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Abstract

Examples of nonlinear filtering problems arise in biology, mathematical finance, signal

processing, image processing, target tracking and many engineering applications. Commonly

used numerical simulation methods are the Bayesian filter which is derived from the Bayesian

formula and the Zakai filter which is related to a system of stochastic partial differential

equation known as “the Zakai equation”.

This dissertation mainly focuses on developing and analysing novel, efficient numerical

algorithms for solving nonlinear filtering problems. We first introduce a novel numerical

algorithm which lies in the general framework on the Bayesian filter. The algorithm is

constructed based on samples of the current state obtained by solving the state equation

implicitly. We call this algorithm the “implicit filter method”. Rigorous analysis has been

done to prove the convergence of the algorithm. Through numerical experiments we show

that our algorithm is more accurate than the Kalman filter and more stable than the particle

filter.

In the second effort of this work, we propose a hybrid numerical algorithm for the Zakai

filter to solve nonlinear filtering problems efficiently. The algorithm combines the splitting-

up finite difference scheme and hierarchical sparse grid method to solve moderately high

dimensional nonlinear filtering problems. When applying hierarchical sparse grid method

to approximate bell-shaped solutions in most applications of nonlinear filtering problem,

we introduce a logarithmic approximation to reduce the approximation errors. Some space

adaptive methods are also introduced to make the algorithm more efficient. Numerical

experiments are carried out to demonstrate the performance and efficiency of our algorithm.
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In this dissertation, we also develop high order numerical approximation methods for

backward doubly stochastic differential equations (BDSDEs). One of the most importan-

t properties of BDSDEs is it’s equivalence to the Zakai equation. In this connection, our

numerical approximation methods for BDSDEs can be considered as efficient numerical ap-

proaches to solving nonlinear filtering problems. The convergence order is proved through

rigorous error analysis for each algorithm. Numerical experiments are carried out to verify

the theoretical results and to demonstrate the efficiency of the proposed numerical scheme.
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Chapter 1

Introduction

Stochastic filtering theory was first established in the early 1940s due to the pioneering

work by Norbert Wiener [79, 80] and Andrey N. Kolmogorov [46]. The goal of data assimila-

tion of the stochastic filtering problem is to obtain good estimates of the state of a stochastic

dynamic system model based on noisy partial observations. Examples of stochastic filtering

problems arise in biology [4], mathematical finance [11, 31, 37, 69], signal processing [2, 3, 74],

image processing [12, 71, 91], target tracking [13, 20, 26, 29, 62, 85] and many engineering

applications. The major breakthrough of the classic filtering problem was the landmark work

of Kalman and Bucy in 1960s [45], and subsequent Kalman-Bucy filter in 1961. Most people

now call this type of filter theory “Kalman filter”( see also [28, 40, 49, 56, 57, 66, 72, 77] ).

For decades, Kalman filter has been one of the dominant tools in solving filtering prob-

lems. According to the Kalman filter, under standard assumption of linearity and Gaussinity

of the noise, the conditional distribution of the state, given the observations, is Gaussian.

This conditional distribution gives the best estimate of the statistical description of the state

of the system based on all the available observation information up to the current time. The

power of Kalman filter lies in it’s simplicity and accuracy. Largely because of the success of

Kalman filters, linear and nonlinear filters have been applied in the various engineering and

scientific areas, including communications such as positioning in wireless networks, signal

processing such as tracking and navigation, economics and business, and many others.

In most of the practical application problems, however, linearity assumption is not valid

because of the nonlinearity in the model specification process as well as the observation

process. For example, in typical atmospheric data assimilation problems, the dynamic system
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is described by a rather complex system of equations, which is highly nonlinear. In bearing-

only tracking problems, depending on how the measurements are obtained, the observation

could also have a nonlinear relation with the state process.

Numerous nonlinear filtering methods have been proposed and developed to overcome

the linearity limitation of Kalman filter. Two of the widely used methods for nonlinear

filtering problems are the Bayesian filter and Zakai filter.

The Bayesian filter is based on the Baysian theory. It is originally discovered by the

British researcher Thomas Bayes in 1763. The most well-known Bayesian filter methods

include the extended Kalman filter (EKF) and Particle Filter method (PFM). For the EKF,

the state equation and the observation equation are linearized so that the standard Kalman

filter can be applied [7, 14, 27, 33, 42, 43, 44, 47, 63, 73]. The central theme behind the PFM

involves the representation of the desired probability density function (PDF) of the system

state with a set of adaptively selected random samples [15, 18, 21, 24, 38, 59, 58, 65, 76, 78].

Since PFMs are essentially sequential Monte Carlo methods, with sufficiently large number of

samples, PFMs can provide an accurate representation of the PDF for the nonlinear filtering

solution. While the aforementioned methods have been remarkably successful in attacking

the nonlinear filtering problem, each of them has its drawbacks and limitations. For instance,

when the state equation describing the signal process and the observation equation are highly

non-linear, the EKF can give particularly poor performance. PFM has a number of advan-

tages over EFK, including its ability to represent arbitrary densities, adaptively focus on

the most probable regions of state-space. However, it also has a number of disadvantages,

including high computational complexity, degeneracy for long period simulation and its diffi-

culty of determining optimal number of particles. The first effort of this work is to construct

a new algorithm for numerical simulations of nonlinear filtering problems using the Bayesian

filtering theory. For each time recursive step, we have two stages: the prediction state and

the update stage. The prediction stage gives the estimation for the prior PDF of the future

state based on the currently available observation information while update stage gives the

2



posterior PDF from the updated observation information and the the result obtained in the

prediction stage. However, instead of attempting to search for a representation of the PDF

as in PFM, we approximate the PDF as a function over a grid in state space. Specifically,

at the prediction stage, we attempt to seek the predicted pdf of the future state variable

through a Monte Carlo method by evaluating the conditional expectation of the future state

with respect to the current stage. Since the sample points for the current state is computed

by solving the state equation implicitly, we name our method as an “implicit filter method”.

The following two items summarize the novelty of our approach.

(i) We propose an accurate implicit scheme for prediction purpose. The implicit scheme

has stabilizing effect on the proposed numerical algorithm. This is verified in our

numerical experiments.

(ii) Based on the Bayesian theory, we apply a novel Monte-Carlo like method to approxi-

mate the conditional expectation in the update stage to compute the prior PDF.

The Zakai filter represents the PDF of the nonlinear filtering solution through the solu-

tion of a parabolic-type stochastic partial differential equation, known as the Zakai equation

[82]. Similar to the PFM, the Zakai filter allows one to accurately compute conditional dis-

tributions. A number of numerical algorithms have been proposed to solve Zakai equations

[1, 10, 22, 23, 30, 32, 36, 39, 67, 75, 85]. One of the most effective methods is the splitting-up

approximation scheme [10, 30, 85] where the original Zakai equation is split into a second

order deterministic PDE, related with the prediction step, and a degenerated second order

stochastic PDE in the update step. In the numerical simulation process, a prior PDF is

obtained by solving the deterministic PDE at the prediction; then this prior PDF is updated

following a posteriori criterion. The main drawback of the Zakai filter is that the numerical

approximation is grid based, thus it suffers the so-called “curse of dimensionality” since the

computing cost increases exponentially as the dimension of the system increases. Another

difficulty related to solutions of the Zakai equation is that the domain is the whole space
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Rd. To address these challenges, we propose the construction of an efficient hybrid numer-

ical algorithm which combines the advantages of the splitting-up approximation scheme for

the Zakai equation, a hierarchical sparse grid method [41, 50, 55, 68, 70, 81, 83, 84] for

moderately high dimensional nonlinear filtering problems to compute the numerical solution

of the Zakai filter, and an importance sampling method to adaptively construct a bounded

domain at each time step of the temporal discretization. Specifically, this enables us to use

the splitting-up finite difference scheme to solve the Zakai equation on the sparse grid of

the bounded domain. The hierarchical sparse grid method, which was originally created to

approximate multi-variable functions, uses only O(n(log n)d−1) number of grid points instead

of O(nd) number of grid points, required by the standard full-grid approximation.

Backward doubly stochastic differential Equations (BDSDEs) were introduced as Feynman-

Kac type probabilistic representations of semi-linear parabolic stochastic partial differential

equations (SPDEs), which are generalized Zakai equations [61]. In this connection, numerical

approximation methods for simulating solutions of BDSDEs are also numerical approxima-

tion methods for solving Zakai type equations. Thus it can be considered as alternative

numerical approaches for nonlinear filtering problems. In this work, we propose efficient

numerical algorithms for approximating solutions of BDSDEs. Several effective numerical

approaches for backward stochastic differential equations ( BSDEs ) and forward backward

stochastic differential equations ( FBSDEs ) have been proposed in the last decade, including

primary schemes for BSDEs ([5, 19, 52, 86]), the four-step scheme for FBSDEs [9, 53, 54, 51]),

and the θ-scheme with high convergence rate for BSDEs ([87, 88, 89, 90]). In comparison,

efficient high order numerical algorithms for BDSDEs are not well developed. Obviously

solving BDSDEs numerically is more difficult than solving SDEs and BSDEs as they contain

two Brownian motions. In this work, we first construct a half order algorithm using the

simple Euler method. It is much more involved to construct higher order algorithms. The

bottle neck is the difficulty in approximating the forward and backward Itô integrals with

high order quadratures. To tackle this difficulty, we propose to use an Itô-Taylor formula
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for two-sided stochastic integrals [60, 61] in order to obtain a higher order quadrature for

the backward Itô integral; for the forward stochastic integral, we propose to use the varia-

tional equations for BDSDEs [61] to derive high order quadrature rule. It is worth noting

that although our focus is the on construction of a first order algorithm, the methodology

developed in this work can be used to obtain even higher order algorithms.

The outline of this work is as follows. In Chapter 2, we give a brief overview of the prob-

ability theory that will be used throughout the rest of the chapters. We will also introduce

the mathematical definition of the nonlinear filtering problems and some existing numerical

approximation methods for nonlinear filtering problems. In Chapter 3, we present our novel

“implicit filter algorithm” for nonlinear filtering problems. We also give convergence analysis

which shows weak convergence of our algorithm. Numerical experiments demonstrate that

our algorithm is more accurate than the Kalman filter and more stable than the particle fil-

ter. In Chapter 4, we construct a hybrid finite difference algorithm for the Zakai equation to

solve nonlinear filtering problems. The algorithm combines the splitting-up finite difference

scheme and hierarchical sparse grid method to solve moderately high dimensional nonlinear

filtering problems. A space adaptive method is introduced to make the algorithm more effi-

cient. Numerical experiments are carried out to demonstrate the performance and efficiency

of our algorithm. In Chapter 5, we focus on numerical algorithms of BDSDEs, which can be

considered as an alternative numerical approach for nonlinear filtering problems. We first

introduce a half order convergence algorithm based on Euler approximation for stochastic

integrals. Then, we develop a first order convergence scheme by using two-sided Itô Taylor

expansion. For each algorithm, we give rigorous error analysis and numerical experiments

to verify the convergence rates of our algorithms.
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Chapter 2

Nonlinear Filtering problems and Existing Numerical Approaches

In this Chapter, we first give some definitions from general probability theory. Then,

we introduce the mathematical formulations of nonlinear filtering problems and some of

the most well-known numerical schemes that have been studied in the literature. There

are mainly two numerical approaches to solve the nonlinear filtering problem. One is the

Bayesian filter, which is based on the Bayes rule; the other is the Zakai filter, which is based

on the Zakai equation, a stochastic evolution equation.

2.1 Mathematical Preliminaries

Definition 1 If Ω is a given set, then a σ-algebra F on Ω is a family F of subsets of Ω

with the following properties:

(i) ∅ ∈ F

(ii) F ∈ F ⇒ FC ∈ F , where FC = Ω\F is complement of F in Ω

(iii) A1, A2, · · · ∈ F ⇒ A :=
⋃∞
i=1Ai ∈ F .

The pair (Ω,F) is called a measurable space. A probability measure P on a measurable

space (Ω,F) is a function P : F → [0, 1] such that

(a) P (∅) = 0, P (Ω) = 1

(b) if A1, A2, · · · ∈ F and {Ai}∞i=1 is disjoint (i. e. Ai ∩ Aj = ∅ if i 6= j) then

P

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai).
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The triple (Ω,F , P ) is called a probability space.p

Given any family U of subsets of Ω there is a smallest σ-algebra HU containing U ,

namely

HU = ∩{H;H σ-algebra of Ω, U ⊂ H}.

We call HU the σ-algebra generated by U .

If (Ω,F , P ) is a given probability space, then a function f : Ω → Rn is called F-

measurable if

f−1(U) := {ω ∈ Ω; f(ω) ∈ U} ∈ F

for all open sets U ∈ Rn.

If X : Ω → Rn is any function, then the σ-algebra HX generated by X is the smallest

σ-algebra on Ω containing all sets

X−1(U); U ⊂ Rn open.

Definition 2 A random variable X is an F-measurable function X : Ω → Rn. Every

random variable induces a probability measure µX on Rn defined by

µX(B) = P (X−1(B)).

µX is called the distribution of X.

If
∫

Ω
|X(ω)|dP (ω) <∞ then the number

E[X] :=

∫
Ω

X(ω)dP (ω) =

∫
Rn

xdµX(x)

is called the expectation of X (w.r.t. P).

Definition 3 A stochastic process is a parameterized collection of random variables

{Xt}t∈T defined on a probability space (Ω,F , P ) and assuming values in Rn.

7



Next, we introduce a general form of the stochastic differential equations. First, we

need the following definition of Brownian motion

Definition 4 Brownian motion (or Wienner process) Bt starting at x is a stochastic

process satisfying the following properties

(i) B0 = x

(ii) Bt is almost surely continuous

(iii) Bt has independent increments

(iv) Bt −Bs ∼ N(0, t− s) (for 0 ≤ s ≤ t )

N(µ, σ2) denotes the normal distribution with mean value µ and variance σ2.

To proceed, we show how to define the Itô integral
∫ T
S
f(t, ω)dBt(ω).

A function ψ is called elementary if it has the form

φ(t, ω) =
∑
j

ej(ω) · X[tj ,tj+1)(t).

For elementary function φ, we define the Itô integral by

∫ T

S

φ(t, ω)dBt(ω) =
∑
j≥0

ej(ω)[Btj+1
−Btj ](ω).

Then we define the Itô integral as follows

Definition 5 Let f be a measurable function. Then the Itô integral of f (from S to T ) is

defined by ∫ T

S

f(t, ω)dBt(ω) = lim
n→∞

∫ T

S

φn(t, ω)dBt(ω)

where {φn} is a sequence of elementary functions such that

E[

∫ T

S

(f(t, ω)− φn(t, ω))2dt]→ 0 as n→∞.
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With the definition of Itô integral, a general form of stochastic differential equation is

given by

dXt = b(Xt)dt+ σ(Xt)dBt, X0 = x,

where Xt is the solution of the stochastic differential equation.

2.2 Nonlinear Filtering Problems

Now, let us consider the following generic stochastic filtering problem in a dynamic

state-space form

Xt

dt
= f(t,Xt, Ẇt) (2.1)

Yt
dt

= g(t,Xt, Ḃt). (2.2)

Equations (2.1) and (2.2) are called signal state equation and measurement equation (or

observation equation), respectively; Xt represents the state vector, Yt is the measurement

vector; f : Rnx → Rnx and g : RNx → RNy are two vector valued functions, which are

potentially time-varying; Wt and Bt are two independent Wienner processes, with covariance

I and R, respectively, which represent process noise and measurement noise, respectively.

When f and g are both linear functions, the filtering problem (2.1)-(2.2) is called the linear

filtering problem, otherwise, it’s called the nonlinear filtering problem.

In many applications, the noise can be assumed to be additive and (2.1)-(2.2) become

dXt = b(Xt)dt+ σ(Xt)dWt (2.3)

dYt = h(Xt)dt+ dBt, (2.4)

where, b : Rnx → Rnx and h : RNx → RNy are two vector valued functions, which are

potentially time-varying, and σ : Rnx → Rnx×nw is a matrix valued function.
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The main purpose of numerical simulations of a filtering process is to obtain, recursively

in time, the best estimate for the probability density function (pdf) of the state Xt based on

observations up until time t, i.e.{Ys : 0 ≤ s ≤ t}. This can be expressed as finding stochastic

process X̃t such that

X̃t = E[(Xt|Yt)] = inf{E[|X − Y |2];Y ∈ K}

where Yt is the σ-algebra generated by the observation process up to t, and K is the space

of all Yt-measurable and square integrable random variables.

In typical applications, observations are available only at a discrete sequence of time

instants. We assume that the observations are collected at time instants ∆t, 2∆t, · · · , where

∆t is a given time stepsize. Then denoting

Yn
.
= Y (n∆t)− Y ((n− 1)∆t),

we have

Yn =

∫ n∆t

(n−1)∆t

h(Xs)ds+Bn∆t −B(n−1)∆t ≈ h(Xn∆t)∆t+ θξn,

where ξn is an i.i.d. sequence of standard Gaussian variables and θ
.
=
√
R∆t. Denoting

h(x)∆t by g(x), we rewrite a discrete analog of the observation equation (2.4) as follows.

Yn = g(Xn∆t) + θξn, n ≥ 1. (2.5)

Alternatively, one can consider (2.5) as the original underlying observation model and

not a discrete approximation to (2.4).
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2.3 Bayesian Filters

We first review the extended Kalman filter (EKF), the most commonly used numerical

approach for solving the nonlinear filter. Then, we discuss a popular class of approximation

methods, the particle filter.

2.3.1 Extended Kalman Filter

The basic idea of EKF is to linearize the nonlinear functions in both the state equation

and observation equation and as a result approximate the conditional distribution Pn by a

normal distribution with parameters (µn, σn). Given the approximation P ∗n−1 to Pn−1 as a

normal distribution with mean µn−1 and covariance σn−1. The approximation P ∗n to Pn is

obtained by the following two steps.

Prediction step. Let {x∗(t), t ≥ 0} be the trajectory about which linearization is

performed. Typically, the trajectory x∗ is chosen as the solution of the deterministic ODE

ẋt = b(xt)

with initial condition µn−1. We denote ∆Xt
.
= Xt − x∗(t). Then, the linearized dynamic

signal state is given as

∆Ẋt = [
∂f

∂x
]x=x∗∆Xt + σ(x∗(t))dBt.

The prediction step of the standard continuous time Kalman filter is then applied with this

linearized state model to give the approximation P̂ ∗n to P̂n via a normal distribution with

parameters (µ̂n, σ̂n).

Update step. Similar to the state model, the observation model (2.5) is also linearized

and is given as follows.

Yn − g(µ̂n) = [
∂g

∂x
]x=m̂n(Xtn − m̂n) + θξn

11



The update step of the usual Kalman filter [45] is used with this linearized observation model

to obtain P ∗n as a normal distribution with parameter µn, σn.

2.3.2 Particle filter

The particle filter, also known as sequential Monte-Carlo method is a recursive Bayesian

filter based on the idea of approximating expected values by suitable Monte-Carlo sample

averages. It is also called bootstrap filter, due to Gordon, Salmond and Smith [38]. The basic

idea of the particle filter is as follows. The state space is partitioned into subregions, in which

some random samples, called particles, are filled according to some probability measure. The

higher the probability of a subregion, the denser the particles are concentrated. Since the

pdf can be approximated by the point-mass histogram, by random sampling of the state

space, we get a number of particles representing the pdf.

To be more specific, the approximation P ∗n to Pn is given by a discrete probability

measure supported on random points x
(n)
1 , · · · , x(n)

L and corresponding weights p
(n)
1 , · · · , p(n)

L .

Here, {x(n)
l }l=1,··· ,L are called particles and L represents the number of particles that are

used to approximate the distribution Pn. Given the approximation P ∗n to Pn by the discrete

probability measure {(x(n−1)
1 , p

((n−1))
1 ), · · · (x(n−1)

L , p
((n−1))
L )} the two key steps of the algorithm

are as follows.

Prediction step. Propagate each of the particles according to the state equation, i.e.

x
(n−1)
j → x̂

(n)
j . This requires simulating the SDE (2.3) with initial condition x

(n−1)
j by some

discretization scheme. For example, we can use Euler scheme to get

x̂
(n)
j = x

(n−1)
j + b(x

(n−1)
j )∆t+ σ(x

(n−1)
j )

√
∆tγn−1,

where {γn}n=0,1,2,... is an i.i.d sequence of standard Gaussian random variables. This gives an

approximation P̂ ∗n to P̂n as the discrete probability distribution {(x̂(n)
1 , p̂

(n)
1 ), · · · (x̂(n)

L , p̂
(n)
L )}

where we set p̂
(n)
j

.
= p

(n−1)
j .

12



Update step. Update the weights p̂
(n)
j → p

(n)
j using the observation Yn by setting

p
(n)
j = cp̂

(n)
j R(x̂

(n)
j , Yn),

where c is a normalization constant and

R(x̂
(n)
j , Yn)

.
= exp(

g(x̂
(n)
j )Yn − 1

2
|g(x̂

(n)
j )|2

θ2
).

The approximation P ∗n is now given as {(x(n)
1 , p

(n)
1 ), · · · (x(n)

L , p
(n)
L )} where we set x

(n)
j

.
= x̂

(n)
j .

Although the scheme is very easy to implement, it suffers from several degeneracy problems,

especially in high dimensions. The main difficulty is that after a few time steps all the

weights tend to concentrate on a very few particles which drastically reduces the effective

sample size. A common remedy for this problem is to re-sample all the particles in order to

rejuvenate the particle cloud.

2.4 Zakai Filter

An alternative approach to the computation of the nonlinear filter is by developing

an evolution equation for the conditional pdf p(t,Xt)
.
= p(Xt|Yt) (see [82]). To be more

specific, under suitable regularity conditions one can show that the conditional pdf p(t, x) is

the unique solution of the following stochastic partial differential equation (SPDE):

dp(t, x) = L∗p(t, x)dt+ h(x)p(t, x)dYt, (2.6)

where L is the infinitesimal generator of the state equation Xt and L∗ is the adjoint of L.

The above SPDE is also called the Zakai equation. The Zakai equation gives a recursive way

for evaluating p(t, x). Several works [10, 23, 30, 36, 85] have been done to develop suitable

time and space discretization schemes for the Zakai equation for the purpose of obtaining

13



numerical approximations for the nonlinear filter. This type of approximation methods are

called “the Zakai filters”.
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Chapter 3

An Implicit Algorithm of Solving Nonlinear Filtering Problems

In this Chapter, we consider the following state and observation equations in the dy-

namic state-space form:

dXt

dt
= f(t,Xt;Wt) (3.1)

Yt = g(t,Xt;Vt) (3.2)

where Xt ∈ Rnx denotes the state vector, Yt ∈ Rny denotes the measurement vector, Wt ∈

Rnw is a random vector representing the uncertainties in the model, and Vt ∈ Rnv denotes

the random measurement error. In many applications, the noise from measurement can be

assumed to be additive, and the problem can be formulated in a discrete manner as

Xt+1 = ft(Xt,Wt) (3.3)

Yt = gt(Xt) + Vt, (3.4)

where {Wt}t∈N ∈ Rnw and {Vt}t∈N\{0} ∈ Rnv are mutually independent white noises and the

subscript t indexes the discrete time level at which the functions are evaluated. In data

assimilation, the observation Yt arrives sequentially in time and the goal is to estimate the

state vector Xt given the information of {Ys, 0 < s ≤ t}.

3.1 Methodology and the implicit filter algorithm

In this section, we provide a brief review on the formulation of Bayesian optimal filter

and introduce the implicit filter algorithm.
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3.1.1 Bayesian Optimal Filter

First we adoptp some notations that will be used throughoutp the rest of this Chapter.

Denote Zm:n as (Zm, Zm+1, · · · , Zn) and denote Xt ∼ p(xt) if the pdf of a random variable

Xt is p(xt). Write

Xt | (Xt−1 = xt−1) ∼ p(xt | xt−1) (3.5)

where Xt | Xt−1 denotes the conditional expectation. When the context is clear, notations

similar to (3.5) will be introduced without formal explanations.

The dynamical model is Markovian such that any future Xt is independent of the past

given the present Xt−1:

p(xt|x1:t−1, y1:t−1) = p(xt|xt−1)

and the measurements are conditionally independent given xt:

p(yt|x1:t, y1:t−1) = p(yt|xt)

In this Chapter, we denote by It
.
= {y1, y2, · · · , yt} the information observed before time

t. Given a prior distribution p(x0), Bayesian optimal filter is to construct the distribution

p(xt|It) recursively in two stages: prediction and update.

Assume that the required pdf p(xt−1|It−1) of previous step t − 1 is available. The

Chapman-Kolmogorov equation gives the prediction step of

p(xt|It−1) =

∫
Rnx

p(xt|xt−1)p(xt−1|It−1)dxt−1. (3.6)

At time t, as measurement yt becomes available, the prior distribution from (3.6) can then

be updated via Bayesian’s formula

p(xt|It) =
p(yt|xt)p(xt|It−1)

p(yt|It−1)
=

p(yt|xt)p(xt|It−1)∫
Rnx p(yt|xt)p(xt|It−1) dxt

. (3.7)
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The exact computation of (3.6) and (3.7) is generally not possible. Exception exists

where all p(xt|It) are Gaussian and the model is linear, in which case the moments can be

obtained using Kalman filter. In practically all other cases, approximate solutions are sought

by numerical methods. Traditional particle filtering methods recursively generate samples

(particles) following p(xt|It) and use these samples to approximate moments of p(xt|It). We

propose here an inverse method which generates samples from the white noise and use them

to approximate p(xt|It), by utilizing inverse solutions to discretized stochastic differential

equations.

3.1.2 An inverse algorithm

Our proposed method is based on the the fact that

p(xt|xt−1) =

∫
Rnw

p(xt|xt−1, wt−1) · p(wt−1)dwt−1 = E[p(xt|xt−1,Wt−1)],

and therefore the term p(xt|It−1) in (3.6) can be written as

p(xt|It−1) =

∫
Rnx

p(xt|xt−1)p(xt−1|It−1)dxt−1

=

∫
Rnx

E[p(xt|xt−1,Wt−1)]p(xt−1|It−1)dxt−1.
(3.8)

We assume that a compact domain, B ⊂ Rnx , is the region of interest. Assuming that

the pdf p(xt−1|It−1) is given, to achieve the prediction step (3.8) from time t− 1 to time t:

1. Generate M particles/paths {w(j)
t−1}j=1···M according to the pdf of Wt−1 and approxi-

mate p(·|Wt−1) by its empirical pdf, denoted by πM(·|Wt−1)
.
= 1

M

∑M
j=1 δ·|w(j)

t−1
, where

δx denotes the delta-Dirac mass located in x. In fact, according to Bayesian formula,

p(xt|xt−1, wt−1) =
p(xt−1, wt−1|xt)
p(xt−1, wt−1)

· p(xt),
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and it follows immediately that p(xt|xt−1,Wt−1) is a random variable and the random-

ness comes from the white noise Wt−1, for each given xt and xt−1 ∈ Rnx . Therefore the

term E[p(xt|xt−1,Wt−1)] in (3.8) can be approximated by

E[p(xt|xt−1,Wt−1)] ≈ E[πM(xt|xt−1,Wt−1)],

in which πM(xt|xt−1,Wt−1) has the probability distribution

Pr(πM(xt|xt−1, w
(j)
t−1)) =

1

M
, j = 1, . . . ,M.

2. Partition region B by usingN nodes: {u(i)}i=1···N and approximate πM(xt|·) by πM(u(i)|·).

Step 1 together with (3.8) gives

p(u(i)|It−1) ≈
∫
B
E[πM(u(i)|xt−1,Wt−1)]p(xt−1|It−1)dxt−1. (3.9)

3. Assume that ft is invertible. Let x
(i,j)
t−1 be the solution to the equation ft(x

(i,j)
t−1 , w

(j)
t−1) =

u(i) for j = 1, · · · ,M and i = 1, · · ·N . Then

E[πM(u(i)|xt−1,Wt−1)] =
1

M

M∑
j=1

πM(u(i)|xt−1, w
(j)
t−1)

=
1

M

M∑
j=1

δ(xt−1 − x(i,j)
t−1 ), i = 1, . . . , N

(3.10)

Hence the integral on the right hand side of (3.9) can be simplified and gives that for

each i = 1, . . . , N ,

p(u(i)|It−1) ≈
∫
B
E[πM(u(i)|xt−1,Wt−1)]p(xt−1|It−1)dxt−1

=
1

M

M∑
j=1

p
(
x

(i,j)
t−1 |It−1

)
.

(3.11)
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4. The last step of prediction is to use interpolation to construct a piecewise approxi-

mation ρ(xt|It−1) of p(xt|It−1), from p(u(i)|It−1) obtained in step 3. Denote by T [{·}]

the piecewise linear function that connects the points (u(i), {·}), then we obtain the

approximation of p(xt|It−1) via

p(xt|It−1) ≈ T
[
{p(u(i)|It−1)}Ni=1

]
≈ T

{ 1

M

M∑
j=1

p
(
x

(i,j)
t−1 |It−1

)}N

i=1

 .
= ρ(xt|It−1). (3.12)

where p
(
x

(i,j)
t−1 |It−1

)
is the value of the pdf p(xt−1|It−1) at the point xt−1 = x

(i,j)
t−1 .

Finally in the update step, we update the prior pdf ρ(xt|It−1) at xt ∈ B by using the

Bayes formula. Thus the approximation of p(xt|It), denoted by ρ(xt|It) is given as

p(xt|It) ≈ ρ(xt|It) =
p(yt|xt)ρ(xt|It−1)∫

B p(yt|xt)ρ(xt|It−1)dxt
. (3.13)

3.2 Weak Convergence

Now, we study the convergence of the pdf obtained by our algorithm converges to the

Bayesian optimal filter on B. In general, given a measure µ and a function ϕ, we define

〈µ(·), ϕ〉 =

∫
ϕ(x)µ(·) dx.

Definition 6 Let {µn}∞n=1 be a sequence of probability densities on P(B), where P(B) is the

space of all probability measures over B. We say that

• µn converges to µ ∈ P(B) uniformly and write limn→∞ µn = µ if for any ε > 0, there

exists N0, such that |µn(z)− µ(z)| < ε for all z ∈ B and n > N0.
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• µn converges to µ ∈ P(B) weakly and write limn→∞ µn
ϕ
= µ if

lim
n→∞

〈µn, ϕ〉 = 〈µ, ϕ〉 , ∀ϕ ∈ Cb(B),

where Cb(B) is the set of all continuous bounded functions on B.

We will prove the weak convergence of ρ(xt|It) to p(xt|It), i.e., the convergence of 〈ρ(xt|It), ϕ〉

to 〈p(xt|It), ϕ〉.

To guarantee that the Bayes’ formula in (3.7) is well defined and can be fulfilled in our

algorithm, we make the following standing assumptions:

(A1) For given It, the denominator in (3.7) (normalization constants) satisfies

∫
B
p(yt|xt)p(xt|It−1) dxt > ξ > 0

(A2) The conditional kernel densities p(xt|xt−1) and p(yt|xt) are uniformly continuous, bound-

ed and strictly positive, i.e., given It,

0 < p(xt|xt−1) < 1, 0 < p(yt|xt) < 1.

For simplicity we denote Kt|t−1 := E[p(xt|xt−1,Wt−1)], denote the true pdf’s by

pt−1|t−1 := p(xt−1|It−1), pt|t−1 := p(xt|It−1), pt|t := p(xt|It);

and similarly denote the simulated pdf’s by

ρt−1|t−1 := ρ(xt−1|It−1), ρt|t−1 := ρ(xt|It−1), ρt|t := ρ(xt|It).
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We first define at : P(B)→ P(B) to be the mapping

at(µ)(xt) =

∫
B
Kt|t−1µ(xt−1) dxt−1, ∀µ ∈ P(B). (3.14)

Then we have

〈at(µ), ϕ〉 =
〈
µ,Kt|t−1ϕ

〉
, ∀ϕ ∈ Cb(B), (3.15)

and it holds that

at(pt−1|t−1) = pt|t−1.

It’s natural to assume that at is continuous, since in the context of filtering two realizations of

the signal that start from “close” positions will remain “close” at subsequent times. In fact,

when the transition kernel p(xt|xt−1) is Feller, i.e., p(xt|xt−1)ϕ is a continuous bounded func-

tion for any continuous bounded function ϕ, we have according to [25] that if limn→∞ µn
ϕ
= µ

then

lim
n→∞
〈at(µn), ϕ〉 = lim

n→∞

〈
µn, Kt|t−1ϕ

〉
=
〈
µ,Kt|t−1ϕ

〉
= 〈at(µ), ϕ〉 , ∀ ϕ ∈ Cb(B). (3.16)

Define bt : P(B)→ P(B) to be the mapping

bt(µ) =
p(yt|xt)µ(xt)∫

B p(yt|xt)µ(xt)dxt
, ∀µ ∈ P(B). (3.17)

Then we have

〈
bt(pt|t−1), ϕ

〉
=
〈
pt|t−1, p(yt|xt)

〉−1 ·
〈
pt|t−1, ϕp(yt|xt)

〉
, ∀ϕ ∈ Cb(B), (3.18)

and it holds that

bt(pt|t−1) = pt|t.

21



It is also natural to assume that bt is continuous, which means that a slight variation in two

distributions will not result in a large variation in the distributions when observations are

taken into account. In fact, assuming that p(yt|·) is a continuous bounded strictly positive

function, we have according to [25] that limn→∞ µn
ϕ
= µ then

lim
n→∞
〈bt(µn), ϕ〉 = lim

n→∞
〈µn, p(yt|xt)〉−1 · 〈µn, ϕp(yt|xt)〉

= 〈µ, p(yt|xt)〉−1 · 〈µ, ϕp(yt|xt)〉 = 〈bt(µ), ϕ〉, ∀ ϕ ∈ Cb(B). (3.19)

We next define two approximation operators, the sampling operator, and the interpola-

tion operator that appear in the prediction step.

1. Denote by ψ a function of Wt−1 from P(B) to P(B). At each step t, we draw M

samples, w
(1)
t−1, · · · , w

(M)
t−1 , which are i.i.d. random variables with common distribution

Wt−1. The Monte Carlo estimate of E[ψ(Wt−1)] can be obtained to be

ψ̃(wt−1) =
1

M

M∑
j=1

ψ(w
(j)
t−1).

Define the sampling operator sM : P(B)→ P(B) to be

sM(〈E[ψ], µ〉) = 〈E[ψ̃], µ〉, ∀µ ∈ P(B), (3.20)

Then

sM ◦ at(µ) =

∫
B

1

M

M∑
j=1

πM(xt|xt−1, w
(j)
t−1) · µ(xt−1) dxt−1, ∀µ ∈ P(B),
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2. Given the rectangular spatial partition nodes {u(i)}Ni=1. Define TN : P(B) → P(B) to

be the interpolation operator

TN(µ)(xt) =
N∑
i=1

ψNi (xt)µ(u(i)),

for each xt ∈ B, where {ψi}Ni=1 are basis functions for interpolation operator TN .

Therefore

TN ◦ sM ◦ at(pt−1|t−1) = ρt|t−1,

where ρt|t−1 is the piecewise linear approximation of pt|t−1 satisfying

ρt|t−1(u(i)) =
1

M

M∑
j=1

p
(
x

(i,j)
t−1 |It−1

)
, for each i = 1, . . . , N.

Denote by κt
.
= bt ◦ at, κM,N

t
.
= bt ◦ TN ◦ sM ◦ at, κ1:t = κt ◦ κt−1 ◦ · · · ◦ κ1 and

κM,N
1:t = κM,N

t ◦ κM,N
t−1 ◦ · · · ◦ κ

M,N
1 , we have

κt(pt−1|t−1) = pt|t, κM,N
t (pt−1|t−1) = ρt|t, and κ1:t(p0|0) = pt|t, κM,N

1:t (p0|0) = ρt|t.

Our goal is to show that κM,N
1:t

ϕ→ κ1:t. This can be done by showing κM,N
t

ϕ→ κt for each step

t and induction.

Recalling that P(B) is the set of all probability measures on B, we denote by PU(B) be

the set of all uniformly continuous probability measures on B and PC(B) the set of all a.e.

continuous probability measures on B, for latter use.

Lemma 1 sM ◦ at converges to at weakly, i.e., for any µM , µ ∈ P(B) with limM→∞ µM
ϕ
= µ,

it holds that

lim
M→∞

sM ◦ at(µM)
ϕ
= at(µ). (3.21)
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p Proof. For any t ∈ N, by the Strong Law of Large Numbers,

lim
M→∞

1

M

M∑
j=1

πM(xt|xt−1, w
(j)
t−1) = E[p(xt|xt−1,Wt−1)], a.s. (3.22)

Therefore, for any ϕ ∈ Cb(B) we have

〈
sM ◦ at(µM), ϕ

〉
− 〈at(µ), ϕ〉

=
〈
sM ◦ at(µM), ϕ

〉
− 〈at(µM), ϕ〉+ 〈at(µM), ϕ〉 − 〈at(µ), ϕ〉

≤
∫
B

(
1

M

M∑
j=1

πM(xt|xt−1, w
(j)
t−1)µM(xt−1)dxt−1 − E[p(xt|xt−1,Wt−1)]

)
µM(xt−1)ϕdxt−1

+ 〈at(µM), ϕ〉 − 〈at(µ), ϕ〉 . (3.23)

It then follows directly from equation (3.22) and (3.16) that

lim
M→∞

sM ◦ at(µM)
ϕ
= at(µ).

The proof is complete.

Lemma 2 Assume that {µM,N}∞M,N=1 ∈ PC(B) and µM ∈ PU(B) with limN→∞ µM,N=µM

for each M ∈ N. Then, limN→∞ s
M ◦ at(µM,N) = sM ◦ at(µM) for each M ∈ N. Moreover, if

there exists λ > 0 such that
∥∥ ∂
∂x
f−1
t

∥∥ < λ, then sM ◦ at(µM,N) ∈ PC(B) and sM ◦ at(µM) ∈

PU(B).

Proof. For any x ∈ B, by the definition of sM and at we have

sM ◦ at(µM,N)(x) =
1

M

M∑
j=1

µM,N

(
x

(x,j)
t−1

)

and

sM ◦ at(µM)(x) =
1

M

M∑
j=1

µM

(
x

(x,j)
t−1

)
.
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Since limN→∞ µM,N=µM for each M ∈ N, given any ε > 0, there exists N0, such that for all

z ∈ B, |µM,N(z)− µM(z)| < ε for each M ∈ N. Therefore, for all x ∈ B,

∣∣sM ◦ at(µM,N)(x)− sM ◦ at(µM)(x)
∣∣ =

∣∣∣∣∣ 1

M

M∑
j=1

(
µM,N

(
x

(x,j)
t−1

)
− µM

(
x

(x,j)
t−1

))∣∣∣∣∣
≤ 1

M

M∑
j=1

∣∣∣(µM,N

(
x

(x,j)
t−1

)
− µM

(
x

(x,j)
t−1

))∣∣∣
<

1

M

M∑
j=1

ε = ε.

This proves that limN→∞ s
M ◦ at(µM,N)=sM ◦ at(µM) for all M ∈ N.

We next prove that sM ◦ at(µM,N) ∈ PC(B). In fact, for any ε > 0 and z0 ∈ B, since

µM,N ∈ PC(B), there exists δ > 0 such that when |z − z0| < δ,

|µM,N(z)− µM,N(z0)| < ε.

Fix arbitrary x0 ∈ B, for any x ∈ B satisfying |x−x0| < δ/λ, using that ft(x
(x,j)
t−1 , w

(j)
t−1) =

x and ft(x
(x0,j)
t−1 , w

(j)
t−1) = x0 we have

∣∣∣x(x,j)
t−1 − x

(x0,j)
t−1

∣∣∣ = |f−1
t (x,w

(j)
t−1)− f−1

t (x0, w
(j)
t−1)| ≤

∥∥∥∥ ∂∂xf−1
t

∥∥∥∥ · |x− x0| < δ,

and thus

∣∣sM ◦ at(µM,N)(x)− sM ◦ at(µM,N)(x0)
∣∣ ≤ 1

M

M∑
j=1

∣∣∣µM,N

(
x

(x,j)
t−1

)
− µM,N

(
x

(x0,j)
t−1

)∣∣∣ < ε.

It remains to show that sM ◦ at(µM) ∈ PU(B). In fact, given any x1, x2 ∈ B,

sM ◦ at(µM)(x1)− sM ◦ at(µM)(x2) =
1

M

M∑
j=1

(
µM

(
x

(x1,j)
t−1

)
− µM

(
x

(x2,j)
t−1

))
.
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For any ε > 0, from the uniformly continuity of µM , there exists δ > 0, such that for any

z1, z2 ∈ B with |z1 − z2| < δ, |µM(z1) − µM(z2)| < ε. Let δ̃ = δ
λ
, then |x1 − x2| < δ̃ implies

that

∣∣∣x(x1,j)
t−1 − x

(x2,j)
t−1

∣∣∣ =
∣∣∣f−1
t (x1, w

(j)
t−1)− f−1

t (x2, w
(j)
t−1)
∣∣∣ ≤ ∥∥∥∥ ∂∂x(f−1

t )

∥∥∥∥ · |x1 − x2| < δ.

Hence

∣∣sM ◦ at(µM)(x1)− sM ◦ at(µM)(x2)
∣∣ =

∣∣∣∣∣ 1

M

M∑
j=1

(
µM

(
x

(x1,j)
t−1

)
− µM

(
x

(x2,j)
t−1

))∣∣∣∣∣ < ε.

The proof is complete.

Lemma 3 For {νM,N}∞M,N=1 ∈ PC(B) and νM ∈ PU(B) with limN→∞ νM,N=νM for each

M ∈ N, it holds that

lim
N→∞

TN(νM,N)=νM , ∀M ∈M. (3.24)

Proof. For any xt ∈ B,

∣∣TN(νM,N)(xt)− νM(xt)
∣∣ ≤ ∣∣TN(νM,N)(xt)− TN(νM)(xt)

∣∣+
∣∣TN(νM)(xt)− νM(xt)

∣∣ .
(3.25)

Since limN→∞ νM,N=νM , for any ε > 0, there exists N1 = N1(M) > 0 such that when

N > N1,

|νM,N(xt)− νM(xt)| <
ε

2
.

Thus because of the linearity of TN we have

∣∣TN(νM,N)(xt)− TN(νM)(xt)
∣∣ =

∣∣TN(νM,N − νM)(xt)
∣∣ < ε

2
. (3.26)

For the second term on the right hand side of inequality (3.25), since TN is the linear

interpolation operator and νM is uniformly continuous, for any ε > 0, there exists N2 =
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N2(M) > 0 such that when N > N2 we have

∣∣TN(νM)(xt)− νM(xt)
∣∣ < ε

2
. (3.27)

In summary letting N0 = max{N1, N2} we have by (3.25), (3.26) and (3.27) that for

any ε > 0,

∣∣TN(νM,N)(xt)− νM(xt)
∣∣ < ε, ∀N > N0, ∀xt ∈ B, ∀M ∈ N. (3.28)

The proof is complete.

We next prove the weak convergence of the operator κM,N
t to κt. Letting κM,N

t and κt

be the composition operators defined as above, we have the following theorem.

Theorem 3.1 (Local convergence) Assume that the transition kernel p(xt|xt−1) is Feller and

p(yt|xt) is bounded, uniformly continuous, and strictly positive. Also assume that
∥∥ ∂
∂x
f−1
t

∥∥ is

bounded. Then, for any {µM,N}∞M,N=1 ∈ PC(B) and µM , µ ∈ PU(B) with limN→∞ µM,N=µM

for each M ∈ N and limM→∞ µM
ϕ
= µ, it holds that

lim
M→∞

lim
N→∞

κM,N
t (µM,N)

ϕ
= κt(µ). (3.29)

Proof. Given limM→∞ µM
ϕ
= µ, by Lemma 1,

lim
M→∞

sM ◦ at(µM)
ϕ
= at(µ). (3.30)

Given limN→∞ µM,N=µM for eachM ∈ N, by Lemma 2 we have limN→∞ s
M◦at(µM,N)=sM◦

at(µM) and sM ◦ at(µM,N) ∈ PC(B), sM ◦ at(µM) ∈ PU(B). Thus by letting νM,N
.
=

sM ◦ at(µM,N) and νM
.
= sM ◦ at(µM) in Lemma 3 we get

lim
N→∞

TN ◦ sM ◦ at(µM,N)=sM ◦ at(µM). (3.31)
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Equations (3.30) and (3.31) together give

lim
M→∞

lim
N→∞

TN ◦ sM ◦ at(µM,N)
ϕ
= at(µ).

Therefore it follows directly from (3.19) that

lim
M→∞

lim
N→∞

bt ◦ TN ◦ sM ◦ at(µM,N)
ϕ
= bt ◦ at(µ).

The proof is complete.

To prove the global weak convergence result, we also need the following Lemma.

Lemma 4 Assume p(yt|xt) is bounded, uniformly continuous, and strictly positive. For

{γM,N}∞M,N=1 ∈ PC(B) and γM ∈ PU(B) with limN→∞ γM,N=γM for each M ∈ N, if there

exists a ξ0 > 0 such that
∫
B p(yt|xt)γM(xt)dxt ≥ ξ0, then we have

lim
N→∞

bt(γM,N)=bt(γM) ∈ PU(B), ∀M ∈ N.

Proof. Since limN→∞ γM,N=γM for each M ∈ N, then for any 0 < ε < ξ0
2

, there exists N0,

such that when N > N0,

|γM,N(xt)− γM(xt)| < ε, ∀xt ∈ B and ∀M ∈ N.

It then follows that
∣∣∫
B p(yt|xt)(γM,N(xt)− γM(xt))dxt

∣∣ < ε and

∫
B
p(yt|xt)γM,N(xt)dxt >

∫
B
p(yt|xt)γM(xt)dxt − ε >

ξ0

2
.
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Thus for any xt ∈ B when N > N0 we have

|bt(γM,N)(xt)− bt(γM)(xt)|

= p(yt|xt) ·
∣∣∣∣γM,N(xt) ·

∫
B p(yt|xt)γM(xt)dxt − γM(xt) ·

∫
B p(yt|xt)γM,N(xt)dxt∫

B p(yt|xt)γM,N(xt)dxt ·
∫
B p(yt|xt)γM(xt)dxt

∣∣∣∣
≤
∣∣∣∣

∫
B p(yt|xt) (γM(xt)− γM,N(xt)) dxt∫

B p(yt|xt)γM,N(xt)dxt ·
∫
B p(yt|xt)γM(xt)dxt

∣∣∣∣+

∣∣∣∣ γM(xt)− γM,N(xt)∫
B p(yt|xt)γM(xt)dxt

∣∣∣∣
<

(
4

ξ2
0

+
2

ξ0

)
ε.

(3.32)

Therefore limN→∞ bt(γM,N)=bt(γM). It remains to show that bt(γM) ∈ PU(B).

In fact, by the definition of bt, we have for any x
(1)
t , x

(2)
t ∈ B,

∣∣∣bt(γM)(x
(1)
t )− bt(γM)(x

(2)
t )
∣∣∣ ≤ 2

ξ0

∣∣∣p(yt|x(1)
t )γM(x

(1)
t )− p(yt|x(2)

t )γM(x
(2)
t )
∣∣∣ .

From the uniformly continuity property and the boundedness of γM and p(xt|xt−1) that for

any ε > 0, there exists δ > 0, such that when x
(1)
t , x

(2)
t ∈ B with |x(1)

t − x
(2)
t | < δ, we have

|γM(x
(1)
t )− γM(x

(2)
t )| < ε

2
and |p(x(1)

t )− p(x(2)
t )| < ε

2
. Thus,

∣∣∣bt(γM)(x
(1)
t )− bt(γM)(x

(2)
t )
∣∣∣ < Cε.

This completes the proof.

Note 1 When the standing assumption (A1) holds, it follows immediately by the definition

of sM that there exists a ξ0 > 0 such that
∫
B p(yt|xt)s

M ◦ p(xt|It−1)dxt > ξ0 for M sufficient

large.

Applying Theorem 3.1 to the context of filtering problems, we can obtain the weak

convergence of our implicit filtering simulation to the Bayesian optimal filter. Our main

result of this work is stated in the following theorem. For simplicity, we define two new
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operators θMt and θM1:t to be

θMt = bt ◦ sM ◦ at and θM1:t = θt ◦ θt−1 ◦ · · · ◦ θ1.

Theorem 3.2 (Global convergence) Assume that the transition kernel p(xt|xt−1) is Feller

and p(xt|xt−1) is bounded, uniformly continuous, and strictly positive. Also assume that∥∥ ∂
∂x
f−1
t

∥∥ is bounded. Then

lim
N→∞

κM,N
1:t (p0|0) = θM1:t(p0|0) ∀M ∈ N, and lim

M→∞
θM1:t(p0|0)

ϕ
= κ1:t(p0|0),

which implies that

lim
M→∞

lim
N→∞

ρt|t
ϕ
= pt|t.

Proof. To prove Theorem 3.2, we use induction method.

(1) t = 1: choose µM,N = µM = µ = p0|0 in equation (3.29). It is obviously that

lim
N→∞

µM,N=µM , lim
M→∞

µM
ϕ
= µ,

and µM = p0|0 is uniformly continuous. By Lemma 2, Lemma 3 and Lemma 4 and Note 1,

lim
N→∞

κM,N
1 (p0|0) = θM1 (p0|0) ∈ PU(B), ∀M ∈ N.

By Lemma 1 and the continuity of bt, we have

lim
M→∞

θM1 (p0|0)
ϕ
= κ1(p0|0) = p1|1.

It then follows from Theorem 3.1 that

lim
M→∞

lim
N→∞

κM,N
1 (p0|0)

ϕ
= κ1(p0|0) = p1|1.
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(2) Assume that

lim
N→∞

κM,N
1:t−1(p0|0) = θM1:t−1(p0|0) ∈ PU(B) ∀M ∈ N, and lim

M→∞
θM1:t−1(p0|0)

ϕ
= κ1:t−1(p0|0).

We choose µM,N = κM,N
1:t−1(p0|0) and µ = κ1:t−1(p0|0) = pt−1|t−1 in equation (3.29) and

µM = θM1:t−1(p0|0) in Theorem 3.1. From the assumption,

lim
N→∞

µM,N=µM and lim
M→∞

µM
ϕ
= µ.

By Lemma 2, Lemma 3, Lemma 4 and Note 1 that

lim
N→∞

κM,N
1:t (p0|0) = lim

N→∞
bt ◦ TN ◦ sM ◦ at(κM,N

1:t−1(p0|0))=θM1:t(p0|0) ∈ PU(B). (3.33)

By Lemma 1 and the continuity of bt we have

lim
M→∞

θM1:t(p0|0)
ϕ
= pt|t. (3.34)

Therefore it follows from Theorem 3.1 that

lim
M→∞

lim
N→∞

κM,N
t (κM,N

1:t−1(p0|0))
ϕ
= κt(pt−1|t−1) = κ1:t(p0|0) = pt|t.

The proof is complete.

3.3 Numerical experiments

In this section, we present two numerical examples to demonstrate the efficiency of our

method. The first example involves a one dimensional nonlinear system and measurement

equation while the second is a 2-D bearing-only tracking problem. We shall compare our

method with the standard EKF and particle filter. Here the particle filter we are using is
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the sequential important sampling with resampling (SIR).

Example 1

Consider the following nonlinear model

xk = 40 · tan(xk−1 + 10) + 50wk−1,

yk = 40 · xk
2000 + xk

+ vk,
(3.35)

where wk and vk are two independent zero-mean white noise processes with variance 1.0,

yk is the noise perturbed observation of xk. The initial position is taken to be x0 = 2 and

Figure 3.1 shows a 50 step realization of the state equation in model (3.35).
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Figure 3.1: Original Position

Figure 3.2, Figure 3.3 and Figure 3.4 are the simulation results obtained by using EKF

and particle filter and our implicit particle filter method, respectively. The true state is

represented by blue diamonds while simulation results are given as red “stars” and connected

by solid lines. The prior pdf p(x0) is initialized with the standard normal distribution with

the mean value x0 and the variance 1.0.
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In particle filter method, we use 500 particles (sample points) to represent the pdf and

in our implicit filter, we use 100 nodes to partition the region and the number of Monte-Carlo

samples is M = 10.
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Figure 3.2: Extended Kalman Filter
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Figure 3.3: Particle Filter

Form the three figures, one can see that when the variation between two consecutive

points is not very large, all three methods produce very accurate approximations to the true

state. On the other hand, when the true state has very large variations at some time steps,

i.e., the state variable has a large jump from its previous state, both EKF and particle filter
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fail to produce accurate approximations. However, our implicit particle algorithm still pro-

duces accurate estimations at these points.
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Figure 3.4: implicit Algorithm

Example 2

In this example, we consider the following bearing-only tracking problem.

dX1(t) = −αX2(t)dt+ β
X1(t)

(X1(t))2 + (X2(t))2

+ σ1dW1(t),

dX2(t) = αX1(t)dt+ β
X2(t)

(X1(t))2 + (X2(t))2

+ σ2dW2(t) (3.36)

where W1(t) and W2(t) are two independent Brownian Motions. This stochastic dynamical

system may serve to model the motion of a ship which moves with a constant radial and

angular velocity, perturbed by a white noise. The observations are collected by a detector

located at a platform with time intervals of length ∆ = 0.05 and the data are angular

measurements corrupted by noise.

34



To approximate the state variables X = (X1, X2), we discretize the dynamical system

(3.36) in time and obtain a discrete nonlinear filtering problem. Let xk = (x1
k, x

2
k). We have

the discrete system model

x1
k = x1

k−1 − α∆ · x2
k−1

+β∆ · x1
k−1

(x1
k−1)2+(x2

k−1)2 + σ1

√
∆ · w1

k−1

x2
k = x2

k−1 + α∆ · x1
k−1

+β∆ · x2
k−1

(x1
k−1)2+(x2

k−1)2 + σ2

√
∆ · w2

k−1.

(3.37)

The mathematical formula for the measurement equation is given by

yk = arctan(
x2
k − x2

platform

x1
k − x1

platform

) +
√

∆vk, (3.38)

where xplatform = (x1
platform, x

2
platform) is the location of the platform where a detector is

placed.
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Figure 3.5: Target Positions

In the numerical simulations the model parameters are chosen as α = 5, β = 2 and

σ1 = σ2 = 8. Figure 3.5 gives the target path in the x-y plan, with the position of the target

at each time step shown by a diamond. The location of the detector platform is chosen as

xplatform = (−15,−15), marked by a red box.
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The problem is initialized with a best guess of the target position at the initial time,

which is (x1
0, x

2
0) = (0.5, 0.5). In this example, we use 8000 particles (sample points) to

represent the pdf in the particle filter method and in the implicit filter, we use 1600 nodes

to partition the region and the number of Monte-Carlo samples is M = 10. p Figure 3.6

shows the simulation results of observation angle using EKF, particle filter and our implicit

particle filter method. From this figure, one can see that both particle filter and the implicit

particle filter produce good approximation for the relative observation angle of the target.

Although the EKF provides the trend of the movement of the target, the estimation is a few

steps delayed from the true target observation angle.
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Figure 3.6: Comparison result for the observation angle

Figure 3.7 shows the results of system state simulations using EKF while Figure 3.8

compares the performance between particle filter and the implicit particle filter. Clearly

both the particle filter and implicit particle filter outperform EKF. While the accuracy of

the particle filter and the implicit particle filter are very close to each other at the initial

stage, the implicit particle filter becomes more accurate at the final stage of time interval.
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Figure 3.7: Simulation result of EKF
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Figure 3.8: Comparison result between Particle Filter and implicit Algorithm
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Chapter 4

A Hybrid Sparse Grid Approach for Nonlinear Filtering Problems Based on

Adaptive-Domain of the Zakai Equation Approximations

In this Chapter, we develop an efficient hybrid sparse grid approach for nonlinear fil-

tering problems based on numerical approximations of the Zakai equation. Consider the

following stochastic differential system that combines an equation for the “state” and for the

“observation” defined on the probability space (Ω,F , P )


dXt = b(Xt)dt+ σ(Xt)dWt, (state)

dYt = h(Xt)dt+ dBt. (observation)

(4.1)

Here {Xt ∈ Rd, t ≥ 0} and {Yt ∈ Rr, t ≥ 0} are two stochastic processes, {Wt, t ≥ 0} and

{Bt, t ≥ 0} are independent Brownian Motions in Rp and Rr, with covariance matrices CW

(identity) and CB, respectively, and the given initial value X0 is independent of Wt and Bt

with probability distribution u0(x)dx.

4.1 Nonlinear Filtering Problems and Zakai Equations

Now, we outline the derivation of the Zakai equation and its relationship to the nonlinear

filtering problem (4.1). Throughout this Chapter, we assume that the coefficients b : Rd →

Rd, σ : Rd → Rd×p and h : Rd → Rr in (4.1) are globally Lipschitz continuous functions.

Denote

ρ(t)
.
= exp

{∫ t

0

h∗(Xs)dYs −
1

2

∫ t

0

|h(Xs)|2ds
}
,
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then the measure P̃ defined by P̃ = ρ(t)dP is also a probability measure on (Ω,F) equivalent

to P . Furthermore, in the probability space (Ω,F , P̃ ), Yt is a Browanian motion independent

of Xt ( for details, see [82] ).

Assuming that u = u(t, x) is the conditional density function of the state Xt given an

observed path Yt, then the optimal filtering solution is given by (see [82, 85])

E(Φ(Xt) | Yt) =

∫
Φ(x)u(t, x)dx∫
u(t, x)dx

. (4.2)

Under regularity assumptions for the coefficients b and h given above, u satisfies the following

stochastic partial differential equation, known as Zakai equation

du(t, x) = L∗u(t, x)dt+ h∗(x)u(t, x)dYt, x ∈ Rd, (4.3)

with the initial value u(0, x), and L the infinitesimal generator associated with the state

process Xt such that

Lu =
1

2

d∑
i,j

(σσ∗)i,j
∂2u

∂xi∂xj
+

d∑
i=1

bi
∂u

∂xi
, (4.4)

and “∗” is the transpose operator which transforms Lu to be

L∗u =
1

2

d∑
i,j

∂2(σσ∗)i,ju

∂xi∂xj
−

d∑
i=1

∂biu

∂xi
. (4.5)

The goal of the Zakai filter method is to obtain numerical solutions of the Zakai equation

(4.3). However, there are several challenges in the construction of an efficient numerical

algorithm for the Zakai equation: (i) high-dimensionality of the state equations; (ii) low

regularity of the solution; and (iii) unbounded solution domain. In the next two sections we

construct a hybrid algorithm combining the ideas of split-up finite difference method, sparse

grid interpolation and the importance sample approach to overcome these obstacles.
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4.2 Hierarchical Local Sparse Grid Interpolation

In this section, we introduce a sparse grid interpolation constructed from a local hier-

archical basis which will be used in the finite difference approximation of the Zakai equation

in the spatial domain.

4.2.1 Standard hierarchical sparse grid ipnterpolation

Assume that we have the following one dimensional interpolation formula at our disposal:

Qi(u) =

mi∑
j=1

u(xij) · φij(x), x ∈ R, (4.6)

where i ∈ N is the resolution level of the interpolant Qi, mi is the number of grid points

on level i, xij and φij(x) for j = 1, . . . ,mi are the interpolation points and the corresponding

basis functions, respectively. In the context of linear hierarchical interpolation, mi, x
i
j and

φij in the standard interval [−1, 1] for i ∈ N, j = 1, . . . ,mi are defined by

mi =


1, if i = 1,

2i−1 + 1, if i > 1,

(4.7)

xij =


0, for j = 1, if mi = 1,

2(j − 1)

mi − 1
− 1, for j = 1, . . . ,mi, if mi > 1,

(4.8)

and for i = 1, φ1
1 = 1; for i > 1 and j = 1, . . . ,mi,

φij =


1− mi − 1

2
· |x− xij|, if |x− xij| <

2

mi − 1
,

0, otherwise.

(4.9)

Note that the nodal basis function φij has local support [xij − 21−i, xij + 21−i].
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In the multi-dimensional case, i.e. d > 1, the tensor-product interpolatant is

(
Qi1 ⊗ · · · ⊗ Qid

)
(u) =

mi1∑
j1=1

· · ·
mid∑
jd=1

u
(
xi1j1 , · · · , x

id
jd

)
· φi

j(x), (4.10)

where φi
j =

∏d
k=1 φ

ik
jk

. Clearly, the above product requires Πd
i=1mi function values, which is

computationally prohibitive when d is large. The sparse gird interpolation [17] is a linear

combination of a series of tensor-product interpolants, each of which is defined on a coarse

grid with different resolutions in different dimensions, i.e.,

IL,d(u) =
∑

L−d+16|i|6L

(−1)L−|i|
(
d− 1

q − |i|

)(
Qi1 ⊗ · · · ⊗ Qid

)
(u), (4.11)

where L ≥ d, the multi-index i = (i1, . . . , id) and |i| = i1 + · · · + id. Here, ik(k = 1, . . . , d)

is the level of the tensor-product interpolant Qi1 ⊗ · · · ⊗ Qid along the kth direction. The

Smolyak algorithm builds the interpolant by adding a combination of all tensor-product

interpolants satisfying L− d + 1 ≤ |i| ≤ L. The structure of the algorithm becomes clearer

when one considers the incremental interpolant, ∆i given in [17]

Q0(u) = 0, ∆i = Qi(u)−Qi−1(u). (4.12)

The sparse grid interpolant (4.11) is then equivalent to

IL,d(u) =
∑
|i|6L

(∆i1 ⊗ · · · ⊗∆id) = IL−1,d(u) +
∑
|i|=L

(∆i1 ⊗ · · · ⊗∆id)(u). (4.13)

The corresponding sparse grid associated with IL,d(u) is represented by

HL,d =
⋃

L−d+16|i|6L

(χi1 × · · · × χid), (4.14)
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where χi denotes the set of interpolation points used by Qi. According to (4.13), to extend

the Smolyak interpolant IL,d(u) from level L−1 to L, one only needs to evaluate the function

at the incremental grid ∆HL,d defined by

∆HL,d =
⋃
|i|=L

(∆χi1 × · · · ×∆χid), (4.15)

where ∆χij = χij \ χij−1, j = 1, . . . , d. According to the nested structure of the one-

dimensional hierarchical grid defined by (4.8), it is easy to see that χi−1 ⊂ χi and ∆χi =

χi\χi−1 has mi
∆ = mi − mi−1 points. By consecutively numbering the points in ∆χi, and

denoting the jth point of ∆χi as xij, the incremental interpolant in (4.12) can be represented

by (see [17, 55] for details)

∆i(u) =

mi
∆∑

j=1

φij ·
[
u(xij)−Qi−1(u)(xij)

]
, (4.16)

where ωij = u(xij) − Qi−1(u)(xij) is defined as the one-dimensional hierarchical surplus on

level i. This is just the difference between the values of the interpolating polynomials and

the function evaluated at xij. From (4.16), the hierarchical sparse grid interpolant (4.13) can

be rewritten as

IL,d(u) = IL−1,d(u) +
∑
|i|=L

(∆i1 ⊗ · · · ⊗∆id)(u)

= AL−1,d(u) +
∑
|i|=L
j∈Bi

ωi
j · φ

j
i(x)

=
∑
|i|6L

∑
j∈Bi

ωi
j · φ

j
i(x),

(4.17)

where the multi-index set Bi is

Bi =
{
j ∈ Nd : xikjk ∈ ∆χik for jk = 1, . . . ,mik

∆, k = 1, . . . , d
}
, (4.18)
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and the surpluses ωi
j are

ωi
j = u(xi1j1 , . . . , x

id
jd

)− IL−1,d(u)(xi1j1 , . . . , x
id
jd

). (4.19)

As proved in [17], for smooth functions, the hierarchical surpluses tend to zero as the in-

terpolation level tends to infinity. On the other hand, the magnitude of the surplus is a

good indicator about the smoothness of the interpolated function. In general, the larger the

magnitude, the stronger the underlying discontinuity.

For a bounded box domain D ⊂ Rd :

D = [a, b] := Πd
i=1[ai, bi], (4.20)

we first transform it to [−1, 1]d through a simple linear transform. The corresponding sparse

grid interpolation is then defined according to (4.11).

4.2.2 Hierarchical sparse grid approximation of bell-shaped cpurves

In many nonlinear filtering problems in practical applications, the conditional target

state PDF resembles a “bell-shaped” Gaussian curve or surface, if not exactly Gaussian. In

such cases, standard hierarchical sparse grid interpolations may lead to large errors. This is

especially the case for two or higher dimensional problems. As a demonstration, we consider

a Gaussian-type function

U(x)
.
=

d∏
i=1

exp

{
−1

2

(
xi − µ
σ

)2
}
, x ∈ Rd, (4.21)

where µ ∈ R and σ ∈ R+. From [17], we know that the L2 error between the function U and

the standard sparse grid approximation Ū is

‖U − Ū‖L2 ≤ 2 · |U |2,2
12d

· 2−2L · A(d, L), (4.22)
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where L ∈ N+ represents the level of hierarchical sparse grid with

A(d, L) =
Ld

(d− 1)!
+O(kd−2), and |U |2,2 = ‖D2U‖L2 .

It can be shown that |U |2,2 in (4.22) is bounded by (see [64] for detailed derivation)

|U |2,2 ≤
1

σ4d
(max{xi − µ}2d)‖U‖L2 . (4.23)

We can see from the above estimate that when the constant σ is small, the right hand side
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Figure 4.1: The interpolation error for regular sparse grid approximation up to 5 dimensions.

becomes exponentially large as d increases.

Here, we consider a special case of (4.21) with µ = 0 and σ = 0.15, i.e.,

U(x) =
d∏
i=1

exp

(
− x2

i

0.045

)
. (4.24)

Figure 4.1 shows the interpolation errors using the L2-norm for regular sparse grid approxi-

mations of U . We can see that as the dimension d increases, the interpolation errors barely

decrease even, though the number of interpolation points has increased significantly.
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Figure 4.2: The interpolation error for logarithmic sparse grid approximation up to 5 dimen-
sions.

One way of alleviating this poor performance of the sparse grid interpolant when ap-

proximating bell-shaped-functions is to utilize logarithmic interpolation (see [64]), in which

we take the logarithm of U , i.e. V
.
= log(U), and build the approximation V̄ using the

standard sparse grid approach. Then we obtain the approximation of U by Ū = eV̄ . Figure

4.2 shows the absolute interpolation errors measured in L2-norm for the logarithmic sparse

grid approximation of function U defined in (4.24). Compared with Fig. 4.1, we can see

from Figure 4.2 that the convergence is improved as the dimension increases.

A visual demonstration of the efficiency of the logarithmic sparse grid interpolation is

shown in Fig. 4.3, where we plot the level 6 approximation for a marginal distribution of

both U and log(U) in d = 4 dimensions.

4.3 Hybrid Approach for Numerical Solution of the Nonlinear Filtering Prob-

lem.

In this section we describe our hybrid numerical algorithm for the solution of the Zakai

equation (4.3).
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Figure 4.3: (a) is the x1x2-marginal surface of U with x3 = x4 = 0 while (b) is its interpolate
approximation obtained by applying the regular sparse grid approximation to function U .
We can see from the Figure that the approximation is quite poor and significant oscillations
occur at the bottom of the surface. On the other hand, from (d) one can see that the
logarithmic interpolation approximation described above is far more accurate.

4.3.1 Adaptive selection of solution domains

Since the Zakai equation (4.3) is defined on the whole space Rd, it is essential to choose

a proper bounded domain to achieve an accurate numerical approximation. Motivated by

importance sampling and particle filter methods, we adaptively select a hypercube at each

time step according to an estimation of the density function of the solution at the next step.

In particular, let Rt be a partition of [0, T ] such that:

Rt = {tn|tn ∈ [0, T ], tn < tn+1, n = 0, 1, · · · , NT − 1, t0 = 0, tNT
= T}
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and denote ∆tn = tn+1− tn, n = 0, 1, · · · , NT −1. For n = 0, 1, · · ·NT , assume that un is the

numerical solution of the Zakai equation (4.3) at tn. We use an importance sampling method

to draw M realizations according to the conditional PDF un of the state Xn, denoted by

{pmn }m=1,··· ,M , where M is a pre-defined positive integer. We then propagate each of these

samples from time step tn to tn+1 using the state equation in the nonlinear filtering problem

(4.1) to get M updated sample points, denoted by {pmn+1}m=1,··· ,M . To complete our adaptive

domain selection, we denote

Dn+ 1
2

= [an+ 1
2
, bn+ 1

2
] ⊂ Rd

as the smallest hypercube containing all the samples {pmn+1}m=1,··· ,M and Σ = (Σ1, . . . ,Σd)

as the vector of marginal standard deviations of these samples. Then, for a user defined

positive constant λ we let

an+1
.
= an+ 1

2
− λΣ

bn+1
.
= bn+ 1

2
+ λΣ

(4.25)

and finally we choose

Dn+1 = [an+1, bn+1] (4.26)

as the solution domain for un+1.

Remark 1 The idea of the adaptive selection of solution domain Dn is similar to that in

the prediction step of particle filter method. As such the region Dn+ 1
2

which includes all

updated samples is similar to the domain where particle filter method builds the prior PDF

of the target state. In our approach, we choose a confidence region surrounding Dn+ 1
2

as our

solution domain. This way, we can use a much smaller number of samples than the particle

filter technique and maintain the accuracy of our approximation. In addition, our numerical

experiments also indicate that this adaptive domain selection approach is more accurate at

predicting the tail distribution than the particle filter method.
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4.3.2 Spliting-up finite difference method on sparse grid

Following [10, 48, 85], the splitting-up scheme for (4.3) consists of prediction and update

steps, described in Sections 4.2.1 and 4.2.2 respectively. At each time step tn, we define the

sampled observation Zn from the observation process Yt by

Zn
.
=
Ytn+1 − Ytn

∆tn
=

1

∆tn
·
(∫ tn+1

tn

h(Xs)ds+Btn+1 −Btn

)
.

In what follows, we denote un to be the approximate solution for ut at t = tn, n =

0, 1, 2, · · · , NT .

Prediction Step

In the prediction step we solve for un+ 1
2

from

un+ 1
2

= un + L∗un∆tn, (4.27)

which is equivalent to solving the deterministic PDE, known as the Fokker Plank equation

[82, 85],

∂ut
∂t

= L∗ut, tn ≤ t ≤ tn+1 (4.28)

with an one-step forward Euler scheme. An efficient spatial discretization technique for the

Fokker-Planck equation (4.28) in the prediction step is essential to the success of the splitting-

up scheme. In the one-dimensional case, a simple finite difference method to discretize the

operator L is sufficient. In a straight forward fashion, such a discretization can be extended to

multi-dimensional case with use of a direct tensor product. However, the computational cost

of the numerical solution based on a tensor-product approximation increases exponentially

as the dimension d increases, known as the “curse of dimensionality”. To alleviate this

numerical challenge and reduce the overall computational complexity, we use the sparse-grid

method described in section 3 to construct a finite difference algorithm for solving (4.28).
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To see this, we present the upwind finite difference method for approximating the partial

differential operator L defined in (4.4) on a sparse grid. First, let u0 be the initial value of the

solution u of the Zakai equation (4.3). For a positive integer n, let HL,d
n be the set of sparse

grid points defined by (4.15) in the hypercube Dn defined by (4.14). For n = 0, · · · , NT and

x ∈ HL,d
n+1, we approximate the first order partial derivative with given coefficient function

µ ∈ Rd by

µi
∂un
∂xi

(x) ≈ µiD̃xiun(x)
.
=


µi
ûn(x+ eihi)− un(x)

hi
if µi ≥ 0

µi
un(x)− ûn(x− eihi)

hi
if µi < 0

,

where ei is the unit vector in the ith coordinate direction and hi is a properly chosen meshsize

in the ith coordinate direction.

To approximate second order partial derivatives at the sparse grid point x ∈ HL,d
n+1 with

given coefficient function α ∈ Rd×d, we use central differences to obtain

αi,i
∂2un
∂xi∂xi

(x) ≈ αi,iD̃
2
xixi

un(x)
.
= αi,j

ûn(x+ eihi)− 2un(x) + ûn(x− eihi)
h2
i

and

αi,j
∂2un
∂xi∂xj

(x) ≈ αi,jD̃
2
xixj

un(x)

.
=



αi,j
2hi

[
ûn(x+ eihi + ejhj)− ûn(x+ eihi)

hj
− ûn(x+ ejhj)− un(x)

hj

+
un(x)− ûn(x− ejhj)

hj
− ûn(x− eihi)− ûn(x− eii− ejhj)

hj

]
, if αi,j ≥ 0,

αi,j
2hi

[
ûn(x+ eihi)− ûn(x+ eihi − ejhj)

hj
− un(x)− ûn(x− ejhj)

hj

+
ûn(x+ ejhj)− un(x)

hj
− ûn(x− eihi + ejhj)− ûn(x− eihi)

hj

]
, if αi,j < 0.
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With the above finite difference operators in hand, we define the finite difference approxi-

mation of the Fokker-Planck equation (4.28) on sparse grid HL,d
n+1 as follows.

un+ 1
2
(x) = un(x) + L∗nun(x)∆tn, x ∈ HL,d

n+1, (4.29)

where

L∗nun(x) =
1

2

d∑
i,j

{
∂2(σσ∗)i,j
∂xi∂xj

un(x) +
∂(σσ∗)i,j
∂xi

D̃xjun(x) +
∂(σσ∗)i,j
∂xj

D̃xiun(x)

+(σσ∗)i,jD̃
2
xixj

un(x)
}
−

d∑
i=1

(
∂bi

∂xi
un(x) + biD̃xiun(x)

)
.

Update Step

In the update step, we use the new observation Zn and the Bayes formula [?] to update

the prior un+ 1
2

to the posterior un+1 as follows.

un+1(x) = CnΨn(x, Zn)un+ 1
2
, x ∈ HL,d

n+1, (4.30)

where Cn is a normalization factor and function Ψn is defined by

Ψn(x, Zn) = exp

{
−∆tn

2
· |Zn − h(x)|2R

}
.

The norm | · |R is defined by |α|2R = αR−1α, where R is the covariance matrix of {Bt, t ≥ 0}

in (4.1) ( Please see Page 2, [85] for more details). Finally following the procedure described

in Section 3, we derive the logarithmic sparse grid interpolation un+1 = un+1(x), x ∈ Rd

using its values on the sparse grid HL,d
n+1.

We summarize our hybrid sparse grid adaptive-domain splitting-up finite difference al-

gorithm as follows:
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Step 1: Input u0 as the initial value of the solution u of the Zakai equation (4.3).

Step 2: For n = 0 · · · , NT − 1,

1 Compute dynamic domain Dn+1 for the solution un+1 using the importance sampling

method.

2 Generate sparse grid HL,d
n+1 on the solution domain Dn+1.

3 Evaluate un+1 on the sparse grid HL,d
n+1 by using finite difference scheme (4.29).

4 Extend the solution un+1 to the whole space Rd through the logarithmic sparse grid

interpolation described in Section 3.

Step 3: Normalization.

Remark 2 Since we use an explicit finite difference scheme to solve equation (4.28), time

step ∆tn must satisfy the following stability condition

max
0≤n≤NT−1

∆tn ≤
1

d∑
i=1

|(σσT )i,i|+ |bi|hi
h2
i

.

4.4 Numerical Experiments

In this section, we present three numerical experiments to demonstrate the effectiveness

of our new numerical algorithm, for solving nonlinear filtering problems.

Example 1

In the first example, we use a two dimensional nonlinear filtering problem to illustrate

the accuracy of the selection process of the dynamic solution domain Dn. To see this, we

consider the following dynamical system

dXt = (40, 2 · (10t)2)T dt+ 0.5 dWt, (4.31)
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Figure 4.4: Target Trajectory and Adaptive Solution Domain. The red curve shows the
real target state. The blue points are actual states of the target and the blue boxes are the
corresponding solution domains.

where Wt is a two-dimensional Brownian Motion and the initial state is given by X0 =

(30, 30)T . The observation process is given by

dYt =
√

(X1
t − 20)2 + (X2

t )2 · dt+ dBt, (4.32)

which measures the perturbed distance between the target state and a reference point P =

(20, 0), and Bt is a one-dimensional Brownian motion independent of Wt.

In this numerical simulation, we take T = 0.4 and use an uniform partition in time with

stepsize ∆tn = 0.005. The initial value is given by u0 ∼ N(X0,Σ); a normal distribution with

mean X0 and standard deviation Σ = (1, 0.5)T . In the adaptive solution domain selection

process, we choose the sample size M = 500 and the parameter λ in (4.25) as λ = 4. Figure

4.4 shows the trajectory of the target state and solution domain Dn for n = 1, 20, 50, 70, 80.

In Figure 4.5 we show solution domain Dn with the corresponding contour plot of target
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Figure 4.5: Target state PDF at time step: (a) n=1; (b) n=50; (c)=80; in the corresponding
solution domain

state PDF for n = 1, 50, 80. From this figure one can see the that solution domains are

extremely accurate in approximating the high density area of un.
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Example 2

In this example, we consider the following nonlinear filtering problem:


dXt = (10, 6 · (sinX1

t + 2))
T
dt+ dWt, (state)

dYt = (X1
t , X

2
t )
T
dt+ dBt. (observation)

(4.33)

In this numerical experiment, we let T = 0.5 and use a uniform partition in time with

stepsize ∆tn = 0.01. An example of the signal trajectory is shown in figure 4.6a. The initial

value is given by u0 ∼ N(X0,Σ); a normal distribution with mean X0 = (2, 0)T and standard

deviation Σ = (0.5, 0.5)T . We also choose the hierarchical sparse grid level as L = 6. In the

adaptive solution domain selection process, the sample size and parameter λ are given by

M = 500 and λ = 4, respectively.

Figure 4.6b shows the comparison of the estimated values of the target state between

the particle filter and sparse grid Zakai filter. In the particle filter simulation, we use 8000

particles to represent the PDF of the target state. The black dashed line shows the trajectory

of the real target state, the red triangles and blue dots show the estimate target state (the

mean of the estimate posterior PDF) obtained by using the particle filter and the Zakai filter

respectively. As we can see from Figure 4.6b, our hybrid approach is more accurate than the

PFM for a longer period of time.

To further examine the performance of the hybrid sparse grid Zakai filter method, in

Figure 4.7a and Figure 4.7b we plot the marginal probability density functions at time

T = 0.5, obtained by using the particle filter and our hybrid with respect to xy-coordinates.

From the plots we observe that the convergence of the particle filter as the particle size

increases. Moreover, the PDE obtained by our hybrid sparse grid Zakai filter is very close to

the one obtained by the particle filter with 160, 000 particles. However, in table 4.1 we can

see that with 160, 000 particles the particle filter is far more costly in terms of CPU time

than our method. Finally, we also show the confidence bands in Figure 4.8. The blue dashed
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Figure 4.6: 2D nonlinear filtering problem

curves show the real target trajectory with respect to xy-coordinates, respectively, the red
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Figure 4.7: Marginal distributions

curves represent the estimate of posterior means, and the green dashed curves represent the

estimated 95% confidence bands.
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Figure 4.8: Sparse grid Zakai filter estimate of posterior mean with 95% probability region .
(a) Estimate of posterior mean and 95% probability region: X-coordinate
(b) Estimate of posterior mean and 95% probability region: Y -coordinate

Table 4.1: Comparison of computing costs

Particle filter CPU time (seconds)
2,000 particles 1.49
8,000 particles 32.67
40,000 particles 516.91
160,000 particles 7622.29

Sparse grid Zakai filter 20.45

Example 3

In this example, we consider the following “ bearing-only ” tracking problem given by:

dXt = bdt+ σdWt, (4.34)

where Xt = (x, y, u, v)Tt is a four-dimensional vector which models the movement of a target

ship sailing on the sea plane (x−y plane). Here (x, y) and (u, v) are the position and velocity
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components respectively, the vector b = (u, v, 0, 0)Tt , the covariance matrix σ2 is defined by

σ2 =



σ2
1 0 0 0

0 σ2
2 0 0

0 0 σ2
3 0

0 0 0 σ2
4


, (4.35)

and Wt is a four-dimensional Brownian motion. To estimate the target state, a passive sonar
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Figure 4.9: Bearing-only tracking

is located on an observation ship, denoted “ownship”. The observation process is given by:

dYt = h(Xt)dt+ dBt,
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where the observation function h is the angle

h(Xt) = arctan

(
yt − yobst
xt − xobst

)
,

andBt is a one-dimensional Brownian motion independent fromWt. Here, Xobs
t =

(
xobs, yobs

)T
t

describes the movement of the ownship given by dXobs
t = bobsdt.
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Figure 4.10: Comparison of estimated mean of the target state between particle filter and
sparse grid Zakai filter

In the numerical simulations, we choose σ1 = σ2 = 0.75, σ3 = σ4 = 0.05 in (4.35)

and bobs = (8, 0)T ; thus the movement of the ownship is along the Y -axis with a constant

speed. In addition, we set T = 1, the time partition ∆tn = 0.005, initial target state X0 =

(2, 8, 20, 8)T , and the initial PDF of the target sate N(X̄,Σ), where X̄ = (3, 9, 19.8, 7.9)T

and Σ = (0.75, 0.75, 0.5, 0.25)T .
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Figure 4.11: Sparse grid Zakai filter estimate of posterior mean with 95% probability region.
(a) Estimate of posterior mean of the location x and 95% probability region. (b) Estimate
of posterior mean of the location y and 95% probability region. (c) Estimate of posterior
mean of the velocity u and 95% probability region. (d) Estimate of posterior mean of the
velocity v and 95% probability region

The target-observer plane (x− y plane) is illustrated in Figure 4.9. The red dot shows

the initial position of the target ship while the blue triangle shows the initial position of our

ownship. The dashed red curve gives a possible trajectory of the target ship and the blue

arrow describes the movement of our ownship.

Figure 4.10 shows the comparison of the estimated mean values of the relative target

position with respect to the ownship, in the target-observer plane. For the sparse grid Zakai

60



18 19 20 21 22 23 24 25 26 27
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

 

 

PF: 20,000

PF: 40,000

PF: 80,000

PF: 160,000

Zakai Filter

(a) Marginal distribution of the target state on x-coordinate

13 14 15 16 17 18 19 20 21
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

y

 

 

PF: 20,000

PF: 40,000

PF: 80,000

PF: 160,000

Zakai Filter

(b) Marginal distribution of the target state on y-coordinate

Figure 4.12: Marginal distributions

filter, we let the hierarchical level L = 6 and for the adaptive solution domain selection

process, we set M = 1, 000 and λ = 4. The estimate for the particle filter is obtained by

using 160, 000 particles. The actual trajectory of the target position relative to our ownship

is given by the black curve. The red curve and blue curve show the estimate target state

(the mean of the estimate posterior PDF ) obtained by using the particle filter and the Zakai
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Table 4.2: Comparison of computing costs

Particle filter CPU time (seconds)
20,000 particles 554.24
40,000 particles 1976.39
80,000 particles 7702.57
160,000 particles 32380.38

Sparse grid Zakai filter 587.14

filter respectively. We can see from Figure 4.10 that our hybrid sparse grid Zakai filter yields

similar estimate results compared with the particle filter with 160, 000 particles.

In Figure 4.12a and 4.12b we compare the marginal probability distribution functions

at time T = 1 with respect to xy coordinates using our hybrid sparse grid Zakai filter with

the particle filter. Similar to Example 2, we see that the convergence of the particle filter

with the particle size 160, 000 to the approximate PDE is very close to the approximate

PDE obtained by the hybrid sparse grid Zakai filter. In table 4.2, we show the comparison of

computational from which one can see that the particle filter with 160, 000 particles takes 60

times more computing time to achieve a similar PDF. We also plot the confidence curves in

Figure 4.11 for further examination of the performance of sparse grid Zakai filter. The blue

dashed curves show the real target trajectory with respect to xy coordinates. The red curves

represent the estimate of posterior means, and the green dashed curves give the estimate

95% confidence curves (±2 times of the estimated standard deviation).
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Chapter 5

Numerical Algorithms for Backward Doubly Stochastic Differential Equations and it’s

Applications to Nonlinear Filtering Problems

5.1 FBDSDEs and SPDEs

To derive the numerical algorithm and conduct its convergence analysis, we provide a

brief introduction to forward backward doubly stochastic differential equations (FBDSDEs)

and the relationship between FBDSDEs and the SPDE.

Let (Λ,F , P ) be a complete probability space and T > 0 be the terminal time, {Wt, 0 ≤

t ≤ T} and {Bt, 0 ≤ t ≤ T} be two mutually independent standard Brownian motions

defined on (Λ,F , P ) with their values in Rd and in Rl, respectively. Let N denote the class

of P-null sets of F . For each t ∈ [0, T ], we define

Ft := FWt ∨ FBt,T ,

where Fηs,t = σ{ηr − ηs; s ≤ r ≤ t} ∨ N the σ-field generated by {ηr − ηs; s ≤ r ≤ t}, and

Fηt = Fη0,t for a stochastic process η. Note that the collection {Ft, t ∈ [0, T ]} is neither

increasing nor decreasing and it is not a filtration. For positive integer n ∈ N, we define

spaces M2(0, T ;Rn) and S2([0, T ];Rn) as follows.

M2(0, T ;Rn) := {ϕt|ϕt ∈ Rn, E

∫ T

0

|ϕt|2dt <∞, ϕt ∈ Ft, a.e. t ∈ [0, T ]},

and

S2([0, T ];Rn) := {ϕt|ϕt ∈ Rn, E( sup
0≤t≤T

|ϕt|2) <∞, ϕt ∈ Ft, t ∈ [0, T ]}.
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Let

f : Λ× [0, T ]× Rk × Rk×d → Rk

and

g : Λ× [0, T ]× Rk × Rk×d → Rk×l

be jointly measurable such that for any (y, z) ∈ Rk × Rk×d,

ft(y, z) ∈M2(0, T ;Rk),

gt(y, z) ∈M2(0, T ;Rk×l).

We assume moreover that there exist constants c > 0 and 0 < α < 1 such that for any

(ω, t) ∈ Λ× [0, T ], (y1, z1), (y2, z2) ∈ Rk × Rk×l,

|ft(y1, z1)− ft(y2, z2)|2 ≤ c(|y1 − y2|2 + ‖z1 − z2‖2),

‖gt(y1, z1)− gt(y2, z2)‖2 ≤ c|y1 − y2|2 + α‖z1 − z2‖2.

From [61], under the above assumptions and standard conditions on b and σ, we know that

there exists a pair of processes {(Y t,x
s , Zt,x

s ); (t, x) ∈ [0, T ]×Rd} which is the unique solution

to the following FBDSDE: For (t, x) ∈ R+ × Rd

X t,x
s = x+

∫ s

t

b(X t,x
r )dr +

∫ s

t

σ(X t,x
r )dWr, t ≤ s ≤ T, (5.1)

Y t,x
s = h(X t,x

T ) +

∫ T

s

f(r,X t,x
r , Y r,x

r , Zt,x
r )dr

+

∫ T

s

g(r,X t,x
r , Y r,x

r , Zt,x
r )d
←−
B r −

∫ T

s

Zt,x
r dWr, t ≤ s ≤ T,

(5.2)

where (Y t,x
s , Zt,x

s ) ∈ S2([0, T ];Rk) × M2(0, T ;Rk×l). Here d
←−
B r denotes the backward Itô

integration, i.e., for a FBt,T adapted process Vt, and quasi-uniform time partitions ∆: 0 =
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t0 < t1 < t2 < · · · < tN−1 < tN = T ,

∫ T

0

Vtd
←−
B t := lim

∆t→0

N∑
n=0

Vtn+1(Btn+1 −Btn)

where ∆t = max
0≤i≤N−1

(ti+1− ti). According to Pardoux and Peng ([61]), we have the following

nonlinear Feynman-Kac formula.

Y t,x
s = us(X

t,x
s ), Zt,x

s = (∇usσ)(X t,x
s ); (t, x) ∈ [0, T ]× Rd,

where u = ut(x) ∈ Rk is the unique solution of the following system of backward stochastic

partial differential equation:

ut(x) = h(x) +

∫ T

t

[Lsus(x) + f(s, x, us(x), (∇usσ)(x))]ds

+

∫ T

t

g(s, x, us(x), (∇usσ)(x))d
←−
B s, 0 ≤ t ≤ T.

(5.3)

Equation (5.3) is the Zakai type equation (2.6) and (4.3) as used to solve nonlinear filtering

problems.

To simplify our presentation, in what follows we assume that b ≡ 0 and σ ≡ 1 in (5.1).

Thus we have

X0,x
s = x+Ws, x ∈ Ω, s ∈ [0, T ],

and the elliptic partial differential operator L becomes

L =
1

2

d∑
i

∂2

∂x2
i

.

When the spatial domain Ω of the SPDE (5.3) is a subset of Rd and the boundary condition

ut(x) = γ(t, x), on [0, T ]× ∂Ω
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is prescribed, the corresponding BDSDE is defined through a stopping time τ defined as

τ = inf{s;X t,x
s ∈ ∂Ω, s ≥ t, x ∈ Ω}. (5.4)

Then, we have the BDSDE with stopping time as follows.

Y t,x
s = Φ(Xx

τ∧T ) +

∫ T∧τ

s

f(r,X t,x
r , Y r,x

r , Zt,x
r )dr

+

∫ T∧τ

s

g(r,X t,x
r , Y r,x

r , Zt,x
r )d
←−
B r −

∫ T∧τ

s

Zt,x
r dWr, t ≤ s ≤ T, x ∈ Ω,

(5.5)

where Φ(Xx
τ,T ) = h(X t,x

T )Iτ≥T + γ(τ,X t,x
τ )Iτ≤T . When t = 0, the stopping time τ defined in

(5.6) becomes

τ = inf{s;X0,x
s ∈ ∂Ω, s ≥ 0x ∈ Ω}.

Thus, BDSDE (5.7) changes to the following equation:

Y 0,x
t = Φ(X0,x

τ∧T ) +

∫ T∧τ

t

f(s,X0,x
s , Y 0,x

s , Z0,x
s )ds

−
∫ T∧τ

t

Z0,x
s dWs +

∫ T∧τ

t

g(s,X0,x
s , Y 0,x

s , Z0,x
s )d
←−
B s, t ∈ [0, T ], x ∈ Ω,

where for given x, X0,x
0 = x, Φ(X0,x

τ∧T ) = h(X0,x
T )Iτ≥T + γ(τ,X0,x

τ )Iτ≤T . The related SPDE is


ut(x) = h(x) +

∫ T

t

[
1

2

d∑
i=1

∂2us(x)

∂x2
i

+ f(s, x, us(x),∇us(x))]ds

+

∫ T

t

g(s, x, us(x),∇us(x))d
←−
B s, x ∈ Ω, 0 ≤ t ≤ T,

ut(x) = γ(t, x), on [0, T ]× ∂Ω.

5.2 Half Order Numerical Algorithms

We first study numerical algorithms for BDSDEs and assume that b ≡ 0 and σ ≡ 1 in

(5.1). Thus we have

X0,x
s = x+Ws, x ∈ Ω, s ∈ [0, T ],
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and the elliptic partial differential operator L becomes

L =
1

2

d∑
i

∂2

∂x2
i

.

When the spatial domain Ω of the SPDE (5.3) is a subset of Rd and the boundary condition

ut(x) = γ(t, x), on [0, T ]× ∂Ω

is prescribed, the corresponding BDSDE is defined through a stopping time τ defined as

τ = inf{s;X t,x
s ∈ ∂Ω, s ≥ t, x ∈ Ω}. (5.6)

Then, we have the BDSDE with stopping time as follows.

Y t,x
s = Φ(Xx

τ∧T ) +

∫ T∧τ

s

f(r,X t,x
r , Y r,x

r , Zt,x
r )dr

+

∫ T∧τ

s

g(r,X t,x
r , Y r,x

r , Zt,x
r )d
←−
B r −

∫ T∧τ

s

Zt,x
r dWr, t ≤ s ≤ T, x ∈ Ω,

(5.7)

where Φ(Xx
τ,T ) = h(X t,x

T )Iτ≥T + γ(τ,X t,x
τ )Iτ≤T . When t = 0, the stopping time τ defined in

(5.6) becomes

τ = inf{s;X0,x
s ∈ ∂Ω, s ≥ 0x ∈ Ω}.

Thus, BDSDE (5.7) changes to the following equation:

Y 0,x
t = Φ(X0,x

τ∧T ) +

∫ T∧τ

t

f(s,X0,x
s , Y 0,x

s , Z0,x
s )ds

−
∫ T∧τ

t

Z0,x
s dWs +

∫ T∧τ

t

g(s,X0,x
s , Y 0,x

s , Z0,x
s )d
←−
B s, t ∈ [0, T ], x ∈ Ω,
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where for given x, X0,x
0 = x, Φ(X0,x

τ∧T ) = h(X0,x
T )Iτ≥T + γ(τ,X0,x

τ )Iτ≤T . The related SPDE is


ut(x) = h(x) +

∫ T

t

[
1

2

d∑
i=1

∂2us(x)

∂x2
i

+ f(s, x, us(x),∇us(x))]ds

+

∫ T

t

g(s, x, us(x),∇us(x))d
←−
B s, x ∈ Ω, 0 ≤ t ≤ T,

ut(x) = γ(t, x), on [0, T ]× ∂Ω.

5.2.1 Numerical algorithms

For the simplicity of presentation we only consider the one dimensional case. The

high dimensional cases can be handled through straightforward generalization of the one

dimensional case. To simplify the notations we shall use (yt, zt) to denote the solution

(Y t,x
t , Zt,x

t ) of the BDSDE (5.2). We also denote Et,xs [X] = E[X|FW,t,xs ] where FW,t,xs :=

σ(x+Ws −Wt; t ≤ s ≤ T ) ∪ σ(Bt; 0 ≤ t ≤ T ).

Reference equations

To further simplify the notations, we denote f(s, ys, zs) = f(s,X t,x
s , ys, zs) and g(s, ys, zs) =

g(s,X t,x
s , ys, zs), knowing that x ∈ Ω ⊂ R. Then we have

yt = yt+δ +

∫ t+δ

t

f(s, ys, zs)ds−
∫ t+δ

t

zsdWs +

∫ t+δ

t

g(s, ys, zs)
←−
dBs, (5.8)

where δ is a deterministic nonnegative number with t + δ ≤ T . Taking the conditional

expectation Et,xt [·] on (5.52), we obtain

yt,xt = Et,xt [yt+δ] +

∫ t+δ

t

Et,xt [f(s, ys, zs)]ds+

∫ t+δ

t

Et,xt [g(s, ys, zs)]
←−
dBs, (5.9)
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where yt,xt = Et,xt [yt], that is, yt,xt is the value of yt at the time-space point (t, x). We use the

simple right point formula to approximate the integrals in (5.53):

∫ t+δ

t

Et,xt [f(s, ys, zs)]ds = δEt,xt [f(t+ δ, yt+δ, zt+δ)] +RW
y , (5.10)

∫ t+δ

t

Et,xt [g(s, ys, zs)]
←−
dBs = Et,xt [g(t+ δ, yt+δ, zt+δ)]∆

←−
B t +RB

y , (5.11)

where RW
y and RB

y denote the corresponding errors of approximations. Inserting (5.54) and

(5.11) into (5.53), we obtain

yt,xt = Et,xt [yt+δ] + δEt,xt [f(t+ δ, yt+δ, zt+δ)]

+Et,xt [g(t+ δ, yt+δ, zt+δ)]∆
←−
B t +Ry,

(5.12)

where Ry = RW
y + RB

y is the truncation error for solving yt. Let ∆Ws = Ws − Wt for

t ≤ s ≤ t + δ. Multiplying by ∆Wt+δ on (5.52), taking the conditional expectation Et,xt [·]

and applying the Itô isometry we get

−Et,xt [yt+δ∆Wt+δ] =

∫ t+δ

t

Et,xt [f(s, ys, zs)∆Ws]ds

+

∫ t+δ

t

Et,xt [g(s, ys, zs)∆Ws]
←−
dBs −

∫ t+δ

t

Et,xt [zs]ds.

(5.13)

Similar to (5.12) we approximate the integrals in (5.13) with the right point formula to

obtain ∫ t+δ

t

Et,xt [f(s, ys, zs)∆Ws]ds

= δEt,xt [f(t+ δ, yt+δ, zt+δ)∆Wt+δ] +RW
z1

(5.14)

−
∫ t+δ

t

Et,xt [zs]ds = −δzt,xt +RW
z2 (5.15)

and

∫ t+δ

t

Et,xt [g(s, ys, zs)∆Ws]
←−
dBs = Et,xt [g(t+ δ, yt+δ, zt+δ)∆Wt+δ]∆Bt +RB

z , (5.16)
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where zt,xt is the value of zt at the time-space point (t, x), and RW
z1 , RW

z2 and RB
z are the

corresponding approximation errors. Inserting (5.14), (5.15) and (5.16) into (5.13), we get

the second approximation equation for (5.52) as follows.

−Et,xt [yt+δ∆Wt+δ] = δEt,xt [f(t+ δ, yt+δ, zt+δ)∆Wt+δ]− δzt,xt

+Et,xt [g(t+ δ, yt+δ, zt+δ)∆Wt+δ]∆Bt +Rz,
(5.17)

where Rz = RW
z1 +RW

z2 +RB
z is the truncation error for solving zt. (5.12) and (5.17) are two

key equations of solving BDSDE (5.52) numerically. We refer them as reference equations.

Discrete scheme

To derive a numerical algorithm from the reference equations (5.12) and (5.17), we

introduce the following time partition on [0, T ].

Rth = {ti|ti ∈ [0, T ], ti < ti+1, i = 0, 1, . . . , NT − 1, t0 = 0, tNT
= T}.

Let ∆tn = tn+1 − tn and ∆t = max0≤n≤NT−1 ∆tn. We discretize (5.12) and (5.17) by

substituting t, δ, yt and zt with tn, ∆tn with yn and zn respectively and dropping the

errors terms in (5.12) and (5.17), to obtain the following numerical algorithm for solving

BSDE: given random variable yN , for n = N − 1, N − 2, . . . , 1, 0, solve the random variables

yn and zn backwardly by

yn = Etn,xtn [yn+1] + ∆tnEtn,xtn f(tn+1, y
n+1, zn+1)

+Etn,xtn [g(tn+1, y
n+1, zn+1)]∆Btn

(5.18)

and

0 = Etntn [yn+1∆Wtn+1 ] + ∆tnEtn,xtn [f(tn+1, y
n+1, zn+1)∆Wtn+1 ]

+Etn,xtn [g(tn+1, y
n+1, zn+1)∆Wtn+1 ]∆Btn −∆tnz

n.
(5.19)

Obviously (yn, zn) is an approximate solution for (yt, zt) at t = tn, n = 0, 1, · · · , NT .
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5.2.2 Error Estimates

To derive the error estimates, we first need some regularity results for the exact solution.

Regularity of the exact solution

We assume that f and g satisfy the following properties.

E[(f(s, y1, z1)− f(t, y2, z2))2] ≤ L(|s− t|+ |y1 − y2|2 + |z1 − z2|2),

E[(g(s, y1, z1)− g(t, y2, z2))2] ≤ L1(|s− t|+ |y1 − y2|2) + L2|z1 − z2|2,
(5.20)

where L, L1 and L2 are positive constants and 0 ≤ L2 < 1 (see [61] for similar assumptions).

We also assume that the derivatives f ′x, f
′
y, f

′
z, g

′
x, g

′
y and g′z of f and g are all continuous

and bounded. Let ∇yt,xr , ∇zt,xr and ∇X t,x
r be the variations of yt,xr , zt,xr , X t,x

r with respect to

x at time level t = r. Then the following equation holds.

∇yt,xs = h′(X t,x
T )∇X t,x

T +

∫ T

s

[f ′x(r,X
t,x
r , yt,xr , zt,xr )∇X t,x

r

+f ′y(r,X
t,x
r , yt,xr , zt,xr )∇yt,xr + f ′z(r,X

t,x
r , yt,xr , zt,xr )∇zt,xr ]dr

+

∫ T

s

[g′x(r,X
t,x
r , yt,xr , zt,xr )∇X t,x

r + g′y(r,X
t,x
r , yt,xr , zt,xr )∇yt,xr

+g′z(r,X
t,x
r , yt,xr , zt,xr )∇zt,xr ]d

←−
B r −

∫ T

s

∇zt,xr dWr,

(5.21)

where ∇X t,x
r is the solution of following SDE (see [86], page 464, equation (12)).

∇X t,x
s = 1 +

∫ s

t

∂xb(r)∇X t,x
r dr +

∫ s

t

∂xσ(r)∇X t,x
r dWr.

We have the following result concerning the regularity of the solution (yt, zt) of the

FBDSDE (5.2).

71



Proposition 1 Assume that Hypothesis (5.20) holds and the derivatives f ′x, f ′y, f
′
z, g

′
x, g′y

and g′z of f and g are all bounded, then we have

E[(yt,xs − y
t,x
t )2] ≤ C|s− t| (5.22)

and

E[(zt,xs − z
t,x
t )2] ≤ C|s− t|. (5.23)

Proof : Under the assumptions of the Proposition, Pardoux and Peng ([61] proved the

estimate (5.22) and the following estimate

sup
t≤s≤T

E[(yt,xs )2] ≤ C,

where C is a constant. To obtain (5.23), we use the fact that (see [61], page 223, Proposition

2.3)

zt,xs = ∇yt,xs (∇X t,x
s )−1σ(X t,x

s )

and

zt,xt = ∇yt,xt σ(x).

Now we treat (5.21) the same as equation (5.2) with f replaced by

[f ′x(r,X
t,x
r , yt,xr , zt,xr )∇X t,x

r + f ′y(r,X
t,x
r , yt,xr , zt,xr )∇yt,xr + f ′z(r,X

t,x
r , yt,xr , zt,xr )∇zt,xr ]

and g replaced by

[g′x(r,X
t,x
r , yt,xr , zt,xr )∇X t,x

r + g′y(r,X
t,x
r , yt,xr , zt,xr )∇yt,xr + g′z(r,X

t,x
r , yt,xr , zt,xr )∇zt,xr ],
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and use the same result of Pardoux and Peng to obtain

E[(∇yt,xs −∇y
t,x
t )2] < C|s− t|

and

sup
t≤s≤T

E[(∇yt,xs )2] ≤ C.

Because of the assumption that b = 0 and σ = 1, we have that

∇X t,x
s = (∇X t,x

s )−1 = 1

and σ = 1. Thus

E[(zt,xs − z
t,x
t )2] = E[(∇yt,xs −∇y

t,x
t )2]

≤ C|s− t|.

Estimates of truncation errors

For the sake of simplicity of our presentation, in the sequel, we use Et[·] to denote

Etn,x
t [·]. Recall the numerical scheme

yn = Etn [yn+1] + ∆tnEtn [f(tn+1, y
n+1, zn+1)] + ∆Btn+1Etn [g(tn+1, y

n+1, zn+1)],

zn =
1

∆tn

{
Etn [yn+1∆Wtn+1 ] + ∆tnEtn [f(tn+1, y

n+1, zn+1)∆Wtn+1 ]

+∆Btn+1Etn [g(tn+1, y
n+1, zn+1)∆Wtn+1 ]

}
and the reference equations

ytn = Etn [ytn+1 ] + ∆tnEtn [f(tn+1, ytn+1 , ztn+1)] + ∆Btn+1Etn [g(tn+1, ytn+1 , ztn+1)] +Rn
y ,

ztn =
1

∆tn

{
Etn [ytn+1∆Wtn+1 ] + ∆tnEtn [f(tn+1, ytn+1 , ztn+1)∆Wtn+1 ]

+∆Btn+1Etn [g(tn+1, ytn+1 , ztn+1)∆Wtn+1 ]
}

+
1

∆tn
Rn
z ,
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where (ytn , ztn) is the exact solution. We have truncation errors Rn
y and Rn

z for y and z

respectively as

Rn
y =

∫ tn+1

tn

Etn [f(s, ys, zs)− f(tn+1, ytn+1 , ztn+1)]ds

+

∫ tn+1

tn

Etn [g(s, ys, zs)− g(tn+1, ytn+1 , ztn+1)]d
←−
B s

and

Rn
z =

∫ tn+1

tn

Etn [(f(s, ys, zs)− f(tn+1, ytn+1 , ztn+1))∆Wtn+1 ]ds

+

∫ tn+1

tn

Etn [(g(s, ys, zs)− g(tn+1, ytn+1 , ztn+1))∆Wtn+1 ]d
←−
B s

+

∫ tn+1

tn

Etn [zs − ztn ]ds.

Denote ft = f(t, yt, zt) and gt = g(t, yt, zt). By Proposition 1, we have the estimates

max
0≤n≤N−1

E[(ytn − ytn−1)2] ≤ C ·∆t

and

max
0≤n≤N−1

E[(ztn − ztn−1)2] ≤ C ·∆t.

For the truncation error Rn
y , we have the following estimate.

E[(Rn
y )2] ≤ C1∆tn

∫ tn+1

tn

E[(f(s, ys, zs)− f(tn+1, ytn+1 , ztn+1))2]ds

+C2

∫ tn+1

tn

E[(g(s, ys, zs)− g(tn+1, ytn+1 , ztn+1))2]ds

≤ C1∆tn

∫ tn+1

tn

E[(tn+1 − s) + (ys − ytn+1)2 + (zs − ztn+1)2]ds

+C2

∫ tn+1

tn

E[(tn+1 − s) + (ys − ytn+1)2 + (zs − ztn+1)2]ds

≤ C(∆t)2.

Similarly, we have

E[(Rn
z )2] ≤ K(∆t)3.
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Error estimate for y

Denote eny = ytn − yn, enz = ztn − zn, enf = f(tn, ytn , ztn) − f(tn, y
n, zn), and eng =

g(tn, ytn , ztn)− g(tn, y
n, zn). We have the estimate of eny for scheme (5.18) and (5.19) in the

following theorem.

Theorem 5.1 Let (yt, zt) be the exact solution and (yn, zn) be the solution of the scheme

(5.18) and (5.19). If Hypothesis (5.20) is satisfied and the derivatives f ′x, f ′y, f
′
z, g

′
x, g′y and

g′z of f and g are all bounded, then

max
0≤n≤N−1

E[eny ]2 ≤ C∆t,

where C is a constant.

Proof: We first decompose the error for y as

eny = Etn [en+1
y ] + Etn [en+1

f ]∆tn + Etn [en+1
g ]∆Btn+1 +Rn

y .

Taking square on both sides of the above equation and then taking expectation we obtain

E|eny |2 = E[(Etn [en+1
y ] + ∆Btn+1Etn [en+1

g ] +Rn
y )2 + (∆tnEtn [en+1

f ])2

+2(Etn [en+1
y ] + ∆Btn+1Etn [en+1

g ] +Rn
y )(∆tnEtn [en+1

f ])]

= E
[
|Etn [en+1

y ]|2 + (∆Btn+1)2|Etn [en+1
g ]|2 + (Rn

y )2

+2Etn [en+1
y ]∆Btn+1Etn [en+1

g ] + 2Etn [en+1
y ]Rn

y + 2∆Btn+1Etn [en+1
g ]Rn

y

]
+E[(∆tnEtn [en+1

f ])2]

+E[2(Etn [en+1
y ] + ∆Btn+1Etn [en+1

g ] +Rn
y )(∆tnEtn [en+1

f ])]

= Ay +By + Cy,

(5.24)
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where

Ay = E
[
|Etn [en+1

y ]|2 + (∆Btn+1)2|Etn [en+1
g ]|2 + (Rn

y )2

+2Etn [en+1
y ]∆Btn+1Etn [en+1

g ] + 2Etn [en+1
y ]Rn

y + 2∆Btn+1Etn [en+1
g ]Rn

y

]
,

By = E[(∆tnEtn [en+1
f ])2]

and

Cy = E[2(Etn [en+1
y ] + ∆Btn+1Etn [en+1

g ] +Rn
y )(∆tnEtn [en+1

f ])].

Next we use Cauchy’s inequality and Young’s inequality and the facts that

E[Etn [en+1
y ] ·

∫ tn+1

tn

Etn [g(s, ys, zs)− g(tn+1, ytn+1 , ztn+1)]d
←−
B s] = 0

and ∫ tn+1

tn

E[f(s, ys, zs)− f(tn+1, ytn+1 , ztn+1)]2ds ≤ C(∆t)2,

to obtain

Ay = E
[
|Etn [en+1

y ]|2 + (∆Btn+1)2|Etn [en+1
g ]|2 + (Rn

y )2

+2Etn [en+1
y ]∆Btn+1Etn [en+1

g ] + 2Etn [en+1
y ]Rn

y + 2∆Btn+1Etn [en+1
g ]Rn

y

]
≤ E[|Etn [en+1

y ]|2] + ∆tnE[|Etn [en+1
g ]|2] + E[(Rn

y )2]

+2E[Etn [en+1
y ] ·

∫ tn+1

tn

Ex
tn [f(s, ys, zs)− f(tn+1, ytn+1 , ztn+1)]ds

+Etn [en+1
y ] ·

∫ tn+1

tn

Ex
tn [g(s, ys, zs)− g(tn+1, ytn+1 , ztn+1)]d

←−
B s]

+∆tnε1E[|Etn [en+1
g ]|2] + E[

1

ε1
(Rn

y )2]

≤ E[|Etn [en+1
y ]|2] + ∆tnE[|Etn [en+1

g ]|2] + E[(Rn
y )2]

+∆tnE[en+1
y ]2 +

∫ tn+1

tn

E[f(s, ys, zs)− f(tn+1, ytn+1 , ztn+1)]2ds

+∆tnε1E[|Etn [en+1
g ]|2] + E[

1

ε1
(Rn

y )2]
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≤ E[|Etn [en+1
y ]|2] + ∆tnE[(1 + ε1)|Etn [en+1

g ]|2] + ∆tnE[en+1
y ]2 + C1(∆t)2, (5.25)

where ε1 > 0 is a constant to be determined later. By the Lipschitz continuity of f , we have

By = E[(∆tnEtn [en+1
f ])2]

≤ L(∆tn)2(E[en+1
y ]2 + E[en+1

z ]2).
(5.26)

Similarly for Cy, using Cauchy’s inequality and Young’s inequality, we obtain

Cy = E[2(Etn [en+1
y ] + ∆Btn+1Etn [en+1

g ] +Rn
y )(∆tnEtn [en+1

f ])]

≤ ∆tn
1

ε2
E[Etn [en+1

y ] + ∆Btn+1Etn [en+1
g ] +Rn

y ]2

+∆tnε2E[en+1
f ]2

≤ ∆tn
3

ε2
E[Etn [en+1

y ]2 + ∆tn(L1Etn [en+1
y ]2 + L2Etn [en+1

z ]2) + (Rn
y )2]

+∆tnE[Lε2Etn [en+1
y ]2 + Lε2Etn [en+1

z ]2]

≤ ∆tnC2E[en+1
y ]2 + (∆tn)2C3(E[en+1

y ]2 + E[en+1
z ]2) + ∆tnLε2E[en+1

z ]2

+C4(∆t)2,

(5.27)

where ε2 > 0 is a constant to be determined later. Combining (5.24), (5.25), (5.26) and

(5.27) together, we obtain

E[eny ]2 ≤ E[|Etn [en+1
y ]|2] + ∆tnE[(1 + ε1)|Etn [en+1

g ]|2]

+∆tnLε2E[en+1
z ]2 +K1∆tnE[en+1

y ]2

+K2(∆tn)2E[en+1
z ]2 +K3(∆t)2.

(5.28)

For enz , we have the identity

∆tne
n
z = Etn [en+1

y ∆Wtn+1 ] + ∆tnEtn [en+1
f ∆Wtn+1 ]

+∆Btn+1Etn [en+1
g ∆Wtn+1 ] +Rn

z .
(5.29)
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Taking square on both sides of equation (5.29) and then taking expectation we obtain

E[∆tne
n
z ]2 = E[Etn [en+1

y ∆Wtn+1 ] + ∆Btn+1Etn [en+1
g ∆Wtn+1 ] +Rn

z ]2

+E[(∆tn)2Etn [en+1
f ∆Wtn+1 ]2]

+2E[(Etn [en+1
y ∆Wtn+1 ] + ∆Btn+1Etn [en+1

g ∆Wtn+1 ] +Rn
z )

(∆tnEtn [en+1
f ∆Wtn+1 ])]

= E[(Etn [en+1
y ∆Wtn+1 ])2 + (∆Btn+1)2(Etn [en+1

g ∆Wtn+1 ])2 + (Rn
z )2

+2(Etn [en+1
y ∆Wtn+1 ])(Etn [en+1

g ∆Wtn+1 ])∆Btn+1 + 2(Etn [en+1
y ∆Wtn+1 ])Rn

z

+2Etn [en+1
g ∆Wtn+1 ]∆Btn+1R

n
z ]

+E[(∆tn)2Etn [en+1
f ∆Wtn+1 ]2]

+2E[(Etn [en+1
y ∆Wtn+1 ] + ∆Btn+1Etn [en+1

g ∆Wtn+1 ] +Rn
z )

(∆tnEtn [en+1
f ∆Wtn+1 ])]

= Az +Bz + Cz,

(5.30)

where

Az = E[(Etn [en+1
y ∆Wtn+1 ])2 + (∆Btn+1)2(Etn [en+1

g ∆Wtn+1 ])2 + (Rn
z )2

+2(Etn [en+1
y ∆Wtn+1 ])(Etn [en+1

g ∆Wtn+1 ])∆Btn+1 + 2(Etn [en+1
y ∆Wtn+1 ])Rn

z

+2Etn [en+1
g ∆Wtn+1 ]∆Btn+1R

n
z ],

Bz = E[(∆tn)2Etn [en+1
f ∆Wtn+1 ]2]

and

Cz = 2E[(Etn [en+1
y ∆Wtn+1 ] + ∆Btn+1Etn [en+1

g ∆Wtn+1 ] +Rn
z )

·(∆tnEtn [en+1
f ∆Wtn+1 ])].

For any FWt adapted process Xt we have

(Etn [Xtn+1∆Wtn+1 ])2 = (Etn [(Xtn+1 − Etn [Xtn+1 ])∆Wtn+1 ])2

≤ Etn [(Xtn+1 − Etn [Xtn+1 ])]2∆tn

= ∆tn(Etn [(Xtn+1)2]− |Etn [Xtn+1 ]|2).

(5.31)
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For Az, using (5.31), Cauchy’s inequality and Young’s inequality, we have

Az = E[(Etn [en+1
y ∆Wtn+1 ])2 + (∆Btn+1)2(Etn [en+1

g ∆Wtn+1 ])2 + (Rn
z )2

+2(Etn [en+1
y ∆Wtn+1 ])(Etn [en+1

g ∆Wtn+1 ])∆Btn+1 + 2(Etn [en+1
y ∆Wtn+1 ])Rn

z

+2Etn [en+1
g ∆Wtn+1 ]∆Btn+1R

n
z ]

≤ E[(Etn [en+1
y ∆Wtn+1 ])2 + (∆Btn+1)2(Etn [en+1

g ∆Wtn+1 ])2 + (Rn
z )2

+ε(Etn [en+1
y ∆Wtn+1 ])2 +

1

ε
(Rn

z )2

+ε1(Etn [en+1
g ∆Wtn+1 ]∆Btn+1)2 +

1

ε1
(Rn

z )2]

≤ ∆tnE[Etn [en+1
y ]2 − |Etn [en+1

y ]|2]

+(∆tn)2E[Etn [en+1
g ]2 − |Etn [en+1

g ]|2] + E[(Rn
z )2]

+ε∆tnE[Etn [en+1
y ]2 − |Etn [en+1

y ]|2] +
1

ε
E[(Rn

z )2]

+ε1(∆tn)2E[Etn [en+1
g ]2 − |Etn [en+1

g ]|2] +
1

ε1
E[(Rn

z )2]

≤ (1 + ε)∆tnE[Etn [en+1
y ]2 − |Etn [en+1

y ]|2]

+(1 + ε1)(∆tn)2E[Etn [en+1
g ]2 − |Etn [en+1

g ]|2]

+C5(∆t)3.

(5.32)

Under the conditions in the theorem, we have

Bz = E[(∆tn)2Etn [en+1
f ∆Wtn+1 ]2] ≤ C6(∆t)3. (5.33)

Similarly, using Cauchy’s inequality and Young’s inequality, we obtain

Cz = 2E[(Etn [en+1
y ∆Wtn+1 ] + ∆Btn+1Etn [en+1

g ∆Wtn+1 ] +Rn
z )

(∆tnEtn [en+1
f ∆Wtn+1 ])]

≤ ∆tn
1

ε2
E[(Etn [en+1

y ∆Wtn+1 ] + ∆Btn+1Etn [en+1
g ∆Wtn+1 ] +Rn

z )]2

+∆tnε2Etn [en+1
f ∆Wtn+1 ]2

≤ (∆tn)2 3

ε2
(E[en+1

y ]2 + ∆tnL1E[en+1
y ]2 + ∆tnL2E[en+1

z ]2 + (Rn
z )2)
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+(∆tn)2Lε2(E[en+1
y ]2 + E[en+1

z ]2)

≤ C7

{
(∆tn)2E[en+1

y ]2 + (∆tn)3(E[en+1
y ]2 + E[en+1

z ]2)
}

+(∆tn)2Lε2E[en+1
z ]2 + C8(∆t)3. (5.34)

Here ε1 and ε2 are same as in equation (5.91), and ε is a positive constant which will be

determined later. Combining (5.30), (5.32), (5.33) and (5.34) together, we get

E[∆tne
n
z ]2 ≤ (1 + ε)∆tnE[Etn [en+1

y ]2 − |Etn [en+1
y ]|2]

+(1 + ε1)(∆tn)2E[Etn [en+1
g ]2 − |Etn [en+1

g ]|2]

+(∆tn)2Lε2E[en+1
z ]2

+K4(∆tn)2Etn [en+1
y ]2 +K5(∆tn)3Etn [en+1

z ]2

+K6(∆t)3.

(5.35)

Next we divide by ∆tn(1 + ε) on both sides of (5.35) to obtain

∆tn
1 + ε

E[enz ]2 ≤ E[Etn [en+1
y ]2 − |Etn [en+1

y ]|2]

+(∆tn)
1 + ε1
1 + ε

E[Etn [en+1
g ]2 − |Etn [en+1

g ]|2]

+(∆tn)L
ε2

1 + ε
E[en+1

z ]2

+K4∆tnEtn [en+1
y ]2 +K5(∆tn)2Etn [en+1

z ]2

+K6(∆t)2.

(5.36)

Adding (5.36) to (5.91), we obtain

E[eny ]2 +
∆tn
1 + ε

E[enz ]2 ≤ E[|Etn [en+1
y ]|2] + ∆tnE[(1 + ε1)|Etn [en+1

g ]|2]

+∆tnLε2E[en+1
z ]2 +K1∆tnE[en+1

y ]2 +K2(∆tn)2E[en+1
z ]2

+K3(h2 + E[

∫ tn+1

tn

|zs − ztn|2]ds)

+E[Etn [en+1
y ]2 − |Etn [en+1

y ]|2]

+(∆tn)
1 + ε1
1 + ε

E[Etn [en+1
g ]2 − |Etn [en+1

g ]|2]
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+(∆tn)L
ε2

1 + ε
E[en+1

z ]2

+K4∆tnEtn [en+1
y ]2 +K5(∆tn)2Etn [en+1

z ]2

+K6((∆t)2 + E[

∫ tn+1

tn

|zs − ztn|2]ds)

= E[eny ]2 + (∆tn)
1 + ε1
1 + ε

E[Etn [en+1
g ]2]

+(∆tn)
1 + ε1
1 + ε

εE[|Etn [en+1
g ]|2]

+(∆tn)L
ε2 + ε2 + εε2

1 + ε
E[en+1

z ]2

+G1∆tnE[en+1
y ]2 +G2(∆tn)2E[en+1

z ]2 +G3(∆t)2

≤ E[eny ]2 + (∆tn)(L2
1 + ε1
1 + ε

+L2
1 + ε1
1 + ε

ε+ L
ε2 + ε2 + εε2

1 + ε
)E[en+1

z ]2

+G1∆tnE[en+1
y ]2 +G2(∆tn)2E[en+1

z ]2 +G3(∆t)2. (5.37)

Now we choose ε, ε1 and ε2, all positive, sufficiently small such that

L2(1 + ε1) + L2ε(1 + ε1) + L(2ε2 + εε2) ≤ 1.

This is possible since L2 < 1. Thus, by equation (5.37), we have

E[eny ]2 +
∆tn
1 + ε

E[enz ]2 ≤ E[eny ]2 +
∆tn
1 + ε

E[en+1
z ]2

+T1∆tn(E[en+1
y ]2 +

∆tn
1 + ε

E[en+1
z ]2)

+T2(∆t)2.

Denote en := E[eny ]2 + ∆tn
1+ε

E[enz ]2. Then the above equation becomes

en ≤ (1 + T1∆t)en+1 + T2(∆t)2.

81



By Gronwall’s inequality, we have

max
0≤n≤N−1

(E[eny ]2 +
∆tn
1 + ε

E[enz ]2) ≤ C∆t

as required.

Error estimate for z

We first construct an approximate solution (Ỹ , Z̃) with step process as follows. Let

Ỹtn+1 = yn+1 + ∆tn · fn+1 + ∆Btn · gn+1

and Gt = FWt ∨FBT . By an extension of Itô’s martingale representation theorem, we can find

an Gt adapted process Z̃t, such that

Ỹtn+1 = E[Ỹtn+1 |Gtn ] +

∫ tn+1

tn

Z̃rdWr. (5.38)

Define a continuous approximate process (Ỹ , Z̃) as follows.

Ỹt = yn+1 + fn+1 · (tn+1 − t) + gn+1 · (Btn+1 −Bt)−
∫ tn+1

t

Z̃rdWr,

t ∈ (tn, tn+1], n = 0, · · ·N − 1

(5.39)

where

fn+1 = f(tn+1, y
n+1, zn+1)

and

gn+1 = g(tn+1, y
n+1, zn+1).

By (5.19) and (5.38) it’s easy to see that

∆tnz
n =

∫ tn+1

tn

Etn [Z̃r]dr.
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Thus

∫ tn+1

tn

E[(zs − zn)2]ds =

∫ tn+1

tn

E[(zs −
1

∆tn

∫ tn+1

tn

Etn [Z̃r]dr)
2]ds

=

∫ tn+1

tn

E[(
1

∆tn

∫ tn+1

tn

Etn [zs − Z̃r]dr)2]ds

≤ E

∫ tn+1

tn

1

∆tn

∫ tn+1

tn

Etn [(zs − Z̃r)2]drds

≤ 2(

∫ tn+1

tn

E[Etn [(zr − Z̃r)2]]dr +

∫ tn+1

tn

1

∆tn

∫ tn+1

tn

E[Etn [(zs − zr)2]]drds)

≤ 2(

∫ tn+1

tn

E[(zr − Z̃r)2]dr + (∆tn)2).

(5.40)

Now we are ready to prove an error estimate for z.

Theorem 5.2 Let (yt, zt) be the exact solution and (yn, zn) be the solution of the scheme

(5.18) and (5.19). Assume that Hypothesis (5.20) holds and derivatives f ′x, f ′y, f
′
z, g

′
x, g′y and

g′z of f and g are all bounded. Then for ∆t sufficiently small, we have

N−1∑
n=0

E

∫ tn+1

tn

(zs − zn)2ds ≤ C∆t.

Proof: For t ∈ [tn, tn+1], let ety = yt−Ỹt, etz = zt−Z̃t, ft = f(t, yt, zt) and gt = g(t, yt, zt).

Subtracting BDSDE (5.39) from (5.2) we have that

ety = etn+1
y +

∫ tn+1

t

(fs − fn+1)ds+

∫ tn+1

t

(gs − gn+1)d
←−
B s −

∫ tn+1

t

eszdWs. (5.41)

Taking square on both sides of (5.41), applying Itô’s formula (Pardoux and Peng (1994))

and taking expectation, we have

E[(ety)
2] + E

∫ tn+1

t

(esz)
2ds

= E[(etn+1
y )2] + 2E

∫ tn+1

t

esy · (fs − fn+1)ds+ E

∫ tn+1

t

(gs − gn+1)2ds

≤ E[(etn+1
y )2] +

1

ε0
E

∫ tn+1

t

(esy)
2ds+ ε0E

∫ tn+1

t

(fs − fn+1)2ds+ E

∫ tn+1

t

(gs − gn+1)2ds
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≤ E[(etn+1
y )2] +

1

ε0
E

∫ tn+1

t

(esy)
2ds+ E

∫ tn+1

t

2c(ys − yn+1)2 + (ε1 + α)(zs − zn+1)2ds

≤ E[(etn+1
y )2] +

1

ε0
E

∫ tn+1

t

(esy)
2ds+ CE

∫ tn+1

t

(ys − ytn+1)2 + (ytn+1 − yn+1)2ds

+E

∫ tn+1

t

(ε1 +
1

ε2
+ α)[(zs − (∆tn)−1

∫ tn+2

tn+1

Etn+1 [zr]dr)
2]

+(ε1 + ε2 + α)[((∆tn)−1

∫ tn+2

tn+1

Etn+1 [zr]dr − zn+1)2]ds, (5.42)

where ε0, ε1 and ε2 are positive constants to be determined later. Since E[(ys−yt)2]+E[(zs−

zt)
2] ≤ C|s− t|, we have

E

∫ tn+1

t

(ys − ytn+1)2ds ≤ C(∆t)2

and

E

∫ tn+1

t

(zs − (∆tn)−1

∫ tn+2

tn+1

Etn+1 [zr]dr)
2ds

= E

∫ tn+1

t

(zs − ztn+1 + ztn+1 − (∆tn)−1

∫ tn+2

tn+1

Etn+1 [zr]dr)
2ds

= 2E

∫ tn+1

t

(zs − ztn+1)2 + ((∆tn)−1

∫ tn+2

tn+1

Etn+1 [ztn+1 − zr]dr)2ds

≤ C(∆t)2.

Also, since ∆tzn+1 =

∫ tn+2

tn+1

Etn+1 [Z̃r]dr, we have

((∆tn)−1

∫ tn+2

tn+1

Etn+1 [zr]dr − zn+1)2 ≤ (∆tn)−1

∫ tn+2

tn+1

Etn+1 [(zr − Z̃r)2]dr.

Thus we can rewrite (5.42) as

E[(ety)
2] + E

∫ tn+1

t

(esz)
2ds ≤ E[(etn+1

y )2] + CE

∫ tn+1

t

(etn+1
y )ds

+(ε1 + ε2 + α)E

∫ tn+2

tn+1

(esz)
2ds+ C(∆t)2

+
1

ε0
E

∫ tn+1

t

(esy)
2ds.
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Choose ε1 and ε2 small enough such that (ε1 + ε2 + α) = K < 1 (since α < 1). Then

E[(ety)
2] + E

∫ tn+1

t

(esz)
2ds ≤ C1E

∫ tn+1

t

(esy)
2ds+ E[(etn+1

y )2] + C2E

∫ tn+1

tn

(etn+1
y )2ds

+KE

∫ tn+2

tn+1

(esz)
2ds+ C(∆t)2

≤
{

(1 + C2∆t)E[(etn+1
y )2] +KE

∫ tn+2

tn+1

(esz)
2ds+ C(∆t)2

}
+C1E

∫ tn+1

t

(esy)
2ds.

(5.43)

By Gronwall’s inequality, we get

E[(esy)
2] ≤ C((1 + C2∆t)E[(etn+1

y )2] + E

∫ tn+2

tn+1

(esz)
2ds+ C(∆t)2) (5.44)

for s ∈ [tn, tn+1]. Now we let t = tn in (5.43) and substitute (5.44) in (5.43) to obtain

E[(etny )2] + E

∫ tn+1

tn

(esz)
2ds ≤ (1 + C1∆t)E[(etn+1

y )2]

+(K + C2∆t)E

∫ tn+2

tn+1

(esz)
2ds+ C(∆t)2.

Now by Theorem 1, we easily obtain

E[(etny )2] + E

∫ tn+1

tn

(esz)
2ds ≤ E[(etn+1

y )2] + (K + C∆t)E

∫ tn+2

tn+1

(esz)
2ds+ C(∆t)2.

Let ∆t be sufficiently small such that C∆t + K ≤ L < 1, where L is a constant. Summing

the above equation from n = 0 to n = N − 1, we obtain

(1− L)
N−1∑
n=0

E

∫ tn+1

tn

(esz)
2ds ≤ C∆t+ L

∫ tN

tN−1

E[(esz)
2]ds ≤ C∆t. (5.45)

Through a similar argument, it’s easy to obtain

∫ tN

tN−1

E[(esz)
2]ds ≤ C∆t. (5.46)
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By (5.40), (5.45) and (5.46), we conclude that

N−1∑
n=0

E

∫ tn+1

tn

(zs − zn)2ds ≤ C∆t

as required in Theorem 2.

5.2.3 Numerical experiments

In this section we carry out numerical experiments to verify the rate of convergence

results obtained in Section 3 and compare our numerical method with the finite differ-

ence method for stochastic parabolic partial differential equations ([?]). The conditional

expectations in (5.18) and (5.19) can be evaluated using Monte Carlo method or Gaussian

quadratures ([?, 90]. In our examples, we use the binomial tree method which is amount to

two point Gaussian quadrature ([?]).

Example 1: In the first example, we consider the initial boundary value problem.

ut(x) = exp(x · T ) sin(
B(T )

2
) +

∫ T

t

[
1

2

∂2

∂x2
us(x)− (x+

1

8
)us(x)− s

2

∂

∂x
us(x)]ds

+

∫ T

t

1

2
exp(x · s) cos(B(T )− B(s)

2
)d
←−
B s,

ut(−1) = exp((−1) · t) sin(B(T )− B(T )

2
),

ut(1) = exp(1 · t) sin(B(T )− B(t)

2
).

(5.47)
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Table 5.1: Example 1 of Section 6.2

J NT (FD) error(FD) NT (BDSDE) error (BDSDE)
22 25 0.0213 24 0.200
23 27 0.0177 26 0.0383
24 29 0.0112 28 0.0106
25 211 0.00587 210 0.00376
26 213 0.00313 212 0.00152

We construct the SPDE (5.47) in such a way that ut(x) = exp(x · t) sin(B(T )− B(t)
2

) is the

exact solution. The corresponding BDSDE is given by

y0,x
0 = exp(X0,x

T · T ) sin(
B(T )

2
)Iτ≥T + exp(X0,x

τ · τ) sin(B(T )− B(τ)

2
)Iτ≤T

+

∫ T∧τ

0

[−(X0,x
t +

1

8
)y0,x
t −

t

2
z0,x
t ]ds

−
∫ T∧τ

0

z0,x
t dWt +

∫ T∧τ

0

1

2
exp(X0,x

t · t) cos(B(T )− B(t)

2
)d
←−
B t.

The numerical results are shown in Table 1 and Figure 1. Here J denotes the number of

spatial partition grids, NT (FD) the number of time steps used in finite difference method,

NT (BDSDE) the number of time steps used in our method for solving the related BDSDE,

and error(FD) and error(BDSDE) the errors of finite difference method and our method,

respectively. The results indicate that our algorithm is comparable to the the algorithm

of solving the SPDE directly using the finite difference scheme, with a little higher rate of

convergence.

Example 2: In this example, we consider the unbounded SPDE initial value problem.

ut(x) = sin(x+ T ) cos(2BT ) +

∫ T

t

[
1

2

∂2

∂x2
us(x)− ∂

∂x
us(x)]ds

+

∫ T

t

sin(W (s) + s)(sin(BT +Bs)− cos(BT +Bs)) + us(x)d
←−
B s,

(5.48)
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Figure 5.1: Example 1: Convergence comparison between the direct finite difference scheme
and our scheme

Table 5.2: Example 2 of Section 6.2

J NT error(Y) (u) error(Z) (∇u)
23 23 6.4096E − 002 0.1188
24 24 3.2019E − 002 9.0028E − 002
25 25 1.4426E − 002 6.3314E − 002
26 26 7.2577E − 003 4.1337E − 002
27 27 3.5995E − 003 2.7149E − 002

where ut(x) = sin(x+ t) cos(BT +Bt) is the solution of the SPDE (5.48). The corresponding

FBDSDE is given by

y0,x
0 = sin(W (T ) + T ) cos(2BT )−

∫ T

0

z0,x
s ds

+

∫ t

0

[sin(W (s) + s)(sin(BT +Bs)− cos(BT +Bs))+
0,x
s ]d
←−
B s

−
∫ t

0

z0,x
s dWs.

The errors are shown in Table 2, in which error(Y ) and error(Z) are errors for Y and Z at

time-space point (t, x) = (0, 0), respectively. These data also confirm our rate of converence

results.
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Figure 5.2: Example 2: Convergence comparison between the approximations of y and z

5.3 First Order Numerical Algorithms

To develop first order numerical algorithms for BDSDEs, we simplify the BDSDEs

system to

Y t,x
s = h(W t,x

T ) +

∫ T

s

f(r,W t,x
r , Y t,x

r , Zt,x
r )dr

+

∫ T

s

g(r,W t,x
r , Y t,x

r )d
←−
B r −

∫ T

s

Zt,x
r dWr, s ≤ t ≤ T.

(5.49)

In addition to the definitions and assumptions in subsection 5.1, we introduce variational

equations of BDSDEs.

5.3.1 Variational Equations

Let ∇Y t,x
s , ∇Zt,x

s and ∇W t,x
s be the variations of Y t,x

s , Zt,x
s and W t,x

s , respectively, with

respect to x at time level s = t. Notice that that ∇W t,x
s ≡ 1. To simplify the presentation,

we write ys = Y t,x
s , zs = Zt,x

s , Ws = W t,x
s , ∇ys = ∇Y t,x

s , ∇zs = ∇Zt,x
s and ∇Ws = ∇W t,x

s .

From [61], {(∇yt,∇zt); 0 ≤ t ≤ T}, is the unique solution of the equation

∇yt = ∇yT +

∫ T

t

∇Fsds+

∫ T

t

∇Gsd
←−
B s −

∫ T

t

∇zsdWs, (5.50)
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where

∇yT = h′(XT )∇XT ,

∇Fs = f ′W (s,Ws, ys, zs) + f ′y(s,Ws, ys, zs) · ∇ys + f ′z(s,Ws, ys, zs) · ∇zs, t ≤ s ≤ T

and

∇Gs = g′W (s,Ws, ys) + g′y(s,Ws, ys) · ∇ys, t ≤ s ≤ T.

Here f ′W , f ′y, f
′
z and g′W , g′y are first order partial derivatives of functions f and g with respect

to Ws, ys and zs. By Proposition 2.3 of [61],

zs = ∇ys · (∇Ws)
−1 = ∇ys, 0 ≤ s ≤ T. (5.51)

5.3.2 Reference equations

In this subsection we approximate integrals in (5.49) with appropriate quadratures with

first order accuracy and name the resulting equations as reference equations (see [87]). For

this purpose, we define FW,ts := σ(Wr; t ≤ r ≤ s) ∨ σ(Bp; 0 ≤ p ≤ T ). Let E[X] denote

the mathematical expectation of the random variable X and Et,xt [X] denote the conditional

expectation E[X|FW,tt ] of the random variable X with Wt = x.

To further simplify the notation, we denote

f(s, ys, zs) := f(s,Ws, Bs, ys, zs), g(s, ys) := g(s,Ws, Bs, ys),

g′t(s, ys) := g′t(s,Ws, Bs, ys), g′W (s, ys) := g′W (s,Ws, Bs, ys),

g′B(s, ys) := g′B(s,Ws, Bs, ys), g′y(s, ys) := g′y(s,Ws, Bs, ys),

g′′WW (s, ys) := g′′WW (s,Ws, Bs, ys), g′′BB(s, ys) := g′′BB(s,Ws, Bs, ys),

and g′′yy(s, ys) := g′′yy(s,Ws, Bs, ys), where g′t, g
′
W , g′B, g′y and g′z are first order partial deriva-

tives with respect to variables t, Wt, Bt and yt, respectively; g′′WW , g′′BB and g′′yy are second

order partial derivatives with respect to variables Wt, Bt, and yt, respectively.
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With the above notations and from equation (5.49), we have for n = 1, · · · , NT − 1,

ytn = ytn+1 +

∫ tn+1

tn

f(s, ys, zs)ds−
∫ tn+1

tn

zsdWs +

∫ tn+1

tn

g(s, ys)
←−
dBs. (5.52)

Reference equation for ys

We first eliminate the forward Itô integral from(5.52). To this end we take the condi-

tional expectation Etn,xtn [·] on both sides of (5.52) to obtain

ytn,xtn = Etn,xtn [ytn+1 ] +

∫ tn+1

tn

Etn,xtn [f(s, ys, zs)]ds+

∫ tn+1

tn

Etn,xtn [g(s, ys, zs)]
←−
dBs, (5.53)

where ytn,xtn = Etn,xtn [ytn ] is the value of ytn at the space point x.

Next we approximate the integrals in the above equation with appropriate quadrature

formulas. For the first integral on the right hand side of (5.53), we simply use right point

formula to obtain

∫ tn+1

tn

Etn,xtn [f(s, ys, zs)]ds = ∆tnEtn,xtn [f(tn+1, ytn+1 , ztn+1)] +RW,n
y ; (5.54)

where

RW,n
y =

∫ tn+1

tn

{Etn,xtn [f(s, ys, zs)]− Etn,xtn [f(tn+1, ytn+1 , ztn+1)]}ds. (5.55)

For the backward Itô integral term in (5.53), the application of the right point formula will

result in only a half order scheme (see [6]) and thus is inadequate for deriving a first order

algorithm. To obtain a first order numerical scheme, we introduce Itô’s formula for doubly

stochastic integrals ([61] Lemma 1.3).

Let αt = (t,Wt, Bt, yt), βt = (1, 0, 0,−f(t, yt, zt)), γt = (0, 0, 1,−g(t, yt)) and δt =

(0, 1, 0, zt). In light of (5.49), (5.50) and the identity (5.51), we have following SDE for αt:

αt = αs +

∫ t

s

βrdr +

∫ t

s

γrd
←−
B r +

∫ t

s

δrdWr, 0 ≤ s < t ≤ T.
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Applying Itô’s formula for doubly stochastic integrals gives

g(t, yt) = g(s, ys) +

∫ t

s

(
g′t(r, yr)− g′y(r, yr) · f(r, yr, zr)

)
dr

+

∫ t

s

(
g′B(r, yr)− g′y(r, yr) · g(r, yr)

)
d
←−
B r +

∫ t

s

(
g′W (r, yr) + g′y(r, yr) · zr

)
dWr

−1

2

∫ t

s

(
g′′BB(r, yr) + g′′yy(r, yr) · (g(r, yr))

2) dr
+

1

2

∫ t

s

(
g′′WW (r, yr) + g′′yy(r, yr) · z2

r

)
dr.

Letting t = tn+1 in the above equation we have for tn ≤ s ≤ tn+1 that

g(s, ys) = g(tn+1, ytn+1)−
∫ tn+1

s

(
g′B(r, yr)− g′y(r, yr) · g(r, yr)

)
d
←−
B r

−
∫ tn+1

s

(
g′W (r, yr) + g′y(r, yr) · zr

)
dWr +Rn

g (s),

(5.56)

where

Rn
g (s) = −

∫ tn+1

s

(
g′t(r, yr)− g′y(r, yr) · f(r, yr, zr)

)
dr

+
1

2

∫ tn+1

s

(
g′′BB(r, yr) + g′′yy(r, yr) · (g(r, yr))

2) dr
−1

2

∫ tn+1

s

(
g′′WW (r, yr) + g′′yy(r, yr) · z2

r

)
dr.

Taking conditional expectation Etn,xtn [·] on both sides of (5.56) and noting that

Etn,xtn [

∫ tn+1

s

(
g′W (r, yr) + g′y(r, yr) · zr

)
dWr] = 0

we obtain

Etn,xtn [g(s, ys)] = Etn,xtn [g(tn+1, ytn+1)]−
∫ tn+1

s

Etn,xtn [g′B(r, yr)
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−g′y(r, yr) · g(r, yr)
]
d
←−
B r + Etn,xtn [Rn

g (s)].

Using the right point formula for the backward Itô integral above, we have that

Etn,xtn [g(s, ys)] = Etn,xtn [g(tn+1, ytn+1)]− Etn,xtn

[
g′B(tn+1, ytn+1) (5.57)

−g′y(tn+1, ytn+1) · g(tn+1, ytn+1)
]
·
∫ tn+1

s

d
←−
B r +Rn

g1(s) +Rn
g2(s),

where Rn
g1(s) = Etn,xtn [Rn

g (s)] and

Rn
g2(s) =

∫ tn+1

s

Etn,xtn

[
g′B(r, yr)− g′y(r, yr) · g(r, yr)

]
d
←−
B r

−Etn,xtn

[
g′B(tn+1, ytn+1)− g′y(tn+1, ytn+1) · g(tn+1, ytn+1)

]
·
∫ tn+1

s

d
←−
B r

Integrating (5.57) from tn to tn+1 with respect to d
←−
B s gives

∫ tn+1

tn

Etn,xtn [g(s, ys)]d
←−
B s = Etn,xtn [g(tn+1, ytn+1)] ·∆Btn − Etn,xtn

[
g′B(tn+1, ytn+1)

−g′y(tn+1, ytn+1) · g(tn+1, ytn+1)
]
·
∫ tn+1

tn

∫ tn+1

s

d
←−
B rd
←−
B s +RB,n

y(5.58)

where

RB,n
y =

∫ tn+1

tn

(Rn
g1(s) +Rn

g2(s))d
←−
B s. (5.59)

Notice that ∫ tn+1

tn

∫ tn+1

s

d
←−
B rd
←−
B s =

1

2
((∆Btn)2 −∆tn).

Thus from (5.58),

∫ tn+1

tn

Etn,xtn [g(s, ys)]d
←−
B s = Etn,xtn [g(tn+1, ytn+1)∆Btn ]− Etn,xtn

[
g′B(tn+1, ytn+1)

−g′y(tn+1, ytn+1) · g(tn+1, ytn+1)
]
· 1

2
((∆Btn)2 −∆tn) +RB,n

y ,(5.60)

93



Inserting (5.54) and (5.60) to (5.53) yields

ytn,xtn = Etn,xtn [ytn+1 ] + ∆tnEtn,xtn [f(tn+1, ytn+1 , ztn+1)]

+Etn,xtn [g(tn+1, ytn+1)∆Btn ]− Etn,xtn

[
g′B(tn+1, ytn+1) (5.61)

−g′y(tn+1, ytn+1) · g(tn+1, ytn+1)
]
· 1

2
((∆Btn)2 −∆tn) +Rn

y ,

where

Rn
y = RB,n

y +RW,n
y . (5.62)

We name (5.61) the reference equation for the solution yt of the BDSDE (5.49). The term

Rn
y in the reference equation may serve as the truncation error of the numerical integrations

and the resulting numerical algorithm.

Reference equation for zs

Next we derive the reference equation for the solution zt. We multiply ∆Wtn on both

sides of (5.52), then take conditional expectation Etn,xtn [·] to get

∫ tn+1

tn

Etn,xtn [zs]ds= Etn,xtn [ytn+1∆Wtn +

∫ tn+1

tn

f(s, ys, zs)∆Wtnds+

∫ tn+1

tn

g(s, ys)∆Wtn ]d
←−
B s.

(5.63)

In what follows, we will approximate the integrals in the above equations with appropriate

quadratures. The application of either left point formula or even Crank-Nicolson formula

will result in a half order algorithm. To obtain a first order numerical scheme, we need to

use a more accurate quadrature rule. Here we use the equation (5.50) to achieve this goal.

Choosing t = tn, T = s and taking conditional expectation Etn,xtn [·] in (5.50), we obtain

∇ytn,xtn = Etn,x
tn [∇ys] +

∫ s

tn

Etn,x
tn [∇Fr]dr +

∫ s

tn

Etn,x
tn [∇Gr]d

←−
B r,
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where ∇ytn,xtn = Etn,xtn [∇ytn ] is the value of ∇ytn at the space point x. Hence,

Etn,x
tn [∇ys] = ∇ytn,xtn − (

∫ s

tn

Etn,x
tn [∇Fr]dr +

∫ s

tn

Etn,x
tn [∇Gr]d

←−
B r). (5.64)

Integrating (5.64) with respect to s from tn to tn+1 yields

∫ tn+1

tn

Etn,x
tn [∇ys]ds

=

∫ tn+1

tn

[∇ytn,xtn − (

∫ s

tn

Etn,x
tn [∇Fr]dr +

∫ s

tn

Etn,x
tn [∇Gr]d

←−
B r)]ds

= ∇ytn,xtn ·∆tn −
∫ tn+1

tn

∫ s

tn

Etn,x
tn [∇Fr]drds−

∫ tn+1

tn

∫ s

tn

Etn,x
tn [∇Gr]d

←−
B rds.

(5.65)

Replacing ∇Gr in the above equation with ∇Gtn+1 gives

∫ tn+1

tn

Etn,x
tn [∇ys]ds = ∇ytn,xtn ·∆tn − Etn,x

tn [∇Gtn+1 ]

∫ tn+1

tn

∫ s

tn

d
←−
B rds+Rs,n

z (5.66)

where

Rs,n
z = −

∫ tn+1

tn

∫ s

tn

Etn,x
tn [∇Fr]drds−

∫ tn+1

tn

∫ s

tn

(Etn,x
tn [∇Gr]− Etn,x

tn [∇Gtn+1 ])d
←−
B rds.

From the identity (5.51),

∫ tn+1

tn

Etn,x
tn [zs]ds =

∫ tn+1

tn

Etn,x
tn [∇ys]ds.

Thus, replacing ∇y with z in (5.66), we have

∫ tn+1

tn

Etn,x
tn [zs]ds = ztn,xtn ·∆tn − Etn,x

tn [∇Gtn+1 ]

∫ tn+1

tn

∫ s

tn

d
←−
B rds+Rs,n

z . (5.67)

Notice that ∇Gs = g′W (s, ys) + g′y(s, ys) · zs in (5.67).
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For the first integral on the right hand side of (5.63), we use the right point formula to

get

∫ tn+1

tn

Etn,xtn [f(s, ys, zs)∆Wtn ]ds = Etn,xtn [f(tn+1, ytn+1 , ztn+1)∆Wtn ]∆tn +RW,n
z , (5.68)

where

RW,n
z =

∫ tn+1

tn

{Etn,xtn [f(s, ys, zs)∆Wtn ]− Etn,xtn [f(tn+1, ytn+1 , ztn+1)∆Wtn ]}ds.

To deal with the third term on the right hand side of (5.63), we multiply ∆Wtn and

take conditional expectation Etn,xtn [·] on both sides of (5.56) to obtain

Etn,xtn [g(s, ys)∆Wtn ]

= Etn,xtn [g(tn+1, ytn+1)∆Wtn ]−
∫ tn+1

s

Etn,xtn

[(
g′B(r, yr)− g′y(r, yr) · g(r, yr)

)
·∆Wtn

]
d
←−
B r

−Etn,xtn [

∫ tn+1

s

(
g′W (r, yr) + g′y(r, yr) · zr

)
dWr ·∆Wtn ] + Etn,xtn [Rn

g (s)∆Wtn ].

Then, the application of Itô’s isometry on the third term of the right hand side of the above

equation gives

Etn,xtn [g(s, ys)∆Wtn ] = Etn,xtn [g(tn+1, ytn+1)∆Wtn ]

−
∫ tn+1

s

Etn,xtn

[(
g′B(r, yr)− g′y(r, yr) · g(r, yr)

)
·∆Wtn

]
d
←−
B r

−
∫ tn+1

s

Etn,xtn

[
g′W (r, yr) + g′y(r, yr) · zr

]
dr + Etn,xtn [Rn

g (s)∆Wtn ],
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from which we have

Etn,xtn [ g(s, ys)∆Wtn ]

= Etn,xtn [ g(tn+1, ytn+1)∆Wtn ]− Etn,xtn

[(
g′B(tn+1, ytn+1)

− g′y(tn+1, ytn+1) · g(tn+1, ytn+1)
)
·∆Wtn

]
·
∫ tn+1

s

d
←−
B r

− Etn,xtn

[
g′W (tn+1, ytn+1) + g′y(tn+1, ytn+1) · ztn+1

]
·
∫ tn+1

s

dr

+ RB,n
z1 (s) +RB,n

z2 (s) +RB,n
z3 (s),

(5.69)

where

RB,n
z1 (s) = Etn,xtn [Rn

g (s)∆Wtn ],

RB,n
z2 (s) =−

∫ tn+1

s

{
Etn,xtn

[(
g′B(r, yr)− g′y(r, yr) · g(r, yr)

)
·∆Wtn

]
−Etn,xtn

[(
g′B(tn+1, ytn+1)− g′y(tn+1, ytn+1) · g(tn+1, ytn+1)

)
·∆Wtn

]}
d
←−
B r

and

RB,n
z3 (s) =−

∫ tn+1

s

{
Etn,xtn [g′W (r, yr) + g′y(r, yr) · zr

]
−Etn,xtn

[
g′W (tn+1, ytn+1) + g′y(tn+1, ytn+1) · ztn+1

]}
dr.

Integrating the equation (5.69) with respect to d
←−
B s from tn to tn+1, we obtain the approxi-

mation to the third term on right hand side of (5.63) as

∫ tn+1

tn

Etn,xtn [g(s, ys)∆Wtn ]d
←−
B s

= Etn,xtn [g(tn+1, ytn+1)∆Wtn ]∆Btn − Etn,xtn [(g′B(tn+1, ytn+1)

− g′y(tn+1, ytn+1)g(tn+1, ytn+1)) ·∆Wtn ]

∫ tn+1

tn

∫ tn+1

s

d
←−
B rd
←−
B s

− Etn,xtn

[
g′W (tn+1, ytn+1) + g′y(tn+1, ytn+1) · ztn+1

]
·
∫ tn+1

tn

∫ tn+1

s

drd
←−
B s +RB,n

z ,

(5.70)

where

RB,n
z =

∫ tn+1

tn

(RB,n
z1 (s) +RB,n

z2 (s) +RB,n
z3 (s))d

←−
B s.
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Inserting (5.67), (5.68) and (5.70) into the equation (5.63), we have

ztn,xtn ·∆tn − Etn [∇Gtn+1 ]

∫ tn+1

tn

∫ s

tn

d
←−
B rds

= Etn,xtn [ytn+1∆Wtn ] + Etn,xtn [f(tn+1, ytn+1 , ztn+1)∆Wtn ]∆tn

+ Etn,xtn [g(tn+1, ytn+1)∆Wtn ]∆Btn − Etn,xtn [
(
g′B(tn+1, ytn+1)

−g′y(tn+1, ytn+1)g(tn+1, ytn+1)
)
·∆Wtn ] ·

∫ tn+1

tn

∫ tn+1

s

d
←−
B rd
←−
B s

− Etn,xtn

[
g′W (tn+1, ytn+1) + g′y(tn+1, ytn+1) · ztn+1

]
·
∫ tn+1

tn

∫ tn+1

s

drd
←−
B s +Rn

z

(5.71)

with the error term

Rn
z = Rs,n

z +RW,n
z +RB,n

z . (5.72)

Since
∫ tn+1

tn

∫ tn+1

s
d
←−
B rd
←−
B s = 1

2
[(∆Btn)2 −∆tn], we replace

∫ tn+1

tn

∫ tn+1

s
d
←−
B rd
←−
B s by

1
2
[(∆Btn)2 −∆tn] in the equation (5.71) to obtain

∆tn · ztn,xtn = Etn,x
tn [∇Gtn+1 ] ·

∫ tn+1

tn

∫ s

tn

d
←−
B rds+ Etn,xtn [ytn+1∆Wtn ]

+Etn,xtn [f(tn+1, ytn+1 , ztn+1)∆Wtn ] ·∆tn + Etn,xtn [g(tn+1, ytn+1)∆Wtn ]∆Btn

−Etn,xtn

[(
g′B(tn+1, ytn+1)− g′y(tn+1, ytn+1) · g(tn+1, ytn+1)

)
·∆Wtn

]
· 1

2
[(∆Btn)2 −∆tn]

−Etn,xtn

[
g′W (tn+1, ytn+1) + g′y(tn+1, ytn+1) · ztn+1

]
·
∫ tn+1

tn

∫ tn+1

s

drd
←−
B s +Rn

z .

(5.73)

To proceed, we need the following lemma for the double integrals
∫ tn+1

tn

∫ tn+1

s
drd
←−
B s and∫ tn+1

tn

∫ s
tn
d
←−
B rds appear in (5.73)

Lemma 5 ∫ tn+1

tn

∫ tn+1

s

drd
←−
B s =

∫ tn+1

tn

∫ s

tn

d
←−
B rds.

Proof :It is obvious that

∫ tn+1

tn

∫ tn+1

s

drd
←−
B s =

∫ tn+1

tn

(tn+1 − s)d
←−
B s = tn+1 ·∆Btn −

∫ tn+1

tn

sd
←−
B s, (5.74)

98



∫ tn+1

tn

∫ s

tn

d
←−
B rds =

∫ tn+1

tn

(Bs −Btn)ds =

∫ tn+1

tn

Bsds−Btn ·∆tn. (5.75)

Subtract (5.74) from (5.75) to get

∫ tn+1

tn

∫ s

tn

d
←−
B rds−

∫ tn+1

tn

∫ tn+1

s

drd
←−
B s

=

∫ tn+1

tn

sd
←−
B s +

∫ tn+1

tn

Bsds−Btn ·∆tn − tn+1 ·∆Btn .

(5.76)

By Itô’s formula [61, 60], we have that

tn+1Btn+1 = tnBtn +

∫ tn+1

tn

Bsds+

∫ tn+1

tn

sd
←−
B s. (5.77)

Hence, ∫ tn+1

tn

Bsds+

∫ tn+1

tn

sd
←−
B s = tn+1Btn+1 − tnBtn .

Then, from (5.76) and above identity, we have that

−
∫ tn+1

tn

∫ tn+1

s

drd
←−
B s

= −
∫ tn+1

tn

∫ s

tn

d
←−
B rds+ tn+1Btn+1 − tnBtn −Btn · (tn+1 − tn)− tn+1 · (Btn+1 −Btn)

= −
∫ tn+1

tn

∫ s

tn

d
←−
B rds,

(5.78)

which means that ∫ tn+1

tn

∫ tn+1

s

drd
←−
B s =

∫ tn+1

tn

∫ s

tn

d
←−
B rds.

The proof of the Lemma is completed. �

From the definition of ∇Gs and using Lemma 5, we can rewrite (5.73) as

∆tnz
tn,x
tn = Etn,xtn [ytn+1∆Wt] + Etn,xtn [f(tn+1, ytn+1 , ztn+1)∆Wtn ]∆tn

+ Etn,xtn [g(tn+1, ytn+1)∆Wtn ]∆Btn − Etn,xtn

[(
g′B(tn+1, ytn+1)

−g′y(tn+1, ytn+1) · g(tn+1, ytn+1)
)
·∆Wtn

]
· 1

2
[(∆Btn)2 −∆tn] +Rn

z ,

(5.79)
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which is the reference equation for zt.

5.3.3 Numerical scheme

Neglecting the truncation error terms Rn
y and Rn

z in (5.61) and (5.79) respectively, we

derive the numerical algorithm for solving the BDSDE (5.49) as follows. Given random

variables yNT and zNT , for n = NT − 1, NT − 2 . . . 0, 1, find the approximate solution (yn, zn)

of (yt, zt) backwardly from

yn = Etn,xtn [yn+1] + ∆tn ·Mtn + ∆Btn ·Ntn , (5.80)

and

∆tnz
n = Etn,xtn [yn+1 ·∆Wtn ] + ∆tn ·MW

tn + ∆Btn+1 ·NW
tn , (5.81)

where

Mtn = Etn,xtn [f(tn+1, y
n+1, zn+1)] +

1

2
Etn,xtn [g′B(tn+1, y

n+1)]

− 1

2
Etn,xtn [g′y(tn+1, y

n+1) · g(tn+1, y
n+1)],

Ntn = Etn,xtn [g(tn+1, y
n+1)]− 1

2
Etn,xtn [g′B(tn+1, y

n+1)] ·∆Btn

+
1

2
Etn,xtn [g′y(tn+1, y

n+1) · g(tn+1, y
n+1)] ·∆Btn ,

and

MW
tn = Etn,xtn [f(tn+1, y

n+1, zn+1) ·∆Wtn ] +
1

2
Etn,xtn [g′B(tn+1, y

n+1) ·∆Wtn ]

− 1

2
Etn,xtn [g′y(tn+1, y

n+1) · g(tn+1, y
n+1) ·∆Wtn ],

NW
tn = Etn,xtn [g(tn+1, y

n+1) ·∆Wtn ]− 1

2
Etn,xtn [g′B(tn+1, y

n+1) ·∆Wtn ] ·∆Btn+1

+
1

2
Etn,xtn [g′y(tn+1, y

n+1) · g(tn+1, y
n+1) ·∆Wtn ] ·∆Btn+1 .

Here, (yn, zn) is the approximate solution for (yt, zt) at t = tn, n = NT − 1, NT − 2 . . . , 1, 0.
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5.3.4 Error Estimates

In this section, we show the first order convergence for the numerical scheme defined by

(5.80) and (5.81). This is done in two steps. In the first step, we derive the upper bounds of

‖yt − yn‖ and ‖zt − zn‖ with respect to the truncation errors Rn
y in (5.61) and Rn

z in (5.79).

This amounts to the stability analysis of the algorithm. In the second step we derive the

error estimates by estimating the convergence order of the truncation errors.

To simplify the presentation, we introduce the following notations which will be used

throughout the rest of the paper. Denote

eny := ytn − yn, enz := ztn − zn, enf := f(tn, ytn , ztn)− f(tn, y
n, zn),

eng := g(tn, ytn)− g(tn, y
n), eng′B := g′B(tn, ytn)− g′B(tn, y

n),

en(g′y ·g) := g′y(tn, ytn) · g(tn, ytn)− g′y(tn, yn) · g(tn, y
n).

With these notations in hand, we subtract (5.80) and (5.81) from (5.61) and (5.79), respec-

tively to obtain

eny = Etn,xtn [en+1
y ] + ∆tn · (Etn,xtn [en+1

f ] +
1

2
Etn,xtn [en+1

g′B
]− 1

2
Etn,xtn [en+1

(g′y ·g)
])

+ ∆Btn · (E
tn,x
tn [en+1

g ]− 1

2
Etn,xtn [en+1

g′B
] ·∆Btn +

1

2
Etn,xtn [en+1

(g′y ·g)
] ·∆Btn) +Rn

y

(5.82)

and

∆tne
n
z = Etn,xtn [en+1

y ∆Wtn ] + ∆tn · (Etn,xtn [en+1
f ∆Wtn ] +

1

2
Etn,xtn [en+1

g′B
∆Wtn ]

−1

2
Etn,xtn [en+1

(g′y ·g)
∆Wtn ]) + ∆Btn+1 · (E

tn,x
tn [en+1

g ∆Wtn ]− 1

2
Etn,xtn [en+1

g′B
∆Wtn ] ·∆Btn+1(5.83)

+
1

2
Etn,xtn [en+1

(g′y ·g)
∆Wtn ] ·∆Btn+1) +Rn

z .
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Furthermore, if f , g, g′B and g′y are Lipschitz continuous, then

Etn,xtn [(en+1
f )2] ≤ L

(
Etn,xtn [(en+1

y )2] + Etn,xtn [(en+1
z )2]

)
,

Etn,xtn [(en+1
g′B

)2] ≤ LEtn,xtn [(en+1
y )2],

Etn,xtn [(en+1
(g′y ·g)

)2] ≤ LEtn,xtn [(en+1
y )2],

Etn,xtn [(en+1
g )2] ≤ LEtn,xtn [(en+1

y )2],

(5.84)

where L is a constant depending on the Lipschitz coefficients of f , g, g′B and g′y.

Theorem 5.3 Assume that f , g, g′B and g′y are all Lipschitz continuous and g is bounded.

Then

max
0≤n≤NT−1

(E[(eny )2] +
∆tn
1 + ε

E[(enz )2]) ≤C · (E[(eNT
y )2] +

∆tNT−1

1 + ε
E[(eNT

z )2])

+

NT−1∑
n=0

{3E[(Rn
y )2] +

(E[RW,n
y ])2

∆tn
+ Cε(∆tn)−1 · E[(Rn

z )2]},

(5.85)

where RW,n
y , Rn

y and Rn
z are error terms defined in (5.55), (5.62) and (5.72), respectively, ε

is a positive constant, C is a positive constant depending on functions f , g and constant ε,

Cε is a constant only depending on constant ε.

Proof : We first derive an estimate for eny . Denote

Hn+1
y = Etn,xtn [en+1

f ] +
1

2
Etn,xtn [en+1

g′B
]− 1

2
Etn,xtn [en+1

(g′y ·g)
],

Gn+1
y = Etn,xtn [en+1

g ]− 1

2
Etn,xtn [en+1

g′B
] ·∆Btn +

1

2
Etn,xtn [en+1

(g′y ·g)
] ·∆Btn .

Taking the square and then the expectation E[·] on both sides of (5.82) gives

E[(eny )2] = E
[
(Etn,xtn [en+1

y ])2 + (∆tn ·Hn+1
y + ∆Btn ·Gn+1

y +Rn
y )2

+2(Etn,xtn [en+1
y ]) · (∆tn ·Hn+1

y + ∆Btn ·Gn+1
y +Rn

y )
]
.

(5.86)
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Using Cauchy’s inequality and Young’s inequality on the right hand side of the above equa-

tion, we have that

E[(eny )2] ≤ E
[
(Etn,xtn [en+1

y ])2 + 3(∆tn)2 · (Hn+1
y )2 + 3(∆Btn)2 · (Gn+1

y )2 + 3(Rn
y )2

+
C1

ε1
∆tn · (Etn,xtn [en+1

y ])2 +
ε1
C1

∆tn · (Hn+1
y )2

+2Etn,xtn [en+1
y ] · (∆Btn ·Gn+1

y +Rn
y )
]
,

where ε1 is a positive constant which will be determined later. It follows from (5.84) and the

Cauchy’s inequality that there exist positive constants C1, C2 such that

E[(Hn+1
y )2] ≤ C1 ·

(
E[Etn,xtn [(en+1

y )2]] + E[Etn,xtn [(en+1
z )2]]

)
,

E[(Gn+1
y )2] ≤ C2 ·

(
E[Etn,xtn [(en+1

y )2]] + ∆tnE[Etn,xtn [(en+1
y )2]]

)
.

(5.87)

Thus

E[(eny )2] ≤ E[(Etn,xtn [en+1
y ])2] + 3C1(∆tn)2 ·

(
E[Etn,xtn [(en+1

y )2]] + E[Etn,xtn [(en+1
z )2]]

)
+3C2(∆tn) ·

(
E[Etn,xtn [(en+1

y )2]] + ∆tnE[Etn,xtn [(en+1
y )2]]

)
+ 3E[(Rn

y )2] (5.88)

+
C1

ε1
∆tn · E[(Etn,xtn [en+1

y ])2] + ε1∆tn ·
(
E[Etn,xtn [(en+1

y )2]] + E[Etn,xtn [(en+1
z )2]]

)
+2E[Etn,xtn [en+1

y ] ·∆Btn ·Gn+1
y ] + 2E[Etn,xtn [en+1

y ]Rn
y ].

For the term 2E[Etn,xtn [en+1
y ] · ∆Btn · Gn+1

y ] in the above inequality, we use the definition of

Gn+1
y , the Cauchy’s inequality and (5.84) to deduce that

2E[Etn,xtn [en+1
y ] ·∆Btn ·Gn+1

y ]

= 2E[ Etn,xtn [en+1
y ] ·∆Btn · (E

tn,x
tn [en+1

g ]− 1

2
Etn,xtn [en+1

g′B
]∆Btn +

1

2
Etn,xtn [en+1

(g′y ·g)
]∆Btn)]

= 0 + ∆tn · E[ Etn,xtn [en+1
y ] · (−Etn,xtn [en+1

g′B
] + Etn,xtn [en+1

(g′y ·g)
])]

≤ (
1

2
+ 2L)∆tn · E[Etn,xtn [(en+1

y )2]].

(5.89)
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For the last term on the right hand side of (5.88), we recall that Rn
y = RB,n

y +RW,n
y , and due

to the property of the backward Itô integral, E
[
Etn,xtn [en+1

y ] ·RB,n
y

]
= 0. Therefore,

2E[Etn,xtn [en+1
y ] ·Rn

y ] = 2E[Etn,xtn [en+1
y ] ·RW,n

y ] ≤ ∆tnE[Etn,xtn [(en+1
y )2]] +

(E[RW,n
y ])2

∆tn
. (5.90)

Inserting (5.89) and (5.90) into (5.88) gives

E[(eny )2] ≤ E[(Etn,xtn [en+1
y ])2] + Cε1∆tn · E[Etn,xtn [(en+1

y )2]] + ε1∆tn · E[Etn,xtn [(en+1
z )2]]

+ 3C1(∆tn)2 · E[Etn,xtn [(en+1
z )2]] + 3E[(Rn

y )2] +
(E[RW,n

y ])2

∆tn

(5.91)

where Cε1 is a constant depending on ε1 and functions f and g.

Similar to the above estimate, we next derive an estimate for enz following a similar

procedure. To this end we square both sides of (5.83), and then take the expectation E[·] to

obtain

(∆tn)2E[(enz )2] = E
[
(Etn,xtn [en+1

y ∆Wtn ])2 +
(
∆tn ·Hn+1

z + ∆Btn ·Gn+1
z +Rn

z

)2

+ 2Etn,xtn [en+1
y ∆Wtn ] ·

(
∆tn ·Hn+1

z +∆Btn ·Gn+1
z +Rn

z

)] (5.92)

where

Hn+1
z = Etn,xtn [en+1

f ∆Wtn ] +
1

2
Etn,xtn [en+1

g′B
∆Wtn ]− 1

2
Etn,xtn [en+1

(g′y ·g)
∆Wtn ],

Gn+1
z = Etn,xtn [en+1

g ∆Wtn ]− 1

2
Etn,xtn [en+1

g′B
∆Wtn ] ·∆Btn +

1

2
Etn,xtn [en+1

(g′y ·g)
∆Wtn ] ·∆Btn .

Similarly to (5.87)

E[(Hn+1
z )2] ≤ C3∆tn ·

(
E[Etn,xtn [(en+1

y )2]] + E[Etn,xtn [(en+1
z )2]]

)
,

E[(Gn+1
z )2] ≤ C4∆tn ·

(
E[Etn,xtn [(en+1

y )2]] + ∆tnE[Etn,xtn [(en+1
y )2]]

) (5.93)
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where C3 and C4 are positive constants. Applying Cauchy’s inequality on the right hand

side of (5.92), we deduce that

(∆tn)2E[(enz )2] ≤ E[Etn,xtn [en+1
y ∆Wtn ])2 + 3(∆tn)2(Hn+1

z )2

+ 3(∆Btn)2(Gn+1
z )2 + 3(Rn

z )2] + 2E[Etn,xtn [en+1
y ∆Wtn ] ·∆tn ·Hn+1

z ]

+ 2E[Etn,xtn [en+1
y ∆Wtn ]∆Btn ·Gn+1

z ] + 2E[Etn,xtn [en+1
y ∆Wtn ]Rn

z ].

(5.94)

Next we estimate the last three terms of the above inequality. Using Young’s inequality and

(5.93) we have that

2E[Etn,xtn [en+1
y ∆Wtn ] ·∆tn ·Hn+1

z ]

≤ C3

ε2
∆tn · E[(Etn,xtn [en+1

y ∆Wtn ])2] +
ε2
C3

∆tn · E[(Hn+1
z )2]

≤ C3

ε2
(∆tn)2 · E[Etn,xtn [(en+1

y )2]] + ε2(∆tn)2 · E[Etn,xtn [(en+1
y )2] + Etn,xtn [(en+1

z )2]]

= (
C3

ε2
+ ε2)(∆tn)2 · E[Etn,xtn [(en+1

y )2]] + ε2(∆tn)2 · E[Etn,xtn [(en+1
z )2]],

(5.95)

where ε2 is a positive number which will be determined later. With Cauchy’s inequality and

the estimates in (5.84), we deduce that

2E[ Etn,xtn [en+1
y ∆Wtn ] ·∆Btn ·Gn+1

z ]

=2E[ Etn,xtn [en+1
y ∆Wtn ] ·∆Btn

· (Etn,xtn [en+1
g ∆Wtn ]− 1

2
Etn,xtn [en+1

g′B
∆Wtn ]∆Btn +

1

2
Etn,xtn [en+1

(g′y ·g)
∆Wtn ]∆Btn) ]

= 0 + ∆tn · E[Etn,xtn [en+1
y ∆Wtn ] · (−Etn,xtn [en+1

g′B
∆Wtn ] + Etn,xtn [en+1

(g′y ·g)
∆Wtn ])]

≤ (
1

2
+ 2L) · (∆tn)2 · E[Etn,xtn [(en+1

y )2]].

(5.96)

Also, for an arbitrary given constant ε > 0, it follows from Young’s inequality that

2E[Etn,xtn [en+1
y ∆Wtn ] ·Rn

z ] ≤ εE[(Etn,xtn [en+1
y ∆Wtn ])2] +

1

ε
E[(Rn

z )2]. (5.97)
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Inserting (5.95), (5.96) and (5.97) into the equation (5.94) and using (5.93), we obtain the

estimate

(∆tn)2E[(enz )2] ≤ (1 + ε)E[(Etn,xtn [en+1
y ∆Wtn ])2] + Cε2(∆tn)2 · E[Etn,xtn [(en+1

y )2]]

+ ε2(∆tn)2 · E[Etn,xtn [(en+1
z )2]] + 3C3(∆tn)3 · E[Etn,xtn [(en+1

z )2]]

+ CεE[(Rn
z )2],

(5.98)

where Cε2 , Cε are constants depending on ε2, ε respectively and functions f and g.

Dividing both sides of equation (5.98) by (∆tn)(1 + ε) and noticing that

(Etn,xtn [en+1
y ∆Wtn ])2 ≤ ∆tn · (Etn,xtn [(en+1

y )2]− (Etn,xtn [en+1
y ])2),

we obtain

(
∆tn
1 + ε

)E[(enz )2] ≤ E[Etn,xtn [(en+1
y )2]− (Etn,xtn [en+1

y ])2] + Cε2
∆tn
1 + ε

· E[Etn,xtn [(en+1
y )2]]

+ ε2
∆tn
1 + ε

· E[Etn,xtn [(en+1
z )2]] +

3C3

1 + ε
(∆tn)2 · E[Etn,xtn [(en+1

z )2]]

+ Cε(∆tn)−1 · 1

1 + ε
· E[(Rn

z )2].

Since
1

1 + ε
< 1, the above inequality can be rewritten as

(
∆tn
1 + ε

)E[(enz )2] ≤ E[Etn,xtn [(en+1
y )2]− (Etn,xtn [en+1

y ])2] + Cε2∆tn · E[Etn,xtn [(en+1
y )2]]

+ ε2∆tn · E[Etn,xtn [(en+1
z )2]] + 3C3(∆tn)2 · E[Etn,xtn [(en+1

z )2]]

+ Cε(∆tn)−1 · E[(Rn
z )2].

(5.99)
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With (5.91) and (5.99) in hand, we are ready to drive the result of the theorem. First

we add (5.99) to (5.91) to obtain

E[(eny )2] +
∆tn
1 + ε

E[(enz )2]

≤ E[Etn,xtn [(en+1
y )2]] + (Cε1 + Cε2)∆tn · E[Etn,xtn [(en+1

y )2]]

+ (ε1 + ε2)∆tn · E[Etn,xtn [(en+1
z )2]] + 3(C1 + C3)(∆tn)2 · E[Etn,xtn [(en+1

z )2]]

+ 3E[(Rn
y )2] +

(E[RW,n
y ])2

∆tn
+ Cε(∆tn)−1 · E[(Rn

z )2].

(5.100)

For a fixed positive constant ε, we choose positive numbers ε1, ε2 so that

ε1 + ε2 ≤
1

1 + ε
.

Then, the application of Jensen’s inequality leads to

E[(eny )2] +
∆tn
1 + ε

E[(enz )2] ≤ (1 + Cε1,ε2∆tn) · (E[(en+1
y )2] +

∆tn
1 + ε

· E[(en+1
z )2])

+ 3E[(Rn
y )2] +

(E[RW,n
y ])2

∆tn
+ Cε(∆tn)−1 · E[(Rn

z )2],

(5.101)

where Cε1,ε2 is a constant depending on ε1, ε2 and functions f and g.

Finally using the discrete Gronwall inequality, we obtain

max
0≤n≤NT−1

(E[(eny )2] +
∆tn
1 + ε

E[(enz )2])

≤ C · (E[(eNT
y )2] +

∆tNT−1

1 + ε
E[(eNT

z )2])

+

NT−1∑
n=0

{3E[(Rn
y )2] +

(E[RW,n
y ])2

∆tn
+ Cε(∆tn)−1 · E[(Rn

z )2]}

(5.102)

as required. �

We now apply Theorem 5.3 to obtain error estimates for the proposed numerical scheme

(5.80) and (5.81). In light of (5.102), it suffices to estimate the truncation errors Rn
y , Rn

z and

RW,n
y . First we need a couple of regularity results for the exact solution (yt, zt).
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Lemma 6 [61] For bounded f , g and h,

E[(yt,xs − y
t,x
t )2] + E[

∫ t

s

(zr)
2dr] ≤ C|t− s|, (5.103)

and for bounded function Ψ with bounded second-order derivatives,

(E[Ψ(t, yt, zt)−Ψ(s, ys, zs)])
2 ≤ C(t− s)2

where C is a constant independent of s and t.

Lemma 7 [61] Assume that f , g, h, f ′W , f ′y, f
′
z, g

′
W , g′y, g

′
z, and h′ are all bounded, then

E[(zt,xs − z
t,x
t )2] + E[

∫ t

s

(∇zr)2dr] ≤ C|t− s|. (5.104)

where C is a constant independent of s and t.

Now we are ready to derive estimates for the truncation errors RW,n
y Rn

y and Rn
z .

Proposition 2 Assume that that functions f , g, g′B, g′W , g′y are Lipschitz continuous,

and f , g and h are bounded. Furthermore, assume that for any s ∈ [0, T ], (x, y, z) →

(f(s, x, y, z), g(s, x, y)) of class C3, all derivatives are bounded on [0, T ] × Rd × Rk and

h ∈ C3(Rd;Rk). Then we have the following estimates

(i). (E[RW,n
y ])2 ≤ C(∆tn)4, (5.105)

(ii). E[(Rn
y )2] ≤ C(∆tn)3, (5.106)

(iii). E[(Rn
z )2] ≤ C(∆tn)4, (5.107)

where C is a constant only related to functions f and g.
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Proof : (i). By Lemma 6, the definition of RW,n
y given by (5.55), and the assumptions

in the Proposition we have that

(E[RW,n
y ])2 = (

∫ tn+1

tn

E[f(s, ys, zs)− f(tn+1, ytn+1 , ztn+1)]ds)2

≤ ∆tn ·
∫ tn+1

tn

(E[f(s, ys, zs)− f(tn+1, ytn+1 , ztn+1)])2ds

≤ C(∆tn)4,

which is (5.105).

(ii). By definition (5.62), Rn
y = RB,n

y +RW,n
y . Thus it suffices to estimate RB,n

y and RW,n
y .

For Rn
g (s) given by (5.56), it easy to see that

E[(Rn
g1(s))2] = E[(Et,xt [Rn

g (s)])2] = O((∆tn)2), (5.108)

From the definition of Rn
g2(s) given by (5.57) we have that

E[(Rn
g2(s))2] = E[(Etn,xtn [

∫ tn+1

s

(g′B(r, yr)− g′yg(r, yr))d
←−
B r

− (g′B(tn+1, ytn+1)− g′y(tn+1, ytn+1) · g(tn+1, ytn+1))

∫ tn+1

s

d
←−
B r])

2]

≤ 2E[(Etn,xtn [

∫ tn+1

s

(g′B(r, yr)− g′B(tn+1, ytn+1))d
←−
B r])

2]

+ 2E[(Etn,xtn [

∫ tn+1

s

(g′y(r, yr) · g(r, yr)− g′y(tn+1, ytn+1) · g(tn+1, ytn+1))d
←−
B r])

2].

For the first term on the right hand side of the above inequality, we have by Lemma 6, Itô’s

isometry and the assumptions in the Proposition, that

E[(Etn,xtn [

∫ tn+1

s

(g′B(r, yr)− g′B(tn+1, ytn+1))d
←−
B r])

2] = O((∆tn)2), (5.109)
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Similarly,

E[(Etn,xtn [

∫ tn+1

s

(g′y(r, yr) · g(r, yr)− g′y(tn+1, ytn+1) · g(tn+1, ytn+1))d
←−
B r])

2] = O((∆tn)2).

(5.110)

Thus

E[(Rn
g2(s))2] ≤ O((∆tn)2). (5.111)

It follows from (5.108) and (5.111) that

E[(RB,n
y )2] = E[(

∫ tn+1

tn

(Rn
g1(s) +Rn

g2(s))d
←−
B s)

2] = O((∆tn)3). (5.112)

For RW,n
y , it follows from Lemma 6, Lemma 7 and the assumptions of the Proposition that

E[(RW,n
y )2] = E[(

∫ tn+1

tn

{Etn,xtn [f(s, ys, zs)]− Etn,xtn [f(tn+1, ytn+1 , ztn+1)]}ds)2]

≤ ∆tn · E[

∫ tn+1

tn

{Etn,xtn [f(s, ys, zs)]− Etn,xtn [f(tn+1, ytn+1 , ztn+1)]}2ds] (5.113)

≤ ∆tn · E[

∫ tn+1

tn

(C(∆tn)2 + LEtn,xtn [(ys − ytn+1)2] + LEtn,xtn [(zs − ztn+1)2])ds]

= O((∆tn)3).

Combing (5.111) with (5.113), we obtain the desired estimate (5.106) for Rn
y .

(iii). At last, we derive estimate (5.107) for Rn
z , which is defined by Rn

z = Rs,n
z +RW,n

z +

RB,n
z in (5.72). To this end, we derive the estimates for Rs,n

z , RW,n
z and RB,n

z .

We first estimate the error term Rs,n
z . Under the assumptions in the Proposition,

E[

∫ tn+1

tn

(∇Fs)2ds] = O(∆tn)

and

E[(Etn,xtn [∇Gr]− Etn,xtn [∇Gtn+1 ])2] = O(∆tn).
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It follows from the definition of Rs,n
z given by (5.66) and the above two identities that

E[(Rs,n
z )2] = E[(−

∫ tn+1

tn

∫ s

tn

Etn,x
tn [∇Fr]drds

−
∫ tn+1

tn

∫ s

tn

(Etn,x
tn [∇Gr]− Etn,x

tn [∇Gtn+1 ])d
←−
B rds)

2]

≤ 2E[(

∫ tn+1

tn

∫ s

tn

Etn,x

tn [∇Fr]drds)2] (5.114)

+2E[(

∫ tn+1

tn

∫ s

tn

(Etn,xtn [∇Gr]− Etn,xtn [∇Gtn+1 ])d
←−
B rds)

2]

= O((∆tn)4).

Similarly to (5.113),

E[(RW,n
z )2] = E[(

∫ tn+1

tn

Etn,xtn [(f(s, ys, zs)− f(tn+1, ytn+1 , ztn+1)) ·∆Wtn ]ds)2] = O((∆tn)4).

(5.115)

To get the estimate RB,n
z given by ( 5.70 ), we need the estimates for RB,n

z1 , RB,n
z2 and RB,n

z3 .

With estimate (5.108), (5.109) and (5.110) in hand, it’s easy to obtain

E[(Et,xt [Rn
g (s)∆Wtn ])2] = O((∆tn)3),

E[(Etn,xtn [(

∫ tn+1

s

(g′B(r, yr)− g′B(tn+1, ytn+1))d
←−
B r)∆Wtn ])2] = O((∆tn)3), (5.116)

and

E[(Etn,xtn [(

∫ tn+1

s

(
g′y(r, yr) · g(r, yr)− g′y(tn+1, ytn+1) · g(tn+1, ytn+1)

)
d
←−
B r)∆Wtn ])2]

= O((∆tn)3). (5.117)

Thus, we get the estimates for RB,n
z1 and RB,n

z2 as following

E[(RB,n
z1 (s))2] = E[(Et,xt [Rn

g (s)∆Wtn ])2] = O((∆tn)3), p
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and

E[(RB,n
z2 (s))2]

= E[(−
∫ tn+1

s

{
Etn,xtn

[(
g′B(r, yr)− g′y(r, yr) · g(r, yr)

)
·∆Wtn

]
−Etn,xtn

[(
g′B(tn+1, ytn+1)− g′y(tn+1, ytn+1) · g(tn+1, ytn+1)

)
·∆Wtn

]}
d
←−
B r)

2]

≤ 2E[(Etn,xtn [(

∫ tn+1

s

(g′B(r, yr)− g′B(tn+1, ytn+1))d
←−
B r)∆Wtn ])2]

+2E[(Etn,xtn [(

∫ tn+1

s

(g′y(r, yr) · g(r, yr)− g′y(tn+1, ytn+1) · g(tn+1, ytn+1))d
←−
B r)∆Wtn ])2]

= O((∆tn)3).

By using the following estimates obtained directly from Lemma 6, Lemma 7 and the

assumptions in the Proposition

E[(Etn,xtn [

∫ tn+1

s

(g′W (r, yr)− g′W (tn+1, ytn+1))dr])2] = O((∆tn)3), (5.118)

E[(Etn,xtn [

∫ tn+1

s

(g′y(r, yr) · zr − g′y(tn+1, ytn+1) · ztn+1)dr])2] = O((∆tn)3). (5.119)

We get an estimate for RB,n
z3

E[(RB,n
z3 (s))2] = E[(−

∫ tn+1

s

{
Etn,xtn [g′W (r, yr) + g′y(r, yr) · zr

]
−Etn,xtn

[
g′W (tn+1, ytn+1) + g′y(tn+1, ytn+1) · ztn+1

]}
dr)2]

≤ 2E[(Etn,xtn [

∫ tn+1

s

(g′W (r, yr)− g′W (tn+1, ytn+1))dr])2]

+2E[(Etn,xtn [

∫ tn+1

s

(g′y(r, yr) · zr − g′y(tn+1, ytn+1) · ztn+1)dr])2]

= O((∆tn)3).
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Therefore,

E[(RB,n
z )2] = E[

(∫ tn+1

tn

(RB,n
z1 (s) +RB,n

z2 (s) +RB,n
z3 (s))d

←−
B s

)2

] = O((∆tn)4). (5.120)

Then, from estimate (5.114), (5.115) and (5.120), we have

E[(Rn
z )2] ≤ C(∆tn)4. (5.121)

�

Combining Theorem 5.3 and Proposition 2, we obtain the error estimates for our nu-

merical scheme (5.80), (5.81).

Theorem 5.4 Under the conditions of Theorem 5.3 and Proposition 2, if yNT = ytNT
and

zNT = ztNT
, we have

max
0≤n≤NT−1

(E[(eny )2]) ≤ C(∆t)2, max
0≤n≤NT−1

(E[(enz )2]) ≤ C∆t. (5.122)

5.3.5 Fully discrete scheme and its error estimate

Fully discrete scheme

The scheme we provided above is a semi-discrete scheme. In order to solve for (yn, zn)

numerically, spatial approximations are needed. To simplify the presentation, in this section,

we only consider the one dimensional case. The multi-dimensional cases can be deduced

through a straightforward generalization. In addition to the temporal partition provided in

Section 3, we introduce the following spatial partition of the real line R:

Rh = {xi|xi ∈ R, i ∈ Z, xi < xi+1, lim
i→+∞

xi = +∞, lim
i→−∞

xi = −∞}, (5.123)

where {xi}i∈Z are deterministic. We denote hi = xi+1 − xi as the spatial step and h =

maxi∈Z hi as the maximum spatial step.

113



Assume ϕ is a functional of Wt, it follows from the Markov property that

E[ϕ(Wt)|FW,tntn ] = E[ϕ(ξ +Wt −Wtn)]|ξ=Wtn
, t ≥ tn,

where E[X] denotes the conditional expectation E[X|σ(Bp; 0 ≤ p ≤ T )] of the random vari-

able X. We use values of E[ϕ(ξ+Wt−Wtn)]|ξ=Wtn
at partition points {xi}i∈Z to approximate

the entire conditional expectation.

Take (yni , z
n
i ) (n = N,N − 1, · · · , 0, i ∈ Z) as an approximation at the time-space point

(tn, xi). A fully discrete scheme is defined as follows: given the random variable yNi , zNi ,

i ∈ Z, find an approximate solution (yni , z
n
i ) (n = N − 1, · · · , 0, i ∈ Z) satisfying

ŷni = Êtn,xitn [ŷn+1] + ∆tn · (Êtn,xitn [f̂(tn+1, ŷ
n+1, ẑn+1)] +

1

2
Êtn,xitn [ĝ′B(tn+1, ŷ

n+1)]

− 1

2
Êtn,xitn [ĝ′y(tn+1, ŷ

n+1) · ĝ(tn+1, ŷ
n+1)]) + ∆Btn · (Ê

tn,xi
tn [ĝ(tn+1, ŷ

n+1)]

− 1

2
Êtn,xitn [ĝ′B(tn+1, ŷ

n+1)]∆Btn +
1

2
Êtn,xitn [ĝ′y(tn+1, ŷ

n+1) · ĝ(tn+1, ŷ
n+1)]∆Btn)

(5.124)

∆tnẑ
n
i = Êtn,xitn [ŷn+1∆Wtn ] + ∆tn ·

(
Êtn,xitn [f̂(tn+1, ŷ

n+1, ẑn+1)∆Wtn ]

+
1

2
Êtn,xitn [ĝ′B(tn+1, ŷ

n+1)∆Wtn ]− 1

2
Êtn,xitn [ĝ′y(tn+1, ŷ

n+1) · ĝ(tn+1, ŷ
n+1)∆Wtn ]

)
(5.125)

+∆Btn ·
(
Êtn,xitn [ĝ(tn+1, ŷ

n+1, ẑn+1)∆Wtn ]− 1

2
Êtn,xitn [ĝ′B(tn+1, ŷ

n+1)∆Wtn ]∆Btn

+
1

2
Êtn,xitn [ĝ′y(tn+1, ŷ

n+1) · ĝ(tn+1, ŷ
n+1)∆Wtn ]∆Btn

)

In this section, we denote Etn,xitn [ϕ(Wtn+1)] to be the value of E[ϕ(ξ +Wtn+1 −Wtn)]|ξ=Wtn
at

the grid points xi, i.e. ξ = xi. Here ŷn+1 and ẑn+1 are corresponding interpolated values at

the point xi+∆Wtn (i ∈ Z) by using the grid values of yn+1
l and zn+1

l , l ∈ Z, respectively; for

any function φ, φ̂ is the interpolated value at the point xi + ∆Wtn (i ∈ Z) by using the grid

values of φ(xi) (i ∈ Z); Êtn,xitn [·] is an approximation to the conditional expectation Etn,xitn [·].

Many methods are used to approximate Etn,xitn [·]. For example, Êtn,xitn [·] can be approximations
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of the conditional expectation by using Monte Carlo method ( see [16, 34, 35] ) or the Gauss

quadrature.

In this paper, Êtn,xitn [·] is an approximation to Etn,xitn [·] using the Gauss-Hermite quadra-

ture. The main reason of doing that is the high-order accuracy of the Gauss-Hermite quadra-

ture when using the values of the integrand at a very few number of points. This will

significantly reduce the computation time needed to compute the conditional expectation,

especially when the integrand f is very expensive to calculate.

For a given one-dimensional function g(x), the Gauss-Hermite quadrature formula can

be written as ∫ ∞
−∞

e−x
2

g(x)dx ≈
K∑
i=1

wig(ai), (5.126)

where wi (i = 1, · · ·K) are weights defined by

wi =
2K+1K!

√
π

[H ′K(ai)]2
,

and ai (i = 1, · · ·K) are K roots of the Hermite polynomial of degree K defined by

HK(x) = (−1)Kex
2 dK

dxK
(e−x

2

).

The weights {wi}Ki=1 and the roots {ai}Ki=1 for different positive integers K can be easily

found. Let

R(g,K) =

∫ ∞
−∞

e−x
2

g(x)dx−
K∑
i=1

wig(ai).

Then R(g,K) is the truncation error of the Gauss-Hermite quadrature and

R(g,K) =
K!
√
π

2K(2K)!
g2K(ξ), (5.127)

for some real number ξ.
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Now let us define the approximate mathematical expectation Êtn,xitn [ŷn+1] on time interval

[tn, tn+1]. Since ∆Wtn ∼ N(0,∆tn), we know that

E[yn+1(ξ + ∆Wtn)]|ξ=Wtn
=

∫ ∞
−∞

yn+1(ξ + w)
1√

2π∆tn
e−

w2

2∆tn dw

From the definition of Etn,xitn [·], Etn,xitn [yn+1] is the value of E[yn+1(ξ + ∆Wtn)]|ξ=Wtn
when

ξ = xi. Then we define

Êtn,xitn [ŷn+1] =
1√
π

K∑
j=1

wj ŷ
n+1(xi +

√
2∆tnaj)

Similarly, we define Êtn,xitn [ŷn+1∆Wtn ] by

Êtn,xitn [ŷn+1∆Wtn ] =
1√
π

K∑
j=1

√
2∆tnaj · wj ŷn+1(xi +

√
2∆tnaj),

where ŷn+1(xi +
√

2∆tn+1aj) is the interpolated grid function yn+1
i at the spatial point xi +

√
2∆tn+1aj by using values of yn+1

i at a finite number of spatial grid points inRh near the spa-

tial point xi+
√

2∆tn+1aj. Approximate functions Êxitn [f̂(tn+1, ŷ
n+1, ẑn+1)], Êxitn [ĝ(tn+1, ŷ

n+1)],

Êxitn [ĝ′B(tn+1, ŷ
n+1)], Êxitn [ĝ′y(tn+1, ŷ

n+1)], Êtn,xitn [ĝ′y(tn+1, ŷ
n+1) · ĝ(tn+1, ŷ

n+1)],

and Êxitn [f̂(tn+1, ŷ
n+1, ẑn+1)∆Wtn ], Êxitn [ĝ(tn+1, ŷ

n+1)∆Wtn ], Êxitn [ĝ′B(tn+1, ŷ
n+1)∆Wtn ],

Êxitn [ĝ′y(tn+1, ŷ
n+1)∆Wtn ], Êtn,xitn [ĝ′y(tn+1, ŷ

n+1) · ĝ(tn+1, ŷ
n+1)∆Wtn ] are defined similarly.

Error estimates for the fully discrete scheme

We now present error estimates for the fully discrete scheme defined by (5.124) and

(5.125) where linear polynomial interpolation is used for computation of the approximate

conditional expectation. To proceed, we assume that the time partition is uniform, that is

∆tn = ∆t, for n = 0, 1, 2, · · ·NT − 1.
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Letting en,iy = ytn,xitn − yni and subtracting (5.124) from (5.61), we obtain

en,iy = Etn,xitn [ytn+1 ]− Êtn,xitn [ŷn+1] + ∆t · {Etn,xitn [f(tn+1, ytn+1 , ztn+1)]

−Êtn,xitn [f̂(tn+1, ŷ
n+1, ẑn+1)] +

1

2
Etn,xitn [g′B(tn+1, ytn+1)]− 1

2
Êtn,xitn [ĝ′B(tn+1, ŷ

n+1)]

−1

2
Etn,xitn [g′y(tn+1, ytn+1) · g(tn+1, ytn+1)] +

1

2
Êtn,xitn [ĝ′y(tn+1, ŷ

n+1) · ĝ(tn+1, ŷ
n+1)]}

+∆Btn · {E
tn,xi
tn [g(tn+1, ytn+1)]− Êtn,xitn [ĝ(tn+1, ŷ

n+1)] (5.128)

−1

2
Etn,xitn [g′B(tn+1, ytn+1)]∆Btn +

1

2
Êtn,xitn [ĝ′B(tn+1, ŷ

n+1)]∆Btn

+
1

2
Etn,xitn [g′y(tn+1, ytn+1) · g(tn+1, ytn+1)]∆Btn

−1

2
Êtn,xitn [ĝ′y(tn+1, ŷ

n+1) · ĝ(tn+1, ŷ
n+1)]∆Btn}+Rn,i

y ,

where Rn,i
y is the truncation error Rn

y at the grid point x = xi.

Similarly, letting en,iz = ztn,xitn − zni and subtracting (5.125) from (5.79), we obtain

∆ten,iz = Etn,xitn [ytn+1∆Wtn ]− Êtn,xitn [ŷn+1∆Wtn ] + ∆t · (Etn,xitn [f(tn+1, ytn+1 , ztn+1)∆Wtn ]

−Êtn,xitn [f̂(tn+1, ŷ
n+1, ẑn+1)∆Wtn ] +

1

2
Etn,xitn [g′B(tn+1, ytn+1)∆Wtn ]

−1

2
Êtn,xitn [ĝ′B(tn+1, ŷ

n+1)∆Wtn ]− 1

2
Etn,xitn [g′y(tn+1, ytn+1) · g(tn+1, ytn+1)∆Wtn ]

+
1

2
Êtn,xitn [ĝ′y(tn+1, ŷ

n+1) · ĝ(tn+1, ŷ
n+1)∆Wtn ])

+∆Btn · (E
tn,xi
tn [g(tn+1, ytn+1)∆Wtn ]− Êtn,xitn [ĝ(tn+1, ŷ

n+1)∆Wtn ] (5.129)

−1

2
Etn,xitn [g′B(tn+1, ytn+1)∆Wtn ]∆Btn +

1

2
Êtn,xitn [ĝ′B(tn+1, ŷ

n+1)∆Wtn ]∆Btn

+
1

2
Etn,xitn [g′y(tn+1, ytn+1) · g(tn+1, ytn+1)∆Wtn ]∆Btn

−1

2
Êtn,xitn [ĝ′y(tn+1, ŷ

n+1) · ĝ(tn+1, ŷ
n+1)∆Wtn ]∆Btn) +Rn,i

z ,

where Rn,i
z is the truncation error Rn

z at the grid point x = xi.

We have the following theorem for the fully discretized scheme.

117



Theorem 5.5 In addition to the conditions of Theorem 5.3 and Lemma 2, assume that y,

z, f , g, g′B, g′y ∈ C
(2K)
b , then:

max
0≤n≤NT−1

E[max
i

(en,iy )2] ≤ Cε

[
(∆t)−2 ·

(
K!

2K(2K)!

)2

+
h4

(∆t)2
+ (∆t)2

]
,

max
0≤n≤NT−1

E[max
i

(en,iz )2] ≤ Cε

[
(∆t)−3 ·

(
K!

2K(2K)!

)2

+
h4

(∆t)3
+ ∆t

]
,

where Cε is a constant determined by a pre-chosen constant ε > 0 and functions f and g.

Recall that for a given random variable ξ,

Êtn,xitn [ξ] =
1√
π

K∑
j=1

wjξ(xi +
√

2∆taj). (5.130)

To present the error estimates for the fully discrete scheme, we need the following Lemma

Lemma 8 We assume that u, v are two functions, u, v : R −→ R, and ξ is any random

variable. Then the following inequalities hold

(Êtn,xitn [û− v̂])2 ≤ max
i

(u(xi)− v(xi))
2,

Êtn,xitn [(û− v̂)2] ≤ max
i

(u(xi)− v(xi))
2,

(5.131)

(Êtn,xitn [ξ ·∆Wtn ])2 ≤ ∆t ·
[
Êtn,xitn [ξ2]− (Êtn,xitn [ξ])2

]
(5.132)

and

(Êtn,xitn [ξ ·∆Wtn ])2 ≤ ∆t · Êtn,xitn [ξ2]. (5.133)
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Proof : From the definition of Êtn,xitn [·] and the fact that
1√
π

K∑
j=1

wj = 1,

(Êtn,xitn [û− v̂])2 = (
1√
π

K∑
j=1

wj ·
[
û(xi +

√
2∆t aj)− v̂(xi +

√
2∆t aj)

]
)2

≤ (
1√
π

K∑
j=1

wj ·
∣∣∣û(xi +

√
2∆t aj)− v̂(xi +

√
2∆t aj)

∣∣∣)2

≤ (
1√
π

K∑
j=1

wj ·max
i
|u(xi)− v(xi)|)2

=
(

max
i
|u(xi)− v(xi)|

)2

= max
i

(u(xi)− v(xi))
2

and

Êtn,xitn [(û− v̂)2]) =
1√
π

K∑
j=1

wj

(
û(xi +

√
2∆t aj)− v̂(xi +

√
2∆t aj)

)2

≤ 1√
π

K∑
j=1

wj ·max
i

(u(xi)− v(xi))
2

= max
i

(u(xi)− v(xi))
2 .

as required in (5.131).

To prove (5.132), we set ξij = ξ(xi +
√

2∆t aj), it follows from the Cauchy Schwarz

inequality and the fact
1√
π

K∑
j=1

√
2∆t aj · wj = 0 that

(
Êtn,xitn [ξ ·∆Wtn ]

)2

= (
1√
π

K∑
j=1

√
2∆t aj · wjξij)2

= (
1√
π

K∑
j=1

√
2∆t aj · wj · [ ξij −

K∑
p=1

wp√
π
ξip ])2

≤ [
K∑
j=1

wj√
π
· (
√

2∆t aj)
2 ] · [

K∑
j=1

wj√
π
· (ξij −

K∑
p=1

wp√
π
ξip)

2 ]
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Since
∑K

j=1
2wj√
π
· (aj)2 = 1 and

∑K
j=1

wj√
π

= 1, we see that

[
K∑
j=1

wj√
π
· (
√

2∆t aj)
2 ] · [

K∑
j=1

wj√
π
· (ξij −

K∑
p=1

wp√
π
ξip)

2 ]

= ∆t · [
K∑
j=1

2wj√
π
· (aj)2 ] · [

K∑
j=1

wj√
π
· ( (ξij)

2 − 2 · ξij
K∑
p=1

wp√
π
ξip + (

K∑
p=1

wp√
π
ξip)

2 ) ]

= ∆t · [
K∑
j=1

wj√
π
· (ξij)2 − (

K∑
j=1

wj√
π
ξij)

2 ]

= ∆t · [ Êtn,xitn [ξ2]− (Êtn,xitn [ξ])2 ],

which proves the inequality (5.132).

The inequality (5.133) follows directly from (5.132). �

Similar to the proof of (5.131),

(
Êtn,xitn [(f̂(tn+1, ŷtn+1 , ẑtn+1)− f̂(tn+1, ŷ

n+1, ẑn+1))]
)2

= [
1√
π

K∑
j=1

wj ·
(
f̂(tn+1, ŷtn+1(xi +

√
2∆t aj), ẑtn+1(xi +

√
2∆t aj))

−f̂(tn+1, ŷ
n+1(xi +

√
2∆t aj), ẑ

n+1(xi +
√

2∆t aj))
)

]2

≤ [
1√
π

K∑
j=1

wj ·max
i

∣∣∣f(tn+1, y
tn+1,xi
tn+1

, z
tn+1,xi
tn+1

)− f(tn+1, y
n+1
i , zn+1

i )
∣∣∣ ]2

= max
i

(
f(tn+1, y

tn+1,xi
tn+1

, z
tn+1,xi
tn+1

)− f(tn+1, y
n+1
i , zn+1

i )
)2

≤ L · [max
i

(en+1,i
y )2 + max

i
(en+1,i
z )2].

Following the above procedure, we see that

(
Êtn,xitn [(ĝ(tn+1, ŷtn+1)− ĝ(tn+1, ŷ

n+1))]
)2

≤ Lmax
i

(en+1,i
y )2,(

Êtn,xitn [(ĝ′B(tn+1, ŷtn+1)− ĝ′B(tn+1, ŷ
n+1))]

)2

≤ Lmax
i

(en+1,i
y )2,(

Êtn,xitn [(ĝ′B(tn+1, ŷtn+1)ĝ(tn+1, ŷtn+1)− ĝ′B(tn+1, ŷ
n+1)ĝ(tn+1, ŷ

n+1))]
)2

≤ Lmax
i

(en+1,i
y )2.

(5.134)
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Proof of Theorem 5.5: Notice that for any random variable ϕtn+1 and ϕn+1,

Etn,xitn [ϕtn+1 ]− Êtn,xitn [ϕ̂n+1]

= Etn,xitn [ϕtn+1 ]− Êtn,xitn [ϕtn+1 ] + Êtn,xitn [ϕtn+1 − ϕ̂tn+1 ] + Êtn,xitn [ϕ̂tn+1 − ϕ̂n+1].

(5.135)

From the equation (5.128), we have that

en,iy = Êtn,xitn [ŷtn+1 − ŷn+1] + ∆t · {Êtn,xitn [f̂(tn+1, ŷtn+1 , ẑtn+1)− f̂(tn+1, ŷ
n+1, ẑn+1)]

+
1

2
Êtn,xitn [ĝ′B(tn+1, ŷtn+1)− ĝ′B(tn+1, ŷ

n+1)]− 1

2
Êtn,xitn [ĝ′y(tn+1, ŷtn+1) · ĝ(tn+1, ŷtn+1)

−ĝ′y(tn+1, ŷ
n+1) · ĝ(tn+1, ŷ

n+1)]}+ ∆Btn · {Ê
tn,xi
tn [ĝ(tn+1, ŷtn+1)− ĝ(tn+1, ŷ

n+1)]

−1

2
Êtn,xitn [ĝ′B(tn+1, ŷtn+1)− ĝ′B(tn+1, ŷ

n+1)]∆Btn (5.136)

+
1

2
Êtn,xitn [ĝ′y(tn+1, ŷtn+1) · ĝ(tn+1, ŷtn+1)− ĝ′y(tn+1, ŷ

n+1) · ĝ(tn+1, ŷ
n+1)]∆Btn}

+Iy1 + Iy2 +Rn,i
y ,

where

Iy1 = Etn,xitn [ytn+1 ]− Êtn,xitn [ytn+1 ] + ∆t · {Etn,xitn [f(tn+1, ytn+1 , ztn+1)]

−Êtn,xitn [f(tn+1, ytn+1 , ztn+1)] +
1

2
Etn,xitn [g′B(tn+1, ytn+1)]− 1

2
Êtn,xitn [g′B(tn+1, ytn+1)]

−1

2
Etn,xitn [g′y(tn+1, ytn+1) · g(tn+1, ytn+1)] +

1

2
Êtn,xitn [g′y(tn+1, ytn+1) · g(tn+1, ytn+1)]}

+∆Btn · {E
tn,xi
tn [g(tn+1, ytn+1)]− Êtn,xitn [g(tn+1, ytn+1)]

−1

2
Etn,xitn [g′B(tn+1, ytn+1)]∆Btn +

1

2
Êtn,xitn [g′B(tn+1, ytn+1)]∆Btn

+
1

2
Etn,xitn [g′y(tn+1, ytn+1) · g(tn+1, ytn+1)]∆Btn

−1

2
Êtn,xitn [g′y(tn+1, ytn+1) · g(tn+1, ytn+1)]∆Btn},

and

Iy2 = Êtn,xitn [ytn+1 − ŷtn+1 ] + ∆t · {Êtn,xitn [f(tn+1, ytn+1 , ztn+1)− f̂(tn+1, ŷtn+1 , ẑtn+1)]

121



+
1

2
Êtn,xitn [g′B(tn+1, ytn+1)− ĝ′B(tn+1, ŷtn+1)]− 1

2
Êtn,xitn [g′y(tn+1, ytn+1) · g(tn+1, ytn+1)

−ĝ′y(tn+1, ŷtn+1) · ĝ(tn+1, ŷtn+1)]}+ ∆Btn · {Ê
tn,xi
tn [g(tn+1, ytn+1)− ĝ(tn+1, ŷtn+1)]

−1

2
Êtn,xitn [g′B(tn+1, ytn+1)− ĝ′B(tn+1, ŷtn+1)]∆Btn

+
1

2
Êtn,xitn [g′y(tn+1, ytn+1) · g(tn+1, ytn+1)− ĝ′y(tn+1, ŷtn+1) · ĝ(tn+1, ŷtn+1)]∆Btn},

Similarly, the equation (5.129) becomes

∆ten,iz = Êtn,xitn [(ŷtn+1 − ŷn+1) ·∆Wtn+1 ]

+∆t · {Êtn,xitn [(f̂(tn+1, ŷtn+1 , ẑtn+1)− f̂(tn+1, ŷ
n+1, ẑn+1)) ·∆Wtn+1 ]

+
1

2
Êtn,xitn [(ĝ′B(tn+1, ŷtn+1)− ĝ′B(tn+1, ŷ

n+1)) ·∆Wtn+1 ]

−1

2
Êtn,xitn [(ĝ′y(tn+1, ŷtn+1) · ĝ(tn+1, ŷtn+1)− ĝ′y(tn+1, ŷ

n+1) · ĝ(tn+1, ŷ
n+1)) ·∆Wtn+1 ]}

+∆Btn · {Ê
tn,xi
tn [(ĝ(tn+1, ŷtn+1)− ĝ(tn+1, ŷ

n+1)) ·∆Wtn+1 ]

−1

2
Êtn,xitn [(ĝ′B(tn+1, ŷtn+1)− ĝ′B(tn+1, ŷ

n+1)) ·∆Wtn+1 ]∆Btn (5.137)

+
1

2
Êtn,xitn [(ĝ′y(tn+1, ŷtn+1) · ĝ(tn+1, ŷtn+1)

−ĝ′y(tn+1, ŷ
n+1) · ĝ(tn+1, ŷ

n+1)) ·∆Wtn+1 ]∆Btn}+ Iz1 + Iz2 +Rn,i
z ,

where

Iz1 = Etn,xitn [ytn+1∆Wtn+1 ]− Êtn,xitn [ytn+1∆Wtn+1 ] + ∆t · {Etn,xitn [f(tn+1, ytn+1 , ztn+1)∆Wtn+1 ]

−Êtn,xitn [f(tn+1, ytn+1 , ztn+1)∆Wtn+1 ]

+
1

2
Etn,xitn [g′B(tn+1, ytn+1)∆Wtn+1 ]− 1

2
Êtn,xitn [g′B(tn+1, ytn+1)∆Wtn+1 ]

−1

2
Etn,xitn [g′y(tn+1, ytn+1) · g(tn+1, ytn+1)∆Wtn+1 ]

+
1

2
Êtn,xitn [g′y(tn+1, ytn+1) · g(tn+1, ytn+1)∆Wtn+1 ]}

+∆Btn · {E
tn,xi
tn [g(tn+1, ytn+1)∆Wtn+1 ]− Êtn,xitn [g(tn+1, ytn+1)∆Wtn+1 ]

−1

2
Etn,xitn [g′B(tn+1, ytn+1)∆Wtn+1 ]∆Btn +

1

2
Êtn,xitn [g′B(tn+1, ytn+1)∆Wtn+1 ]∆Btn
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+
1

2
Etn,xitn [g′y(tn+1, ytn+1) · g(tn+1, ytn+1)∆Wtn+1 ]∆Btn

−1

2
Êtn,xitn [g′y(tn+1, ytn+1) · g(tn+1, ytn+1)∆Wtn+1 ]∆Btn},

Iz2 = Êtn,xitn [(ytn+1 − ŷtn+1) ·∆Wtn+1 ]

+∆t · {Êtn,xitn [(f(tn+1, ytn+1 , ztn+1)− f̂(tn+1, ŷtn+1 , ẑtn+1)) ·∆Wtn+1 ]

+
1

2
Êtn,xitn [(g′B(tn+1, ytn+1)− ĝ′B(tn+1, ŷtn+1)) ·∆Wtn+1 ]

−1

2
Êtn,xitn [(g′y(tn+1, ytn+1) · g(tn+1, ytn+1)− ĝ′y(tn+1, ŷtn+1) · ĝ(tn+1, ŷtn+1)) ·∆Wtn+1 ]}

+∆Btn · {Ê
tn,xi
tn [(g(tn+1, ytn+1)− ĝ(tn+1, ŷtn+1)) ·∆Wtn+1 ]

−1

2
Êtn,xitn [(g′B(tn+1, ytn+1)− ĝ′B(tn+1, ŷtn+1)) ·∆Wtn+1 ]∆Btn

+
1

2
Êtn,xitn [(g′y(tn+1, ytn+1) · g(tn+1, ytn+1)− ĝ′y(tn+1, ŷtn+1) · ĝ(tn+1, ŷtn+1)) ·∆Wtn+1 ]∆Btn},

For any function ϕ,

|Etn,xitn [ϕ]− Êtn,xitn [ϕ]| ≤ Dϕ
K!

2K(2K)!
,

where Dϕ is the upper bound for |ϕ(2K)
x | .

Since y, z, f , g, g′B, g′y ∈ C
(2K)
b , we have

E[(Iy1 ])2 ≤ C

(
K!

2K(2K)!

)2

and

E[max
i

(en,iy )2] +
∆t

1 + ε
E[max

i
(en,iz )2]

≤ (1 + Cε∆t) · (E[max
i

(en+1,i
y )2] +

∆t

1 + ε
· E[max

i
(en+1,i
z )2])

+3E[(Iy1 + Iy2 + max
i
Rn,i
y )2] +

(E[Iy1 + Iy2 + maxiR
W,n,i
y ])2

∆t

+Cε(∆t)
−1 · E[(Iz1 + Iz2 + max

i
Rn,i
z )2].

123



Therefore,

E[max
i

(en,iy )2] +
∆t

1 + ε
E[max

i
(en,iz )2]

≤ (1 + Cε∆t) · (E[max
i

(en+1,i
y )2] +

∆t

1 + ε
· E[max

i
(en+1,i
z )2])

+3C

[(
K!

2K(2K)!

)2

+ h4 + (∆t)3

]
+ C(∆t)−1 ·

[(
K!

2K(2K)!

)2

+ h4 + (∆t)4

]

+Cε(∆t)
−1 · C

[(
K!

2K(2K)!

)2

+ h4 + (∆t)4

]
= (1 + Cε∆t) · (E[max

i
(en+1,i
y )2] +

∆t

1 + ε
· E[max

i
(en+1,i
z )2])

+Cε(∆t)
−1 · C

[(
K!

2K(2K)!

)2

+ h4 + (∆t)4

]
.

(5.138)

By applying discrete Grownwall’s inequality, we obtain

E[max
i

(en,iy )2] +
∆t

1 + ε
E[max

i
(en,iz )2] ≤

NT∑
j=n

Cε(∆t)
−1 · C

[(
K!

2K(2K)!

)2

+ h4 + (∆t)4

]
.

Thus,

max
0≤n≤NT−1

E[max
i

(en,iy )2] ≤ Cε

[
(∆t)−2 ·

(
K!

2K(2K)!

)2

+
h4

(∆t)2
+ (∆t)2

]
and

max
0≤n≤NT−1

E[max
i

(en,iz )2] ≤ Cε

[
(∆t)−3 ·

(
K!

2K(2K)!

)2

+
h4

(∆t)3
+ ∆t

]
,

as required.

Remark 3 Notice that the error terms (∆t)−2 ·
(

K!

2K(2K)!

)2

and (∆t)−3 ·
(

K!

2K(2K)!

)2

decrease very rapidly as the parameter K becomes large.

5.3.6 Numerical experiment

We now demonstrate the effectiveness and accuracy of our method for solving the BDS-

DE (5.49). We will compare our first order scheme with the half order scheme ( see [6] ) in
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Table 5.3: Example 1 of Section 6.3

NT Error 1
2
(Y ) Error 1

2
(Z) Error1(Y ) Error1(Z)

24 0.2899 0.4197 0.1036 0.1486
25 0.2162 0.3193 5.35E − 02 7.74E − 02
26 0.13478 0.1942 2.52E − 02 3.74E − 02
27 8.76E − 02 0.1292 1.21E − 02 1.81E − 02
CR 0.5864 0.5817 1.0380 1.0162

example1. In example 2, we show an application of BDSDE in solving a nonlinear filtering

problem.

Example 1. Consider the BDSDE

Y t,x
t = exp(T +W t,x

T ) +

∫ T

t

(
sin(s) · Y t,x

s − Zt,x
s − sin(s) · exp(s+W t,x

s +Bs −BT )
)
ds

−
∫ T

t

Zt,x
s dWs −

∫ T

t

Y t,x
s d
←−
B s.

The exact solution is Y t,x
s = exp(s+W t,x

s +Bs −BT ), Zt,x
s = exp(s+W t,x

s +Bs −BT ).

Numerical results are shown in Table 5.3. Here, the integer NT is the number of temporal

partitions, CR is the convergence rate, Error1(Y ) and Error1(Z) represent, respectively, the

errors in the approximation of Y t,x
t and Zt,x

t of the first order scheme. Also, Error 1
2
(Y ) and

Error 1
2
(Z) are respectively, the errors in approximation of Y t,x

t and Zt,x
t of the half order

scheme. The results verify the theoretical error estimates we obtained in Section 4.

Example 2. We present a practical example which illustrates the application of our

numerical method to solve a nonlinear filtering problem. This example is a classical “bearing-

only tracking” problem (see [8]).

The simulation scenario is shown in Figure 5.3. Consider a target moving along the

x-axis, according to a state equation

dXt = −(4 + 2 sinXt)dt+ dW̃t, X0 = 40.
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Figure 5.3: Target tracking by using one detector
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Here, W̃t and B̃t are two independent standard Brownian Motions. The goal is to find

Figure 5.4: Tracking Estimate
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the best estimate of the target position Xt based on the observations up to time t, i.e. for

E[Xt|F(Ot
0)], where F(Ot

0) denotes the σ-algebra generated by the observation {Os}0≤s≤t.

The initial guess of the position of the target is X0 = 44. One has the conditional density
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Figure 5.5: Probability Distribution
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(b) 60 steps
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(c) 90 steps
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p

p(Xt|F(Ot
0)) = Y T−t,Xt

T−t , where Y T−t,x
s satisfies the following BDSDE( see [61, ?])

Y T−t,x
s = Y T−t,x

T +

∫ T

s

[
2 cos(W T−t,x

r ) · Y T−t,x
r + (4 + 2 sin(W T−t,x

r )) · ZT−t,x
r

]
dr

−
∫ T

s

ZT−t,x
r dWr +

∫ T

s

tan−1(
20

W T−t,x
r

) · Y T−t,x
r d

←−
O T−r,

where T − t ≤ s ≤ T , and x ∈ R. The initial condition Y T−t,x
T of the above equation is

the normal distribution N(44, 1). The stochastic process Wt is a standard Brownian motion

independent of the observation process Ot. Define the equivalent probability measure Q by

dQ

dP
|Gt = exp

(∫ t

0

tan−1(
20

Xt

)dOs −
1

2

∫ t

0

| tan−1(
20

Xt

)|2ds
)
, t ∈ R+,

where Gt is the σ-algebra generated by {Xs}0≤s≤t and {Os}0≤s≤t, t ∈ R+. One has under

probability measure Q, that Wt and Ot are two independent standard Brownian Motions(see

[?]).

In our simulation example, we assume that the observations are collected at intervals of

length ∆t = 0.125s and we track this target for 12s. Figure 5.4 illustrates the comparison of

simulation results and the real target state. Figure 5.5 shows distributions of the simulated

conditional probability p(Xt|F(Ot
0)). We present the simulation results to three time levels:
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t = 3.75s(30 · ∆t), 7.5s(60 · ∆t), 11.25s(90 · ∆t). The red lines represent the real target

positions and the blue curves show the simulated distribution.
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Chapter 6

Concluding Remarks

The major contribution of this work is the development of three novel numerical ap-

proximation methods for the solution of nonlinear filtering problems: (i) an implicit filter

method; (ii) a hybrid sparse grid Zakai filter method; (iii) the FBDSDE filter method.

Our first effort in this work is the development of an implicit filter algorithm for nonlinear

filtering problems. This method is under the general framework of the Bayesian filter. The

essential idea is to evaluate the probability distribution of the current state in the prediction

step by evaluating the previous state through the state equation, given the value of the

current state and a sample of the noise. Through rigorous analysis we proved the convergence

of the algorithm. Numerical experiments indicate that our method is more accurate than

the standard Kalman filter and is more stable than the standard particle filter method for

long term simulations. It needs to point out that our method is a grid method in which

the probability distributions are evaluated at all grid points. As such, the computing cost

will increase exponentially as the dimension increases. Thus our method at current form is

suitable for only low dimension problems such as target tracking problems.. In the future,

we plan to improve the algorithm by adding an adaptive mechanism and a new interpolation

method called the “radial basis approximations” to it so that it will be more efficient in

solving higher dimensional problems.

The second effort in this work focuses on the Zakai filter. We proposed the construction

of a hybrid numerical algorithm to improve the efficiency of the Zakai filter for moderately

high dimensional nonlinear filtering problems. Our algorithm combines the advantages of the

splitting-up approximation scheme for the Zakai filter, a hierarchical sparse grid method for

moderately high dimensional problems to compute the numerical solution of the Zakai filter,
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and an importance sampling method to adaptively construct a bounded domain at each time

step of the temporal discretization. The hierarchical sparse grid method reduces the number

of grid points we need to solve in the splitting-up approximation scheme for the Zakai filter.

The application of the solution domain adaptive method allows us to solve the Zakai filter

in the high density region of the target state pdf which reduces the size of domains that we

build the sparse grid points. We used one numerical experiment to show the effectiveness

of our solution domain adaptive method and two other examples to demonstrate that our

algorithm is more efficient than the standard Zakai filter while maintaining its high accuracy.

In addition, we proposed two numerical schemes for computing backward doubly s-

tochastic differential equations (BDSDEs). Becasue of the equivalent relation between BDS-

DEs and SPDEs, our schemes can also be used to find numerical solutions of the Zakai

equation. Thus our algorithms also provide numerical methods for solving nonlinear filter-

ing problems. It is worthy to mention that when solving the BDSDEs, we only need to solve

stochastic ordinary differential equations instead of solving SPDEs in the Zakai filter. In this

connection, high order numerical approximation methods for stochastic ordinary differential

equations can be applied to develop high order numerical schemes for BDSDEs. The first

numerical scheme we proposed in this work provides a half order numerical approximation

method for BDSDEs which is derived by using the Euler scheme to discretize the stochastic

integrals. The second numerical scheme gives a first order numerical approximation method.

The main idea of the first order scheme is to use the two-sided Itô-Taylor expansion for

forward and backward stochastic differentials to construct high order quadratures for the

stochastic integrals involving both backward and forward Brownian motions. Through rig-

orous analysis, we proved the convergence rates for both the half order scheme and the first

order scheme. Although we only introduced a first order numerical scheme in this work,

higher order schemes can also be developed using higher order Itô Taylor expansions.
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[60] É. Pardoux and P. Protter. A two-sided stochastic integral and its calculus. Probab.
Theory Related Fields, 76(1):15–49, 1987.

[61] Étienne Pardoux and Shi Ge Peng. Backward doubly stochastic differential equations
and systems of quasilinear SPDEs. Probab. Theory Related Fields, 98(2):209–227, 1994.

[62] Nigel George Peach. Bearings-only tracking using a set of range parameterised extended
Kalman filters. ProQuest LLC, Ann Arbor, MI, 1997. Thesis (Ph.D.)–University of
Bath (United Kingdom).

[63] A. Peirce and F. Rochinha. An integrated extended Kalman filter-implicit level set
algorithm for monitoring planar hydraulic fractures. Inverse Problems, 28(1):015009,
22, 2012.
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