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Abstract

The dissertation is concerned with the spectral theory, in particular, the principal eigen-

value theory for nonlocal dispersal operators with time periodic dependence, and its applica-

tions. Nonlocal and random dispersal operators are widely used to model diffusion systems

in applied sciences and share many properties. There are also some essential differences

between nonlocal and random dispersal operators, for example, a smooth random dispersal

operator always has a principal eigenvalue, but a smooth nonlocal dispersal operator may

not have a principal eigenvalue.

In this dissertation, we first establish criteria for the existence of principal eigenvalues

of time periodic nonlocal dispersal operators with Dirichlet type, Neumann type, or periodic

type boundary conditions. Among others, it is shown that a time periodic nonlocal disper-

sal operator possesses a principal eigenvalue provided that the nonlocal dispersal distance

is sufficiently small, or the time average of the underlying media satisfies some vanishing

condition with respect to the space variable at a maximum point or is nearly globally ho-

mogeneous with respect to the space variable. We also obtain lower bounds of the principal

spectrum points of time periodic nonlocal dispersal operators in terms of the corresponding

time averaged problems.

Next, we discuss the applications of the established principal eigenvalue theory to the

existence, uniqueness, and stability of time periodic positive solutions to Fisher or KPP type

equations with nonlocal dispersal in periodic media. We prove that such equations are of

monostable feature, that is, if the trivial solution is linearly unstable, then there is a unique

time periodic positive solution u+(t, x) which is globally asymptotically stable.

Finally, we discuss the application of the established principal eigenvalue theory to the

spatial spreading and front propagation dynamics of KPP equations with nonlocal dispersal
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in periodic media. We show that such an equation has a spatial spreading speed c∗(ξ) in

the direction of any given unit vector ξ. A variational characterization of c∗(ξ) is given.

Under the assumption that the nonlocal dispersal operator associated to the linearization of

the monostable equation at the trivial solution 0 has a principal eigenvalue, we also show

that the monostable equation has a periodic traveling wave solution connecting u+(·, ·) and

0 propagating in any given direction of ξ with speed c > c∗(ξ).

Key words. Nonlocal dispersal, random dispersal, principal eigenvalue, principal spectrum

point, vanishing condition, lower bound, monostable equation, spatial spreading speed, trav-

eling wave solution.

Mathematics subject classification. 35K55, 35K57, 45C05, 45M15, 45M20, 47G10,

92D25.
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Chapter 1

Introduction

Both random dispersal evolution equations and nonlocal dispersal evolution equations

are widely used to model diffusive systems in applied sciences. Classically, one assumes

that the internal interaction of organisms in a diffusive system is infinitesimal or the internal

dispersal is random, which leads to a diffusion operator, e.g., ∆u as dispersal operator. Many

diffusive systems in real world exhibit long range internal interaction or dispersal, which can

be modeled by nonlocal dispersal operators such as
∫
RN κ(y−x)u(t, y)dy−u(t, x), here κ(·) is

a convolution kernel supported on the ball centered at the origin with radius r, the interaction

range. As a basic technical tool for the study of nonlinear evolution equations with random

and nonlocal dispersals, it is of great importance to investigate aspects of spectral theory for

random and nonlocal dispersal operators.

This dissertation is devoted to the study of principal eigenvalues of the following three

eigenvalue problems associated to nonlocal dispersal operators with time periodic depen-

dence, {
−ut + ν1[

∫
D
κ(y − x)u(t, y)dy − u(t, x)] + a1(t, x)u = λu, x ∈ D̄

u(t+ T, x) = u(t, x)
(1.1)

where D ⊂ RN is a smooth bounded domain and a1(t, x) is a continuous function with

a1(t+ T, x) = a1(t, x),

{
−ut + ν2[

∫
D
κ(y − x)(u(t, y)− u(t, x))dy] + a2(t, x)u = λu, x ∈ D̄

u(t+ T, x) = u(t, x)
(1.2)
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where D ⊂ RN is as in (1.1) and a2(t, x) is a continuous function with a2(t+T, x) = a2(t, x),

and {
−ut + ν3[

∫
RN κ(y − x)u(t, y)dy − u(t, x)] + a3(t, x)u = λu, x ∈ RN

u(t+ T, x) = u(t, x+ pjej) = u(t, x), x ∈ RN
(1.3)

where pj > 0, ej = (δj1, δj2, · · · , δjN) with δjk = 1 if j = k and δjk = 0 if j 6= k, and a3(t, x)

is a continuous function with a3(t+T, x) = a3(t, x+ pjej) = a3(t, x), j = 1, 2, · · · , N . κ(·) in

(1.1)-(1.3) is a nonnegative C1 with compact support, κ(0) > 0, and
∫
RN κ(z)dz = 1.

This dissertation is also devoted to the applications of the principal eigenvalue theory

for (1.1)-(1.3) to be developed.

The eigenvalue problems (1.1), (1.2), and (1.3) can be viewed as the nonlocal dispersal

counterparts of the following eigenvalue problems associated to random dispersal operators,


−ut + ν1∆u+ a1(t, x)u = λu, x ∈ D

u(t+ T, x) = u(t, x), x ∈ D

u = 0, x ∈ ∂D,

(1.4)


−ut + ν2∆u+ a2(t, x)u = λu, x ∈ D

u(t+ T, x) = u(t, x), x ∈ D
∂u
∂n

= 0, x ∈ ∂D,

(1.5)

and {
−ut + ν3∆u+ a3(t, x)u = λu, x ∈ RN

u(t+ T, x) = u(t, x+ pjej) = u(t, x), x ∈ RN ,
(1.6)

respectively. It is in fact proved in [53] that the principal eigenvalues of (1.4), (1.5), and (1.6)

can be approximated by the principal spectrum points of (1.1), (1.2), and (1.3) with properly

rescaled kernels, respectively (see Definition 2.1 for the definition of principal spectrum

points of (1.1), (1.2), and (1.3)). We may then say that (1.1), (1.2), and (1.3) are of the

Dirichlet type boundary condition, Neumann type bounday condition, and periodic boundary

condition, respectively. The reader is referred to [8], [9], and [53] about the approximations

of the initial value problems of the random dispersal operators associated to (1.4), (1.5), and
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(1.6) by the initial value problems of the nonlocal dispersal operators with properly rescaled

kernels associated to (1.1), (1.2), and (1.3), respectively.

The eigenvalue problems (1.4), (1.5), and (1.6), in particular, their associated principal

eigenvalue problems, are well understood. For example, it is known that there is λR,1 ∈ R

such that λR,1 is an isolated algebraic simple eigenvalue of (1.4) with a positive eigenfunction,

and for any other eigenvalues λ of (1.4), Reλ ≤ λR,1 (λR,1 is called the principal eigenvalue

of (1.4)) (see [22]).

The principal eigenvalue problem for time independent nonlocal dispersal operators

with Dirichlet type, or Neumann type, or periodic boundary condition has been recently

studied by many people (see [11], [18], [23], [30], [49], [52], and references therein) and is

quite well understood now. For example, the following criteria for the existence of principal

eigenvalues for nonlocal dispersal operators are established in [49] and [52] ([49] is on the

periodic boundary condition case and [52] is on Dirichlet type and Neumann type boundary

conditions) (see Definition 2.1 for the definition of principal eigenvalues of nonlocal dispersal

operators),

(i) If a1(t, x) ≡ a1(x) (resp. a2(t, x) ≡ a2(x), a3(t, x) ≡ a3(x)) and κ(z) = 1
δN
κ̃( z

δ
) for some

δ > 0 and κ̃(·) with κ̃(z) ≥ 0, supp(k̃) = B(0, 1) := {z ∈ RN | ‖z‖ < 1}, and
∫
RN κ̃(z)dz = 1,

then (1.1) (resp. (1.2), (1.3)) admits a principal eigenvalue provided that δ is sufficiently

small.

(ii) If a1(t, x) ≡ a1(x) (resp. a2(t, x) ≡ a2(x), a3(t, x) ≡ a3(x)) is CN and there is some

x0 ∈ Int(D) (resp. x0 ∈ Int(D), x0 ∈ RN) satisfying that a1(x0) = maxx∈D̄ a1(x) (resp.

−ν2

∫
D
κ(y−x0)dy+a2(x0) = maxx∈D̄(−ν2

∫
D
κ(y−x)dy+a2(x)), a3(x0) = maxx∈RN a3(x))

and the partial derivatives of a1(x) (resp. −ν2

∫
D
κ(y−x)dy+a2(x), a3(x)) up to order N−1

at x0 are zero, then (1.1) (resp. (1.2), (1.3)) admits a principal eigenvalue.

(iii) If a1(t, x) ≡ a1(x) (resp. a2(t, x) ≡ a2(x), a3(t, x) ≡ a3(x)) and maxx∈D̄ a1(x) −

minx∈D̄ a1(x) < ν1 infx∈D̄
∫
D
κ(y−x)dy (resp. maxx∈D̄ a2(x)−minx∈D̄ a2(x) < ν2 infx∈D̄

∫
D
κ(y−
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x)dy, maxx∈RN a3(x) −minx∈RN a3(x) < ν3), then (1.1) (resp. (1.2), (1.3)) admits a princi-

pal eigenvalue.

It should be pointed out that [30] contains some results similar to (i) in the Dirichlet

type boundary condition case and [11] contains some results similar to (ii). It should also

be pointed out that a nonlocal dispersal operator may not have a principal eigenvalue (see

[49] for an example), which reveals some essential difference between nonlocal and random

dispersal operators. Methologically, due to the lack of regularity and compactness of the

solutions of nonlocal evolution equations, some difficulties, which do not arise in the study

of spectral theory of random dispersal operators, arise in the study of spectral theory of

nonlocal dispersal operators.

Regarding nonlocal dispersal operators with time periodic dependence, in [28], the au-

thors studied the existence of principal eigenvalues of (1.1) in the case that N = 1. In [28]

and [48], the influence of temporal variation on the principal eigenvalue of (1.1) (if exists) is

investigated. In general, the understanding to the principal eigenvalue problems associated

to (1.1), (1.2), and (1.3) is very little.

The first objective of this dissertation is to develop criteria for the existence of principal

eigenvalues of (1.1), (1.2), and (1.3) and to explore fundamental properties of principal

eigenvalues of (1.1), (1.2), and (1.3). Many existing results on principal eigenvalues of

time independent and some special time periodic nonlocal dispersal operators are extended

to general time periodic nonlocal dispersal operators. For example, the following result is

established in this dissertation, which extends (ii) in the above for time independent nonlocal

dispersal operators to time periodic ones,

• If a1(t, x) (resp. a2(t, x), a3(t, x)) is in CN in x and there is some x0 ∈ Int(D) (resp. x0 ∈

Int(D), x0 ∈ RN) such that that â1(x0) = maxx∈D̄ â1(x) (resp. −
∫
D
κ(y − x0)dy + â2(x0) =

maxx∈D̄ ( −
∫
D
κ(y − x)dy + â2(x), â3(x0) = maxx∈RN â3(x)) and the partial derivatives of

â1(x) (resp. −
∫
D
κ(y − x)dy + â2(x), â3(x)) up to order N − 1 at x0 are zero, then (1.1)
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(resp. (1.2), (1.3)) admits a principal eigenvalue, where âi(x) is the time average of ai(t, x)

(i = 1, 2, 3) (see (2.1) for the definition of âi(·) for i = 1, 2, 3).

The reader is referred to Theorems A-C in section 2 for the principal eigenvalue theories

established in this dissertation for general time periodic nonlocal dispersal operators.

The second objective of this dissertation is to consider applications of the established

principal theories to the following time periodic KPP type or Fisher type equations with

nonlocal dispersal,

ut = ν1[

∫
D

κ(y − x)u(t, y)dy − u(t, x)] + uf1(t, x, u), x ∈ D̄, (1.7)

ut = ν2[

∫
D

κ(y − x)(u(t, y)− u(t, x))dy] + uf2(t, x, u), x ∈ D̄, (1.8)

and {
ut = ν3[

∫
RN κ(y − x)u(t, y)dy − u(t, x)] + uf3(t, x, u), x ∈ RN

u(t, x+ pjej) = u(t, x), x ∈ RN ,
(1.9)

where fi(t, x) (i = 1, 2, 3) are C1 functions, fi(t + T, x, u) = fi(t, x, u) (i = 1, 2, 3), f3(t, x +

pjej, u) = f3(t, x, u) (j = 1, 2, · · · , N), and fi(t, x, u) < 0 for u � 1 and ∂ufi(t, x, u) < 0 for

u ≥ 0 (i = 1, 2, 3).

Equations (1.7), (1.8), and (1.9) are the nonlocal counterparts of the following reaction

diffusion equations, {
ut = ν1∆u+ uf1(t, x, u), x ∈ D

u(t, x) = 0, x ∈ ∂D,
(1.10)

{
ut = ν2∆u+ uf2(t, x, u), x ∈ D
∂u
∂n

= 0, x ∈ ∂D,
(1.11)

and {
ut = ν3∆u+ uf3(t, x, u), x ∈ RN

u(t, x+ pjej) = u(t, x), x ∈ RN ,
(1.12)

respectively (see [53] for the approximations of the solutions of (1.7), (1.8), and (1.9) to

(1.10), (1.11), and (1.12), respectively).
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Equations (1.7)-(1.9) and (1.10)-(1.12) are widely used to model population dynamics

of species exhibiting nonlocal internal interactions and random internal interactions, respec-

tively. Thanks to the pioneering works of Fisher ([17]) and Kolmogorov, Petrowsky, Piscunov

([31]) on the following special case of (1.12),

ut = uxx + u(1− u), x ∈ R, (1.13)

(1.7)-(1.9) and (1.10)-(1.12) are referred to as Fisher type or KPP type equations.

One of the central problems for (1.7)-(1.9) and (1.10)-(1.12) is about the existence,

uniqueness, and stability of positive time periodic solutions. This problem has been exten-

sively studied and is well understood for (1.10)-(1.12). For example, it is known that (1.10)

exhibits the following monostable feature: if the trivial solution u ≡ 0 is a linearly unstable

solution of (1.10), then (1.10) has a unique stable time periodic positive solution. Again,

some difficulties, which do not arise in the study of (1.10)-(1.12), aries in the study of (1.7)-

(1.9) due to the lack of compactness and regularities of the solutions of nonlocal dispersal

evolution equations. In [51], the authors proved that time independent KPP equations with

nonlocal dispersal also exhibit monostable feature (see also [2], [11] for the study of positive

stationary solutions of time independent KPP equations with nonlocal dispersal). But it is

hardly studied whether a general time periodic KPP equation with nonlocal dispersal is of

the monostable feature. In this dissertation, by applying the principal eigenvalue theories

for time periodic nonlocal dispersal operators to be established, we prove

• A time periodic KPP equations with nonlocal dispersal is of the monostable feature, that

is, if u ≡ 0 is a linearly unstable solution of a time periodic KPP equation with nonlocal

dispersal, then the equation has a unique stable time periodic positive solution u+(·, ·) (see

Theorem E in Section 2).
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Consider (1.9) without the periodic condition u(t, x+ piei) = u(t, x), that is,

ut = ν3[

∫
RN
κ(y − x)u(t, y)dy − u(t, x)] + uf3(t, x, u), x ∈ RN (1.14)

where f3(t, x, u) < 0 for u � 1, ∂uf3(t, x, u) < 0 for u ≥ 0, and f3(t, x, u) is of certain

recurrent property in t and x. The spatial spreading and front propagation dynamics is also

among central problems. This problem has been studied by many people for the random

dispersal counterpart of (1.14) since the pioneering work by Fisher ([17]) and Kolmogorov,

Petrowsky, and Piscunov ([31]). Fisher in [17] found traveling wave solutions u(t, x) =

φ(x − ct), (φ(−∞) = 1, φ(∞) = 0) of all speeds c ≥ 2 and showed that there are no such

traveling wave solutions of slower speed. He conjectured that the take-over occurs at the

asymptotic speed 2. This conjecture was proved in [31] by Kolmogorov, Petrowsky, and

Piscunov, that is, they proved that for any nonnegative solution u(t, x) of (1.13), if at time

t = 0, u is 1 near −∞ and 0 near∞, then limt→∞ u(t, ct) is 0 if c > 2 and 1 if c < 2 (i.e. the

population invades into the region with no initial population with speed 2). The number 2

is called the spatial spreading speed of (1.13) in literature.

The results of Fisher and Kolmogorov, Petrowsky, Piscunov [31] for (1.13) have been

extended by many people to quite general reaction diffusion equations of the form,

ut = ∆u+ uf3(t, x, u), x ∈ RN , (1.15)

where f3(t, x, u) < 0 for u � 1, ∂uf3(t, x, u) < 0 for u ≥ 0, and f3(t, x, u) is of certain

recurrent property in t and x. For example, assume that f3(t, x, u) is periodic in t with

period T and periodic in xi with period pi (pi > 0, i = 1, 2, · · · , N) (i.e. f3(· + T, ·, ·) =

f3(·, · + piei, ·) = f3(·, ·, ·), ei = (δi1, δi2, · · · , δiN), δij = 1 if i = j and 0 if i 6= j, i, j =

1, 2, · · · , N), and that u ≡ 0 is a linearly unstable solution of (1.15) with respect to periodic

perturbations. Then it is known that (1.15) has a unique positive periodic solution u+(t, x)

(u+(t + T, x) = u+(t, x + piei) = u+(t, x)) which is asymptotically stable with respect to

7



periodic perturbations and it has been proved that for every ξ ∈ SN−1 := {x ∈ RN | ‖x‖ = 1},

there is a c∗(ξ) ∈ R such that for every c ≥ c∗(ξ), there is a traveling wave solution connecting

u+ and u− ≡ 0 and propagating in the direction of ξ with speed c, and there is no such

traveling wave solution of slower speed in the direction of ξ. Moreover, the minimal wave

speed c∗(ξ) is of some important spreading properties. The reader is referred to [3], [4], [5],

[32], [33], [38], [39], [55], [56] and references therein for the above mentioned properties and

to [24], [37], [46], [47] for the extensions of the above results to the cases that f3(t, x, u) is

almost periodic in t and periodic in x and that f3(t, x, u) ≡ f3(t, u) is recurrent in t.

Recently, the spatial spreading and front propagation dynamics for (1.14) with f3(t, x, u) =

f3(x, u) has been studied by many authors. See, for example, [10], [12], [13], [14], [23], [34],

[36], [40], [49], [50], [51] for the study of the existence of spreading speeds and traveling

wave solutions of (1.14) connecting the trivial solution u = 0 and a nontrivial positive sta-

tionary solution in the case that f3(t, x, u) ≡ f3(x, u). However, in contrast to (1.15), the

spatial spreading and front propagation dynamics of (1.14) with both time and space pe-

riodic dependence or with general time and/or space dependence is much less understood.

The results on spatial spreading speeds and traveling wave solutions established in [33] and

[56] for quite general periodic monostable evolution equations cannot be applied to time and

space periodic nonlocal monostable equations because of the lack of certain compactness

of the solution operators for such equations. In this dissertation, by applying the principal

eigenvalue theories for time periodic nonlocal dispersal operators to be established, we obtain

• For any given unit vector ξ ∈ RN , (1.14) has a spatial spreading speed c∗(ξ) in the direction

of ξ. Moreover, some variational characterization for c∗(ξ) is given and the spreading speed

c∗(ξ) is of some important spreading features (see Theorems G and H for detail).

• If for given ξ ∈ RN with ‖ξ‖ = 1, the following eigenvalue problem

{
−ut +

∫
RN e

−µ(y−x)·ξκ(y − x)u(t, y)dy − u(t, x) + a0(t, x)u(t, x) = λu(t, x)

u(t+ T, x) = u(t, x+ piei) = u(t, x)
(1.16)
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has a principal eigenvalue λ0(ξ, µ, a0) for each µ > 0, where a0(t, x) = f3(t, x, 0), then for any

c > c∗(ξ), (1.14) has a (periodic) traveling wave solution u(t, x) = Φ(x− ct, t, ct) connecting

u+ and 0 (see Theorem I for detail).

The results stated above cover most of the results in literature when f3(t, x, u) ≡ f3(x, u).

It should be pointed out that if (1.16) has no principal eigenvalue for some µ > 0, it remains

open whether (1.14) has a traveling wave solution connecting u+(·, ·) and 0 in the direction of

ξ with speed c > c∗(ξ) (this remains open even when f3(t, x, u) ≡ f3(x, u) is time independent

but space periodic).

Nonlocal evolution equations have been attracting more and more attention due to the

presence of nonlocal interaction in many diffusive systems in applied sciences. The reader is

referred to [7], [10], [12], [14], [16], [18], [19], [30], [34], [36], [40], [48], [50], etc., for the study

of various aspects of nonlocal dispersal evolution equations.

The rest of the dissertation is organized as follows. In Chapter 2, we introduce standing

notations and definitions and state the main results of the dissertation. We present basic

properties needed in the proofs of the main results in Chapter 3. The principal eigenvalue

theory is developed in Chapter 4. The chapter 5 is about time periodic positive solutions of

nonlocal KPP equations in periodic media. In Chapters 6 and 7, the spatial spreading speeds

and traveling wave solutions of nonlocal KPP equations in periodic media are presented,

respectively.
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Chapter 2

Notations, Definitions, and Main Results

This chapter begins with standing notations that are used in this chapter and beyond.

Following the notations, the definitions of principal spectrum points and principal eigen-

values of (1.1), (1.2), and (1.3) are given. We then state the main results concerning the

existence of principal eigenvalues, its applications to time periodic KPP equations with non-

local dispersal.

Let

X1 = X2 = {u ∈ C(R× D̄,R) |u(t+ T, x) = u(t, x)}

with norm ‖u‖Xi = supt∈R,x∈D̄ |u(t, x)| (i = 1, 2),

X3 = {u ∈ C(R× RN ,R) |u(t+ T, x) = u(t, x+ piei) = u(t, x)}

with norm ‖u‖X3 = supt∈R,x∈RN |u(t, x)|, and

X+
i = {u ∈ Xi |u ≥ 0}

(i = 1, 2, 3).

For given ai ∈ Xi, let Li(ai) : D(Li(ai)) ⊂ Xi → Xi be defined as follows,

(L1(a1)u)(t, x) = −ut(t, x) + ν1[

∫
D

κ(y − x)u(t, y)dy − u(t, x)] + a1(t, x)u(t, x),

(L2(a2)u)(t, x) = −ut(t, x) + ν2

∫
D

κ(y − x)(u(t, y)− u(t, x))dy + a2(t, x)u(t, x),

10



and

(L3(a3)u)(t, x) = −ut(t, x) + ν3[

∫
RN
κ(y − x)u(t, y)dy − u(t, x)] + a3(t, x)u(t, x).

Definition 2.1. Let

s(Li, ai) = sup{Reλ |λ ∈ σ(Li(ai))}

for i = 1, 2, 3. Then, s(Li, ai) is called the principal spectrum point of L(ai) (i = 1, 2, 3).

If s(Li, ai) is an isolated eigenvalue of L(ai) with a positive eigenfunction φ (i.e. φ ∈ X+
i ),

then s(Li, ai) is called the principal eigenvalue of Li(ai) or it is said that Li(ai) has a principal

eigenvalue (i = 1, 2, 3).

For given 1 ≤ i ≤ 3 and a ∈ Xi, let

âi(x) =
1

T

∫ T

0

ai(t, x)dt, (2.1)

bi(x) =

{−νi for i = 1, 3;

−νi
∫
D
κ(y − x)dy for i = 2,

(2.2)

and

Di =

{
D for i = 1, 2;

[0, p1]× [0, p2]× · · · × [0, pN ] for i = 3.
(2.3)

2.1 Principal eigenvalues and principal spectrum points

Our main results on the principal spectrum points and principal eigenvalues of nonlocal

dispersal operators can then be stated as follows.

Theorem A. (Necessary and sufficient condition)

Let 1 ≤ i ≤ 3 be given. Then, s(Li, ai) is the principal eigenvalue of Li(ai) iff s(Li, ai) >

maxx∈D̄i(bi(x) + âi(x)).
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Theorem B. (Sufficient conditions)

Let 1 ≤ i ≤ 3 be given.

(1) Suppose that κ(z) = 1
δN
κ̃( z

δ
) for some δ > 0 and κ̃(·) with κ̃(z) ≥ 0, supp(κ̃) =

B(0, 1) := {z ∈ RN | ‖z‖ < 1}, and
∫
RN κ̃(z)dz = 1. Then the principal eigenvalue of

Li(ai) exists for 0 < δ � 1.

(2) The principal eigenvalue of Li(ai) exists if ai(t, x) is in CN in x, there is some x0 ∈

Int(Di) in the case i = 1, 2 and x0 ∈ D3 in the case i = 3 satisfying that bi(x0)+âi(x0) =

maxx∈D̄i(bi(x) + âi(x)), and the partial derivatives of bi(x) + âi(x) up to order N − 1

at x0 are zero.

(3) The principal eigenvalue of Li(ai) exists if

max
x∈D̄i

âi(x)− min
x∈D̄i

âi(x) < νi inf
x∈D̄i

∫
Di

κ(y − x)dy

in the case i = 1, 2 and

max
x∈D̄i

âi(x)− min
x∈D̄i

âi(x) < νi

in the case i = 3.

Theorem C. (Influence of temporal variation)

For given 1 ≤ i ≤ 3, s(Li, ai) ≥ s(Li, âi).

Corollary D. If s(Li, âi) is the principal eigenvalue of Li(âi), then s(Li, ai) is the principal

eigenvalue of Li(ai).

Proof. Assume that s(Li, âi) is the principal eigenvalue of Li(âi). Then by Theorem A,

s(Li, âi) > max
x∈D̄i

(bi(x) + âi(x)).
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This together with Theorem C implies that

s(Li, ai) > max
x∈D̄i

(bi(x) + âi(x)).

Then by Theorem A again, s(Li, ai) is the principal eigenvalue of Li(ai).

Observe that when ai(t, x) ≡ ai(x) (i = 1, 2, 3), Theorems A and B recover the exist-

ing results for time independent nonlocal dispersal operators (see [49], [52], and references

therein). Theorem B (2) extends a result in [28] for the case i = 1 and N = 1 to time

periodic nonlocal dispersal operators in higher space dimension domains. In the case i = 1

and both s(L1, a1) and s(L1, â1) are eigenvalues of L1(a1) and L1(â1), it is shown in [28] that

s(L1, a1) ≥ s(L1, â1). Theorem C extends this result to general time periodic nonlocal dis-

persal operators and shows that temporal variation does not reduce the principal spectrum

point of a general time periodic nonlocal dispersal operator.

Theorems A-C and Corollary D establish some fundamental principal eigenvalue theory

for general time periodic nonlocal dispersal operators and provide a basic tool for the study

of nonlinear evolution equations with nonlocal dispersal. In the following, we consider their

applications to the study of the asymptotic dynamics of (1.7)-(1.9).

2.2 Time periodic positive solutions of nonlocal KPP equations

Let

X1 = X2 = {u ∈ C(D̄,R)}

with norm ‖u‖Xi = supx∈D̄ |u(x)| (i = 1, 2),

X3 = {u ∈ C(RN ,R) |u(x+ pjej) = u(x)}
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with norm ‖u‖X3 = supx∈RN |u(x)|, and

X+
i = {u ∈ Xi |u ≥ 0},

(i = 1, 2, 3) and

X++
i =

{
u ∈ X+

i |u(x) > 0 ∀ x ∈ D̄, i = 1, 2

u ∈ X+
i |u(x) > 0 ∀x ∈ RN , i = 3.

.

By general semigroup theory, for any s ∈ R and u0 ∈ X1 (resp. u0 ∈ X2, u0 ∈ X3),

(1.7) (resp. (1.8), (1.9)) has a unique (local) solution u1(t, x; s, u0) (resp. u2(t, x; s, u0),

u3(t, x; s, u0)) with u1(s, x; s, u0) = u0(x) (resp. u2(s, x; s, u0) = u0(x), u3(s, x; s, u0) = u0(x))

(see Proposition 3.1). Moreover, if u0 ∈ X+
i , then ui(t, x; s, u0) exists and ui(t, ·; s, u0) ∈ X+

i

for all t ≥ s (i = 1, 2, 3) (see Proposition 3.3).

Theorem E. (Existence, uniqueness, and stability of time periodic positive solutions)

Let ai(t, x) = fi(t, x, 0) (i = 1, 2, 3). If s(L1, ai) > 0 (resp. s(L2, a2) > 0, s(L3, a3) > 0),

then (1.7) (resp. (1.8), (1.9)) has a unique time periodic solution solution u∗1(t, ·) ∈ X++
1

(resp. u∗2(t, ·) ∈ X++
2 , u∗3(t, ·) ∈ X++

3 ). Moreover, for any u0 ∈ X+
i \ {0},

‖ui(t, ·; 0, u0)− u∗i (t, ·)‖Xi → 0

as t→∞ (i = 1, 2, 3).

Corollary F. Let ai(t, x) = fi(t, x, 0) (i = 1, 2, 3). If s(L1, â1) > 0 (resp. s(L2, â2) > 0,

s(L3, â3) > 0), then (1.7) (resp.( 1.8), (1.9)) has a unique time periodic solution solution

u∗1(t, ·) ∈ X++
1 (resp. u∗2(t, ·) ∈ X++

2 , u∗3(t, ·) ∈ X++
3 ). Moreover, for any u0 ∈ X+

i \ {0},

‖ui(t, ·; 0, u0)− u∗i (t, ·)‖Xi → 0

as t→∞ (i = 1, 2, 3).
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Proof. Assume s(L1, â1) > 0 (resp. s(L2, â2) > 0, s(L3, â3) > 0). By Theorem C, s(L1, ai) >

0 (resp. s(L2, a2) > 0, s(L3, a3) > 0). The corollary then follows from Theorem E.

2.3 Spatial spreading speeds of time and space periodic KPP equations

For simplicity in notation, when considering the spatial spreading and front propagation

dynamics of (1.14), we drop the sub-index 3, that is, we write (1.14) as

∂u

∂t
=

∫
RN
κ(y − x)u(t, y)dy − u(t, x) + u(t, x)f(t, x, u(t, x)), x ∈ RN , (2.4)

where κ(·) is as in (1.14) and f(t, x, u) is periodic in t and x and satisfies proper monostablility

assumptions. More precisely, let (H0) stands for the following assumption.

(H0) f(t, x, u) is C1 in (t, x, u) ∈ R×RN ×R, and f(·+ T, ·, ·) = f(·, ·+ piei, ·) = f(·, ·, ·),

ei = (δi1, δi2, · · · , δiN), δij = 1 if i = j and 0 if i 6= j, i, j = 1, 2, · · · , N .

Let

Xp = {u ∈ C(R× RN ,R)|u(·+ T, ·) = u(·, ·+ piei) = u(·, ·), i = 1, · · · , N} (2.5)

with norm ‖u‖Xp = sup(t,x)∈R×RN |u(t, x)| (note that Xp = X3), and

X+
p = {u ∈ Xp |u(t, x) ≥ 0 ∀(t, x) ∈ R× RN}. (2.6)

Let I be the identity map on Xp, and K, a0(·, ·)I : Xp → Xp be defined by

(Ku)(t, x) =

∫
RN
κ(y − x)u(t, y)dy, (2.7)

(a0(·, ·)Iu)(t, x) = a0(t, x)u(t, x), (2.8)
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where a0(t, x) = f(t, x, 0). Let σ(−∂t +K− I + a0(·, ·)I) be the spectrum of −∂t +K− I +

a0(·, ·)I acting on Xp. The monostablility assumptions are then stated as follows:

(H1) ∂f(t,x,u)
∂u

< 0 for t ∈ R, x ∈ RN and u ∈ R and f(t, x, u) < 0 for t ∈ R, x ∈ RN and

u� 1.

(H2) u ≡ 0 is linearly unstable in Xp, that is, λ0(a0) > 0, where λ0(a0) := sup{Reλ |λ ∈

σ(−∂t +K − I + a0(·, ·)).

Let

X = {u ∈ C(RN ,R) |u is uniformly continuous and bounded} (2.9)

with supremum norm and

X+ = {u ∈ X |u(x) ≥ 0 ∀ x ∈ RN}. (2.10)

By general semigroup theory, for any u0 ∈ X, (2.4) has a unique solution u(t, x;u0) with

u(0, x;u0) = u0(x). By comparison principle, if u0 ∈ X+, then u(t, ·;u0) exists for all t ≥ 0

and u(t, ·;u0) ∈ X+ (see Proposition 3.3 for detail).

By Theorem E, (H1) and (H2) imply that (2.4) has exactly two time periodic solutions in

X+
p , u = 0 and u = u+(t, x), and u = 0 is linearly unstable and u = u+(t, x) is asymptotically

stable with respect to positive perturbations in X+
p , where

Xp = {u ∈ C(RN ,R) |u(·+ pei) = u(·)} (2.11)

with maximum norm (note that Xp = X3) and

X+
p = {u ∈ Xp |u(x) ≥ 0 ∀ x ∈ RN}. (2.12)

Hence (H1) and (H2) are called monostability assumptions.
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For given ξ ∈ SN−1 and µ ∈ R, let λ0(ξ, µ, a0) be the principal spectrum point of the

eigenvalue problem

{
−ut +

∫
RN e

−µ(y−x)·ξκ(y − x)u(t, y)dy − u(t, x) + a0(t, x)u(t, x) = λu(t, x)

u(·, ·) ∈ Xp
(2.13)

(defined as in Definition 2.1 with κ(y − x) being replaced by e−µ(y−x)·ξκ(y − x)). Let X+(ξ)

be defined by

X+(ξ) = {u ∈ X+ | inf
x·ξ�−1

u(x) > 0, sup
x·ξ�1

u(x) = 0}. (2.14)

Definition 2.2. For a given vector ξ ∈ SN−1, let

C∗inf(ξ) =
{
c | ∀ u0 ∈ X+(ξ), lim sup

t→∞
sup
x·ξ≤ct

|u(t, x;u0)− u+(t, x)| = 0
}

and

C∗sup(ξ) =
{
c | ∀ u0 ∈ X+(ξ), lim sup

t→∞
sup
x·ξ≥ct

u(t, x;u0) = 0
}
.

Define

c∗inf(ξ) = sup { c | c ∈ C∗inf(ξ)}, c∗sup(ξ) = inf { c | c ∈ C∗sup(ξ)}.

We call [c∗inf(ξ), c
∗
sup(ξ)] the spreading speed interval of (2.4) in the direction of ξ. If c∗inf(ξ) =

c∗sup(ξ), we call c∗(ξ) := cinf(ξ) the spreading speed of (2.4) in the direction of ξ.

Theorem G. (Existence of spreading speeds) Assume (H1) and (H2). For any given ξ ∈

SN−1, c∗inf(ξ) = c∗sup(ξ) and hence the spreading speed c∗(ξ) of (2.4) in the direction of ξ

exists. Moreover,

c∗(ξ) = inf
µ>0

λ0(ξ, µ, a0)

µ
,

where a0(t, x) = f(t, x, 0).
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Theorem H. (Spreading features of spreading speeds) Assume (H1) and (H2).

(1) If u0 ∈ X+ satisfies that u0(x) = 0 for x ∈ RN with |x · ξ| � 1, then for each

c > max{c∗(ξ), c∗(−ξ)},

lim sup
t→∞

sup
|x·ξ|≥ct

u(t, x;u0) = 0.

(2) Assume that ξ ∈ SN−1 and 0 < c < min{c∗(ξ), c∗(−ξ)}. Then for any σ > 0 and

r > 0,

lim inf
t→∞

inf
|x·ξ|≤ct

(u(t, x;u0)− u+(t, x)) = 0

for every u0 ∈ X+ satisfying u0(x) ≥ σ for all x ∈ RN with |x · ξ| ≤ r.

(3) If u0 ∈ X+ satisfies that u0(x) = 0 for x ∈ RN with ‖x‖ � 1, then

lim sup
t→∞

sup
‖x‖≥ct

u(t, x;u0) = 0

for all c > supξ∈SN−1 c∗(ξ).

(4) Assume that 0 < c < infξ∈SN−1{c∗(ξ)}. Then for any σ > 0 and r > 0,

lim inf
t→∞

inf
‖x‖≤ct

(u(t, x;u0)− u+(t, x)) = 0

for every u0 ∈ X+ satisfying u0(x) ≥ σ for x ∈ RN with ‖x‖ ≤ r.

2.4 Traveling wave solutions of time and space periodic KPP equations

Definition 2.3 (Traveling wave solution). (1) An entire solution u(t, x) of (2.4) is called

a traveling wave solution connecting u+(·, ·) and 0 and propagating in the direction of

ξ with speed c if there is a bounded function Φ : RN ×R×RN → R+ such that Φ(·, ·, ·)

is Lebesgue measurable, u(t, ·; Φ(·, 0, z), z) exists for all t ∈ R,

u(t, x) = u(t, x; Φ(·, 0, 0), 0) = Φ(x− ctξ, t, ctξ) ∀ t ∈ R, x ∈ RN , (2.15)
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u(t, x; Φ(·, 0, z), z) = Φ(x− ctξ, t, z + ctξ) ∀t ∈ R, x, z ∈ RN , (2.16)

lim
x·ξ→−∞

(Φ(x, t, z)− u+(t, x+ z)) = 0, lim
x·ξ→∞

Φ(x, t, z) = 0 (2.17)

uniformly in (t, z) ∈ R× RN ,

Φ(x, t, z − x) = Φ(x
′
, t, z − x′) ∀x, x′ ∈ RN with x · ξ = x

′ · ξ, (2.18)

and

Φ(x, t+ T, z) = Φ(x, t, z + piei) = Φ(x, t, z) ∀x, z ∈ RN . (2.19)

(2) A bounded function Φ : RN × R × RN → R+ is said to generate a traveling wave

solution of (2.4) in the direction of ξ with speed c if it is Lebesgue measurable and

satisfies (2.16) - (2.19).

Remark 2.4. Suppose that u(t, x) = Φ(x − ctξ, t, ctξ) is a traveling wave solution of (2.4)

connecting u+(·) and 0 and propagating in the direction of ξ with speed c. Then u(t, x) can

be written as

u(t, x) = Ψ(x · ξ − ct, t, x) (2.20)

for some Ψ : R × R × RN → R satisfying Ψ(η, t + T, z) = Ψ(η, t, z + piei) = Ψ(η, t, z),

limη→−∞Ψ(η, t, z) = u+(t, z), and limη→∞Ψ(η, t, z) = 0 uniformly in (t, z) ∈ R × RN . In

fact, let Ψ(η, t, z) = Φ(x, t, z − x) for x ∈ RN with x · ξ = η. Observe that Ψ(η, t, z) is well

defined and has the above mentioned properties.

For convenience, we introduce the following assumption:

(H3) For every ξ ∈ SN−1 and µ ≥ 0, λ0(ξ, µ, a0) is the principal eigenvalue of −∂t +Kξ,µ−

I + a0(·, ·)I, where a0(t, x) = f(t, x, 0).

We now state the main results of this section. For given ξ ∈ SN−1 and c > c∗(ξ), let

µ ∈ (0, µ∗(ξ)) be such that

c =
λ0(ξ, µ, a0)

µ
.
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Let φ(µ, ·, ·) ∈ X+
p be the positive principal eigenfunction of −∂t + Kξ,µ − I + a0(·)I with

‖φ(µ, ·, ·)‖Xp = 1.

Theorem I. (Existence of traveling wave solutions) Assume (H1)-(H3). For any ξ ∈ SN−1

and c > c∗(ξ), there is a bounded function Φ : RN × R × RN → R+ such that Φ(·, ·, ·)

generates a traveling wave solution connecting u+(·, ·) and 0 and propagating in the direction

of ξ with speed c. Moreover, lim
x·ξ→∞

Φ(x, t, z)

e−µx·ξφ(µ, t, x+ z)
= 1 uniformly in t ∈ R and z ∈ RN .
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Chapter 3

Basic Properties

In this chapter, we present basic properties to be used in the following chapters.

3.1 Basic properties for solutions of nonlocal evolution equations

In this section, we present some basic properties for solutions of (1.7)-(1.9) and linear

nonlocal evolution equations,

ut = ν1[

∫
D

κ(y − x)u(y)dy − u(x)] + a1(t, x)u, x ∈ D̄, (3.1)

ut = ν2[

∫
D

κ(y − x)(u(y)− u(x))dy] + a2(t, x)u, x ∈ D̄, (3.2)

and

ut = ν3[

∫
RN
κ(y − x)u(y)dy − u(x)] + a3(t, x)u, x ∈ RN , (3.3)

where ai ∈ Xi (i = 1, 2, 3).

Throughout this chapter, i denotes any integer with 1 ≤ i ≤ 3, unless specified otherwise

and Xi, X+
i , and Xi, X

+
i , X++

i are as in section 2. Di is as in (2.3). For u1, u2 ∈ Xi, we

define

u1 ≤ u2 (u1 ≥ u2) if u2 − u1 ∈ X+
i (u1 − u2 ∈ X+

i ).

For u1, u2 ∈ Xi, we define

u1 ≤ u2 (u1 ≥ u2) if u2 − u1 ∈ X+
i (u1 − u2 ∈ X+

i ),

and

u1 � u2 (u1 � u2) if u2 − u1 ∈ X++
i (u1 − u2 ∈ X++

i ).
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Proposition 3.1. (1) For any u0 ∈ X1 (resp. u0 ∈ X2, u0 ∈ X3) and s ∈ R, (3.1) (resp.

(3.2), (3.3)) has a unique solution u(t, ·; s, u0), denoted by Φ1(t, s)u0 (resp. Φ2(t, s)u0,

Φ3(t, s)u0) with u(s, x; s, u0) = u0(x).

(2) For any u0 ∈ X1 (resp. u0 ∈ X2, u0 ∈ X3) and s ∈ R, (1.7) (resp. (1.8), (1.9)), has a

unique (local) solution u1(t, ·; s, u0) (resp. u2(t, ·; s, u0), u3(t, ·; s, u0)) with u1(s, x; s, u0) =

u0(x) (resp. u2(s, x; s, u0) = u0(x), u3(s, x; s, u0) = u0(x)).

Proof. (1) We prove the existence of a unique solution of the initial value problem associated

to (3.1). The existence of unique solutions of the initial value problems associated to (3.2)

and (3.3) can be proved similarly.

Assume 0 ≤ s < t ≤ T . Define K1 : X1 → X1 and A1(t) : X1 → X1 by (K1u)(x) =

ν1[
∫
D
κ(y − x)u(y)dy − u(x)] and (A1(t)u)(x) = a1(t, x)u(x). Then, K1 and for every t,

A1(t) are linear, bounded operators on X1. Assume A(t) := K1 + A1(t). Then, for every t,

0 ≤ t ≤ T , A(t) is a bounded linear operator on X1. The function t→ A(t) is continuous in

the uniform operator topology. Then, by [[41], Chapter 5,Theorem 5.1], for every u0 ∈ X1,

the initial value problem, du(t)
dt

= A(t)u(t), 0 ≤ s < t ≤ T with u(s) = u0 has a unique

classical solution u(t, ·; s, u0).

(2) Write (1.7) as ut = A1u + g1(t, x, u) where A1u = ν1

∫
D
κ(y − x)u(y)dy − u(x) and

g1(t, x, u) = u(x)f1(t, x, u). Then A1 is bounded linear operator and hence generates a C0

semigroup on X1 and g1 is continuous in t and Lipschitz continuos in u because of f1. By

[[41], Chapter 6, Theorem 1.4], for any u0 ∈ X1, (1.7) has a unique local solution u1(t, ·; s, u0)

with u1(s, ·; s, u0) = u0(·).

The existence of unique solutions of the initial value problems associated to (1.7) and

(1.9) can be proved analogously.

Definition 3.2. A continuous function u(t, x) on [0, τ) × D̄ is called a super-solution (or

sub-solution) of (1.7) if for any x ∈ D̄, u(t,x) is differentiable on [0, τ) and satisfies that for
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each x ∈ D̄,

∂u

∂t
≥ (or ≤) ν1

[ ∫
D

κ(y − x)u(t, y)dy − u(t, x)
]

+ u(t, x)f1(t, x, u)

for t ∈ [0, τ).

Super-solutions and sub-solutions of (1.8), (1.9), and (3.1)-(3.3) are defined in an anal-

ogous way.

Proposition 3.3 (Comparison principle).

(1) If u1(t, x) and u2(t, x) are sub-solution and super-solution of (3.1) ( (resp. 3.2) ,

(3.3)) on [0, T ), respectively, u1(0, ·) ≤ u2(0, ·), and u2(t, x) − u1(t, x) ≥ −β0 for

(t, x) ∈ [0, T )× D̄i and some β0 > 0, then u1(t, ·) ≤ u2(t, ·) for t ∈ [0, T ).

(2) If u1(t, x) and u2(t, x) are bounded sub- and super-solutions of (1.7) (resp. (1.8), (1.9))

on [0, T ), respectively, and u1(0, ·) ≤ u2(0, ·), then u1(t, ·) ≤ u2(t, ·) for t ∈ [0, T ).

(3) For every u0 ∈ X+
i , ui(t, x; s, u0) exists for all t ≥ s.

Proof. (1) We prove the case that u1(t, x) and u2(t, x) are sub-solution and super-solution

of (3.1). Other cases can be proved similarly.

Let u1(t, x) and u2(t, x) be sub-solution and super-solution of (3.1) respectively. Define

v(t, x) = eαt(u2(t, x)− u1(t, x)) and p1 = α− ν1 + a1(t, x). Then v satisfies

∂v

∂t
≥ ν1

∫
D

κ(y − x)v(t, y)dy + p1(t, x)v(t, x), x ∈ D.

Choose α > 0 so large enough that p1(t, x) ≥ 0 for (t, x) ∈ (0, T ) × D. We need to

prove v(t, .) ≥ 0 for t ∈ (0, T ). It suffices to prove v(t, .) ≥ 0 for t ∈ (0, T0) where

T0 = min{T, 1
k0+p0

}, k0 = maxx∈D
∫
D
κ(y − x)dy and p0 = sup(t,x)∈(0,T )×Dp(t, x).

Suppose not. Then there exists (t0, x0) ∈ (0, T0) × D such that v(t0, x0) < 0. Let

vinf = inf(t,x)∈(0,t0]×Dv(t, x). Then vinf < 0. Choose the sequence (tn, xn) ∈ (0, t0]×D such
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that v(tn, xn)→ vinf as n→∞. Then we have,

v(tn, xn)− v(0, xn) ≥
∫ tn

0

[

∫
D

κ(y − xn)v(t, y)dy + p1(t, xn)v(t, xn)].

This implies,

v(tn, xn)− v(0, x) ≥ (k0 + p0)tnvinf ≥ (k0 + p0)t0vinf .

Letting n→∞, we get

vinf ≥ (k0 + p0)t0vinf > vinf ,

which is a contradiction.

(2) We prove the case that u1(t, x) and u2(t, x) are bounded sub- and super-solutions of

(1.7). Other cases can be proved similarly.

Let u1(t, x) and u2(t, x) be bounded sub-solution and super-solution of (1.7) respectively.

Define v(t, x) = eαt(u2(t, x)− u1(t, x)) and

p = α− 1 + f1(x, u2(t, x)) + [u1(t, x).

∫ 1

0

∂f1

∂u
(x, su1(t, x) + (1− s)u2(t, x))ds]v(t, x)

for t ∈ [0, T ). Then v satisfies,

∂v

∂t
≥ ν1

∫
D

κ(y − x)v(t, y)dy + p(t, x)v(t, x), x ∈ D.

By the boundedness of u1 and u2, there is α > 0 such that inft∈[0,T ),x∈D p(t, x) > 0. Proof

of (2) then follows from the arguments in (1) with p(x) and p0(x) being replaced by p(t, x)

and sup(t,x)∈[0,T )×Dp(t, x) respectively.

(3) We prove the case that i = 1. Other cases can be proved similarly.

There is L > 0 such that u0(x) ≤ L and f1(t, x, L) < 0 for x ∈ D. Let uL(t, x) ≡ L

for x ∈ D and t ∈ R. Then uL is a super solution of (1.7) on [0,∞). Let I(u0) ⊂ R be the
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maximal interval of existence of the solution u1(t, .; s, u0) of (1.7) with u1(s, ·; s, u0) = u0(·).

Then by (2), 0 ≤ u1(t, x; s, u0) ≤ L for x ∈ D, t ∈ I(u0) ∩ [s,∞). It then follows that

[s,∞) ⊂ I(u0), and hence u1(t, x; s, u0) exists for all t ≥ s.

Proposition 3.4 (Strong monotonicity). (1) If u1, u2 ∈ Xi, u
1 ≤ u2 and u1 6= u2, then

Φi(t, s)u
1 � Φi(t, s)u

2 for all t > s.

(2) If u1, u2 ∈ Xi, u
1 ≤ u2 and u1 6= u2, then ui(t, ·; s, u1) � ui(t, ·; s, u2) for every t > s

at which both ui(t, ·; s, u1) and ui(t, ·; s, u2) exist.

Proof. (1) We prove the case i = 1. The cases i = 2 and i = 3 can be proved analogously.

First we prove Φ1(t, s)u0 � 0 if u0 ∈ X1\{0}. We claim that eν1K1tu0 � 0 for t > 0, where

(K1u)(s, x) =
∫
D
κ(y − x)u(s, y)dy.

Note that

eν1K1tu0 = u0 + ν1tK1u0 +
(ν1tK1)2

2
u0 + ...

Let x0 ∈ D̄ be such that u0(x0) > 0. Then there is r > 0, δ > 0 such that u0(x0) > 0 for

x ∈ B(x0, r) := {y ∈ D |‖ y − x0 ‖< r, which implies that

(ν1K1u0)(x) =

∫
D

κ(y − x)u0(y)dy > 0

for x ∈ B(x0, r + δ). By induction (ν1K1)nu0 > 0 for x ∈ B(x0, r + nδ), n ∈ N. Therefore,

eν1K1tu0 � 0 for t > 0. Let m > ν1 −minx∈D̄,t∈R a1(t, x). Then,

Φ1(t, s)u0 = e−m(t−s)eν1K1(t−s)u0

+

∫ t

s

e−m(t−τ)eν1K1(t−τ)(m− ν1 + a1(τ, ·))u1(τ, ·; s, u0)dτ

≥ e−m(t−s)eν1K1(t−s)u0

� 0
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for t > s It then follows that Φ1(t, s)u0 � 0 for all t > s. Now let u0 = u2 − u1. Then

u0 ∈ X+
1 \{0}. Hence Φ1(t, s)u0 � 0 for t > s, which implies Φ1(t, s)u1 � Φ1(t, s)u2 for all

t > s.

(2) We prove the case i = 1. Other cases can be proved analogously.

Let v(t, x) = u1(t, x; s, u2) − u1(t, x; s, u1) for t ≥ s at which both u1(t, x; s, u1) and

u1(t, x; s, u2) exist. Then v(t, ·) ≥ 0 and v(t, x) satisfies

∂v

∂t
= ν1

∫
D

κ(y − x)v(t, y)dy − ν1v(t, x) + f(x, u1(t, x;u2))v(t, x)

+[u1(t, x, u1).

∫ 1

0

fu(x, su1(t, x;u1) + (1− s)u1(t, x;u2))ds]v(t, x),

x ∈ D̄ and t ≥ s. Proof of (2) then follows from the arguments similar to those in proof of

(1).

Observe that when considering the spatial spreading and front propagation dynamics of

(2.4), we need to consider (2.4) in X and also need to consider the following nonlocal linear

evolution equation,

∂u

∂t
=

∫
RN
e−µ(y−x)·ξκ(y − x)u(t, y)dy − u(t, x) + a(t, x)u(t, x), x ∈ RN (3.4)

where µ ∈ R, ξ ∈ SN−1, and a(t, ·) ∈ Xp and a(t + T, x) = a(t, x). Note that if µ = 0 and

a(t, x) = a0(t, x)(:= f(t, x, 0)), (3.4) is the linearization of (2.4) at u ≡ 0.

Remark 3.5. In space Xp, (3.4) share the same properties as (3.3).

Throughout the rest of this section, we assume that ξ ∈ SN−1 and µ ∈ R are fixed,

unless otherwise specified.

By the same arguments as in Proposition 3.1, for every u0 ∈ X, (3.4) has a unique

solution u(t, ·;u0, ξ, µ, a) ∈ X with u(0, x;u0, ξ, µ, a) = u0(x). Put

Φ(t; ξ, µ, a)u0 = u(t, ·;u0, ξ, µ, a). (3.5)
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Note that if u0 ∈ Xp, then Φ(t; ξ, µ, a)u0 ∈ Xp for t ≥ 0. Similarly, (2.4) has a unique

(local) solution u(t, x;u0) with u(0, x;u0) = u0(x) for every u0 ∈ X. Also if u0 ∈ Xp, then

u(t, x;u0) ∈ Xp for t in the existence interval of the solution u(t, x;u0).

A continuous function u(t, x) on [0, T )×RN is called a super-solution or sub-solution of

(3.4) if ∂u
∂t

exists and is continuous on [0, T )× RN and satisfies

∂u

∂t
≥
∫
RN
e−µ(y−x)·ξk(y − x)u(t, y)dy − u(t, x) + a(t, x)u(t, x), x ∈ RN

or

∂u

∂t
≤
∫
RN
e−µ(y−x)·ξ)k(y − x)u(t, y)dy − u(t, x) + a(t, x)u(t, x), x ∈ RN

for t ∈ (0, T ).

For convenience, we would like to restate some comparison properties of solutions to

(2.4) and (3.4) in the following.

Proposition 3.6 (Comparison principle).

(1) If u1(t, x) and u2(t, x) are sub-solution and super-solution of (3.4) on [0, T ), respec-

tively, u1(0, ·) ≤ u2(0, ·), and u2(t, x) − u1(t, x) ≥ −β0 for (t, x) ∈ [0, T ) × RN and

some β0 > 0, then u1(t, ·) ≤ u2(t, ·) for t ∈ [0, T ).

(2) Suppose that u1, u2 ∈ Xp and u1 ≤ u2, u1 6= u2. Then Φ(t; ξ, µ, a)u1 � Φ(t; ξ, µ, a)u2

for all t > 0.

Proof. It follows from Propositions 3.3 and 3.4.

For given ρ ≥ 0, let

X(ρ) = {u ∈ C(RN ,R) | x 7→ e−ρ‖x‖u(x) ∈ X} (3.6)

equipped with the norm ‖u‖X(ρ) = supx∈RN e
−ρ‖x‖|u(x)|.
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Remark 3.7. For every u0 ∈ X(ρ) (ρ ≥ 0),the equation (3.4) has a unique solution

u(t, ·;u0, ξ, µ) ∈ X(ρ) with u(0, x;u0, ξ, µ) = u0(x). Moreover, Proposition 3.6 holds for

such solutions of (3.4).

Proposition 3.8 (Comparison principle).

(1) If u1(t, x) and u2(t, x) are bounded sub- and super-solutions of (2.4) on [0, T ), respec-

tively, and u1(0, ·) ≤ u2(0, ·), then u1(t, ·) ≤ u2(t, ·) for t ∈ [0, T ).

(2) If u1, u2 ∈ Xp with u1 ≤ u2 and u1 6= u2, then u(t, ·;u1)� u(t, ·;u2) for every t > 0 at

which both u(t, ·;u1) and u(t, ·;u2) exist.

(3) For every u0 ∈ X+, u(t, x;u0) exists for all t ≥ 0.

Proof. If follows from the arguments in Propositions 3.3 and 3.4.

Remark 3.9. Let

X̃ = {u : RN → R |u is Lebesgue measurable and bounded}

equipped with the norm ‖u‖ = supx∈RN |u(x)|, and

X̃+ = {u ∈ X̃ |u(x) ≥ 0 ∀ x ∈ RN}.

By general semigroup theory, for any u0 ∈ X, (2.4) has also a unique (local) solution

u(t, ·;u0) ∈ X̃ with u(0, x;u0) = u0(x). Similarly, we can define measurable sub- and

super-solutions of (2.4). Proposition 3.8 (1) and (3) also hold for bounded measurable sub-,

super-solutions and solutions.
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3.2 Basic properties of principal eigenvalues and principal spectrum points of

nonlocal dispersal operators

Let Ki : Xi → Xi and Hi : D(Hi) ⊂ Xi → Xi be defined as follows,

(K1u)(s, x) = (K2u)(s, x) =

∫
D

κ(y − x)u(s, y)dy,

(K3u)(s, x) =

∫
RN
κ(y − x)u(s, y)dy,

(H1(a1)u)(s, x) = −us − ν1u(s, x) + a1(s, x)u(s, x),

(H2(a2)u)(s, x) = −us − ν2

∫
D

κ(y − x)dyu(s, x) + a2(s, x)u(s, x),

and

(H3(a3)u)(s, x) = −us − ν3u(s, x) + a3(s, x)u(s, x).

Then,

Li(ai)u = (νiKi +Hi(ai))u, i = 1, 2, 3.

We denote I as an identity map from Xi to Xi and may write αIu as αu and αI − Hi(ai)

as α − Hi(ai), etc.. If no confusion occurs, we may write Li(ai) and Hi(ai) as Li and Hi,

respectively.

Observe that if α ∈ R is such that (α−Hi)
−1 exists, then

(νiKi +Hi)u = αu

has nontrivial solutions in Xi is equivalent to

νiKi(α−Hi)
−1v = v
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has nontrivial solutions in Xi. Moreover, it can be claimed that α is an eigenvalue of Li(ai)

if and only if 1 is an eigenvalue of νiKi(α−Hi)
−1.

In fact, if α is an eigenvalue of Li(ai), then there exists nonzero v such that Li(ai)v =

(νiKi + Hi(ai))v = αv. There exists nonzero u such that v = (α − Hi)
−1u. This implies,

νiKi(α−Hi)
−1u = u, showing that 1 is an eigenvalue of νiKi(α−Hi)

−1. Conversely, if 1 is an

eigenvalue of νiKi(α−Hi)
−1, then there exists nonzero w such that νiKi(α−Hi)

−1w = w. Let

v = (α−Hi)
−1w. Then (νiKi)v = (α−Hi)v, which implies Li(ai)v = (νiKi+Hi(ai))v = αv,

showing that α is an eigenvalue of Li(ai).

Lemma 3.10. Let {un} be any bounded sequence in X1. Then for any α > maxx∈D̄(b1(x) +

â1(x)),
∫ t
−∞ exp(

∫ t
s
(−ν1 + a1(τ, y)− α)un(τ, y)dτ)ds is bounded.

Proof. First of all, it is clear that for any y ∈ D̄ and t ∈ R,
∫ t
−∞ exp(

∫ t
s
(−ν1 + a1(τ, y) −

α)un(τ, y)dτ)ds exists. Suppose that ‖un‖ ≤M for all n ≥ 1. Then

|
∫ t

−∞
exp(

∫ t

s

(−ν1 + a1(τ, y)− α)un(τ, y)dτ)ds| ≤M

∫ t

−∞
exp(

∫ t

s

(−ν1 + a1(τ, y)− α)dτ)ds

To prove the boundedness of
∫ t
−∞ exp(

∫ t
s
(−ν1 + a1(τ, y) − α)un(τ, y)dτ)ds, let f(t, y) =∫ t

−∞ exp(
∫ t
s
(−ν1 + a1(τ, y)− α)dτ)ds. Then,

f(t+ T, y) =

∫ t+T

−∞
exp(

∫ t+T

s

(ν1 + a1(τ, y)− α)dτ)ds

=

∫ t

−∞
exp(

∫ t+T

s+T

(−ν1 + a1(τ, y)− α)dτ)ds

=

∫ t

−∞
exp(

∫ t

s

(−ν1 + a1(τ, y)− α)dτ)ds

= f(t, y).

Note that f(t, y) is continuous and being the continuous periodic function, it is bounded.

This implies that
∫ t
−∞ exp(

∫ t
s
(−ν1 + a1(τ, y)− α)un(τ, y)dτ)ds is bounded.
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Proposition 3.11. Let 1 ≤ i ≤ 3 be given. Hi generates a positive semigroup of contractions

on Xi and for any α > maxx∈D̄(bi(x) + âi(x)), νiKi(α−Hi)
−1 is a compact operator on Xi.

Proof. We will prove that H1 generates a positive semigroup φ1(s) of contraction on X1. The

remaining cases can be proved similarly. Define φ1(s) : X1 → X1 by

(φ1(s)u)(t, x) = e
∫ t
t−s h1(τ,x)dτu(t− s, x)

where h1(t, x) = a1(t, x)− ν1. Then, we claim the following

Claim 1. φ1(s1 + s2) = φ1(s1)φ1(s2).

Claim 2. φ1(0) = I.

Proof of claim 1. Note that,

(φ1(s1)φ1(s2)u)(t, x)

= φ1(s1)e
∫ t
t−s2

h1(τ,x)dτ
u(t− s2, x)

= e
∫ t
t−s1

h1(τ,x)dτ
w(t− s1, x)[where w(t, x) = e

∫ t
t−s2

h1(τ,x)dτ
u(t− s2, x)]

= e
∫ t
t−s1

h1(τ,x)dτ
e
∫ t−s1
t−s1−s2

h1(τ,x)dτu(t− s1 − s2, x)

= e
∫ t
t−s1−s2

h1(τ,x)dτ
u(t− s1 − s2, x)

= (φ1(s1 + s2)u)(t, x).

Proof of claim 2. Note that,

(φ1(0)u)(t, x) = e
∫ t
t h1(τ,x)dτu(t, x)

= u(t, x).

Now, let U(s, t, x;u) be solution of

Us = −Ut + h1(t, x)U
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with initial condition U(0, t, x;u) = u(t, x).

Then by direct computation

U(s, t, x;u) = (φ1(s)u)(t, x)

and

{u ∈ X1| lim
s→0+

φ1(s)u− u
s

exists} = D(H1).

Also, from the definition of φ1(s), positivity is obvious. Moreover, ‖φ1(s)u‖ ≤ ‖u‖, (s ≥ 0).

Thus, H1 generates positive semigroup of contraction φ1(s) on X1.

Next, we prove that for any α > maxx∈D̄(b1(x) + â1(x)), ν1K1(α−H1)−1 is a compact

operator on X1. The other cases (i = 2, i = 3) can be proved analogously.

Note that,

ν1K1(α−H1)−1u(t, x)

= ν1

∫
D

κ(y − x)(α−H1)−1u(t, y)dy

= ν1

∫
D

{κ(y − x)

∫ t

−∞
exp(

∫ t

s

(−ν1 + a1(τ, y)− α)u(τ, y)dτ)ds}dy.

To show the compactness, let {un} be any bounded sequence in X1 and let vn = ν1K1(α −

H1)−1un. By the smoothness property of κ(y − x) and Lemma 3.10,

|vn(t, x1)− vn(t, x2)|

= |ν1K1(α−H1)−1un(t, x1)− ν1K1(α−H1)−1un(t, x2)|

= ν1|
∫
D

[κ(y − x1)− κ(y − x2)](α−H1)−1un(t, y)dy|

≤ ν1

∫
D

|{κ(y − x1)− κ(y − x2)}|
∫ t

−∞
exp(

∫ t

s

(ν1 + a1(τ, y)− α)un(τ, y)dτ)ds]dy

≤ M(x2 − x1).
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Then for every ε > 0 there is δ > 0 such that if |x1 − x2| < δ, |vn(t, x1)− vn(t, x2)| < ε.

Clearly, for every ε > 0, there is also δ > 0 such that if |t1−t2| < δ, then |vn(t2, x)−vn(t1, x)| <

ε. Therefore, {vn} is equicontinuous. The compactness of νiKi(α − Hi)
−1 then follows by

using Arzela Ascoli theorem.

Put

Φi(T ; ai) = Φi(T, 0), i = 1, 2, 3,

and let r(Φi(T ; ai)) be the spectral radius of Φi(T ; ai).

Proposition 3.12. For give 1 ≤ i ≤ 3,

ln r(Φi(T ; ai))

T
= lim sup

t−s→∞

ln ‖Φi(t, s)‖
t− s

.

Proof. First, by (Φi(T ; ai))
n = Φi(nT, 0). it is clear that

ln r(Φi(T ; ai))

T
=

ln
{

limn→∞

(
‖(Φi(T ; ai))

n‖
)1/n}

T
≤ lim sup

t−s→∞

ln ‖Φi(t, s)‖
t− s

.

Next, for any ε > 0, there is K ≥ 1 such that

‖(Φi(T ; ai))
n‖ = ‖Φi(nT, 0)‖ ≤ (r(Φi(T ; ai)) + ε)n ∀ n ≥ K.

Note that there is M > 0 such that

‖Φi(t, s)‖ ≤M ∀t > s, t− s < 1.

For any s < t with t − s ≥ (K + 2)T , let n1, n2 ∈ Z be such that 0 ≤ s − n1T < T and

0 ≤ t− n2T < T . Then

n2 − n1 ≥ K
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and

‖Φi(t, s)‖ = ‖Φi(t, n2T ) ◦ Φi(n2T, n1T ) ◦ Φi(n1T, s)‖

≤ ‖Φi(t, n2T )‖ · ‖Φi((n2 − n1)T, 0)‖ · ‖Φi(n1T, s)‖

≤ M2(r(Φi(T ; ai)) + ε)n2−n1 .

This implies that

ln ‖Φi(t, s)‖
t− s

≤ lnM2 + (n2 − n1) ln(r(Φi(T ; ai)) + ε)

(n2 − n1)T

and hence

lim sup
t−s→∞

ln ‖Φi(t, s)‖
t− s

≤ ln(r(Φi(T ; ai)) + ε)

T
.

Now making ε→ 0, we have

lim sup
t−s→∞

ln ‖Φi(t, s)‖
t− s

≤ ln r(Φi(T ; ai))

T
.

Let

λi(x) = bi(x) + âi(x) (3.7)

for i = 1, 2, 3.

Proposition 3.13. Let 1 ≤ i ≤ 3 be given. Then [minx∈D̄ λi(x),maxx∈D̄ λi(x)] ⊂ σ(Hi) and

for any α ∈ R \ [minx∈D̄ λi(x),maxx∈D̄ λi(x)], (α−Hi)
−1 exists.

Proof. It follows from the arguments in [28, Lemma 3.7]. However, for the reader’s conve-

nience, we provide a proof in the following.

Fix any x0 ∈ D̄i. By Floquet theory for time periodic ordinary differential equations, the
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equation

φ̇ = bi(x0)φ+ ai(t, x0)φ− λi(x0)φ (3.8)

has a nontivial solution φ∗(t) with φ∗(t+ T ) = φ∗(t). Similarly, the equation

ψ̇ = −bi(x0)ψ − ai(t, x0)ψ + λi(x0)ψ (3.9)

has a nontivial solution ψ∗(t) with ψ∗(t + T ) = ψ∗(t). Assume that λi(x0) ∈ ρ(Hi). Then

for any v ∈ Xi with v(t, x) ≡ v(t), there is a unique u(·, ·; v) ∈ Xi such that

ut(t, x; v) = bi(x)u(t, x; v) + ai(t, x)u(t, x; v)− λi(x0)u(t, x; v) + v(t) (3.10)

This implies that

ut(t, x0;ψ∗) = bi(x0)u(t, x0;ψ∗) + ai(t, x0)u(t, x0;ψ∗)− λi(x0)u(t, x0;ψ∗) + ψ∗(t). (3.11)

Put

φ̃∗(t) = u(t, x0;ψ∗).

Then,

∫ T

0

ψ∗(t)ψ∗(t)dt =

∫ T

0

[
dφ̃∗(t)

dt
− bi(x0)φ̃∗(t)− ai(t, x0)φ̃∗(t) + λi(x0)φ̃∗(t)]ψ∗(t)dt

=

∫ T

0

[− dψ∗(t)

dt
− bi(x0)ψ∗(t)− ai(t, x0)ψ∗(t) + λi(x0)ψ∗(t)]φ̃∗(t)dt

= 0,

which is a contradiction. Therefore λi(x0) ∈ σ(Hi) and the proposition follows.

Let
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λi,max = max
x∈Di

λi(x), λi,min = min
x∈Di

λi(x)

Proposition 3.14. Let 1 ≤ i ≤ 3 be given. For any α ∈ C with Reα > λi,max, (α −Hi)
−1

exists. Moreover, (
(α−Hi)

−1v
)

(t, x) ≥ M

α− λi(x)
v(x)

for any λi,max < α ≤ λi,max + 1 and any v ∈ X+
i with v(t, x) ≡ v(x), where

M = inf
s≤t≤s+T,s,t∈R

exp(

∫ t

s

(min
x∈Di

(bi(x) + ai(τ, x))− λi,max − 1)dτ).

Proof. First of all, by Floquet theory for periodic ordinary differential equations, for any

α ∈ C with Reα > λi,max, (α−Hi)
−1 exists. Moreover, for any v ∈ Xi ⊕ iXi, we have

(
(α−Hi)

−1v
)

(t, x) =

∫ t

−∞
exp (

∫ t

s

(bi(x) + ai(τ, x)− α)v(τ, x)dτ)ds.

Hence for any v ∈ Xi with v(t, x) ≡ v(x), we have

(
(α−Hi)

−1v
)

(t, x) =
{∫ t

−∞
exp (

∫ t

s

(bi(x) + ai(τ, x)− α)dτ)ds
}
v(x).

If λi,max < α ≤ λi,max + 1, then

∫ t

−∞
exp (

∫ t

s

(bi(x) + ai(τ, x)− α)dτ)ds ≥ M

α− λi(x)
,

where

M = inf
s≤t≤s+T,s,t∈R

exp(

∫ t

s

(min
x∈Di

(bi(x) + ai(τ, x))− λi,max − 1)dτ)
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(see the arguments of [28, Lemma 3.6]). It then follows that for any λi,max < α ≤ λi,max + 1

and v ∈ X+
i with v(t, x) ≡ v(x),

(
(α−Hi)

−1v
)

(t, x) ≥ M

α− λi(x)
v(x).

The proposition is thus proved.

Proposition 3.15. For given 1 ≤ i ≤ 3, s(Li, ai) > maxx∈D̄ λi(x) iff there is α > s(Li, ai)

such that r(νiKi(α−Hi)
−1) > 1.

Proof. By Propositions 3.13,

λi,max = supσ(Hi).

By Proposition 3.11, νiKi(α−Hi)
−1 is a compact operator for any α ∈ C with Reα > λi,max.

It then follows from [6, Theorem 2.2] that s(Li, ai) > λi,max iff there is α > λi,max such that

r(νiKi(α−Hi)
−1) > 1.

Proposition 3.16. For given 1 ≤ i ≤ 3, if there is α0 > maxx∈D̄i λi(x) such that r(νiKi(α0−

H)−1) > 1, then there is αi > α0(> maxx∈D̄ λi(x)) such that r(νiKi(αi −H)−1) = 1 and αi

is an isolated eigenvalue of νiKi +Hi of finite multiplicity with a positive eigenfunction.

Proof. Suppose that there is α0 > λi,max such that r(νiKi(α0 −H)−1) > 1. Then by Propo-

sition 3.15, s(Li, ai) > λi,max. Moreover, by [6, Theorem 2.2], r(νiKi(s(Li, ai) −H)−1) = 1,

and s(Li, ai) is an isolated eigenvalue of νiKi + Hi of finite multiplicity with a positive

eigenfunction.

Proposition 3.17. For given 1 ≤ i ≤ 3, if λ ∈ R is an eigenvalue of Li(ai) with a positive

eigenfunction, then it is geometric simple.
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Proof. Suppose that φ(t, x) is a positive eigenfunction of Li associated with λ. By Proposi-

tion 3.3, φ(t, x) > 0 for t ∈ R and x ∈ D̄i. Assume that ψ(t, x) is also an eigenfunction of

Li associated with λ. Then there is a ∈ R such that w(t, x) = φ(t, x)− aψ(t, x) satisfies

w(t, x) ≥ 0 ∀t ∈ R, x ∈ D̄i and w(t0, x0) = 0

for some t0 ∈ R and x0 ∈ D̄i. By Proposition 3.3 again, w(t, x) ≡ 0 and then φ(t, x) =

aψ(t, x). This implies that λ is geometric simple.

Proposition 3.18. For 1 ≤ i ≤ 3, s(Li, ai) = ln r(Φi(T ;ai))
T

.

Proof.

s(Li, ai) = lim sup
t−s→∞

ln ‖Φi(t, s; ai)‖
t− s

.

By Proposition 3.12,

lim sup
t−s→∞

ln ‖Φi(t, s; ai)‖
t− s

=
ln r(Φi(T ; ai))

T
.

The proposition thus follows.

Proposition 3.19. For 1 ≤ i ≤ 3, if ani ∈ Xi and ani → ai in Xi as n → ∞, then

s(L1, a
n
i )→ s(Li, ai) as n→∞.

Proof. We prove the case i = 1. The remaining cases can be proved similarly.

By Propositions 3.18, s(L1, a1) = lim supt−s→∞
ln‖φ1(t,s)‖

t−s .

First, for given a1
1 and a2

1 with a1
1 ≤ a2

1, let φi(t, s), i = 1, 2, be the evolution operators

generated by (3.1) with a1(t, x) replaced by ai1(t, x), i = 1, 2 respectively. We claim that

‖φ1(t, s)‖ ≤ ‖φ2(t, s)‖.

In fact, for any given u0 ∈ X1 with u0 ≥ 0, by Proposition 3.3 , φi(t, s)u0 ≥ 0 for i = 1, 2

and s ≤ t. Assume, v(t, x) = φ2(t, s)u0 − φ1(t, s)u0. Then v satisfies,
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vt = ν1

∫
D

κ(y − x)v(t, y)dy − ν1v(t, x) + a2
1(t, x)v(t, x) + (a2

1 − a1
1)φ1(t, s)u0

≥ ν1

∫
D

κ(y − x)v(t, y)dy − ν1v(t, x) + a2
1(t, x)v(t, x).

By Proposition 3.3, v(t, x) ≥ 0 and claim is thus proved.

Next, let φ±ε(t, s) be the evolution operators generated by (3.1) with a1(t, x) being

replaced by a1(t, x)± ε. Then we have φ±ε(t, s) = e±ε(t−s)φ(t, s). Therefore,

s(L1, a1 ± ε) = s(L1, a1)± ε.

By the first and next arguments it follows that s(L1, a
n
1 ) → s(L1, a1) as n → ∞ whenever

an1 → a1 as n→∞.
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Chapter 4

Principal Eigenvalue and Principal Spectrum Point Theory

This chapter contains two sections. In the first section, we investigate the existence

and lower bounds of principal eigenvalues of nonlocal dispersal operators with time periodic

dependence and prove Theorems A-C. Most results in this section have been published (see

[42]). In the sequel section, we explore some other important properties about principal

spectrum point and principal eigenvalues of nonlocal dispersal operators. Most results in

this section are submitted for publication (see [43]).

4.1 Proofs of Theorems A-C

First of all, we prove an important technical lemma, which will also be used in next

section.

Lemma 4.1. For any ai ∈ Xi and any ε > 0, there is ai,ε ∈ Xi satisfying that

‖ai − ai,ε‖Xi < ε,

bi + ai,ε is CN , bi + âi,ε attains its maximum at some point x0 ∈ Int(Di), and the partial

derivatives of bi + âi,ε up to order N − 1 at x0 are zero.

Proof. We prove the case i = 1 or 2. The case i = 3 can be proved similarly (it is simpler).

First, let x̃0 ∈ D̄i be such that

λi(x̃0) = max
x∈D̄

λi(x).

For any ε > 0, there is x̃ε ∈ Int(Di) such that

λi(x̃0)− λ(x̃ε) < ε. (4.1)
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Let σ̃ > 0 be such that

B(x̃ε, σ̃) ⊂ Di,

where B(x̃ε, σ̃) denotes the open ball with center x̃ε and radius σ̃.

Note that there is h̃i ∈ C(D̄i) such that 0 ≤ h̃i(x) ≤ 1, h̃i(x̃ε) = 1, and supp(h̃i) ⊂

B(x̃ε, σ̃). Let

ãi,ε(t, x) = ai(t, x) + εh̃i(x)

and

λ̃i,ε(x) = bi(x) + âi(x) + εh̃i(x).

Then ãi,ε and λ̃i,ε are continuous on D̄i,

‖ãi,ε − ai‖ ≤ ε (4.2)

and λ̃i,ε attains its maximum in Int(Di).

Let D̃i ⊂ RN be such that Di ⊂ D̃i. Note that λ̃i,ε can be continuously extended to D̃i.

Without loss of generality, we may then assume that λ̃i,ε is a continuous function on D̃i and

assume that there is x0 ∈ Int(Di) such that λ̃i,ε(x0) = supx∈D̃i λ̃i,ε(x). Observe that there is

σ > 0 and λ̄i,ε ∈ C(D̃i) such that B(x0, σ) ⊂ Di,

0 ≤ λ̄i,ε(x)− λ̃i,ε(x) ≤ ε ∀ x ∈ D̃i, (4.3)

and

λ̄i,ε(x) = λ̃i,ε(x0) ∀ x ∈ B(x0, σ).

Let

η(x) =


C exp( 1

‖x‖2−1
) if ‖x‖ < 1

0 if ‖x‖ ≥ 1,
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where C > 0 is such that
∫
RN η(x)dx = 1. For given δ > 0, set

ηδ(x) =
1

δN
η(
x

ε
).

Let

λi,ε,δ(x) =

∫
D̃i

ηδ(y − x)λ̄i,ε(y)dy.

By [15, Theorem 6, Appendix C], λ̄i,ε,δ is in C∞(D̃i) and when 0 < δ � 1,

|λi,ε,δ(x)− λ̄i,ε(x)| < ε ∀ x ∈ D̄i.

It is not difficult to see that for 0 < δ � 1,

λ̄i,ε,δ(x) ≤ λ̄i,ε(x0) ∀x ∈ B(x0, σ)

and

λ̄i,ε,δ(x) = λ̄i,ε(x0) ∀x ∈ B(x0, σ/2).

Fix 0 < δ � 1, and let

λi,ε(x) = λi,ε,δ(x).

Then λi,ε attains its maximum at some x0 ∈ Int(Di), and the partial derivatives of λi,ε up

to order N − 1 at x0 are zero, Let

ai,ε = ãi,ε + λi,ε − λ̃i,ε.

Then ai,ε is CN(D̄i),

‖ai − ai,ε‖ ≤ ‖ai − ãi,ε‖+ ‖λi,ε − λ̃i,ε‖ < 2ε
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and

bi(x) + âi,ε(x) = λi,ε(x).

Therefore, bi+âi,ε attains its maximum at some point x0 ∈ Int(D), and the partial derivatives

of bi + âi,ε up to order N − 1 at x0 are zero. The lemma is thus proved.

Next, we recall some results proved in [49] and [52].

Lemma 4.2. If

max
x∈D̄i

âi(x)− min
x∈D̄i

âi(x) < νi inf
x∈D̄i

∫
Di

κ(y − x)dy

in the case i = 1, 2 and

max
x∈D̄i

âi(x)− min
x∈D̄i

âi(x) < νi

in the case i = 3, then s(Li, âi) > maxx∈D̄i λi(x) (1 ≤ i ≤ 3).

Proof. See [49] in the case i = 3 and [52] in the case i = 2, 3.

Proof of Theorem A. We prove the case i = 1. The other cases can be proved similarly.

First, we assume that s(L1, a1) is an isolated eigenvalue of L1 with a positive eigen-

function φ(t, x). Let u(t, x) = es(L1,a1)tφ(t, x). Then u(t, x) is the solution of (3.1) with

u(0, ·) = φ(0, ·) ∈ X+
1 . By Proposition 3.3, we must have φ(t, x) > 0 for t ∈ R and x ∈ D̄.

Then

−φt(t, x)

φ(t, x)
+
ν1

∫
D
κ(y − x)φ(t, y)dy

φ(t, x)
− ν1 + a1(t, x) = s(L1, a1) ∀x ∈ D̄, t ∈ R.

This implies that

s(L1, a1) = −ν1 + â1(x) +
ν1

T

∫ T

0

∫
D
κ(y − x)φ(t, y)dy

φ(t, x)
dt ∀x ∈ D̄
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and hence

s(L1, a1) > −ν1 + max
x∈D̄

â1(x).

Conversely, assume that s(L1, a1) > −ν1 + maxx∈D̄ â1(x). By Proposition 3.15, there is

α > s(L1, a1) such that r(ν1K1(α−H1)−1) > 1. By Proposition 3.16, s(L1, a1) is the isolated

eigenvalue of L1(a1) of finite multiplicity with a positive eigenfunction. Thus s(L1, a1) is the

principal eigenvalue of L1(a1).

Next, we prove Theorem B(1) and (2).

Proof of Theorem B. (1) We prove the case i = 3. The other cases can be proved similarly.

Put

(Kδu)(t, x) =

∫
D3

1

δN
κ̃(
y − x)

δ
)u(t, y)dy.

Assume x0 ∈ D̄3 is such that λ3(x0) = maxx∈D̄3
λ3(x). By Proposition 3.14, for any ε > 0,

there is M > 0 such that for any α > λ3(x0) with α − λ3(x0) < ε and any v ∈ X+
3 with

v(t, x) ≡ v(x) and supp(v) ⊂ {x ∈ D̄3 |α− λ3(x) < ε},

(λ−H3)−1v ≥ M

α− λ3(x0)
v.

This implies that

ν3Kδ(α−H1)v ≥
∫
D

ν3Mκδ(y − x)

α− λ3(y)
v(y)dy

It then follows from the arguments in [49, Theorem A] that there is δ0 > 0 such that for

0 < δ < δ0, s(L3, a3) is the principal eigenvalue of L3(a3).

(2) We prove the case when i = 2. The other cases can be proved similarly. Let x0 ∈ Int(D)

be such that λ2(x0) = maxx∈D̄ λ(x). By Proposition 3.14, there is M > 0 such that

(α−H2)−1v ≥ M

α− λ2(x)
v
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where v(t, x) ≡ 1. This implies that

ν2K2(α−H2)−1v ≥
∫
D

ν2Mκ(y − x)

α− λ2(y)
dy.

By the arguments in [49, Theorem B] (see also [52]), for α− λ2(x0)� 1,

ν2K2(α−H2)−1v > v.

This implies that r(ν2K2(α − H2)−1) > 1. By Propositions 3.16 and 3.17, s(L2, a2) is the

principal eigenvalue of L2(a2).

Before proving Theorem B(3), we first prove Theorem C.

Proof of Theorem C. We prove the case i = 2. Other cases can be proved similarly.

First of all, if both L2(a2) and L2(â2) have principal eigenvalues, then by the arguments

in [28, Theorem 4.1],

s(L2, a2) ≥ s(L2, â2).

[For the detailed proof of the last statement, we need a lemma which we will state

without proof. Before stating the lemma, we state the Jensen inequality which will be useful

in proving the lemma. Jensen Inequality: If f is a positive,continuous function defined on

[0, T ] then,

1

T

∫ T

0

f(t)dt ≥ exp{ 1

T

∫ T

0

ln[f(t)]dt}

with equality if and only if f is a constant function. Now we state the lemma whose detailed

proof can be found in [28, Theorem 4.1].

Lemma: Let w(x, t) be a positive continuous function defined on Ω x [0, T ] where Ω is com-

pact . Let θ(x, y) = 1
T

∫ T
0

w(y,t)
w(x,t)

dt. Then either w(x, t) is independent of x or there exists

x∗ ∈ Ω such that θ(x∗, y) ≥ 1 for all y ∈ Ω with strict inequality for some y.
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Proof of the last statement: Assume s(L2, a2) = β and s(L2, â2) = β∗. There exists eigen-

functions φ(t, x) and ψ(x) with φ(t, x) > 0 for all t and x and ψ(x) > 0 for all x such

that

−φt + ν2

∫
D

κ(y − x)φ(t, y)dy − ν2φ(t, x) + a2(t, x)φ(t, x) = βφ(t, x)

and

ν2

∫
D

κ(y − x)ψ(y)dy − ν2ψ(x) + â2ψ(x) = β∗ψ(x),

which implies,

−φt
φ

+ ν2

∫
D

κ(y − x)
φ(t, y)

φ(t, x)
dy − ν2 + a2 = β

and

ν2

∫
D

κ(y − x)
ψ(y)

ψ(x)
dy − ν2ψ(x) + â2(x) = β∗.

Integrating the second last equations with respect to t from 0 to T and then mulplying by

1
T

we get

β = ν2

∫
D

κ(y − x)
1

T

∫ T

0

φ(t, y)

φ(t, x)
dtdy − ν2 + â2

Now,

β − β∗ = ν2

∫
D

κ(y − x){ 1

T

∫ T

0

φ(t, y)

φ(t, x)
dt− ψ(y)

ψ(x)
}dy

= ν2

∫
D

κ(y − x)
ψ(y)

ψ(x)
{ 1

T

∫ T

0

w(t, y)

w(t, x)
dt− 1}dy

where w(t, x) = φ(t,x)
ψ(x

.

From the lemma mentioned above, the expression within {} of the above expression is positive

for all y. Since, κ(y − x) and ψ(x) are also nonnegative, it follows that β ≥ β∗. ]
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In general, s(L2, a2) (resp. s(L2, â2)) may not be the principal eigenvalue of L2(a2)

(resp. L2(â2)). By Lemma 4.1, for any ε > 0, there is a2,ε ∈ X2 such that

‖a2,ε − a2‖X2 < ε

s(L2, a2,ε) and s(L2, â2,ε) are principal eigenvalues of L2(a2,ε) and L2(â2,ε), respectively. By

the above arguments,

s(L2, a2,ε) ≥ s(L2, â2,ε).

Clearly,

s(L2, a2) ≥ s(L2, a2,ε)− ε, s(L2, â2) ≤ s(L2, â2,ε) + ε.

It then follows that

s(L2, a2) ≥ s(L2, â2)− 2ε

for any ε > 0 and hence

s(L2, a2) ≥ s(L2, â2).

Finally, we prove Theorem B(3).

Theorem B(3). By Lemma 4.2, s(Li, âi) is the principal eigenvalue of Li(âi). By Theorem

A,

s(Li, âi) > max
x∈D̄i

λi(x).

By Theorem C,

s(Li, ai) > max
x∈D̄i

λi(x).

By Theorem A again, s(Li, ai) is the principal eigenvalue of Li(ai).
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4.2 Other important properties

In this section, we present some other properties of principal spectrum points and prin-

cipal eigenvalues for time periodic nonlocal dispersal operators. Throughout this section,

r(A) denotes the spectral radius of an operator A on some Banach space.

Let Xp be as in (2.5). Consider the following eigenvalue problem

−vt + (Kξ,µ − I + a(·, ·)I)v = λv, v ∈ Xp, (4.4)

where ξ ∈ SN−1, µ ∈ R, and a(·, ·) ∈ Xp. The operator a(·, ·)I has the same meaning as in

(2.8) with a0(·, ·) being replaced by a(·, ·), and Kξ,µ : Xp → Xp is defined by

(Kξ,µv)(t, x) =

∫
RN
e−µ(y−x)·ξκ(y − x)v(t, y)dy. (4.5)

We point out the following relation between (2.4) and (4.4): if u(t, x) = e−µ(x·ξ−λ
µ
t)φ(t, x)

with φ ∈ Xp \ {0} is a solution of the linearization of (2.4) at u = 0,

∂u

∂t
=

∫
RN
κ(y − x)u(t, y)dy − u(t, x) + a0(t, x)u(t, x), x ∈ RN , (4.6)

where a0(t, x) = f(t, x, 0), then λ is an eigenvalue of (4.4) with a(t, ·) = a0(t, ·) or −∂t +

Kξ,µ − I + a0(·, ·)I and v = φ(t, x) is a corresponding eigenfunction.

Let σ(−∂t +Kξ,µ − I + a(·, ·)I) be the spectrum of −∂t +Kξ,µ − I + a(·, ·)I on Xp. Let

λ0(ξ, µ, a) := sup{Reλ |λ ∈ σ(−∂t +Kξ,µ − I + a(·, ·)I)}.

Observe that if µ = 0, (4.4) is independent of ξ and hence we put

λ0(a) := λ0(ξ, 0, a) ∀ ξ ∈ SN−1. (4.7)
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Observe that −∂t+Kξ,µ−I+a(·, ·)I may not have a principal eigenvalue (see an example

in [49]). Recall that

â(x) =
1

T

∫ T

0

a(t, x)dt.

The following proposition provides necessary and sufficient condition for −∂t + Kξ,µ −

I + a(·, ·)I to have a principal eigenvalue.

Proposition 4.3. λ0(ξ, µ, a) is the principal eigenvalue of −∂t + Kξ,µ − I + a(·, ·)I if and

only if λ0(ξ, µ, a) > −1 + maxx∈RN â(x).

Proof. It follows from Theorem A.

The following proposition provides a very useful sufficient condition for λ0(ξ, µ, a) to be

the principal eigenvalue of −∂t +Kξ,µ − I + a(·, ·)I.

Proposition 4.4. If a(t, ·) is CN and the partial derivatives of â(x) up to order N − 1 at

some x0 are zero (we refer this to as a vanishing condition), where x0 is such that â(x0) =

maxx∈RN â(x), then λ0(ξ, µ, a) is the principal eigenvalue of −∂t + Kξ,µ − I + a(·, ·)I for all

ξ ∈ SN−1 and µ ∈ R.

Proof. It follows from the arguments of Theorem B(2).

Proposition 4.5. Each λ ∈ σ(−∂t + Kξ,µ − I + a(·, ·)I) with Reλ > −1 + maxx∈RN â(x) is

an isolated eigenvalue with finite algebraic multiplicity.

Proof. It follows from [6, Proposition 2.1(ii)].

The following theorem shows that the principal eigenvalue of −∂t +Kξ,µ− I+a(·, ·)I (if

it exists) is algebraically simple, which plays an important role in the proof of the existence

of spreading speeds of (2.4).

Theorem 4.6. Suppose that λ0(ξ, µ, a) is the principal eigenvalue of −∂t+Kξ,µ−I+a(·, ·)I.

Then λ0(ξ, µ, a) is isolated and algebraically simple with a positive eigenfunction φ(·, ·; ξ, µ),

‖φ(·, ·; ξ, µ)‖ = 1, and λ0(ξ, µ, a) and φ(·, ·; ξ, µ) are smooth in ξ and µ.
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Proof. First of all, note that for α > −1 + maxx∈RN â(x), (αI + ∂t + I − aI)−1 exists (see

[42, Proposition 3.5]). For given α > −1 + maxx∈RN â(x), let

(Uα,ξ,µu)(t, x) =

∫
RN
e−µ(y−x)·ξκ(y − x)(α + ∂t + I − aI)−1u(t, y)dy

and

r(α) = r(Uα,ξ,µ).

By [42, Proposition 3.6], Uα,ξ,µ : Xp → Xp is a positive and compact operator.

Next, by [42, Proposition 3.9], λ0(ξ, µ, a) is an isolated geometrically simple eigenvalue

of −∂t + Kξ,µ − I + a(·, ·)I. Let α0 = λ0(ξ, µ, a). This implies that r(α0) = 1 and r(α0)

is an isolated geometrically simple eigenvalue of Uα0,ξ,µ with φ(·, ·; ξ, µ) being a positive

eigenfunction. We claim that r(α0) is an algebraically simple isolated eigenvalue of Uα0,ξ,µ

with a positive eigenfunction φ(·, ·), or equivalently, (I − Uα0,ξ,µ)2ψ = 0 (ψ ∈ Xp) iff ψ ∈

span{φ}. In fact, suppose that ψ ∈ Xp \ {0} is such that (I − Uα0,ξ,µ)2ψ = 0. Then

(I − Uα0,ξ,µ)ψ = γφ, (4.8)

for some γ ∈ R. We prove that γ = 0. Assume that γ 6= 0. Without loss of generality, we

assume that γ > 0. By (4.8) and Uα0,ξ,µφ = φ, we have

ψ = Uα0,ξ,µψ + γφ = Uα0,ξ,µ(ψ + γφ). (4.9)

Then by (4.9) and Uα0,ξ,µφ = φ, we have

ψ + γφ = Uα0,ξ,µ(ψ + γφ) + γφ,= Uα0,ξ,µ(ψ + 2γφ)
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and hence

ψ = Uα0,ξ,µ(ψ + γφ) = Uα0,ξ,µ

(
Uα0,ξ,µ(ψ + 2γφ)

)
= U2

α0,ξ,µ
(ψ + 2µφ).

By induction, we have

ψ = Un
α0,ξ,µ

(ψ + nγφ), ∀ n ≥ 1.

This implies that

ψ

n
= Un

α0,ξ,µ
(
ψ

n
+ γφ).

Note that φ(t, x) > 0 and then

ψ(t, x)

n
+ γφ(t, x) > 0, ∀ n� 1.

By the positivity of Uα0,ξ,µ, we then have

ψ(t, x)

n
> 0, ∀ n� 1

and then

ψ(t, x)

n
− µφ(t, x) = (Un

α0,ξ,µ
(
ψ

n
))(t, x) > 0, ∀ n� 1.

It then follows that

−γφ(t, x) ≥ 0

and so

γ ≤ 0,

whis is a contradiction. Therefore, γ = 0 and hence by (4.8),

ψ ∈ span{φ}.
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The claim is thus proved.

Now, we prove that λ0(ξ, µ, a) is an algebraically simple eigenvalue of −∂t +Kξ,µ − I +

a(·, ·)I or equivalently, (−∂t + Kξ,µ − I + a(·, ·)I − α0I)2ψ = 0 iff ψ ∈ span{φ}. By the

above arguments, there are one dimensional subspace X1,p = span(φ) and one-codimensional

subspace X2,p of Xp such that

Xp = X1,p ⊕X2,p,

Uα0,ξ,µX1,p = X1,p, Uα0,ξ,µX2,p ⊂ X2,p, (4.10)

and

1 6∈ σ(Uα0,ξ,µ|X2,p).

Suppose that ψ ∈ Xp is such that

(−∂t +Kξ,µ − I + a(·, ·)I − α0I)2ψ = 0.

Then there is γ ∈ R such that

(−∂t +Kξ,µ − I + a(·, ·)I − α0I)ψ = γφ. (4.11)

Let ψi ∈ Xi,p (i = 1, 2) be such that

ψ = (α0I + ∂t + I − aI)−1ψ1 + (α0I + ∂t + I − aI)−1ψ2.

Then

(−∂t +Kξ,µ − I + a(·, ·)I − α0I)ψ = (Uα0,ξ,µ − I)ψ1 + (Uα0,ξ,µ − I)ψ2

= (Uα0,ξ,µ − I)ψ2

= γφ.
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This together with (4.10) implies that γφ ∈ X2,p and hence γ = 0. By (4.11), ψ ∈ span{φ}

and hence λ0(ξ, µ, a) is an algebraically simple eigenvalue of −∂t +Kξ,µ − I + a(·, ·)I.

Proposition 4.7. Assume λ0(ξ, 0, a) > 0 and λ0(ξ, µ, a) is the principal eigenvalue for

µ > 0. Then there is µ∗(ξ) ∈ (0,∞) such that

λ0(ξ, µ∗(ξ), a)

µ∗(ξ)
= inf

µ>0

λ0(ξ, µ, a)

µ
. (4.12)

Proof. Note that λ0(ξ, µ, a) ≥ λ0(ξ, µ, amin), and

λ0(ξ, µ, amin) =

∫
RN
e−µy·ξκ(y)dy − 1 + amin

with 1 as an eigenfunction. Note also that there is k0 > 0 such that κ(y) ≥ k0 for ‖y‖ ≤ r0
2

.

Let mn(ξ) = k0

∫
y·ξ<0,‖y‖≤ r0

2

(−y·ξ)n
n!

dy. Then, for µ > 0

∫
RN
e−µy·ξκ(y)dy − 1 + amin ≥ k0

∫
‖y‖≤ r0

2

e− y·ξdy − 1 + amin

= k0

∞∑
n=0

∫
‖y‖≤ r0

2

(−µy · ξ)n

n!
dy − 1 + amin

≥ m0 +m2(ξ)µ2 +
∞∑
n=2

m2n(ξ)µ2n − 1 + amin

Let m := inf
ξ∈SN−1

m2(ξ)(> 0). We then have λ0(ξ,µ,a)
µ

≥ m0+mµ2−1+amin

µ
→ ∞ as µ → ∞. By

λ0(ξ, 0, a) > 0, λ0(ξ,µ,a)
µ

→ ∞ as µ → 0+. This together with the smoothness of λ0(ξ, µ, a)

(see Theorem 4.6) implies that there is µ∗(ξ) such that (4.12) holds.

Proposition 4.8. For given ξ ∈ SN−1, suppose that λ0(ξ, µ, a) is the principal eigenvalue

of −∂t +Kξ,µ − I + a(·, ·)I for all µ ∈ R. Then λ0(ξ, µ, a) is convex in µ.

Proof. First, recall that Φ(t; ξ, µ, a) is the solution operator of (3.4). Let

Φp(T ; ξ, µ, a) = Φ(T ; ξ, µ, a)|Xp .
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By [42, Proposition 3.10], we have

r(Φp(T ; ξ, µ, a)) = eλ0(ξ,µ,a)T .

Note that Φ(t; ξ, 0, a) is independent of ξ ∈ SN−1. We put

Φ̃(t; a) = Φ(t; ξ, 0, a) (4.13)

for ξ ∈ SN−1. For given u0 ∈ X and µ ∈ R, if we let uξ,µ0 (x) = e−µx·ξu0(x), then uξ,µ0 ∈ X(|µ|).

By the uniqueness of solutions of (3.4), we have that for given u0 ∈ X, ξ ∈ SN−1, and µ ∈ R,

Φ(t; ξ, µ, a)u0 = eµx·ξΦ̃(t; a)uξ,µ0 . (4.14)

Next, observe that for each x ∈ RN , there is a measure m(x; y, dy) such that

(Φ̃(T ; a)u0)(x) =

∫
RN
u0(y)m(x; y, dy). (4.15)

Moreover, by (Φ̃(T ; a)u0(· − piei))(x) = (Φ̃(T ; a)u0(·))(x − piei) for x ∈ RN and i =

1, 2, · · · , N ,

∫
RN
u0(y)m(x− piei; y, dy) =

∫
RN
u0(y − piei)m(x; y, dy) =

∫
RN
u0(y)m(x; y + piei, dy)

and hence

m(x− piei; y, dy) = m(x; y + piei, dy) (4.16)

for i = 1, 2, · · · , N . By (4.14), we have

(Φ(T ; ξ, µ, a)u0)(x) =

∫
RN
eµ(x−y)·ξu0(y)m(x; y, dy), u0 ∈ X.

54



Let λ̂0(µi) := r(Φp(T ; ξ, µi)). By the arguments of [49, Theorem A (2)],

ln[λ̂0(µ1)]α[λ̂0(µ2)]1−α ≥ ln(r(Φp(T ; ξ, αµ1 + (1− α)µ2)).

Thus, by r(Φ(T ; ξ, µ, a) = eλ0(ξ,µ,a)T , we have

αλ0(ξ, µ1, a) + (1− α)λ0(ξ, µ2, a) ≥ λ0(ξ, αµ1 + (1− α)µ2, a),

that is, λ0(ξ, µ, a) is convex in µ.

For a fixed ξ ∈ SN−1 and a ∈ Xp, we may denote λ0(ξ, µ, a) by λ(µ).

Proposition 4.9. Let ξ ∈ SN−1 and a ∈ Xp be given. Assume that (4.4) has the principal

eigenvalue λ(µ) for µ ∈ R and that λ(0) > 0. Then we have:

(i) λ
′
(µ) < λ(µ)

µ
for 0 < µ < µ∗(ξ).

(ii) For every ε > 0, there exists some µε > 0 such that for µε < µ < µ∗(ξ),

−λ′(µ) < −λ(µ∗(ξ))

µ∗(ξ)
+ ε.

Proof. It follows from Theorem 4.6, Propositions 4.7, 4.8, and the arguments of [49, Theorem

3.1].

Proposition 4.10. For any ε > 0 and M > 0, there are a±(·, ·) satisfying the vanishing

condition in Proposition 4.4 such that

a(t, x)− ε ≤ a−(t, x) ≤ a(t, x) ≤ a+(t, x) ≤ a(t, x) + ε

and

|r(Φp(T ; ξ, µ, a)− r(Φp(T ; ξ, µ, a±)| < ε
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for ξ ∈ SN−1 and |µ| ≤M .

Proof. It follows from [42, Lemma 4.1] and the fact that

Φp(T ; ξ, µ, a± ε) = e±εTΦp(T ; ξ, µ, a).
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Chapter 5

Time Periodic Positive Solutions of Nonlocal KPP Equations in Periodic Media

In this chapter, we consider applications of the principal eigenvalue theory established

in the previous section to time periodic KPP equations with nonlocal dispersal. Main results

of this chapter have been published (see [42]).

For given u1, u2 ∈ X++
1 (= X++

2 ) or u1, u2 ∈ X++
3 , we define

ρ(u1, u2) = inf{lnα | 1

α
u1(·) ≤ u2(·) ≤ αu1(·), α ≥ 1}. (5.1)

Observe that for u1, u2 ∈ X++
1 (= X++

2 ) or u1, u2 ∈ X++
3 , there is α ≥ 1 such that

ρ(u1, u2) = lnα.

Proposition 5.1. Let 1 ≤ i ≤ 3 be given.

(1) For any u0, v0 ∈ X++
i , ρ(ui(t, ·; 0, u0), ui(t, ·; 0, v0)) decreases as t increases.

(2) For any u0, v0 ∈ X++
i , if u0 6= v0, then ρ(ui(t, ·; 0, u0), ui(t, ·; 0, v0)) strictly decreases

as t increases.

(3) For any ε0 > 0, there is δ0 > 0 such that for any u0, v0 ∈ X++
i satisfying that

inf
0≤t≤T,x∈D̄

{ui(t, x; 0, u0), vi(t, x; 0, v0} ≥ ε0

and

ρ(u0, v0) ≥ 1 + ε0,
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there holds

ρ(ui(T, ·; 0, u0), ui(T, ·; 0, v0)) ≤ ρ(u0, v0)− δ0.

Proof. We prove the case i = 1. The other cases can be proved similarly.

(1) For any u0, v0 ∈ X++
1 , there is α ≥ 1 such that

1

α
v0 ≤ u0 ≤ αv0

and

ρ(u0, v0) = lnα.

By Proposition 3.3, for any t > 0, we have

u1(t, ·; 0, u0) ≤ u1(t, ·; 0, αv0).

Let w(t, x) = αu1(t, x; 0, v0). Then w(0, x) = αv0(x) and

∂tw =

∫
D

κ(y − x)w(t, y)dy − w(t, x) + w(t, x)f(t, x, u1(t, x; 0, v0))

=

∫
D

κ(y − x)w(t, y)dy − w(t, x) + wf(t, x, w(t, x))

+w[f(t, x, u1(t, x; 0, v0))− f(t, x, w(t, x))]

≥
∫
D

κ(y − x)w(t, y)dy − w(t, x) + wf(t, x, w(t, x)).

This together with Proposition 3.3 implies that

w(t, x) = αu1(t, x; 0, v0) ≥ u1(t, x; 0, αv0) ≥ u1(t, x; 0, u0).

Similarly, we can prove that

1

α
u1(t, x; 0, v0) ≤ u1(t, x; 0, u0).
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Therefore

ρ(u1(t, ·; 0, u0), u1(t, ·; 0, v0)) ≤ lnα ≤ ρ(u0, v0)

for t > 0. Repeating the above arguments, we have

ρ(u1(t, ·; 0, u0), u1(t, ·; 0, v0)) = ρ(u1(t− s, ·; s, u(s, ·; 0, v0)), u1(t− s, ·; s, u(s, ·; 0, v0))

≤ ρ(u1(s, ·; 0, u0), u1(s, ·; 0, v0))

for any 0 ≤ s < t. It then follows that ρ(u1(t, ·; 0, u0), u1(t, ·; 0, v0)) decreases as t increases.

(2) For any u0, v0 ∈ X++
1 with u0 6= v0, there is α > 1 such that ρ(u0, v0) = lnα. As in

(1), let w(t, x) = αu1(t, x; 0, v0). Then w(0, x) = αv0(x) and

∂tw =

∫
D

κ(y − x)w(t, y)dy − w(t, x) + w(t, x)f(t, x, u1(t, x; 0, v0))

=

∫
D

κ(y − x)w(t, y)dy − w(t, x) + wf(t, x, w(t, x))

+w[f(t, x, u1(t, x; 0, v0))− f(t, x, w(t, x))]

≥
∫
D

κ(y − x)w(t, y)dy − w(t, x) + wf(t, x, w(t, x)) + δ0

for some δ0. This implies that

∂tw(0, x) ≥ ∂tu1(0, x; 0, αv0) + δ0.

Hence

w(t, x) = αu1(t, x; 0, v0) ≥ u1(t, x; 0, αv0) + δ̃0

for some δ̃0 > 0 and 0 < t� 1. This implies that there is α̃+ < α such that

α̃+u1(t, x; 0, v0) ≥ u1(t, x; 0, αv0)
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and hence

u1(t, x; 0, u0) ≤ α̃+u1(t, x; 0, v0)

for 0 < t� 1. Similarly, we can prove that

1

α̃−
u1(t, x; 0, v0) ≤ u1(t, x; 0, u0)

for some α̃− < α and 0 < t� 1. Therefore,

ρ(u1(t, ·; 0, u0), v1(t, ·; 0, v0)) ≤ ln α̃ < ρ(u0, v0)

for 0 < t � 1, where α̃ = max{α̃+, α̃−} < α. This together with (1) implies that

ρ(u1(t, ·;u0), u1(t, ·; v0)) is strictly decreasing as t increases.

Proof of (3). By the arguments in (1) and (2), for any ε0 > 0, there is δ0 > 0 such that for

any u0, v0 ∈ X++
i with inf0≤t≤T,x∈D̄{u1(t, x; 0, u0), v1(t, x; 0, v0} ≥ ε0 and ρ(u0, v0) ≥ 1 + ε0,

there holds

ρ(u1(T, ·; 0, u0), u1(T, ·; 0, v0)) ≤ ρ(u0, v0)− δ.

Proof of Theorem E. We prove the case when i = 1. Other cases can be proved similarly.

First of all, for given M � 1, u(t, x) ≡ M is a supersolution of (1.7). This together

with Proposition 3.3 implies that ui(nT, x; 0,M) decreases as t increases. Let

u+(x) = lim
n→∞

ui(nT, x; 0,M).

Next, by Lemma 4.1, there are aki ∈ Xi such that s(Li, a
k
i ) is the principal eigenvalue of

Li(a
k
i ) with

aki (t, x) < fi(t, x, 0)
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and

aki (t, x)→ fi(t, x, 0) as k →∞.

Let φki be the positive principal eigenfunction of Li(a
k
i ) with ‖φki ‖ = 1. By Proposition 3.19,

s(Li, a
k
i ) > 0 for k � 1.

Fix a k � 1 such that s(Li, a
k
i ) > 0. Then u = δφki (t, x) is a subsolution of (1.7) for

0 < δ � 1.

This together with Proposition 3.3 implies that u(nT, x; 0, δφki (0, ·)) increases as n in-

creases. Let

u−(x) = lim
k→∞

u(kT, x; 0, φni ).

We claim that

u−(x) ≡ u+(x).

In fact, Assume that u−(x) 6≡ u+(x). Observe that

δφki (0, ·) ≤ ui(T, ·; 0, δφki (0, ·)) ≤ ui(2T, ·; 0, δφki (0, ·)) ≤ · · ·

≤ ui(2T, ·; 0,M) ≤ ui(T, ·; 0,M) ≤M

There are αn > 1 such that

α1 > α2 > α3 > · · ·

and

ρ(ui(nT, ·; 0, δφki (0, ·)), ui(nT, ·; 0,M)) = lnαn.

Let

α = lim
n→∞

αn.

Then

1

α
u−(x) ≤ u+(x) ≤ αu−(x)
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and we must have α > 1. Therefore,

inf
n≥1,0≤t≤T,x∈D̄

{ui(t, x; 0, δφki (0, ·)), ui(t, x; 0,M)} > 0

and

inf
n≥1

ρ(ui(nT, ·; 0, δφki (0, ·)), ui(nT, ·; 0,M)) > 0.

By Proposition 5.1 (3), there is δ0 > 0 such that

lnαn+1 ≤ lnαn − δ0

and hence

lnα = lim
n→∞

lnαn = −∞,

which is a contradiction, and therefore

u−(x) ≡ u+(x).

Observe that u+(x) is upper semicontinuous and u−(x) is lower semicontinuous.

Hence

u∗i (·) := u+(·)(= u−(·)) ∈ X++
i

Moreover, by Dini’s Theorem,

lim
n→∞

ui(nT, x; 0,M) = u∗i (x)

uniformly in x ∈ D̄. We then have

ui(T, ·; 0, u∗i ) = lim
n→∞

ui(T, ·; 0, ui(nT, ·; 0,M)) = lim
n→∞

ui((n+ 1)T, ·; 0,M) = u∗i (·).
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This implies that ui(t, x; 0, u∗i ) is a positive time periodic solution, and the existence of time

periodic positive solutions of ( 1.7) is thus proved.

Now suppose that u1(t, x) and u2(t, x) are two time periodic positive solutions of ( 1.7).

Since ρ(u1(t, ·), u2(t, ·)) strictly decreases if u1 6= u2, we must have u1 = u2. This proves the

uniqueness of time periodic positive solutions.

Finally, for any u0 ∈ X+ \ {0}, ui(t, ·;u0) ∈ Int(X+) for t > 0. Take 0 < δ � 1, k � 1,

and M � 1, we have

δφki (0, ·) ≤ u0(·) ≤M.

Then

ui(t, x; 0, δφki (0, ·)) ≤ ui(t, x; 0, u0) ≤ u(t, x; 0,M)

for t ≥ 0. It then follows that

lim
t→∞

(ui(t, x; 0, u0)− u∗i (t, x)) = 0

uniformly in x ∈ D̄. Therefore, the unique time periodic positive solution is asymptotically

stable.
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Chapter 6

Spatial Spreading Speed of Nonlocal KPP Equations in Periodic Media

In this chapter, we investigate the existence and characterization of the spreading speeds

of (2.4) and prove Theorems G and H. The main results of this chapter have been submitted

for publication (see [43]). Throughout this chapter, we assume (H1) and (H2). u(t, x;u0)

denotes the solution of (2.4) with u(0, x;u0) = u0(x). By Theorem E, (2.4) has a unique

positive periodic solution u+(·, ·) ∈ X+
p .

To prove Theorems G and H, we first prove some lemmas.

Consider the space shifted equations of (2.4),

∂u

∂t
=

∫
RN
κ(y − x)u(t, y)dy − u(t, x) + u(t, x)f(t, x+ z, u(t, x)), x ∈ RN , (6.1)

where z ∈ RN . Let u(t, x;u0, z) be the solution of (6.1) with u(0, x;u0, z) = u0(x) for u0 ∈ X.

Lemma 6.1. (1) Let ξ ∈ SN−1, u0 ∈ X̃+ with lim inf
x·ξ→−∞

u0(x) > 0 and lim sup
x·ξ→∞

u0(x) = 0,

and c ∈ R be given. If there is δ0 such that

lim inf
x·ξ≤cnT,n→∞

u(nT, x;u0, z) ≥ δ0 uniformly in z ∈ RN , (6.2)

then for every c
′
< c,

lim inf
x·ξ≤c′ t,t→∞

(u(t, x;u0, z)− u+(t, x+ z)) = 0 uniformly in z ∈ RN .

(2) Let c ∈ R and u0 ∈ X̃ with u0 ≥ 0 be given. If there is δ0 such that

lim inf
|x·ξ|≤cnT0,n→∞

u(nT, x;u0, z) ≥ δ0 uniformly in z ∈ RN , (6.3)
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then for every c
′
< c,

lim sup
|x·ξ|≤c′ t,t→∞

|u(t, x;u0, z)− u+(t, x+ z)| = 0 uniformly in z ∈ RN .

(3) Let c ∈ R and u0 ∈ X̃ with u0 ≥ 0 be given. If there are δ0 and T0 > 0 such that

lim inf
‖x‖≤cnT0,n→∞

u(nT, x;u0, z) ≥ δ0 uniformly in z ∈ RN , (6.4)

then for every c
′
< c,

lim sup
‖x‖≤c′ t,t→∞

|u(t, x;u0, z)− u+(t, x+ z)| = 0 uniformly in z ∈ RN .

Proof. It follows from the arguments of [49, Proposition 4.4].

Lemma 6.2. ∫
‖y−x‖≥B

eµ‖y−x‖m(x; y, dy)→ 0 as B →∞

uniformly for µ in bounded sets and for x ∈ RN .

Proof. For given µ0 > 0 and n ∈ N, let un ∈ X(µ0 + 1) be such that

un(x) =

{
eµ0‖x‖ for ‖x‖ ≥ n

0 for ‖x‖ ≤ n− 1

and

0 ≤ un(x) ≤ eµ0n for ‖x‖ ≤ n.

Then ‖un‖X(µ0+1) → 0 as n→∞. Therefore, ‖Φ̃(T )un‖X(µ0+1) → 0 as n→∞. This implies

that ∫
RN
un(y)m(x; y, dy)→ 0 as n→∞
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uniformly for x in bounded subsets of RN and then

∫
‖y‖≥n

eµ0‖y‖m(x; y, dy)→ 0 as n→∞

uniformly for x in bounded subsets of RN . The later implies that

∫
‖y−x‖≥n

eµ‖y−x‖m(x; y, dy)→ 0 as n→∞

uniformly for |µ| ≤ µ0 and x in bounded subset of RN . By (4.16), for every 1 ≤ i ≤ N ,

∫
‖y−(x+piei)‖≥n

eµ‖y−(x+piei)‖m(x+ piei; y, dy) =

∫
‖y−x‖≥n

eµ‖y−x‖m(x+ piei; y + piei, dy)

=

∫
‖y−x‖≥n

eµ‖y−x‖m(x; y, dy).

We then have ∫
‖y−x‖≥n

eµ‖y−x‖m(x; y, dy)→ 0 as n→∞

uniformly for |µ| ≤ µ0 and x ∈ RN . The lemma now follows.

Without loss of generality, in the rest of this section, we assume that the time period

T = 1.

Lemma 6.3. For given ξ ∈ SN−1, if λ0(ξ, µ, a0) is the principal eigenvalue of −∂t +Kξ,µ −

I + a0(·, ·)I for any µ > 0, then

c∗sup(ξ) ≤ inf
µ>0

λ0(ξ, µ, a0)

µ
. (6.5)

Proof. For given ξ ∈ SN−1, put λ(µ) = λ0(ξ, µ, a0). For any µ > 0, suppose that φ(µ, ·, ·) ∈

X+
p and

[−∂t + (Kξ,µ − I + a0(·, ·)I)]φ(µ, t, x) = λ(µ)φ(µ, t, x).
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Since f(t, x, u) = f(t, x, 0) + fu(t, x, η)u for some 0 ≤ η ≤ u, we have, by assumption (H1),

f(t, x, u) ≤ f(t, x, 0) for u ≥ 0. If u0 ∈ X+ , then

u(t, x;u0, z) ≤ (Φ(t; ξ, 0, a0(·, ·+ z))u0)(x) for x, z ∈ RN . (6.6)

It can easily be verified that

(Φ(n; ξ, 0, a0(·, ·+ z))ũ0)(x) = Me−µ(x·ξ−nc̃)φ(µ, 1, x+ z)
(

= Me−µ(x·ξ−nc̃)φ(µ, 0, x+ z)
)

with ũ0(x) = Me−µx·ξφ(µ, 0, x + z) for c̃ = λ(µ)
µ

and M > 0. For any u0 ∈ X+(ξ), choose

M > 0 large enough such that ũ0 ≥ u0. Then by Propositions 3.6 and 3.8, we have

u(n, x;u0, z) ≤ (Φ(n; ξ, 0, a0(·, ·+ z))u0)(x)

≤ (Φ(n; ξ, 0, a0(·, ·+ z))ũ0)(x)

= Me−µ(x·ξ−nc̃)φ(µ, 0, x+ z).

Hence,

lim sup
x·ξ≥nc,n→∞

u(n, x;u0, z) = 0 for every c > c̃

uniformly in z ∈ R. This together with Lemma 6.1 implies that c∗sup(ξ) ≤ λ(µ)
µ

for any µ > 0

and hence (6.5) holds.

Lemma 6.4. For given ξ ∈ SN−1, if λ0(ξ, µ, a0) is the principal eigenvalue of −∂t +Kξ,µ −

I + a0(·, ·)I for any µ > 0, then

c∗inf(ξ) ≥ inf
µ>0

λ0(ξ, µ, a0)

µ
. (6.7)

Proof. We prove (6.7) by modifying the arguments in [35] and [55].
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Observe that, for every ε0 > 0, there is b0 > 0 such that

f(t, x, u) ≥ f(t, x, 0)− ε0 for 0 ≤ u ≤ b0, x ∈ RN . (6.8)

Hence if u0 ∈ X+ is so small that 0 ≤ u(t, x;u0, z) ≤ b0 for t ∈ [0, 1], x ∈ RN and z ∈ RN ,

then

u(1, x;u0, z) ≥ e−ε0(Φ(1; ξ, 0, a0(·, ·+ z))u0)(x) (6.9)

for x ∈ RN and z ∈ RN .

Let r(µ) be the spectral radius of Φ(1; ξ, µ, 0). Then λ(µ) = ln r(µ) and r(µ) is an eigen-

value of Φ(1; ξ, µ, a0(·, ·)) with a positive eigenfunction φ(µ, x) := φ(µ, 1, x)(= φ(µ, 0, x)).

By Proposition 4.9, for any ε1 > 0, there is µε1 such that

−λ′(µ) < −λ(µ∗(ξ))

µ∗(ξ)
+ ε1 (6.10)

for µε1 < µ < µ∗(ξ). In the following, we fix µ ∈ (µε1 , µ
∗(ξ)). By Proposition 4.9 again, we

can choose ε0 > 0 so small that

λ(µ)− µλ′(µ)− 3ε0 > 0. (6.11)

Let ζ : R→ [0, 1] be a smooth function satisfying that

ζ(s) =

{
1 for |s| ≤ 1

0 for |s| ≥ 2.
(6.12)

By Theorem 4.6, φ(µ, x) is smooth in µ. Let

κ(µ, z) =
φµ(µ, z)

φ(µ, z)
.
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For given γ > 0, B > 0, and z ∈ RN , define

τ(µ, γ, z, B) =
1

γ
tan−1

∫
RN φ(µ, y)e−µ(y−z)·ξ sin γ(−(y − z) · ξ + κ(µ, y))ζ(‖y − z‖/B)m(z; y, dy)∫
RN φ(µ, y)e−µ(y−z)·ξ cos γ(−(y − z) · ξ + κ(µ, y))ζ(‖y − z‖/B)m(z; y, dy)

.

By Lemma 6.2, τ(µ, γ, z, B) is well defined for any B > 0 and 0 < γ � 1, and

lim
γ→0

τ(µ, γ, z, B) =

∫
RN φ(µ, y)e−µ(y−z)·ξ(− (y − z) · ξ + κ(µ, y))ζ(‖y − z‖/B)m(z; y, dy)∫

RN φ(µ, y)e−µ(y−z)·ξζ(‖y − z‖/B)m(z; y, dy)

uniformly in z ∈ RN and B > 0. By Lemma 6.2 again,

lim
B→∞

∫
RN
φ(µ, y)e−µ(y−z)·ξζ(‖y − z‖/B)m(z; y, dy) = r(µ)φ(µ, z) (6.13)

uniformly in z ∈ RN and

limB→∞

[ ∫
RN φ(µ, y)e−µ(y−z)·ξ((y − z) · ξ)ζ(‖y − z‖/B)m(z; y, dy)

+
∫
RN φµ(µ, y)e−µ(y−z)·ξζ(‖y − z‖/B)m(z; y, dy)

]
=
∫
RN φ(µ, y)e−µ(y−z)·ξ(− (y − z) · ξ)m(z; y, dy) +

∫
RN φµ(µ, y)e−µ(y−z)·ξm(z; y, dy)

= r
′
(µ)φ(µ, z) + r(µ)φµ(µ, z) (6.14)

uniformly in z ∈ RN .

By (6.13) and (6.14), we can choose B � 1 and fix it so that

∫
RN
φ(µ, y)e−µ(y−z)·ξζ(‖y − z‖/B)m(z; y, dy) ≥ eλ(µ)−ε0φ(µ, z), z ∈ RN , (6.15)

γ(B + |τ(µ, γ, z, B)|+ |κ(µ, z)|) < π, z ∈ RN , 0 < γ � 1,

−κ(µ, z) + τ(µ, γ, z, B) < λ
′
(µ)− ε0

µ
, z ∈ RN , 0 < γ � 1, (6.16)

and

κ(µ, z)− τ(µ, γ, z, B) < −λ′(µ) + ε1, z ∈ RN , 0 < γ � 1. (6.17)
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For given ε2 > 0 and γ > 0, define

v(s, z) =

{
ε2φ(µ, z)e−µs sin γ(s− κ(µ, z)), 0 ≤ s− κ(µ, z) ≤ π

γ

0, otherwise.
(6.18)

Let

v∗(x; s, z) = v(x · ξ + s− κ(µ, z) + τ(µ, γ, z, B), x+ z).

Choose ε2 > 0 so small that

0 ≤ u(t, x; v∗(·; s, z), z) ≤ b0 for t ∈ [0, 1], x, z ∈ RN .

Let

η(γ, µ, z, B) = −κ(µ, z) + τ(µ, γ, z, B).

Then for 0 ≤ s− κ(µ, z) ≤ π
γ
, we have

u(1, 0; v∗(·; s, z), z)

≥ e−ε0Φ(1; ξ, 0, a0(·, ·+ z))v∗(·; s, z)

≥ ε2e
−ε0
∫
RN

[
φ(µ, y)e−µ[(y−z)·ξ+s+η(γ,µ,z.B)] · sin γ[(y − z) · ξ + s+ η(γ, µ, z, B)− κ(µ, y)]

·ζ(‖y − z‖/B)
]
m(z; y, dy)

= e−ε0v(s, z)e−µη(γ,µ,z,B) sec γτ(µ,γ,z,B)
φ(µ,z)

∫
RN

[
φ(µ, y)e−µ(y−z)·ξ · cos γ(−(y − z) · ξ + κ(µ, y))

·ζ(‖y − z‖/B)
]
m(z; y, dy).

Observe that

limγ→0 e
−ε0e−µη(γ,µ,z,B) sec γτ(µ,γ,z,B)

φ(µ,z)

∫
RN

[
φ(µ, y)e−µ(y−z)·ξ · cos γ(−(y − z) · ξ + κ(µ, y))

·ζ(‖y − z‖/B)
]
m(z; y, dy)

≥ e−ε0e−µλ
′
(µ)−ε0eλ(µ)−ε0 by (6.15), (6.16)
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= eλ(µ)−µλ′ (µ)−3ε0

> 1 (by (6.11)).

It then follows that for 0 ≤ s− κ(µ, z) ≤ π
γ
,

u(1, 0; v∗(·; s, z), z) ≥ v(s, z) = v∗((κ(µ, z)− τ(µ, γ, z, B))ξ; s, (−k(µ, z)+ τ(µ, γ, z, B))ξ+z).

Clearly, the above equality holds for all s ∈ R (since v(s, z) = 0 for s ≤ κ(µ, z) or s ≥

κ(µ, z) + π
γ
).

Let s̄(x) be such that v(s̄(x), x) = maxs∈R v(s, x). Let

v̄(s, x) =

{
v(s̄(x), x), s ≤ s̄(x)− π

γ

v(s+ π
γ
, x), s ≥ s̄(x)− π

γ
.

Set

v̄∗(x; s, z) = v̄(x · ξ + s− κ(µ, z) + τ(µ, γ, z, B), x+ z).

We then have

u(1, 0; v̄∗(·; s, z), z) ≥ v̄(s, z) = v̄∗((κ(µ, z)− τ(µ, γ, z, B))ξ; s, (−κ(µ, z) + τ(µ, γ, z, B))ξ+ z)

for s ∈ R and z ∈ RN .

Let

v0(x; z) = v̄(x · ξ, x+ z).

Note that v̄(s, x) is non-increasing in s. Hence we have

u(1, x; v0(·; z), z) = u(1, 0; v0(·+ x; z), x+ z)

= u(1, 0; v̄∗(·;x · ξ + κ(µ, x+ z)− τ(γ, x+ z), x+ z), x+ z)

≥ v̄(x · ξ + κ(µ, x+ z)− τ(µ, γ, x+ z,B), x+ z)
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≥ v̄(x · ξ − λ′(µ) + ε1, x+ z) (by (6.17))

≥ v̄
(
x · ξ − λ(µ∗(ξ))

µ∗(ξ)
+ 2ε1, x+ z

)
(by (6.10))

= v0

(
x− [

λ(µ∗(ξ))

µ∗(ξ)
− 2ε1]ξ, [

λ(µ∗(ξ))

µ∗(ξ)
− 2ε1]ξ + z

)

for z ∈ RN . Let c̃∗(ξ) = λ(µ∗(ξ))
µ∗(ξ)

− 2ε1. Then

u(1, x; v0(·, z), z) ≥ v0(x− c̃∗(ξ)ξ, c̃∗(ξ)ξ + z)

for all z ∈ RN . We also have

u(2, x; v0(·, z), z) ≥ u(1, x; v0(· − c̃∗(ξ)ξ, c̃∗(ξ)ξ + z), z)

= u(1, x− c̃∗(ξ)ξ; v0(·, c̃∗(ξ)ξ + z), c̃∗(ξ)ξ + z)

≥ v0(x− 2c̃∗(ξ)ξ, 2c̃∗(ξ) + z)

for all z ∈ RN . By induction, we have

u(n, x; v0(·, z), z) ≥ v0(x− nc̃∗(ξ)ξ, nc̃∗(ξ) + z)

for n ≥ 1 and z ∈ RN . This together with Lemma 6.1 implies that

c∗inf(ξ) ≥ c̃∗(ξ) =
λ(µ∗(ξ))

µ∗(ξ)
− 2ε1.

Since ε1 is arbitrary, (6.7) holds.

Proof of Theorem G. Fix ξ ∈ SN−1. Put λ(µ) = λ0(ξ, µ, a0), where a0(t, x) = f(t, x, 0). By

Proposition 4.7, there is µ∗ = µ∗(ξ) ∈ (0,∞) such that

inf
µ>0

λ(µ)

µ
=
λ(µ∗)

µ∗
.
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It is easy to see that c∗(ξ) exists and c∗(ξ) = λ(µ∗)
µ∗

if and only if c∗inf(ξ) = c∗sup(ξ) = λ(µ∗)
µ∗

.

If λ0(ξ, µ, a0) is the principal eigenvalue of −∂t + Kξ,µ − I + a0(·, ·)I for all µ, then by

Lemmas 6.3 and 6.4, we have c∗(ξ) exists and c∗(ξ) = infµ>0
λ(µ)
µ

.

In general, let an(·, ·) ∈ CN(R × RN ,R) ∩ Xp be such that an satisfies the vanishing

condition in Proposition 4.4,

an ≥ a0 for n ≥ 1 and ‖an − a‖Xp → 0 as n→∞.

Then,

λ0(ξ, µ, an)→ λ0(ξ, µ, a0) as n→∞.

Note that for 0 < ε� 1,

uf(t, x, u) ≤ u(an(t, x)− εu) for x ∈ RN , u ≥ 0.

By Lemma 6.3 and Proposition 3.8, for any u0 ∈ X+(ξ) and c > infµ>0
λ0(ξ,µ,an)

µ
,

lim
x·ξ≥ct,t→∞

u(t, x;u0) ≤ lim
x·ξ≥ct,t→∞

un(t, x;u0) = 0,

where un(t, x;u0) is the solution of (6.1) with f(t, x, u) being replaced by fn(t, x, u) =

an(t, x)− εu. This implies that

c∗sup(ξ) ≤ λ0(ξ, µ, an)

µ
∀ µ > 0, n ≥ 1

and then

c∗sup(ξ) ≤ λ0(ξ, µ, a0)

µ
∀µ > 0.

Therefore,

c∗sup(ξ) ≤ inf
µ>0

λ0(ξ, µ, a0)

µ
. (6.19)
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For any ε > 0, there is δ0 > 0 such that

f(t, x, u) ≥ f(t, x, 0)− ε for t ∈ R, x ∈ RN , 0 < u < δ0.

Let an(·, ·) ∈ CN(R×RN)∩Xp be such that an satisfies the vanishing condition in Proposition

4.4 and

f(·, ·, 0)− 2ε ≤ an(·, ·) ≤ f(·, ·, 0)− ε ∀n ≥ 1.

Note that

uf(t, x, u) ≥ u(an(t, x)−Mu) ∀ 0 ≤ u ≤ δ0, M > 0.

Choose M ≥ max
t∈R,x∈RN an(t,x)

δ0
. By Lemma 6.4 and Proposition 3.8, for any u0 ∈ X+(ξ) with

supx∈RN u0(x) ≤ δ0,

lim inf
x·ξ≤ct,t→∞

u(t, x;u0, z) ≥ lim inf
x·ξ≤ct,t→∞

un(t, x;u0, z) > 0

for any c < infµ>0
λ0(ξ,µ,an)

µ
, where un(t, x;u0, z) is the solution of (6.1) with f(t, x, u) being

replaced by fn(t, x, u) = an(t, x)−Mu. This implies that

c∗inf(ξ) ≥ inf
µ>0

λ0(ξ, µ, an)

µ
.

Thus,

c∗inf(ξ) ≥ inf
µ>0

λ0(ξ, µ, a0)− 2ε

µ
.

Letting ε→ 0, we have

c∗inf(ξ) ≥ inf
µ>0

λ0(ξ, µ, a0)

µ
. (6.20)

By (6.19) and (6.20),

c∗sup(ξ) = c∗inf(ξ) = inf
µ>0

λ0(ξ, µ, a0)

µ
.
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Hence c∗(ξ) exists and

c∗(ξ) = inf
µ>0

λ0(ξ, µ, a0)

µ
.

Proof Theorem H. It can be proved by the arguments similar in [51, Theorem E].
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Chapter 7

Traveling Wave Solutions of Nonlocal KPP Equations in Periodic Media

In this chapter, we explore the existence and uniqueness of traveling wave solutions of

(2.4) connecting 0 and u+ and prove Theorem I. The main results of this chapter have been

submitted for publication (see [43]). Throughout this chapter, we assume (H1) and (H2).

7.1 Sub- and super-solutions

In this section, we construct some sub- and super-solutions of (2.4) to be used in the

proof of Theorem I. Throughout this subsection, we assume (H1)-(H3) and put a0(t, x) =

f(t, x, 0).

For given ξ ∈ SN−1, let µ∗(ξ) be such that

c∗(ξ) =
λ0(ξ, µ∗(ξ), a0)

µ∗(ξ)
.

Fix ξ ∈ SN−1 and c > c∗(ξ). Let 0 < µ < µ1 < min{2µ, µ∗(ξ)} be such that c = λ0(ξ,µ,a0)
µ

and λ0(ξ,µ,a0)
µ

> λ0(ξ,µ1,a0)
µ1

> c∗(ξ). Put

φ(·, ·) = φ(µ, ·, ·), φ1(·, ·) = φ(µ1, ·, ·).

If no confusion occurs, we may write λ0(µ, ξ, a0) as λ(µ).

For given d1 > 0, let

v(t, x; z, d1) = e−µ(x·ξ−ct)φ(t, x+ z)− d1e
−µ1(x·ξ−ct)φ1(t, x+ z)

and

u(t, x; z, d1) = max{0, v(t, x; z, d1)}. (7.1)
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We may write u(t, x; z) for u(t, x; z, d1) for fixed d1 > 0 if no confusion occurs.

Proposition 7.1. For any z ∈ RN , u(t, x; z, d1) is a sub-solution of (6.1) provided that d1

is sufficiently large.

Proof. It follows from the similar arguments as in [50, Propsotion 3.2].

For given d2 ≥ 0, let

v̄(t, x; z, d2) = e−µ(x·ξ−ct)φ(t, x+ z) + d2e
−µ1(x·ξ−ct)φ1(t, x+ z)

and

ū(t, x; z, d2) = min{v̄(t, x; z, d2), u+(t, x+ z)}. (7.2)

We may write v̄(t, x; z) and ū(t, x; z) for v̄(t, x; z, d2) and ū(t, x; z, d2), respectively, if no

confusion occurs.

Proposition 7.2. For any d2 ≥ 0 and z ∈ RN , ū(t, x; z, d2) is a super-solution of (6.1).

Proof. It follows from the similar arguments as in [50, Proposition 3.5].

Proposition 7.3. For u0(·; z) ∈ X+ with u0(x; z) ≤ u+(0, x+z), if limx·ξ→∞
u0(x;z)

e−µx·ξφ(0,x+z)
=

1 uniformly in z ∈ RN and infx·ξ≤O(1),z∈RN u0(x; z) > 0, then

lim
x·ξ→∞

u(t, x+ ctξ;u0(·; z), z)

e−µx·ξφ(t, x+ ctξ + z)
= 1 (7.3)

uniformly in t ≥ 0 and z ∈ RN , and

inf
x·ξ≤O(1),t≥0,z∈RN

u(t, x+ ctξ;u0(·; z), z) > 0. (7.4)

Proof. Assume that u0 ∈ X+ satisfies the conditions in the proposition. We first prove (7.3).

Observe that there are d1, d2 > 0 such that

u(0, x, ; z, d1) ≤ u0(x; z) ≤ ū(0, x; z, d2) ∀ z ∈ RN .
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By Propositions 7.1 and 7.2,

u(t, x; z, d1) ≤ u(t, x;u0(·; z), z) ≤ ū(t, x; z, d2). (7.5)

This implies that

lim
x·ξ→∞

u(t, x+ ctξ;u0(·; z), z)

e−µx·ξφ(t, x+ ctξ + z)
= 1

uniformly in t ≥ 0 and z ∈ RN , i.e., (7.3) holds.

Next we prove (7.4). Without loss of generality, we may assume that u0(x) ≤ u0(x−piei)

for any ei with ei · ξ > 0. By (7.5), there are M− < M+ with M+−M− ≥ p1 + p2 + · · ·+ pN

and σ > 0 such that

u(t, x+ ctξ;u0(·; z), z) ≥ σ ∀ t ≥ 0, M− ≤ x · ξ ≤M+. (7.6)

Then for any ei with ei · ξ > 0,

piei · ξ ≤M+ −M−

and

u0(x) ≤ u0(x− piei).

Observe that there is ei0 such that ei0 · ξ > 0. Then by Proposition 3.8, for any k ∈ N,

u(t, x+ ctξ − kpi0ei0 ;u0, z) = u(t, x+ ctξ;u0(· − kpi0ei0), z − kpi0ei0)

= u(t, x+ ctξ;u0(· − kpi0ei0), z)

≥ u(t, x+ ctξ;u0(·), z).

This together with (7.6) implies that

u(t, x+ ctξ;u0(·; z), z) ≥ σ ∀ t ≥ 0, M− − kp̂i0 ≤ x · ξ ≤M+ − kp̂i0 , z ∈ RN , (7.7)
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where p̂i0 = pi0ei0 · ξ(> 0). (7.6) and (7.7) together with p̂i0 < M+ −M− imply that

u(t, x+ ctξ;u0(·; z), z) ≥ σ ∀ t ≥ 0, x · ξ ≤M+, z ∈ RN .

(7.4) then follows.

7.2 Traveling wave solutions

In this section, we investigate the existence of traveling wave solutions of (2.4) and prove

Theorem I. Throughout this section, we assume (H1)-(H3).

Lemma 7.4. Let

un(x, z) = u(nT, x+ cnTξ; ū(0, ·; z − cnTξ), z − cnTξ).

Then

un(x, z) = u(nT, x; ū(0, ·+ cnTξ; z − cnTξ), z)

and un(x, z) is non-increasing in n.

Proof. First, by direct calculation,

un(x, z) = u(nT, x; ū(0, ·+ cnTξ; z − cnTξ), z).

Next, observe that

ū(T, x+ cTξ; z − cnTξ) = ū(0, x; z − c(n− 1)Tξ) ∀ n ≥ 1.

Hence

un(x, z)
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= u(nT, x+ cnTξ; ū(0, ·; z − cnTξ), z − cnTξ)

= u((n− 1)T, x+ cnTξ;u(T, ·; ū(0, ·; z − cnTξ), z − cnTξ), z − cnTξ)

= u((n− 1)T, x+ c(n− 1)Tξ;u(T, ·+ cTξ; ū(0, ·; z − cnTξ), z − cnTξ); z − c(n− 1)Tξ)

≤ u((n− 1)T, x+ c(n− 1)Tξ; ū(T, ·+ cTξ; z − cnTξ); z − c(n− 1)Tξ) (byLemma6.4)

= u((n− 1)T, x+ c(n− 1)Tξ; ū(0, ·; z − c(n− 1)Tξ), z − c(n− 1)Tξ)

= un−1(x, z).

The proposition is thus proved.

Let

Φ0(x, z) = lim
n→∞

un(x, z).

Then Φ0(x, z) is upper semi-continuous, 0 ≤ Φ(x, z) ≤ u+(0, x+ z), and hence Φ(·, z) ∈ X̃.

The following lemma follows easily.

Lemma 7.5. For each z ∈ RN , u(t, x) = u(t, x; Φ0(·, z), z) are entire solutions of (6.1).

Proof of Theorem I. Let

Φ(x, t, z + ctξ) = u(t, x+ ctξ; Φ0(·, z), z).

It suffices to prove that Φ(x, t, z) generates a traveling wave solution of (2.4).

First of all, u(t, x; Φ(·, 0, z), z) = Φ(x− ctξ, t, z+ ctξ) follows directly from the definition

of Φ(x, t, z).

Next, note that

u(t, x; z) = e−µ(x·ξ−ct)φ(t, x+ z)− d1e
−µ1(x·ξ−ct)φ1(x+ z)

≤ u(t, x; Φ(·, 0, z), z)

≤ ū(t, x; z)

= e−µ(x·ξ−ct)φ(t, x+ z) + d2e
−µ1(x·ξ−ct)φ1(x+ z) (7.8)
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for t ∈ R and x, z ∈ RN . Note also that

Φ(x, t, z)

= u
(
t, x+ ctξ; Φ(0, ·, z − ctξ), z − ctξ

)
= lim

n→∞
u
(
t, x+ ctξ;un(·, z − ctξ), z − ctξ

)
= lim

n→∞
u
(
t, x+ ctξ;u(nT, ·+ cnTξ; ū(0, ·; z − cnTξ − ctξ), z − cnTξ − ctξ), z − ctξ

)
= lim

n→∞
u
(
t, x;u(nT, ·+ ctξ; ū(0, ·+ cnTξ; z − cnTξ − ctξ), z − ctξ), z

)
= lim

n→∞
u
(
t, x;u(nT, ·; ū(0, ·+ cnTξ + ctξ; z − cnTξ − ctξ), z), z

)
= lim

n→∞
u
(
t+ nT, x; ū(0, ·+ cnTξ + ctξ; z − cnTξ − ctξ), z

)
= lim

n→∞
u
(
t+ nT, x+ cnTξ + ctξ; ū(0, ·; z − cnTξ − ctξ), z − cnTξ − ctξ

)
. (7.9)

By (7.8),

lim
x·ξ−ct→∞

Φ(x− ctξ, t, z + ctξ)

e−µ(x·ξ−ct)φ(t, x+ z)
= 1,

which is equivalent to

lim
x·ξ→∞

Φ(x, t, z)

e−µx·ξφ(t, x+ z)
= 1, (7.10)

uniformly in t ∈ R and z ∈ RN .

By (7.9) and Proposition 7.3, there are σ > 0 and M ∈ R such that

u
(
t+ nT, x+ cnTξ + ctξ; ū(0, ·; z − cnTξ − ctξ), z − cnTξ − ctξ

)
≥ σ ∀n� 1, x · ξ ≤M.

It then follows from Lemma 6.2 that

lim
x·ξ→−∞

(Φ(t, x, z)− u+(t, x+ z) = 0 (7.11)

uniformly in t ∈ R and z ∈ RN .
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By (7.9), we have

Φ(x, T, z)

= lim
n→∞

u
(

(n+ 1)T, x+ c(n+ 1)Tξ; ū(0, ·; z − c(n+ 1)Tξ), z − c(n+ 1)Tξ
)

= lim
n→∞

u
(
nT, x+ cnTξ; ū(0, ·; z − cnTξ), z − cnTξ

)
= Φ(x, 0, z) (7.12)

and

Φ(x, t, z + piei)

= lim
n→∞

u
(
t+ nT, x+ cnTξ + ctξ; ū(0, ·; z + piei − cnTξ − ctξ), z + piei − cnTξ − ctξ

)
= lim

n→∞
u
(
t+ nT, x+ cnTξ + ctξ; ū(0, ·; z − cnTξ − ctξ), z − cnTξ − ctξ

)
= Φ(x, t, z). (7.13)

Moreover, for any x, x
′ ∈ RN with x · ξ = x

′ · ξ,

Φ(x, t, z − x)

= lim
n→∞

u
(
t+ nT, x+ cnTξ + ctξ; ū(0, ·; z − x− cnTξ − ctξ), z − x− cnTξ − ctξ

)
= lim

n→∞
u
(
t+ nT, cnTξ + ctξ; ū(0, ·+ x; z − x− cnTξ − ctξ), z − cnTξ − ctξ

)
= lim

n→∞
u
(
t+ nT, cnTξ + ctξ; ū(0, ·+ x

′
; z − x′ − cnTξ − ctξ), z − cnTξ − ctξ

)
= lim

n→∞
u
(
t+ nT, x

′
+ cnTξ + ctξ; ū(0, ·; z − x′ − cnTξ − ctξ), z − x′ − cnTξ − ctξ

)
= Φ(x

′
, t, z − x′). (7.14)

By (7.9)-(7.14), Φ(x, t, z) generates a traveling wave solution of (2.4) in the direction of

ξ with speed c.
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