
ODinn: An In-Vivo Hypervisor-based Intrusion Detection System for the Cloud

by

Christopher B. Harrison

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
August 2, 2014

Keywords: virtualization, cloud computing, security, virtual machine introspection, forensic
memory analysis, data mining, malware analysis

Copyright 2014 by Christopher B. Harrison

Approved by

John A. Hamilton, Jr., Chair, Professor of Computer Science and Software Engineering
David Umphress, Associate Professor of Computer Science and Software Engineering

Jeffrey L. Overbey, Assistant Professor of Computer Science and Software Engineering
Dean Hendrix, Associate Professor of Computer Science and Software Engineering

Abstract

Cloud computing has emerged as the de facto service model for modern enterprises;

however, security concerns remain a major impediment to full-scale adoption. Concurrent

to this paradigm shift looms another concern that dominates the landscape of the security

industry - malware proliferation. Leveraging the isolation property of virtualization, Virtual

Machine Introspection (VMI) has yielded promising research for cloud security yet adoption

of these approaches in production environments remains minimal due to a semantic gap:

the extraction of high-level knowledge of the guest operating system’s state from low-level

artifacts collected out-of-VM. Within the field of Forensic Memory Analysis (FMA), a similar

semantic gap existed (low level artifacts found in the reconstruction of physical memory

dumps) and was rectified via a number of tools, notably Volatility. Other properties of

virtualization have largely been unexplored for the use of Cloud-based Intrusion Detection

Systems (IDSs) for use in malware mitigation techniques and post-infection analysis. By

merging the these properties of virtualization with the semantic gap solution in FMA, we

construct a prototype IDS, ODinn, at the hypervisor level for detecting, mitigating, and

analyzing malicious activity. Using ODinn, we successfully detect malware in real-time and

the accuracy increases when malware attempts to obfuscate itself using standard obfuscation

methods. Once detected, ODinn undoes the effects of the infection for the end user with only

a few seconds of downtime and minimizing data loss to five minutes or less. Finally, we

use our analysis suite in a novel manner to reduce the search space by at least 95% for the

modules, drivers and processes altered or inserted during the malware.

ii

Acknowledgments

I would like to thank my wife, Jaime, for supporting me throughout my long academic

journey. I would like to thank my adviser Dr. John Hamilton, as well as Dr. Robert McGraw

and Dr. Richard MacDonald at Ram Laboratories for providing me with the initial topic,

funding and support that planted the seed from which grew this proposal. I would like to

think Devin Cook for his instrumental help when we first explored this topic together in 2011

and finally, C.W. Perr and Chase Rushing for proofreading and providing moral support.

iii

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vii

List of Tables . ix

1 Introduction . 1

1.1 Research Contribution . 2

1.2 Comparative Analysis of Cloud-based Intrusion Detection Systems 3

1.2.1 Cloud-based IDS with VMI . 3

1.2.2 Cloud-based IDSwithout VMI . 5

1.3 Layout . 6

2 State of Cloud Security . 7

2.1 Malware . 7

2.2 Traditional Intrusion Detection Systems . 8

2.3 VMM Weaknesses . 10

2.3.1 Transparency . 10

2.3.2 VM Escapes . 11

2.3.3 Side Channels . 11

2.3.4 Information Leaks . 12

2.3.5 Image Standardization . 12

2.4 Cloud Forensic . 13

2.4.1 Memory Volatility . 13

2.4.2 Live Analysis . 14

2.4.3 Validating Artifacts . 14

iv

3 Survey of Literature . 16

3.1 Virtual Machine Introspection . 16

3.1.1 Semantic Gap . 16

3.1.2 Analysis . 18

3.1.3 Monitoring . 18

3.1.4 Summary . 19

3.2 Cloud-based IDS Heuristics . 20

3.2.1 Anomaly Detection . 20

3.2.2 Artificial Neural Network . 20

3.2.3 Association Rule . 21

3.2.4 Fuzzy Logic . 21

3.2.5 Genetic Algorithm . 21

3.2.6 Misuse Detection . 22

3.2.7 Support Vector Machine . 22

4 ODinn . 23

4.1 Yggdrasil . 23

4.2 HliDskjalf - VMI Library . 25

4.2.1 Bridging the Semantic Gap . 26

4.2.2 Integrating with Volatility’s Address Space 27

4.3 Einherjar - Guest Monitors . 29

4.3.1 Initialize . 29

4.3.2 Bifrost . 31

4.3.3 Geri - Doubly-linked List Crawlers 31

4.3.4 Freki - Pool Tag Scanning Monitor 32

4.4 Mimisbrunnr - Database . 33

4.5 Loki - Malware Dataset Generator . 35

4.6 Munnin - Rule Generation and Detection . 36

v

4.6.1 Binary Classification . 37

4.6.2 Feature Selection . 41

4.6.3 Model Evaluation . 44

4.6.4 Rule Generation . 47

4.7 BalDr - Protection and Mitigation . 48

4.7.1 Live Snapshots . 49

4.8 Huginn - Malware Analysis Suite . 52

4.8.1 Verification of DLL and Drivers . 53

4.8.2 Stripped PE Header reconstruction 54

4.8.3 Rule Augmentation . 56

4.9 Urdarbrunnr - ODinn’s Benchmarks . 59

5 Future Work . 63

5.1 Yggdrasil . 63

5.2 HliDskjalf and Einherjar . 64

5.3 Mimisbrunnr . 64

5.4 Muninn . 65

5.5 BalDr . 65

5.6 Huginn . 66

6 Conclusion . 67

Appendices . 91

A Key Concepts . 92

A.1 Virtualization . 92

A.1.1 Overview . 92

A.1.2 Properties of VMMs . 93

A.1.3 Inspection . 94

A.2 Cloud Computing . 95

A.3 Binary Classification Results . 96

vi

List of Figures

2.1 New Malware (last 10 years) [1]. 7

2.2 Attack Sophistication vs Technical Knowledge over Time [2]. 8

4.1 Libvirt’s driver architecture . 23

4.2 Libvirt’s use model . 24

4.3 x86 Virtual to Physical Memory [3] . 26

4.4 FUSE architecture in simple stat (filesystem call) [4]. 28

4.5 Software stack for Volatility address space plugin [5]. 29

4.6 Process hiding using the DKOM technique [6]. 32

4.7 How modified volatility scans results enter into Mimisbrunnr. 34

4.8 Three phases of QEMU live block copy (Bulk, Dirty, Mirror) [7]. 51

4.9 Merging Snapshots. [7]. 51

4.10 Hashes from moddump . 53

4.11 PE Structure [8]. 55

4.12 Example of stripped PE Header . 56

4.13 Reconstructed IDC file . 56

vii

4.14 Hooking the Import Address Table [6]. 57

4.15 Memory Usage for 1 Guest Machine . 59

4.16 Memory Usage for 1 Guest Machine with ODinn 60

4.17 Memory Usage for 10 Guest Machines with ODinn 60

4.18 CPU Usage for 1 Guest Machine . 61

4.19 CPU Usage for 1 Guest Machine with ODinn . 62

4.20 CPU Usage for 10 Guest Machines with ODinn 62

A.1 Physical Machines and their Virtualized Counterpart [9]. 92

A.2 Operating System Kernel Protection Rings [3]. 93

viii

List of Tables

1.1 Taxonomy of Cloud-based IDSs with VMI . 4

1.2 Taxonomy of Cloud-based IDSs without VMI 5

3.1 Taxonomy of VMI-IDSs . 19

3.2 Taxonomy of IDS Heuristics . 22

4.1 libvirt hypervisor support . 24

4.2 Performance increase of Initialize on System Service Dispatch Table (ssdt) and
Global Descriptor Table (gdt) modules. 30

4.3 Volatility modules used by Geri [10]. 31

4.4 Volatility modules used by Freki [10]. 33

4.5 Confusion Matrix for Binary Classification . 38

4.6 Overall Rankings for Classifiers with Process Scan 44

4.7 Overall Rankings for Classifiers with Module Scan 45

4.8 Overall Rankings for Classifiers with File Scan 45

4.9 Stepwise Selection for each scan’s features . 46

4.10 Information Gain (> 0) for each scan’s features 46

4.11 Number of total DLL files and module files compared to the number modified . 54

4.12 List of volatility plugins utilized by Huginn [10]. 58

A.1 Results for Bayes . 96

A.2 Results for Logistics Regression . 97

A.3 Results for ANN . 97

A.4 Results for Association Rules . 98

ix

A.5 Results for kNN . 98

A.6 Results for C4.5 . 99

A.7 Results for SVM . 99

A.8 Results for Random Forest . 100

A.9 Results for Stacking . 100

A.10 Results for Bayes . 101

A.11 Results for Logistic Regression . 102

A.12 Results for ANN . 102

A.13 Results for Association Rules . 103

A.14 Results for kNN . 103

A.15 Results for C4.5 . 104

A.16 Results for Random Forest . 104

A.17 Results for Stacking . 105

A.18 Results for Bayes . 106

A.19 Results for Logistic Regression . 107

A.20 Results for ANN . 107

A.21 Results for Association Ruleset . 108

A.22 Results for kNN . 108

A.23 Results for C4.5 . 109

A.24 Results for SVM . 109

A.25 Results for Random Forest . 110

A.26 Results for Stacking . 110

x

Chapter 1

Introduction

A major concern dominates the landscape of the security industry - malware prolifer-

ation. Host-based Intrusion Detection Systems (HIDSs), which monitor a single computer

system against malicious activity were developed to deal with this outgrowth; however,

attackers quickly found ways to circumvent the HIDS after a successful intrusion. Con-

sequently, the following tradeoff quickly emerged: IDS residence on the host provided high

visibility and low resiliency yet IDS residence separate from the host provided high resiliency

and poor visibility.

Additionally, cloud computing (see A.2) has recently emerged as the de facto service

model for modern enterprises which vastly changes the underlying security requirements and

threat models due to its underlying mechanism, virtualization (see A.1). An unintentional

consequence imposed by cloud usage is a deterioration of Forensic Memory Analysis (FMA)

capabilities which has created the need for a new generation of incident response and forensics

analysis tools able to operate effectively in virtual environments. Current methodologies for

post-incident analysis require shutting down the impacted physical machine for immediate

data gathering. Moreover, the utilization of physical resources by a myriad of users impedes

the attribution of malicious activity and raises the probability of losing relevant forensic

data. Recent research addressing the technical challenges facing forensic investigators in the

cloud concluded that accurately reconstructing the environment for forensic analysis was not

feasible.

In researching these problems, isolation, an intrinsic property of virtualization, has

been leveraged to provide a highly visible monitoring tool for guest VMs, a technique called

Virtual Machine Introspection (VMI) that does not reside on the virtual host machine. VMI;

1

however, is not a panacea and has a major limitation imposed by the semantic gap. The

semantic gap is the difference between the low-level artifacts available to the Virtual Machine

Monitor or Hypervisor (VMM) (e.g. RAM, registers) and the high-level semantics specific to

the OS (e.g. processes, open files, kernel modules). Bridging this gap often results in either

a lack of visibility or a lack of flexibility. By utilizing the explicit semantic knowledge of an

existing FMA tool, Volatility, and repurposing its use for VMI sensors, a bridge was created

to overcome the difficulties posed by the semantic gap to resolve the general challenges facing

security in the cloud via a non-quiescent VMI-Intrusion Detection System (IDS). ODinn is

an implementation of a VMI-IDS that exploits these properties to demonstrate efficacy in

the current cloud/malware environment. ODinn detects malware intrusions using standard

techniques by the FMA community and a novel technique that deduce instances of orphaned

artifacts (e.g. processes, modules, system drivers, object handles, etc. that have been pruned

from the Operating System’s internal structure lists). Another virtualization property, the

ability to store the entire state of the guest machine, called a snapshot, is utilized by ODinn

to ensure that when a malicious intrusion is detected, the user of the now infected guest

machine is restored to the most recent uninfected state with only a few seconds of downtime

and five or fewer minutes of lost productivity. Finally, by differencing a guest machine’s clean

state with an infected state, we reduce search space of altered or inserted Operating System

(OS) internal structures by 95% or more, quickly allowing a malware analyst to elucidate

the malware’s functionality with rapidity.

1.1 Research Contribution

This dissertation shows that several properties of virtualization exist that can be used

by IDSs to provide unique security benefits to mitigate and overcome many of the challenges

imposed by the widespread adoption of cloud computing. It’s contribution are:

• Demonstrates the qualitative and quantitative benefits of an integrated explicit semantic

bridge when using virtual machine introspection.

2

• Demonstrates novel mitigation capabilities with minimal user impact.

• Demonstrates novel malware analysis techniques.

• Demonstrates the accuracy of FMA sensors, including a unique manner of detecting modern

malware obfuscation strategies.

• Measures and defines the limits of scalability.

• Creates an accurate, portable, and scalable Cloud-based IDS

1.2 Comparative Analysis of Cloud-based Intrusion Detection Systems

1.2.1 Cloud-based IDS with VMI

Saberi [11] introduces a novel performance improvement of the semantic bridge via the

use of training memoization to avoid the recomputation of redirectable instruction identifi-

cation. In doing so, they decouple their slow dynamic taint tracking engine except when the

cached meta-data from the training memoization is not present. However, this approach still

relies on host sensors (e.g. getpid, proc, ps, etc.) and will fail to detect malware which hides

itself from these sensors. Additionally, it provides no mitigation or analysis component and

also requires the Guest and Hypervisor Operating System to be the same.

Wu [12] is designed for datacenters and operates on an entirely different introspection

concept, using a stealthy hook rather than out-of-VM introspection. As previously noted,

this design is troublesome since the hook could be tampered. All of its sensors are focused

at the file handle level and when a file handle is opened, the data to be written is first placed

into a buffer and its signature is checked against known malware before it is actually written

to the guest. This allows Wu to serve as an Intrusion Prevention System but its incredibly

limited in scope since its dependent on malware that infects files whereas ODinn has a myriad

of sensors by which to detect and mitigate an infection.

Crawford [13] focuses on insider threats and notably foregoes frequent monitoring for full

memory capture every 30 minutes. To detect insider threats, it primarily relies on deciphering

3

changes to specific registry objects, clipboard information and specific hexadecimal patterns

in memory that correlate to previously observed insider threat use cases. The approach had

high false positive rates and all observable data is lost if the user logs out.

The approach of Fu [14] is regards to its mitigation response. Unlike ODinn, where

the response is to switch to a period pre-attack, Fu attempts self-healing actions such as

removing a rootkit or deleting a hidden malicious kernel module. While novel, this is an

unsafe solution as one, it assumes that it has fully captured the extent of the malware’s

actions and two, by not immediately stopping the guest, it increases the chance for successful

data exfiltration. One advantage Fu has is its support for vSphere and HyperV, two platforms

where ODinn lacks support. However, it has a number of drawbacks. First, it is not as guest

OS-agnostic as ODinn, primarily supporting Linux virtual machines. Two, it lacks many

memory analysis sensors available in ODinn, snapshot reversion, and post-infection malware

analysis capabilities.

Perhaps the closest in terms of ODinn’s VMI implementation is VMI-Honeymon [15] in

that both use libVMI and Volatility. However, the similarities largely end there as instead

of being an IDS, it serves as a high interaction honeypot for basic malware analysis. VMI-

Honeymon performs no comparison between doubly-linked list and pool tag scans, no high

level analysis (e.g. reconstruction of PE headers), and several of their sensors only work

on Windows XP - Vista. Additionally, their implementation is entirely unoptimized, which,

while suitable for their purposes is entirely inadequate for a scalable cloud IDS solution.

Other VMI-IDS solutions [16, 17] are discussed later in Section 3.1 so their relation to ODinn

is only summarized in Table 1.1.

Citation Year Scope Bridge Mitigation Analysis Portability Weaknesses
Saberi [11] 2014 Memory Implicit None None QEMU, Guest/VMI must be same OS Trusts in-VM sensors
Wu [12] 2013 Files Explicit None None Supports QEMU and Xen Trusts in-VM sensor
Roberts [18] 2013 Malware Implicit None None QEMU, Windows Guest only Not designed for scale
Crawford [13] 2013 Insider Explicit None None Xen VMI, Windows Guests only Substantial number of False Positives
Fu [14] 2013 Rootkits Hybrid Rootkits None Linux Guests only Removes only most common persistence technique
Jin [19] 2013 Network Explicit None None Xen VMI; Linux Guest only Captures only a few features
Dolan-Gavitt [17] 2011 Malware Implicit None None QEMU VMI; Guest Agnostic 140x Overhead
Azmandian [20] 2011 Malware None None None Virtual Box VMI; Guest Agnostic False Positive rates as high as 14%

Table 1.1: Taxonomy of Cloud-based IDSs with VMI

4

1.2.2 Cloud-based IDSwithout VMI

The methodology employed in Roschke [21] utilizes existing non-VMI based sensors

(SNORT, Samhain, F-Secure) to detect attacks, and its cloud structure serves as a central-

ized management tool rather than taking advantage of introspection to create new sensors.

While its architecture does allow for this, it doesn’t take advantage of it and aside from

its centralizing the decision making apparatus, the only other unique use of emergent cloud

properties is the suspending of guest machines undergoing an attack. The only area that

ODinn would conceivably benefit from is the adoption of Intrusion Detection Message Ex-

change Format (IDMEF) for greater interoperability with other IDS approaches, especially

Network-based Intrusion Detection System (NIDS). Sproull [22] is a non-VMI based cloud

Intrusion Prevention System (IPS) using the Field Programmable Port Extender platform

on an FPGA to efficiently scan thousands of virus signatures as a SNORT-like model that

reconstructs traffic at incredible high data rates (2.5 Gbits/sec). In doing so, it can detect

many worms and filter them from the network before they ever reach a vulnerable hosts.

This model is entirely network based and thus has no real similarities to ODinn though both

could be used together without conflict. The works of Shyu and Sainani [23], Li et al. [24],

Khanum [25], Herrero and Corchado [26], and Su et. al [27] are similar in this regard in that

their implementations are practical for the cloud but as their IDS is focused on the network,

they have little in common with ODinn.

Citation Year Heuristic Monitor Type Characteristics Limitations
Khanum [25] 2012 Misuse Passive NIDS Utilize minimum possible network resources. Vulnerable to unknown attacks.
Li [24] 2010 Immune Active NIDS Handles high-volume network traffic. Only deals with DoS attacks.
Roschke [21] 2010 Misuse Active NIDS Configuration based Virtual Machine (VM) Security High overhead due to multiple instances of IDS.
Dastjerdi [28] 2009 Anomaly Passive DIDS Location independent protection. Overhead grows dramatically as VMs on mobile agent increases.
Shyu [23] 2009 AR Active Linear scalability and low response time.
Su [27] 2009 Hybrid Passive NIDS Fewer false alarms.
Herrero [26] 2009 ANN Passive NIDS Handles high-volume network traffic.
Byrski [29] 2008 Immune Passive NIDS Independent of routing protocol and services.
Sproull [22] 2007 Hybrid Active NIDS Prevention model, low network overhead. Hardware based, expensive

Table 1.2: Taxonomy of Cloud-based IDSs without VMI

5

1.3 Layout

This dissertation is structured as follows:

• Chapter 2 covers a detailed list of the problems touched on above. Section 2.1 de-

scribes the challenges caused by malware. Section 2.2 details the failures of traditional

IDSs. Section 2.3 covers VMM weaknesses. Section 2.4 explores the challenges facing

cloud forensics.

• Chapter 3 details the Literature Survey and consists of two subsections: Section 3.1

covers Virtual Machine Introspection. Section 3.2 provides a taxonomy of Cloud-based

Intrusion Detection Systems.

• Chapter 4 elucidates the architecture, components and design of ODinn. Section

4.1 illustrates the infrastructure and underlying platform that encompasses ODinn,

Yggdrasil. Section 4.2 describes the VMI component - HliDskjalf. Section 4.3 covers

the monitoring engine, Einherjar, that extracts memory artifacts from the guest VMs.

Section 4.4 diagrams the database component - Mimisbrunnr. Section 4.5 describes

the malware dropper - Loki. Section 4.6 outlines the heuristic detection agent -

Muninn, and its validation. Section 4.7 reveals the technical details of the mitigation

component - BalDr. Section 4.8 describes the malware analysis suite - Huginn. Section

4.9 provides the performance benchmarking of ODinn. Finally, Section 1.2 juxtaposes

ODinn with other similar works.

• Section 5 outlines the areas of improvement for ODinn that remain.

• Chapter 6 reiterates the findings and contributions derived from ODinn.

6

Chapter 2

State of Cloud Security

2.1 Malware

Malware is growing at an exponential rate (see Figure 2.1), with the amount of new

malware samples from 2013 alone expected to exceed the combined total of malware samples

since the first malware was created up to 2011 [1]. On average, a computer exposed to the

internet can expect to be attacked every 39 seconds or less [30]. Concurrent with the general

trend of malware growth is malware sophistication.

Figure 2.1: New Malware (last 10 years) [1].

7

The chart below (Figure 2.2) shows an inverse relationship between the sophistication

of an attack and the level of technical knowledge an attacker requires over time. This trend

has continued overall [30] but specifically with the vast sophistication in polymorphic and

metamorphic malware [31] and the ease at which attackers can acquire off-the-shelf packer

technology [32, 33, 34, 35] to encrypt their executable files.

Figure 2.2: Attack Sophistication vs Technical Knowledge over Time [2].

These factors combined along with the growing threat of organized cybercrime [36] has

resulted in damages surpassing hundreds of billions of dollars [37, 38]. One major success

story from this organized cybercrime was the Zeus botnet which at its peak was responsible

for 90% of all banking fraud [39] and still constituted nearly half of all banking fraud in 2012

[38, 40].

2.2 Traditional Intrusion Detection Systems

An intrusion detection system is designed to detect and alert a host that has been

compromised. This is accomplished by monitoring the host’s behavior and properties (e.g.

8

I/O activity, network activity, internal state, etc.). The more properties an IDS can be said to

observe, the better visibility the IDS possesses; this is significant as the ability of a malicious

intruder to mimic normative host behavior is inversely correlated to the IDS’s visibility.

HIDS have the potential for a high level of visibility as its integrated into the host itself,

and a variety of host-based architectures exist that achieve high visibility via system call

trace analysis, integrity checking and/or log file analysis [41, 42, 43, 44]. Unfortunately, the

very property that provides high visibility renders HIDS irrevocably flawed. Once the host

is compromised, the HIDS is subject to malfeasance, which can vary from sensor blinding

to misleading reports to using the HIDS itself as an additional vector of attack [45]. An

alternative to HIDS is the NIDS. The primary benefit of the NIDS is a strong isolation from

the hosts they monitor. As a result, there is a high level of tamper resistance unavailable to

HIDS, and they can monitor with integrity long after a host has been corrupted. However,

the same isolation that NIDS derive their advantage from also limits their visibility. A

malicious adversary can craft network traffic that does not reveal that the host is infected

[46].

HIDS have tried a variety of techniques to improve attack resistance, none of which

have proven unsurpassable to date. Kerckhoff’s principle is a series of design principles for

security systems that can be surmised as a single axiom: a system is only secure if it is secure

when an attacker fully understands its functionality [47]. In ignorance or perhaps in defiance

of Kerckhoff’s principle, many HIDS architectures attempt to obfuscate the IDS techniques

being used via encryption/steganography [48]. A second approach saw the HIDS move from

user space to inside the kernel, and while it offered a modicum of resiliency, the technique

had a number of drawbacks [45, 49]. Many modern OSes have direct kernel memory access

from a user level; which if disabled, results in a loss of functionality but if enabled, provides

no protection for the HIDS residing in the kernel. An example involving the Linux OS is

the user level modification of the kernel through loadable kernel modules (/dev/kmem) [50].

Even if one ignores the functionality issue, the OS itself very often falls to exploits due to

9

the sheer complexity of OSes. Regardless of whether it exists in user or kernel space, an

IDS will typically fail open (unsecured state) or result in the entire system crashing. This

type of attack can affect NIDS if an exploit generates large volumes of traffic to overload the

NIDS [46]. Failing open is especially predominant in NIDS as failing closed (secured state)

generally would suspend connectivity across hundreds if not thousands of hosts.

2.3 VMM Weaknesses

The properties of virtualization, while advantageous for security (See Appendix A.1) can

also be highly detrimental. One core problem is that the x86 architecture was not designed

with virtualization in mind and as a result, is not fully virtualizable [51]. Three methods of

virtualization dominate the landscape: paravirtualization, binary translations and hardware-

assisted virtualization [9]. Paravirtualization involves porting guest operating systems so

that they do not use non-privileged sensitive instructions, but instead use ones that better

cooperate with the VMM [52]. Binary translation executes guest VM code on an interpreter

to handle sensitive instructions [51]. Hardware-assisted virtualization is the implementation

of new functionality to hardware to support virtualization (e.g. AMD’s AMD-V and Intel’s

VT-X and VT-I CPU processors). Each methodology has various advantages and drawbacks,

but the systemic problem, the lack of inherent virtualization support in x86 and its successor

x64, creates a number of VMM flaws.

2.3.1 Transparency

When all three properties - efficiency, equivalence and resource control - identified by

Popek [53] are achieved in a “perfect” manner, then a VMM is fully transparent. In this

state, there exists no method from within a guest VM to identify the VMM. However,

due to the above problem, it is infeasible to make a fully transparent VMM [54]. This

is unfortunate as VMM detection measures exist utilizing hardware attestion, instruction

timing, and inconsistent CPU emulation can reveal a VMM [54, 55, 56]. A side effect of

10

this is the ability to make VMM-based rootkits [57]. This also impacts introspection itself

because a fully transparent VMM can perform reverse engineering, recovering encryption

keys embedded in malware and circumventing anti-debugging measures. Furthermore, a

fundamental theoretical advantage of VMMs is their invisibility and thus, implicit trust that

can be placed in their sanctity.

2.3.2 VM Escapes

The isolation property of virtualized systems greatly improves VMM security, but the

isolation is not absolute. When full transparency does not exist and the VMM is exposed,

the possibility of a VM escape exists. A VM escape is code executed by the guest VM

that breaches the isolation barrier and executes outside of the VM environment lacking

any oversight or control by the VMM [9]. Vectors for such attacks are due to the attack

surface offered by the additional code base/complexity imposed by the VMM or by attacking

virtualized devices, CPU caches or utilizing VMI passthrough mechanisms to access host

resources directly (e.g. Graphic Processing Unit). VM escapes remain exceedingly rare in

the wild but instances do exist, such as Bluepill [58] and Cloudburst [59].

2.3.3 Side Channels

Physical devices that do not pass through the VMM or are merely shared with the

VMM lower VMM transparency and open up an attack vector known as a side channel

attack. I/O devices, in particular, are very complex, and securing them is difficult without

greatly impacting performance [60]. As such, several I/O side channel attacks have been

created (e.g. Direct Memory Access to share information using memory locations [61, 62]

and insecure Graphics Processing Unit isolation [63]). Network channels present similar

challenges and significantly higher risk due to the remote access and integration into all

remote cloud-based architectures.

11

2.3.4 Information Leaks

Information leaks are a subset of side channels that involve the deterioration or dissolu-

tion of the resource control property of VMMs. Information leak side channel based attacks

include software methods that exploit convenience features between the VM and the host

(i.e. clipboard sharing, shared folders, bridged networks, etc.) [64] as well as hardware meth-

ods disclose information about the physical machine, such as CPU state, memory usage, and

network details (i.e. Cache-based attacks) [65]. Hybrid methods also exist, such as using

information leaked by the timing of memory page operations to discover sections of shared

memory pages that have been written to by another guest machine. Information leakage

allows attackers to steal encryption keys, passwords, and other confidential information.

2.3.5 Image Standardization

In a non-virtualized architecture, adding an additional user requires additional equip-

ment, installing an operating system and adjoining the newly created system to the network.

In the virtual environment, it consists of copying a file and instantiated the copied VM image.

The ease of cloning of virtual machines has a number of security flaws regarding manage-

ment, identity and data retention. As the number of VMs increases, the management of the

images becomes exponentially more difficult [66]. A number of significant performance cloud

management responsibilities are tightly coupled to VM images:

1. efficient and reliable storage

2. low-latency retrieval and instantiation

3. fast transfer of data for VM migration (especially live migration).

In an attempt to resolve these responsibilities, cloud systems have used image simi-

larity and image dedepulication procedures and inadvertently created security challenges.

Deduplication removes duplicate data blocks when handling collections of images [67] and

12

image similarity enhances the amount of deduplication that occurs. From an optimization

standpoint, the insures the total amount of image data to store is minimized; however,

from a security perspective, this serves to increase the velocity of any attack vector ex-

posed. Consider a scenario prior to cloud adoption. A large number of disparate physical

machines running different operating systems or OS versions. The physical machines have

different components (one has 2GB of RAM, another 4GB; one uses an AMD processor, the

other Intel). Malware, especially ones that exploit memory regions do not have 100% infec-

tion rates. Thus, some machines will avoid infection simply because they lack a particular

OS/application version that is being exploited or because of differences between the physical

machines. However, in the post-cloud environment, shared memory regions, enforced image

similarity and images residing on the same hardware causes infection rates to occur with

greater frequency and to occur with greater velocities than were previously possible.

2.4 Cloud Forensic

“[T]o our knowledge, no research has been published on how cloud computing environ-

ments affect digital artifacts, and on acquisition logistics and legal issues related to cloud

computing environments.” - Beebe 2009 [68]

2.4.1 Memory Volatility

In current public clouds, virtual Infrastructure as a Service (IaaS) instances lack persis-

tent storage. For example, in the Amazon Elastic Compute Cloud (EC2) cloud, if the guest

machine is shutdown or rebooted, all volatile data is immediately lost. This situation has a

number of forensically important issues. Should an intrusion take place and the adversary

wish to hide evidence of the intrusion or worse, evidence of the intrusion’s persistence, the

system could be shutdown, rendering the volatile data unrecoverable by current FMA tech-

niques. Additionally, a malicious entity could complicate forensic efforts further by using

the EC2 cloud to create an instance to launch attacks from their guest machine and then

13

shut the guest machine down to ensure the only forensic data left is the network traffic. A

confounding corollary to this would be the same malicious attacker using an obfuscated IP

to connect to a guest VM and then claiming that their guest machine was compromised.

With the loss of the volatile data, it would still be difficult to prove conclusively that the

individual is responsible [69].

2.4.2 Live Analysis

One solution prior to the cloud for scenarios where collecting volatile memory after-

the-fact was difficult is to use live analysis. Live analysis is a forensic examination (or

logging) of the system during its running state. However, live analysis on volatile data has

been long-fraught from a technical perspective. Akin to the observer effect in Physics, the

forensic examiner that examines a live system will cause that system to change. The act of

examining (e.g. attaching a debugger) can open/close network connection, create temporary

files, modify a process, modify registry entries during queries, etc. From a legal perspective,

once the system is changed, the evidence is contaminated and may be rendered invalid by a

judge [70].

2.4.3 Validating Artifacts

An additional impediment is the difficulty in acquiring an exact copy of the snapshot

volume for forensic analysis from current cloud-based systems. An example is the EC2 cloud

where virtual hard drives (Elastic Block Storage values) are stored in the Amazon Simple

Storage Service (S3). It is not possible to verify the integrity of the forensic disk image

because Amazon does not provide checksums for their volumes. Ergo, it is impossible to

claim at the legal standard for digital forensic collection that the volume downloaded from

Amazon is identical to the one requested. Further complicating the issue is that even if

Amazon did verify the volume, the investigator could still not positively assert the images

14

were the same because no hardware write blocker can be used to verify the integrity of the

image [71].

15

Chapter 3

Survey of Literature

3.1 Virtual Machine Introspection

Guest isolation and its security applications were studied and formalized by [72], [73],

and [74]. In response to the proliferation of malware over the last decade, guest isolation

was re-purposed for instruction-level monitoring for malware analysis; however, research

has been impeded by instruction-level monitoring being unsuitable for analysis predicated

on high-level semantics, a problem termed the “Semantic Gap” [75, 76, 77]. Introspection

was successively improved by additional works focused on attack replaying [78], control or

integrity checking [79], a secure VM monitoring framework and implementation [80], and a

host of introspection-based intrusion detection systems (IDSs) [81, 82, 83, 84, 85].

3.1.1 Semantic Gap

And how will you enquire, Socrates, into that which you do not know? What will you

put forth as the subject of enquiry? And if you find what you want, how will you ever know

that this is the thing which you did not know? - Meno’s Paradox [86]

The semantic gap is a reformation of Plato’s problem, a term, first used in linguistics

to represent the gap between knowledge and the environment (e.g. How do children learn

the immensely complex grammatical structure of languages without any formal education?)

[87]. In computer science, the semantic gap represents the challenge of taking low level

structures (environment) and reconstructing or bridging the high level structures that can

be understood (knowledge) [88].

The semantic gap exists due to the isolation properties of the virtual machine interface.

The VMM does not have special insight into the guest operating system’s abstracted states

16

(e.g. processes, files, etc.). As a result, standard VMM design does not allow it to query a

guest operating system and retrieve details which limit the introspection property of virtu-

alization. Traditional introspection tools rely on extensive knowledge of a guest operating

machine to reverse engineer the low level details garnered from introspection to recreate a

view of the high level abstracts. This explicit knowledge includes location of kernel struc-

tures, memory structures and locations, and global variable locations. This leads to a lack

of OS independence among introspection tools as individual tools require significant levels of

semantic knowledge [17]. Additionally, when the guest OS is not open-source or its internals

are not exposed openly, recreating the operating system semantics is often infeasible [89].

Two bridging methods, explicit and implicit, exist to overcome the semantic gap between

the VMM and the OS.

Explicit Bridging

Explicit bridging relies upon interaction with the guest OS either through altering the

kernel directly or via significant kernel data structure information. Many VMI architectures

use explicit bridging because of its high level of performance and accuracy. However, explicit

bridging has two primary weaknesses: One, if the kernel is compromised, the information it

provides to the VMI may be incorrect and two, the kernel data structures are different from

OS to OS and even from version to version, requiring significant upfront development costs

for the VMI developers.

Implicit Bridging

Implicit bridging does not rely upon the guest OS and instead, uses architectural events,

disk semantics and memory within the guest OS to infer its internal state. The primary

advantage of implicit bridging is its resilience against compromise; however, in a manner

similar to the HIDS/NIDS comparision, this resilency comes at the cost of visibility and the

implicit bridging method often has performance issues and inaccurate information [90].

17

3.1.2 Analysis

Replay

The ability to replay, or log, events on a VM is useful not only for debugging OSs (which

is why researchers introduced VMs in the late 1960s) but also for replaying compromises

[91]. Replay is contingent upon the observation that computer operations are primarily

deterministic [92]. As such, there are two critical aspects that the recording function must

capture: the initial state and the precise moment of all non-deterministic events. To replay,

the replay mechanism restores the VM to its initial state and inserts the non-deterministic

events at the correct execution points. While VMI architectures using replay mechanisms

are capable of analysing malware, they lack the capability to detect, prevent or mitigate the

malware intrusion and are unsuitable as the sole component of production IDSs.

Live

Live or non-quiescent analysis as previously discussed in Section 2.4 suffers from the

observer effect. However, when paired with introspection, the observer effect can be mitigated

and if full transparency is achieved, eliminated. As most live analysis VMI-IDS architectures

are currently reliant upon explicit bridging, they can be manipulated by attackers who

compromise the host [93].

3.1.3 Monitoring

Passive monitoring is when the security tool monitors by non-resident scanning or

polling. The introspection component is placed in a privileged VM and gathers guest-related

information from the hypervisor. The analysis component must bridge the semantic gap to

apply knowledge of guest OS (OS data structure semantics and positioning) to extract the

high level structures by which intrusions can be detected and the development of those

components is often a tedious and time-consuming task. Active monitoring occurs when

18

the introspection sensor is placed in the guest machine and was developed to overcome the

difficulties of the semantic gap. Prior to virtualization, HIDSs performed active monitoring

by intercepting every system call [94] or kernel hooks to track events and enforcing specific

security policies [95]. Active monitoring has the advantage of detecting attacks quickly

and preventing certain attacks but unlike passive monitoring, exposes the monitoring tool

to subversion by the malware. Post virtualization examples of active monitoring include

VMScope [96], a system call tracing monitor and ReVirt [91], an I/O monitor focused on

backtracking and replay functionality. Hybrid approaches, utilizing in-guest and out-of-

guest monitors has emerged, such as, Lares[97] and SIM [98], in an attempt to retain the

semantic rich internal view with in-guest sensors and add resilience to malware tampering

with out-of-guest sensors.

3.1.4 Summary

Name Year Monitor Analysis Bridge Advantages Disadvantages
Exterior [14] 2013 Passive Live Implicit Mitigates attacks in real time using secure VM Requires 1:1 ratio of Secure VMs to guest VM.
SPECTRE [99] 2013 Passive Live Explicit Does not need to trust Hypervisor (BIOS based) Only detects attacks in memory.
TimeScope [100] 2012 Passive Replay Explicit Low Overhead (62% worst case, I/O based) Limited (4) analysis tools.
Maitland [101] 2012 Active Live Explicit High effectiveness at unpacking malware. High overhead when knowledge base lacks signature.
VMST [102] 2012 Passive Live Implicit OS Agnostic approach to sensor creation. Very high overhead (monitors all data)
Odin 0.5 [103] 2012 Passive Live Explicit Restores corrupted guest OS to virgin state. Not tested on large sample of malware.
InSight [104] 2011 Passive Live Implicit Opensource, highly moddable. A framework, sensors must be created by user.
EXAMIN-C [105] 2011 Passive Live Implicit Moderate overhead. Cannot read guest OS user-space application memory.
Virtuoso [17] 2011 Passive Live Implicit OS agnostic Cannot trace across multiple virtual address spaces.
HIMA [106] 2009 Active Live Explicit Enforces guest memory protection, low overhead. Writable/executable memory pages not supported.
Ether [83] 2008 Passive Replay Implicit High effectiveness at deobfuscating malware. Dependent on Intel VT hardware/OS support.
Lares [97] 2008 Active Live Explicit Low overhead, fine-grained memory protection. Can be subverted.
VMWatcher [81] 2007 Passive Live Implicit High accuracy when comparison-based scheme works. Very limited semantic gap narrowing.
Antfarm [84] 2006 Passive Live Implicit Very low overhead (2.5%), supports SPARC. Only detects process and I/O scheduling.
Livewire [107] 2003 Passive Live Explicit Very expressive policy language. Lengthy guest interruption when malware detected.
ReVirt [91] 2002 Passive Replay Implicit Very low overhead High storage use (up to 1.4GB/day)

Table 3.1: Taxonomy of VMI-IDSs

Ultimately, the problem with using the above methodologies is the assumption that the

kernel data being introspected adheres to the internal structure templates as prescribed by

the operating system. The vast majority of the cited VMI tools implicitly trust that the

guest OS is conforming to these internals; however, once OS is compromised, this assumption

is rendered invalid [108].

Forensic Memory Analysis has, in isolation to virtualization monitors, focused on bridg-

ing a similar semantic gap, the elucidation of high-level artifacts from objects in physical

19

memory. Examples include tools that locate processes and threads [109], reveal Dynamically

Linked Libraries (DLL) injections [110], retrieve files mapped in memory [111], and expose

Windows registry information [112]. Most recent is a framework for forensic memory tools

called Volatility [10] which allows for the rapid prototyping of FMA and includes plug-ins

that replicate the above tools and dozens of others. We previously explored an amalgamation

of forensic memory analysis with virtual memory introspection [103] and this dissertation

builds on that work.

3.2 Cloud-based IDS Heuristics

3.2.1 Anomaly Detection

Anomaly Detection (AD) applies statistical analysis (e.g. data mining, hidden markov

models) on the data generated by legitimate users to identify malicious behavior from nor-

mative behavior. The primary advantage of AD is its ability to detect attacks that have not

been previously known. [113] Examples of AD in Cloud-based IDS are analysis on protocol

based attacks [114], a lightweight monitor for real-time, high performance detection [115]

and numerous hybrid solutions, a technique using two or more heuristics, include AD as a

component [16, 28, 107, 116]. The critical weakness of AD is the high false alarm rate for

both known and unknown attacks compared to other heuristics.

3.2.2 Artificial Neural Network

Like AD, Artificial Neural Network (ANN) attempts to classify data as normative or

anamlous [117] with the caveat that it does so with incomplete data through generalization

rather than the large training sets usually required by AD [118]. The types of ANN used in

IDS are: [117]:Multi-Layer Forward-Feed (MLFF) neural nets, Multilayer Perceptron (MLP)

and Backward Propagation (BP). The inclusion of additional hidden layers [119] or a self-

organizing map [120] increases accuracy but at the cost of complexity [121].

20

3.2.3 Association Rule

Association Rules (AR) is a heuristic which is very powerful at finding variants of known

attacks by detecting frequent subsets (e.g. shared features across multiple attacks); however,

database scanning performance was prohibitive [122]. Performance has been ameliorated

with subsequent research at the cost of higher false positive rates [115] and recently the false

positive rate was lowered while maintaining the performance improvements [123] making this

heuristic a desired avenue to explore.

3.2.4 Fuzzy Logic

Fuzzy logic [118] handles the vague descriptiveness of what an intrusion entails to provide

flexibility on whether or not an intrusion has occurred. Fuzzy logic-based IDS have been used

to detect network intrusions (i.e. Ping of Death, SYN flooding) [124]. Fuzzy logic has been

combined with ANN to improve training time [125]. However, neither of these approaches

were capable of real-time intrusion detection. A hybrid technique of Fuzzy logic and ANN

has achieved real-time detection capabilities to detect denial of service attacks before the

network intrusions cripple the service. Fuzzy logic provides some flexibility to the uncertain

problem of intrusion detection [27]. Cloud-based IDS have used fuzzy logic with ANN for

real-time detection of unknown attacks [16].

3.2.5 Genetic Algorithm

Genetic Algorithms (GAs) optimize parameters or select the best subset of features for

performance/accuracy considerations in other IDS heuristics [126, 127]. GAs typically suffer

from the best fit problem and have to be carefully tuned to prevent over- or under-fitting

[128]. An additional weakness is high complexity of the fitness function which can be a

performance consideration [129]. In Cloud-based IDSs, GAs have been used with fuzzy logic

[126] wherein the GAs provide the optimal parameters for the fuzzy logic function, resolving

the fitting problems discussed previously.

21

3.2.6 Misuse Detection

Misuse detection requires signatures or a predefined knowledge base to engage its pat-

tern matching algorithms against. When known attacks exist within its predefined set,

misuse detection has high accuracy, low response latency and low overhead, making it an

ideal solution. However, even small variations in an otherwise known attack can reduce the

accuracy of misuse detection [113] and it has no ability to detect unknown attacks [130]. In

Cloud-based IDSs, misuse detection has found a fair amount of use as a detection agent for

VM intrusions [131, 132, 133, 134].

3.2.7 Support Vector Machine

Support Vector Machine (SVM) [118] is a heuristic best suited for environments with

low sample size. In such environments, despite its reliance on binary data and lower feature

coverage it generally outperforms other heuristics [135]. Examples of Cloud-based IDS using

SVM include a NIDS using SNORT and configurable firewalls [136].

Heuristic Characteristics Limitations

Anomaly [126]
Uses statistical model on collected behaviour for detection. Identifying attacks is slow.
Lower false alarm rate for unknown attacks. Accuracy is entirely dependent on collected data.

ANN [137]
Classifies unstructured network packet efficiently. High time complexity during training phase.
Multiple hidden layers in ANN increase efficiency. Large sample size required for effectiveness.

Fuzzy Logic [118] Used for quantitative features. Relatively low detection accuracy.

GA [127]
High efficiency Computationally complex.
Automatically prunes less useful features Trends towards overpruning.

Hybrid [138] Highest accuracy Highest computational cost.

Misuse [130]
Lowest computational cost. Cannot detect variants or unknown attacks.
Highest detection for previously cataloged attacks. False positives very high in unknown attacks.
Matches intrusions to a preconfigured knowledge base. Knowledge base can be polluted.

AR [139]
Detects known and variant attacks in misuse detection. No ability to detect entirely unknown attacks.

Rule generation relies on a myriad of DB scans.

SVM [135]
High classification accuracy with limited sample data. Limited to discrete features.
Can handle massive number of features.

Table 3.2: Taxonomy of IDS Heuristics

22

Chapter 4

ODinn

4.1 Yggdrasil

I know that I hung on Yggdrasill

nine whole days and nights,

stabbed with Gungnir, dedicated to Odin,

myself to mine own self given,

high on that Tree of which none hath heard

from what roots it rises to heaven.

None refreshed me ever with food or drink,

I peered right down in the deep;

crying aloud I lifted the Runes

then back I fell from thence [140].

Figure 4.1: Libvirt’s driver architecture

23

Yggdrasil serves as the infrastructure that manages the underlying virtualization tech-

nologies comprising ODinn and is an extension of the libvirt API (4.2). Libvirt [141] is an

abstraction layer library for hypervisor management. Conceptually, libvirt initially existed

as two main components - a hypervisor agnostic API and a collection of hypervisor specific

drivers (4.1), but now includes several additional components to manage storage pools,

networks, etc. all written in C.

Figure 4.2: Libvirt’s use model

Our primary motivation in using libvirt is the agnostic nature of its API, supporting

a number of hypervisor implementations (see Table 4.1). An additional factor was libvirt

serving as an underlying technologies for many cloud technologies (e.g. OpenStack) and

remains the most popular hypervisor management technology for the cloud [142]. Part of

this reason is libvirt’s highly scalable nature, able to efficiently monitor over 2,000 active

guest nodes at one time [143].

Hypervisor Description
Xen Hypervisor for IA-32, IA-64, and PowerPC 970 architectures
QEMU Platform emulator for various architectures
KVM Linux platform emulator
LXC Linux (lightweight) containers for operating system virtualization
OpenVZ Operating system-level virtualization based on the Linux kernel
VirtualBox Hypervisor for x86 virtualization

Table 4.1: libvirt hypervisor support

The principle changes we made to libvirt was in the modification/extension of its Python

API wrapper. By design, libvirt is intended to support a command line interface rather than

24

a wrapper and so when encountering something as simple as failing to find a virtual machine

requested, it raises an error and kills the entire process. For obvious reasons, this is a poor

mechanism when integrating libvirt into an always-on system such as an IDS, so the first

task required was to change the manner in which it raised errors. However, this added a

number of complications. If the errors were simply ignored, all subsequent commands would

be incorrect so Yggdrasil serves primarily as a mechanism to prevent libvirt-based errors from

ever occurring. For instance, if one tries to issue a start VM command, libvirt will simply

try to start the VM naively whether it has been defined, is already started, etc. Yggdrasil

will ensure it has a valid configuration file, that it has already been defined and that its not

currently active; if any of these steps fail, Yggdrasil will self-correct and only then start the

VM. Additionally, Yggdrasil has a subcomponent that integrates HliDskjalf with libvirt so

that various VMI interactions have this error checking and correction capabilities.

4.2 HliDskjalf - VMI Library

HliDskjalf is an implementation and fork of the LibVMI [5] API. LibVMI evolved from

the XenAccess [97] project used in our previous implementation [103] of a Hypervisor-based

Intrusion Detection System (VMI-IDS). LibVMI was chosen because it is written in C for

optimal performance, its API is focused on reading and writing to/from a guest’s virtual

memory, and it supports the two largest open source virtualization platforms (Xen and

KVM). Additionally, it supports both 32/64-bit operating systems. By default, libVMI does

not actually provide implicit or explicit semantics for any particular OS support; however, it

does provide implicit semantics that, when integrated into Volatility [10], results in explicit

semantics for most current Windows, Linux and Mac OS versions. In the following sections,

we will explore how we bridge the semantic gap, how we access Volatility’s address space

and finally, how integrate it into Einherjar.

25

Figure 4.3: x86 Virtual to Physical Memory [3]

4.2.1 Bridging the Semantic Gap

The implicit information for libVMI is drawn from the x86/x64 virtual memory archi-

tecture (see Figure 4.3). When a virtual address is translated to a physical (linear) address,

its location is retrieved from a page directory and page table. The register which holds the

page directory address is the Control Register 3 (CR3) and the most significant 10 bits of

that register (31-22) hold the Page Directory Base Register (PDBR). The PDBR stores the

index of the page directory and the location within the page directory of the pointer to the

correct page table. The next most significant 10 bits (21-12) contain the index of the page

table and a pointer to the proper page table entry which when combined yield the location of

a 4-Byte Page. The final 12-bits contain the offset that points to the physical address within

the 4-Byte Page. An introspection library capable of tracking the CR3 register is one that

is capable of mapping out the physical addresses of a guest virtual machine. Additionally, it

is necessary for the introspection library to be able to determine if the machine is or is not

26

using Physical Address Extension (PAE), this is accomplished by reading Control Register

4 (CR4) , bit 5. If the bit is set, PAE is enabled; otherwise, it is not.

4.2.2 Integrating with Volatility’s Address Space

This information alone is insufficient in integrating with memory analysis tools as these

tools interface with the system RAM in their own unique format, called Address Space

(AS). Volatility utilizes a stacked AS model which is designed to aid plugin developers

by abstracting away the underlying formats. As Hlidskalf intends to use this model to

structure a guest machine’s memory, the model must be understood for integration. Volatility

address spaces inherit from the base class (volatility.addrspace.BaseAddressSpace). Address

spaces are initiated with a URI (derived from volatility.conf.ConfObject().LOCATION). The

returned list is traversed with the base address until it matches and returns the address space

to the calling function. For simplicity reasons, we use the lowest level semantic model of

Volatility’s AS, which is the File. This is intended to be a bit-by-bit copy of virtual memory;

however, we will mirror active memory to it later. Thus, we only need to understand the

base class, which has the following attributes:

• base: This is the underlying address space given by the constructor.

• profile: This is the explicit semantic information for the Operating System and Version

(set automatically by volatility.conf.ConfObject().PROFILE)

• name: Name of the address space

• dtb: The Directory Table Base derived from the CR3 discussed in the previous section.

• pae: A boolean indicated for whether the CR4, bit 5 is set for this AS’s paging space.

The base class also requires following functions:

27

• Constructor (init)

• read

• zread

• is valid address

• get available addresses

• get available pages

• vtop

Of those, libVMI supports by all but the zread function. The zread function returns

an unavailable page of read memory as a page of available padded zeros of the proper size.

This is necessary for Volatility because when reading kernel/process memory from a large

range, it becomes increasingly probable that some of the memory pages being read will not

be in resident memory (e.g. paged to the disk). Whereas Volatility is written in Python

and libVMI is written in C, it is necessary that some wrapper exist to support the already

existing functionality natively and support the zread function. The Python language allows

the extension of C libraries to have semantically equivalent Python functions so an API

wrapper is used.

Figure 4.4: FUSE architecture in simple stat (filesystem call) [4].

A Python wrapper isn’t sufficient by itself because, despite creating a format (address

space) that volatility can understand, the guest machine’s memory must be constantly mir-

rored in order to be used in real-time. A file format alone isn’t sufficient and instead, a

28

file system is necessitated. This is possible through a Linux library called Filesystem in

UserSpacE (FUSE). FUSE is a library in which filesystems can be created whose data and

metadata can be provided by a userspace process. This is important for ODinn because guest

machines should exist in user space, so foregoing access to the kernel space is of high im-

portance. Figure 4.4 above demonstrates how FUSE works in a basic example - the libfuse

library built on glibc provide the API for the FUSE (fuse.ko) kernel module. The kernel

module forms a connection between the filesystem daemon, the Virtual File System (VFS),

and the kernel [4].

Figure 4.5: Software stack for Volatility address space plugin [5].

Putting it all together, there now exists a seamless way for Volatility sensors to engage

a guest virtual machine in real-time without an external developer knowing any explicit OS

semantics (see Figure 4.5 above).

4.3 Einherjar - Guest Monitors

4.3.1 Initialize

While other implementations of introspection have utilized Volatility, none thus far

provide full integration. There are three attributes that a memory analysis engine needs to

optimize its scanning. The first, the Directory Table Base (DTB) traverse the EPROCESS

structure to find the ActiveProcessLinks, PsActiveProcessHead and other doubly-linked list

29

attributes. Fortunately, the DTB is provided by HliDskjalf as it is contained in the CR3.

Second, the KDDEBUGGER DATA64 Kernel Debugger (KDBG) structure which tracks

the state of the operating system to provide data when a crash occurs provides quicker

access to close to 100 kernel variables. The final value is the Kernel Process Control Region

(KPCR) which the windows kernel stores processor information (running processes, network

connections, open handles, etc.) As previously mentioned, the DTB is already known, so

our approach focuses on discovering and storing the KDBG and KPCR values.

Every version of Windows has a specific virtual address in which the KDBG and KPCR

are located. However, the virtual address information alone is not sufficient since introspec-

tion accesses the physical address of the virtual machine. To translate this, we need to know

whether the page size is 4KB, 2MB, or 4MB and this is dependent on whether PAE, PSE,

and PS bits are set. This knowledge can be derived from our existing knowledge of the

CR3 value and, upon knowing the page size, we can correctly translate the virtual memory

address of the KDBG/KPCR structures to their physical counterpart thereby obtaining the

KDBG/KPCR values and caching them for later usage. This results in significant improve-

ment in speed as seen in Table 4.2.

SSDT Time Improvement
Unoptimized 3.35s –
DTB 2.51s 25%
DTB, KDBG, KPCR 1.20s 64%

GDT Time Improvement
Unoptimized 0.84s –
DTB 0.51s 39%
DTB, KDBG, KPCR 0.27s 68%

Table 4.2: Performance increase of Initialize on System Service Dispatch Table (ssdt) and
Global Descriptor Table (gdt) modules.

30

4.3.2 Bifrost

Another area where current implementations using Volatility are inefficient is their re-

liance upon vol.py. This requires all analysis to be driven via system calls, which spawn off

shells of the Python interpreter for each scan. Considering the nature of the cloud where

hundreds or even thousands of guest machines exist on a single server and each guest ma-

chine requiring a dozen or more simultaneous scans and massive overhead is incurred. Our

solution was to make a number of modifications to Volatility and create a new module,

called Bifrost, to convert Volatility into a Python library that can be driven by other com-

ponents. Additionally, we design an entirely new renderer for all of the Volatility plugins

we utilize to return data formatted for our database. Volatility only provides a default text

renderer which current implementations scrape and then perform substantial preprocessing

upon before storing, a highly inefficient design.

4.3.3 Geri - Doubly-linked List Crawlers

Geri Finds objects by walking doubly-linked lists

pslist Process objects (PsActiveProcessHead)
modules Kernel Module objects (PsLoadedModuleList)
threads Thread objects (ETHREAD)
filelist Handle objects
dlllist DLL objects (PsLoadedModuleList)
ssdt Service objects (ETHREAD.Tcb.ServiceTable)
getsids SID objects (TOKEN)
idt Interrupt Descriptor Table (KiSystemService)
gdt Global Descriptor Table (KiSystemService)
callbacks Kernel callback events (DbgkLkmdRegisterCallback, etc.)

Table 4.3: Volatility modules used by Geri [10].

Having integrated the address space of Volatility using HliDskjalf and the aforementioned

fork of volatility, Einherjar, it is now possible to implement our collection of monitors. We

divide our monitors into two categories based on their methodology. The first collection of

monitors, called Geri (4.3), walk doubly-linked lists or otherwise access data that can be

31

subverted by malware. This collection rapidly returns results and thus we poll this set of

monitors every few seconds. The second collection, Freki (4.4), scans the memory space for

structures and objects that correspond to OS specific nomenclature. These execute much

slower, every 10 seconds (time spent is relative to the size of the RAM in the guest OS)

but the OS semantics retrieved are difficult and sometimes impossible to alter by malware.

This is important since intersecting the data from Geri and Freki, the differences are caused

by malware with a high probability. This insight will be explored in detail when we validate

and implement detection schemes.

4.3.4 Freki - Pool Tag Scanning Monitor

Figure 4.6: Process hiding using the DKOM technique [6].

Windows keeps track of active processes through a pointer called PsActiveProcessHead,

which exists in every process’s EPROCESS structure. Within it is a LIST ENTRY field

which contains a doubly-linked list (i.e. each portion has a forward link - F LINK pointing

to the head of the next process’s EPROCESS struct and a back link - B LINK pointing to

the previous head). A common malware technique is to alter the doubly-linked list so that

they reroute around a structure, such as a process created by the malware, removing it from

32

the list. This renders traditional live analysis tools, as well as most VMI implementations,

from detecting the orphaned process. Forensic memory tools such as Volatility have look for

these orphaned structures by scanning the entire memory for sections of memory that match

EPROCESS structures. Normally, this can only be done on post-exploitation on memory

images; however, with ODinn, we can do this in real-time by intersecting the results of the

traditional link crawl method and the forensic memory method (e.g. output of the volatility

plugins pslist and pscanner) to immediately reveal the orphaned process that the malware

has created.

Freki Finds memory structs using pool tags (POOL HEADER)
psscan Process objects (EPROCESS)
modscan Modules objects (LDR DATA TABLE ENTRY)
thrdscan Thread objects (ETHREAD)
filescan Open file objects (FILE OBJECT)
connscan TCP/IP objects (TCPT OBJECT)
driverscan Driver objects (DRIVER OBJECT)
symlinkscan Symbolic link objects (REPARSE DATA BUFFER)
mutantscan Mutex objects (KMUTANT)
svcscan Service objects (SERVICE TABLE ENTRY)

Table 4.4: Volatility modules used by Freki [10].

A new optimization to Freki is the combination of all the scanners found in the table

as a single scanner. Instead of each scanner crawling through every object, discarding the

ones that do not fit its particular scan, we scan the entire pool of memory structs once,

processing all of the structures found as one scan. This increases the runtime of the scan

slightly compared to a normal scan, but since we obtain the results of all the scans at once,

the total time spent scanning is reduced by over 85%.

4.4 Mimisbrunnr - Database

Once a scan is completed, the results are passed to the function in Figure 4.7 below. A

series of interactions with Mimisbrunnr then occur. First, the function creates a temporary

table that contains the columns and metadata associated with the volatility plugin scan.

33

Figure 4.7: How modified volatility scans results enter into Mimisbrunnr.

Second, the data from the volatility plugin is inserted into this temporary table. It then

intersects with the permanent table associated with the plugin and where memory artifacts

are still active, updates their atime (alive time) to the current time. It then sets memory

artifacts that were no longer present to the dead state (dead=true). Finally, it inserts all

newly discovered memory artifacts into the permanent table from the temporary one. With

this information, it is possible to compile an accurate timeline of the events occurring within

the system as well as easily notate during training when the malware is inserted and flag

every row in every table that occurs after that time as infected for the purposes of creating

detection rules. The major advantage of this process is that analysis only occurs at each

individual node and no data transmission needs to be managed, decreasing the complexity

of the system and overhead generated.

34

4.5 Loki - Malware Dataset Generator

In order to rapidly generate training data to seed Mimisbrunnr with data, we need a

tool that would quickly, efficiently and accurately represent real malware attacks and post-

exploitation activity. The tool, Autosploit [103], is a custom testing framework that gener-

ates exploitation and post-exploitation activity augmented with Metasploit [144]. Metasploit

allows the user to exploit known vulnerabilities and inject arbitrary payloads into the vul-

nerable processes. One of the most widespread payloads is the meterpreter, which is a small

shell-like binary that allows a user to run various commands and common tasks on the

remote machine that is being exploited. Autosploit gave users access to a GUI that had

various buttons on it that performed the meterpreter tasks we were interested in. Common

post-exploitations tasks include:

• Initiating three elevations of privilege vulnerabilities

• Killing some anti-virus processes

• Hiding our NT/System access inside of a normal user account

• Launching a remote cmd shell

• Attaching a keylogger to a process

• Creating a backdoor as a service

• Creating a backdoor as a port

• Deleting event logs

• Taking pictures of the victim using their webcam

• Recording the victim via their microphone

• Dumping user password hashes

• Dumping the victim’s registry

35

• Downloading an arbitrary file from the victim’s computer

While the tool accurately reflected the modus operandi of many attackers and is broad

in its capabilities, it did not fully encapsulate the full attack surface of infrastructure exposed

to the Internet. Historically, IDSs were hampered by proprietary test data and thus, results

were rarely reproducible. This need was ameliorated by Lincoln Laboratory (LL) when they

created the IDEVAL dataset [145] to serve as an evaluation benchmark tool. The IDEVAL

dataset is reliant on generated traffic from network services (e.g. ping, finger, dns, smtp,

etc.) and despite its wide range of attacks (more than 50), it is unsuitable for testing with a

VMI-IDS such as ODinn. However, another set of testing data exists, that by its very nature

is not proprietary, malware.

Instead, we opted to replace Autosploit with a new malware dropper called Loki using

live malware retrieved from Sandia National Laboratory (note: author is currently employed

by Sandia). Botnets were prioritized due to their sophistication, threat level, and malware

obfuscation techniques, but numerous other malware was gathered. Careful steps were taken

to limit the network capabilities of the VMs prior to infection, and the VMs were destroyed

once sufficient data was gathered. In our training set, 222 malware samples were gathered.

4.6 Munnin - Rule Generation and Detection

Once Loki has filled Mimisbrunnr with sufficient data (222 malware samples), the various

tables in the database associated with the guest VM is dumped. Then a preprocessing script

is executed on the data to discretize the values as well as map the discrete data to its

original form. Then, a number of binary classification techniques and machine learning

algorithms are run against the dataset. The Incremental Reduced Error Pruning (IREP++)

rule induction classifier used in our prototype required improvements in the areas of rule

complexity and temporal analysis. Meta mining techniques for supervised learning, such as

those proposed by [146], achieve data model compaction and improved scalability, a necessary

factor when transitioning our current prototype to a production cloud. In the development

36

of an IDS, the ultimate goal is to achieve the best possible accuracy for the task at hand

while minimizing false positives and negatives. This objective naturally leads away from our

previous methodology of a single classifier. To augment Muninn, the Orange [147] library is

utilized. Orange’s backend is C++, allowing efficient use of its classifiers while its frontend is

written in Python, allowing for near seamless integration into Odin. Orange allows numerous

classification schemes, including Naive Bayes, k-Nearest Neighbors (KNN), SVM, ANN and

the C4.5 tree classifier [148].

We bind together all the classifiers using an algorithm called ensemble stacking [149].

The term “ensemble” refers to the combination of multiple weak learning algorithms or weak

learners [150]. The methodology we seek to use for manipulating our training sets is termed

Bagging. Bagging (Bootstrap Aggregation) takes the training set and creates a bootstrap

replicate from samples of the original training set drawn randomly with replacement. Each

bootstrap replicate contains, on the average, 63.2% of the original training set, with several

training examples appearing multiple times [138].

4.6.1 Binary Classification

In machine learning classification approaches, a classifier is generated from training

data to predict the outcome of a class attribute C ∈ {1,, r}, given the domain features

X = (X1,, Xd), of a hidden class instance x = (x1,, xd). In our approach, we use

discrete domains Xi ∈ {1,, ri} with (X, C) representing a random vector with a probablity

distribution of p(x, c). A classifier maps X into C:

classfier : {1....., r1} × · · · × {1,, rd} → {1,, r}

and is a deterministic function of algorithm (A) operating on a training set

Sn = {(x(1), c(1), ..., (x(n), c(n)} [151]. Classifiers in machine learning are judged primarily on

their prediction error estimation due to the inability to calculate the exact prediction error

in most real world problems. The k-fold cross-validation method [152] is one of the leading

methodologies for prediction error estimation and our choice of 10-fold cross-validation is the

37

optimal solution between the two goals of minimizing bias and computational complexity

[151].

First-order Metrics

In binary classification model (classes: true and false), there are two possible prediction

errors derived from a confusion matrix as shown in Table 4.5:

A
ct

u
a
l

C
la

ss
Predicted Class

p n

p′ True
Positive

False
Negative

PPV

n′ False
Positive

True
Negative

NPV

SEN SPC ACC

Table 4.5: Confusion Matrix for Binary Classification

False positives (FP), also known as Type I errors, represent the first type of prediction

error and false negatives (FN), also known as Type II errors, represent the second type of

prediction errors. Derived from these values are a number of properties that are valuable

in assessing the classifier. Prevalence (PRV) is the probability of any given sample having

an actual positive value ((TP + FN)/Total) . Sensitivity (SEN) or True Positive Rate, is

the probability that a positive prediction is correct (TP/(TP + FN)). A high sensitivity

value is reliable when the result is negative because a negative result with 100% sensitivity

rules out a positive outcome whereas a positive result could still contain a false positive.

Specificity(SPC) or True Negative Rate, is the probability that a negative prediction is

correct (TN/(FP+TN)). A high specificity value is reliable when the result is positive. This

differs from the Positive Predictive Value (PPV) (TP/(TP + FP)) which is the probability

that a positive prediction is correct. A high PPV indicates that a predicted positive value is

38

actually positive. Likewise, the Negative Predictive Value (NPV) represents the probability

that a negative prediction is correct (TN/(TN + FN)). Finally, accuracy (ACC) is the

nearness of calculation of a predicted value to its actual value regardless of type (SEN ×

PRV) + (SPC × (1− PRV)).

First-order metrics are useful in validating rules generated by the model. For example,

suppose a tree model generates as its first branch on whether or not a variable is negative. If

the model has a high sensitivity score, then this model is worth exploring further; however,

if the sensitivity was low, we immediately know the model is flawed.

Second-order Metrics

While these first-order properties are useful in validating specific aspects of the model,

they do encapsulate the overall quality of the model. For this, we use second-order metrics.

The F1 score or F-measure is a rating given by the harmonic mean of the PPV and sensitivity

2 · (PPV ·SEN)
(PPV +SEN)

. This metric is biased towards the positive class, and hence negative features,

even if inverted, are devalued compared to positive features. Due to this, it is preferable to

assess this rating in conjunction with others [153].

The Matthews Correlation Coefficient (MCC) is the correlation coefficient between the

observed and predicted binary classifications:

TP×TN−FP×FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

and ranges between -1 to 1, with a value of 1 being perfect prediction, a value of 0 being

equivalent to random prediction and -1 the perfect inverse of prediction [154].

The Receiver Operating Characteristics (ROC) curve is a two-dimensional graph in

which the sensitivity is plotted on the Y-axis and the False Positive Rate (1 - specificity) is

plotted on the X-axis. The primary value of the ROC is that one can graph multiple classifiers

and juxtapose their performance visually. However, one can reduce ROC performance to a

single scalar value by calculating the Area under the curve (AUC). As the AUC is a section

of an area of the unit square, it will always be between 0 and 1.0. Moreover, because

39

random values will produce a diagonal line on an ROC curve, we can further discriminate

the performance of a given classifier as being between 0.5 and 1.0. The AUC of a classifier

is equivalent to Wilcoxon test of ranks and represents the probability that the classifier will

rank a randomly chosen positive instance higher than randomly chosen negative instance

[154].

The Chi-squared (χ2) test measures the divergence from the distribution expected under

the assumption that the feature occurrence is independent of the class value and is calculated

as:

χ2 =
n∑

i=1

(ai−ei)2
ei

where n is the number of cells in the confusion matrix, ai is the actual value and ei is the

expected value asserted by the null hypothesis. From the value generated by the test, one

can deduce the goodness of fit, which describes how well the model fits a set of observations.

We round off our metrics with two statistical measurements of error, Root Mean Squared

Error (RMSE), which measures the error rate of a regression model:

(

√
1
n

n∑
i=1

(P̂ − Ai)2)

where P̂ is the vector of predicted values and Ai is the vector of actual values and Coefficient

of determination (R2) which summarizes the explanatory power of the regression model and

is computed from the sums-of-squares terms:∑
i

(ai−pi)2∑
i

(ai−ā)2

where ai is the actual value, pi is its predicted value and ā is its mean. R2 is the proportion

of variance of the dependent variable explained by the regression model and if the model is

perfect, its value is 1 and if the model has no explanatory power, its value is 0.

Due to the diversity of heuristics used and the inherent bias of all second-order metrics,

we rank each model relative to the other models for each metric and then take the average

of those scores to generate a rough indicator of model quality.

40

4.6.2 Feature Selection

Feature selection determines the most relevant features of the forensic artifacts collected

that have a significant correlation with abnormal/malicious behavior. Proper feature selec-

tion minimizes the cardinality of the set of selected features without sacrificing indicators of

abnormal behavior. In doing so, a good feature selection algorithm prevents the over fitting

of the model, improving the classification accuracy on future data sets and reducing the

performance cost of the model by decreasing the features it must process. Another advan-

tage of feature selection is that by reducing the number of features, the remaining features

provide deeper insight into the underlying mechanisms and properties that results in suc-

cessful classification and can be critical in rule validation. ODinn relies upon two feature

selection algorithms; Stepwise selection on Multivariable Logistic Regression analysis and

Kullbeck-Leibler divergence (Information Gain).

Stepwise Selection in Multivariate Logistic Regression

Stepwise selection is often used as a solution to reduce the number of covariables in

prediction-based regression models such as binary classification and remains a standard

method in virtually all commercial statistical software programs [155]. Stepwise selection

works by combining forward-selection (the adding of features) and backward-selection (the

reduction of features) based on their statistical significance. Each time a feature is added or

pruned, the statistical significance of each covariable is recalculated and thus, through a pro-

cess of adding and subtracting all combination of features, it can find the minimum number

of features that produce the highest significance to the model. Stepwise selection algorithms

accuracy improves as the dataset increases and performance increases as the number of fea-

tures decreases and, as a result, this method has received criticism for its tendency to overfit

when the dataset is small and the number of features are large [155].

Multivariate logistic regression measures the effect of a specific covariate in the presence

of the other covariates as related to the predicted binary classes. Given a sample training set

41

with n samples on C classes such that y = (y1, ..., yc)′ with p explanatory variables/features

such that x = (x1, ..., xf)′ [156]. From this, we can calculate:

Y = XB + E

where Y = (y1, ..., yn)′ is an n × q matrix, X = (x1, ..., xn)′ is an n × p matrix, B is a

p × q coefficient matrix and E = (e1, ..., en)′ is the regression noise. Dimension reduction

is then used to ensure that the coefficient matrix B consists of explanatory variables that

are regressed together rather than individually [156]. The resulting values in the coefficient

matrix represent the correlation coefficient of each feature measured against each other and

the class. The measurement between the feature and the class is the coefficient estimation

measures, which ranges from -1 to 1 and represents the linear relationship between the two,

with a 0 being no relationship and 1 being a perfect relationship and a -1 being a perfect

inverse relationship. The t-value represents the likelihood that the explanatory feature actual

value is not 0. Finally, the p-value is the probability of obtaining a result assuming the null

hypothesis is true. For our purposes, we only reject the null hypothesis when p < 0.01.

Information Gain

Information Gain is the expectation value of the Kullback-Leibler divergence of a con-

ditional probability distribution [157]. The expected information to classify a given sample

is:

C(s1, s2,, sn) = −
n∑

i=1

si
s
log2(si

s
)

where a training set S containing samples si of class C where s is the total number of samples

in the training set and n is the number of classes. The entropy of a given feature F is:

Entropy(F) =
v∑

j=1

S1j+...+Smj
s

× I(s1j, ..., Smj)

where the feature F with values {f1, f2, ..., fv} is divided into a training set with v subsets

{S1, S2, ..., Sv} where Sj is the subset which has the value fj for feature F. Let Sj contain

scj samples of class c. Once entropy is known, information gain can be derived with:

Gain(F) = C(s1, ..., sn)− E(F)

42

ODinn uses two methods for demonstrating information gain. The first is direct calculation

from the formulas above, shown in Table 4.10. The second method the C4.5 decision tree

algorithm whose splitting criterion is the attribute with the highest normalized information

gain. The C4.5 tree provides the IDS analyst a human readable method to visualize the

information gain for rule generation and validation purposes.

43

4.6.3 Model Evaluation

This section is analysis of three data sets derived from three Einherjar scans analyzed by

numerous classifier models using the metrics discussed above. The models are then evaluating

using the previously discussed binary classification metrics (see A.3 are constructed along

with their Confusion Matrix.

Rankings

In order to evaluate our classifiers against one another, each model is ranked in ascending

order for each second-order metric. The model’s relative ranking for each metric is then

averaged to generate a single metric that ranks each classifier.

Learner AUC ACC F1 MCC RMSE R2 X2 AVG
stack 4 1 1 1 6 1 1 2.14
logreg 6 1 1 1 6 1 1 2.43
svm 7 1 1 1 6 1 1 2.57
c45 8 1 4 4 6 1 4 4.0
bayes 1 5 5 5 3 5 5 4.14
neural 2 5 5 5 3 5 5 4.29
forest 2 5 7 7 3 5 7 5.14
knn 5 8 8 8 2 8 8 6.71
rules 9 9 9 9 1 9 9 7.86

Table 4.6: Overall Rankings for Classifiers with Process Scan

The ensemble technique of stacking the various other classifiers is the best performing

classifier on process scan with logistic regression and SVM performing almost as well and

C4.5 rounding out the top four.

Due to the overwhelming classifying power of modules feature, most classifiers perform

optimally and notably, the stacking technique and logistic regression classifiers are in the

top position. The SVM classifier fails to generate a proper confusion matrix and is excluded

from the module scan.

The association rule classifier and C4.5 algorithm perform in the top 33 percentile in

every metric but the F1 score. The stacking algorithm performs roughly average in each

44

Learner AUC ACC F1 MCC RMSE R2 X2 AVG
stack 1 1 1 1 4 1 1 1.43
c45 1 1 1 1 4 1 1 1.43
logreg 1 1 1 1 4 1 1 1.43
rules 1 1 1 1 4 1 1 1.43
forest 1 1 1 1 4 1 1 1.43
bayes 1 6 6 6 1 6 6 4.57
knn 1 6 6 6 1 6 6 4.57
neural 1 6 6 6 1 6 6 4.57

Table 4.7: Overall Rankings for Classifiers with Module Scan

Learner AUC ACC F1 MCC RMSE R2 X2 AVG
rules 4 2 1 1 8 2 1 2.71
c45 6 1 3 2 9 1 2 3.43
stack 1 5 2 4 5 5 4 3.71
neural 5 4 7 5 6 4 5 5.14
svm 9 6 5 6 4 6 6 6.0
bayes 7 7 6 7 3 7 7 6.29
forest 2 9 9 9 1 9 9 6.86
logreg 8 8 8 8 2 8 8 7.14

Table 4.8: Overall Rankings for Classifiers with File Scan

metric. Logistic Regression, which had previously performed incredibly well fails thoroughly

on the File Scan. However, this is not particularly concerning because, as will be covered

later, the File Scan’s features simply are not predictive enough to generate a usable model.

Overall, the rankings strongly indicate using the stacking or logistic regression classifier

with the C4.5 classifier. However, its possible that our classifier models suffer from overfitting

and before we adopt these classifiers wholesale, the features of the data sets should be

evaluated.

Feature Selection

In the first two data sets, logistic regression with stepwise selection (Table 4.9) prunes

the features to a single feature with extremely high coefficient estimation (0.735 and 0.958

respectively) and highly significant P-value (0 for both). In the third dataset, only when

the feature is unknown is there both a significant coefficient and a significant P-value. The

45

Process Scan Coeff Est Std Error t-value P-value
pslist=True 0.735 0.097 7.594 0.0001

Module Scan Coeff Est Std Error t-value P-value
modules=False 0.958 0.023 41.601 0.0001

File Scan Coeff Est Std Error t-value P-value
dead=Unknown 0.556 0.016 34.195 0.0001

pointers -0.015 0.002 -6.489 0.0001
access -0.008 0.003 -3.133 0.002
fname 0.000 0.000 2.694 0.007

Table 4.9: Stepwise Selection for each scan’s features

remaining features have zero or negative coefficient estimations and while pointers possesses

a highly significant P-value, its coefficient estimation precludes inclusion as a significant

feature. The fact that stepwise selection finds in the process and module scan that can

explain the entire model with a significant P-value is enough to reject the null hypothesis for

those models; however, to be certain, we validate these findings with the information gain

of the features.

Process Scan Info. Gain
pslist 0.62
ppid 0.06
pname 0.03
Module Scan Info. Gain
modules 0.54
File Scan Info. Gain
access 0.06
pointers 0.04
fname 0.02

Table 4.10: Information Gain (> 0) for each scan’s features

The information gain (Table 4.10) corroborates the stepwise selection algorithm for the

first two data sets, showing that our features (pslist and modules) provide enough information

gain to reject the null hypothesis. In the Process scan data set, the information gain of

pslist is an entire order of magnitude higher than any other feature and in the Module

scan data set, the module feature is the only one of relevance. However, information gain

does not corroborate the File scan data set because while stepwise selection explores each

46

features individual outcomes and finds that when the dead feature is Unknown significant,

information gain evaluates the feature in its entirety and since dead=Unknown occurs so

rarely in the overall data, the information gain of the dead feature is essentially zero. This

allows us to reject File scan as a sensor and to avoid using its models as part of our rule

generation.

4.6.4 Rule Generation

There are two methods for generating rules from our classifiers. The first is to use the

C4.5 algorithm to generate tree-based rules that can be easily validated by a human and

the rules generated can be tested after each scan runs with almost no additional overhead.

In this scenario, the BalDr component scans Mimisbrunnr and when the tree rule is found,

raises an alert. Below is an example of the C4.5 Trees generated by the data sets previously

evaluated.

Process Scan Tree

pslist = False:False (34.0)

pslist = True:

— pname > Run.exe:True (10.0)

— pname <= Run.exe:False (4.0)

— — pname >= Cmd.exe: True (3.0)

— — pname < Cmd.exe: False (4.0)

Module Scan Tree

modules = True:True (29.0)

modules = False:False (129.0)

As the values are mapped, Process names (pname) are floating point values stored in the

order that processes were discovered by the Einherjar scans. Thus, despite process names

(pname) representing a string value (e.g. Run.exe), it can express them as greater than or

less than other process names. Because all the non-malicious use-case data set is loaded into

47

the database prior to running the malware samples, the decision tree found that even when a

process is in the doubly-linked list, there is a high probability it is still malicious if the process

occurs after a hidden Run.exe or Cmd.exe process. This discovery was something we did not

anticipate though such a discovery was easily validated, an aforementioned advantage of the

tree model. In this case, we know via the forensic and malware analysis communities that

hidden uses of Run.exe have virtually no legitimate purposes and Cmd.exe, while occasionally

hidden for legitimate purposes is still a hallmark of many malware infection and persistence

routines. However, if the C4.5 algorithm is significantly outperformed, Muninn uses an

alternative method.

In these cases, the highest ranking classifier model is stored as a file using object seri-

alized, the Python pickle module. When the protect mode is active, the chosen serialized

model is loaded from the file and waits for the Einherjar scans to start storing data into

the database, Mimisbrunnr. Data from Mimisbrunnr is mapped into values the classifier

can interpret and if a True Positive is found, an alert is raised. The stacking classifier is

the most accurate model by the average rankings across all the various scans, beyond the

three evaluated in this section though logistic regression is often competitive. When logistic

regression is superior, it is chosen do to its performance advantage over the stacking model.

This modular approach to rule generation allows for the IDS owner to make appropriate

trade-offs between accuracy and speed based upon their individual needs.

4.7 BalDr - Protection and Mitigation

In wondrous beauty once again

Shall the golden tables stand mid the grass,

Which the gods had owned in the days of old,

Then fields unsowed bear ripened fruit,

All ills grow better, Baldr comes back [140].

48

BalDr is perhaps the most important component of ODinn. As previously noted by

the Muninn component, a rule generated by our heuristics is validated. Once the rule is

accepted, it is stored into a dictionary that exists within BalDr. BalDr only runs during

production mode and continuously polls the tables in Mimisbrunnr, looking for matches to

its ruleset. If one is found, the guest is considered infected. Traditionally once malware

has infected a machine, the machine is rendered unusable until a technician can remove

the malware. Often, the infection is so severe or difficult to remove that the machine’s

OS must be completely reinstalled with significant loss of data and/or time. Furthermore,

if forensics and/or malware analysis is to be carried out, a bit-by-bit copy must be made

before the infection is removed, increasing the productivity loss to the user and organization.

Baldr virtually eliminates this productivity downtime, providing almost immediate use of

an infection free machine to the user with only minor data loss and providing copies for

concurrent forensic investigation and malware analysis. It achieves this through the use of a

virtualization technique known as live snapshots.

4.7.1 Live Snapshots

In order for ODinn to support live snapshots, we must limit our cloud integration to

KVM [158]. In our previous work [103], we used Xen with images residing on an Logical

Volume Manager (LVM) drive to achieve low-downtime snapshots. This methodology mini-

mized downtime, but users were impacted briefly during every snapshot and if the snapshots

occurred frequently (necessary to minimize data loss during rollback), it was disorienting to

users. Live snapshots require the following actions:

1. Guest Machine is placed in a transient state.

2. A new image is created and added to the snapshot stack

3. All pending I/O from the guest is immediately flushed.

4. The new image file is opened.

49

5. The current image file is set as the backing file

6. Live block copy is initiated.

Before the live block copy can occur, a limitation of libvirt first requires the guest to

be placed in a transient state. This is because libvirt assumes that all block actions are

modifications directly to the image and thus, should a running guest crash while a block job

is active, it has a high probability of corrupting the image. However, QEMU’s block copy

performs mirroring and does not modify the active image. Live block copy consists of three

stages: bulk, dirty and mirrored writes (see Figure 4.8). During the bulk phase, all new

writes to the guest machine undergoing snapshot are flagged as dirty blocks. Concurrently,

all sectors from the source block device are copied to the destination block device. Next, all

dirty blocks (blocks that were written to during the bulk phase) are copied. Finally, mirrored

writes occur to both source and destination simultaneously until the QEMU finalizes the

snapshot. Then the guest is restored to a persistent state or destroyed, pending whether it

was a standard snapshot or malware infected snapshot.

50

Figure 4.8: Three phases of QEMU live block copy (Bulk, Dirty, Mirror) [7].

It is important to note that the snapshot only consists of changes that have occurred

to the base image and is not a complete copy of the base image. As this technique is

usually an imperceptible performance impact to the user, BalDr aggressively performs live

snapshots (default is every five minutes), and while this has minimal storage impact, it

becomes necessary at the end of the session to merge the snapshots into the original image

to consolidate administrative overhead. QEMU initiates live merging as followed (see Figure

4.9):

Figure 4.9: Merging Snapshots. [7].

1. The snapshot stack is consolidated into the topmost (newest) snapshot.

2. A copy-on-read is performed from the beginning to the end of the file.

51

3. Unallocated areas in the backing file are ignored.

4. One or more images can be pruned from the stack.

BalDr only consolidates at each hour and then does a final consolidation of each hourly

snapshot when the user’s session has ended. This ensures that, in the worst case scenario, a

rule is violated during the hourly snapshot merger, the user only loses an hour of productivity.

When malware is detected, the guest machine is paused to prevent any post-exploitation

activities by the intrusion that would damage assets. During this pause, the user is informed

that an intrusion was found and that the guest machine will be rolled back to the most

recent safe snapshot. Concurrent to this messaging, the guest machine undergoes a complete

snapshot that is then migrated to a new host that has no network access or external disk

access for the forensic and/or malware analyst to explore with Huginn. Once this snapshot

is complete, the guest machine is reverted and the guest machine resumes operations. If an

intrusion is detected a second time during the same session, the guest machine is disabled

until an analyst can manually verify the machine is safe for operation.

4.8 Huginn - Malware Analysis Suite

Huginn is a malware analysis suite that utilizes virtualization properties to provide

forensic investigators with a number of tools that do not exist elsewhere for cloud forensics.

First, Huginn provides automated verification of DLL and drivers, providing forensic analysts

just those DLL and drivers that have been created or altered by the malware. Second,

Huginn allows a forensic analyst to automatically reconstruct a stripped Microsoft Portable

Executable (PE) header and integrate the reconstructed header into IDA Pro [159] for reverse

engineering. Finally, Huginn provides a way to manually augment Muninn with new rules

on-the-fly to protect against future intrusions. Additionally, Huginn has access to all the

Volatility monitors used by Geri and Freki as well as a number of unique Volatility plugins

aimed towards manual forensic analysis.

52

4.8.1 Verification of DLL and Drivers

Figure 4.10: Hashes from moddump

Huginn provides a major advantage over contemporary forensic methodologies by pro-

viding the analyst with a fully working copy of the guest machine in a pre-infected state.

Building on this intrinsic benefit, Huginn can automatically detect modified DLL and Kernel

drivers. To do this, it executes two Volatility monitors - dlldump and moddump (see Table

4.12) - on both images, performs an MD5 hash (see Figure 4.10) on each driver or DLL

and then juxtaposes the resulting hashes, outputting only new or modified DLL/drivers. In

this manner, intrusions reliant on DLL/driver hooks can be identified almost immediately

for further analysis as the total number of modified files is a fraction of the original (see

Table 4.11). The analyst can use snapshots dating all the way back to the creation of the

image should they suspect that the infection dates to before the most recently thought clean

snapshot was taken.

53

DLL Files Reduction
Total 1305 –
Modified 60 95%
Modules Files Reduction
Total 172 –
Modified 3 98%

Table 4.11: Number of total DLL files and module files compared to the number modified

4.8.2 Stripped PE Header reconstruction

The PE is used by executable files, DLL, and device drivers for Windows operating

systems. Files that follow this specification have a defined structure that can be used to

interpret them both on disk and in memory. Figure 4.11 illustrates the structure of a

PE file. The base of the image header begins with the hex bytes 0x4d5a, or “MZ” in ascii

signifying the PE file’s MS-DOS Compatibility. Then an offset, always located at 0x3c points

to the actual PE header; which, when valid, always starts with a 4-Byte signature “PE”.

The PE Header is of contains useful information such as the section information, symbol

information, and machine type information of the executable file. The optional header,

indicated by 0x10b in 32-bit PE files, is the most important header for malware analysis.

This header contains within it the export table which contains all the names and pointers to

all Windows API functions exported by the image. Because of this, malware often completely

erases the PE header.

In Figure 4.12, the lines of ’....’ indicate the PE file has been stripped of its headers.

At the very least, as in the canonical example previously discussed, this PE header should

possess an ’MZ’ flag. The malware author’s goal is in stripping a PE binary’s header is to

hamper reverse engineering of the malware code by denying access to which Windows API

functions are imported that would otherwise reside in the optional header. Further compli-

cated matters is that some binaries that are dumped may lack the Import Address Table

(IAT) due to one or more pages of the PE Header not existing in resident (paged) memory,

54

Figure 4.11: PE Structure [8].

so sometimes inadvertent PE header stripping occurs without malicious intervention. Re-

gardless of how, Huginn can automatically reconstruct stripped PE headers and additionally,

create an IDC file for IDA Pro use. This process takes a couple seconds before outputting

an idc file as shown in Figure 4.13 below.

55

Figure 4.12: Example of stripped PE Header

Figure 4.13: Reconstructed IDC file

4.8.3 Rule Augmentation

The final novel benefit provided for cloud forensics is the ability to insert new rules

on-the-fly found during analysis. Consider IAT-based rootkit shown below (Figure 4.14).

In Windows functions after XP SP2, all functions have a five-byte preamble that upon

the function accomplishing its task, returns execution to the calling code. This exploit

technique works by saving, then overwriting the five-byte preamble of an otherwise innocently

called function with a jump whose address points to the malicious code. Upon completion,

56

the malicious retrieves the proper five-byte preamble, loads it, and returns functionality to

the calling application [8]. In this manner, the rootkit can reinsert control whenever this

Windows function is called.

Figure 4.14: Hooking the Import Address Table [6].

Suppose an attacker using this technique in a way Muninn’s current ruleset doesn’t

account for is discovered by an analyst using Huginn (refer to apihooks or callbacks in Table

4.12). If the overwritten version of this five-byte preamble were “8B 10 61 A8 54”, the

analyst can set in a Mimisbrunnr table reserved for this function those bytes, and along with

Muninn’s normal polling, a subpoller utilizing yarascan will execute, looking for that five-

byte YARA signature in the opcodes. If found, normal detection and mitigation protocol

outlined in BalDr will occur.

57

Huginn Description

dlldump Extracts all DLL from all processes.
vaddump Extracts pages belonging to each VAD node are placed in separate files.
moddump Extract kernel driver to file.
dumpfiles Extracts all files that are mapped as DataSectionObject, ImageSectionObject or SharedCacheMap.
procmemdump Extracts process’s executable (with slack space).
procexedump Extracts process’s executable (without slack space).
hivedump Recursively list all subkeys in a hive.
apihooks Finds IAT, EAT, Inline style hooks, and several special types of hooks.
callbacks Lits important notification routines and kernel callbacks.
vadinfo Displays extended information about a process’s VAD nodes.
ldrmodules Cross-references DLLs with the 3 PEB lists looking for inconsistencies.
malfind Finds hidden or injected code/DLLs based on characteristics such as VAD tag and page permissions.
yarascan Locate any sequence of bytes, regular expressions, ANSI strings, or Unicode strings in memory.
timeliner Arranges memory artifacts in order of occurrence to provide a timeline of events.

Table 4.12: List of volatility plugins utilized by Huginn [10].

58

4.9 Urdarbrunnr - ODinn’s Benchmarks

It is important to demonstrate the scaling of ODinn as the number of virtual machines

increases. As the first three tables below demonstrate, memory usage remains low as it scales.

When compared to a single guest machine which uses 50% memory overhead, the memory

overhead for 10 guests ODinn is 33%. This is because only one component, Einherjar,

significantly affects memory scaling and a significant portion of its overhead for one guest

becomes shared memory when scaled. Guest Machines are configured with a single CPU

and 512 MB of RAM. They run the 32-bit Windows 7 Professional with Service Pack 1.

Memory usage is measured every second using the ps command with the v flag (memory

centric-view).

Figure 4.15: Memory Usage for 1 Guest Machine

59

Figure 4.16: Memory Usage for 1 Guest Machine with ODinn

Figure 4.17: Memory Usage for 10 Guest Machines with ODinn

60

The CPU scaling (Figure 4.20); however, does improve as scaling increases but not

significantly as is the case with memory, going from an 18% average CPU utilization for one

guest machine, to nearly 80% average CPU utilization with 10 CPUs. CPU usage is measured

every second with the ps command. This overhead is the result of aggressive scanning (scans

are restarted as soon as they end) by the Einherjar component and a reduction in the number

of modules used or the reduction in scanning frequency will allow for CPU usage curve that

is acceptable for the cloud.

Figure 4.18: CPU Usage for 1 Guest Machine

61

Figure 4.19: CPU Usage for 1 Guest Machine with ODinn

Figure 4.20: CPU Usage for 10 Guest Machines with ODinn

62

Chapter 5

Future Work

5.1 Yggdrasil

Yggdrasil’s dependency on libvirt, while an asset in many ways, has some limitations

that will need to be addressed by directly modifying libvirt or replacing it entirely. The

first major concern is the introduction of Non-Uniform Memory Access (NUMA) memory

architecture implemented by AMD (HyperTransport) and Intel (QuickPath Interconnect) in

multi-processor and multi-core systems. Unlike Symmetric Processing Servers, the NUMA

architecture has its memory decentralized and shared by the pool of processors and/or cores.

This is highly advantageous in reducing the bottlenecks (saturation) between the processor

and its memory but exponentially increases the complexity of efficiently managing optimized

virtual machines. This plays out in virtualization in two separate areas. The first is opti-

mizing the server itself to efficiently allocate resources, and in this area, libvirt was designed

correctly and memory access can be interleaved. This allocates memory to each guest ma-

chine in chunks in a round-robin like manner and can even allow a one-to-one mapping of

virtual CPUs to physical CPUs where dedicated resource usage is needed. However, the sec-

ond area libvirt lacks maturity in is exposing the guest machine to the NUMA architecture

at its disposal. The problem comes from its service numad, which automatically optimizes

the placement of containers (cgroups) to separate the context of applications on a single

guest machine. Here, manual placement is still far superior to the automated version yet

the time required to manually configure every guest is too burdensome for use in a typical

cloud environment. Additionally, the API has a number of features previously discussed

that are deleterious to fully automating the management of Odinn. Sandia has an in-house

alternative to libvirt that may be utilized (and has successfully launched over one million

63

guest machines at once [160] or the author may attempt to contribute directly to libvirt to

improve these areas.

5.2 HliDskjalf and Einherjar

Einherjar will continue to exist as a development tool for ODinn; however, Volatility’s

performance limits its utility at the upper threshold of scalability due to its reliance upon

Python’s Global Intepreter Lock and its design goals (as a memory analysis tool instead

of live analysis tool; ease of development rather than optimal performance). Future work

will use Einherjar to prototype scans and then, if our model validation finds them useful to

malware classification, implement them directly into the HliDskjalf’s API directly in C or

ideally, we will create an API wrapper in Go and utilize its highly desirable design focus on

concurrency so that thousands of scans can be run simultaneously with low overhead.

5.3 Mimisbrunnr

With the recent development of single modules of RAM with 128GB of memory, indi-

vidual cloud nodes will be capable of exceeding 1 terabyte of RAM. When first envisioned

three years ago, the memory availability of servers running large numbers of virtual ma-

chines was primarily blocked by the memory availability rather than the number of CPU

cores/threads. As this limitation changes, the database should be modified so that it fully

operates in memory rather than on disk for optimal performance and this may necessitate

a switch from postgres to NoSQL, requiring a rewrite of its underlying API or sufficient

performance may be achieved simply by transitioning Mimisbrunnr directly to memory with

no other modifications.

64

5.4 Muninn

As previously mentioned, Sandia’s Forensic Analysis Repository for Malware (FARM)

is being utilized to train ODinn. Future work will incorporate parts of ODinn directly into

FARM and the resulting analysis of its millions of malware can be leveraged alongside a

large non-malicious dataset garnered from Sandia’s internal cloud [161] to vastly improve

the training and validations sets available to Muninn. Additional research also needs to be

performed to identify all the legitimate instances when a windows artifact (process, thread,

file handle) is hidden and eliminate those from becoming false positives.

5.5 BalDr

The highest priority is to improve the robustness of our QEMU low level block actions

as well as adopt to the block job architecture (asynchronous block actions) instead of our

synchronous solution. Ideally, the live snapshot command in libvirt will actually work with

QEMU properly in an upcoming version allowing us to forego this necessity as our solution

exhibits a modest amount of overhead while it monitors the block-copy action until it has

finished instead of being notified directly by libvirt or the virtualization tool itself. Addition-

ally, there is value in weighting the various rules such that a single rule is not sufficient in

isolation to trigger a malware detection unless that particular rule never exhibits a false pos-

itive. The current implementation is somewhat brutish and thus too prone to false positives

(though due to the relative low cost to the user, this is not entirely unwise since the tradeoff

is less false negatives). Finally, it would be advantageous to do two block jobs simultaneously

to improve the speed at which a copy can be made for Huginn before reverting the user to

the most recent clean snapshot.

65

5.6 Huginn

The previous referenced possibility of a massive non-malicious dataset, facilitates the

adoption of context piecewise triggered hashes instead of the standard hashing method cur-

rently used. This hashing generates a percentage metric that indicates the shared content

that two input files share in common. Using this score, we can ascertain with a high de-

gree of confidence the amount of modification a memory artifact has undergone. Currently,

this type of fuzzy hashing has been used for malware triage to identify malware variants

given a known signature; however, in the context of Huginn, we can do something unique.

By generating a collection of hashes for each module and driver found in the non-malicious

dataset, we can prune many of the false positives the analyst must review to determine which

modifications were actually malicious and which naturally occurred. While the number of

modules is already reduced by 95%, reducing this to 99.9% or higher would be quite valu-

able. Additionally, providing stronger integration into Ida Pro or alternative debuggers (e.g.

Immunity Debugger) will facilitate quicker development of temporary yara rules and assess

the post-exploitation/data exfiltration goals of the malware.

66

Chapter 6

Conclusion

In this dissertation, several novel contributions were presented to leverage properties of

virtualization. First, ODinn implements a fully integrated explicit semantic bridge via the

Einherjar componenet. This component, implemented as a fork of Volatility, provides out-

of-guest sensors pre-validated by the forensic memory analysis community in a performance

conscious manner. This is accomplished by caching important values, creating a single scan

for all memory structures, and by converting Volatility into a library. By intergrating an

existing forensic memory analysis suite, we demonstrate the ability to perform introspection

without explicit knowledge of a particular Operating System’s internal structures.

Second, Muninn provides exceptional accuracy via ensembles of multiple binary classi-

fiers to efficiently detect malware and mitigate infections before they can engage or complete

in post-exploitation activities. Muninn’s classifiers undergo stringent model validation to pre-

vent overfitting and maximize accuracy. Muninn was validated against a myriad of highly

sophisticated malware via the Loki component and the models generated were selected for

their overall quality via numerous binary classification metrics.

Third, a mitigation capability is demonstrated via the BalDr component, a snapshot

managing agent with a live snapshot mechanism. This mitigation component rapidly restores

a user’s guest machine to its pre-infected state, minimizing productivity/data loss, once an

infection is detected.

Fourth, a malware analysis engine is demonstrated, Huginn, which takes advantage of

a virtualization property, access to the pre-infected state, to greatly the reduce the number

of DLLs/drivers/modules that need to be examined so that rapid determination of malware

67

functionality can be exposed. In many cases, this occurs regardless if it was initially a

packed/encrypted PE file.

Furthermore, this solution is portable, dependent only of KVM, operating on both 32-

bit and 64-bit architectures and supports the three most common OS-families (Windows,

Macintosh, and Linux). ODinn has numerous benefits compared to its brethren cloud-IDSs.

The end result is an IDS that is prepared to meet the challenges imposed by the adoption

of the cloud, and the exponential growth/sophistication of malware.

68

Bibliography

[1] “av-test.” [Online]. Available: http://www.av-test.org/typo3temp/avtestreports/

malware-last-10-years en.png

[2] H. Lipson, “Tracking and tracing cyber-attacks: Technical challenges and global policy

issues,” Carnegie Mellon Software Engineering Institute, Pittsburgh, Tech. Rep., 2002.

[Online]. Available: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=

html&identifier=ADA408853

[3] Intel, “Intel 64 and IA-32 Architectures Software Developers Manual,” Intel, Tech.

Rep. September, 2013.

[4] “FUSE: Filesystem in Userspace.” [Online]. Available: http://fuse.sourceforge.net/

[5] B. Payne, “Simplifying virtual machine introspection using LibVMI.” Journal of

Network and Computer Applications, vol. 36, no. 1, pp. 16–24, Jan. 2012. [On-

line]. Available: http://linkinghub.elsevier.com/retrieve/pii/S1084804512001944http:

//prod.sandia.gov/techlib/access-control.cgi/2012/127818.pdf

[6] C. Ries, “Inside windows rootkits,” VigilantMinds Inc, 2006. [Online]. Available:

http://thehackademy.net/madchat/vxdevl/library/InsideWindowsRootkits.pdf

[7] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator.” USENIX Annual

Technical Conference, FREENIX . . . , pp. 41–46, 2005. [Online]. Available: http:

//static.usenix.org/events/usenix05/tech/freenix/full papers/bellard/bellard html/

69

http://www.av-test.org/typo3temp/avtestreports/malware-last-10-years_en.png
http://www.av-test.org/typo3temp/avtestreports/malware-last-10-years_en.png
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA408853
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA408853
http://fuse.sourceforge.net/
http://linkinghub.elsevier.com/retrieve/pii/S1084804512001944 http://prod.sandia.gov/techlib/access-control.cgi/2012/127818.pdf
http://linkinghub.elsevier.com/retrieve/pii/S1084804512001944 http://prod.sandia.gov/techlib/access-control.cgi/2012/127818.pdf
http://thehackademy.net/madchat/vxdevl/library/Inside Windows Rootkits.pdf
http://static.usenix.org/events/usenix05/tech/freenix/full_papers/bellard/bellard_html/
http://static.usenix.org/events/usenix05/tech/freenix/full_papers/bellard/bellard_html/

[8] B. Pagel, “Automated virtual machine introspection for host-based intrusion

detection,” Ph.D. dissertation, Air Force Institute of Technology, 2009. [On-

line]. Available: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&

identifier=ADA499499

[9] M. Pearce, S. Zeadally, and R. Hunt, “Virtualization: Issues, security threats, and

solutions,” ACM Computing Surveys (CSUR), vol. 45, no. 2, p. 17, 2013.

[10] “Volatility Wiki.” [Online]. Available: https://code.google.com/p/volatility/wiki/

CommandReference23

[11] A. Saberi and Z. Lin, “H YBRID-BRIDGE : Efficiently Bridging the Semantic Gap in

Virtual Machine Introspection via Decoupled Execution and Training Memoization,”

Proceedings Network and Distributed Systems Security Symposium (NDSS14), 2014.

[12] Y.-S. Wu, P.-K. Sun, C.-C. Huang, S.-J. Lu, S.-F. Lai, and Y.-Y. Chen,

“EagleEye: Towards mandatory security monitoring in virtualized datacenter

environment,” 2013 43rd Annual IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN), pp. 1–12, Jun. 2013. [Online]. Available: http:

//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6575300

[13] M. Crawford and G. Peterson, “Insider Threat Detection using Virtual Machine

Introspection,” System Sciences (HICSS), 2013 46th . . . , 2013. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=6480061

[14] Y. Fu and Z. Lin, “EXTERIOR: using a dual-VM based external shell

for guest-OS introspection, configuration, and recovery,” Proceedings of the

9th ACM SIGPLAN/SIGOPS . . . , pp. 97–109, 2013. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2451534

70

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA499499
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA499499
https://code.google.com/p/volatility/wiki/CommandReference23
https://code.google.com/p/volatility/wiki/CommandReference23
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6575300
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6575300
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6480061
http://dl.acm.org/citation.cfm?id=2451534

[15] T. Lengyel and J. Neumann, “Virtual machine introspection in a hybrid honeypot

architecture,” Proceedings of the 5th . . . , p. 5, 2012. [Online]. Available:

https://www.usenix.org/system/files/conference/cset12/cset12-final14.pdf

[16] K. Vieira and A. Schulter, “Intrusion detection for grid and cloud computing,” It

. . . , no. August, 2010. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?

arnumber=5232794

[17] B. Dolan-Gavitt and T. Leek, “Virtuoso: Narrowing the semantic gap in virtual

machine introspection,” Security and Privacy (. . . , pp. 297–312, 2011. [Online].

Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5958036

[18] A. Roberts, R. Mcclatchey, S. Liaquat, N. Edwards, M. Wray, A. Roberts, R. Mc-

clatchey, N. Edwards, and M. Wray, “Introducing Pathogen : A Real-Time Virtual

Machine Introspection Framework Abstract : POSTER : Introducing Pathogen : A

Real-Time Virtual Machine Introspection Framework,” Proceedings of the 2013 ACM

SIGSAC conference on Computer & communications security, 2013.

[19] H. Jin, G. Xiang, D. Zou, S. Wu, F. Zhao, M. Li, and W. Zheng, “A VMM-based

intrusion prevention system in cloud computing environment,” The Journal of Super-

computing, vol. 66, no. 3, pp. 1133–1151, 2013.

[20] F. Azmandian, M. Moffie, M. Alshawabkeh, J. Dy, J. Aslam, and D. Kaeli, “Virtual

machine monitor-based lightweight intrusion detection,” ACM SIGOPS Operating Sys-

tems Review, vol. 45, no. 2, pp. 38–53, 2011.

[21] S. Roschke, F. Cheng, and C. Meinel, “An advanced ids management architecture,”

Journal of Information Assurance and . . . , vol. 5, pp. 246–255, 2010. [Online].

Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.6223&rep=

rep1&type=pdf

71

https://www.usenix.org/system/files/conference/cset12/cset12-final14.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5232794
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5232794
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5958036
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.6223&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.6223&rep=rep1&type=pdf

[22] T. Sproull and J. Lockwood, “Distributed instrusion prevention in active

and extensible networks,” Active Networks, 2007. [Online]. Available: http:

//link.springer.com/chapter/10.1007/978-3-540-71500-9 4

[23] M.-L. Shyu and V. Sainani, “A multiagent-based intrusion detection system with the

support of multi-class supervised classification,” in Data Mining and Multi-agent In-

tegration. Springer, 2009, pp. 127–142.

[24] Z. Li, Y. Gao, and Y. Chen, “HiFIND: A high-speed flow-level intrusion

detection approach with DoS resiliency,” Computer Networks, 2010. [Online].

Available: http://dx.doi.org/10.1016/j.comnet.2009.10.016http://www.sciencedirect.

com/science/article/pii/S1389128609003375

[25] S. Khanum, M. Usman, and A. Alwabel, “Mobile Agent Based Hierarchical

Intrusion Detection System in Wireless Sensor Networks,” International Journal

of Computer . . . , vol. 9, no. 1, pp. 101–108, 2012. [Online]. Available:

http://ijcsi.org/papers/IJCSI-9-1-3-101-108.pdf

[26] A. Herrero and E. Corchado, “Hybrid multi agent-neural network intrusion detection

with mobile visualization,” Innovations in Hybrid . . . , pp. 320–328, 2007. [Online].

Available: http://link.springer.com/chapter/10.1007/978-3-540-74972-1 42

[27] M.-Y. Su, G.-J. Yu, and C.-Y. Lin, “A real-time network intrusion detection system for

large-scale attacks based on an incremental mining approach,” Computers & security,

vol. 28, no. 5, pp. 301–309, 2009.

[28] A. V. Dastjerdi, K. A. Bakar, and S. G. H. Tabatabaei, “Distributed Intrusion

Detection in Clouds Using Mobile Agents,” 2009 Third International Conference

on Advanced Engineering Computing and Applications in Sciences, pp. 175–180,

Oct. 2009. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=5359505

72

http://link.springer.com/chapter/10.1007/978-3-540-71500-9_4
http://link.springer.com/chapter/10.1007/978-3-540-71500-9_4
http://dx.doi.org/10.1016/j.comnet.2009.10.016 http://www.sciencedirect.com/science/article/pii/S1389128609003375
http://dx.doi.org/10.1016/j.comnet.2009.10.016 http://www.sciencedirect.com/science/article/pii/S1389128609003375
http://ijcsi.org/papers/IJCSI-9-1-3-101-108.pdf
http://link.springer.com/chapter/10.1007/978-3-540-74972-1_42
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5359505
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5359505

[29] A. Byrski and M. Carvalho, “Agent-based immunological intrusion detection system

for mobile ad-hoc networks,” in Computational Science–ICCS 2008. Springer, 2008,

pp. 584–593.

[30] M. Alazab, S. Venkatraman, and P. Watters, “Cybercrime: the case of obfuscated

malware,” Global Security, Safety . . . , pp. 204–211, 2012. [Online]. Available:

http://link.springer.com/chapter/10.1007/978-3-642-33448-1 28

[31] S. Paul and B. K. Mishra, “Honeypot based signature generation for defense against

polymorphic worm attacks in networks,” in Advance Computing Conference (IACC),

2013 IEEE 3rd International. IEEE, 2013, pp. 159–163.

[32] “Armadillo.” [Online]. Available: www.siliconrealms.com

[33] “ASpack.” [Online]. Available: www.aspack.com

[34] “Obsidium.” [Online]. Available: www.obsidium.de

[35] “Themida.” [Online]. Available: www.oreans.com

[36] RSA, “The Current State of Cybercrime and What to Expect in 2011,” RSA, Tech.

Rep. December 2010, 2011.

[37] ——, “The Current State of Cybercrime: An Inside Look at the Changing Threat

Landscape,” RSA, Tech. Rep. January, 2013.

[38] Symantec, “Internet Security Threat Report,” Symantec Corporation, Tech. Rep.

April, 2013.

[39] Mcafee, “2011 Threats Predictions,” McAfee, Santa Clara, Tech. Rep., 2011.

[40] ——, “2013 Threats Predictions,” McAfee, Santa Clara, Tech. Rep., 2013.

73

http://link.springer.com/chapter/10.1007/978-3-642-33448-1_28
www.siliconrealms.com
www.aspack.com
www.obsidium.de
www.oreans.com

[41] S. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion detection using sequences

of system calls,” Journal of computer security, 1998. [Online]. Available:

http://iospress.metapress.com/index/M19JJ5LNHBEB0BVF.pdf

[42] J. Li, M. Krohn, D. Mazières, and D. Shasha, “Secure untrusted data repository

(SUNDR),” OSDI, 2004. [Online]. Available: http://www.usenix.org/event/osdi04/

tech/full papers/li j/li j.pdf

[43] D. Wagner and R. Dean, “Intrusion detection via static analysis,” Security

and Privacy, 2001. S&P 2001. . . . , pp. 156–168, 2001. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=924296

[44] A. Wespi, M. Dacier, and H. Debar, “Intrusion detection using variable-length audit

trail patterns,” Recent advances in intrusion detection, pp. 110–129, 2000. [Online].

Available: http://link.springer.com/chapter/10.1007/3-540-39945-3 8

[45] T. Garfinkel, “Paradigms for Virtualization Based Host Security,” Ph.D. dissertation,

Stanford University, 2010.

[46] T. Ptacek and T. Newsham, “Insertion, evasion, and denial of service: Eluding

network intrusion detection,” Information Assurance Technology Analysis Center,

Falls Church, Tech. Rep., 1998. [Online]. Available: http://oai.dtic.mil/oai/oai?verb=

getRecord&metadataPrefix=html&identifier=ADA391565

[47] A. Kerckhoffs, La cryptographie militaire. University Microfilms, 1978.

[48] B. Wotring, Host Integrity Monitoring Using Osiris and Samhain. Syngress, 2005.

[49] C. Ko, T. Fraser, L. Badger, and D. Kilpatrick, “Detecting and countering system

intrusions using software wrappers,” in Proceedings of the 9th conference on USENIX

Security Symposium-Volume 9. USENIX Association, 2000, p. 11.

[50] S. Cesare, “Runtime kernel kmem patching,” VX Heavens, vol. 5, pp. 63–78, 1998.

74

http://iospress.metapress.com/index/M19JJ5LNHBEB0BVF.pdf
http://www.usenix.org/event/osdi04/tech/full_papers/li_j/li_j.pdf
http://www.usenix.org/event/osdi04/tech/full_papers/li_j/li_j.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=924296
http://link.springer.com/chapter/10.1007/3-540-39945-3_8
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA391565
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA391565

[51] K. Adams and O. Agesen, “A comparison of software and hardware techniques

for x86 virtualization,” ACM SIGOPS Operating Systems Review, p. 2, 2006.

[Online]. Available: http://portal.acm.org/citation.cfm?doid=1168857.1168860http:

//dl.acm.org/citation.cfm?id=1168860

[52] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield, “Xen and the art of virtualization,” ACM SIGOPS

Operating Systems Review, vol. 37, no. 5, pp. 164–177, 2003. [Online]. Available:

http://dl.acm.org/citation.cfm?id=945462

[53] G. Popek and R. Goldberg, “Formal requirements for virtualizable third

generation architectures,” Communications of the ACM, 1974. [Online]. Available:

http://dl.acm.org/citation.cfm?id=361073

[54] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin, “Compatibility Is Not Trans-

parency: VMM Detection Myths and Realities.” HotOS, 2007. [Online]. Available:

http://www.usenix.org/event/hotos07/tech/full papers/garfinkel/garfinkel html/

[55] J. Franklin, A. Seshadri, N. Qu, S. Chaki, and A. Datta, “Attacking, repairing,

and verifying SecVisor: A retrospective on the security of a hypervisor,”

Carnegie Mellon University, Pittsburgh, Tech. Rep., 2008. [Online]. Available:

http://www.cylab.cmu.edu/files/cmucylab08008.pdf

[56] T. Raffetseder, C. Krügel, and E. Kirda, “Detecting system emulators,” Information

Security, 2007. [Online]. Available: http://link.springer.com/chapter/10.1007/

978-3-540-75496-1 1

[57] S. King and P. Chen, “SubVirt: Implementing malware with virtual machines,”

. . . and Privacy, 2006 IEEE Symposium on, 2006. [Online]. Available: http:

//ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1624022

75

http://portal.acm.org/citation.cfm?doid=1168857.1168860 http://dl.acm.org/citation.cfm?id=1168860
http://portal.acm.org/citation.cfm?doid=1168857.1168860 http://dl.acm.org/citation.cfm?id=1168860
http://dl.acm.org/citation.cfm?id=945462
http://dl.acm.org/citation.cfm?id=361073
http://www.usenix.org/event/hotos07/tech/full_papers/garfinkel/garfinkel_html/
http://www.cylab.cmu.edu/files/cmucylab08008.pdf
http://link.springer.com/chapter/10.1007/978-3-540-75496-1_1
http://link.springer.com/chapter/10.1007/978-3-540-75496-1_1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1624022
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1624022

[58] J. Rutkowska and A. Tereshkin, “Bluepilling the xen hypervisor,” Black Hat USA,

2008. [Online]. Available: ftp://crimson.ihg.uni-duisburg.de/pub/pub/Linux/Xen/

Xen 0wning Trilogy/part3.pdf

[59] K. Kortchinsky, “Cloudburst: A VMware guest to host escape story,” Black Hat USA,

2009.

[60] P. A. Karger and D. R. Safford, “I/O for virtual machine monitors: Security and

performance issues,” Security & Privacy, IEEE, vol. 6, no. 5, pp. 16–23, 2008.

[61] C. Dalton, D. Plaquin, and W. Weidner, “Trusted virtual platforms: a key

enabler for converged client devices,” ACM SIGOPS . . . , 2009. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1496918

[62] P. Dewan, D. Durham, and H. Khosravi, “A hypervisor-based system for protecting

software runtime memory and persistent storage,” Proceedings of the . . . , 2008.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1400685

[63] M. Dowty and J. Sugerman, “GPU virtualization on VMware’s hosted I/O

architecture,” ACM SIGOPS Operating Systems Review, vol. 43, no. 3, p. 73, Jul.

2009. [Online]. Available: http://portal.acm.org/citation.cfm?doid=1618525.1618534

[64] T. Jaeger, R. Sailer, and Y. Sreenivasan, “Managing the risk of covert information

flows in virtual machine systems,” . . . of the 12th ACM symposium on . . . , vol. 24154,

2007. [Online]. Available: http://dl.acm.org/citation.cfm?id=1266853

[65] T. Ristenpart and E. Tromer, “Hey, you, get off of my cloud: exploring information

leakage in third-party compute clouds,” . . . conference on Computer . . . , 2009.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1653687

76

ftp://crimson.ihg.uni-duisburg.de/pub/pub/Linux/Xen/Xen_0wning_Trilogy/part3.pdf
ftp://crimson.ihg.uni-duisburg.de/pub/pub/Linux/Xen/Xen_0wning_Trilogy/part3.pdf
http://dl.acm.org/citation.cfm?id=1496918
http://dl.acm.org/citation.cfm?id=1400685
http://portal.acm.org/citation.cfm?doid=1618525.1618534
http://dl.acm.org/citation.cfm?id=1266853
http://dl.acm.org/citation.cfm?id=1653687

[66] M. Rosenblum and T. Garfinkel, “Virtual machine monitors: Current technology

and future trends,” Computer, vol. 38, no. 5, pp. 39 – 47, 2005. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1430630

[67] K. Jin and E. L. Miller, “The effectiveness of deduplication on virtual

machine disk images,” Proceedings of SYSTOR 2009: The Israeli Experimental

Systems Conference on - SYSTOR ’09, 2009. [Online]. Available: http:

//portal.acm.org/citation.cfm?doid=1534530.1534540

[68] N. Beebe, “Digital forensic research: The good, the bad and the unaddressed,” in

Advances in digital forensics V. Springer, 2009, pp. 17–36.

[69] D. Birk, “Technical challenges of forensic investigations in cloud computing

environments,” Workshop on Cryptography and Security in Clouds, pp. 1–6,

2011. [Online]. Available: https://www.idc-online.com/technical references/pdfs/

information technology/TechnicalChallengesofForensicInvestigationsinCloud.pdf

[70] B. Hay and K. Nance, “Forensics examination of volatile system data using virtual

introspection,” ACM SIGOPS Operating Systems Review, vol. 42, no. 3, p. 74, Apr.

2008. [Online]. Available: http://portal.acm.org/citation.cfm?doid=1368506.1368517

[71] J. Dykstra and A. T. Sherman, “Acquiring forensic evidence from infrastructure-as-

a-service cloud computing: Exploring and evaluating tools, trust, and techniques,”

Digital Investigation, vol. 9, pp. S90–S98, Aug. 2012. [Online]. Available:

http://linkinghub.elsevier.com/retrieve/pii/S1742287612000266

[72] L. Kelem, J. Feiertag, and T. Information, “Model for Virtual Machine Monitors,” in

Research in Security and Privacy. IEEE Computer Society Symposium, 1991, pp.

78–86.

77

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1430630
http://portal.acm.org/citation.cfm?doid=1534530.1534540
http://portal.acm.org/citation.cfm?doid=1534530.1534540
https://www.idc-online.com/technical_references/pdfs/information_technology/Technical Challenges of Forensic Investigations in Cloud.pdf
https://www.idc-online.com/technical_references/pdfs/information_technology/Technical Challenges of Forensic Investigations in Cloud.pdf
http://portal.acm.org/citation.cfm?doid=1368506.1368517
http://linkinghub.elsevier.com/retrieve/pii/S1742287612000266

[73] J. M. Rushby, “Design and verification of secure systems,” Proceedings of the eighth

symposium on Operating systems principles - SOSP ’81, pp. 12–21, 1981. [Online].

Available: http://portal.acm.org/citation.cfm?doid=800216.806586

[74] S. Madnick and J. Donovan, “Application and analysis of the virtual machine

approach to information system security and isolation,” . . . of the workshop on

virtual computer systems, vol. 4102, no. 01, pp. 210–224, 1973. [Online]. Available:

http://dl.acm.org/citation.cfm?id=803961

[75] A. Moser, C. Kruegel, and E. Kirda, “Exploring Multiple Execution Paths for

Malware Analysis,” 2007 IEEE Symposium on Security and Privacy (SP ’07), pp.

231–245, May 2007. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=4223228

[76] Z. Liang, H. Yin, and D. Song, “HookFinder: Identifying and understanding malware

hooking behaviors,” Department of Electrical and . . . , 2008. [Online]. Available:

http://repository.cmu.edu/cgi/viewcontent.cgi?article=1004&context=ece

[77] H. Yin, D. Song, and M. Egele, “Panorama: capturing system-wide information flow

for malware detection and analysis,” Proceedings of the 14th . . . , 2007. [Online].

Available: http://dl.acm.org/citation.cfm?id=1315261

[78] A. Joshi, S. King, G. Dunlap, and P. Chen, “Detecting past and present intrusions

through vulnerability-specific predicates,” ACM SIGOPS Operating . . . , 2005.

[Online]. Available: http://dl.acm.org/citation.cfm?id=1095820

[79] N. Petroni and T. Fraser, “Copilot-a Coprocessor-based Kernel Runtime Integrity

Monitor.” USENIX Security . . . , 2004. [Online]. Available: http://www.jesusmolina.

com/publications/2004NPTF.pdf

78

http://portal.acm.org/citation.cfm?doid=800216.806586
http://dl.acm.org/citation.cfm?id=803961
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4223228
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4223228
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1004&context=ece
http://dl.acm.org/citation.cfm?id=1315261
http://dl.acm.org/citation.cfm?id=1095820
http://www.jesusmolina.com/publications/2004NPTF.pdf
http://www.jesusmolina.com/publications/2004NPTF.pdf

[80] B. D. Payne, M. D. P. de Carbone, and W. Lee, “Secure and flexible monitoring of

virtual machines,” in Computer Security Applications Conference, 2007. ACSAC 2007.

Twenty-Third Annual. IEEE, 2007, pp. 385–397.

[81] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection through vmm-based

”out-of-the-box” semantic view reconstruction,” Proceedings of the 14th ACM

conference on Computer and communications security - CCS ’07, p. 128, 2007.

[Online]. Available: http://portal.acm.org/citation.cfm?doid=1315245.1315262

[82] A. Srivastava and J. Giffin, “Tamper-resistant, application-aware blocking of malicious

network connections,” Recent Advances in Intrusion Detection, pp. 39–58, 2008.

[Online]. Available: http://link.springer.com/chapter/10.1007/978-3-540-87403-4 3

[83] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware analysis via hardware

virtualization extensions,” . . . of the 15th ACM conference on . . . , 2008. [Online].

Available: http://dl.acm.org/citation.cfm?id=1455779

[84] S. Jones, “Antfarm: Tracking Processes in a Virtual Machine Environment.”

. . . , General Track, 2006. [Online]. Available: https://www.usenix.org/legacy/event/

usenix06/tech/full papers/jones/jones html/

[85] K. Kourai and S. Chiba, “HyperSpector: virtual distributed monitoring environments

for secure intrusion detection,” . . . conference on Virtual execution environments, pp.

197–207, 2005. [Online]. Available: http://dl.acm.org/citation.cfm?id=1065006

[86] Plato and R. W. Sharples, Plato: Meno. Aris and Phillips, 1985.

[87] N. Chomsky, Aspects of the Theory of Syntax. The MIT press, 1965, vol. 11.

[88] P. Chen and B. Noble, “When virtual is better than real,” Hot Topics in Operating

Systems, 2001. . . . , 2001. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.

jsp?arnumber=990073

79

http://portal.acm.org/citation.cfm?doid=1315245.1315262
http://link.springer.com/chapter/10.1007/978-3-540-87403-4_3
http://dl.acm.org/citation.cfm?id=1455779
https://www.usenix.org/legacy/event/usenix06/tech/full_papers/jones/jones_html/
https://www.usenix.org/legacy/event/usenix06/tech/full_papers/jones/jones_html/
http://dl.acm.org/citation.cfm?id=1065006
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=990073
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=990073

[89] B. Dolan-Gavitt, B. Payne, and W. Lee, “Leveraging forensic tools for virtual

machine introspection,” Georgia Institute of Technology, Atlanta, Tech. Rep., 2011.

[Online]. Available: http://smartech.gatech.edu/handle/1853/38424

[90] S. Jones, “Implicit operating system awareness in a virtual machine monitor,”

Ph.D. dissertation, University of Wisconsin-Madison, 2007. [Online]. Available: http:

//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.143.6999&rep=rep1&type=pdf

[91] G. Dunlap, S. King, and S. Cinar, “ReVirt: Enabling intrusion analysis through

virtual-machine logging and replay,” ACM SIGOPS Operating . . . , 2002. [Online].

Available: http://dl.acm.org/citation.cfm?id=844148

[92] J. B. Grizzard and R. W. Gardner, “Analysis of Virtual Machine Record and Replay

for Trustworthy Computing,” Johns Hopkins APL Technical Digest, vol. 32, no. 2, pp.

528–535, 2013.

[93] T. Garfinkel, B. Pfaff, and J. Chow, “Terra: A virtual machine-based

platform for trusted computing,” ACM SIGOPS Operating . . . , 2003. [Online].

Available: http://www.kiayias.com/compsec/CSE4707 Computer Security/Reading

files/VM-security.pdfhttp://dl.acm.org/citation.cfm?id=945464

[94] C. Wright, C. Cowan, and S. Smalley, “Linux Security Modules: General Security

Support for the Linux Kernel.” USENIX Security . . . , vol. 8032, 2002. [Online].

Available: http://www.cse.psu.edu/∼tjaeger/cse544-s11/papers/lsm.pdf

[95] N. P. Loscocco, “Integrating flexible support for security policies into the

Linux operating system,” Proceedings of the FREENIX Track:... USENIX

. . . , 2001. [Online]. Available: ftp://130.251.61.4/pub/person/ChiolaG/sic00-01/

slinux-200104121417.pdf

80

http://smartech.gatech.edu/handle/1853/38424
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.143.6999&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.143.6999&rep=rep1&type=pdf
http://dl.acm.org/citation.cfm?id=844148
http://www.kiayias.com/compsec/CSE4707_Computer_Security/Reading_files/VM-security.pdf http://dl.acm.org/citation.cfm?id=945464
http://www.kiayias.com/compsec/CSE4707_Computer_Security/Reading_files/VM-security.pdf http://dl.acm.org/citation.cfm?id=945464
http://www.cse.psu.edu/~tjaeger/cse544-s11/papers/lsm.pdf
ftp://130.251.61.4/pub/person/ChiolaG/sic00-01/slinux-200104121417.pdf
ftp://130.251.61.4/pub/person/ChiolaG/sic00-01/slinux-200104121417.pdf

[96] X. Jiang and X. Wang, “Out-of-the-box Monitoring of VM-based High-Interaction

Honeypots,” Recent Advances in Intrusion Detection, 2007. [Online]. Available:

http://link.springer.com/chapter/10.1007/978-3-540-74320-0 11

[97] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An Architecture

for Secure Active Monitoring Using Virtualization,” 2008 IEEE Symposium on

Security and Privacy (sp 2008), pp. 233–247, May 2008. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4531156

[98] M. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure in-vm monitoring using hardware

virtualization,” . . . of the 16th ACM conference on . . . , 2009. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1653720

[99] F. Zhang, K. Leach, K. Sun, and A. Stavrou, “SPECTRE: A Dependable

Introspection Framework via System Management Mode,” . . . on Dependable Systems

and . . . , no. Vmi, 2013. [Online]. Available: http://cs.gmu.edu/∼astavrou/research/

spectre-dsn13.pdf

[100] D. Srinivasan and X. Jiang, “Time-traveling forensic analysis of vm-based high-

interaction honeypots,” Security and Privacy in Communication Networks, 2012.

[Online]. Available: http://link.springer.com/chapter/10.1007/978-3-642-31909-9 12

[101] C. Benninger, S. W. Neville, Y. O. Yazir, C. Matthews, and Y. Coady, “Maitland:

Lighter-Weight VM Introspection to Support Cyber-security in the Cloud,” 2012 IEEE

Fifth International Conference on Cloud Computing, pp. 471–478, Jun. 2012. [Online].

Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6253540

[102] Y. Fu and Z. Lin, “Space Traveling across VM: Automatically Bridging the Semantic

Gap in Virtual Machine Introspection via Online Kernel Data Redirection,” 2012

IEEE Symposium on Security and Privacy, pp. 586–600, May 2012. [Online].

Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6234438

81

http://link.springer.com/chapter/10.1007/978-3-540-74320-0_11
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4531156
http://dl.acm.org/citation.cfm?id=1653720
http://cs.gmu.edu/~astavrou/research/spectre-dsn13.pdf
http://cs.gmu.edu/~astavrou/research/spectre-dsn13.pdf
http://link.springer.com/chapter/10.1007/978-3-642-31909-9_12
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6253540
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6234438

[103] C. Harrison, D. Cook, R. McGraw, and J. a. Hamilton Jr., “Constructing a

Cloud-Based IDS by Merging VMI with FMA,” 2012 IEEE 11th International

Conference on Trust, Security and Privacy in Computing and Communications, pp.

163–169, Jun. 2012. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/

wrapper.htm?arnumber=6295971

[104] C. Schneider, J. Pfoh, and C. Eckert, “A universal semantic bridge for virtual

machine introspection,” Information Systems Security, 2011. [Online]. Available:

http://link.springer.com/chapter/10.1007/978-3-642-25560-1 25

[105] H. Inoue and F. Adelstein, “Automatically Bridging the Semantic Gap using C

Interpreter,” Annual Symposium on . . . , 2011. [Online]. Available: http://www.

albany.edu/iasymposium/proceedings/2011/ASIA11Proceedings.pdf#page=60

[106] A. Azab and P. Ning, “HIMA: A hypervisor-based integrity measurement

agent,” . . . , 2009. ACSAC’09. Annual, pp. 461–470, 2009. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5380699

[107] T. Garfinkel and M. Rosenblum, “A Virtual Machine Introspection Based

Architecture for Intrusion Detection.” NDSS, 2003. [Online]. Available: http:

//www.isoc.org/isoc/conferences/ndss/03/proceedings/papers/13.pdf

[108] S. Bahram, X. Jiang, and Z. Wang, “Dksm: Subverting virtual machine introspection

for fun and profit,” . . . Systems, 2010 29th . . . , pp. 82–91, 2010. [Online]. Available:

http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=5623380

[109] A. Schuster, “Searching for processes and threads in Microsoft Windows memory

dumps,” Digital Investigation, vol. 3, pp. 10–16, Sep. 2006. [Online]. Available:

http://linkinghub.elsevier.com/retrieve/pii/S1742287606000727

82

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6295971
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6295971
http://link.springer.com/chapter/10.1007/978-3-642-25560-1_25
http://www.albany.edu/iasymposium/proceedings/2011/ASIA11Proceedings.pdf#page=60
http://www.albany.edu/iasymposium/proceedings/2011/ASIA11Proceedings.pdf#page=60
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5380699
http://www.isoc.org/isoc/conferences/ndss/03/proceedings/papers/13.pdf
http://www.isoc.org/isoc/conferences/ndss/03/proceedings/papers/13.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5623380
http://linkinghub.elsevier.com/retrieve/pii/S1742287606000727

[110] A. Walters, “FATKit: detecting malicious library injection and upping the ”anti”,”

4TPhi Forensic Research, Washington, DC, Tech. Rep., 2006. [Online]. Available:

http://www.4tphi.net/fatkit/papers/fatkit dll rc3.pdf

[111] R. van Baar, W. Alink, and A. van Ballegooij, “Forensic memory analysis: Files

mapped in memory,” Digital Investigation, vol. 5, pp. S52–S57, Sep. 2008. [Online].

Available: http://linkinghub.elsevier.com/retrieve/pii/S1742287608000327

[112] B. Dolan-Gavitt, “Forensic analysis of the Windows registry in memory,”

Digital Investigation, vol. 5, pp. S26–S32, Sep. 2008. [Online]. Available:

http://linkinghub.elsevier.com/retrieve/pii/S1742287608000297

[113] C. Kruegel and T. Toth, “A survey on intrusion detection systems,” TU Vienna,

Austria, 2000. [Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.72.605

[114] T. Dutkevych, A. Piskozub, and N. Tymoshyk, “Real-time intrusion prevention and

anomaly analyze system for corporate networks,” in Intelligent Data Acquisition and

Advanced Computing Systems: Technology and Applications, 2007. IDAACS 2007. 4th

IEEE Workshop on. IEEE, 2007, pp. 599–602.

[115] H. Zhengbing, L. Zhitang, and W. Junqi, “A novel Network Intrusion Detection System

(NIDS) based on signatures search of data mining,” in Knowledge Discovery and Data

Mining, 2008. WKDD 2008. First International Workshop on. IEEE, 2008, pp. 10–16.

[116] Y. Guan and J. Bao, “A CP Intrusion Detection Strategy on Cloud Computing,”

International Symposium on Web . . . , vol. 8, pp. 84–87, 2009. [Online]. Available:

http://academypublisher.com/proc/wisa09/papers/wisa09p84.pdf

[117] L. Ibrahim, “Anomaly network intrusion detection system based on distributed

time-delay neural network (DTDNN),” Journal of Engineering Science and

83

http://www.4tphi.net/fatkit/papers/fatkit_dll_rc3.pdf
http://linkinghub.elsevier.com/retrieve/pii/S1742287608000327
http://linkinghub.elsevier.com/retrieve/pii/S1742287608000297
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.605
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.72.605
http://academypublisher.com/proc/wisa09/papers/wisa09p84.pdf

Technology, vol. 5, no. 4, pp. 457–471, 2010. [Online]. Available: http:

//jestec.taylors.edu.my/Vol5Issue4December10/Vol 5 4 457 471 L.M.Ibrahim.pdf

[118] J. Han, M. Kamber, and J. Pei, Data mining: concepts and techniques, 2nd ed., J. Gray,

Ed. Morgan Kaufmann, 2006. [Online]. Available: http://books.google.com/books?

hl=en&lr=&id=AfL0t-YzOrEC&oi=fnd&pg=PP2&dq=Data+Mining+:+Concepts+

and+Techniques&ots=Uv WsS8sB3&sig=I1ELlllCuEEtf17CRy0BCeTtTrs

[119] M. Moradi and M. Zulkernine, “A neural network based system for intrusion detection

and classification of attacks,” . . . on Advances in Intelligent Systems Theory . . . , 2004.

[Online]. Available: http://www.cs.queensu.ca/∼moradi/148-04-MM-MZ.pdf

[120] A. Grediaga, F. Ibarra, F. Garćıa, B. Ledesma, and F. Brotóns, “Application of neu-

ral networks in network control and information security,” in Advances in Neural

Networks-ISNN 2006. Springer, 2006, pp. 208–213.

[121] J. Cannady, “Artificial neural networks for misuse detection,” Na-

tional information systems security conference, 1998. [Online]. Avail-

able: http://webpages.cs.luc.edu/∼pld/courses/intrusion/sum08/class9/cannady.

1998.artificial neural networks for misuse detection.pdf

[122] H. Han, X.-L. Lu, and L.-Y. Ren, “Using data mining to discover signatures in network-

based intrusion detection,” in Machine Learning and Cybernetics, 2002. Proceedings.

2002 International Conference on, vol. 1. IEEE, 2002, pp. 13–17.

[123] L. Li, D.-z. Yang, and F.-c. Shen, “A novel rule-based Intrusion Detection

System using data mining,” 2010 3rd International Conference on Computer

Science and Information Technology, pp. 169–172, Jul. 2010. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5563714

84

http://jestec.taylors.edu.my/Vol 5 Issue 4 December 10/Vol_5_4_457_471_L. M. Ibrahim.pdf
http://jestec.taylors.edu.my/Vol 5 Issue 4 December 10/Vol_5_4_457_471_L. M. Ibrahim.pdf
http://books.google.com/books?hl=en&lr=&id=AfL0t-YzOrEC&oi=fnd&pg=PP2&dq=Data+Mining+:+Concepts+and+Techniques&ots=Uv_WsS8sB3&sig=I1ELlllCuEEtf17CRy0BCeTtTrs
http://books.google.com/books?hl=en&lr=&id=AfL0t-YzOrEC&oi=fnd&pg=PP2&dq=Data+Mining+:+Concepts+and+Techniques&ots=Uv_WsS8sB3&sig=I1ELlllCuEEtf17CRy0BCeTtTrs
http://books.google.com/books?hl=en&lr=&id=AfL0t-YzOrEC&oi=fnd&pg=PP2&dq=Data+Mining+:+Concepts+and+Techniques&ots=Uv_WsS8sB3&sig=I1ELlllCuEEtf17CRy0BCeTtTrs
http://www.cs.queensu.ca/~moradi/148-04-MM-MZ.pdf
http://webpages.cs.luc.edu/~pld/courses/intrusion/sum08/class9/cannady.1998.artificial_neural_networks_for_misuse_detection.pdf
http://webpages.cs.luc.edu/~pld/courses/intrusion/sum08/class9/cannady.1998.artificial_neural_networks_for_misuse_detection.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5563714

[124] P. Tillapart, T. Thumthawatworn, and P. Santiprabhob, “Fuzzy intrusion detection

system,” AU JT, vol. 6, no. 2, pp. 109–114, 2002. [Online]. Available:

http://www.journal.au.edu/au techno/2003/jan2003/aujt6-3 article01.pdf

[125] S. Chavan, K. Shah, N. Dave, S. Mukherjee, a. Abraham, and S. Sanyal, “Adaptive

neuro-fuzzy intrusion detection systems,” International Conference on Information

Technology: Coding and Computing, 2004. Proceedings. ITCC 2004., pp. 70–74

Vol.1, 2004. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=1286428

[126] Y. Dhanalakshmi and I. Babu, “Intrusion detection using data mining along fuzzy

logic and genetic algorithms,” International Journal of Computer Science and . . . ,

vol. 8, no. 2, pp. 27–32, 2008. [Online]. Available: http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.133.5130&rep=rep1&type=pdf

[127] R. Gong, “A software implementation of a genetic algorithm based approach

to network intrusion detection,” . . . Intelligence, Networking . . . , 2005. [Online].

Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1434896

[128] W. Lu and I. Traore, “Detecting new forms of network intrusion using

genetic programming,” Computational Intelligence, 2004. [Online]. Available:

http://onlinelibrary.wiley.com/doi/10.1111/j.0824-7935.2004.00247.x/abstract

[129] T. Xia, G. Qu, S. Hariri, and M. Yousif, “An efficient network intrusion detection

method based on information theory and genetic algorithm,” in Performance, Comput-

ing, and Communications Conference, 2005. IPCCC 2005. 24th IEEE International.

IEEE, 2005, pp. 11–17.

[130] D. Stiawan, A. H. Abdullah, and M. Yazid Idris, “The trends of Intrusion

Prevention System network,” 2010 2nd International Conference on Education

85

http://www.journal.au.edu/au_techno/2003/jan2003/aujt6-3_article01.pdf
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1286428
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1286428
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.5130&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.133.5130&rep=rep1&type=pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1434896
http://onlinelibrary.wiley.com/doi/10.1111/j.0824-7935.2004.00247.x/abstract

Technology and Computer, pp. V4–217–V4–221, Jun. 2010. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5529697

[131] S. Roschke, F. Cheng, and C. Meinel, “An Extensible and Virtualization-

Compatible IDS Management Architecture,” 2009 Fifth International Conference

on Information Assurance and Security, pp. 130–134, 2009. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5283195

[132] A. Bakshi and B. Yogesh, “Securing cloud from ddos attacks using intrusion detec-

tion system in virtual machine,” in Communication Software and Networks, 2010.

ICCSN’10. Second International Conference on. IEEE, 2010, pp. 260–264.

[133] C.-C. Lo, C.-C. Huang, and J. Ku, “A cooperative intrusion detection system frame-

work for cloud computing networks,” in Parallel Processing Workshops (ICPPW), 2010

39th International Conference on. IEEE, 2010, pp. 280–284.

[134] C. Mazzariello, R. Bifulco, and R. Canonico, “Integrating a network IDS into an

open source Cloud Computing environment,” 2010 Sixth International Conference on

Information Assurance and Security, pp. 265–270, Aug. 2010. [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5604069

[135] W.-H. Chen, S.-H. Hsu, and H.-P. Shen, “Application of SVM and ANN for

intrusion detection,” Computers & Operations Research, vol. 32, no. 10, pp.

2617–2634, Oct. 2005. [Online]. Available: http://linkinghub.elsevier.com/retrieve/

pii/S0305054804000711

[136] H. Li and D. Liu, “Research on intelligent intrusion prevention system based on snort,”

in Computer, Mechatronics, Control and Electronic Engineering (CMCE), 2010 Inter-

national Conference on, vol. 1. IEEE, 2010, pp. 251–253.

86

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5529697
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5283195
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5604069
http://linkinghub.elsevier.com/retrieve/pii/S0305054804000711
http://linkinghub.elsevier.com/retrieve/pii/S0305054804000711

[137] O. Awodele and O. Jegede, “Neural networks and its application in engineering,”

Science & IT, 2009. [Online]. Available: http://proceedings.informingscience.org/

InSITE2009/InSITE09p083-095Awodele542.pdf

[138] A. Rasoulifard, A. Bafghi, and M. Kahani, “Incremental hybrid intrusion detection

using ensemble of weak classifiers,” Advances in Computer Science and . . . , 2009.

[Online]. Available: http://link.springer.com/chapter/10.1007/978-3-540-89985-3 71

[139] W. Cohen, “Fast effective rule induction,” ICML, 1995. [Online]. Available:

http://www.inf.ufrgs.br/∼alvares/CMP259DCBD/Ripper.pdf

[140] H. A. Bellows, The Poetic Eddas: The Mythological Poems. DoverPublications. com,

2004.

[141] M. T. Jones, “Anatomy of the libvirt virtualization library An API for easy Linux

virtualization,” IBM developerWorks, no. January, pp. 1–11, 2010.

[142] J. Sigvaldsen, “Improving cloud performance by solving scalability limitations in

libvirt,” Ph.D. dissertation, Oslo University College, 2013. [Online]. Available:

https://www.duo.uio.no/handle/10852/37442

[143] D. Salomoni, A. Karen, C. Melcarne, A. Chierici, and G. D. Torre, “Performance

Improvements in a Large-Scale Virtualization System,” ISGC, pp. 19–25, 2011.

[144] L. L. C. Metasploit, “The metasploit project,” Framework, vol. 3, 2006.

[145] J. McHugh, “Testing intrusion detection systems: a critique of the 1998 and 1999

DARPA intrusion detection system evaluations as performed by Lincoln Laboratory,”

ACM transactions on Information and system Security, vol. 3, no. 4, pp. 262–294,

2000. [Online]. Available: http://dl.acm.org/citation.cfm?id=382923

87

http://proceedings.informingscience.org/InSITE2009/InSITE09p083-095Awodele542.pdf
http://proceedings.informingscience.org/InSITE2009/InSITE09p083-095Awodele542.pdf
http://link.springer.com/chapter/10.1007/978-3-540-89985-3_71
http://www.inf.ufrgs.br/~alvares/CMP259DCBD/Ripper.pdf
https://www.duo.uio.no/handle/10852/37442
http://dl.acm.org/citation.cfm?id=382923

[146] K. Cios and L. Kurgan, “Trends in data mining and knowledge discovery,”

. . . techniques in knowledge discovery and data mining, no. Dm, pp. 1–26, 2005.

[Online]. Available: http://link.springer.com/chapter/10.1007/1-84628-183-0 1

[147] “Orange.” [Online]. Available: http://orange.biolab.si/

[148] J. R. Quinlan, “J. R. Quinlan,” AAAI/IAAI, vol. 1, pp. 725–730, 2006.

[149] S. Džeroski and B. Ženko, “Is combining classifiers with stacking better than

selecting the best one?” Machine learning, pp. 255–273, 2004. [Online]. Available:

http://link.springer.com/article/10.1023/B:MACH.0000015881.36452.6e

[150] J. a. B. Cabrera, C. Gutiérrez, and R. K. Mehra, “Ensemble methods for

anomaly detection and distributed intrusion detection in Mobile Ad-Hoc Networks,”

Information Fusion, vol. 9, no. 1, pp. 96–119, Jan. 2008. [Online]. Available:

http://linkinghub.elsevier.com/retrieve/pii/S1566253507000425

[151] J. D. Rodŕıguez, A. Pérez, and J. A. Lozano, “Sensitivity analysis of kappa-fold

cross validation in prediction error estimation.” IEEE transactions on pattern analysis

and machine intelligence, vol. 32, no. 3, pp. 569–75, Mar. 2010. [Online]. Available:

http://www.ncbi.nlm.nih.gov/pubmed/20075479

[152] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and

model selection,” IJCAI, 1995. [Online]. Available: http://frostiebek.free.fr/docs/

MachineLearning/validation-1.pdf

[153] D. Powers, “Evaluation: from precision, recall and F-measure to ROC, informedness,

markedness & correlation,” Journal of Machine Learning Technologies, no. December,

2011. [Online]. Available: http://www.bioinfo.in/uploadfiles/13031311552 1 1 JMLT.

pdf

88

http://link.springer.com/chapter/10.1007/1-84628-183-0_1
http://orange.biolab.si/
http://link.springer.com/article/10.1023/B:MACH.0000015881.36452.6e
http://linkinghub.elsevier.com/retrieve/pii/S1566253507000425
http://www.ncbi.nlm.nih.gov/pubmed/20075479
http://frostiebek.free.fr/docs/Machine Learning/validation-1.pdf
http://frostiebek.free.fr/docs/Machine Learning/validation-1.pdf
http://www.bioinfo.in/uploadfiles/13031311552_1_1_JMLT.pdf
http://www.bioinfo.in/uploadfiles/13031311552_1_1_JMLT.pdf

[154] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters, vol. 27,

no. 8, pp. 861–874, Jun. 2006. [Online]. Available: http://linkinghub.elsevier.com/

retrieve/pii/S016786550500303X

[155] W. Lee and S. J. Stolfo, “A Framework for Constructing Features and Models for

Intrusion Detection Systems,” ACM Transactions on Information and System Security,

vol. 3, no. 4, pp. 227–261, 2001.

[156] M. Yuan, A. Ekici, and Z. Lu, “Dimension reduction and coefficient estimation in,”

Royal Statistics Society, pp. 329–346, 2007.

[157] H. G. Kayack, A. N. Zincir-heywood, and M. I. Heywood, “Selecting Features for

Intrusion Detection : A Feature Relevance Analysis on KDD 99 Intrusion Detection

Datasets,” in Proceedings of the Third Annual Conference on Privacy Security and

Trust, 2005, pp. 3–8.

[158] A. Kivity, Y. Kamay, and D. Laor, “kvm: the Linux virtual machine

monitor,” Proceedings of the Linux . . . , 2007. [Online]. Available: https:

//www.kernel.org/doc/mirror/ols2007v1.pdf#page=225

[159] C. Eagle, The IDA pro book: the unofficial guide to the world’s most popular disas-

sembler. No Starch Press, 2008.

[160] M. Janes, “Sandia computer scientists successfully boot one

million linux kernels as virtual machines,” 2009. [On-

line]. Available: https://share.sandia.gov/news/resources/news releases/

sandia-computer-scientists-successfully-boot-one-million-linux-kernels-as-virtual-machines/

[161] L. Arellano, S. Arroyo, G. Giese, P. Cox, and G. Rogers, “Cloud computing strategic

framework (FY13-FY15).” Sandia National Laboratories, Albuquerque, Tech. Rep.

November, 2012. [Online]. Available: http://www.osti.gov/scitech/biblio/1055927

89

http://linkinghub.elsevier.com/retrieve/pii/S016786550500303X
http://linkinghub.elsevier.com/retrieve/pii/S016786550500303X
https://www.kernel.org/doc/mirror/ols2007v1.pdf#page=225
https://www.kernel.org/doc/mirror/ols2007v1.pdf#page=225
https://share.sandia.gov/news/resources/news_releases/sandia-computer-scientists-successfully-boot-one-million-linux-kernels-as-virtual-machines/
https://share.sandia.gov/news/resources/news_releases/sandia-computer-scientists-successfully-boot-one-million-linux-kernels-as-virtual-machines/
http://www.osti.gov/scitech/biblio/1055927

[162] S. Bratus and P. Johnson, “The cake is a lie: privilege rings as a

policy resource,” . . . the 1st ACM workshop . . . , 2009. [Online]. Available:

http://dl.acm.org/citation.cfm?id=1655154

[163] T. Ormandy, “An empirical study into the security exposure to hosts of hostile

virtualized environments,” Proceedings of CanSecWest Applied Security . . . , 2007.

[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.

6943&rep=rep1&type=pdf

[164] P. Ferrie, “Attacks on more virtual machine emulators,” Symantec Technology

Exchange, 2007. [Online]. Available: http://repo.meh.or.id/Windows/attacks2.pdf

[165] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor: a tiny hypervisor

to provide lifetime kernel code integrity for commodity OSes,” ACM SIGOPS

Operating Systems . . . , vol. 41, pp. 335–350, 2007. [Online]. Available: http:

//dl.acm.org/citation.cfm?id=1294294

[166] J. Pfoh, C. Schneider, and C. Eckert, “A formal model for virtual machine

introspection,” . . . 1st ACM workshop on Virtual machine . . . , p. 1, 2009.

[Online]. Available: http://portal.acm.org/citation.cfm?doid=1655148.1655150http:

//dl.acm.org/citation.cfm?id=1655150

[167] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, and D. Leaf, “NIST Cloud

Computing Reference Architecture Recommendations of the National Institute of Stan-

dards and,” National Institute of Standards and Technology, Gaithersburg, Tech. Rep.,

2011.

[168] W. A. Vogels, “Head in the CloudsThe Power of Infrastructure as a Service,” in First

workshop on Cloud Computing and in Applications (CCA08)(October 2008), 2008.

90

http://dl.acm.org/citation.cfm?id=1655154
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.6943&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.6943&rep=rep1&type=pdf
http://repo.meh.or.id/Windows/attacks2.pdf
http://dl.acm.org/citation.cfm?id=1294294
http://dl.acm.org/citation.cfm?id=1294294
http://portal.acm.org/citation.cfm?doid=1655148.1655150 http://dl.acm.org/citation.cfm?id=1655150
http://portal.acm.org/citation.cfm?doid=1655148.1655150 http://dl.acm.org/citation.cfm?id=1655150

Appendices

91

Appendix A

Key Concepts

A.1 Virtualization

A.1.1 Overview

Figure A.1: Physical Machines and their Virtualized Counterpart [9].

Virtualization is the use of highly privileged software to create an encapsulating software

layer that decouples the operating system from the physical hardware and provides a layer of

indirection to accurately mimic the expected behavior of physical hardware resulting in “an

efficient, isolated duplicate of the real machine” [53]. Privilege in this context is the authority

to perform operations that the hardware supports; privilege levels are typically called rings

(see Figure A.2), with lower rings having more privileges than those of a higher number

[162]. The operating system traditionally has been given the lowest ring (ring 0); however, in

92

the context of virtualization, the Virtual Machine Monitor or Hypervisor (VMM) supplants

the Operating System (OS) as ring 0. This level of indirection affords key properties that

are necessary for ODinn’s success.

Figure A.2: Operating System Kernel Protection Rings [3].

A.1.2 Properties of VMMs

Isolation

The encapsulating layer that allows operating systems to be placed inside VMs births

a barrier that isolates not only between OSs running on the same physical hardware, but

also between the individual OSs and the physical hardware [163]. This isolation allows for

risky services to be on one Virtual Machine (VM) and critical services on another (but both

using the same physical hardware) to be insulated from one another such that the critical

service is not compromised if the risky service becomes compromised [74]. Furthermore,

malware analysts now possess isolated environments that do not require the time-consuming

setup of cleaning and reinstalling an OS for every malware sample that requires examination

[56, 83, 164]. For this isolation to be breached, the VMM itself must be exploited, which is

several orders of magnitude harder, because while an operating system might have millions

or even tens of millions of lines of code [55, 165] and cannot be provably secure, the VMM

contains a few thousand or tens of thousands of lines of code, which can be provably secure

93

[166]. Additionally, OSs add a single point of failure for all processes and data within. The

VMM can then consolidate a collection of virtual machines with low resources onto a single

computer, thereby lowering hardware costs and space requirements. Strong isolation is also

valuable for reliability and security.

A.1.3 Inspection

A VMM has complete visibility of the virtual machine. Every CPU, memory and I/O

device state can be captured and ignoring the very real constraints of the heuristic utilized

and the overhead incurred to the user; by definition, a Hypervisor-based Intrusion Detection

System (VMI-IDS) is theoretically impossible to obfuscate its activities as there is no state

the Intrusion Detection System (IDS) is denied from viewing.

Encapsulation

As the VMM provides an uniform view of underlying hardware, the virtual machine

is incapable of distinguishing the different underlying physical systems beneath it. As a

result, different vendors with different subsystems are abstracted away from the view of the

virtual machine, affording a high level of compatibility, allowing virtual machines to run on

any physical system that supports virtualization. This abstraction works from an admin-

istration viewpoint as well, allowing the hardware to be abstracted as a pool of resources

to be arbitrarily run on demand for whatever services are desired. Tangential to this is

OS independence. The same encapsulation that provides a unified view of physical systems

also abstracts away the semantics of the guest OS, allowing trivial support for multiple

OSes and multiple OS versions from being supported simultaneously on the same hardware.

Additionally, the encapsulation of the VM software state allows for the mapping, remap-

ping and migration (moving from one physical machine to another) of VMs. This simplifies

load balancing, increases hardware fault tolerance, and greatly aids in scalability. The final

advantage wrought by encapsulation is the ability to arbitrarily pause and resume virtual

94

machines or save their state in a specific moment of time (called a snapshot) and then roll

them back to that specific moment when needed. This has numerous purposes though the

most common is to recover from crashes and to aid with configuration.

A.2 Cloud Computing

NIST defines cloud computing as “a model for enabling convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers, stor-

age, applications, and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction [167].”

Five features are intrinsic to cloud computing [167]:

1. On-demand self-service - Instantaneously, as needed, a consumer can receive compu-

tational resources automatically, without interfacing with a human.

2. Broad network access - Resources are provided over the Internet and are utilized by

the consumer with heterogeneous platforms (desktop, mobile phones, etc.).

3. Resource Pooling - Resources are pooled together by the cloud service provider using

a virtualization model, “with different physical and virtual resources dynamically as-

signed and reassigned according to consumer demand” to service throngs of consumers.

4. Rapid Elasticity - Computational resources are better viewed as immediate rather than

persistent as the resources scale up by need and can be terminated and reacquired as

desired.

5. Measured Service - Metering capabilities are such that, despite multiple consumers

using the same pooled resources, the cloud infrastructure is sufficiently able to measure

their usage at the individual consumer level.

This gives rise to three distinct novel advantages that have lead to widespread adop-

tion of the cloud [168]. First, from the consumer perspective, resource provisioning rapidly

95

rises to meet peak consumption needs and gives the illusion of infinite resources eliminating

consumers need to plan ahead for provisioning. Second, companies no longer have large

up-front costs to building large scale infrastructure and need to only increase centralized

hardware resources as the need grows. Third, resources are only used when needed and

released thereafter, conserving energy advantageous to both energy cost and environmental

impact.

A.3 Binary Classification Results

Process Scan

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
13

FN
4

PPV: 0.81

n′ FP
3

TN
31

NPV: 0.89

SEN: 0.76 SPC: 0.91 ACC: 0.86

Evaluation Metrics

AUC: 0.94 MCC: 0.69 RMSE: 0.37

χ2: 24 F1: 0.79 R2: 0.588

Table A.1: Results for Bayes

96

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
14

FN
3

PPV: 0.82

n′ FP
3

TN
31

NPV: 0.92

SEN: 0.82 SPC: 0.91 ACC: 0.89

Evaluation Metrics

AUC: 0.89 MCC: 0.74 RMSE: 0.343

χ2: 28 F1: 0.82 R2: 0.647

Table A.2: Results for Logistics Regression

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
13

FN
4

PPV: 0.81

n′ FP
3

TN
31

NPV: 0.89

SEN: 0.76 SPC: 0.91 ACC: 0.86

Evaluation Metrics

AUC: 0.85 MCC: 0.69 RMSE: 0.37

χ2: 24 F1: 0.79 R2: 0.588

Table A.3: Results for ANN

97

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
12

FN
5

PPV: 0.63

n′ FP
7

TN
27

NPV: 0.84

SEN: 0.71 SPC: 0.79 ACC: 0.76

Evaluation Metrics

AUC: 0.77 MCC: 0.49 RMSE: 0.485

χ2: 12 F1: 0.67 R2: 0.294

Table A.4: Results for Association Rules

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
13

FN
4

PPV: 0.68

n′ FP
6

TN
28

NPV: 0.88

SEN: 0.76 SPC: 0.82 ACC: 0.80

Evaluation Metrics

AUC: 0.90 MCC: 0.57 RMSE: 0.443

χ2: 17 F1: 0.72 R2: 0.412

Table A.5: Results for kNN

98

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
13

FN
4

PPV: 0.87

n′ FP
2

TN
32

NPV: 0.89

SEN: 0.76 SPC: 0.94 ACC: 0.88

Evaluation Metrics

AUC: 0.8 MCC: 0.73 RMSE: 0.343

χ2: 27 F1: 0.81 R2: 0.647

Table A.6: Results for C4.5

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
14

FN
3

PPV: 0.82

n′ FP
3

TN
31

NPV: 0.91

SEN: 0.82 SPC: 0.91 ACC: 0.88

Evaluation Metrics

AUC: 0.87 MCC: 0.74 RMSE: 0.343

χ2: 28 F1: 0.82 R2: 0.647

Table A.7: Results for SVM

99

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
11

FN
6

PPV: 0.92

n′ FP
1

TN
33

NPV: 0.85

SEN: 0.65 SPC: 0.97 ACC: 0.86

Evaluation Metrics

AUC: 0.92 MCC: 0.69 RMSE: 0.37

χ2: 24 F1: 0.76 R2: 0.588

Table A.8: Results for Random Forest

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
14

FN
3

PPV: 0.82

n′ FP
3

TN
31

NPV: 0.91

SEN: 0.82 SPC: 0.91 ACC: 0.88

Evaluation Metrics

AUC: 0.90 MCC: 0.74 RMSE: 0.343

χ2: 28 F1: 0.82 R2: 0.647

Table A.9: Results for Stacking

100

Modules Scan

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
28

FN
1

PPV: 0.90

n′ FP
3

TN
126

NPV: 0.99

SEN: 0.97 SPC: 0.98 ACC: 0.97

Evaluation Metrics

AUC: 0.97 MCC: 0.92 RMSE: 0.159

χ2: 133 F1: 0.93 R2: 0.862

Table A.10: Results for Bayes

101

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
28

FN
1

PPV: 0.97

n′ FP
1

TN
128

NPV: 0.99

SEN: 0.97 SPC: 0.99 ACC: 0.99

Evaluation Metrics

AUC: 0.97 MCC: 0.96 RMSE: 0.113

χ2: 145 F1: 0.97 R2: 0.931

Table A.11: Results for Logistic Regression

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
28

FN
1

PPV: 0.97

n′ FP
1

TN
128

NPV: 0.99

SEN: 0.97 SPC: 0.99 ACC: 0.99

Evaluation Metrics

AUC: 0.97 MCC: 0.96 RMSE: 0.113

χ2: 145 F1: 0.97 R2: 0.931

Table A.12: Results for ANN

102

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
28

FN
1

PPV: 0.97

n′ FP
1

TN
128

NPV: 0.99

SEN: 0.97 SPC: 0.99 ACC: 0.99

Evaluation Metrics

AUC: 0.97 MCC: 0.96 RMSE: 0.113

χ2: 145 F1: 0.97 R2: 0.931

Table A.13: Results for Association Rules

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
28

FN
1

PPV: 0.97

n′ FP
1

TN
128

NPV: 0.99

SEN: 0.97 SPC: 0.99 ACC: 0.99

Evaluation Metrics

AUC: 0.97 MCC: 0.96 RMSE: 0.113

χ2: 145 F1: 0.97 R2: 0.931

Table A.14: Results for kNN

103

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
28

FN
1

PPV: 0.97

n′ FP
1

TN
128

NPV: 0.99

SEN: 0.97 SPC: 0.99 ACC: 0.99

Evaluation Metrics

AUC: 0.97 MCC: 0.96 RMSE: 0.113

χ2: 145 F1: 0.97 R2: 0.931

Table A.15: Results for C4.5

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
28

FN
1

PPV: 0.97

n′ FP
1

TN
128

NPV: 0.99

SEN: 0.97 SPC: 0.99 ACC: 0.99

Evaluation Metrics

AUC: 0.97 MCC: 0.96 RMSE: 0.113

χ2: 145 F1: 0.97 R2: 0.931

Table A.16: Results for Random Forest

104

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
28

FN
1

PPV: 0.97

n′ FP
1

TN
128

NPV: 0.99

SEN: 0.97 SPC: 0.99 ACC: 0.99

Evaluation Metrics

AUC: 0.99 MCC: 0.96 RMSE: 0.113

χ2: 145 F1: 0.97 R2: 0.931

Table A.17: Results for Stacking

105

File Scan

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
506

FN
349

PPV: 0.70

n′ FP
220

TN
2080

NPV: 0.86

SEN: 0.59 SPC: 0.90 ACC: 0.82

Evaluation Metrics

AUC: 0.79 MCC: 0.52 RMSE: 0.525

χ2: 866 F1: 0.64 R2: 0.335

Table A.18: Results for Bayes

106

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
464

FN
391

PPV: 0.70

n′ FP
200

TN
2100

NPV: 0.84

SEN: 0.54 SPC: 0.91 ACC: 0.81

Evaluation Metrics

AUC: 0.78 MCC: 0.50 RMSE: 0.433

χ2: 779 F1: 0.61 R2: 0.309

Table A.19: Results for Logistic Regression

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
470

FN
385

PPV: 0.76

n′ FP
149

TN
2151

NPV: 0.85

SEN: 0.55 SPC: 0.94 ACC: 0.83

Evaluation Metrics

AUC: 0.84 MCC: 0.54 RMSE: 0.411

χ2: 929 F1: 0.64 R2: 0.375

Table A.20: Results for ANN

107

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
593

FN
262

PPV: 0.72

n′ FP
228

TN
2072

NPV: 0.89

SEN: 0.69 SPC: 0.9 ACC: 0.84

Evaluation Metrics

AUC: 0.85 MCC: 0.60 RMSE: 0.394

χ2: 1144 F1: 0.71 R2: 0.427

Table A.21: Results for Association Ruleset

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
473

FN
382

PPV: 0.79

n′ FP
124

TN
2176

NPV: 0.85

SEN: 0.55 SPC: 0.95 ACC: 0.84

Evaluation Metrics

AUC: 0.87 MCC: 0.57 RMSE: 0.400

χ2: 1013 F1: 0.65 R2: 0.408

Table A.22: Results for kNN

108

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
477

FN
378

PPV: 0.82

n′ FP
104

TN
2196

NPV: 0.85

SEN: 0.56 SPC: 0.95 ACC: 0.85

Evaluation Metrics

AUC: 0.82 MCC: 0.59 RMSE: 0.391

χ2: 1090 F1: 0.66 R2: 0.436

Table A.23: Results for C4.5

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
518

FN
337

PPV: 0.69

n′ FP
231

TN
2069

NPV: 0.86

SEN: 0.61 SPC: 0.90 ACC: 0.82

Evaluation Metrics

AUC: 0.77 MCC: 0.53 RMSE: 0.424

χ2: 879 F1: 0.65 R2: 0.336

Table A.24: Results for SVM

109

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
273

FN
582

PPV: 0.88

n′ FP
36

TN
2264

NPV: 0.80

SEN: 0.32 SPC: 0.98 ACC: 0.80

Evaluation Metrics

AUC: 0.87 MCC: 0.45 RMSE: 0.443

χ2: 650 F1: 0.47 R2: 0.277

Table A.25: Results for Random Forest

A
ct

u
a
l

C
la

ss

Predicted Class

p n

p′ TP
589

FN
266

PPV: 0.67

n′ FP
285

TF
2015

NPV: 0.88

SEN: 0.69 SPC: 0.88 ACC: 0.83

Evaluation Metrics

AUC: 0.90 MCC: 0.56 RMSE: 0.418

χ2: 993 F1: 0.68 R2: 0.356

Table A.26: Results for Stacking

110

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Research Contribution
	Comparative Analysis of Cloud-based Intrusion Detection Systems
	Cloud-based IDS with VMI
	Cloud-based IDSwithout VMI

	Layout

	State of Cloud Security
	Malware
	Traditional Intrusion Detection Systems
	VMM Weaknesses
	Transparency
	VM Escapes
	Side Channels
	Information Leaks
	Image Standardization

	Cloud Forensic
	Memory Volatility
	Live Analysis
	Validating Artifacts

	Survey of Literature
	Virtual Machine Introspection
	Semantic Gap
	Analysis
	Monitoring
	Summary

	Cloud-based IDS Heuristics
	Anomaly Detection
	Artificial Neural Network
	Association Rule
	Fuzzy Logic
	Genetic Algorithm
	Misuse Detection
	Support Vector Machine

	ODinn
	Yggdrasil
	HliDskjalf - VMI Library
	Bridging the Semantic Gap
	Integrating with Volatility's Address Space

	Einherjar - Guest Monitors
	Initialize
	Bifrost
	Geri - Doubly-linked List Crawlers
	Freki - Pool Tag Scanning Monitor

	Mimisbrunnr - Database
	Loki - Malware Dataset Generator
	Munnin - Rule Generation and Detection
	Binary Classification
	Feature Selection
	Model Evaluation
	Rule Generation

	BalDr - Protection and Mitigation
	Live Snapshots

	Huginn - Malware Analysis Suite
	Verification of DLL and Drivers
	Stripped PE Header reconstruction
	Rule Augmentation

	Urdarbrunnr - ODinn's Benchmarks

	Future Work
	Yggdrasil
	HliDskjalf and Einherjar
	Mimisbrunnr
	Muninn
	BalDr
	Huginn

	Conclusion
	Appendices
	Key Concepts
	Virtualization
	Overview
	Properties of VMMs
	Inspection

	Cloud Computing
	Binary Classification Results

