [69, 54] have attempted to

leverage multi-replicas checkpointing to persist the intermediate data into distributed file system

so as to avoid task re-execution when failures occur, they are at the high expense of much longer

normal task execution time, thereby not ideal solutions.

Our initial studies show that lightweight preemption mechanism and pipelined ReduceTask

execution introduced in Chapter 4 and Chapter 3 respectively demonstrate effective performance

results when leveraged for facilitating MapReduce recovery from failures. Since it is critical to

improve failure resilience, we will pursue this directions with the techniques we have mastered in

this dissertation.

Lightweight Task Migration: Task Migration has been introduced in Chapter 4. However,

detailed performance investigation is still an on-going work. Contemporary MapReduce systems

are not supporting efficiently lightweight task migration. To move a task from one node to the
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other, killing the task then re-launching it is the only option with the need to repeat the previously

accomplished I/O and computation work. Such strategy can impose heavy overhead on various

MapReduce jobs.

However, without the equipment of a lightweight task migration strategy, many solutions, in-

cluding straggler mitigation [106, 25, 23], load balancer [55, 36] that leverage task duplication are

unable to achieve the optimal performance due to severe performance penalty imposed by repeating

the same workload. Therefore, in future, we will continue to pursue the design of lightweight task

migration mechanism so as to fully exploit the performance of various optimization techniques.

Enhancing MapReduce Schedulers for HPC Platforms: As elucidated in Chapter 5, when

MapReduce systems are deployed on HPC platforms, MapReduce programs exhibit different per-

formance behavior when retrieving input from or storing intermediate data into different storage

architectures due to their distinct computation characteristics. With limited memory space avail-

able on nodes, we deem it is interesting to further study the scheduling policies that can efficiently

schedule data swapping between compute nodes and storage systems. Although caching tech-

niques have been investigated substantially, how to cache MapReduce data in the HPC platforms

is not well studied. Therefore, based on the findings in Chapter 5, we will continue to enhance the

schedulers of MapReduce frameworks for HPC platforms.
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