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Abstract 

Algorithm animations and high level data structure visualizations are not widely used, in part 

because producing them is difficult and time consuming. Algorithm animation and data structure 

visualization systems attempt to minimize this effort, but none has made the process as simple as 

it could be. The purpose of the system described in this work, the jGRASP Visualization System, 

is to allow the creation and use of dynamic data structure visualizations from working source 

code with minimal effort. Ideally, the only work required to create an animated visualization 

should be selecting values from a program running in debug mode in an IDE, selecting the way 

each value will be displayed from a list of available choices, and physically arranging the display 

elements. This has been achieved for arbitrary implementations of common data structures in 

Java. 

This dissertation begins by discussing existing work on the usefulness of algorithm animation 

and data structure visualization for algorithm and code understanding, and existing work on 

systems with similar organization, features, and construction to the one described here. The 

jGRASP Visualization System is described in detail from the user's perspective. Implementation 

details are discussed. Previously published results on the effectiveness of these visualizations 

when applied to arbitrary data structure code, and on code understanding experiments performed 

with the visualizations are presented. Finally, visualization feature usage data collected from 

users of the system is analyzed and discussed. 
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1 Introduction 

Algorithm animation is the process of abstracting a program's data, operations, and 

semantics, and creating dynamic graphical views of those abstractions [1]. By contrast, data 

structure visualization systems produce visualizations based only on runtime data structure state 

or state history and do not exhibit algorithm semantics that are not encoded in that state or state 

history. Thus, the automation of data structure visualization tends to be more straightforward, 

and algorithm animation systems usually require some degree of scripting or other manual 

configuration for each animation. The purpose of an algorithm animation is most often to aid in 

the understanding of an algorithm and the data structures used to implement it, and sometimes 

also to aid in the understanding of source code that implements the algorithm. Data structure 

visualizations can also be used to aid algorithm and data structure understanding. The higher 

potential for automation generally makes them better suited than algorithm animations for aiding 

in code understanding during software development and debugging, code review, and reverse 

engineering of software. For code understanding purposes, detailed data-structure-specific 

graphical visualizations provided by a data structure visualization system are potentially superior 

to text representations or the straightforward generic graphical representations provided by a 

typical debugger, and dynamic visualizations that show smooth transitions from state to state are 

potentially superior to ones that only show static states in sequence. 

Algorithm animations and high level data structure visualizations are not widely used, in part 

because producing them is difficult and time consuming. Algorithm animation and data structure 
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visualization systems attempt to minimize this effort, but none has made the process as simple as 

it could be. The purpose of the system described in this work, the jGRASP Visualization System, 

is to allow the creation and use of dynamic data structure visualizations from working source 

code with minimal effort. Ideally, the only work required to create a dynamic visualization 

should be selecting values from a program running in debug mode in an IDE, selecting the way 

each value will be displayed from a list of available choices, and physically arranging the display 

elements if it is desirable to view multiple values in a single display. Achieving this goal requires 

several key elements: a comprehensive set of visualizations for common data structures and 

other program values, animation control in the IDE's debugger (automatic repeated stepping with 

an adjustable delay between steps, etc.), automatic analysis of runtime elements to detect known 

data structures and render them using the visualizations, and a way to combine and arrange 

visualizations for multiple data structures on a single display and save the results for later use. 

All of these have been implemented, and are integrated into the jGRASP IDE. No other 

algorithm animation or data structure visualization system combines all of these elements, and 

none provides automatic detection and rendering of high level data structures in arbitrary code. 

Although the system was designed to be independent of the target programming language, 

currently it operates only on Java code. For simplicity and to avoid overly general language, it 

will be described here using Java terminology where convenient. Any description of language-

specific source code elements should be assumed to be referring to Java unless otherwise 

specified. 
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2 Literature Review 

Three categories of literature are reviewed here. First, studies of the usefulness of data 

structure visualizations for code understanding are examined. Some of these studies investigate 

visualizations in isolation, while others do so in the context of an algorithm animation or data 

structure visualization system or tool. Second, algorithm animation and data structure 

visualization systems and tools are described, with a focus on those that share functionality or 

implementation techniques with the system described in this work. Finally, the lack of literature 

related to identifying high level data structures from type information alone is noted. 

2.1 Usefulness of Visualizations in Algorithm and Code Understanding 

In the first formal study of the effectiveness of algorithm animation for algorithm 

understanding, published in 1993, Stasko et al. [2] used XTango [3] to animate various 

operations on a binary tree representation of a pairing heap. The animations used were fairly 

advanced, providing smooth transitions between states, and were not significantly different in 

form from those provided by current algorithm animation systems. Two groups of computer 

science graduate students were compared, with ten students in each group. The first group was 

given only a textual description of the data structure and operations, while the second was also 

given access to the animation system and allowed to view animations of the different operations 

in whatever order and as many times as they felt necessary. Both groups were given 45 minutes 

of learning time, followed by a 45 minute exam testing their understanding of the algorithms. 

The pairing heap was a fairly new data structure at the time and is still a fairly obscure one, so 
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the subjects were unlikely to have prior exposure to it. Results showed a small but not 

statistically significant edge for the visualization group. In addition to noting some specific 

problems with the study, such as a mismatch between the focus of the learning materials and 

testing for both groups, the authors suggest that a more general reason for the lack of positive 

results may be that the subjects did not have an adequate mental mapping between the abstract 

representation of the data structure and algorithms and their visual representations. They 

hypothesize that the animations used may therefore be more useful to someone who already has 

a basic understanding of the algorithms. 

With the goal of more closely modeling a typical learning environment, Kehoe et al. [4] 

conducted a study in which subjects were given unlimited study time and test time. Two groups 

were provided with study materials and test questions related to the binomial heap data structure. 

A previous algorithm animation study by Byrne et al. in 1999 [5] using the same data structure 

and a more traditional learning and testing environment did not find a statistically significant 

learning benefit for the study group. In this study, the materials were available during both study 

time and test time. One group had access to animations implemented using POLKA [6] which 

were hyperlinked at appropriate places in explanatory HTML pages. The animations allowed the 

participants to step forward and backward, and they were able to view the text and work with the 

animations simultaneously. The control group was provided with still images that showed key 

points in the algorithms and that were similar in form to the animation display. In the 23 question 

test, the study group answered 20.5 questions correctly on average compared to 16 for the 

control group. Results were statistically significant. The study group performed particularly well 

on questions that required them to perform operations on binomial heaps, as opposed to 

questions related to mathematical properties, time complexity, and structure definitions. The 
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study group also spent more time than the control group on preparation before the test and in 

reviewing the study materials during testing. Subjects in this study were also observed and asked 

to comment during the study and interviewed afterward. The authors found that the study group 

subjects were more relaxed and seemed to enjoy the process much more than the control group 

subjects. The authors suggest that in addition to improving understanding, algorithm animations 

can improve motivation by making algorithms less intimidating. 

A study by the jGRASP group [7] [8] using an earlier version of the data structure 

visualizations described in this work was targeted primarily at code understanding with a small 

aspect of algorithm and data structure understanding. This is described more fully below in 

section 6.2. Subjects were asked to implement methods for a linked list in one experiment and to 

find and correct errors in a linked list in a second experiment. A third and forth experiment 

required the same tasks for binary trees. The subjects presumably already had a firm 

understanding of the data structures and algorithms involved. The test group members were 

allowed to use visualizations and the control group members were prevented from doing so. For 

all four experiments, the test group performed significantly better quantitatively, and differences 

between groups were statistically significant. A fifth experiment used binary heap data 

structures, for which the subjects were unfamiliar with implementation, and a sixth used linked 

priority queues, for which the subjects were unfamiliar with both implementation and concept. 

Results for these two experiments were also positive. 

In addition to the Kehoe et al. [4] study described above, other studies have found through 

formal or informal surveys that the use of algorithm animation or data structure visualizations for 

algorithm or code understanding resulted in improved learning attitudes and motivation. This 

may not always translate into improved understanding in the short term, but over the long term 

5 
 



learning should be improved and more students should be retained if they feel that the process is 

less taxing and more enjoyable. Stasko [9] conducted a survey of students who were required to 

construct algorithm animations using Samba during an algorithms course. The students largely 

reported that the assignments were fun and useful for algorithm understanding. A study by Lauer 

[10] found that students' opinions of the usefulness of visualizations created using the MA&DA 

framework [11] were very positive. Rößling et al. [12] [13] found that the use of the ANIMAL 

algorithm animation system in introductory programming course lectures was motivating to the 

students. In a study by Urquiza-Fuentes and Velázquez-Iturbide [14] in which subjects created or 

viewed WinHIPE animations, results of a formal survey before testing showed that all students 

believed the animations would help them in understanding algorithms, and results of a survey 

after testing showed that all subjects believed the animations had helped. A formal survey of CS2 

students using an early version of the jGRASP Visualization System [15] found that students 

believed that the visualizations were helping them to understand data structures and algorithms. 

In a 2002 meta-study [16], Hundhausen et al. examined 24 experimental studies of algorithm 

visualization effectiveness. Eleven were found to have positive and statistically significant 

results, ten to have non-significant results, two to have positive results that could be due to 

confounding factors, and one to have significant negative results. Some later studies have shown 

positive results. Hübscher-Younger and Narayanan [17] found that static or dynamic explanatory 

visualizations created by other students had a positive and statistically significant effect on 

student understanding of Fibonacci, exponentiation, and binary tree insertion algorithms. Buchanan 

and Laviola [18] found that students exposed to lectures using CSTutor, a data structure visualization 

and visual creation system, performed better on a final exam than students taught using traditional 

lectures, though differences in other exam and lab quiz scores were not statistically significant, and in 
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one lab quiz the control group performed better to a statistically significant degree (indicating 

perhaps that use of the tool may have taken up too much lecture time). A second experiment added a 

third group whose members used the tool to follow along during lectures. There were no statistically 

significant differences in exam and quiz grades between the two test groups, but both groups scored 

better than the control on one exam/quiz to a statistically significant degree. 

Studies comparing the efficacy of creating visualizations to simply viewing them also show 

mixed results. Hundhausen et al. [16] suggest that higher levels of engagement are more 

important than the nature or quality of visualizations. A study by Lauer [10] tested student 

performance on questions and exercises involving a Fibonacci heap for three groups that viewed, 

changed, or constructed visualizations using the MA&DA framework [11]. No significant 

differences between groups were found. A study by Urquiza-Fuentes and Velázquez-Iturbide 

[14] found statistically significant differences in the understanding of a breadth-first tree 

traversal algorithm for a visualization creation group versus a viewing group using WinHIPE. In 

the Hübscher-Younger and Narayanan study [17] cited above, it was found that creating 

visualizations improved student learning to a greater degree than using visualizations created by 

others for many of the tests used. Positive results were also more strongly correlated with the 

pleasurability of the visualizations than with how well they represented the algorithms (as scored by 

the students).  

2.2 Algorithm Animation and Data Structure Visualization Systems 

Systems in which visualizations are constructed from notifications of interesting events 

inserted into the code through method calls, method call mappings, or textual annotations, are 

generally referred to as algorithm animations systems. Events in these systems are focused on the 

algorithm or the visual representation of the algorithm and data structure state. Systems in which 
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visualizations are constructed from debugger or interpreter information about the runtime state of 

data structures are called data structure visualization systems. Other systems offer a hybrid 

approach in which both runtime state information and event notifications are used. 

Many of the systems described below are no longer available or no longer used or updated, 

but for consistency they will all be described in the present tense.  

BALSA [19] [20] is an early and influential algorithm animation system. Visualizations 

called "views" are created using display primitives. Changes to the views are signaled by adding 

interesting event notification calls directly to the code. When running an animation, these calls 

can be hidden in the displayed source code. An interpreter system operates on the sequence of 

interesting events generated during a run of the program. The system can be used in interactive 

or scripted mode. In interactive mode, the user can run the algorithm in an interpreter, with 

debugger-like control over execution (stepping, breakpoints, etc.). Reverse execution is also 

supported if supported by the views to be used. Views can be opened for data structures, and 

view windows arranged on "algorithm windows". Window configurations can be saved and 

restored. Scripts are created by recording an interactive mode session and saving it to file for 

later playback. Some script-specific actions can also be specified during an interactive mode 

session, such as waiting for the user to press a button to proceed. 

The Tango [1] algorithm animation system decouples the running program from the 

animation system and provides a graphical library for visualizations including support for 

animated transitions (moving graphical objects, etc.). Interesting event notifications can be 

supplied through procedure calls inserted into the code, or through an external annotation 

system. Inter-process communication is used to convey event notifications to the animation 
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system, which runs in a separate process from the code. Because of this decoupling and because 

interesting event notifications are typically focused on visualization actions or conceptual 

algorithm actions, the system is applicable to source code in any language and built under any 

compilation system. Two-way communication is also provided, so that user manipulation of 

visualization elements can influence program flow. Tango's successor, XTango [21] adds higher-

level graphics and animation to the animation library, while POLKA [6] adds support for 

concurrency in order to allow the visualization of parallel algorithms. 

In CATAI [22], C++ source code is modified by adding directives at places in the code 

where a data structure is modified. These directives map changes in the structure to changes in 

its animated representation. The mapping is two-way, enabling interactive animations where 

changes made to the visualizations are mirrored in the running code. Thus, this is essentially a 

layer on top of an interesting event notification system that decreases the work needed for two-

way interaction. Other directives may be added to algorithmic code to change the animated 

representation in illustrative ways, such as changing a node color to indicate that it is the current 

node in an active search. A library of visualizations is provided for common textbook data 

structures and algorithms, and custom visualizations may be added. 

DDD [23] [24] provides straightforward visualizations from code during debugging, for 

various target languages and target debuggers. These show aggregate type instances as nodes 

displaying the instance's sub-elements, with references as edges between them. Thus, they are 

not data structure specific, but can be used to display linked data structures. Figure 1 shows a 

DDD view of a C++ linked list. Visualizations can be added to a display window using a context 

menu on variables in the source code or by double clicking on them, and dragged to arrange 

them on the display window. They can be animated by stepping through the code in the 
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debugger, though there are no smooth intra-step transitions. Field or array element values can be 

dragged out into their own nodes in order to expand the display of a data structure node-by-node. 

Earlier systems that display aggregate type instances as nodes with sub-element information and 

references between them as links, and that create these visualizations automatically from code 

running in debug or interpreted mode, include VIPS [25] [26] which also displays linked 

structures in a more compact node-and-edge diagram, and GDBX [27]. 

 

Figure 1. DDD view of a C++ linked list. 

The Online Python Visualizer [28] is an online tutoring system with a visualization tool that 

produces diagrams similar to those of DDD for Python code, but in a more automated fashion. 

The current call stack frames are always shown graphically as elements containing all local 

variables and method arguments. For each local variable or method argument that is a composite 

type, links to a node representing that value are shown, as are reference links between instances. 

Class field values that are class instances, however, are always shown embedded in the class 

instance node unless there is another reference to them, so that linked structures implemented 

using classes are not displayed in the traditional way as nodes and links at all times, but instead 

are often shown recursively embedded within a single node. Linked structures implemented 

using Python lists or dicts are always displayed as separate nodes with reference links by default. 

The only controls are forward and backward stepping, and home and end functions. All source 

code must be pasted into a single window, so this is intended to be used for small examples. The 

line of code that is about to be executed is displayed, but there are no additional debugger 

capabilities. Displayed elements cannot be manually resized or arranged. Figure 2 shows a 
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visualization of a class-based linked list using this tool, as a node is being inserted. Node 

displays elements are separated because of the two references to the previous head node that 

exist. 

 

Figure 2. Online Python Visualizer view of a class-based linked list. 

Incense [29] is an early data structure display system that provides a small number of 

visualizations for the display of code-level structures in the Mesa programming language. It also 

provides a library of display primitives and extendable prototype visualizations that can be used 

to display high level data structures. Visualizations are generated automatically from a program 

running in debug mode, with the user required only to enter the name of the variable to be 

displayed. For any code value displayed, the visualization used can be selected from a list of 

applicable ones based on the value's type. 

The Travis [30] data structure visualization system uses debugger state information to 

construct the visualizations. A traversal-based specification language defines the relationship 

between data structure code elements and their graphical representations. Patterns in the 

language specify how parts of a data structure should be traversed and how the associated 

visualization should be constructed or modified. Control over the visualizations is at the 
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graphical element level (nodes, edges, etc.). A visual interface is also provided so that patterns 

can be constructed by selecting from lists of types, type fields, etc. in the running program. 

The Lens [31] system integrates debugger-state-based data structure visualizations with 

visualization changes triggered by interesting event notifications. Animation commands can be 

added to a program through annotations using an integrated source code editor. This can be done 

interactively as the program is running in a design debug mode, using a graphical editor to draw 

and position graphical entities corresponding to program variables. Positioning can be absolute 

or relative to other entities. In these commands, simple formulas using variable references from 

the running debugger can also be used for positions and other attributes. In addition to low-level-

entity graphics manipulation commands (adding or moving shapes, etc.), templates for the 

display of scalars, arrays, binary trees, and linked lists are provided. These templates are linked 

to the source code representations of data structures through field name mappings, such as the 

field names for the left and right children of a node in a binary tree. Thus, visualizations for 

common data structures can be created with minimal effort, and their behavior can then be 

augmented by adding interesting event notifications. 

The systems described above cover the majority of the basic techniques used to generate 

algorithm animations and data structure visualizations, and the majority of the categories of 

features provided. Some others that are relevant in relation to this work will be described briefly 

here. ANIMAL [12] allows algorithm animations to be created through visual editing, scripting, 

or through an API, and for all animations to be edited visually. Animations are constructed using 

graphics primitives. JIVE [32] is a plugin to the Eclipse IDE that provides object diagrams and 

sequence diagrams of execution history. It supports the viewing of visualizations during 

debugging or later through stored execution records. CSTutor [18] allows users to create and 

12 
 



modify linked data structures by sketching nodes and edges using a stylus input. Source code for 

the corresponding actions is automatically created. Changes to the code will animate the 

visualization.  

Many of these systems provide some of the features of the jGRASP Visualization System, 

and use some of the same or similar techniques for generating visualizations. Of the ones that 

display abstract data structures using debugger or interpreter state information and field names or 

other mapping and traversal expressions to relate that information to the visualizations, none 

generates these expressions automatically for previously unencountered data types. That is, none 

of them displays high level representations of user-created data structures with no effort other 

than clicking and dragging the mouse while debugging. Also, none of them automatically 

displays arguments and local variable values that are likely to become part of a data structure or 

to have recently been part of a data structure (as opposed to all arguments and local variables), as 

the jGRASP Visualization System does for nodes of linked structures. There is also little 

discussion in the literature of scoping issues when values are displayed based on program 

variable names. The jGRASP Visualization System provides tight control over the scope in 

which variable names and other expressions used to generate values for display are evaluated, 

and the flexibility to use more relaxed scoping rules for the examination of recursive algorithms. 

2.3 High Level Data Structure Detection 

High level data structure detection systems such as the Data Structure Detection Tool (DDT) 

[33] and MemPick [34] attempt to identify high level data structures in binary code for which no 

type information is available. This is generally done through analysis of running code, by finding 

probable data structure nodes and edges in memory, and analyzing the way probable data 
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structure access methods modify these memory graphs. There are also systems for identifying 

data structures in procedural (non object oriented) languages using source code analysis, such as 

OBAD [35] and work by Dekker and Ververs [36]. These categories of data structure detection 

use different input information from the data structure detection discussed in this work, and the 

techniques used have little in common. There appears to be no published work related to 

identifying high level data structures from debugger type information, type information in object 

code compiled in debug mode, or type information in source code (all of which would essentially 

be equivalent if only type information were used in the analysis). 
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3 System Overview (User Perspective) 

Here the visualization system is described primarily from a user perspective, with minimum 

exposition of the inner workings sufficient to facilitate understanding and discussion of the user 

interface. The system is built on top of a debugger and works in conjunction with it. "Viewers" 

[37] [38] [39] are used to display data structures and other values, and may be used individually 

in a "viewer dialog" or combined on a viewer "canvas". In the remainder of this work, the word 

"viewer" will be used to refer to the system elements that generate these GUI displays, and to the 

display GUI elements themselves, as the meaning will always be clear from context. Values can 

be opened in a viewer dialog or added to a canvas from their display in the debugger using drag-

and-drop or through the use of context menus. User controlled stepping, automatic repeated 

stepping, or resuming from breakpoint to breakpoint in the debugger enables program animation, 

where viewer displays are updated after each step or at each breakpoint. The arrangement of 

viewers on a canvas can be saved to a canvas file. 

3.1 Viewers 

The viewer is the basic component of visualization in the system. A viewer graphically 

displays a single program entity, providing a representation of its state and possibly showing 

smooth transitions from one debugger state to the next and/or indicating changes between one 

debugger state and the next (changed values, new data structure elements, etc.). Currently, the 

only program entities supported are object, array, and primitive values. Note that in Java, arrays 

are objects, and the viewer system treats them as both. Other non-value entities may be added in 
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the future, such as the program call stack, a call stack frame, a memory block, the set of local 

variables, etc. These potential entities will be ignored in the rest of this discussion and viewers 

will be described as a display mechanism for program values only. 

A viewer may be created for any value displayed in the debugger. Places where values are 

displayed include the variables display, which for the current or selected scope shows the "this" 

value or class value if in a static method context, method arguments, and local variables. The 

debugger also includes a list of values created through the use of an interpreter-like 

"interactions" system or by invoking constructors through a "workbench" [40] [8] system, and a 

table of expression evaluation results. All of these values are displayed in the typical way as trees 

where objects and arrays can be expanded to show their fields and elements respectively. 

Various places where values are available in the debugger are shown in Figure 3. 

 

Figure 3. Values in the (a) variables display, (b) expression evaluation table, (c) workbench. 

Each viewer implementation class applies to a program type or set of program types. When a 

value is displayed in the viewer system, only viewers that apply to its runtime type will be made 

available for it. The applicable types are specified by a target type encoded in the viewer 

implementation class name. A wildcard name is specified by an asterisk (*). Appendix B 

describes the class naming system used. The types that are applicable to the viewer depend on 
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the category of the viewer target type. For Java, a viewer with a non-wildcard target type applies 

to a specific primitive type if the target type is a primitive type, or to any value that is assignable 

to the target type otherwise. Assignability was not used for primitive types because typically it is 

not desirable. This is because viewers for specific primitive types would most often be used to 

show binary structure of the value, which would change on assignment, or numeric value, which 

would be confusing if altered due to casting conversion and superfluous if not altered since an 

identical viewer for the specific numeric type would generally also be available. The wildcard 

target type indicates viewer applicability to all primitive, object, and array types. Adding array 

brackets to a wildcard target type specifies a minimum number of array dimensions but there is 

no maximum, since multidimensional arrays in Java are implemented as arrays of arrays. The 

runtime type of a value, as opposed to the declared type, is used to determine which viewers 

apply. For any particular value, multiple viewers may be applicable. Table 1 shows some 

example target types and resulting viewer applicability in the context of the Java language. 
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Table 1. Viewer target type examples. 

Example Target 
Type 

Category of 
Target Type 

Applicability 

int Primitive Primitive values of type int. 

MyClass Class Assignable to a MyClass: instances of MyClass or any 
subclass of MyClass. 

MyInterface Interface Assignable to a MyInterface: any object instance of a type 
that implements MyInterface directly or indirectly. 

MyClass[] Array of Class Assignable to an array of MyClass: one dimensional 
arrays of MyClass or any subclass of MyClass. 

MyInterface[] Array of Interface Assignable to an array of MyInterface: one dimensional 
arrays of MyInterface, any subinterface of MyInterface, or 
any class that implements MyInterface directly or 
indirectly. 

* Any Type Any value. 

*[] Any Array Any array value of dimension one or higher. 

*[][] Any 2D Array Any array value of dimension two or higher. 
 

Since the runtime type of a value determines the applicable viewers, the selected viewer may 

no longer apply when that type changes. For example, if a variable declared as a Java Object has 

a String value and a String-specific viewer is selected to display it, then later a LinkedList is 

assigned to the variable, the String viewer will no longer be applicable. When this happens, a 

viewer applicable to the new value's type is automatically selected while the user's choice of 

viewer for the previous runtime type is stored, and if the variable is later set to a value of that 

previous type, that previous choice of viewer will be restored. If the viewer is in a canvas, this 

association between runtime types and selected viewers will be maintained between debug 

sessions and IDE sessions. 
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Viewers are used to display program values in viewer dialogs, which display a single value, 

or in viewer canvases which combine the display of multiple values. In either case, for each 

value the viewer used for display can be selected from a list of all viewers that are applicable to 

the value's type, as shown in Figure 4. Each viewer provides a short, descriptive name which will 

appear in the list. Since viewers are implemented as plugins, name conflicts are possible, and 

they are tolerated. Conflicting names will be displayed with parenthetical index numbers, as, for 

example "Array Viewer (1)" and "Array Viewer (2)". The viewer names for viewers distributed 

with the system, of course, have no conflicts. Viewer settings are indexed internally by viewer 

class name, so if new viewers with the same display name are added to the system this will not 

cause any conflicts. Figure 4 shows a viewer dialog displaying a linked list with the viewer 

selection list open. 

 

 

Figure 4. Viewer dialog for a linked list showing viewer selection list. 

There are various ways to launch a viewer. A value may be dragged from its display in the 

debugger and dropped on a canvas or elsewhere. If it is dropped on a canvas, it will be added to 

that canvas; otherwise a viewer dialog will be created for it. Values displayed anywhere in the 
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debugger also have context (right click) menus from which an associated viewer dialog can be 

launched. Invoking a method with a non-void return type using the workbench mechanism 

always displays the result in a viewer dialog. The debugger also includes an "Evaluate 

Expression" function where the result of evaluation is shown in a viewer dialog. Viewer dialogs 

and viewer frames on the canvas also have an icon from which a copy may be dragged. Many 

viewers allow sub-values to be dragged out from elements of the display, or launched in a viewer 

dialog through the use of a context menu applied to elements of the display. On a canvas, 

viewers may also be created directly by specifying an expression and optional scope. 

Viewers are associated with values in one of two ways. A value-based association fixes the 

value when the viewer dialog or canvas element is created. The viewer will then show changes to 

the value if it is an object but will not reflect changes to the reference or expression from which 

it was created. For example if local variable 'x' is assigned to the integer array {1, 2, 3} and at 

that point a value-based viewer dialog is created for 'x', any changes to the elements of the array 

will be reflected in the viewer display, but if 'x' is assigned to a different array, the viewer will 

continue to show the original one. By contrast, an expression-based viewer displays the result of 

evaluating an expression. Most often the expression would be a simple or compound name with 

casting applied where necessary, but it can be any arbitrary expression in the source code 

language that is being debugged. When a viewer is created by dragging a value, by default it will 

be created using expression-based association. Holding down the control key at the time of the 

drop will cause value-based association to be used, and the form of the drag icon indicates 

whether the drop will be by value or by name. Context menus on displayed values in the 

debugger provide a choice of opening a viewer with either value-based or expression-based 

association. The choice of value-based association is useful for observing changes to a particular 
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object after the variable, field, or array element from which the viewer was created is assigned a 

new value. For some values, such as subvalues in a viewer, only value-based association may be 

available. This is generally true whenever there is no available expression or no easily 

determinable expression for the value, or when the expression could be excessively long. For 

instance, the expression for the 1000th element in a linked list for which there is no indexed 

element access method would be very long (something like list.head.next.next.next.next ...). 

Values in value-based viewers are given internal names (value_1, value_2, etc.) which can be 

used in the expressions for expression-based viewers, as well as in the workbench and 

interactions systems, and in the expression evaluation table. Thus, these values become a part of 

the workbench and interactions systems. They cannot be used from within the program that is 

being debugged, however. 

Values in viewers, whether opened in a value-based viewer or generated by evaluation of the 

expression in an expression-based viewer, are prevented from being garbage collected when the 

target language is Java. They are released when a value-based viewer is closed or an expression 

in an expression-based viewer is reevaluated. Thus, opening any value-based viewer may alter 

program execution, by delaying garbage collection of the value if it would otherwise be eligible. 

Since the timing of garbage collection is arbitrary, this does not change program semantics. The 

evaluation of the expression in an expression-based viewer could alter internal program state, 

just as it can for expressions in the expression evaluation table of the debugger. The only 

expressions of concern are ones that would be created manually by the user, and it is the user's 

responsibility to avoid using expressions that will cause problems. Expressions created by 

dragging values will always be compound names, possibly with array accesses, the evaluation of 

which will not alter internal program state. The viewers themselves can alter program state in 
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almost any way, and they must be designed in a way that prevents this unless intended. The 

entire system and the viewers themselves do create values in the heap of the running program, so 

they could have a minor effect on heap memory limits. 

Value-based viewers have no associated scope. They are valid and will display changes 

regardless of the current program scope, as long as the value continues to exist. Expression-based 

viewers may have an associated scope. By default, they will have the scope of the program (or 

thread) that applied to the value display from which they were created, at the time they were 

created. So for example a viewer created from the display of the local variable 'x' in the method 

'test()' in class 'C', called from the method 'start()' in class C, which was called from 'main()' in 

class 'C' would have the scope {C.main(String[]) : C.start() : C.test()} by default. Viewers 

created from places where scope does not apply, such as the workbench or expression evaluation 

table, will not have a scope by default. The expression used to generate the value in an 

expression-based viewer is only evaluated when the debugger is stopped in the associated scope. 

When the debugger is stopped elsewhere, the most recently determined value will be used and 

the viewer dialog or canvas will display an "out of scope" message. Thus, changes to the most 

recently determined value will continue to be displayed. So for example, if variable 'x' contains 

the integer array value {1, 2, 3} in method 'test()' and a viewer is created at that point, if a new 

array is assigned to 'x' in method 'test()', the new value will be displayed, but if the debugger next 

stops in method 'test2()' which also has a local variable 'x', the most recently determined value of 

'x' from 'test()' will continue to be displayed, and changes to it will be reflected in the viewer. 

Changes to the 'x' in 'test2()' will have no effect on the viewer. 

For practical implementation reasons, the scope elements used for scope comparison consist 

only of the class and method signature at the top of the call stack and the call stack depth, rather 
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than the class and method signatures for every frame of the call stack. The scope 

{C.main(String[]) : C.start() : C.test()} would be recorded internally as {C.test() : 3} and the 

expression in an expression-based viewer created with this scope would be reevaluated whenever 

the debugger stops in C.test() with a stack depth of three. This is generally sufficient to prevent 

confusion in the display of values, since to arrive at the same method with the same call stack 

depth through a different path, the program would first have to exit the scope in which the viewer 

was created, so any local variables in the expression would no longer exist on the call stack. 

Thus, a differently-scoped evaluation will only be done in cases where the originally-scoped 

evaluation is no longer valid. 

Because there is no practical way to determine intra-method scope in Java, language-

extensions have been added to the expression evaluation in expression-based viewers. Consider a 

method where local variable 'x' is used as a loop index within the scope of a loop, and in a loop 

that follows a different local 'x' is in scope and holds a string value, as shown in Figure 5. It 

would be useful and most often desirable if the viewer displayed the value of only one of those 

local 'x' variables. There is no reliable and repeatable way within the Java debugger API to 

identify one specific local variable of several with the same name and type in the same method, 

but if they have different types they can be distinguished by type. For that reason, when a viewer 

is created from a local variable in the debugger, it will be referenced by name and type, and 

tagged as a local variable. For Java, the language extension that enables this uses back ticks to 

avoid conflict with any valid Java syntax. The expression used for the local int variable 'x' would 

be "`local int` x", and the expression would be (successfully) evaluated only when 'x' was of type 

'int' and the current scope matched other viewer scope requirements. Unsuccessful evaluation has 

a similar effect on the viewers as does a scope mismatch: the most recent successfully 
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determined value continues to be used and only internal changes to it are reflected in the display, 

while an "out of scope" message is shown. Debugger interfaces for languages other than Java 

may have similar issues, and similar language extensions could be needed. 

 

Figure 5. Example method where variable name "x" is reused. 

Most viewers are updated whenever the debugger stops at a breakpoint, watchpoint, after a 

step, or through a manual thread suspension by the user. For some viewers though, periodic 

updating is useful and the viewer system has this capability. For example, in a viewer for a GUI 

window class it may be desirable to see changes as the window is moved or resized while in use, 

without having to stop the debugger repeatedly to see those changes. Viewers that make use of 

this feature may request any frequency of updating. 

For all viewers, the effective declared type can be changed to any type to which the current 

runtime type of the value could be assigned. This allows the value to be displayed as if it were 

assigned to a variable of a different type. For example a viewer created from a variable with 

declared type String could be displayed as if the declared type were Object. A list of all possible 

assignment target types is provided. For viewers that closely reflect code structure, such as the 

void test() { 
   for (int x = 0; x < 10; x++) { 
      update(x); 
   } 
    
   for (int i = 0; i < 10; i++) { 
      String x = "x"; 
      process(x + i); 
   } 
} 
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"Detail" viewer, this can change properties of the display. This is explained in the description of 

the "Detail" viewer in the following section. 

3.2 Available Viewers 

Viewers are added to the system using a plugin mechanism. Users may create their own 

viewers using an API described later in this work. In order to support dynamic data structure 

visualization with minimal work, a comprehensive set of viewers for the Java language and Java 

library classes is provided, including a viewer that automatically detects and analyzes user-

created data structures. 

The "Basic" viewer applies to all values and shows the instance fields of an object, the 

elements of an array, or a meaningful text representation for a primitive value. It is the default 

viewer for values added to a canvas for which a more specialized viewer does not apply. Fields 

and array elements can be dragged out of the basic viewer by expression or by value. Figure 6 

shows the basic viewer for a linked list node. 

The "Detail" viewer applies to all values, and displays the fields of an object or the elements 

of an array as an expandable tree. This is the default viewer for values displayed in a viewer 

dialog for which a more specialized viewer does not apply. Fields and array elements can be 

dragged out of the detail viewer by expression or by value. Like the value displays in the 

debugger, the detail viewer distinguishes primitive values from objects using icon shape. Objects 

and arrays are marked with a square icon while primitives are marked with a triangle icon. Icon 

color is used to show the relationship between the declaring type of a field and the declared type 

of the object being displayed. These icon properties are shown in Table 2. The declared type and 

runtime type of each field is shown. For Java objects, a unique id for each object is shown, so 
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that multiple references to the same object can easily be identified. Figure 6 shows the detail 

viewer for a linked list node. 

 

Figure 6. Basic (a) and detail (b) viewers for a linked list node, and detail viewer settings (c). 

For each field or array element, the detail viewer shows a red bar if a field is inaccessible 

from the current program scope, a gray bar if it is not visible in the current scope, and a red and 

gray bar if it is both inaccessible and not visible. The definition of "visible" for this purpose is 

somewhat different from the Java Language Specification's [41] definition. A field or array 

element is considered "not visible" if, assuming that it was accessible, a cast would be needed to 

refer to it in the current program scope and given the current declared type of the object. This 

definition has a practical use since in some cases, such as using Java reflection methods or in the 

interactions and workbench features of the jGRASP IDE, accessibility restrictions can be 

overridden. Thus, a gray bar indicates "Assuming there is access to this entity, a cast is needed at 

this point to reference it", while a red bar indicates "In the current program scope, this entity is 

inaccessible from ordinary source code." 

In addition to changing the effective declared type, which can be done for all viewers as 

described above, the effective current scope for a detail viewer can also be changed to see the 

effects of scope on accessibility and visibility [42]. A useful selection based on the runtime type 
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and current program scope is provided, and includes general categories, such as "public" and 

"public, protected, or package x" where x is the package of the runtime type of the value. Field 

icon colors and the accessibility/scope bars will reflect these changes. The workbench system 

allows methods to be invoked on the value in a viewer, and display and use of those methods 

will also reflect these changes. Thus, changes to the effective declared type can be used to 

answer the question "How could I use this value if it were assigned to a variable of type X?" and 

changes to the effective scope to answer the question "How could I use this value if it were 

referenced in class X?" 

Table 2. Detail viewer icon properties. 

Property Value Meaning 

Icon Shape  Triangle Declared type is primitive. 

Icon Shape  Square Declared type is object. 

Icon Color  Green Field declared in same type as object's declared type. 

Icon Color  Orange Field declared in supertype of object's declared type. 

Icon Color  Yellow Field declared in subtype of object's declared type. 

Icon Color  Cyan Field declared in interface implemented directly or indirectly by 
object's declared (class) type. 

Icon Color  Light Cyan Field declared in interface implemented directly or indirectly by 
subclass of object's declared (class) type. 

Icon Color  Magenta Field declared in class that implements object's declared 
(interface) type. 

Icon Color  Gray Declared type of field and object are not linearly related through 
class or interface hierarchy. 

Icon Color  Blue Element is not a field. 

Bar Color  Gray Field cannot be referred to without casting the type of the 
containing object. 

Bar Color  Red Field is not accessible in the current debugger context. 
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For classes that implement the java.util.Collection interface, the "Collection Elements" 

viewer displays the contents as a simple list. For those that implement the java.util.Map 

interface, the "Key/Value" viewer displays a simple list of the keys and values in the map. These 

viewers are referred to as "interface-based", because they do not depend on the internal data 

structure representation but apply to high level list and map abstractions. They are useful for 

viewing the contents of list and map structures when their internal structure is not of interest. 

Figure 7 shows an interface-based viewer for a linked list of Integers. 

For linked lists, binary trees, hash tables, and array-based data structure classes such as 

java.util.ArrayList that are in the Java collections classes, the "Presentation" viewer displays the 

internal structure. The presentation viewers for linked structures do not actually analyze the 

structure, but show it as it would appear if it were complete and correct. Thus, they are not useful 

for understanding the internal workings of these structures, but do show their internal structure 

when in a complete and correct state, which should always be the case unless the debugger is 

used to step into library methods. They also only examine structure elements that are visible in 

the viewer (not beyond the edges of its window), and so are fast enough to display structures 

with large numbers of elements. The structure identifier viewer described in the next section 

does not have these limitations or this speed advantage, and can also be used for these same Java 

collections classes. Figure 7 shows a presentation viewer for a linked list of Integers. 

A "Bar Graph" viewer displays a bar graph for arrays or lists of numeric values. This viewer 

is useful for understanding sorting algorithms and search algorithms that operate on sorted 

values. Figure 7 shows a bar graph viewer for a linked list of Integers. 
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Figure 7. Interface-based (a), presentation (b), and bar graph (c) viewers for a linked list. 

Numerous other specialized viewers are provided. Java strings may be viewed as formatted 

strings or in source code format (with escape sequences shown). Instances of java.awt.Color may 

be viewed as swatches of color. A viewer for Images and ImageIcons displays the actual image. 

A numeric viewer shows the numeric value in different number bases for integral types, and the 

number's binary representation and the details of how the value is determined from that 

representation for floating point types. The "Component" viewer shows the positions and sizes of 

a java.awt.Component GUI element and its subcomponents, and updates itself periodically while 

the debugger is running to show changes to the component hierarchy and to component sizes and 

positions. This is useful for examining GUI layout problems. All of these viewers are shown in 

Figure 8. The "Monitor Info" viewer lists the thread that owns and the threads that are currently 

waiting on a Java monitor object, and can be used to assist in identifying the cause of a deadlock. 
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Figure 8. Various specialized viewers. 

3.3 The Structure Identifier Viewer 

The structure identifier viewer is the key to visualizing arbitrary data structure instances 

without requiring user effort. This viewer analyzes classes and attempts (most often successfully) 

to detect linked lists, binary trees, binary heaps, chained hash tables, and array or list-based 

structures such as stacks, queues, and lists. The display is similar to the presentation viewers for 

Java collections class data structures described above. Unlike those viewers, the structure 

identifier viewer traverses the links in linked structures to determine their internal structure and 

extent. Thus, these viewers are useful for exploring the inner workings of linked data structures 

as elements are added or removed, and in finding bugs in data structure and algorithm 

implementations. These viewers also display any nodes, sub-lists, or sub-trees referenced by 

method arguments or local variables in the current context, as well as method arguments or local 

variables that reference nodes in the structure itself, as shown in Figure 9. Nodes are shown 
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moving between and among the main structure display and local variable/argument display in an 

animated fashion as the debugger advances from one state to the next. The speed of these inter-

step transitions is adjustable, and it may be disabled entirely if desired. 

 

Figure 9. Structure identifier viewer and source code for a binary tree. 

When a value is opened in a canvas or viewer dialog, if the structure identifier determines 

with a high degree of certainty that it is one of the target data structure types, the structure 

identifier will be the default and initial viewer for it. Thus, for a typical user-implemented data 

structure class or textbook example, no configuration is necessary. For each structure analyzed, 

one or more mappings between sets of code elements and data structure elements are determined, 

and for each mapping a confidence level is computed. The list of mappings found by the 

structure identifier other than the one with highest confidence that was used by default, if 

multiple mappings were found, may also be selected from a list. Configuration options allow the 

mapping to be fully specified, so that if automatic structure identification fails for a particular 

class, the viewer can still be used but with significant user effort. More often, structure 

identification may fail in a small way, such as in not identifying the "value" of a node correctly, 

31 
 



or missing the dummy node in binary tree with a dummy sink node. In that case, little effort may 

be required to correct the problem. Configuration also allows the text shown for a node value to 

be specified and to be different from the default display based on the value. For example, if a 

node has an integral value and the parity of that value is significant to its use, the parity could be 

emphasized in the text by showing the values 41 and 92 as "Odd:41" and "Even:92" rather than 

the default "41" and "92". By default only one value is displayed unless the structure is 

determined to be a map, in which case both the key and value are shown. Configuration allows 

an arbitrary number of values to be displayed for each node. Figure 10 shows the structure 

identifier configuration dialog for linked list and array-based structure mappings. 

 

Figure 10. Structure identifier linked list and array-based configuration. 

Because of the full structure traversal used, the structure identifier viewer may be too slow 

for instances with a large number of nodes. For example, if a linked list has one million nodes, 
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the structure identifier will traverse all of those nodes before displaying the list, and doing this 

traversal through a debugger interface is many times slower than it would be if done in the code 

itself. Initial limits of a few thousand nodes, the exact number depending on the particular 

structure type, prevent accidental long delays when a viewer is launched. When a limit is 

exceeded, the user is given the option of specifying a larger limit or keeping the current one and 

only viewing a portion of the data structure. 

Full structure traversal allows the structure identifier viewer to indicate state changes at each 

step in a program, even for portions of the structure that are not visible (scrolled beyond the 

visible window). For example, text for a value that has changed in a structure may be shown in 

red rather than black. In addition to showing the intermediate state as nodes are moved into, out 

of, and among a linked structure, incorrect structure can also be identified. Incorrect links such as 

a bad reverse link in a doubly linked list or a link that forms a cycle in a binary tree are shown in 

red. These may be links that are temporarily incorrect as the structure is being modified, or they 

may be due to bugs in the data structure implementation. 

Structure identifier viewers may be shown in any of four orientations: horizontal and left to 

right or right to left, and vertical top to bottom or bottom to top. Most linked list and array-based 

structures are shown left-to-right by default, but if a stack is recognized it will initially be shown 

bottom-to-top as it typically would be in a textbook diagram. Binary trees are shown with the 

root on top by default. 

Binary trees may be shown with round nodes if the nodes are single-valued, and that is the 

default. For linked lists, array-based structures, and binary trees with rectangular nodes selected, 

two settings options can be changed for a total of four display modes. The default is to show 
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values embedded within nodes and to show the node divided into a rectangle for each value and 

one for each outgoing edge (which will display a black square if the outgoing edge reference is 

null). With the non-embedded option, values are shown externally with links from the node that 

contains them. With the simple option, nodes are displayed as undivided rectangles with 

outgoing edges anchored at node borders, and no indication of null edges other than the absence 

of the edge. Figure 11 shows the four display modes applied to a binary tree map node. Since this 

is a map, the node display shows both the key and value. 

 

Figure 11. Node display modes for a binary tree map node. 

3.4 Subviewers 

In viewer dialogs and on the canvas, a subviewer pane may be opened. In this pane, any sub-

value selected in a viewer will be displayed as if it were in a viewer dialog of its own. Typically, 

sub-values are selected by clicking on elements of the viewer display. Nodes and values may be 

selected separately where both exist. By default, the detail viewer is used to display sub-values, 

but any applicable viewer can be chosen and this selection will be remembered. The subviewer 

allows sub-elements of a structure to be quickly examined. Subviewers do not have subviewers 

of their own, since the display would become crowded and confusing. Figure 12 shows the 

structure identifier viewer for a linked list displayed in a viewer dialog, with one element value 

selected and the subviewer open. Note that the subviewer has the same controls that it would 

have if it were a separate viewer dialog. 
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Figure 12. Viewer dialog displaying a view of a stack with subviewer open. 

3.5 Auto-Step and Auto-Resume 

In order to animate debugger operations, auto-step and auto-resume functions are provided. 

When auto-step is on, the next step operation in the debugger, whether it be a "step in", "step 

over", or "step out", will continue repeatedly with a pause after each step. When auto-resume is 

on, the next resume operation will repeatedly resume after the debugger stops at each breakpoint 

encountered. The speed of stepping or resuming is adjustable. If any viewers, such as the 

structure identifier, that provide smooth inter-step transitions are updated after a step or 

breakpoint, there will be an additional delay while that animation takes place. 

With a canvas or viewer dialog open, the effect of auto-stepping or auto-resuming is to show 

an animation of the data structures and other values displayed in viewers, synchronized with 

display of the source code being executed, where the next line to be executed is highlighted at 

each step or breakpoint. Thus, a strong connection between source code and conceptual data 

structure display is maintained. Auto-resume with breakpoints at significant points in the 
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program can be used for an "interesting location" animation, and auto-stepping can be used for a 

line-by-line animation, though with the canvas certain (uninteresting) regions of code can be 

excluded, as described in the section that follows. 

3.6 Canvas 

The viewer canvas provides a way to combine multiple viewers in a single window and to 

store any changes to viewer configuration for later use. Viewers on the canvas can be arbitrarily 

arranged and sized. All but the selected viewer, if any, are shown "frameless" so that they appear 

to be combined in a single display. The frame of a selected viewer allows it to be moved, resized, 

or removed from the canvas, and provides a settings menu for it. Figure 9 shows a canvas 

containing viewers for an integer, stream scanner, string scanner, and list, which is used to 

visualize an algorithm that scans text and counts and stores individual words. 

 

Figure 13. Canvas for a text scanning algorithm. 
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By default, viewers on the canvas are "auto sized". They will resize automatically based on 

content, up to some maximum size that is based on the OS desktop size. Dragging the frame of a 

viewer to resize it will turn "auto size" off, to allow a fixed size for the viewer. Typically, if a 

viewer is made larger than is currently necessary, the unused portion will be transparent, so that 

it still appears to be auto-sized unless selected. A settings menu item allows a resized viewer to 

be reset to the auto-size state. 

Viewers on the canvas can be made transparent. For example, by default the structure 

identifier viewer for a linked list has an opaque background and a thin border around the extent 

of the list. In transparent mode, the border is not shown and the background is transparent, so 

that any viewers it overlaps will "show through". This can be useful for viewers that may have 

large areas of empty display space for particular code examples, so that smaller viewers can be 

placed in this empty space and a more compact display can be achieved. 

The scope test for a viewer on the canvas can be specified as "full", "ignore depth", or 

"none". The scope of a viewer on the canvas can also be directly edited as shown in Figure 14. 

Ignoring the call stack depth can be useful when using a viewer to show the workings of 

recursive algorithms. For example, if a viewer is opened on an argument named "node" in a 

recursive binary tree traversal method named "visit", then in full scope test mode the viewer will 

continue to show the value of "node" at the recursive depth of "visit" in which the viewer was 

opened. In "ignore depth" scope test mode, the viewer will show the value of "node" at the 

current recursive depth of "visit" as the traversal progresses. There is no confusion about which 

"node" is being displayed, since the one with full scope testing would display an "out of scope" 

message when the recursive depth is different from the one in which the viewer was created. 
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Figure 14. Viewer expression and scope editing dialog. 

The contents of the canvas and configuration of its contents persist between debug sessions. 

Since there is no way to restore value-based viewers after a session ends, these will not persist if 

added to a canvas. A "canvas file" is used to store the arrangement of items on the canvas, as 

well as any per-viewer canvas settings (selected viewer, scope test, transparency, auto-sizing, 

etc.) and individual viewer configuration such as a change to the display text expression in a 

structure identifier viewer. 

Text boxes for use as labels or to contain explanatory text may be added to a canvas. These 

may contain either plain text or html. Text boxes can be moved but not resized, and like the 

viewers they can be made transparent. 

In order to simplify the continued use of a canvas as changes to class names, method names, 

and method arguments are made to its associated program, a name change dialog is provided, as 

shown in Figure 15. This dialog lists all the class names and method names and signatures 

referenced in viewer scopes on the canvas, and many of those referenced in viewer expressions. 

For each class name or method name and signature, a replacement may be specified, and a 

wholesale change can be made to the canvas. The dialog also displays the expression and scope 
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for each viewer on the canvas, so that the effect of changes can be examined before the change is 

finalized. 

 

Figure 15. Canvas name change dialog. 

In order to allow uninteresting segments of code to be skipped while animating using auto-

stepping, an exclusions dialog is provided. This allows individual methods or entire classes to be 

skipped. A list of classes and methods in the file or project simplifies selection. This also 

includes general categories such as all constructors for a class and all constructors for all classes. 

These exclusions are saved with the canvas file. By default, Java library classes are skipped since 

stepping into library classes is not often instructive for any debugging operation. This is 

controlled by a separate debugger setting in the IDE that can be changed if necessary. 

The canvas includes controls that reduce the number of steps necessary to launch an 

animation and automatically step through it. A "Run in Canvas" button starts the program which 

will then pause at its entry point (the first line of "main" for a Java application). A "Play" button 

then turns auto-step on and begins stepping-in. A "Pause" button turns auto-step off so that the 
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animation will stop after the next step. A "Stop" button stops the running program. When started 

using "Run in Canvas", the animation will be paused at the end of the program so that the final 

state of the animation can continue to be examined. In addition to these animation controls, the 

canvas has full debugging controls. These are compatible with the play/pause/stop controls, so 

that after a "Run in Canvas", "Play", and "Pause" to start an animation and stop at an interesting 

place, directed stepping can be done using "Step-in", "Step-over", or "Step-out", or the animation 

can be "fast forwarded" to a desired code location by using "Run to Cursor" or "Resumed" to a 

breakpoint. These controls are shown on the canvas in Figure 16. The IDE also provides a "Run 

in Canvas" button that will launch the program (which will then pause at its entry point) and 

open its associated canvas. If multiple canvases are associated with the program, the desired one 

can be selected from a list. 

 

Figure 16. Canvas for a binary search animation showing animation controls. 

Currently there are no reverse debugging controls on the canvas or in the debugger, but if a 

back end debugger interface with reverse debugging capability is integrated into the system in 

the future, reverse controls will be added. The current viewers would require no modification to 

handle reverse debugging, since they all depend on the current state of the program and for some, 
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the previous state, and the effects of the difference in past and present state (moving nodes, 

different colors for modified values, etc.) would have a useful meaning in either direction. If in 

the future viewers are developed that show the results of a longer past history in some way, they 

would need to be alerted when the debugging direction is reversed, so that any necessary changes 

to the display and internal state could be made. 

3.7 Steps for the Creation and Use of an Animation 

Following is a typical scenario for creating an animation. The debugger is started on the 

program of interest and stepped or run to a breakpoint at a useful place, at which point the "Open 

Canvas" debugger control is used to create a new, empty canvas. Alternately, "Run in Canvas" 

may be used to start the debugger and open an empty canvas in one step. Values are then 

dragged from the debugger variables display and dropped on the canvas. The items on the canvas 

are arranged by dragging them, resized if necessary, and configured if necessary such as by 

selecting the viewer for a value or changing per-viewer configuration. Exclusions are set if 

desired. The canvas file is saved. By default, the canvas filename will be such that it will be 

associated with the running program. 

Launching an animation from a source code window in the IDE starts with clicking the "Run 

in Canvas" button. The canvas associated with the program is opened and the program starts and 

pauses at its entry point. Clicking the "Play" button starts the animation, which can then be 

paused at any time using the "Pause" button and resumed using the "Play" button. Launching an 

animation from the canvas starts with opening the canvas file by using the IDE's "File" > "Open" 

function or double clicking on the canvas file in the IDE's "Browse" pane, then clicking the "Run 

in Canvas" button on the canvas and continuing as described above. 
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3.8 Weaknesses 

The visualizations in this system are generated from debugger information. This requires that 

the base debugger interface provide all information needed to render a visualization and for the 

structure identifier to examine type information. Most debugger interfaces do provide enough 

information, though code compiled in debug mode would be necessary for most languages and 

compilers. For Java this is not the case, as necessary information is included in ordinary class 

files. If Java code is compiled normally (not in debug mode), the local variable and argument 

names for local variable nodes in the structure identifier viewers will be replaced by numbered 

arguments, but otherwise all viewers will have full capability. Generally, any language and 

compilation system for which it is possible to produce object code that can be usefully debugged 

is a candidate for use in this system. 

Because the system operates on top of a debugger, system capabilities may also be limited by 

debugger capabilities. As an example, the Java debugger interface currently provides no way to 

reverse execution, and so there is no way to step in reverse through an animated visualization. 

The system could record relevant program state and require all viewers to record their states at 

each update, but this would add a lot of complexity and would make the development of viewers 

much more difficult. 

By strict definition, the jGRASP Visualization System is a data structure display system 

rather than an algorithm animation system. When using the system specifically for algorithm 

understanding, it may be desirable for a viewer to display information relevant to the state of the 

algorithm that cannot be determined or cannot easily be determined from the data structure and 

program state. For example, in an animation of a binary tree traversal algorithm, it may be useful 

to display visited and unvisited nodes in different colors, and there may be no straightforward 
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way to determine which nodes are visited from the program state alone. There is nothing to 

prevent a viewer from accepting viewer-specific communication added to the code. A "visited" 

field could be added to the node class for example, and the viewer could look specifically for a 

boolean field with that name. A more general mechanism could also be used. For example, a 

binary tree viewer might look for a class named "JGRASP_BT_Info", which would provide a list 

of visited nodes, and to which new nodes would be added as they are visited. Viewers that use 

such a mechanism for interesting event notifications could also be constructed, thus producing a 

true algorithm animation system. The current viewers are not designed to read interesting event 

notifications though, and the viewer API provides no predefined means of communication. The 

IDE also provides no way to automatically hide such communication in the source code display, 

which would obviously be desirable. 
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4 Viewer Implementation and Viewer API 

The viewer implementation mechanism is best understood in conjunction with the viewer 

API. Each viewer is a plugin to the jGRASP IDE. Viewers must be Java classes, and may 

optionally be packaged in jar files. When placed in the plugins directory of the IDE or in a 

default or user-selected per-user plugins directory, they will be automatically detected and made 

available. To facilitate the development and testing of viewers, a "reload plugins" function 

allows all viewers to be reloaded without shutting down and restarting the IDE, and without 

stopping the debugger. 

4.1 The jGRASP Debugger Interface (jgrdi) 

The jgrdi is a sub-component of the viewer API that allows program entities to be evaluated 

and used to construct the viewer display. For example, in Java a variable's compile time type and 

run time type may be determined, array elements and object fields may be enumerated and 

examined, methods may be invoked and their return values examined, etc. The goal was to 

produce an API that is simpler to use than most debugger APIs, such as the Java Debugger 

Interface (JDI) or GNU Debugger Machine Interface (GDB/MI), targeted specifically for use in 

the viewer system, and largely language-independent. The level of detail needed to construct, for 

example, a typical data structure viewer, does not require much beyond examining object fields 

and possibly invoking accessor methods. The steps needed to explore such a structure may be 

identical for that structure's representation in many languages. It is entirely possible that a viewer 

created to display a particular data structure representation in one language may work without 
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modification for a representation in another language if the two representations use the same 

element names. 

Using a debugger API often involves a lot of error handling. In the jgrdi, much of this error 

handling is internalized and automated in a way that is targeted at program visualization. For 

example, if the viewer will display a text representation of a field and that field value is not 

available because of some condition in the debugger (session ended, object no longer exists, etc.) 

it is usually sufficient that the viewer display an error message instead, such as "<not available, 

object has been garbage collected>". The jgrdi will return error text when a text value is 

requested and is not available, an empty list of fields when the fields of an object are requested 

and are not available, etc. A viewer created without consideration for error conditions will 

usually display something meaningful or nothing at all in those cases. Most of the viewers 

provided with the system use no error handling in their use of the jgrdi. When there is an error 

while evaluating the expression itself in an expression-based viewer, the viewer is not updated 

(the previous value will continue to be shown) and an error message is shown in a message bar at 

the bottom of the viewer dialog or canvas. Reducing the need for error handling greatly 

simplifies the development of viewers. 

For viewers typically needed for data structure visualization, the jgrdi provides all necessary 

detail and capability needed to examine program values and types. For extremely language and 

target-specific viewers, a way to determine the underlying debugger API and access to it or to a 

direct wrapper around it is provided. For example, for Java targets running under the JDI, access 

to the JDI and the JDI values underlying program classes, values, and types is provided. This is 

used in the Java-specific "Monitor Info" viewer which shows the thread that owns and the 

threads that are waiting on an object that is a Java synchronization monitor. 
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Following are descriptions of key jgrdi interfaces. 

DebugContext: a largely transparent interface representing the current debugger state. This 

also provides methods for the creation of primitive values in the debugger, access to program 

types by name, expression evaluation in the target language, access to local variables and 

arguments and their values in the current context, and access to scope information for the 

current context. 

Local Variable: descriptive interface for a local variable or method argument. Methods 

provide the variable name, distinguish an argument from a local variable, and retrieve the 

declared type of the variable. Values in the current context can be retrieved through the 

DebugContext class using 

 DebugContext.getValue(LocalVariable). 

ValueAndType: a wrapper class for a value and its declared type. This is the way a value to 

be displayed is passed to a viewer. This combined wrapper ensures that additional properties 

can be added as necessary to support languages other than Java without breaking existing 

viewers. 

Value: a value interface. This interface can represent an object instance, primitive value, 

array, or other value. A summary of the methods in this interface is provided in Appendix C. 

There are no subinterfaces for more specific value categories. This facilitates language 

independence, since different languages have different categories of value, some of which 

may overlap in some languages but not in others (arrays are objects in Java but not in some 

other languages, for example). Viewers like the structure identifier can operate on this 

general concept of a value without dealing with language-specific issues. It is anticipated that 
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if the jgrdi is extended to languages that have both pointers and references, this distinction 

will be auxiliary information provided by the Value interface, and in most cases viewers will 

treat references and pointers identically. Methods of the Value interface provide information 

about the forms and subcomponents of the value that are available, and access to those forms 

and subcomponents. For example, a Java int form of a Value is accessible through 

 Value.toInt(DebugContext) 

if the value is representable as a Java int. For Java, that would include primitive byte, char, 

short, and int values. Other methods provide the array size for arrays, array values by index, 

field values by name, and method references by name and signature. Because viewers may 

need to create and work with values that do not already exist in the program, methods are 

also provided to set field and array element values. This also allows for the possibility of 

viewers with more interactive capabilities. 

Type: a type reference. This can represent an object, primitive, array, or other type. As in the 

Value interface, there are no subclasses for specific type categories in order to facilitate 

language-independent viewers. Methods provide general information about the type and its 

supertypes, access to fields and field values if applicable, the ability to set static field values 

for an object type, and the ability to compare types for assignability. The generality of this 

class should allow it to be used for aggregate types in non-object-oriented languages or in 

object oriented languages that also have non-object aggregate types. 

Member: supertype for Fields and Method. Methods provide the member name, declaring 

type, accessibility information, etc. 
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Field: descriptive interface for a field or other structure member. Methods provide the 

declared type and access modifiers. Field values in the current context can be retrieved 

through 

 Value.getFieldValue(DebugContext, Field). 

Method: descriptive interface for a method or function. Methods provide the return type and 

argument types. Instance methods may be invoked through 

 Value.invokeMethod(DebugContext, Method, Value[]) 

and static methods through 

 Type.invokeMethod(DebugContext, Method, Value[]). 

All of the interfaces described above also provide access to their counterparts (if present) in 

the underlying debugger interface or debugger interface wrapper. 

4.2 Viewer Interface 

The Viewer interface provides the framework for interacting with the viewer system. A 

summary of the methods in this interface is provided in Appendix C. An encoded naming system 

relates a Viewer implementation class to the broadest source code type or category to which it 

applies, as described in section 3.1. Abstract methods require an implementation to provide a 

viewer name and priority. An abstract build() method is called when an entity becomes available 

for display (is added to a canvas or viewer dialog). At this point the viewer can opt out of 

displaying the entity or adjust its priority based on specific properties of the entity, such as its 

specific runtime type or some properties of that type. For example, the structure identifier will 

supply a very high priority if it identifies a data structure with high confidence and a very low 

priority otherwise. An abstract update() method is called whenever a program value is newly 
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available, such as when the debugger has stopped at a breakpoint or after a step, and provides a 

reference to the representation of the value in the debugger API and to its declared type. A 

typical implementation of this method would analyze the program value and produce an internal 

representation with the minimum detail needed for later display, possibly comparing it to the 

previously stored representation in order to mark or record changes to the structure (so that, for 

example, the text description of a field that has changed from one debugger step to the next could 

be displayed in red rather than black, or so that changes to a linked structure could be animated). 

A toXML() method allows the internal configuration state of the viewer to be stored along with a 

canvas. For example, if the user is allowed to display an array either vertically or horizontally, 

that orientation could be saved. The saved XML, if available, is provided in the constructor when 

the Viewer is created as part of a previously saved canvas. 

If an intra-step transition is in progress, a parameter of the update() method indicates the total 

number of transition steps to be performed and the index of the current step. During an intra-step 

transition, the viewer would generally operate on the previous and new data structure state 

representations, and not re-analyze the current value, but the current value is still available if 

needed. An intra-step transition is initiated during a non-animation update, by calling a method 

on an update() control parameter to set the number of animation steps, time between steps, and 

initial delay. An initial delay longer than the transition step time can be useful to give the user 

time to recognize a pre-transition layout change. For example, when a node is added to a linked 

list, the size allocated to the list and to the area occupied by each local variable node should each 

be the larger of the size needed at the start and end of a transition, in order to allow unaffected 

nodes to remain in one position during the process. This makes changes during the transition 

clearer, but may require a readjustment of the layout before it starts and after it ends. The extra 
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initial delay gives the user time to mentally absorb this readjustment. After the last transition 

step, the delay for the auto-step or auto-resume that is being processed is generally sufficient for 

the same purpose, but an additional final step delay can be specified if desired. 

Update notifications occur on a single debugger thread and all jgrdi method calls must be 

made from this thread, except for requests for later method invocations on the debugger thread. 

Java requires that all GUI method calls be made from the (single) Java Abstract Window Toolkit 

(AWT) event dispatch thread, except for requests for later method invocations on that thread and 

a limited number of other general purpose method calls. This thread separation is most easily 

enforced by determining and storing state information necessary for display during an update and 

using that information during a GUI update, where the state information contains neither jgrdi 

object references nor Java GUI object references. This also allows asynchronous viewer updates 

and GUI updates, which prevents potential deadlocks and unnecessary delays when either the 

debugger or GUI is busy. A development  version of jGRASP includes thread checking on every 

jgrdi and Java GUI call (added globally using an aspect oriented programming system) that 

reports any violations of these threading restrictions, so the viewer framework and viewers 

included with the system are well tested for threading violations. This is important since such 

threading violations can cause errors that are timing-related or whose effects are delayed, and 

can therefore be very hard to diagnose. Figure 17 shows a sequence diagram for a simple viewer 

and viewer GUI update. The thread used for each message is indicated by color. In this example, 

a breakpoint occurs, the viewer requests one debugger value, and the viewer calls one GUI 

method. 
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Figure 17. Sequence diagram for a viewer update. 

 

4.3 Viewer Implementation Base Classes 

The ViewerRoot class is an implementation of Viewer that provides the base GUI 

functionality for a typical viewer. It creates a scrollable or non-scrollable main window and for 

grid-like or table-like viewers, optional row and column headers.  An updateGui() method is 

called after each update() or at other times when the display should change, such as after the 

viewer window is obscured and revealed, or after it is resized. A viewer that relies on Java GUI 

classes for display would only need to update those elements using the stored representation of 

the program entity. A viewer that displays text using a Swing text component that was added to 

the main panel, for instance, would just set the text for that component. For viewers that handle 
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their own display by painting on the main panel, a paintMainView() method is called after 

updateGui().  

Stock viewer classes are provided so that common types of viewers can be created with little 

effort. A text viewer, for example, only requires that the Viewer implementation set the display 

text when the target entity is updated. Similarly a text list view requires the implementation to 

provide a list of text values, and can be used to create a viewer that displays the contents of an 

ordered or unordered list structure such as an array, linked list, or hashed set, as a list of text 

representations of the structure elements. Viewer base classes that display structural 

representations of linked lists, arrays and array-based or list-based structures (stacks, queues, 

etc.), binary trees, and chained hash tables, only require an implementation to enumerate the 

structure elements. Multiple values may be supplied for each element so that keys and values in a 

map structure can be displayed separately. 

4.4 Utility Classes 

Colors and Sizes classes help to ensure uniformity among viewers by providing standard 

colors for nodes, values, disabled or unused nodes and values, and standard sizes for node edges, 

borders, separators, margins, etc. 

The PresentationElement class simplifies node display in linked structures and element 

display in arrays and lists. Given the properties of the node, its values, and number of outgoing 

edges, a consistent node layout will be produced with standard colors and component sizes. This 

also handles nodes in different structure orientations (vertical vs. horizontal and forward vs. 

backward) automatically, and handles the various node display modes (embedded vs. non-

embedded values, normal vs. simple view).  
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Other utility classes include a Subviewer so that viewers may provide their own subviewers 

in addition to the one in the viewer dialog or canvas, classes to assist in making viewer sub-

element values draggable, a class that provides standard icons, drawing utility classes, and 

various GUI components that are useful in viewers. 
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5 The Structure Identifier Mechanism 

Here the internal mechanics of the structure identifier are described, in terms of the way it 

associates data structure implementations to the graphical representations that will be used to 

display them. The methods used to automatically determine those associations by examining 

type information are explained. An automatic regression testing system for the structure 

identifier and its extension for tuning the system are also described. 

5.1 Mapping Expressions 

In order to examine a structure at runtime for future display, a set of mapping expressions in 

the target language is used for each structure category. The structure identifier supports four 

structure mapping categories: array-based or list-based structures such as lists, sets, stacks, and 

queues; linked lists; binary trees including binary heaps; and chained hash tables. Note that these 

categories are closely tied to display format and there is not a one-to-one correspondence 

between mapping categories and categories used for structure identification. For example, binary 

trees and binary heaps use entirely separate identification systems but the same mapping 

category. For each expression, relevant known structure elements are made available through 

synthetic variables. In the case of the binary tree, the root node expression has synthetic variables 

for the tree structure itself, and the left and right child expressions have that variable as well as a 

synthetic variable for the node being traversed. Some examples of how these expressions are 

used are presented below. The full list of mapping expressions and synthetic variables for each 

mapping category is described in Appendix A. 
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Many of the mapping expressions are necessary for traversing the structures. These map code 

elements to data structure elements. For example, for a binary tree, the traversal expressions are 

used to determine 1) root node of the tree, 2) left child of a node, and 3) right child of a node. In 

the case of the Java collections class java.util.TreeMap, which is a map implemented as a red-

black tree, the following traversal expressions could be used: 

Root Node: _tree_.root 

Left Node: _node_.left 

Right Node: _node_.right 

where _tree_ is the synthetic variable for the tree structure, and _node_ is the synthetic variable 

for the node being traversed. For binary trees, an optional dummy node expression is also useful, 

since some binary tree representations use such a dummy "sink" node instead of null children. 

Unlike other nodes, the dummy node may have multiple parent nodes, so it is displayed 

differently, centered at the bottom of the tree. 

Additional expressions are useful for specifying structure display elements and properties. 

The primary of these is the value expression for a node in a node-based structure or an element in 

an array-based structure. Since each node or array element may have multiple relevant values, 

any number of expressions is allowed. If there are multiple values, the expressions are separated 

by hash symbols (#). In the case of java.util.TreeMap, the value expressions could be: 

_node_.key # _node_.value 

Thus, for java.util.TreeMap, both the map key and value associated with each node would be 

displayed. By default, these values are displayed using a useful text representation such as the 
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toString() result for Java objects, the String.valueOf(primitive_value_type) result for primitives, 

and the first few elements for arrays. Future plans include display of image values as images. 

Another useful expression for node-based structures is a node class. This allows nodes 

outside the structure that are referenced by local variables and method arguments to be 

displayed, as well as local variable and method argument references to nodes in the structure. 

Nodes can then be shown moving in and out of the main structure while stepping through a 

program. In the case of java.util.TreeMap, the node class would be java.util.TreeMap$Entry. 

To illustrate a more complex example of mapping expressions, consider a Java int array used 

to hold a binary tree. Each three consecutive ints in the array specify a node. The first is the 

index of the left child, the second is the index of the right child, and the third holds the value. A 

negative index is used to represent a null link. So the int array { 3, 6, 0, -1, -1, 1, -1, -1, 9 } 

would represent a tree containing three nodes, with "0" at the root value, "1" as the left child 

value, and "9" as the right child value. In this case, there is no node class in the implementation, 

so Integer can be used as a stand-in node class, to hold the node index. The root expression 

would then be an Integer with value 0, or null if the array is empty. The left and right expressions 

would produce the Integer index of the left or right link, using the synthetic variable _node_ 

which in this case would be an Integer holding the index of the node being traversed, or they 

would produce null if the index of the left or right link is -1. These expressions could be 

specified as: 

Root Node: (_tree_.length > 0)? Integer.valueOf(0) : null  

Left Node: (_tree_.length > _node_.intValue() && 
_tree_[_node_.intValue()] >= 0)? 
Integer.valueOf(_tree_[_node_.intValue()]) : null  
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Right Node: (_tree_.length > _node_.intValue() + 1 && 
_tree_[_node_.intValue() + 1] >= 0)? 
Integer.valueOf(_tree_[_node_.intValue() + 1]) : null  

Value Expression: (_tree_.length > _node_.intValue() + 2)? 
_tree_[_node_.intValue() + 2] : 0 

In this case there is no node class and no way to distinguish local variables and method 

arguments that refer to tree node indices from other integer variables, so there is no meaningful 

node class expression, and the structure identifier will not show local variable nodes and sub-

trees or smooth transitions between states. 

Note the conditional tests in the expressions. They are there to avoid exceptions when the 

structure is in an invalid state. In all mapping expressions, care must be taken to avoid exceptions 

during evaluation. Evaluation must be possible even when the structure is in an incomplete or 

invalid state, such as when it is not yet initialized or when an element is in the process of being 

added, since the viewer that is using these expressions could be updated for display at any time. 

The structure itself will never be null during evaluation though, so there is no need in this 

example to test for (_tree_ != null). 

For this example, it would also be useful to see the array representation in the viewer. To do 

this, the following expressions could be specified: 

Array Size: _tree_.length 

Array Element: Integer.valueOf(_tree_[_index_])  

The viewer resulting from supplying these expressions and applied to the int array { 3, 6, 0, -

1, -1, 1, -1, -1, 9 } is shown in Figure 18. 
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Figure 18. Viewer for an integer-encoded binary tree. 

5.2 Automatic Determination of Mapping Expressions 

The structure identifier mechanism analyzes classes or other code structures to search for 

potential data structures. Potential mappings from code structure to data structure are developed 

and for each one found, a confidence value is computed. This is done primarily through the 

analysis of type structure and type component names, though runtime structure may be used in 

some cases. Name analysis is language dependent, and the current structure identifier targets 

English language source code only. Relevant names and name components and their effect on 

confidence in different contexts are all stored as tabular data, so that tables for other languages 

could be substituted or added in the future. 

The structure identifier has modules for recognizing singly and doubly linked lists, linked 

binary trees, chained hash tables, binary heaps, and array-based structures such as stacks and 

queues. Some of these modules may identify data structure sub-components using other modules. 

For example, in a chained hash table, the chain for each slot is a linked list, and the linked list is 

identified using the same module that recognizes a linked list value for a viewer. The array and 

list-based recognizer module is recursive, since stacks and queues may use the array-based lists 

that it also recognizes to hold their contents. The modules and dependencies among them are 

shown in Figure 19. 
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Figure 19. Structure identifier data structure recognition module dependencies. 

For each module, the runtime type of a value being evaluated by the structure identifier is 

analyzed to see if its configuration matches a known type reference pattern. As this is done, 

potential mapping expressions are determined and confidence values computed. For example, a 

linked list typically is a wrapper class with a field that has a reference to the head node (and 

possibly one to the tail node), while the node class has a same-class reference to the next node 

(and possibly a back reference). These references might be through fields or accessor methods, 

and both fields and apparent accessor methods are examined. The type reference patterns for the 

supported linked structures are shown in Figure 20. The dark orange links represent optional 

references and the dark orange dashed rectangles show optional portions of each pattern. Linked 

lists and linked binary trees can be recognized without wrapper classes (so that the head node or 

root node "is" the list or tree, respectively), so these wrapper sections are optional. Note that 

these are the patterns currently used by the structure identifier, but changes to these patterns may 

be made in the future in order to recognize a wider variety of data structure implementations.  

Each type examined by the structure identifier may match each pattern in multiple ways 

(using different fields or accessor methods, and different optional pattern components), and 

multiple patterns may be matched. For each match, the confidence value depends on class 

names, field names, the number of optional components matched, and for node classes, the 

number of self-references that were not matched to the pattern. For example, a class named 
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"LinkedList" with a field named "head" of a class type named "LinkedNode", where the 

LinkedNode class has a field named "next" of type LinkedNode, would have a high confidence 

as a linked list, because those are very common and expected class and field names for a linked 

list. In the linked list recognition module analysis, a potential node class with three same-class 

fields would have a lower contribution to confidence than one with one or two same-class fields, 

and one with "node" or "element" as part of the class name would have a higher contribution to 

confidence than one without. So for linked structures, there is some dependence on class, field, 

and method names in addition to type structure. Generally though, common implementations of 

linked data structures will be correctly identified regardless of the names used. 
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Figure 20. Type reference patterns for linked structures. 
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module handles binary heaps. The analysis uses runtime values to distinguish heaps where the 

zero-element is used from those where it is not. For empty heaps, it is assumed to be unused (the 

most common implementation). Thus, for binary heaps where the zero element is used, the 

structure identifier will incorrectly identify it if it is empty when the viewer is created. Currently, 

this is the only module in the structure identifier that makes use of data structure contents in its 

analysis. 

Analysis results for a particular type are cached during a debug session, so that analysis is 

done only the first time a type is encountered. To reduce the analysis time, analysis paths with 

low confidence are terminated before being fully explored in many cases. Analysis time is 

generally not disruptive to the user, taking a quarter second or less on modern hardware. For a 

typical data structure class, a few dozen possible structure mappings are found. Those with very 

low confidence are discarded. If all have low confidence, the structure identifier viewer will 

decrease its priority so that it will not be the viewer used by default for that class. Otherwise, the 

mapping with the highest confidence will become the one used by default by the structure 

identifier viewer. The others are made available in a list on the structure identifier viewer 

configuration dialog, so that it is easy for the user to correct the case where the structure 

identifier has correctly identified and mapped the data structure, but has given an incorrect 

mapping the highest confidence. 

5.3 Automated Testing of the Structure Identifier 

In order to allow previously unrecognized data structure code to be successfully identified 

and mapped, changes to the structure identifier mechanism, either in the weights involved in 

computing confidence levels or in the type reference patterns used, will occasionally be made. 
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These changes may cause data structures that were previously identified and mapped 

successfully to be misidentified or to fail to be identified. To help reduce performance 

degradation, an automated regression testing system was developed. 

The test database consists of a large number of data structure code examples. Each program 

contains one or more data structures to be tested. An XML test file specifies a series of tests. For 

each test, the program to be run and line number at which to stop is specified, along with the 

expressions, typically local variable or field references, for the values to be tested with the data 

structure identifier. For each expression, one or more acceptable data structure mappings are 

specified. The testing system is integrated into the jGRASP IDE. In processing a test file, the 

debugger is automatically started for each test and stopped at the specified line number. Each 

corresponding test expression is evaluated and the result is sent to the structure identifier. If the 

structure mapping with the highest confidence does not match one of the acceptable mappings, 

an error is reported. In this way, hundreds of data structure examples can be tested with no 

manual intervention. To simplify adding new examples to a test file, a developer version of the 

IDE has a feature that produces an XML version of the current structure mapping for a structure 

identifier viewer. 

Figure 21 shows an XML test file that verifies correct operation of the structure identifier 

when applied to a Java LinkedList instance. The test system is directed to debug 

ViewerTest.java, stop at line 7, apply the structure identifier to the value in the local variable 

"javaUtilLinkedList", and check that the mapping specified is identical to the highest-confidence 

mapping that the structure identifier produces. If the mapping does not match the highest-

confidence result, an error message will be reported. The test source file, shown in Figure 22, 

simply creates an empty LinkedList. A dummy assignment statement is added so that the 
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debugger has a place to stop after the linked list is created. This example is minimal for 

illustrative purposes. Starting the debugger repeatedly is time consuming compared to running a 

structure identifier evaluation, so typically, hundreds of test objects for different test classes 

would be created in a single source file, and the XML test file would specify tests for each of 

them from a single breakpoint location if practical. 

 

Figure 21. Structure identifier test file for a java.util.LinkedList. 

<?xml version = "1.0" encoding = "UTF-8"?> 

<SITestData> 

   <Filename>ViewerTest.java</Filename> 

   <ClassName>ViewerTest</ClassName> 

   <Breakpoint>7</Breakpoint> 

   <Variable> 

      <Name>javaUtilLinkedList</Name> 

      <Mapping> 

         <Type>LinkedList</Type> 

         <HeadExpression>_list_.header</HeadExpression> 

         <NextExpression>_node_.next</NextExpression> 

         <PreviousExpression>_node_.previous</PreviousExpression> 

         <ValueExpression>_node_.element</ValueExpression> 

         <NodeType>java.util.LinkedList$Entry</NodeType> 

      </Mapping> 

   </Variable> 

</SITestData> 
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Figure 22. Test source file for a java.util.LinkedList. 

 

5.4 Automated Tuning of the Structure Identifier 

The automated testing system described above has been extended, on an investigative basis, 

for use in the automated tuning of the structure identifier. The structure identifier mechanism 

uses various weights to determine confidence values. These may be related to structural or name-

based properties. In the development of the structure identifier, these weights were determined 

manually by trial and error, guided by intuition. Automated tuning attempts to determine values 

for these weights that will result in better structure identifier performance.  

The tuning system was implemented for the linked list identifying module of the structure 

identifier. The system operates in a similar way to the testing system, but the entire test file is run 

multiple times while the weights are adjusted between runs using simulated annealing. The 

objective function has the goal of high confidence for acceptable mappings and low confidence 

for others. The idea is that even if the structure identifier is successful when applied to a 

particular data structure implementation, if there is a large gap in confidence between correct and 

/** Structure identifier test file for LinkedList. **/ 

public class ViewerTest { 

 

   public static void main(final String[] args) { 

      java.util.List javaUtilLinkedList = new java.util.LinkedList(); 

      // Breakpoint on the following line. **/ 

      int dummy = 0; 

   } 

} 
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incorrect mappings then similar data structure implementations are more likely to be correctly 

recognized. For this to be meaningful, the test file must contain all possible acceptable mappings 

(while the testing system only needs those that the structure identifier is highly likely to 

produce). Thus, all mappings produced by the structure identifier for each example must be 

categorized as acceptable or unacceptable, most easily by selecting each of them in the structure 

identifier viewer configuration dialog while debugging, and examining the result. 

The objective function for the simulated annealing gives a high penalty when the confidence 

gap is below a certain value, which will be referred to as the "penalty minimum", for a test case, 

and essentially an infinite penalty when the structure identifier fails completely for a test case. 

Complete failure happens when all acceptable mappings are not recognized, or when there is at 

least one unacceptable mapping with a higher confidence than one acceptable mapping. These 

results are illustrated in Figure 23 for a test case with two acceptable mappings. If no failure 

conditions occur and the penalty minimum is not violated, then the objective function is simply 

the sum of the confidence gap for each test case, normalized to the minimum confidence of the 

acceptable mappings (this is a maximization function). The penalty for each gap that is greater 

than the penalty minimum is large enough so that results are stratified by the number of such 

penalties. In other words, all possible objective function values with n penalties are higher than 

all possible values with n+1 penalties. 
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Figure 23. Example mapping confidence result sets. 

The tuning system was used to determine the weights used in the current implementation of 

the structure identifier's linked list analysis module. For the testing set that was used, this 

resulted in a significant improvement in the value of the objective function over its value using 

the manually determined weights, even if penalty values are ignored. The number of penalty 

values went from a few percent of test cases to none. No validation was done to see if this 

improved the performance of the structure identifier on previously untested linked list examples, 

though intuitively this seems likely. 
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6 Evaluation 

The jGRASP Visualization System has been evaluated in three ways. First, the effectiveness 

of the structure identifier in recognizing data structures in previously unencountered code was 

formally tested. Second, formal code understanding experiments using the viewers were 

conducted. Third, feature utilization data from users was collected and analyzed. 

6.1 Structure Identifier Applicability to Arbitrary Source Code 

An early version of the structure identifier was tested against previously unencountered 

textbook examples in an experiment conducted by Lacey Montgomery in conjunction with other 

jGRASP team members including the author of this work [43]. The goal was to determine how 

well the structure identifier would perform against typical textbook data structure source code, 

which should be similar to student implementations. Examples from twenty English language 

data structures textbooks that provided working Java source code were used. Each of these had at 

least one stack, queue, linked list, and binary tree example, while some also had binary heap 

and/or chained hash table examples. For some textbooks, multiple examples for a single data 

structure that were judged to be sufficiently distinct were used. Each of these examples was 

tested by compiling the code, setting a breakpoint, and opening the relevant data structure 

variable in a viewer dialog. Where the initial test failed and the data structure was a wrapper 

class, the field referencing the contained data structure was opened in a viewer dialog. Where the 

initial test identified the structure type correctly but had some minor errors in the structure 

mappings, configuration using the structure identifier configuration dialog was attempted. 

68 
 



Before this testing, the structure identifier did not attempt to recognize stacks, queues, and 

binary heaps that used structures other than arrays to contain the elements. This obvious 

omission was noted and corrected before determining final results. Once this was done, 82% of 

the examples worked correctly. Another 10% were wrapper classes for which the structure 

identifier worked correctly on the field referencing the contained data structure. Another 5% 

worked correctly with minor manual configuration, most frequently the specification of the value 

expression. The remaining 3% failed with no simple correction evident through manual 

configuration. In Figure 24 these four categories of results are shown as "Pass", "Pass - open on 

field", "Pass - configure viewer", and "Fail" respectively, and the figure shows total and per-

data-structure result percentages in these categories. Table 3 shows per-data-structure result 

numbers for each result category. 

 

 

Figure 24. Structure identifier total and per-data-structure test result percentages [43]. 
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Table 3. Structure identifier per-data-structure test result numbers [43]. 

  Pass 
Pass - open on 

field 
Pass - configure 

viewer Fail Total 

Stack 20 4 0 0 24 

Queue 20 4 0 1 25 

List 36 0 1 0 37 

Tree 28 4 0 0 32 

Heap 11 1 1 2 15 

Hash Table 6 2 6 1 15 
 

Apart from the change noted above, there were some correctible weaknesses in the handling 

of wrapper classes for all data structures. These issues have since been corrected, and the 

structure identifier has been improved and tuned in many ways so that all of these examples are 

now correctly handled. The examples are still used in the automated regression testing for the 

structure identifier. Of course, the structure identifier will never recognize all possible data 

structures, since some may have unusual structure and/or unusual element names. Few cases 

have been found where it did not work with textbook data structure implementations or student 

code. Problems that were found have all been correctible, and have been corrected when 

encountered. 

6.2 Code Understanding 

Code understanding experiments involving the viewers were conducted by Jhilmil Jain in 

conjunction with other jGRASP team members including the author of this work [44] [7] [8], as 

the focus of her dissertation research. Although the structure identifier had not yet been 

developed when these experiments were performed, the viewers used were very similar in form 
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and capability to the current structure identifier viewer. They parsed the links in linked data 

structures to show actual structure including incorrect links, showed structure nodes referenced 

by local variables and method arguments, and used smooth transitions between states to show 

nodes moving into, out of, and among linked structures. 

For all six experiments described below, test and control groups were balanced based on two 

programming skills tests that were developed and given to the subjects prior to the experiment. 

The first test scored the subjects based on their ability to detect and correct 25 common logical 

errors in data structure implementations that were reported in the literature [45] [46]. The second 

test scored the subjects based on their ability to read and trace code, and used eight of the ten 

questions from the test given in a multi-institutional study of code reading and tracing skills in 

novice programmers [47]. Subjects were sorted and divided into pairs based on their total scores. 

For each pair, one subject was randomly selected and assigned to the test group, and the other 

was assigned to the control group.  

The first experiment tested the effect of the viewers on code development. Two groups of 

undergraduate computer science students were compared. Both had access to the jGRASP IDE, 

but for the control group the ability to launch viewers was disabled. Subjects were asked to 

implement delete(), insert(), contains(), and entry() methods for a linked list, where entry() is an 

indexed element access method. A skeleton linked list class was provided. For the control group 

only, this class included a method for generating a string representation of the list contents. 

Subjects were given unlimited time. The test group produced correct implementations more often 

than the control group for each one of the implemented methods. The difference was easily 

observable, as the test group had 23% more correct implementations on average. Average time 

taken by the test group was also slightly lower than for the control group. The difference in 
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accuracy between groups was statistically significant. Figure 25 shows the number of students in 

each group who correctly implemented each method. 

 

Figure 25. Number of students who correctly implemented each method in first experiment. 

The second experiment tested the effectiveness of the viewers for debugging purposes. As in 

the first experiment, both groups had access to the jGRASP IDE, but for the control group the 

ability to launch viewers was disabled. Subjects were asked to identify and correct bugs in add(), 

insert(), delete(), and contains() methods of a linked list, which was seeded with nine bugs. 

Subjects were again given unlimited time. The test group identified more bugs, corrected more 

bugs, and introduced fewer new bugs than the control group. Differences were easily observable, 

as the test group identified bugs 20% more accurately and corrected bugs 15% more successfully 

than the control group, and introduced half as many new bugs as did the control group. Average 

time taken by the test group was slightly higher than for the control group. The difference in 

accuracy between groups was statistically significant. Figure 26 shows the number of students in 

each group who correctly performed each task (identified all bugs, corrected all bugs) and who 

did not introduce new bugs in each method. 
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Figure 26. Number of students who correctly completed each task in second experiment. 

The third and fourth experiments performed focused on binary tree data structures. In the 

third, subjects were asked to implement a breadth-first traversal. In the fourth, they were asked to 

identify and correct bugs in methods for adding an element, removing an element, in-order 

traversal, post-order traversal, and searching the tree. As in the first two experiments, differences 

in average accuracy/success between the test and control groups were significant in size and 

were statistically significant. Unlike the first two experiments, average time taken by the test 

group was considerably lower than for the control group. Figure 27 shows the average raw score 

for the third experiment and the average score on each task in the fourth experiment. 

 

Figure 27. Average accuracy scores over all students for third and fourth experiments. 
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In the four experiments described above, students had prior instruction and presumed 

understanding of the concepts related to the data structures used and experience with their 

implementation. In a fifth experiment, subjects were asked to convert a min heap to a max heap 

and implement addElement(), removeMax(), and findMax() methods. Subjects had received 

classroom instruction on the concept of min-max heaps, but had no experience with their 

implementation. In a sixth experiment, subjects were asked to implement the add method for a 

linked priority queue, for which they had no prior conceptual knowledge or implementation 

experience. Results for these two experiments were also positive and differences in accuracy 

between groups were statistically significant. Average raw accuracy scores for these two 

experiments are shown in Figure 28. 

 

Figure 28. Average raw accuracy scores over all students for fifth and sixth experiments. 

6.3 Usage 
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included data collection were first released in November of 2011. Because some older versions 

are still in use, data was collected for about 50% of all users for the first four months of 2014. 
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days where it was down for a period of time that was long enough to cause a noticeable change 

in reported statistics, the total number of daily data collection sets recorded was adjusted based 

on weekly trends. Some of the feature usage numbers below were similarly adjusted if necessary, 

for example to prevent the three misleading outliers that would otherwise appear in a per-day 

scatter plot. Other numbers were not adjusted. Down time was less than 0.3% so the effect on 

reported total numbers and percentages below is not significant. 

The data collected consists of counts of the number of times various features are used by one 

account in one day. Multiple users may use one account and single users may use multiple 

accounts, but this should be infrequent, so the counts should approximate per-user-per-day usage 

and they will be discussed below in these terms. For the analysis here, the counts of interest are 

number of Java compiles, number of Java debug sessions started, and number of viewers 

launched. Figure 29 shows per-day viewer use as a percentage of per-day debugger use from 

January 1, 2011 to May 13, 2014, as a seven day moving average. Of the users who debugged a 

Java program one or more times on a particular day, this is the percentage who opened at least 

one viewer. Yearly averages for this value are 25% in 2012 and 2013 and 28% for January 1 to 

May 13 of 2014. Thus, among users who do use the debugger, the viewers are fairly well utilized 

and have been for several years. Full implementation of the canvas is recent enough that any 

correlation with viewer utilization cannot yet be determined. 
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Figure 29. Viewer use as a percentage of debugger use, seven day moving average. 

Because the number of jGRASP users is quite large (approximately 15,000 per weekday in 

the middle of academic semesters), the variability in viewer use as a percentage of debugger use 

per day seen in the graph is somewhat unexpected. Since most users are college or high school 

students, one possible cause is that some programming assignments benefit more from viewers 

than others, and many classes cover identical topics at approximately the same time. Several 

variables were examined for correlation with viewer use. The strongest correlation is with 

debugger use itself. That is, on days when the debugger is heavily used, viewers are used more 

often than average per debug session. Figure 30 shows the relationship between total number of 

viewers launched and total number of debugger sessions started, from January 1, 2012 to May 

13, 2014. Each dot represents one day. The x value is the total number of times the debugger was 

started as a fraction of the total number of times a Java program was compiled. The y value is the 

total number of times a viewer was opened as a fraction of the total number of times the 

debugger was started. The correlation between these values is fairly strong, r = .76. One possible 
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contributing factor to this correlation may be that assignments that benefit from debugger use 

also benefit from viewer use. Another factor may be that in some classes students are encouraged 

by their instructors to use the viewers for some assignments, and thus viewer use is driving 

debugger use during times when those assignments are given. 

 

Figure 30. Correlation between viewer use and debugger use. 

Total counts and at-least-once-per-user-per-day counts for Java compiles performed, debug 

sessions started, viewers launched, and structure identifier viewers launched for 2013 are shown 

in Table 4. Debugger use per-day was slightly less than 10% of Java compiler use per-day, so 

use of the debugger among users (who are mostly students) is fairly low, though this has 

improved somewhat in 2014. Viewer use per day was 25% of debugger use per day, as reported 

above, so when the debugger is used, utilization of the viewers is quite high. 46% of viewers 

opened were structure identifier viewers. Note that the structure identifier viewer is the default 

when a viewer is opened on a value for which the structure identifier mechanism does recognize 

a data structure, so this gives some sense of the number of viewers that are opened on the data 

structures supported by the structure identifier relative to those opened on values with simpler 

types or unsupported data structure types. In total, 340,717 viewers including 155,910 structure 
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identifier viewers were opened. Note that these counts only include users who agreed to data 

collection. In 2013 recorded data collection uses comprised 44% of total recorded uses, so the 

actual totals should be over twice as high. This indicates that the visualization system and 

structure identifier viewers are very well tested by users. The jGRASP IDE automatically reports 

(with user approval) uncaught exceptions due to internal bugs, so undetected coding bugs in the 

system should be rare. Minor behavioral bugs in the viewers may persist because users will 

typically not actively report bugs unless they have a significant impact on usability. 

Table 4. jGRASP feature use in 2013. 

 Java 
Compiles 

Debug 
Sessions 

Viewers 
Opened 

Structure 
Identifier 

At Least Once Per-User Per-Day 976,911 96,415 24,557 16,295 

Total Count 26,277,766 512,820 340,717 155,910 

 

Table 6Table 5 and Table 6 show feature use in 2012 and 2014 (January 1 to May 13) 

respectively. Figure 31 shows yearly trends in per-day debugger use relative to compiler use (at 

least one use per-user per-day), total number of viewers launched relative to total number of 

compile operations done, and total number of structure identifier viewers launched relative to 

total number of viewers launched. Each of these numbers has increased somewhat from year to 

year. 
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Table 5. jGRASP feature use in 2012. 

 Java 
Compiles 

Debug 
Sessions 

Viewers 
Opened 

Structure 
Identifier 

At Least Once Per-User Per-Day 701,016 60,759 15,350 8,612 

Total Count 19,941,355 340,538 212,714 91,416 

 

Table 6. jGRASP feature use January 1 to May 13, 2014. 

 Java 
Compiles 

Debug 
Sessions 

Viewers 
Opened 

Structure 
Identifier 

At Least Once Per-User Per-Day 473,097 55,617 15,393 12,089 

Total Count 12,591,850 310,851 220,952 111,822 

 

 

Figure 31. Debugger, viewer, and structure identifier use trends. 
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7 Summary and Conclusion 

The jGRASP Visualization System is a unique tool that produces high-level data structure 

visualizations, and other visualizations of program values. Studies on the effects of algorithm 

animations and data structure visualizations on algorithm and code understanding have shown 

mixed results, though a majority of them appear to be positive and few are strongly negative. 

Algorithm animations have been more heavily studied than data structure visualizations. The 

limitations of testing and the overhead of using a visualization system may have had an adverse 

effect on some studies. Experiments using the jGRASP Visualization System that focused 

primarily on code understanding showed positive results. 

Many tools have similar features to the jGRASP Visualization System. Those that produce 

similar high level data structure diagrams automatically do so only for built-in or previously 

known program types, or require considerable user effort to do so for arbitrary program types. 

Those that produce visualizations for arbitrary program types automatically or with little effort 

typically display them only as object nodes with reference links between them. The system 

described in this work is unique in that it automatically produces high-level textbook-like data 

structure diagrams from arbitrary source code for common data structures. The visualization 

system is also tightly integrated into the jGRASP IDE, allowing the visualizations to interact 

with many aspects of the debugger, including the workbench system and interpreter-like 

interactions system. The IDE is very much an integrated whole rather than a collection of 

separate tools that are launched from a common user interface. 
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Data structure and other type visualizations in the system are provided through viewers. Each 

viewer displays a single value. Values can be associated with a viewer directly (value-based) or 

through a source code expression that is evaluated to produce the value as needed (expression-

based). By default, the expression for an expression-based viewer is only evaluated when the 

program is in the same scope as it was when the viewer was created. When it is in a different 

scope, only changes to the internal structure of the value are shown. 

Viewers may be displayed separately in viewer dialogs, or multiple viewers may be 

combined on a canvas. In either case a subviewer allows sub-components of displayed values to 

be quickly examined. The canvas allows viewers to be arranged for the purpose of understanding 

data structures, algorithms, and their implementations in source code, or for repeatedly 

debugging a program or evaluating aspects of its performance. This arrangement can be saved to 

file for later use or for distribution. The canvas also provides video-player style controls (play, 

pause, etc.) so that an example program and associated canvas can be treated as a program 

animation to be used for understanding or illustrative purposes. Such an animation can be created 

simply by running a program in debug mode, opening a new canvas, dragging debugger values 

onto the canvas, arranging the resulting viewers and configuring them if necessary, and saving 

the arrangement as a canvas file. 

An extensive set of viewers for Java is provided. General purpose "Basic" and "Detail" 

viewers display object fields and array elements in rows and in an expandable tree format, 

respectively, as well as a simple text representation for primitive values. The "Detail" viewer 

uses icon color to indicate the relationship between the declaring type of a field and the declared 

type of the object that contains it. A colored bar shows field accessibility and visibility. The 

effective declared type and effective debugger scope for the detail viewer can be changed in 
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order to explore the effects of such changes on accessibility, visibility, and type relationships. 

For Java library classes and user classes that implement the java.util.Collection or java.util.Map 

interfaces, interface-based viewers display text values for the elements or keys and values, 

respectively. For linked lists, binary trees, hash tables, and array-based data structure classes in 

the Java collections classes, "Presentation" viewers display their internal structure, though this is 

for illustrative purposes only and cannot be used to explore the internal workings of these 

structures. This restriction allows these viewers to be fast enough to display structures with 

arbitrarily large numbers of elements. Other type specific viewers for primitive types, strings, 

colors, images, etc. are provided. 

The structure identifier viewer automatically detects linked lists, binary trees, chained hash 

tables, and array and list-based structures such as stacks and queues, in arbitrary data structure 

code. It then displays these values in a format similar to that of the presentation viewers, by 

showing internal structure in the way a typical textbook data structure diagram would. Unlike the 

presentation viewers, the structure identifier viewer fully traverses data structure links and other 

internal structure, so that it can be used to explore the workings of these data structures and 

associated algorithms. To further that purpose, the structure identifier viewer uses color to 

highlight incorrect links in linked structures and to show changes to the structure elements from 

one debugger state to the next. For linked structures, any structure nodes referenced by local 

variables or method arguments in the current debugger context are displayed along with the main 

structure in the viewer, or reference links are shown if the referenced nodes are in the main 

structure. Nodes are shown moving smoothly between and among the main structure, local 

variables, and method arguments as the debugger progresses from state to state. 
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Viewers are added to the system through a plugin API. The API provides many support 

classes to simplify the creation of viewers and encourage consistency of display (colors, edge 

thicknesses, node display format, etc.) among different viewers. The jgrdi portion of the API is a 

debugger API specifically targeted at viewer use. This frees viewer implementation code from 

having to deal with the extensive error handling needed when working with many debugger 

APIs,  and the details of type structure that are irrelevant to typical use in a viewer. It also allows 

viewer implementations to be written in way that may be completely or largely independent of 

the target language. The underlying target-dependent debugger API and API values can be 

accessed, if necessary, for viewers that are purposefully dependent on the target language or 

system implementation. 

The structure identifier viewer maintains a set of mapping expressions used for data structure 

traversal and to determine data structure display properties. The data structure display category 

(linked list, binary tree, chained hash table, array or list-based structure) and mapping 

expressions are automatically determined by matching the structure of the runtime type of a 

value to be displayed with a type reference pattern. The system contains recognition modules for 

linked lists, linked binary trees, chained hash tables, binary heaps (to be displayed as binary 

trees), and array or list-based structures. Multiple mapping candidates are produced, each with a 

confidence value that depends on the strength of the match to the type reference pattern used, 

and to the expected class and field (or accessor method) names of the matched elements. The 

mapping with the highest confidence will be used by default, but the user may select from others 

that are sufficiently high. When a value is initially opened in a viewer, if that maximum structure 

identifier mapping confidence is below a critical value, another general-purpose viewer will be 
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used instead. Users may also directly edit the mapping expressions that were automatically 

determined, or they may select a display category and specify all of the expressions manually. 

Automated regression testing aids in the maintenance and development of the structure 

identifier mechanism. A test file contains mapping expressions for hundreds of different data 

structure implementations, as well as directions for running the debugger on classes that contain 

those data structures. During a testing operation, the structure identifier is applied to each data 

structure example and if the highest-confidence mapping that it finds is not one specified in the 

test file (more than one may be acceptable for each data structure example), an error message is 

reported. This system was experimentally extended to optimize the weights used internally by 

the structure identifier linked list recognition module, by running it repeatedly while adjusting 

the weights using simulated annealing. The objective function had the goal of a maximum 

average gap in confidence between acceptable and unacceptable mappings. The value of the 

objective function on the test cases used was greatly improved, and the weights determined by 

this experiment were used in the final system. No verification was done to determine whether or 

not this improved data structure identifier performance on previously unencountered linked list 

code, though intuitively this seems likely. 

The jGRASP viewer system was evaluated in several ways. The structure identifier 

mechanism was tested against previously unencountered data structure examples from twenty 

textbooks (the author of this work was not the primary investigator for these tests). After 

correcting one obvious shortcoming of the system that was not specific to these examples, 82% 

of the data structures were identified correctly. Another 10% were displayed correctly when a 

viewer was opened on a field of the structure (the wrapper class was not correctly recognized), 

5% had problems that were easily correctible through manual configuration, and 3% failed 

84 
 



completely. The system has been improved since then and now works correctly for all of these 

examples (all of which are used in the automated regression testing). 

Code understanding experiments (for which the author of this work was not the primary 

investigator) were done to evaluate the usefulness of viewers in an earlier version of the system, 

which were similar in form to the current structure identifier viewers.  For each experiment, 

subjects were separated into a test group that had access to the viewers and a control group that 

did not. For various data structure examples, they were asked to implement data structure 

methods or find and correct bugs in data structure methods. In four of these experiments all 

subjects had prior conceptual knowledge of and implementation experience with the data 

structures, for one they had conceptual knowledge only, and for one they had neither conceptual 

knowledge nor implementation experience. Results for all experiments were positive and 

statistically significant. 

Viewer utilization by end users was also evaluated. Approximately 60% of users consent to 

data collection the first time they run jGRASP, and this represents about 50% of current users 

(because older versions that did not have data collection are still in use). Data from January 1, 

2012 to May 13, 2014 was analyzed. Viewer use relative to debugger use was encouragingly 

high. On average, when a user started the debugger at least once in one day, 25% of the time they 

also opened at least one viewer on that day. Debugger use itself was quite low however, at about 

10% of Java compiler use on a per-user per-day basis. Viewer use as a fraction of debugger use 

was highest on days when the debugger itself was heavily used. Hundreds of thousands of 

viewers, including hundreds of thousands of structure identifier viewers, were opened by users 

each year, indicating that the viewer system and structure identifier mechanism are well tested. 
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Debugger usage and viewer usage have been gradually increasing since data collection was 

initiated. 
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8 Future Goals 

The most important goal for the future of the jGRASP Viewer System is to extend its use to 

languages other than Java, and thereby greatly expand its potential user base. Plans are to create 

a low-level Java wrapper (debugger API) for the text-based GDB/MI [48] (GNU debugger 

machine interface) -based debugger, create a debugger core using the wrapper API, and add 

support to the viewer system for C, C++, and Objective-C at a minimum. Although the viewer 

system has been created with language-independence in mind, it has only been used for Java, and 

changes will need to be made to support languages with features, such as multiple 

implementation inheritance, that Java does not have. Such language features were planned for 

during development of the system but never tested, and many mechanisms that would be needed 

only for languages other than Java were left unimplemented. 

A second major goal is to embed the viewer system in plugins for the most popular IDEs in 

use, most importantly, Eclipse. Current commercial-strength IDEs such as Eclipse have 

enormous numbers of features and plugins. Professional users are unlikely to use a light-to-

medium-weight IDE such as jGRASP, even if it does have unique and useful features that are not 

available elsewhere. Many instructors also select an IDE for their students, as a recommendation 

or requirement, with an eye to future professional use. Using jGRASP for visualization in 

parallel with another IDE is possible, but awkward for large projects. Providing the viewers 

through IDE plugins would greatly expand their potential user base. This goal could be largely 

achieved by creating plugins for the viewer system only. The debuggers built into these IDEs do 
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not have all the capabilities necessary for full-featured and tightly-integrated viewers though, so 

full jGRASP debugger plugins may be a better option. This would also allow other debugger-

related features, such as the workbench and interactions, to be included with the plugins. 

A minor but more immediate goal is to add the capability for display of dependencies 

between viewers in a canvas. This would be optional on a per-viewer basis. Viewer 

implementation classes could provide a list of exposed external references and a list of internal 

object targets (where one target would generally be the value associated with the viewer, if that 

value is an object) and target locations. The viewer system would automatically display reference 

arrows between matching references and targets. The most likely default option would be for 

references to be shown only for the viewer, if any, which is selected on the canvas. For values 

dragged from other viewers onto the same canvas, the reference arrows between them would be 

displayed at all times by default. Thus, the basic viewer could operate similarly to the 

visualizations in DDD, where the display of linked structures can be expanded node-by-node. 

The resulting structure displayed by a group of viewers would also operate in some sense as a 

single entity. For example, deleting the initial viewer would delete the rest of the group, and 

previously expanded reference node chains would be recorded and restored as the data structure 

loses and gains nodes. 
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Appendix A Structure Identifier Mapping Expressions 

For each structure type, the mapping expressions, their meanings, and the synthetic variables 

available in the expressions are specified. Expressions marked (multiple) can have an arbitrary 

number of expressions separated by hashes (#), and the number of expressions must be 

consistent among such expressions. For each structure, the meanings of the synthetic variables 

are described. Note that the hash table mappings support non-chained hash tables, but the 

structure identifier does not look for them. 

Table 7. Array-and-list-based structure expressions. 

Expression Meaning of Evaluation Result Synthetic Variables 

Element Count The number of elements. _struct_ 

Element Used For each element, true if its value is 
significant and false otherwise. If blank, all 
elements will be displayed as significant. 

_struct_, _index_ 

Element The value of an element. _struct_, _index_ 

Element Text The display text for an element. If blank the 
default will be used. 

_struct_, _index_, _value_ 

Index A list of expressions for which index pointers 
into the structure will be shown. If blank, 
there will be no index pointers. 
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Table 8. Array-and-list-based structure synthetic variables. 

Synthetic Variable Meaning 

_struct_ The structure itself. 

_index_ The index of the relevant element in the array or list. 

_value_ The value of the relevant element. 

 

Table 9. Linked list structure expressions. 

Expression Meaning of Evaluation Result Available Synthetic 
Variables 

Head Node The head of the list. If blank, the list value itself 
is the head node (there is no wrapper). 

_list_ 

Next Node For each node, the next node in the list, or null if 
there is no next node. 

_list_, _node_ 

Previous Node For each node, the previous node in the list, or 
null if there is no previous node. If blank, the list 
is singly-linked. 

_list_, _node_ 

Value (multiple) The value or values associated with each node. _list_, _node_, _value_ 

Node Text 
(multiple) 

The display text for the value or values 
associated with a node. If blank, the defaults will 
be used. 

_list_, _node_, _value_ 

Node Class The class name for nodes. If blank, nodes 
referenced by local variables will not be 
displayed. 

 

 

Table 10. Linked list synthetic variables. 

Synthetic Variable Meaning 

_list_ The list structure itself. 

_node_ The relevant node. 

_value_ The value of the relevant node. 
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Table 11. Binary tree structure expressions. 

Expression Meaning of Evaluation Result Available Synthetic 
Variables 

Root Node The root of the tree. If blank, the tree value 
itself is the root node (there is no wrapper). 

_tree_ 

Left Node For each node, the left child in the tree, or null 
if there is no left child. 

_tree_, _node_ 

Right Node For each node, the right child in the tree, or null 
if there is no right child. 

_tree_, _node_ 

Value (multiple) The value or values associated with each node. _tree_, _node_ 

Node Text 
(multiple) 

The display text for the value or values 
associated with a node. If blank, the defaults 
will be used. 

_tree_, _node_, _value_ 

Dummy Node The dummy sink node for the tree. If blank, the 
tree does not have a sink node. 

_tree_ 

Node Color The display color for the node, in rgb integer 
format. If blank, the default color will be used. 

_tree_, _node_ 

Node Class The class name for nodes. If blank, nodes 
referenced by local variables will not be 
displayed. 

 

Array Size If the tree has an associated array or list (as a 
binary heap would), the array or list size. If 
blank, there is no associated array. 

_tree_ 

Array Element If the tree has an associated array, the value for 
an element. If the expression is preceded by a 
hash symbol (#), then the result is a node in the 
tree and the value expression will be applied to 
it to determine the display value. 

_tree_, _index_ 

Array Field If the tree has an associated array which is 
stored in a field of the tree structure, the name 
of that field. If blank, there is no associated 
array or it is not stored in a field of the 
structure. 

_tree_ 
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Table 12. Binary tree synthetic variables. 

Synthetic Variable Meaning 

_tree_ The tree structure itself. 

_node_ The relevant node. 

_value_ The value of the relevant node. 

_index_ The relevant index in the associated array. 

 

Table 13. Chained hash table structure expressions. 

Expression Meaning of Evaluation Result Available Synthetic 
Variables 

Element Count The number of list slots in the table. _table_ 

Element The element chain for each slot. _table_, _index_ 

First Node The first node in a chain for a slot. If blank, 
the element chain is the first node (there is no 
wrapper). 

_table_, _element_ 

Next Node The next node in a chain. If blank, the hash 
table is not chained. 

_table_, _element_, _node 

Value (multiple) The value or values associated with each 
node. 

_table_, _element_, _node 

Node Text 
(multiple) 

The display text for the value or values 
associated with a node. If blank, the defaults 
will be used. 

_table_, _element_, 
_node, _value_ 

Node Class The class name for nodes. If blank, nodes 
referenced by local variables will not be 
displayed. 

 

 

97 
 



Table 14. Chained hash table synthetic variables. 

Synthetic Variable Meaning 

_table_ The hash table structure itself. 

_element_ The relevant chain. 

_node_ The relevant node. 

_value_ The value of the relevant node. 

_index_ The relevant slot index. 

 

98 
 



Appendix B Viewer Class Naming Scheme 

The class name of a viewer plugin indicates the target type for the viewer, which in turn 

specifies the types to which the viewer will apply as described in section 3.1. In order to avoid 

conflict with unrelated portions of the class filename and to support characters that are not 

allowed in filenames on some systems, type names that appear in these class names use 

replacements for some characters and strings. The wildcard type is represented internally by an 

asterisk (*), and also has a string replacement in the class name. The replacement strings are 

shown in Table 15. 

Table 15. Viewer class name string replacements. 

String Name String Replacement String 

dot . __ 

underscore _ _U 

dollar sign $ _S 

array braces [] _A 

wildcard * _X 
 

Viewer class names consist of the target type name followed by a single underscore, arbitrary 

text, and finally the word "View". The requirement for the word "View" prevents any possibility 

of supporting classes (which should not end in "View") being misidentified as top-level viewer 

classes. Some example viewer class names and their corresponding target type names are shown 

in Table 16. 
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Table 16. Example viewer class names and target types. 

Viewer Class Name Target Type 

byte_ByteView byte 

java__lang__String_FormattedView java.lang.String 

long_A_A_SimpleView long[][] 

_X_BasicView * 

_X_A_ToStringView *[] 
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Appendix C Selected Viewer API Method Summaries 

Table 17. Viewer interface method summaries. 

Modifier and Type Method and Description 

void build(ViewerInitData vid, org.w3c.dom.Element initDataIn)  

Builds the viewer non-GUI internals. 

void destroy()  

Called when the viewer is closed or frozen. 

void getInfo(ViewerInfo vi)  

Retrieves optional information about the viewer, such as a text 
description. 

int getPriority(ViewerPriorityData vpd)  

Gets the viewer priority. 

java.lang.String getViewName()  

Gets the display name of the viewer. 

boolean toXML(org.w3c.dom.Document doc, org.w3c.dom.Element e)  

Stores the state of the viewer in an XML dom element. 

void update(ViewerValueData valueData, ViewerUpdateData data, 
DebugContext context)  

Updates the view. 
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Table 18. Value interface method summaries. 

Modifier and Type Method and Description 

void disableCollection()  
Prevents garbage collection for languages that have garbage collection. 

void enableCollection()  
Allows garbage collection for languages that have garbage collection. 

Type getArrayComponentType(DebugContext context)  
Gets the type of the elements of this value if it represents an array. 

Value getArrayElement(DebugContext context, int index)  
Gets the value of an array element if this value represents an array. 

java.util.List<Value> getArrayElements(DebugContext context)  
Gets the values in an array if this value represents an array. 

java.util.List<Value> getArrayElements(DebugContext context, int offset, int length)  
Gets the values in an array if this value represents an array. 

int getArrayLength(DebugContext context)  
Gets the array length if this value represents an array. 

java.lang.String getDescription(java.lang.String title, Type declaredType, 
java.lang.String refPrefix)  
Gets a text description of the value. 

Value getFieldValue(DebugContext context, Field f)  
Gets the value of a field. 

Value getFieldValue(DebugContext context, java.lang.String fieldName)  
Gets the value of a field. 

Method getMethod(DebugContext context, java.lang.String methodName, 
java.lang.String returnType, java.lang.String[] argumentTypes)  
Gets a method that can be invoked on the object. 

java.lang.Object getNativeValue()  
Gets the native representation of this value, for use with viewers that 
need to do special-case handling of debugger-specific values. 

Type getType(DebugContext context)  
Gets the type of this Value. 

long getUniqueID()  
Gets a unique id if applicable. 
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java.lang.String getValueString()  
Gets a source code representation of the value, if there is one. 

Value invokeMethod(DebugContext context, Method method, 
Value[] arguments)  
Invokes a method. 

boolean isArray()  
Determines if this value is an array. 

boolean isInstanceOf(DebugContext context, java.lang.String typeName)  
Determines if this value is an instance of some class or interface. 

boolean isNull()  
Determines if this value is the null object. 

boolean isObject()  
Determines if this value is an object, as opposed to a primitive. 

boolean isPrimitive()  
Determines if this value is a primitive. 

boolean isSame(Value v)  
Determines if this value is the same as another. 

boolean isSameNaN(Value v)  
Determines if this value is the same as another, where all numeric 
values with identical binary representations are considered equal. 

void setFieldValue(DebugContext context, Field f, Value value)  
Sets the value of a field. 

void setFieldValue(DebugContext context, java.lang.String fieldName, 
Value value)  
Sets the value of a field. 

boolean toBoolean(DebugContext context)  
If the value is a type that can have true and false values, returns the true 
or false value. 

byte toByte(DebugContext context)  
If the value is a type that can be represented as a byte, returns that value. 

char toChar(DebugContext context)  
If the value is a type that can be represented as a char, returns that value. 
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double toDouble(DebugContext context)  
If the value is a type that can be represented as a double, returns that 
value. 

float toFloat(DebugContext context)  
If the value is a type that can be represented as a float, returns that 
value. 

int toInt(DebugContext context)  
If the value is a type that can be represented as an int, returns that value. 

long toLong(DebugContext context)  
If the value is a type that can be represented as a long, returns that value. 

short toShort(DebugContext context)  
If the value is a type that can be represented as a short, returns that 
value. 

java.lang.String toString(DebugContext context)  
Gets a string representation of the value, suitable for display. 
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