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Introduction

The power grid is increasingly dependent on information and communication technolo-

gies, which puts more emphasis on the importance of power system security as one of the

top priorities. Internal and external factors can put the security of the power system at

risk. The external factors include cyber-terrorist attacks, sabotage and environmental im-

pacts while the internal factors are inherent to the accuracy of power system applications

and their associated input data. As the utility industry becomes more automated and relies

more on automated devices, the major threat to the grid is shifting from equipment failures

to cyber-security attacks. Hence, improvement of the cyber-security of the power grid along

with the reliability of the power system operations are primary focus of the United States

government, power industry executives, and the research community.

Cyber-attacks to power systems could cause huge financial losses and substantial dam-

ages to the power grid. Hence, the main goal of the research summarized in this dissertation

is to highlight the risks associated to the cyber-attacks to power systems and develop al-

gorithms and models to improve the safe operations of the electric power grid. To achieve

this goal, a detection algorithm is developed to avoid cyber-attacks to the optimal power

flow (OPF) software module of the power systems. Since there is no guarantee that detec-

tion models detect all potential cyber-attacks, it is necessary to equip power systems with

response models which avoid propagation of the cyber-atacks. In this dissertation, cyber-

attacks to a specific network of the power systems, known as the phasor measurement unit

(PMU) network, have been discussed, and a risk mitigation model for cyber-attacks to PMU

networks is proposed. PMUs provide the system operators with the real-time operating sta-

tus of the power grid, which can be further utilized for better cyber-security of the power

grid. Since PMUs require considerable capital investments, an investment decision model is
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developed in this dissertation for the optimal allocation of phasor measurement units. There-

fore, this dissertation outlines a research that will consider the OPF and state estimation

modules of the electrical power systems and deliver the following outcomes.

• An algorithm for real-time data reassurance in the OPF module

• A probabilistic risk mitigation model for cyber-attacks to PMU networks

• An investment decision model for the optimal allocation of phasor measurement units

The remainder of this dissertation is organized as follows. Chapter 1 explains the cyber-

security problem of the OPF module and introduces the real-time data reassurance model to

improve the cyber-security of the OPF module. Chapter 2 provides background information

about cyber-security of the PMU networks and explains the probabilistic risk mitigation

model for cyber-attacks to the PMU networks. Chapter 3 discusses the challenges of the

optimal placement of PMUs (OPP) problem and describes the developed investment decision

model to allocate PMUs with minimum capital costs.

2



Chapter 1

Real-time Data Reassurance in Electrical Power Systems based on Artificial Neural

Networks

1.1 Abstract

Power system security is vulnerable to cyber-attacks that may cause significant damages

to the power grid and result in huge financial losses. In this paper, we show the risks associ-

ated with cyber-attacks and propose an artificial neural network-based protection approach.

The proposed algorithm can monitor the output of power flow calculations and detect data

anomalies in real-time. The network observability rules are formulated as a mixed integer

linear program (MILP) problem. The results of the MILP problem are used to decrease the

amount of data input required by the algorithm while the system stays observable. We run

our experiments on the IEEE 24-bus reliability test system. The experimental results show

that the developed algorithm is a promising enhancement to ensure data integrity in control

centers.

keywords: Power system security, Artificial neural networks, Cyber-security, Network ob-

servability

Nomenclature

Sets

Υk: Set of lines to/from the bus k

Ω: Set of zero injection buses

Φk: Set of lines to/from the zero-injection bus k ∈ Ω

Ψ: Set of generators

3



Constants

K: Number of buses

L: Number of lines

Lk: Load at bus k

α(l): From bus of line l

β(l): To bus of line l

Hk,l: Incidence matrix coefficient (-1, 0 or 1) at bus k of line l

Sl: Susceptance of line l (Siemens)

Cg: Energy cost of generator g ($/MWh)

Pmin
g : Minimum generation of generator g (MW)

Pmax
g : Maximum generation of generator g (MW)

Fmax
l : Maximum capacity of line l (MVA)

Nk: Number of transmission lines to/from zero-injection bus k

Variables

pg: Energy dispatched by generator g ∈ Ψ (MW)

fl: Power flow at line l = 1, , L (MVA)

θk Voltage angle at bus k = 1, .., K (Degrees)

xl: Binary variable which equals 1 if line l is chosen

x
′
l: Binary variable which equals 1 if the flow on line l can be computed

yk: Binary variable which equals 1 if bus k is chosen

y
′
k: Binary variable which equals 1 if the voltage on bus k can be computed

εi: Threshold value i

SSEt: The mean of the sum of squared errors at time t

F : Power flow matrix

4



1.2 Introduction

Power system security is one of the top priorities for control center operators. Internal

and external factors can put the security of the power system at risk. The external factors

include cyber-terrorist attacks, sabotage and environmental impacts [1] while the internal

factors are inherent to the accuracy of power system applications and their associated input

data. As the utility industry becomes more automated and relies more on automated devices,

the major threat to the grid is shifting from equipment failures to cyber-security attacks

[2]. According to [3], cyber threats happen when unauthorized users exploit cyber system

vulnerabilities. A cyber terrorist could wisely design a malicious data-tampering attack

to deliberately inflict major damage on the power grid. The intruder can gain access to

the supervisory control of a SCADA system and initiate control actions. Several software

modules are used by power system operators to support decision making in the control

centers. As a case in point, the state estimation software gives system operators an updated

picture of the system status by estimating the actual values of system variables using real-

time data. The software estimates the voltage magnitudes and voltage angles at all network

buses [4]. The effectiveness of state estimation can be affected by bad data stemming from

equipment installation problems, localized equipment failures, communication errors, etc.

It has been also pointed out in [5] that the cyber-attackers may take advantage of the

bad data for financial arbitrage such as virtual bidding at selected pairs of nodes. Since

state estimation procedures already consider that data measurements can be bad, existing

procedures have been modified to detect malicious attacks to the data [6]. The weighted least

squares (WLS) method, which solves Gauss normal equations iteratively, was initially used in

state estimation. And consequently, the Bad Data Detection, Identification and Elimination

(BDDIE) method was proposed to detect data attacks [6]. These orthogonal transformation

techniques are not widely used in the power system community due to the required high

computation efforts in large systems [7]. The bad data suppression (BDS) algorithm, based

on a non-quadratic cost function, was proposed to improve the performance of the WLS
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technique in the presence of bad data [7]. In this technique, the least normalized residuals

(LNR) are used in detection and elimination of bad data. This use of residual analysis and

non-quadratic estimation criteria laid the groundwork for the concept of interacting vs. non-

interacting bad data and the ability to probabilistically predict false alarms [8]. Valenzuela

et al. [9] considered another important software module used by the control centers, the

Optimal Power Flow (OPF), that can be a target for a data attack. OPF determines the

steady-state operation point which ensures the minimum generation cost while maintaining

system constraints on real and reactive power, generator outputs, transmission line flows, bus

voltages, etc. The authors pointed out that an undetected cyber-attack on the input data to

the OPF module could cause power to be dispatched erroneously, overloading transmission

lines and possibly resulting in cascading power outages. Traditional state estimation can

detect differences in database parameters and estimated parameters during the bad data

detection process; however, cyber terrorists could carefully design an attack after the most

recent state estimation program has run that is undetectable and intentionally designed to

hamper the grid. In [10], it was shown that false data injection attacks cannot be avoided

in todays SCADA systems. The notion of a false data injection attack was first introduced

in 2009 [11]. Besides, it is discussed in [12] that current bad data detection schemes would

not detect all types of parameter changes, especially when branch power flows and power

injections at both ends of a branch are critical to estimate the conventional state vector.

Hence, it can be inferred that data manipulations would remain undetected and the incorrect

database parameters would be used for later decisions. It has been pointed out also in [13]

that there is a crucial need for SCADA real-time intrusion detection algorithms to mitigate

the risk of cyber threats. To our knowledge, the data supplied to the OPF module is not well-

protected against these kinds of attacks and could be an attractive target for cyber-attackers.

In a similar research to this paper, Valenzuela et al. [9] proposed a bad data detection

algorithm that monitors the AC power flow results of the OPF. The algorithm uses Principal

Component Analysis (PCA) to determine whether the power system input data has been

6



compromised. In this paper, we address the same problem as in [9], but we use a different

approach which allows for several enhancements to our algorithm. Our approach is based on

a forecasting technique while the other paper uses a variability monitoring technique. The

advantage of our technique is that the threshold value can be computed statistically. The

threshold value in [9] is obtained by experimentation. Another difference is that [9] considers

just the AC OPF software while we consider both the AC and DC OPF. Lastly, we show

by an example how a cyber-attack to the network data can endanger the physical power

system, which is not discussed in [9]. We use artificial neural network (ANN) to verify the

trustworthiness of the results from the OPF. ANN has been used extensively in nonlinear

systems such as the single-ended fault location of transmission lines [14], short term load

forecasting [15] and power transformer fault diagnosis [16]. However, to the best of our

knowledge, it has not been used in detecting data anomalies in power system applications.

We also model network observability rules as a mixed integer linear programming (MILP)

problem to reduce the dimensionality of the problem while still maintaining the critical

variables.

The rest of this chapter is organized as follows: Section 1.3 describes the optimal power

flow model. Section 1.4 analyzes the cyber-attacks to the network data. Section 1.5 discusses

the anomaly detection model and the ANN algorithm. Section 1.6 provides experimental

results and Section 1.7 reports our conclusions.

1.3 Optimal power flow model

Modern power system control centers run a sophisticated collection of computer appli-

cations and maintain huge databases that ensure the economical operations of the power

system. The input data to various application modules is cleansed and sampled for compu-

tation, storage and further analysis. In this paper we model a system where a cyber terrorist

has compromised the integrity of the data supplied to the OPF module. We focus on the

OPF module because it plays a significant role in power generation and transmission, and an

7



undetected attack to the input data to the OPF could be disastrous to the power grid. OPF

is an optimization-based module which minimizes the total generation cost of the system.

For simplicity, a simplified DC OPF is presented in this section. However, in Section 1.5, we

provide the results for both the DC and AC models.

z = min
∑
g∈Ψ

Cgpg (1.1)

Subject to
L∑
l=1

Hk,lfl + pk = Lk k = 1, . . . , K (1.2)

fl − Sl(θα(l) − θβ(l)) = 0 l = 1, . . . , L (1.3)

−Fmax
l ≤ fl ≤ Fmax

l l = 1, . . . , L (1.4)

Pmin
g ≤ pg ≤ Pmax

g ∀g ∈ Ψ (1.5)

The objective function in equation (1.1) is subject to power balance constraints at each

bus k given in equation (1.2). The power flow on each line l is shown in equation (1.3).

Constraints in equation (1.4) represent thermal flow limits for all lines, and constraints in

equation (1.5) are generation capacities for each generator. The variables θk are unrestricted.

1.4 Analysis of cyber-attacks to the network data

The main goal of this research is to provide the system operators with an approach

to protect the power system from attacks against the network model used in the OPF

calculation. The network model represents the physical parameters of the network and is

stored in a database. We use a 6-bus test system given in [17] to show how a cyber-attack to

the network data can endanger the physical power system. The 6-bus test system is shown

in Figure 1.1. This test system includes six buses, three generators and eleven transmission

lines. TABLE 1.1 shows the load at each bus.
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Figure 1.1: The 6-bus Test System

Table 1.1: Load in MW

Bus 1 2 3 4 5 6
Load (MW) 0 0 0 80 80 80

First, we run the DC version of the OPF software to obtain power generation outputs

and flows in the transmission lines assuming that there is no contaminated data. We use

MatPower [18] in this paper for the OPF calculations. The power generation results are given

in TABLE 1.2, and TABLE 1.3 shows the flows on transmission lines. The last column of

TABLE 1.3 shows the percentage of transmission line capacity used for dispatching.

Table 1.2: Power generation output with no cyber-attack

Generator 1 2 3 Total
pg (MW) 46.77 103.18 90.05 240

Next, we assume that intruders attack the database by getting access to the physical

parameters of the network and carefully making changes to hamper the power grid. In

addition, we assume that the system operator is unaware of these changes and operates the
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Table 1.3: Flows with no cyber-attack

Line Fmax
l fl(MVA) % Line Capacity Used

1 40 -1.37 3.4
2 60 26.67 44.5
3 40 21.46 53.6
4 40 -2.71 6.8
5 60 56.08 93.5
6 30 22.37 74.6
7 90 26.07 29.0
8 70 28.42 40.6
9 80 58.92 73.6
10 20 2.76 13.8
11 40 -4.99 12.5

system using the tampered data. The attacks consist of changing the network topology by

modifying the origin and destination buses of some transmission lines. Mathematically, the

network topology is represented by Hk,l in equation (1.2) of the OPF model. In the 6-bus

test system, line 1 distributes the power from bus 1 to bus 2. Line 5 goes from bus 2 to

bus 4. We assume that the attack aims at changing the destination of line 1 to bus 3 and

the destination of line 5 to bus 3. Notice that these cyber-attacks will change only the

network topology and there will be no change in the physical parameters of the network.

Figure 1.2 shows the network model under attack. The dashed lines are the actual lines in

the physical network which the attacker modifies. As a result, the network topology stored in

the database no longer maps to the real system. Because the network model does not match

the physical network, the physical flows will be different from the flows obtained by the OPF

software. To compute the physical flows after the cyber-attack, we used MatPower [18], set

the input voltage angles at all buses and obtained physical power flows. TABLE 1.4 shows

the physical power flows on each line when the system is under cyber-attack.

As shown in TABLE 1.4, line 9 is obviously overloaded. Overloaded transmission lines

are highly undesirable to the grid stability since the overloaded transmission lines may lead

to cascading outages and blackouts. In addition to possible overloaded lines, an attack can

affect the economics of power systems by using more expensive generating units or taking

10



B
u

s 
4

B
u

s 5B
u

s 
1

B
u

s 6

B
u

s 3

B
u

s 
2

L
in

e 
1

L
in

e 
2

Line 3

Line 4

L
in

e 
5

L
in

e 
6

Line 7

L
in

e 
8

Line 9

L
in

e 
1

0

L
in

e 
1

1

Line 1 - Attacked

Line 5 - Attacked

Figure 1.2: The network model under attack

Table 1.4: Flows after the cyber-attack

Line Power Flow % Line Capacity Used
1 0.34 0.8
2 25.58 42.6
3 11.78 29.4
4 -37.00 92.5
5 50.47 84.1
6 11.55 38.5
7 -0.26 0.29
8 48.91 69.9
9 91.98 115.0
10 -3.96 19.9
11 -11.72 29.3

advantage of financial arbitrage in virtual bidding at different nodes [19]. Therefore, it is

extremely important to detect this type of cyber-attack to the system.

1.5 Detection model

In this section, we describe a model that allows the system operators to detect whether

the network model has been compromised. The detection model is based on ANN, which

11



has been used extensively in the area of power systems. In particular, ANN has broad

applications in fault diagnosis methods because of its ability to deal with noisy inputs, non-

linear function approximation, and adaptive learning.

1.5.1 Artificial Neural Network Model

ANNs are usually trained offline and then used to detect faults online. As shown in

Figure 1.3, an ANN is composed of interconnected layers of artificial neurons. ANN is a

powerful computational model which can adjust the values of the connections, namely the

weights, to approximate almost any nonlinear function [20].

Input 

Layer

Output 

Layer

Hidden 

Layer 2

Hidden 

Layer 1

Figure 1.3: Multi-layer ANN with two hidden layers

In our detection model, ANN is used to estimate the power flows at period t given the

load and the power flows at the previous period t − 1. To detect anomalies the estimated

power flows are then compared to the power flow output from the OPF module in the same

period to determine whether an anomaly exists. The flows and the load at the previous

period are the input data to the ANN model. The load is included to eliminate the variations

stemming from load variability. Figure 1.4 shows a block diagram of the inputs/outputs of

the algorithm. The MATLAB Neural Network Toolbox described in [20] is used to train the

ANN module of the detection algorithm.
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Trained ANN

Loads at Period t -1

Power Flows at Period t -1

Estimate of Power 

Flows at Period t

OPF

Loads at Period t

Generators Status at Period t

Power Flows at 

Period t

Is there any 

anomaly?

Figure 1.4: Block diagram of the inputs/outputs of the algorithm

1.5.2 ANN Reduction

The number of input vector entries to the ANN model is determined by the number

of transmission lines plus the number of buses where loads are present. Since one of the

factors affecting the computational efficiency of the detection algorithm is the size of the

input vector, we use the concept of network observability defined in [21] to reduce the size

of ANN. The network observability is a measure for how well to infer the state of a system

by knowledge of a subset of its external outputs. Hence, we can just select a subset of

transmission flows and buses such that the power system can still remain observable with

less data. The problem of finding these subsets is formulated as a MILP model where the

constraints assure the observability of the power network. The MILP model is formulated

as follows:

min
L∑
l=1

xl +
K∑
k=1

yk (1.6)

Subject to

y
′

β(l) = yα(l)xl ∀l such that β(l) /∈ Ω (1.7)

x
′

l = yα(l)yβ(l) ∀l such that β(l) or α(l) /∈ Ω (1.8)( ∑
l∈Φk

xl

)
− x′

l′ ≤ Nk − 2 ∀k ∈ Ω and ∀l′ ∈ Φk (1.9)

xl + x
′

l ≥ 1 l = 1, . . . , L (1.10)
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yk + y
′

k ≥ 1 ∀k /∈ Ω (1.11)

∑
l∈Υk

xl ≥ 1 k = 1, . . . , K (1.12)

xl, x
′

l, yk, y
′

k ∈ {0, 1} l = 1, . . . , L and ∀k /∈ Ω (1.13)

In the objective function, equation (1.6), the first term is the total number of selected

transmission lines while the second term is the total number of chosen buses. Constraints

equation (1.7) assure that if we know the flow of a branch and the bus voltage on one end,

then the bus voltage on the other end can be calculated via the power flow equations. Since

the term yα(l)xl is the product of two binary variables, these constraints are nonlinear. These

constraints can be represented by a group of linear constraints as follows:

2y
′

β(l) − yα(l) − xl ≤ 0 (1.14)

y
′

β(l) − yα(l) − xl ≥ −1 (1.15)

These two constraints set the binary variable y
′

β(l) to be the product of yα(l) and xl. This

is if yα(l) = 0 or xl = 0, then y
′

β(l) = 0. The value of y
′

β(l) is 1 only if yα(l) = 1 and xl = 1.

Equation (1.8) assures that if we know the voltages at both buses of a transmission line,

the line flow can be calculated. Again, the term yα(l)yβ(l) is a nonlinear term. Similarly,

these constraints can be represented by two linear constraints as follows:

2x
′

l − yα(l) − yβ(l) ≤ 0 (1.16)

x
′

l − yα(l) − yβ(l) ≥ −1 (1.17)

Equation (1.9) assures that for a zero-injection node, if just one of the incidence trans-

mission line flows is unknown, then it can be calculated by Kirchhoffs law. Equation (1.10)

and equation (1.11) assure that all bus voltages and transmission flows are either directly or
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indirectly computed. Since the ANN predicts power flows, equation (1.12) assures that at

least one transmission line from each bus is included in the reduced set of inputs.

1.5.3 Detection Algorithm

The detection algorithm is theoretically grounded on forecasting the power flows of

the current hour t based on the power flows of the previous hour t − 1. Forecasted power

flows at hour t are compared to the power flows generated by the OPF module at hour t.

The difference is computed by the sum of squared errors (SSE) of the forecasted flows and

the flows from the OPF. If the SSE is greater than a threshold value, the alarm informs

the system operator that the power system may have been compromised. We use ANN as

the forecasting tool since it has been shown in other applications [14–16] to have excellent

multivariate forecasting capabilities. We describe our methodology by the following pseudo

code:

Step 0. Simulate the generators status

Simulate the generators status (on/off) from a continuous-time Markov chain

Step 1. Generate historical power flows

tSim = Simulation Time

for t = 1 to 2× tSim+ 1 do

Sample generator status

Solve the OPF using the load at time t

Compute the tth row of the power flow matrix F

end for

Step 2. Create and Train the Neural Network

Create the matrix Training-Input by using the entries 1 to tSim− 1 of the flow matrix F as

the input to the training function of the neural network

Create the Matrix Training-Target by using the entries 2 to tSim of the flow matrix F as

the target of the training function of the neural network
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Create the neural network object

Train the ANN using the matrices Training-Input and Training-Target

Step 3. Statistically compute the threshold value

for t = tSim+ 1 to 2× tSim+ 1 do

Obtain an estimate for the flows at time t, P̂ , by using the load and the flows at time

t− 1 as input to the neural network

Compute the vector Û by dividing P̂ by the maximum emergency capacity of the

transmission lines

Compute the tth row of the used-capacity matrix U by dividing the tth row of the actual

power flow matrix F by the maximum emergency capacity of the transmission lines

Compute the sum of squared error SSEt between the tth row of U and Û

end for

Compute a threshold value ε based on fitting a Weibull distribution function to SSEt

Step 4. Test Detection Algorithm

for t = 2× tSim+ 2 to T do

Sample generator status

Obtain an estimate for the flows at time t, P̂ , by using the load and the flows at time

t− 1 as input to the neural network

Compute the vector Û by dividing P̂ by the maximum emergency capacity of the

transmission lines

Solve the OPF using the load at time t

Compute the vector U by dividing the power flows obtained from the OPF by the

maximum emergency capacity of the transmission lines

Compute the mean of the sum of squared error SSEt between Û and U

If SSEt > ε then an anomaly exists

Else the system is in control

end if
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end for

We have scaled down the power flows (matrix U) to values between 0 and 1 to avoid

a computer overflow when computing the sum of the squared errors. A summary of the

algorithm is shown as a flowchart in Figure 1.5.
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Figure 1.5: Flowchart of the anomaly detection algorithm

1.6 Experimental Results

To assess the performance of our detection algorithm, we use data from the IEEE

Reliability Test System [22]. We run our experiments on the 24-bus system which consists

of 38 transmission lines, 24 buses of which 17 have loads, and 33 generators. A picture of

the 24-bus test system is provided in Figure 1.6. We refer the readers to [18] and [22] for

additional details.

The load data are obtained from the PJM [23]. A standardized load profile of 744

hours by scaling down the load data based on the peak load is created so that the value 1.0
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Figure 1.6: 24-bus test system

corresponds to the peak load. The load at each hour is calculated by applying the load profile

to the IEEE test system. Although the load at each bus follows the same variability pattern,

the actual values are distinct at different buses. Figure 1.7 is a plot of the standardized load

of the first 168 hours, used to train the neural network.
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Figure 1.7: Standardized load

1.6.1 DC-OPF Detection Algorithm

In this section, we develop the detection algorithm for DC-OPF. We first construct the

configuration of the ANN. The loads of buses and power flows of transmission lines (at time

t − 1) are the input variables to the ANN. The output variables are the forecasted power

flows for time t.

ANN Configuration

We use the multi-layer feed-forward back-propagation technique with an adaptive learn-

ing rate and momentum. The learning rate, which controls the rate of convergence, is chosen

to be 0.05. The training process is stopped when either the minimum performance gradient

is reached or the performance goal is met. We simulate the operation of the power system

using the DC-OPF for 168 hours (1/4 of the total hours of available data) to generate the

historical power flows which are used to train the neural network. To simulate generator fail-

ures, we sample the state of the generators according to a continuous-time two-state Markov
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chain. Figure 1.8 shows the variations of the power flows on four of the lines in the 24-bus

test system during the training period.
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Figure 1.8: Power flows of four lines during the training period

We design two configurations, ANN-1 and ANN-2. ANN-1 uses all buses and lines (62

inputs) while ANN-2 uses the reduced network obtained by solving the MILP formulation

described in section 1.4. The performance of the ANN depends on its configuration and

the best configuration depends on the power network. To find the best configuration for a

given power system, we have developed a computer code. The computer code tries different

number of neurons for the ANN and computes the mean and standard deviation of the

sum of squared errors (MSSE, SSSE) of the target output and the ANNs outputs of each

configuration. The performance of an ANN configuration is defined as MSSE+SSSE and

computed by using the data for hours 169 to 337. This process needs to be executed every

time a new system is studied.

In our experiments, a total of 500 different ANN configurations are generated by chang-

ing the number of layers and the number of neurons on each layer. TABLE 1.5 shows the

statistics of the ten best configurations for ANN-1. Based on the criterion mentioned above,
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the configuration in the first row is selected for ANN-1, which is a four-layer feed-forward

ANN. This network is activated by the tan-sigmoid (2 layers), log-sigmoid (1 layer) and

linear (output layer) functions.

Table 1.5: Configurations of ANN-1

Number of Neurons The Sum of Squared Errors

Configuration Layer 1 Layer 2 Layer 3 Min Mean Max
Standard

Deviation

1 17 17 15 0.0002 0.0362 0.2156 0.2154

2 17 17 18 0.0002 0.0362 0.2644 0.2642

3 15 20 15 0.0002 0.0362 0.2973 0.2935

4 15 15 15 0.0002 0.0364 0.2965 0.2963

5 14 18 18 0.0003 0.0377 0.2385 0.0547

6 17 15 16 0.0005 0.0377 0.3722 0.0652

7 7 7 0 0.0005 0.0394 0.5256 0.5251

8 8 10 0 0.0003 0.0405 0.2214 0.2211

9 11 8 0 0.0005 0.0462 0.2653 0.2648

10 13 8 0 0.0002 0.0462 0.3027 0.3025

Similarly, we determine the best configurations for ANN-2. This network uses as input

the load at buses and power flows on lines determined by the mentioned MILP formula-

tion. We solve the optimization model for the 24-bus test system. The solution is given

in TABLE 1.6, which shows that by applying the network observability rules we decrease

the size of the input vector by 42% (from 62 to 36 inputs). For such a small system, the

reduction of the number of input/output variables may not be strictly necessary. However,

for real world power systems where thousands of buses and transmission lines may exist,

without reduction the number of input variables could be extremely large and prohibited for
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computation. The advantage of using network observability rules is that the crucial variables

are maintained in the reduced set.

Table 1.6: Solution of the MILP model

Included buses in the input vector 1, 2, 3, 5, 6, 8, 9, 10, 14, 15, 16, 19
Included lines in the input vector 3, 4, 5, 7, 8, 11, 14-22, 26-28, 30-32, 34, 36, 38

We train 500 different ANN configurations and select the one with the best performance

as is done with ANN-1. TABLE 1.7 shows the ten best configurations for ANN-2. The

configuration in the first row is chosen.

Table 1.7: Configurations of ANN-2

Number of Neurons The Sum of Squared Errors

Configuration Layer 1 Layer 2 Layer 3 Min Mean Max
Standard

Deviation

1 9 13 10 0.0001 0.0145 0.0976 0.0179

2 9 10 8 0 0.0156 0.0908 0.0181

3 7 11 12 0.0002 0.0162 0.1055 0.0203

4 13 9 7 0.0001 0.0174 0.1021 0.0215

5 12 11 9 0.0001 0.0178 0.1003 0.0217

6 12 7 8 0.0003 0.0194 0.0919 0.0223

7 10 12 7 0 0.0194 0.1158 0.0240

8 12 7 10 0.0001 0.0193 0.1217 0.0245

9 8 10 8 0.0001 0.0193 0.1153 0.0247

10 9 10 9 0.0002 0.0202 0.0966 0.0238

Determining the Threshold Value

First, we statistically determine the threshold value ε1 for the ANN-1 model and cal-

culate the sum of the squared error SSE at each hour for the next 168 hours which are
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hours from 169 to 337. The values of SSE are fitted to a Weibull distribution, which is

commonly used in reliability engineering and failure analysis. For ANN-1, the scale and

shape parameters are estimated to be 0.031 and 0.80 respectively. Assuming that a 2.5%

false alarm rate is acceptable, the 97.5 percentile is considered as the threshold value, i.e.

ε1 = 0.16. Figure 1.9 shows the cumulative distribution function of the sample data and the

hypothesized distribution. Similarly, the scale and shape parameters are estimated to be

0.013 and 0.83 for ANN-2, and the threshold value is set to ε2 = 0.05.
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Figure 1.9: Fitted Cumulative Distribution Function to the sum of the squared errors for
ANN-2

Testing the Detection Algorithm

We first study the performance of the detection algorithm under normal operation con-

ditions. We run our simulation for the next 407 hours (hour 338 to hour 744). The nor-

mal operation includes load variability and generator outages. Figure 1.10 and Figure 1.11

show the time series of the sum of the squared errors SSEt for ANN-1 and ANN-2, respec-

tively. Three false alarms are observed in Figure 1.10 and seven false alarms are observed in

Figure 1.11.
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Figure 1.10: Plot of the ANN-1 false alarms
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Figure 1.11: Plot of the ANN-2 false alarms

To study the performance of the detection algorithm under a cyber-attack, we change

the database of the power system at one particular point in time. At hour 744, we change

the phase shifter angle from 0 to π/6 radians of each line, one line at a time. We run the two
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detection algorithms. TABLE 1.8 shows whether the change of a particular line is detected

using either detection algorithm. The results show that ANN-1 and ANN-2 detect 37 out of

the 38 injected changes.

Table 1.8: Detection results of one anomaly injection

Line
ANN-1

Detection
ANN-2

Detection
Line

ANN-1
Detection

ANN-2
Detection

Line
ANN-1

Detection
ANN-2

Detection
1 Yes Yes 14 Yes Yes 27 Yes Yes
2 Yes Yes 15 Yes Yes 28 Yes Yes
3 Yes Yes 16 Yes Yes 29 Yes Yes
4 Yes Yes 17 Yes Yes 30 Yes Yes
5 Yes Yes 18 Yes Yes 31 Yes Yes
6 Yes Yes 19 Yes Yes 32 Yes Yes
7 Yes Yes 20 Yes Yes 33 Yes Yes
8 Yes Yes 21 Yes Yes 34 Yes Yes
9 Yes Yes 22 Yes Yes 35 Yes Yes
10 Yes Yes 23 Yes Yes 36 Yes Yes
11 Yes No 24 Yes Yes 37 Yes Yes
12 Yes Yes 25 Yes Yes 38 Yes Yes
13 No Yes 26 Yes Yes

Next, we create four other cyber-attack scenarios in which we change multiple lines

simultaneously. Since multiple lines can be randomly selected, we run 200 replications for

each attack scenario. It is assumed that the attacker may change the origin/destination

of a transmission line, Hk,l, the normal capacity of a transmission line, Fmax
l or the line

availability status. We assume that the attacker may decrease the capacity of a transmission

line to 10% of its original value. It is important to mention that under certain cyber-attacks

the DC-OPF cannot obtain a feasible solution. Since the operator should be alerted to this

condition, this cyber-attack scenario is considered detected. The cyber-attack scenarios are

summarized in TABLE 1.9.

The performances of the detection algorithms ANN-1 and ANN-2 are given in TABLE 1.10.

The results show that the reduced ANN-2 which eliminates redundant information performs

slightly better than ANN-1 for scenarios A, B and C. In scenario D the performances of

both algorithms are comparable. Hence, the reduced ANN is chosen for experiments with

the AC-OPF based detection algorithm.

25



Table 1.9: Cyber-attack scenarios

Scenarios
Line A B C D

1st Modify
Origin

Modify
Origin

Modify
Capacity

Modify
Origin

2nd Modify
Destination

Modify
Capacity

Modify
Capacity

Modify
Origin

3rd Remove
Modify

Capacity
Modify
Origin

Table 1.10: DC-OPF detection results in different cyber-attack scenarios

%Detection

Scenario
ANN-1

DC-OPF Model
ANN-2

DC-OPF Model
A 92.5 97.5
B 95.0 97.0
C 95.5 97.5
D 99.5 98.5

1.6.2 AC-OPF Detection Algorithm

The AC-OPF detection algorithm, ANN-3, is similar to the DC-OPF detection algo-

rithm except that the AC-OPF algorithm takes the real AC power flows obtained from

AC-OPF as inputs to the ANN and returns the estimate of the real AC power flows of the

next period. The same process used for DC-OPF is used to determine the best design for

ANN-3. TABLE 1.11 shows the best configurations of ANN-3. The first configuration is

selected.
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Table 1.11: Configurations of ANN-3

Number of Neurons The Sum of Squared Errors

Configuration Layer 1 Layer 2 Layer 3 Min Mean Max
Standard

Deviation

1 13 11 8 0.0001 0.0163 0.1035 0.0223

2 12 8 11 0.0001 0.0204 0.0822 0.0236

3 13 11 12 0.0003 0.0182 0.1337 0.0262

4 9 8 12 0.0005 0.0183 0.1269 0.0261

5 9 9 12 0.0003 0.0165 0.1698 0.0288

For ANN-3, the scale and shape parameters are estimated to be 0.013 and 0.74 respec-

tively. Assuming that a 2.5% false alarm rate is acceptable, the 97.5 percentile is considered

as the threshold value, i.e. ε3 = 0.078.

Similarly, to study the performance of the AC-OPF detection algorithm under normal

operation conditions, we run our simulation for hours 338 to hour 744. Figure 1.12 shows the

time series of the sum of the squared errors. Eight false alarms are observed in Figure 1.12.

To study the performance of ANN-3 in detecting anomalies, the same attack scenarios

mentioned in TABLE 1.12 are used. The detection results are provided in TABLE 1.12.

The results show that the algorithm performance is highly satisfactory. The percentage of

detection is greater than 95% under all scenarios.

Table 1.12: AC-OPF detection results in different cyber-attack scenarios

Scenario % Detection of ANN-3 (AC-OPF Model)
A 95.0
B 95.0
C 98.5
D 99.0
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Figure 1.12: Plot of the ANN-3 false alarms

1.6.3 Computational Time Analysis

All experiments are performed on a 64-bit laptop with an Intel Core i5 2.4GHz processor

and 4GB RAM. The training time of the artificial neural network and execution time of 100

replications of anomaly detections are given in TABLE 1.12.

Table 1.13: Training and Detection Computational Times

Artificial Neural Network Training Time (s) Detection Time (s)
ANN1 35.19 7.05
ANN2 17.53 10.55
ANN3 10.77 24.15
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1.7 Conclusions

We have illustrated that cyber-attacks could be as dangerous as physical attacks to the

power grid since they could cause major physical losses and damages. Current data cleansing

methods are not powerful enough to detect all cyber-attacks. We have proposed an algorithm

which uses artificial neural networks to detect cyber-attacks against the transmission network

data of an electric power system, which is an additional security measure to the traditional

state estimation software. An alarm from our algorithm would indicate that a parameter

was changed deliberately.

We have used network observability rules to reduce the size of the inputs to the ANN

while maintaining the critical variables. We have tested our algorithm in two software mod-

ules, DC-OPF and AC-OPF. We have simulated cyber-attacks by changing the parameters

of components and transmission lines. The algorithm was able to detect 92 to 99.5% of

the introduced anomalies with a small number of false alarms. The detection capability

of the algorithm depends on how the altered parameters change transmission power flows.

Although the algorithm is effective on detecting the presence of an anomaly in the system,

it cannot identify, locate, or eliminate the anomaly.

The main obstacle for using the algorithm on a much larger power system is the computer

processing time, which is highly depending on the number of input/output variables of

the ANN. Fortunately, the ANN approach accepts parallel computing and can be easily

implemented on a computer with multiprocessors. Certainly, more research needs to be

done on studying the performance and the level of scalability of the proposed approach.

However, the results from the 24-bus power system have shown that the algorithm is a

promising tool for adding an extra level of cyber-security to a power system.
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Chapter 2

A Probabilistic Risk Mitigation Model for Cyber-Attacks to PMU Networks

2.1 Abstract

The power grid is becoming more dependent on information and communication tech-

nologies. Complex networks of advanced sensors such as PMUs are used to collect real time

data to improve the observability of the power system. Recent studies have shown that the

power grid has significant cyber vulnerabilities which could increase when PMUs are used

extensively. Therefore, recognizing and responding to vulnerabilities are critical to the se-

curity of the power grid. This paper proposes a risk mitigation model for optimal response

to cyber-attacks to PMU networks. We model the optimal response action as a mixed in-

teger linear programming (MILP) problem to prevent propagation of the cyber-attacks and

maintain the observability of the power system.

keywords: Cyber-attack, Phasor Measurement Units, Cyber-security, Networks, Observ-

ability

Nomenclature

Sets and Indices

Υ: Set of buses

Θ: Set of buses equipped with PMUs

Γ: Set of PMUs detected as compromised

Ψ: Set of buses with conventional devices

Ω: Set of branches with conventional devices

i, j, k: Indices of buses
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Constants

M : Number of detected compromised PMUs

Hi,j: Connectivity between buses i and j

Ti: Threshold threat level (between 0 and 1) of PMUi

Dij: Nodal distance between PMUi and PMUj

∆t: Time that a propagation attempt takes

m: Number of ∆t that the system operator takes to respond to the cyber-attack

Decision Variables

xj: : Binary decision variable which equals 1 if PMUj is kept connected to the network, and

0 otherwise

ϕi: Observability number, number of times that bus i is observed, which is ≥ 1 if bus i is

observable

yi,j: Binary variable which equals 1 if the measurement from the conventional device at bus

j is assigned to compute the unknown voltage phasor of bus i, and 0 otherwise.

ρi,j: Binary variable which equals 1 if the measurement from the conventional device at trans-

mission line i−j is assigned to compute the unknown voltage phasor of bus i, and 0 otherwise.

Random Variables

Aj(t): random variable which equals 1 if PMUj is attacked, and 0 otherwise

Probabilities

αij: The probability that PMUj is attacked through PMUi

λ: The probability that an attack propagates through a router

γ: The probability that an attack propagates to a PMU through a router

θj(t): The threat level of PMUj at time t
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2.2 Introduction

The power grid is increasingly dependent on information and communication technolo-

gies due to the integration of intelligent measurement devices such as phasor measurement

units (PMU). Smart grid investment grants and demonstration project investments have sig-

nificantly accelerated the pace of phasor technology deployment [1]. According to [2], PMUs

will ultimately replace conventional devices. PMUs can measure in real time synchronized

phasors of bus voltages and currents for better observability of the power grid [3]. Synchro-

nization is achieved by timing signals from the Global Positioning System (GPS) satellite.

A PMU takes about 30 to 120 measurements per second and sends its measurements to a

phasor data concentrator (PDC) through a wireless communication network based on the

NASPInet architecture [4, 5]. In the NASPInet architecture, PMUs are connected to an

IP-based communication network like an Intranet. Although the communication network is

dedicated Intranet and isolated from public networks, it is not immune to cyber-attacks [6].

Currently, PMUs transmit their measurements to a pre-defined PDC in a hierarchical man-

ner by using the IP Unicast routing protocol. However, hierarchical architectures suffer from

drawbacks such as delays of messages. A technical report from CISCO proposes that PMUs

should send measurements using the IP Multicast routing protocol [7]. Under this proto-

col, a PMU is directly connected to a router and sends out data packets to pre-configured

destinations. The list of these predetermined destinations can be further manipulated by a

cyber-attacker to propagate the cyber-attack to other PMUs. The propagation of the cyber-

attacks in shared communication networks has been also studied in [8–13]. Furthermore,

it has been reported that the communication network shows poor network security and in-

sufficient software security [14]. Moreover, the authors in [15] studied the spoofing attack

as an optimization problem to maximize the PMU’s receiver clock offset before and after

the attack. The authors in [16] mentioned that there is no available defense against GPS

spoofing which is a threat to critical infrastructure applications such as PMUs that rely on

the publicly known civilian GPS signal. Under these conditions, cyber-attackers could gain

35



access to the PMU communication network, inject false measurement data and propagate

their cyber-attack to the other PMUs to endanger the reliability of the power grid.

Dealing with erroneous data has been a concern of state estimation programs since their

inception in the late nineteen-sixties [17]. It is shown in [18] that sophisticated attacks may

not be detected by conventional state estimation algorithms. Thus, the detection problem

is considered to be challenging and several algorithms have been proposed. The authors

in [19] presented a Principal Component Analysis (PCA) based approach to detect cyber-

attacks in the optimal power flow (OPF) module. The authors in [20] showed how data

attacks can endanger the physical structure of the power grid and developed a detection

algorithm using the artificial neural networks. The authors in [21] have proposed new points

of view to enrich the detection solutions such as modeling the dynamics of attacker versus

defender. The authors in [22] developed greedy algorithms to obtain perfect protection and

partial protection against stealth attacks given a limited budget for protection. In [23],

the authors used the generalized likelihood ratio test to develop a computationally efficient

detection algorithm where the cyber-attacker uses a graph theoretic approach to launch

stealthy malicious data attacks. After the detection, actions need to be taken to prevent the

propagation of the cyber-attack.

The authors of [13] have formulated an optimization model to avoid propagation of the

cyber-attacks in open-science computer network where collaboration and communication

exist among network sites. The optimization model is a mixed integer linear programming

problem, which determines the sites to be disconnected from the network to maximize the

number of users connected to the network resources. The decision is constrained to keep the

threat levels of the sites below a certain threshold value. However, such a model cannot be

directly applied to a PMU network as that model is focused more on maximizing the available

connections on the network, which is not a priority for PMUs. Additionally, observability is

not an issue in open-science computer networks.
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In this paper, we propose an optimal response model to cyber-attacks to PMU networks

where the state estimation principally relies on PMUs. Our model minimizes the threat levels

by disabling known compromised PMUs and PMUs that are likely to be compromised due

to the propagation of the cyber-attacks, while keeping the power system observable. Here, a

threat level represents the probability of a PMU being contaminated at a certain time. We

first use a probabilistic model to estimate the threat levels for PMUs and then formulate the

optimal response as a mixed-integer linear programming problem. Here, a response stands

for disconnecting the contaminated PMU buses to ensure the resultant PMU network is

secure and the grid is observable.

The rest of this chapter is organized as follows: Section 2.3 describes threat level es-

timation. Section 2.4 explains our proposed optimization model. Experimental results are

provided in Section 2.5 and the conclusions are reported in Section 2.6.

2.3 Estimating the Threat Levels

In this section, we calculate the threat levels of the uncompromised PMUs if an intruder

were to attacked one or more PMUs. Propagation of the cyber-attack has been studied on

the other networks. As a case in point, the authors in [24] and [25] considered worm prop-

agation in mobile ad-hoc networks and energy meters in a secondary distribution network,

respectively. Similarly in a PMU network, the intruder controls the attacked PMUs which

can be used to transmit false measurements. Moreover, the intruder can use the communica-

tion links between PMUs to disseminate the attack to the other PMUs via the compromised

PMUs. If the attack propagates to more PMUs, it could jeopardize the observability of

the power system even further. The attack could propagate via all routers between the

compromised and uncompromised PMUs to contaminate the uncompromised PMUs.

Let us assume at time t = 0, M PMUs are detected to be compromised while the

remaining PMUs are uncompromised. It takes time ∆t to disable the compromised PMUs

from the communication network. Naturally, their measurements will no longer be used for
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the state estimation software. Disabling PMUs can be done automatically by the detection

software or manually by the system operator. During this time, there is a chance that the

attack could have been propagated to uncompromised PMUs and the detection software has

not detected them yet. The reason is that the detection software cannot detect at 100%

efficiency [21]. The cyber-attack can propagate to uncompromised PMUs through a path

of interconnected routers. If the cyber-attack successfully breaks into all routers between

the compromised and uncompromised PMUs, it is likely to contaminate the uncompromised

PMUs as well. Moreover, these new compromised PMUs can further infect other PMUs, and

so forth. We represent by the probability, θj(t), the likelihood of a PMU being compromised

(also called threat level) at time t. Notice that the threat levels increase over time as long as

the network still contains compromised PMUs. It takes a time period of m∆t for the system

operator to run the optimization model to obtain the optimal response and confirm that the

alarm is not a false alarm. Thus, certain PMUs, determined by the optimization model, are

disabled at time (m+ 1)∆t.

At time t = 0, equations (2.1) and (2.2) hold.

Pr(Aj(0) = 1) = 1 ∀j ∈ Γ (2.1)

Pr(Aj(0) = 1) = 0 ∀j /∈ Γ (2.2)

By time ∆t, all compromised PMUs are disabled. However, due to the possible prop-

agation of the cyber-attack, there is a chance that the remaining PMUs could have been

compromised and undetected. Therefore at time ∆t, equations (2.3) and (2.4) hold.

Pr(Aj(∆t) = 1) = 0 ∀j ∈ Γ (2.3)

Pr(Aj(∆t) = 1) = 1−
∏
i∈Γ

(1− αij) ∀j /∈ Γ (2.4)
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where αij is the probability that the attack propagates from compromised PMUi to an

uncompromised PMUj during the time ∆t, and it is given by equation (2.5).

αij = γλDij i ∈ Γ, j /∈ Γ (2.5)

In equation (2.5), λ is the probability that an attack propagates through a router, γ is the

probability that an attack propagates to another PMU and Dij, called nodal distance, is

the minimum number of routers that connect PMUi and PMUj on the communication

network. It is likely that there are multiple shortest paths between two PMUs in a large

communication network. In this case, the value of αij would increase and would be given by

equation (2.6).

αij = 1− (1− γλDij)Nij (2.6)

Where Nij is the number of shortest paths between PMUi and PMUj. There may be

other paths in addition to the shortest paths. Considering that it may not be simple to

find all paths between every two PMUs, and that the probability αij decreases exponentially

when the distance increases, we use equation (2.6) to estimate the probability that the attack

propagates from one PMU to another. This function indicates that the propagation becomes

less probable when the nodal distance between the two PMUs becomes larger.

We have stated that it takes time ∆t to disable the compromised PMUs. If, during

m∆t, the system operator concludes that the alarm is false, the disabled PMUs would be

enabled again. Otherwise, the operator would begin disabling the PMUs as determined by

the optimization model discussed in the next section at m∆t and all contaminated PMUs

would be disabled by time (m + 1)∆t. Thus, we need to calculate the threat levels at time

(m+1)∆t. Since the threat levels are calculated in an iterative process, we need to calculate
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the threat levels at time 2∆t, 3∆t, . . ., n∆t. Equations (2.7) and (2.8) hold at time 2∆t.

Pr(Aj(2∆t) = 1) = 0 ∀j ∈ Γ (2.7)

Pr(Aj(2∆t) = 1) = Pr {(Aj(2∆t) = 1|Aj(∆t) = 0}

× Pr {Aj(∆t) = 0}

+ Pr {(Aj(2∆t) = 1|Aj(∆t) = 1}

× Pr {Aj(∆t) = 1)} ∀j /∈ Γ (2.8)

In equation (2.8), we have expressions for all terms except for Pr {(Aj(2∆t) = 1|Aj(∆t) = 0},

which can be obtained from equation (2.9).

Pr{Aj(2∆t) = 1|Aj(∆t) = 0} =

1− Pr{Aj(2∆t) = 0|Aj(∆t) = 0} =

1−
∏
k,j /∈Γ
k 6=j

(1− Pr(Ak(∆t) = 1)× αkj) j, k ∈ Θ (2.9)

We denote Pr(Aj(t) = 1) by θj(t). Therefore, we can rewrite equation (2.8) as equation (2.10)

in terms of threat levels.

θj(2∆t) =

1−
∏
k,j /∈Γ
k 6=j

(1− θk(∆t)× αkj)

× (1− θj(∆t)) + 1× θj(∆t) j, k ∈ Θ (2.10)

It can be shown that equation (2.11) is true when n ≥ 2 and can be used to calculate threat

levels for time 2∆t and further.

θj(n∆t) =

1−
∏
k,j /∈Γ
k 6=j

(1− θk((n− 1)∆t)× αkj)

×
(

1− θj((n− 1)∆t)

)
+ θj((n− 1)∆t)

= 1−
( ∏
k,j /∈Γ
k 6=j

(1− θk((n− 1)∆t)× αkj)
)
× (1− θj((n− 1)∆t) j, k ∈ Θ (2.11)
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If another cyber-attack is detected by time (m+1)∆t, the fundamental change due to the

new attack is the change on set Γ, meaning that the set of the detected compromised PMUs

is adjusted to include the new detected PMUs. In this case, the threat levels after the new

cyber-attack are re-calculated by setting the initial threat levels to the threat levels of the

previous attack. This is, if the second detection occurs at time S = n∆t and 1 ≤ n ≤ (m+1):

θj,new−attack(0) = θj,old−attack(n∆t) ∀j /∈ Γ (2.12)

In the next step, equation (2.11) will be used to update the threat levels after time S = n∆t.

2.4 Response Model

The response to cyber-attacks to a PMU network is modeled using mixed integer linear

programming. The objective function of the model is the minimization of the maximum

threat level of all connected PMUs at time (m + 2)∆t, which is one ∆t after disabling the

PMUs determined by the model. The threat levels from time t = 0 to t = (m + 2)∆t are

summarized in equations (2.13)-(2.19).

θj(0) = 1 ∀j ∈ Γ (2.13)

θj(0) = 0 ∀j /∈ Γ (2.14)

θj(∆t) = 0 ∀j ∈ Γ (2.15)

θj(∆t) = 1−
(∏
i∈Γ

(1− αij)
)

∀j /∈ Γ (2.16)

θj(n∆t) = 0 ∀j ∈ Γ; 2 ≤ n ≤ m+ 2 (2.17)

θj(n∆t) = 1−
( ∏
k,j /∈Γ
k 6=j

(1− θk((n− 1)∆t)αkj)

)
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× (1− θj((n− 1)∆t) ∀j, k /∈ Γ; 2 ≤ n ≤ m+ 1 (2.18)

θj
(
(m+ 2)∆t

)
= 1−

( ∏
k,j /∈Γ
k 6=j

(1− θk((m+ 1)∆t)αkjxk)

)

× (1− θj((m+ 1)∆t)) ∀j, k /∈ Γ (2.19)

Notice the presence of the binary decision variable xk in equation (2.19), which equals

1 if the PMUk is kept connected to the network, and 0 otherwise. It should be also noted

that threat levels from time t = 0 to t = (m+ 1)∆t are all assumed to be constants, and the

system operators cannot decrease them due to the physical constraints such as control and

communication delays in disabling PMUs from the network. However, disabling of suspicious

PMUs occurs at time (m + 1)∆t, which decreases the threat levels of the remaining PMUs

at time (m+2)∆t. In fact, the response optimization model determines which PMUs should

be disabled such that the threat levels at time (m+ 2)∆t are minimized.

To be able to solve the response model more efficiently, we reformulate equation (2.19)

by an equivalent linear equation (2.20).

ln{1− θj
(
(m+ 2)∆t

)
} =

∑
j,k/∈Γ
k 6=j

ln(1− θk
(
(m+ 1)∆t

)
αkj)xk + ln{1− θj

(
(m+ 1)∆t

)
} ∀j /∈ Γ

(2.20)

In obtaining equation (2.20), we have used the following equality where K is a constant

(notice again that xi is a binary variable).

ln (1−Kxi) = xi × ln (1−K) (2.21)
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The objective function of the response model is the minimization of the maximum threat

of all connected PMUs at time (m+ 2)∆t.

Z = min
x

max
j

(θj
(
(m+ 2)∆t

)
× xj) ∀j /∈ Γ (2.22)

Since θj((m+2)∆t) and consequently the objective function are not linear, we used its equiva-

lent function given in equation (2.23), which can be reformulated linearly in equations (2.24)-(2.29).

Z = min
x

max
j

{
− ln[1− θj

(
(m+ 2)∆t

)
]× xj

}
∀j /∈ Γ (2.23)

Equation (2.23) can be represented by the following set of equations (2.24)-(2.29).

Z = minY (2.24)

Subject to:

wj ≤ xj ∀j /∈ Γ (2.25)

wj ≤ − ln [1− θj
(
(m+ 2)∆t

)
] ∀j /∈ Γ (2.26)

wj ≥ − ln [1− θj
(
(m+ 2)∆t

)
]− (1− xj) ∀j /∈ Γ (2.27)

wj ≥ 0 ∀j /∈ Γ (2.28)

wj ≤ Y ∀j /∈ Γ (2.29)

In the response model, we used equation (2.20) in equations (2.26)-(2.27) to obtain equivalent

linear equations. Hence, equations (2.26)-(2.27) can be represented as equations (2.30)-(2.31),

respectively.

wj ≤ −
∑
j,k/∈Γ
k 6=j

ln(1− θk((m+ 1)∆t)αkj)xk − ln{1− θj((m+ 1)∆t)} ∀j /∈ Γ (2.30)
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wj ≥ −
∑
j,k/∈Γ
k 6=j

ln(1− θk((m+ 1)∆t)αkj)xk − ln{1− θj((m+ 1)∆t)} − (1− xj) ∀j /∈ Γ

(2.31)

We add equation (2.32) to keep PMUs with threat levels less than a threshold value

connected to the network.

θj((m+ 2)∆t) > Tj − xj ∀j /∈ Γ (2.32)

which can be represented by:

ln[1− θj
(
(m+ 2)∆t

)
] < ln[1− Tj + xj] ∀j /∈ Γ (2.33)

We can reformulate the right-hand side to a linear equivalent equation as:

ln[1− θj
(
(m+ 2)∆t

)
] < (1− xj) ln(1− Tj) + xj ln(2− Tj) ∀j /∈ Γ (2.34)

Using equation (2.20), equation (2.34) can be represented linearly as equation (2.35).

∑
j,k/∈Γ
k 6=j

ln(1− θk((m+ 1)∆t)αkj)xk + ln{1− θj((m+ 1)∆t)}

< (1− xj) ln(1− Tj) + xj ln(2− Tj) ∀j /∈ Γ (2.35)

Disabling PMUs may affect the observability of the system, so there should be a set of

constraints to ensure full observability. To have a full observable power system, the voltage

phasors (state variables) of all buses need to be known. The values of the voltage phasors

allow the calculation of all other variables such as current, real power, and reactive power.
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Hence, the observability function is given in equation (3.2) [26].

ϕi =
∑
j∈Θ

Hi,jxj +
∑
j∈Ψ

Hi,jyi,j +
∑
{i,j}∈Ω

Hi,jρi,j ∀i ∈ Υ (2.36)

Where Hi,j shows the connectivity between buses i and j. The first term of the right hand

side,
∑
j∈Θ

Hi,jxj, provides observability of the buses through the remaining connected PMUs;

the second term,
∑
j∈Ψ

Hi,jyi,j, calculates the observability of the buses through conventional

devices installed at buses, and the third term,
∑

{i,j}∈Ω
Hi,jρi,j, represents the observability

through conventional devices installed on branches. To guarantee the full observability, the

observability variable value should be greater than or equal to one as given in (2.37).

ϕi ≥ 1 ∀i ∈ Υ (2.37)

Conventional devices are used to observe a group of buses when they are not observable

by PMUs direct measurements. In such cases, a system of equations is solved to obtain

the unknown state variables. To guarantee the solvability of the system of equations, we

need to ensure that each conventional measurement is tied to one state variable [26]. Hence,

equations (2.38)-(2.39) need to be met. Equation (2.38) ensures that a conventional voltage

measurement is tied to one state variable and equation (2.39) ensures that a conventional

current measurement is tied to one state variable. When the system is under attack, mea-

surements of the conventional devices may be more reliable because the attacker needs to

have complete knowledge of system topology and considerable resources in order to con-

sistently manipulate conventional measurements. Thus, we use equation (2.40) to force the

measurements of conventional devices to observe more buses.

∑
i∈Υ

Hi,jyi,j = 1 ∀j ∈ Ψ (2.38)

ρi,j + ρj,i = Hi,j ∀{i, j} ∈ Ω (2.39)
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∑
j∈Ψ

Hi,jyi,j +
∑
{i,j}∈Ω

Hi,jρi,j ≤ 1 ∀i ∈ Υ (2.40)

where ρi,j is a binary variable which equals 1 if the state variable of bus i is computed by a

conventional device at branch i, j, and 0 otherwise. Finally, equation (2.41) determines that

the decision variables are binary.

xi, yi,j, ρi,j ∈ {0, 1} (2.41)

To summarize, the objective function given in equation (2.22) determines the PMUs to be

disabled from the network such that the maximum threat level of the PMUs still connected

to the network is minimized. If the threat level of a PMU exceeds the threshold value, the

objective function would disable that PMU from the network only if it does not affect the

observability. If the threat level of a PMU is less than the threshold value, the PMU is kept

connected to the network. This is guaranteed by equation (2.32). Finally, equation (3.2)

ensures that all buses are observable at least once by either PMUs or conventional devices.

The proposed response model is given by the following mixed integer linear programming

problem.

Z = minY (2.42)

Subject to the constraints given in:

Equations (2.13)-(2.18)

Equation (2.25)

Equations (2.28)-(2.29)

Equations (2.30)-(2.31)

Equation (2.35)

Equations (3.2)-(2.41)

46



Finally, it is important to notice that the cyber-attack could involve blocking the com-

munication to and from the PMUs, which may prevent the disabling of the compromised

PMUs after detection. This situation is less likely to occur because the intruders would want

to be undetected and a fault in the communication network would alert the system operators

immediately. Nevertheless, if the communication is blocked, the PMUs would be isolated

from the communication network, which has the same effect as disabling the compromised

PMUs. The measurements would not be used by the state estimation software, and there

would be no propagation of the cyber-attack to other PMUs.

2.5 Experimental Results

We test the performance of our response optimization model on the 6-bus and 24-bus

test systems introduced in [27] and [28], respectively. We use the small power system to

describe the cyber-attack propagation problem and our methodology. We use the middle

size power system to test our approach. This power system includes conventional devices.

We intentionally consider a few conventional devices because we want to show the use of

our optimization response model where PMUs are the main devices for power system state

estimation.

In our experiments, we assume that an attack to a PMU propagates through a router

with probability λ = 0.05, and it effectively compromises another PMU with probability

γ = 0.05. For simplicity, we also assume that there is only one shortest path between

PMUs. We set Nij = 1. We set ∆t to 0.1 seconds, ∆t = 0.1(s), and the threshold values

to 0.005, Ti = 0.005. In a real case, experiments can be conducted to estimate the values

of these parameters. Experimental network infrastructures such as the Virtual Network

Infrastructure (VINI), X-Bone, and Violin can be used to run these experiments with real

traffic and routing software [29].
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2.5.1 6-bus Test System

The 6-bus test system includes six buses, three generators and eleven transmission lines.

Figure 2.1 shows the 6-bus test system.
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Figure 2.1: The 6-bus Test System

Buses 1, 2, 3, 4 and 6 are equipped with PMUs which make the system fully observable.

Phasor measurements such as voltage magnitudes and voltage angles are transmitted to the

PDCs by the five PMUs through a digital communication network. The communication

network is depicted in Figure 2.1 and it consists of interconnected routers.

TABLE 2.1 shows the nodal distances between the PMUs installed in the 6-bus test

system. Notice that the greater the nodal distance between two PMUs, the less likely that

the cyber-attack can propagate from one PMU to another one.

For this case study, we assume that at time t = 0 the system operator is informed

that PMU1 and PMU3 have been attacked by a cyber-intruder. In Figure 2.2, we show the

threat levels of the three uncompromised PMUs over time when the system operator does

not disable the compromised PMUs from the network. Notice that the threat levels increase
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Table 2.1: Nodal distances between PMUs in the 6-bus test system

Bus 1 2 3 4 6
1 0 2 3 1 2
2 2 0 3 3 2
3 3 3 0 1 2
4 1 3 1 0 3
6 2 2 2 3 0

Table 2.2: Candidate responses for the 6-bus test system

PMU Candidate Response
Status 1 2 3 4 5 6 7 8
x2 1 1 1 1 0 0 0 0
x4 1 0 0 1 1 0 1 0
x6 1 1 0 0 1 1 0 0

Threat Levels
θ2 0.00013 0.00013 0.00013 0.00013 0 0 0 0
θ4 0.00500 0 0 0.00500 0.00500 0 0.00500 0
θ6 0.00025 0.00025 0 0 0.00025 0.00025 0 0

Max(θj) 0.00500 0.00025 0.00013 0.00500 0.00500 0.00025 0.00500 0
Observaiblity Yes Yes Yes Yes Yes No No No

non-linearly until all PMUs become compromised with probability 1. PMU4 is more at risk

because it is closer to the compromised PMUs. The nodal distance from PMU3 to PMU4

is 1 while to PMU2 is 3. Figure 2.3 illustrates the effect of the value of λ on the threat level

of PMU2.

To avoid propagation, the system operator should disable the compromised PMU1 and

PMU3 and other PMUs which may be compromised because of the propagation. There are
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Figure 2.2: Threat levels in case of no response action
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Figure 2.3: Effect of λ on threat level of PMU2

eight possible choices which are shown in TABLE 2.2. The smallest threat levels can be

obtained when all PMUs are disabled. However, this solution is not feasible since the power

system would no longer be observable. The second candidate is to disable PMU4 and PMU6

but the threat level of PMU6 is less than the threshold value, T6 = 0.005, and therefore it

should remain connected to the network. The third candidate is to disable PMU4. This

action keeps the power network observable and minimizes the maximum threat level of all

connected PMUs. In TABLE 2.3, we give the optimal solution, observability number of the

buses obtained from equation (3.2), and the threat level of each connected PMU right after

disabling PMU4.

Table 2.3: Optimal response action in the 6-bus system

PMU xj Observability number(φi) Threat level(θj(3∆t))
1 0 1 0
2 1 2 0.00013
3 0 2 0
4 0 1 0
5 NA 2 NA
6 1 2 0.00025

We show in Figure 2.4 the maximum threat level of the connected PMUs when just

the compromised PMU1 and PMU3 are disabled and when PMU4 is also disabled from
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the network. Notice that the threat levels still increase after the response. However, the

reduction in threat levels is considerable if the optimal response action is taken.
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We have assumed that the optimization results are obtained in 0.1 seconds. To see the

effect of greater computational time, we consider that the optimal results are available at

times 0.1, 2, and 5 seconds. In all of these cases, the optimal solution is to disable PMU4.

In Figure 2.5, we show the threat level for each case. Certainly, a shorter processing time is

desired.
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Figure 2.5: Effect of computational time on threat level of PMU6
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2.5.2 24-bus Test System

The proposed response model is tested using the IEEE 24-bus test system which consists

of 38 transmission lines, 24 buses and 33 generators. The 24-bus test system is shown in

Figure 2.6. We refer the readers to [28] and [30] for additional system data.
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Figure 2.6: IEEE 24-bus Test System

We use the optimal placement of seven PMUs given in [31] and add seven more PMUs

and five conventional measuring devices to increase the observability of the power system.

The PMUs are located at buses 1, 2, 3, 4, 8, 10, 11, 15, 16, 17, 21, and 23 and the conventional

units are located at buses 1, 19, 22 and transmission lines 9 and 17. The initial observability

of the buses is given in TABLE 2.4. TABLE 2.5 gives PMUs’ nodal distances randomly

generated between 1 and 4.
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Table 2.4: Initial observabilites of the 24-bus system

Bus Observability Bus Observability Bus Observability Bus Observability
1 3 7 2 13 2 19 2
2 3 8 3 14 2 20 3
3 3 9 4 15 3 21 2
4 2 10 3 16 3 22 3
5 3 11 2 17 2 23 2
6 2 12 3 18 2 24 2

Table 2.5: Nodal distances between PMUs in the 24-bus test system

PMU
Locations

1 2 3 4 7 8 10 11 15 16 17 20 21 23

1 0 1 2 1 2 4 4 2 3 4 1 2 3 2
2 1 0 3 3 2 1 3 2 4 3 3 3 1 3
3 2 3 0 2 1 4 2 3 1 3 3 2 1 2
4 1 3 2 0 3 1 2 2 3 4 3 3 1 1
7 2 2 1 3 0 1 3 1 1 4 1 4 2 3
8 4 1 4 1 1 0 2 3 1 1 1 2 3 2
10 4 3 2 2 3 2 0 4 4 2 3 1 2 2
11 2 2 3 2 1 3 4 0 2 2 3 2 4 1
15 3 4 1 3 1 1 4 2 0 4 1 2 2 4
16 4 3 3 4 4 1 2 2 4 0 1 4 1 1
17 1 3 3 3 1 1 3 3 1 1 0 3 4 4
20 2 3 2 3 4 2 1 2 2 4 3 0 3 3
21 3 1 1 1 2 3 2 3 2 1 4 3 0 1
23 2 3 2 1 3 2 2 1 4 1 4 3 1 0

First, we assume that just one PMU is compromised at time zero. We consider two cases

to show the propagation effect of the cyber-attack. We assume: a) PMU7 is compromised and

b) PMU20 is compromised at time zero. In both cases, it is assumed that the compromised

PMU stays connected to the network (no response action). Figure 2.7 shows the threat levels

of a selected group of PMUs, PMUs 4, 10 and 15, under case (a) while Figure 2.8 shows the

threat level for the same PMUs under case (b). Notice that PMU10 is less affected by a

cyber-attack to PMU7 but it is considerably affected if the attack occurs on PMU20.

Next, we study the effect of simultaneous cyber-attacks. We assume that PMUs 1, 3, 7

and 10 are compromised at time zero and they remain connected to the network (no response

action). Figure 2.9 illustrates the threat level of PMU4 under a single attack to PMU7 and
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Figure 2.7: Threat levels for no response to compromised PMU7
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Figure 2.8: Threat levels for no response to compromised PMU20

the multiple attacks. Notice the increase on the threat level of PMU4 under a multiple

attack.

To show the effect of the computational time m∆t (time to obtain the optimal response)

on the threat levels, we use the multiple attacks case. We change the value of m from 1 to

700, i.e. the time that the system operator takes to respond to the cyber-attack varies from
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Figure 2.9: Effect of single and multiple attacks on threat levels

0.1 to 70 seconds. We obtain the optimal response for each value of m. The results are given

in TABLE 2.6.

Table 2.6: Effect of response time on the optimal solution in case of multiple attacks

Case Response time (s) Disabled PMUs
S1 m∆t ≤ 8.9 1, 3, 7, 10, 17
S2 9.0 ≤ m∆t ≤ 10.8 1, 3, 4, 7, 10, 17
S3 10.9 ≤ m∆t ≤ 12.7 1, 3, 4, 7, 10, 16, 17
S4 12.8 ≤ m∆t ≤ 70.0 1, 3, 4, 7, 10, 16, 17, 23
S5 m∆t ≥ 70.0 Not Feasible

In Figure 2.10, we show the maximum threat level of the system (objective function of

the optimization problem) when only the compromised PMUs are disabled from the network

and when the optimal response is implemented. The figure shows the results under different

response times. Notice that when the proposed model is used the maximum threat level

is reduced for all response times considered. The reduction increases as the response time

increases.
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2.5.3 Dealing with Large Power Systems

Since the main contribution of the paper is the formulation of the MILP and the mod-

eling of the probabilistic threat levels, we demonstrated our approach using a small and a

medium size power system. All experiments were performed on a 64-bit laptop with an Intel

Core i5 2.4 GHz processor and 4GB RAM. The computation time consists of two compo-

nents, the threat level calculation and the optimization time. For the experiment on the

IEEE 24-bus test system, the threat level calculations using MATLAB R2012a took 6.95

seconds and the optimization using the optimization software LINGO 11.0 took 1 second.

It is known that MILP solvers suffer from the curse of dimensionality and therefore

waiting to obtain the optimal solution for a larger power system can threaten the security

of the power system more severely. However, considering that a single cyber-attack is more

likely to occur, the proposed model can be run offline for all possible single attacks. The

system operator would already know the optimal response when a single attack occurs in

the network. In TABLE 2.7, we show the optimal responses within 20 seconds for all single

attacks to a PMU on the 24-bus test system. This approach, however, would not work for

multiple attacks due to the numerous possible combinations of cyber-attacks to PMUs. In
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Table 2.7: Optimal response for single cyber-attacks to the 24-bus test system

Compromised
PMU

PMUs to be
disabled

Compromised
PMU

PMUs to be
disabled

1 1, 4, 8, 16, 17 11 7, 11
2 1, 2, 8, 16, 21 15 4, 8, 15, 16, 17
3 3, 7, 16, 17 16 4, 8, 15, 16, 17, 23
4 1, 4, 8, 16, 21, 23 17 1, 2, 8, 15, 16, 17, 23
7 4, 7, 15, 16, 17 20 20
8 1, 2, 15, 16, 17, 23 21 1, 4, 8, 16, 21, 23
10 10 23 4, 8, 16, 21, 23

this case, the optimization software can be stopped at a predetermined time. A trade-off

has to be made between the closeness of the obtained solution at the predetermined time to

the optimal solution and the increase of the threat levels over that time.

2.5.4 Discussion

We have developed a response optimization model to a cyber- attack to power systems

that rely heavily on PMUs for the state estimation. Thus, the proposed model becomes

more beneficial as the ratio of PMUs to conventional devices increases. It is expected that

in the near future, as PMUs become widespread, the state estimation process will be more

influenced by PMU measurements.

The proposed model disables PMUs restricted to secure system observability. However,

pseudo measurements that are used to handle measurement unavailability in conventional

state estimation could be also used to remove additional PMUs at the cost of loss of observ-

ability. This feature can be incorporated to our model by adding a set of new constraints.

Furthermore, if information from a detection scheme is available it can serve as an

input to our model. For example, given the estimation on the likelihood of infection of all

uncompromised PMUs at the time of the detection of the cyber-attack, the initial threat

level of uncompromised PMUs, θj(0), can be set to this value. For the sake of simplicity,

in our experiments we assume that no information comes from the detection software and

therefore all initial threat levels are set to zero.
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2.6 Conclusions

Observability of the power system is important for grid operation and control. An

attacker could design a cyber-attack to PMUs that endangers the observability of the power

system. We showed that in addition to disabling the compromised PMUs, other PMUs should

also be disabled to reduce the probability of propagation of the cyber-attack. We developed

a mixed integer linear programming model to determine the PMUs that should be disabled

under the restriction that the remaining PMUs continue to maintain the observability of the

power system. The model minimizes the maximum threat level of the PMUs that remain

connected to the network. We have shown experimental results for two power systems.

The results in both cases demonstrated a significant reduction in the propagation of the

cyber-attacks when the solution obtained by the optimization model is implemented.
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Chapter 3

Investment Decisions on Optimal Allocation of Phasor Measurement Units

3.1 Abstract

Reliability of the electrical power systems necessitates wide-area monitoring and full

observability of the power grid. Phasor measurement units (PMUs), as the state-of-the-

art measurement devices, collect synchronized phasors of voltages and currents in real time

and are utilized for full observability of the power systems. Due to budget restrictions and

considerable cost of installing PMUs, it is not possible to equip all buses with PMUs. In this

paper, we discuss the necessity of considering transmission switching and single contingencies

in the optimal PMU placement problem. We show that considering transmission switching

and single contingencies increases the PMU investment costs substantially and propose an

integer linear programming model to determine the optimal PMU placement plan in two

investment phases. In the first phase, PMUs are installed to achieve full observability of the

power grid whereas additional PMUs will be installed in the second phase to guarantee the

N − 1 observability of the power grid. In each phase, power grid observability is guaranteed

for all resulting topologies of the power grid stem from transmission switching. Simulation

results are provided on several IEEE test systems which show that our proposed approach

is a promising enhancement to the methods available for the optimal placement of PMUs.

keywords: Phasor measurement unit, Optimal placement, Network observability, Trans-

mission switching, Integer linear programming
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Nomenclature

Sets and Indices

Ω: Set of buses

Φ: Set of power grid topologies stem from transmission switching

i, j: Indices of buses

φ: Index of topologies

Constants

αi: Observability number of bus i

αφi : Observability number of bus i after the first phase of PMU placement under topology φ

βφi : Observability number of bus i after the second phase of PMU placement under topology

φ

Cj: Cost of installing a PMU at bus j

γ: The annual percentage of the change in PMU prices

Hi,j: Binary parameter that equals to 1 if i = j or there is a transmission line between bus i

and bus j, and 0 otherwise.

Hφ
i,j: Binary parameter that equals to 1 if i = j or there is a transmission line between bus i

and bus j under topology φ, and 0 otherwise.

I: Inflation-free interest rate

K: Number of years between two phases of investment

Decision Variables

xj: Binary decision variable which is equal to 1 if bus j is equipped with a PMU in the first

phase, and 0 otherwise.

yj: Binary decision variable which is equal to 1 if bus j is equipped with a PMU in the

second phase, and 0 otherwise.
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3.2 Introduction

Wide-area monitoring and full network observability of the electrical power systems in

real time was impractical until the emergence of phasor measurement units (PMUs). PMUs

are power system devices that measure synchronized phasors of voltages and currents in

real time [1]. Synchronization is achieved by timing signals from the global positioning

system (GPS) satellite with the accuracy in the order of 1 microsecond. In the future, it is

expected that the smart grid will consist of at least 10,000 PMUs each taking about 30 to

120 measurements per second [2].

To ensure the observability of the power system, voltage phasors of all buses should be

either directly measured or computed from other measurements [3]. Two types of observabil-

ity have been addressed, numerical and topological observability. A network is numerically

observable if the measurement Jacobian is of full rank [4, 5]. These methods are computa-

tionally extensive due to the iterative procedure of matrix manipulations [6]. Alternatively,

topological observability considers interconnections of the buses and network observability

rules to obtain the states vector of the power system. Unlike conventional measurement

devices, a PMU can measure the current phasors of multiple lines and provide measure-

ments to compute the voltage phasors of adjacent buses. Thus, there is no need, in terms of

observability, to install a PMU at all buses.

Recently, the problem concerning Optimal Placement of PMUs (OPP) has been studied

by researchers. The OPP problem considers the minimum number of PMUs and their instal-

lation locations that makes the power system observable. Many researchers have developed

heuristic and meta-heuristic methods to solve the OPP problem. Chakrabarti and Kyri-

akides in [7] applied an exhaustive binary search methodology to tackle the OPP problem

and find the associated locations of PMUs. An iterative three-stage heuristic method has

been introduced in [8] where in the first two stages less important and strategically impor-

tant buses are determined, and the last stage returns the optimal solution using pruning

operation. In [9] and [10], simulated annealing is used to solve the OPP problem. Other
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meta-heuristic methods such as Tabu search in [11] and binary particle swarm optimization

in [12] have been applied to find the minimum number of PMUs required for full observabil-

ity of the power system. Integer programming is used in [13] and [14] to find the optimal

placement of PMUs. The authors in [15] applied integer linear programming (ILP) to solve

the OPP problem considering conventional measurement devices. Although the OPP prob-

lem has been studied by many researchers, there are still certain practical aspects of the

problem that need to be considered. In this paper, we consider new investment decisions on

the placement of PMUs and deliver the following outcomes as our contributions.

First, failure of any PMU or transmission line may affect full observability of the power

grid. Therefore, considering single contingencies in the allocation of PMUs is essential to

meet the reliability requirements of the power system [15]. However, considering single

contingencies increases the investment costs substantially, more than twice the initial costs

in many cases. We refer the readers to Section 3.3.2 that illustrates this observation. Hence,

we propose an integer linear programming problem that minimizes the total investment

costs and determines the optimal placement of PMUs in two investment phases. In the first

investment phase, PMUs are installed to achieve full observability of the grid. In the second

phase of investment, additional PMUs are placed in service to meet the N − 1 reliability

requirement, which assures the full observability of the power grid even in the case of single

contingencies.

Secondly, it has been discussed in the literature that transmission switching can provide

additional economical advantages for a power system through changing its topology dur-

ing operations [16–20]. Hence, transmission switching should be considered in the optimal

placement of PMUs. Otherwise, it may put the observability of the power grid at risk. We

refer the readers to Section 3.3.4 for a case study on how transmission switching may affect

power grid observability.
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Finally, we propose an integer linear programming model for optimal placement of PMUs

in two investment phases. The model minimizes the total investment costs and considers

transmission switching in the optimal PMU allocations.

The rest of this chapter is organized as follows: Section 3.3 describes the general optimal

PMU placement model and our developed case studies. Section 3.4 discusses our proposed

two-phase optimal PMU placement model. Section 3.5 provides some experimental results

and Section 3.6 reports our conclusions.

3.3 PMU Placement Model

The Optimal PMU placement problem is defined as finding the installation location of

PMUs required for the observability of the power system such that the total cost is minimized.

Network observability rules can be used to avoid installing PMUs at all buses and reduce

associated costs significantly.

3.3.1 Network Observability Rules

The network observability rules for topological observability of the power system given

in [12] are described here.

1. If a PMU is installed at bus i, voltage phasor of bus i and current phasors of all incident

transmission lines to bus i are known (Figure 3.1).

PMU I - Measured

I - Measured
V - Measured

Figure 3.1: Network Observability Rule 1
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2. If voltage phasor of one end of a transmission line and the current phasor of the

transmission line are known, the voltage phasor of the other end of the transmission

line can be calculated (Figure 3.2).

V
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I - Measured

V
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Figure 3.2: Network Observability Rule 2

3. If voltage phasors of both ends of a transmission line are known, the current phasor of

the transmission line can be calculated (Figure 3.3).
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Figure 3.3: Network Observability Rule 3

Measurements obtained by Rule 1 are direct measurements. Rules 2 and 3 provide

pseudo measurements. Zero-injection buses, which do not inject currents into the system,

have the potential to reduce the number of required PMUs for observability of the power

system, but we do not consider zero-injection buses in this paper. We refer the reader to [12]

for more information on the network observability rules on zero-injection buses.
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3.3.2 Single-phase Optimal PMU Placement Model

The objective function of the optimal PMU placement problem is to minimize the in-

vestment cost of PMUs. The objective function is given in equation (3.1).

Z = min
x

∑
j∈Ω

Cjxj (3.1)

A PMU at bus j can make all the adjacent buses observable by measuring the current

phasors of the incident lines. Hence, the observability number of a bus is obtained by

equation (3.2) using the network observability rules.

αi =
∑
j∈Ω

Hi,jxj ∀i ∈ Ω (3.2)

We refer to the number of PMUs that make bus i observable, αi, as the observability

number of bus i. To have a topologically observable power system, the observability number

of all buses should be greater than or equal to 1. Therefore, we write equation (3.3).

αi ≥ 1 ∀i ∈ Ω (3.3)

Equations (3.1)-(3.3) assure the full observability of the power grid with minimum in-

vestment costs. Without loss of generality, it is common to assume that Cj = 1. Thus, the

investment cost is interpreted in terms of number of PMUs. Moreover, single contingencies

such as failure of a PMU or a transmission line should be taken into account in the placement

of PMUs. Therefore, each bus in the power grid should be observable by at least two PMUs

to make sure that any single contingency does not affect the full observability of the network.

Mathematically speaking, we write equation (3.4) to ensure that the optimal placement is

resilient against any single contingencies.

αi ≥ 2 ∀i ∈ Ω (3.4)
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We denote the ILP model given in Equations (3.1)-(3.4) by single-phase optimal PMU

placement model since it is assumed that all PMUs are installed together. The single-phase

optimal PMU placement problem with and without considering single contingencies have

been solved by different heuristic, meta-heuristic and ILP methods. Table 3.1 shows the

minimum number of PMUs required to make different test systems observable with and

without considering single contingencies [8, 21].

Table 3.1: Optimal number of PMUs for full observability

Power System
Minimum

Observability

N − 1

Observability

IEEE 14-bus 4 9

IEEE 24-bus 7 14

IEEE 30-bus 10 21

IEEE 39-bus 13 28

IEEE 57-bus 17 33

IEEE 118-bus 32 68

Considering the results provided in Table 3.1, it can be inferred that achieving the N−1

observability placement costs almost twice the minimum observability placement. Regarding

the substantial capital cost of installing PMUs, a utility company may prefer to install PMUs

in two phases. In the first phase, PMUs are installed to make the power grid fully observable

by PMUs and postpone the N − 1 observability placement to the second phase. Then,

extra PMUs will be installed in the second phase to achieve N − 1 observability. However,

installing PMUs in the first phase should be done wisely to avoid any unnecessary additional

investment in the second phase. In the next subsection, we discuss how PMU investment of

the second phase may be affected by the PMU placement of the first phase.
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3.3.3 Case Study I: Two-phase Investment Approach

To demonstrate the two-phase investment approach, we use the IEEE 57-bus system

which consists of 57 buses, 80 transmission lines and 7 generators. The IEEE 57-bus test

system is depicted in Figure 3.4. We refer the readers to [22] and [23] for additional system

data.

Figure 3.4: IEEE 57-bus test system
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From Table 3.1, we know that IEEE 57-bus system requires at least 17 PMUs for full

observability and 33 PMUs for N − 1 observability. Table 3.2 shows alternative optimal

placements for full observability of the IEEE 57-bus test system. Each alternative may be

selected in the first phase since they all require the minimum investment cost. However,

it should be noticed that installing PMUs in the first phase creates new constraints for

the optimal allocation of PMUs in the second phase. Therefore, it is likely that the total

investment cost is not completely minimized if two phases are not considered together. To

achieve N − 1 observability in phase-2, we proceed and use the eight alternative solutions

(P1 − P8) given in Table 3.2. For each alternative solution, the number of PMUs and their

locations to achieve the N−1 observability at the second-phase are given in Table 3.3. Notice

that seven alternatives ultimately required more number of PMUs. The best investment
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plan is given by U8 which consists of installing 17 PMUs during the first phase and 16 PMUs

during the second phase. The advantage of the two-phase plan is that the utility can decide

whether to install all PMUs in one or in two phases while avoiding potential unnecessary

investments.

Table 3.2: Alternative placements of the IEEE 57-bus system

Placement PMU Locations

P1
3, 6, 12, 15, 19, 22, 25, 27, 32,
36, 39, 41, 45, 47, 50, 52, 55

P2
2, 6, 12, 19, 22, 25, 27, 32, 36,
39, 41, 45, 46, 49, 51, 52, 55

P3
2, 6, 12, 19, 22, 25, 27, 32, 36,
39, 41, 45, 46, 49, 50, 52, 55

P4
2, 6, 12, 19, 22, 25, 27, 29, 32,
36, 41, 45, 46, 49, 51, 52, 54

P5
2, 6, 12, 15, 19, 22, 25, 27, 32,
36, 41, 44, 47, 50, 52, 54, 57

P6
2, 6, 12, 13, 19, 22, 25, 27, 32,
36, 39, 41, 44, 47, 50, 52, 54

P7
1, 4, 9, 19, 22, 26, 29, 30, 32,
36, 41, 45, 46, 49, 51, 54, 57

P8
1, 4, 9, 19, 22, 26, 29, 30, 32,
36, 41, 45, 46, 47, 50, 54, 57
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Table 3.3: Two-phase investment plan for alternative solutions of the IEEE 57-bus system

Investment

Plan
PMU Locations - Phase 1

PMUs

Phase 1
PMU Locations - Phase 2

PMUs

Phase 2
Total

U1

3, 6, 12, 15, 19, 22, 25, 27, 32,

36, 39, 41, 45, 47, 50, 52, 55
17

1, 4, 9, 20, 24, 26, 29, 30, 33,

35, 38, 43, 46, 51, 54, 56, 57
17 34

U2

2, 6, 12, 19, 22, 25, 27, 32, 36,

39, 41, 45, 46, 49, 51, 52, 55
17

1, 4, 9, 15, 20, 23, 26, 29, 30, 33,

34, 37, 43, 44, 47, 50, 53, 56
18 35

U3

2, 6, 12, 19, 22, 25, 27, 32, 36,

39, 41, 45, 46, 49, 50, 52, 55
17

1, 4, 9, 10, 14, 20, 23, 26, 29, 30,

33, 35, 43, 44, 48, 54, 56, 57
18 35

U4

2, 6, 12, 19, 22, 25, 27, 29, 32,

36, 41, 45, 46, 49, 51, 52, 54
17

1, 4, 9, 11, 15, 20, 24, 28, 31, 33,

35, 38, 39, 47, 50, 55, 56, 57
18 35

U5

2, 6, 12, 15, 19, 22, 25, 27, 32,

36, 41, 44, 47, 50, 52, 54, 57
17

1, 4, 9, 20, 24, 28, 29, 31, 33,

35, 38, 39, 43, 46, 51, 55, 56
17 34

U6

2, 6, 12, 13, 19, 22, 25, 27, 32,

36, 39, 41, 44, 47, 50, 52, 54
17

1, 4, 9, 20, 24, 26, 29, 31, 33, 35,

38, 43, 45, 46, 51, 55, 56, 57
18 35

U7

1, 4, 9, 19, 22, 26, 29, 30, 32,

36, 41, 45, 46, 49, 51, 54, 57
17

3, 6, 12, 15, 20, 24, 28, 31, 33,

35, 38, 39, 43, 47, 50, 53, 56
17 34

U8

1, 4, 9, 19, 22, 26, 29, 30, 32,

36, 41, 45, 46, 47, 50, 54, 57
17

3, 6, 12, 15, 20, 24, 28, 31, 33,

35, 37, 38, 43, 51, 53, 56
16 33

3.3.4 Case Study II: The Impact of Transmission Switching on Optimal PMU

Placement

Transmission switching reduces the electricity generation cost by temporarily removing

inefficient transmission lines out of service. To demonstrate how transmission switching
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influences the optimal placement of PMUs, we use IEEE 57-bus system, PMU placement U8

given in Table 3.3 and developed scenarios given in Table 3.4. In each scenario, we assume

that given transmission lines are removed temporarily from the power grid.

Table 3.4: Transmission switiching scenarios

Scenario Removed Transmission Lines

S1 No Line
S2 7-8, 10-51, 11-13, 13-14
S3 9-12, 19-20,
S4 6-7, 7-29

In scenario S1 when there is no removed transmission line, all buses are N−1 observable.

In scenario S2, all buses are still N − 1 observable although four transmission lines are

temporarily removed. In scenario S3, removing two transmission lines affects the N − 1

observability of the power grid since buses 9, 12, 19 and 20 would no longer be N − 1

observable. Hence, a single contingency such as failure of a PMU may further affect the

full observability of the grid. Removing lines 6-7 and 7-29 in scenario S4 results in not

observability of bus 7. It can be concluded that it is essential to consider transmission

switching in the optimal placement of PMUs since it changes the topology of the power grid.

3.4 Two-phase optimal PMU placement model considering transmission switch-

ing

The two-phase optimal placement of PMUs considering transmission switching is mod-

eled using integer linear programming. The optimal placement of PMUs to achieve N − 1

observability occurs in two phases. Hence, the objective function is to minimize the present

value of the total investment costs. To calculate the present value, we use the concept of

constant dollar analysis [24] in which price increases due to the inflation are ignored. Hence,

the inflation-free interest rate, I, is used to compare the investment costs of the two phases.
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It is assumed that the second phase of PMU placement occurs K years after the initial phase.

Therefore, the objective function is as follows.

Z = min
x,y

(∑
j∈Ω

Cjxj +
1

(1 + I)K
∑
j∈Ω

γKCjyj

)
(3.5)

Where xj equals 1 if a PMU is installed in bus j in phase 1. Similarly, yj equals 1 if a PMU

is installed in bus j in phase 2. Moreover, it is likely that PMU prices decrease annually

due to the free market competitions and advancements in manufacturing of PMUs. We use

parameter γ, the annual percentage of the change in PMU prices, in the objective function

to consider these likely price decreases. Notice that the objective function favors installing

PMUs in the second phase.

The goal of the first phase is to achieve the full observability of the power grid. Therefore,

the constraints given in equations (3.6)-(3.7) should be satisfied.

αi =
∑
j∈Ω

Hi,jxj ∀i ∈ Ω (3.6)

αi ≥ 1 ∀i ∈ Ω (3.7)

However, notice that equations (3.6)-(3.7) ensure the full observability of the power grid

only when all transmission lines of the power system are in service. As it is mentioned,

transmission switching changes the topology of the network. Therefore, it is necessary to

make sure that allocated PMUs make the power grid observable for all potential topologies

of the power grid stem from transmission switching. Hence, we modify equations (3.6)-(3.7)

and obtain equations (3.8)-(3.9) as follows.
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αφi =
∑
j∈Ω

Hφ
i,jxj ∀i ∈ Ω,∀φ ∈ Φ (3.8)

αφi ≥ 1 ∀i ∈ Ω,∀φ ∈ Φ (3.9)

Where αφi represents the observability number of bus i after the first phase of PMU place-

ments under topology φ ∈ Φ, and Hφ
i,j is the connectivity parameter of buses i and j under

topology φ ∈ Φ.

Furthermore, N − 1 observability should be accomplished in the second phase consid-

ering different topologies stem from the transmissions switching. Therefore, we consider the

constraints given in equations (3.10)-(3.11).

βφi = αφi +
∑
j∈Ω

Hφ
i,jyj ∀i ∈ Ω,∀φ ∈ Φ (3.10)

βφi ≥ 2 ∀i ∈ Ω,∀φ ∈ Φ (3.11)

Where βφi represents the observability number of bus i after the second phase of PMU place-

ments under topology φ ∈ Φ.

Next, it should be ensured that at most one PMU is installed in each bus. Therefore,

the constraint given in equation (3.12) should be satisfied.

xi + yi ≤ 1 ∀i ∈ Ω (3.12)

Finally, equation (3.13) determines that the decision variables are binary.

xi, yi ∈ {0, 1} ∀i ∈ Ω (3.13)
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3.5 Experimental Results

To test the performance of our algorithm, we use data from the IEEE Reliability Test

Systems [22]. We run our experiments on the IEEE 14-bus, IEEE 24-bus, IEEE 30-bus, IEEE

39-bus, IEEE 57-bus, IEEE 118-bus, IEEE 300-bus, IEEE 2383-bus and IEEE 3120-bus test

systems. In our experiments, we set the cost of installing a PMU at bus j to 1, Cj = 1. Also,

we assume that the price of manufacturing a PMU is the same in both phases of investment,

γ = 1. We arbitrarily chose the value of 0.5% for the inflation-free interest rate, I = 0.5%.

Finally, we assume that the two phases of investment occur in two consecutive years, K = 1.

3.5.1 Optimal PMU Placement without Transmission Switching

We use our two-phase ILP model to find the optimal locations of the PMUs such that

full observability of the power grid is achieved in the first phase, and N − 1 observability is

accomplished in the second phase. The optimal placements are provided in Table 3.5.

Table 3.5: Two-phase investment plan for the IEEE test systems

Test System PMU Locations - Phase 1
PMUs

Phase 1
PMU Locations - Phase 2

PMUs
Phase 2

Total

IEEE 14-bus System 2, 6, 7, 9 4 1, 3, 8, 11, 13 5 9

IEEE 24-bus System 3, 4, 8, 10, 16, 21, 23 7 1, 2, 7, 11, 15, 17, 20 7 14

IEEE 30-bus System 2, 3, 6, 10, 11, 12, 15, 18, 25, 27 10 1, 7, 8, 9, 13, 16, 19, 21, 23, 26, 29 11 21

IEEE 39-bus System
2, 6, 9, 10, 13, 14, 17, 19, 22, 23,
29, 34, 37

13
1, 3, 8, 11, 16, 20, 25, 26, 30, 31,
32, 33, 35, 36, 38

15 28

IEEE 57-bus System
1, 4, 9, 19, 22, 26, 29, 30, 32,
36, 41, 45, 46, 47, 50, 54, 57

17
3, 6, 12, 15, 20, 24, 28, 31, 33, 35,
37, 38, 43, 51, 53, 56

16 33

IEEE 118-bus System

2, 5, 9, 12, 15, 17, 21, 24, 26, 28, 34,
37, 41, 45, 49, 53, 56, 62, 63, 68, 71,
75, 77, 80, 85, 87, 90, 94, 102, 105,
110, 114

32

3, 6, 10, 11, 19, 22, 27, 29, 30, 32,
35, 40, 44, 46, 51, 54, 57, 59, 64,
66, 70, 73, 79, 84, 86, 89, 92, 96,
100, 107, 108, 111, 112, 116, 117, 118

36 68

The results of our proposed method are compared with available PMU placement meth-

ods given in Table 3.1. Notice that the total number of PMUs required for N−1 observability

in a two-phase plan is the same as that of a single-phase plan for the given test systems.

However, there is no guarantee that the two-phase plan always returns the same number of
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PMUs as the single-phase plan. Fortunately, our method is flexible to obtain the optimal

single-phase placement of PMUs as well by setting the value of the parameter k to zero. It

is one of the advantages of our two-phase optimal PMU placement model that it provides

the utility companies with more flexibility. They obtain the optimal PMU placements for

single-phase and two-phase plans and decide whether to install all PMUs in one or in two

phases while avoiding any potential unnecessary investments.

Next, we use our model to obtain the number of PMUs required for N − 1 observability

in larger systems. The results are given in Table 3.6 for IEEE 300-bus, IEEE 2383-bus and

IEEE 3120-bus test systems. The results show that there are PMU placements for these

large test systems, which are optimal solutions for both single-phase and two-phase PMU

placement methods.

Table 3.6: Optimal number of PMUs in large power systems

Test System
PMUs

Phase 1

PMUs

Phase 2
Total

Single

Phase

IEEE 300-bus 87 115 202 202

IEEE 2383-bus 746 935 1681 1681

IEEE 3120-bus 994 1212 2206 2206

3.5.2 Optimal PMU Placement with Transmission Switching

In this section, we use IEEE 118-bus system to test the performance of our ILP model

for two-phase optimal placement of PMUs considering the transmission switching. This test

system consists of 118 buses, 186 transmission lines and 54 generators. We refer the readers

to [22] and [23] for additional system data.
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We create the scenarios given in Table 3.7 randomly in which mentioned transmission

lines are temporarily removed. In real world, the transmission lines which might be taken

off the grid for transmission switching are known in advance. Thus, different topologies of

the power grid stem from transmission switching can be obtained by enumeration.

Table 3.7: Transmission switiching scenarios for IEEE 118-bus system

Scenario Removed Transmission Lines

W1 No Line (No Transmission Switching)

W2 17-18, 23-25, 37-39, 78-89, 80-81

W3 24-70, 48-49, 103-110

W4 32-113, 65-66, 83-85, 103-105

W5 23-25, 41-42, 49-66, 71-72, 80-96

Next, we obtain the optimal placements for all given scenarios and provide the results

in Table 3.8. At the bottom of Table 3.8, we consider all scenarios together to figure out the

PMU placement which makes all resulting topologies N − 1 observable if our proposed ILP

model considering transmission switching is not employed. Therefore, it requires to place 94

PMUs in service, 61 PMUs in phase-1 and 33 PMUs in phase-2. Notice that the investment

cost of the first phase is increased considerably.

Afterwards, we use our proposed ILP model to find the optimal solution for the men-

tioned transmission switching scenarios. The optimal placement is provided in Table 3.9. It

shows that the optimal placement for N − 1 observability of the IEEE 118-bus system with

mentioned transmission switching scenarios requires 76 PMUs, 35 PMUs in phase-1 and 41

PMUs in phase-2. Therefore, our proposed model could decrease a great deal of investment

costs comparing to the given placement W1 −W5 provided in Table 3.8. Moreover, notice

that the optimal solution needs much less number of PMUs in the first phase which is critical
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Table 3.8: Optimal placements for the transmission switching scenarios of IEEE 118-bus
system

Scenario PMU Locations - Phase 1
PMUs

Phase 1
PMU Locations - Phase 2

PMUs
Phase 2

Total

W1

2, 5, 9, 12, 15, 17, 21, 24, 26, 28, 34,
37, 41, 45, 49, 53, 56, 62, 63, 68, 71,
75, 77, 80, 85, 87, 90, 94, 102, 105,
110, 114

32

3, 6, 10, 11, 19, 22, 27, 29, 30, 32,
35, 40, 44, 46, 51, 54, 57, 59, 64,
66, 70, 73, 79, 84, 86, 89, 92, 96,
100, 107, 108, 111, 112, 116, 117, 118

36 68

W2

2, 5, 9, 12, 15, 19, 22, 27, 30, 31, 32,
35, 40, 43, 45, 49, 52, 56, 62, 64, 68,
70, 71, 75, 77, 80, 85, 87, 90, 94, 101,
105, 110

33

3, 6, 10, 11, 17, 18, 21, 24, 25, 28, 34,
37, 39, 41, 46, 51, 53, 57, 59, 61, 67,
73, 78, 79, 81, 83, 86, 89, 92, 96, 100,
106, 108, 111, 112, 114, 116, 117, 118

39 72

W3

2, 5, 9, 12, 15, 17, 21, 23, 28, 30, 36,
40, 44, 46, 50, 52, 56, 62, 63, 68, 71,
75, 77, 80, 85, 87, 90, 94, 102, 105,
110, 115

32

3, 6, 10, 11, 19, 20, 25, 29, 35, 37, 42,
43, 48, 49, 51, 54, 61, 64, 67, 70, 72,
73, 79, 84, 86, 89, 92, 96, 100, 107,
108, 111, 112, 113, 114, 116, 117, 118

38 70

W4

2, 5, 9, 12, 15, 17, 21, 25, 29, 34, 37,
40, 45, 49, 53, 56, 62, 64, 68, 70, 71,
76, 79, 84, 87, 89, 92, 96, 100, 105,
110, 114

32

3, 6, 10, 11, 19, 22, 26, 28, 31, 35, 41,
44, 46, 51, 54, 57, 59, 65, 67, 72, 73,
75, 77, 80, 82, 85, 86, 90, 94, 102,
107, 108, 111, 112, 113, 115, 116, 117

38 70

W5

2, 5, 9, 12, 15, 17, 21, 24, 25, 29, 34,
37, 40, 45, 49, 53, 56, 62, 63, 68, 73,
75, 77, 80, 85, 87, 90, 94, 101, 105,
110, 114

32

3, 6, 10, 11, 19, 22, 27, 28, 30, 32, 35,
41, 44, 46, 51, 54, 57, 61, 64, 66, 71,
72, 74, 78, 84, 86, 89, 92, 96, 100, 107,
108, 111, 112, 116, 117, 118

37 69

W1 −W5

2, 5, 9, 12, 15, 17, 19, 21-32, 34-37,
40, 41, 43-46, 49, 50, 52, 53, 56,
62-64, 68, 70, 71, 73, 75-77, 80, 84,
85, 87, 89, 90, 92, 94, 96, 100-102,
105, 110, 114, 115

61

3, 6, 10, 11, 18, 20, 39, 42, 48, 51, 54,
57, 59, 61, 65, 66, 67, 72, 74, 78, 81,
82, 83, 86, 106, 107, 108, 111, 112,
113, 116, 117, 118

33 94

from investment point of view. It is likely that PMU prices decrease later which benefits a

utility by decreasing the investment costs even more.
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Table 3.9: Optimal placement for IEEE 118-bus system considering transmission switching
scenarios

Phase PMU Locations Number of PMUs

1

2, 5, 9, 12, 15, 17, 19, 21, 24,

25, 28, 35, 40, 43, 46, 49, 52,

56, 59, 62, 65, 68, 73, 75, 77,

80, 84, 87, 89, 92, 94, 102,

105, 110, 114

35

2

3, 6, 10, 11, 18, 22, 26, 27, 29,

36, 37, 39, 41, 44, 48, 53, 57,

58, 63, 66, 70, 71, 72, 76, 78, 79,

81, 82, 85, 86, 90, 96, 100, 107,

108, 111, 112, 113, 115, 116, 117

41

Furthermore, it is likely that a utility would like to know if they could decrease the PMU

investments by not using one or more of the transmission switching scenarios. Table 3.10

provides the optimal number of PMUs if a certain scenario would not be used. As a case

in point, it can be concluded that including scenario W2 may be a strategic decision since

including W2 itself increases the number of PMUs as many as including all three scenarios

W3, W4 and W5. Moreover, notice that the utility needs to install eight more PMUs due to

the transmission switching scenarios. Otherwise, the IEEE 118-bus system requires only 68

PMUs for N − 1 observability.
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Table 3.10: Optimal number of PMUs for removed transmission switching scenarios

Removed

Scenario

PMUs

Phase 1

PMUs

Phase 2
Total

None 35 41 72

W2 34 38 72

W3 34 41 75

W4 33 41 74

W5 35 40 75

W2,W3 34 37 71

W2,W4 33 37 70

W2,W5 33 38 71

W3,W4 33 40 73

W3,W5 34 40 74

W4,W5 33 41 74

W2,W3,W4 32 37 69

W2,W3,W5 32 38 70

W2,W4,W5 32 38 70

W3,W4,W5 33 39 72

W2,W3,W4,W5 32 36 68
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3.5.3 Computational Time Analysis

All experiments were performed on a 64-bit laptop with an Intel Core i5 2.4 GHz pro-

cessor and 4GB RAM. We used IBM ILOG CPLEX Optimization Studio 12.6 as the opti-

mization solver in our experiments.

Table 3.11 summarizes the computational time for obtaining the optimal PMU place-

ments for different cases discussed in Section 3.5.1. Computational time analysis shows that

our two-phase optimal PMU placement model is solved very quickly even for large power

systems.

Table 3.11: Computational Times (s)

Test System Single-phase Two-phase

IEEE 14-bus 0.81 0.81
IEEE 24-bus 0.82 0.82
IEEE 30-bus 0.82 0.83
IEEE 39-bus 0.82 0.84
IEEE 57-bus 0.87 0.89
IEEE 118-bus 0.97 1.00
IEEE 300-bus 1.36 1.39
IEEE 2383-bus 33.15 33.71
IEEE 3120-bus 57.79 58.88

3.6 Conclusions

Observability of the power system is important for grid operation and control. Complex

networks of PMUs, as the state-of-the-art measurement devices, are used to collect real

time data to improve the observability of the power systems. However, due to budget

restrictions and considerable cost of installing PMUs, it is not possible to equip all buses with

PMUs. Also, it has been discussed that the reliability requirement of N−1 observability and

including transmission switching in the optimal placement of PMUs increase the investment

costs significantly. Therefore, the network observability rules and PMUs’ characteristics

should be used to the full extent in order to minimize the PMU investment costs. In this
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paper, we developed an integer linear programming model that minimizes the investment

costs of PMUs and determines the optimal locations of PMUs in two investment phases. In

the first phase, PMUs are installed to achieve full observability of the power grid whereas

additional PMUs will be installed in the second phase to guarantee the N − 1 observability

of the power grid. The proposed model is able to provide utilities with single-phase and

two-phase optimal placements, which gives investors more flexibility on whether to install

all PMUs in one or in two phases while avoiding any potential unnecessary costs.

Furthermore, it has been shown that it is critical to consider transmission switching in

the optimal PMU placement problem. Transmission switching changes the topology of the

power grid and may cause not observability of some buses. In our ILP model, we integrated

the transmission switching concept into the optimal PMU placement problem such that the

obtained optimal placement is N − 1 observable for all topologies of the power grid stem

from transmission switching.

The performance of the developed ILP model is tested on several IEEE test systems.

Experimental results show that our developed model is a promising enhancement to the

optimal PMU placement problem and also ensures the observability of the power systems

when transmission switching is utilized. Computational times have also been reported to

show that our model can be solved very quickly by optimization solvers even for large power

systems.
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