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Abstract 

 

      This work applies to structural optimization within geometric constraints of braided 

truss structures. Prototypes of the newly developed open-structures have proven useful for their 

high specific stiffness and rapid manufacturing. Current prototype development has principally 

been based on trial-and-error and has yielded great improvements. The properties of the 

structures continue to improve with design changes. To date, no rigorous design tools have been 

able to predict the structure properties or to suggest advances in the design of optimal structures 

within the constraints of the braiding process. The results of this thesis provide tools for both 

those objectives and implement them in software. 

    The computational tools carry the analysis of Open-Architecture Composites Structures 

(referred to equivalently as O-ACS, open-structures, or simply ‘structures’) from concept and 

initial constraints, to optimal design. Beginning with the specification of a braiding machine, a 

geometry model is constructed which can replicate any O-ACS tube the specified machine can 

manufacture. The geometry model is discretized into finite elements, where the nature of 

composite yarns is leveraged using beam elements to create an efficient mechanics model of the 

geometry. The Finite Element (FE) model is validated against a wide range of O-ACS 

specimens, and is capable of predicting the stiffness of the tubes in bending and torsion to within 

5.7% and 8.4%, respectively, across the range tested. For various reasons including 

manufacturing and testing imprecision, the model cannot accurately predict axial stiffness (60% 

error across the range tested). Open-structure tubes were found to be significantly more rigid 
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than equal weight composite and aluminum thin-walled tubes in asymmetric loading scenarios 

such as bending and torsion. Particularly the ability to increase diameter of O-ACS without 

significant change in mass allows it to exceed the specific stiffness of commercially available, 

equal weight, competitors. The FE model is wrapped in an optimization routine, in which it can 

be used to predict the highest specific stiffness structure, given a target weight and known 

applied loads. The optimized O-ACS tubes’ specific stiffness is predicted to be seven times that 

of a commercial filament-wound competitor in bending stiffness, and four times in torsional 

stiffness. All these tools, programmed in MATLAB, have been combined into an accessible 

Graphic User Interface (GUI) which allows any engineer easy access to the geometry simulation, 

finite element analysis, and optimization abilities of this work. 
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Summary and Outline 
 

Open-Structures as Lattice Reinforcement 

     Open-Architecture Composite Structures 

are a new and novel use of composites for 

minimal weight component design. 

Historically, trusses and lattices have been 

proven to yield higher specific stiffness and 

strength than continuous materials. Even 

before the first well-documented attempt at 

structural optimization (Michell, 1904), 

engineers have known strength can be gained 

from geometry more efficiently than by 

simple addition of raw material and mass. These concepts can be deduced from sources as loose 

as intuition, observations of nature, or rigorously from first principles such as general relativity 

(Vasiliev & Gurdal, 1999). While large structures like bridges and buildings can be made of 

trusses easily, there are few building materials (tubes, beams, sheets) which utilize truss or lattice 

reinforcement design. This is mostly an economic issue, as smooth shapes lend themselves to the 

faster manufacturing processes and tighter quality controls. A few exceptions exist, for instance; 

NASA has developed grid reinforcement for spacecraft (McDonnell Douglas Astronautics 

Company, 1973), the results of which is still used in rocket design. Some manufactured truss 

structures have been designed, but are not currently economically feasible due to complicated 

manufacturing involved (Jensen, Jensen, & Howcraft, 2010). O-ACS has the benefit of truss 

geometry, while utilizing the conventional maypole braiding process for speed. The details of 

initial development of the O-ACS can be found in the work of David Branscomb (Branscomb, 

Minimal Weight Composites Utilizing Advanced Manufacturing Techniques, 2012). The 

technology is patent pending, covered by US 20130291476 A1 Minimal Weight Composites 

Using Open-Structure. An example of a typical O-ACS tube is shown in Figure 2. 

Figure 1 - O-ACS tube during manufacturing 
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Figure 2 – Example of an open-structure composite beam 

Design Tool Development Process 

      Casual observation shows that the open-structure concept is that of an ‘optimized beam’ 

problem. The structures are long compared to their width, and are usually tubular in form.  They 

will be typically loaded by forces applied to their axial end-points, and likewise constrained by 

them. The objective then is to design ideal open-structure tubes based on known loading 

conditions. Because the objective of O-ACS is minimal weight composites, ‘Ideal’ will generally 

take the form of ‘highest specific stiffness’ within design constraints such as loading conditions, 

manufacturing, and strength requirements. The objective of this research is to create a complete 

computer toolset, named fell_point, which will allow the design of O-ACS structures. To ensure 

the accuracy of the computational models, a thorough test of a sampling of structure geometries 

in a sampling of loading conditions will be constructed. The data from these experiments will be 

used to validate the numeric model. After this validation, the model will be a design tool which 

can assist in the rapid development of O-ACS, and consequently allow potential users of the 

technology the ability to test its utility in their desired application. 

     The process for design tool development has been outlined in the flowchart of Figure 3. The 

following paragraphs summarize each block. The components which form the basis of this thesis 

are dark blue; the chapters which detail their creation is noted in the figure.  
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Figure 3 – Flowchart of O-ACS Design Tool Development 

Customer Requirements and Design Constraints 

     Customer requirements will determine both the scope and limits of the design. Desired 

loading conditions come from the expected implementation of open-structures as struts or beams.  

From the desired loading conditions, the Finite Element Analysis (FEA) model constraints will 

be simplified and characterized. Test methods will be utilized that correspond to these loads for 

model validation and characterization of the open-structure. Manufacturing constraints expose 

the feasible bounds of O-ACS design. The manufacturing limits imposed when braiding, and 

farther limitations if a particular braiding machine is used, will guide the geometry modeling. All 

the desires of the end-user (customer) are incorporated in the optimization. The machine will 

limit the initial conditions of the optimization statement. The required deflection and strength 

characteristics will impose bounds on the optimal design. More detail on the mathematical 

statement of these constraints can be found in Chapters 2, 3, and 4.  
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Experimental Parameters and Validation 

 A test-matrix of structures has been designed to test open-structure configurations through a 

wide range of useful sizes and configurations. The selection of samples is made to fully utilize 

the range of manufacturing capabilities, while ensuring a designed experiment model can be 

accurately derived from the results. Some constraints are limited by the braiding process, others 

by the particular braiding machine in use, and still others by geometric relationships among 

yarns which make up the structure. A thorough set of tests provides enough data to interpolate 

smoothly between the variable for prediction of structure properties. An empirical model will be 

fitted to the experiments, which will yield insight into the importance and the interactions among 

design variables. These physical trends will be compared to the FE model predicted properties 

for validation of the computer model. The details of the samples tested, the testing methods 

employed, and the result are detailed in Chapter 5 and 6. 

Computation Model and Optimization 

     The primary contribution of this work to the development of O-ACS as a feasible engineering 

material is in predictive modeling of the structure behavior. The computational model must 

incorporate the geometric constraints of Maypole braiding and the particular machine used. It 

must also utilize the material properties of the constituent yarns for stiffness and strength 

characteristics. The geometry and material combined are analyzed using the finite element 

method. The finite element model is explored in Chapter 3 and 4. The model uses beam element 

formulations to represent both the yarns and joint intersections, allowing accurate geometry 

preservation as well as fast solutions (for optimization work). To ensure the model is truly 

capable of accurate prediction, it is compared against the full range of samples (Chapter 6). The 

model is shown to accurately predict the stiffness of O-ACS tubes in axial, bending, and 

torsional loading scenarios.  

     The ultimate goal of this work lies in the optimization component. Using the FE model, the 

yarn properties, and structure design requirements, the optimal O-ACS solution will be found. 

The details of the optimization method are given in Chapter 7. Because this component of the 

model is the end goal of this research, it is worth keeping in mind when considering the 

preceding chapters (which are all leading to this goal). The thesis mission can be stated as 

follows: 
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To create design tools, useful to an engineer unfamiliar with the intricacies of O-ACS design, 

which compute optimal stiffness-to-weight O-ACS geometries – within constraints of design 

loads, a machine definition, and material properties.  
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Braided Lattice Geometry Model 
 

     The initial concern in creating open-structure simulation is to adequately reproduce the 

structure geometry mathematically. The mathematical model must be capable of generating 

geometries based on the machine parameters and settings, incorporate the effects of compression 

against a mandrel, and be organized such that the model is accessible to the Finite Element tools 

developed later. Because of the novelty of O-ACS, there is essentially no useful literature on the 

production of O-ACS geometries. Most braid geometry models are concerned with fabrics that 

have very fine fibers; these models are not capable of producing the large undulations found 

within the O-ACS tubes (Ko, Pastore, & Had, 1989). Some simulations have been created that 

directly calculate the exact motions of a braiding machine and the interlacing of the yarns onto a 

surface. Simple models are capable of solving these motions for fine yarns (Akkerman & 

Rodriguez, 2008), however, when capable of solving for large yarns such as constitute O-ACS 

structures the simulation requires slow and intensive computation of dynamic finite element 

models (Schneider, Pickett, & Wulfhorst, 2000).  The geometry model here uses a much more 

heuristic approach to modeling. The geometry is based on braiding machine kinematics, but 

convergence to a final shape is solving using ‘artificial’ or logical means, rather than a method 

driven by dynamic modeling. Comparison between the model and physical samples shows that 

this method sufficiently describes the desired characteristics.  

     In order to make the most general model possible, consideration is given to the variables 

available to the braider. Some of these are limits of the maypole braiding process, and others are 

limited based on the machine being used. The variables needed to fully describe a braid are given 

in Table 1. Note that these parameters become design variables later in the optimization stage of 

design. Sometimes variable are described in a manner that may seem over-complicated, but was 

chosen such that a designer best understands the choices made. For instance, it is perhaps 

intuitive that ‘Diameter’ means the ‘average diameter’ of the structure; here ‘Diameter’ refers to 

the ‘Mandrel Diameter’ since that is the design parameter which will be chosen later in 

manufacturing. Also, it is important to realize that some of the parameters are not independent - 

for instance ‘helix angle’ and ‘pitch’ describe the same motion, and are inter-related by the 

mandrel diameter.  
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Table 1 - Braid Geometry Design Variables 

Parameter Symbol Notes 

Machine Diameter   used for initial calculation 

Mandrel Diameter    

Number Horn Gears    

Horn Gear Diameter   function of   and   

Carrier Position   varies from 1 to   

 
Number of Horn Gear Forks   typically = 4 

Yarn Location in Space                            
Time/Step   used for discretization 

Helix Angle    

Pitch        

Yarn Diameter   constant for each yarn 

 

Geometry Model - Maypole Braider Kinematics 

      The first step in deriving a mathematical geometry model is to make observations about the 

physical braiding machine and its product. The machine consists of a set number of horn gears 

which interlace; each partner gear rotating counter to its neighbors. Packages are carried around 

on these gears, passing from one to the next in an oscillating manner. This oscillation provides 

the first concept. If all the horn gears were connected in a straight line, the path taken by a single 

carrier would be predominantly sinusoidal, and could be described by a cosine with amplitude 

equal to the horn gear radius 

           

( 1 ) 

Or, perhaps more accurately by a repeated arc-length which more closely replicates the round 

horn gears (referred to henceforth as a synchroid) (Figure 4) 

        (   (
 (  

 
  

)

 
))  √  (   (

 (  
 
  

)

 
  )   )

 

 

( 2 ) 

Where   is the horn gear diameter,   is the number of horn gears on the machine, and   is time. 

While this equation may better replicate the motion of carriers on the track-plate, after the 
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manipulations of the geometry (described in the next sections) it is not sufficiently improved to 

warrant its complexity. The subsequent derivations will use the much simpler sinusoid. 

 

Figure 4 – comparison of track-plate equations 

In conventional maypole braiding, the horn gears are arranged in a circle, and the path made by 

each package is continuous around a loop. This simulation is capable of making all the braid 

geometries which can be manufactured using a maypole braiding machine that has two carriers 

per horn gear, and four forks in each horn gear. Starting with the machine motion sinusoid, the 

distance from the center of the machine to the warp carriers is given by (Branscomb, 2007): 

  [
  

 
         

    

 
]    ( 

 

 
 )             [

  

 
         

    

 
]    ( 

 

 
 ) 

Which can be written far more generally using the following development:  

Begin with an equation which dictates the radius of the yarn path 

         (
 

 
(  

  

  
) )      

( 3 ) 

Where   is the major diameter (distance from center of leftmost horn gear to center of rightmost 

horn gear) of the machine. Note that the position is shifted based on which   of the   carriers is 

of interest and the number of forks   in each horn gear. The path of the weft carriers is found 

similarly, but must account for a phase shift (the fact that carriers do not crash at horn gear 

intersections implies this relationship).  

          (
 

 
(  

  

  
 

       

 
))      

( 4 ) 
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The path of the warp and weft carriers in Cartesian coordinates is simply the transformation of R 

and an angular displacement that is a function of  . 

              
  

  
  

( 5 ) 

               
  

  
  

( 6 ) 

             
  

  
 

       

 
  

( 7 ) 

             
  

  
 

       

 
  

( 8 ) 

  

Figure 5 – effect of track-plate equations on braid geometry 

     The synchroid in this case is found to be only a slight improvement over the sinusoid (Figure 

5). Also, with the intention to later compress the structure against the mandrel, the purpose of 

this geometry is simply to describe the interlacing periods, for which the sinusoid amply suffices. 

A synchroid has the addition mathematical disadvantage that its slope is infinite once per period. 

     When implemented to construct the braid geometry the phase shift terms can be removed as 

the final braided structure is found, from observation, to be symmetric. However, only the phase 
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shift model properly determines the stacking sequence of the yarns in the final braid. The 

geometry must ‘pick’ the yarns at intersections based on phase-shifted stacking (Figure 6).  

  

Figure 6 – model braided joint with and without ‘picking’ motion 

     A final step is required to transform braiding machine kinematics into Open Structure 

geometry; it must be carried into the third dimension giving the structure a height. Each yarn is 

carried upward in the   direction linearly as time increases. The wrapping (helix) angle   is 

determined by the size of the z step (or vice versa) using the equation 

      
  

 
       

    

 
       

( 9 ) 

     This final equation has given enough to construct a first model, shown below. Note that the 

axial yarns are simply vertical lines centered above their respective horn gear locations. In the 

foregoing discussion, the size of the machine was used for sizing. Obviously when constructing 

the structure model, the major diameter is the diameter of the structure   not that of the machine 

 . Similarly, the diameter of the yarn   should be substituted for the horn gear diameter  . 

Typical results of the kinematics model (as derived thus far) are shown in Figure 7. 
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Figure 7 – structure model; kinematic geometry generation (phase I) 

Joint Intersection 

     The open structures will be modeled as though connected by resin at joints. The details of this 

concept are explored in a later chapter, but the current geometry model construction will begin 

setting the stage for that development. In this stage, it is necessary only to define the locations at 

which joints will intersect. In the Open Structures, the joints contact (and subsequently bond) 

along lines radially outward from the structure center. Within the geometry unit of fell_point, the 

braid simulation first finds intersections of warp and weft nodes where no axial yarns are present. 

The program then identifies intersections of both warp and weft with axials, and uses the 

stacking sequence of the yarns at that point to determine which are bonded together.   
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Figure 8 – structure model; joints attached (phase II) 

Artificial Compression 

     The Open Structure is formed around a mandrel in production. The combination of tension 

due to the carriers and wrapping around the mandrel pulls the structure tight against the 

underlying mandrel shape. Because the kinematic model was based on the sinusoidal motion of 

the machine, it does not include this compressive effect. While the effect of yarn tension and 

wrapping could be modeled using finite element methods, it is prudent not to waste computing 

resources solving a complex problem if an adequate geometric model can be created.   

     The concept of artificial compression was implemented in fell_point. First, each overlap of 

yarns is sorted and identified. The joints are compressed against the mandrel as close as possible 

while preserving the stacking sequence at each. Each yarn is considered independently. All the 

nodes are pushed down a small step toward the mandrel if they have not yet reached the 

curvature limit. This cycle is iterated until the desired level of compression is achieved. The 

results of the artificial compression are demonstrated in Figure 9. Note that the earlier ‘picking’ 

results in proper braid interlacing, easily confirmed by inspection, now that the structure has 

been compressed. 
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Figure 9 – structure model after artificial compression (Phase III) 

 

 

 

Artificial Tension by Geodesics 

     The artificial compression model is a significant improvement over the machine kinematics 

model, and represents well a structure which has been pressed against a mandrel by vacuum bag 

or other means. However, typically the final formation of the structure is determined by tension 

within the yarns. Again, this could be solved using contact finite element methods, but an 

artificial method is computationally more attractive. The path taken by tensioned string or yarn is 

a geodesic, or shortest path, from one end to the other under load. This is a property of most any 
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string or cable in tension. Thus, instead of applying a tension and allowing the nodes to move 

towards this shortest path, logic is programmed into the software that evaluates each node and 

determines whether a small shift in its position would shorten the yarn. The routine is applied by 

testing small changes    in radius along each yarn, and retaining only such moves which only 

decrease the yarn lengths. When it is found that additional changes in    cannot improve even a 

single point, the step size is decreased an order of magnitude (      
  

  
), and the tests 

repeated. This allows convergence to an arbitrarily small step (within machine precision) as 

required for accuracy. This effect was programmed into the braid simulator with fair results, as 

seen in Figure 10. Notice the much improved replication of axial yarn undulation, and the ability 

of the helical yarns to transition from straight to curved as they intersect with the mandrel. As 

this condition is most like the test samples made for validation of the finite element model, it will 

be used henceforth. 

 

Figure 10 – Structure model after artificial tension (Phase IV, final) 

Joint Intrusion 

     When braiding, the open-structure joints are still malleable and pliant. Under the tension of 

the braiding process, the joint intersections are smashed together. To simulate this effect, the 

compression allows yarn ‘intrusion’ specified as a percent of yarn diameter. An example of this 

effect is shown in Figure 11. The mean diameter of the free yarn is 2.3 mm, and the vertical 

height of the joint is only 3 mm - corresponding to a 70% intrusion. This makes for a better 



15 

 

structure visually, and creates more accurate paths of yarn centerlines. However, all yarns still 

remain round, so this approximation does not fully represent the conditions at yarn intersections.  

 

Figure 11 – An O-ACS joint showing the intersection intrusion 

Discretization 

     When the finite element model is constructed later, the discretization of the forgoing 

equations will determine the number of elements in the model, and probably force a compromise 

between solution speed and accuracy. A control parameter is used to define the amount of 

discretization in the model, which is limited by the fact that the model must have discrete nodes 

at yarn intersections.  The discretization   is defined as the number of straight ‘beam’ segments 

between the closest possible intersections of yarn. ‘Closest possible intersection’ is used (rather 

than the actual distance to intersection) to ensure that the discretization is compatible with the 

number of horn gears   on any given braiding machine. The minimum discretization between 

intersections shall be limited to a single element when all carriers are loaded with yarn. This 

means that a discretization     is not a guarantee that every free length between nodes is one 

straight segment; only that it be two elements at minimum. The effect of discretization on the 

Finite Element results will be shown in Chapter 3.  

     The natural discretization of the structure itself (into yarn ‘beams’ spanned between 

intersections) will be of concern when the Finite Element Analysis (FEA) program is discussed. 

At the end of a structure, the free-hanging yarns are very flexible since they do not have the 
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support of the joint intersections. Thus, the deflection at the very end of the structure may be 

large compared to that of the main body of the structure. Examples of well-conditioned and ill-

conditioned structure ends are shown in Figure 12.  

          

Figure 12 - Left: joint intersection at structure end, Right: yarns hang beyond the intersection 

This can give rise to discretization issues which the FEA code will not understand, and care must 

be taken to treat the issue as it arises. For instance, a structure of a given length would be 

expected to have a smooth Stiffness vs. Helix angle relationship. Because of the large deflection 

of end-beams, the results are not smooth, as seen in Figure 13. Note that the relative effect of the 

ends will always decrease with an increase in structure length. These errors are discussed in more 

detail in Chapter 4. 
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Figure 13 - Natural discretization creates periodic change in total deflection 

Computation of Structure Mass 

     The mass of the O-ACS tube can be calculated from the discretized model. Each yarn has a 

density and constant diameter. The mass of each yarn is simply the product of its cross sectional 

area, length, and density. Length in the discretized model is the sum of all element lengths. All 

yarns in the structure summed together give the total mass:  

      ∑
    

 
∑ ||           ||

          

         

       

      

 

( 10 ) 

This method for mass estimation was compared to fifteen experimental samples, each of unique 

geometry. It was found to match the mass-per-length with a Root-Mean-Squared (RMS) error of 

2.5%, and a standard deviation of 2.75%. 

Conclusion 

     An analytical interpretation of O-ACS braid geometry has been created. Several kinematics 

models were compared for accuracy and utility – a simple sinusoid was chosen. The equations 

governing the model are used to create a basic shape. Special care was taken to ensure the 

interlacing of the yarns is properly handled; this requires some logic in the geometry definition 
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but gives acceptable results. The structure is compressed against the mandrel diameter iteratively 

to better represent the cured O-ACS form. Considerations on the effect of discretization in the 

model were enumerated. The final model is used to generate a fairly complex physical sample in 

Figure 14. The model is seen to adequately replicate braid geometry.

 

Figure 14 – Example of braid simulator capability 
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Finite Element Model Development 
 

Model Goals and Objectives 

     The objective of the finite element model in this work is to provide a computationally 

lightweight model that adequately represents the geometry of the open-structure, the carbon 

yarns which constitute the bulk of the material, and the intersection of carbon yarns at micro-

joints which interconnect the carbon yarns. The analysis will also incorporate a method for easy 

application of the beam loading conditions and constraints described in Chapter 1. It must finally 

solve for the required structure and field quantities needed in the optimization. These include 

structure deflection, yarn-element loads and strains, and joint-element loads and strains. These 

quantities are sufficient for the calculation of stresses and the computation of many common 

failure modes if desired (though the focus of the current work is stiffness). 

     The FEA solver will be constructed as generally as possible with the above-stated goals in 

mind. MATLAB is used as the computational and programming platform. The major 

components of a typical FEA process are outlined in the flowchart of Figure 15. This process is 

typical of structural Finite Element methods (Cook, Malkus, Plesha, & Witt, 2002) and thus only 

components that are unique or important in the analysis of open structures are described in detail. 

The primary assumptions upon which the present model is based are presented here and 

explained farther below: 

1. Individual O-ACS yarns can be modeled as beam elements 

2. The geometry model (of Chapter 2) sufficiently describes the important O-ACS form 

3. A single finite-element can describe the bonded micro-joint at each yarn overlap 

4. The structure behaves linearly in the deflection range of interest 
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Figure 15 – Finite Element Modelling process flowchart 

Modeling Yarns 

     During the braiding process, the pre-impregnated yarns are limp and malleable. The structure 

is formed from these soft yarns and then cured into the final rigid lattice. The structure is made 

rigid by the internal curing of the yarns, and the cured intersecting joints of overlapping yarns. 

Each single cured yarn in the structure is supported by the joint intersections at regular intervals. 

This distance between supports (i.e. yarn intersections) is long compared to the diameter of the 

yarn: thus it is assumed that the free-standing length of each yarn has beam-like properties.  

     There are a few beam element formulations which could be used. The two deciding factors in 

the element choice are the number of nodes and the ability to account for shear. First, because of 

the geometry-generation model it is very easy to increase or decrease the element spacing along 

each yarn. It is not convenient, however, to require the yarns have spacing compatible with three-

node elements.  Second, free-standing lengths between yarn intersections are not so long that 

shear deformation can be ignored. Finally, the yarns typically maintain a round cross section and 

so the ability to account for shear flow is not necessary (Cook, Malkus, Plesha, & Witt, 2002). 

Thus the Timoshenko shear-corrected beam is the appropriate element choice when straight 

beam elements are employed (Przemieniecki, 1968). However, in the development of the model, 

it was seen that using straight beam elements to represent the helical yarns required excessive 
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discretization to achieve desired accuracy. Thus, curved beam (‘arch’) elements were used for 

the helical yarns (Weaver & Gere, 1990). The curved beam formulation requires additional 

computations and transformations, thus suffers in calculation speed. A comparison of the beam 

element choices is shown in Table 2. 

Table 2 - Comparison of the Beam Element capabilities 

 Bending Shear Curved Speed 

(relative) 

Euler-Bernoulli Beam yes no no 1 

Timoshenko Beam yes yes yes 1 

Virtual Work Arch yes yes yes 3 

 

     Another major benefit of the beam model is the easy incorporation of experimental yarn 

stiffness and strength properties. The diameter of the yarn is often difficult to define as the 

section can become oblong. The yarn jacket typically consists of materials much softer than the 

carbon core: thus measuring a yarn’s stiffness and dividing by the cross-section to retrieve a 

‘modulus’ is not very consistent. The most accurate model, if the yarn being used is available for 

measurement, is simply to measure and assign axial, bending, and torsional stiffness to the beam. 

The intrinsic properties Elastic Modulus (E), Flexural Modulus (Eflex) and Shear Modulus (G) are 

of course necessary for creation of the model, it is just suggested that they be derived from yarns 

of similar size to the ones which are being analyzed (Kothari, 2014). This also facilitates the 

consideration of experimental failure limits instead of the extrapolation from intrinsic properties 

and dimensions. The experimental yarn properties assigned in this way are given in Chapter 4.  

Development of Timoshenko Beam Element Stiffness and Rotation Matrix 

     The derivation of the Timoshenko Shear-corrected Beam Element is now presented. The 

development follows Przemieniecki’s derivation and notation (Przemieniecki, 1968). A diagram 

of the beam element is presented in Figure 16. The beam has two nodes along its x-axis. Each 

node has six degrees of freedom – three displacements and three rotations – and loads on each 

degree of freedom – three forces and three moments. It is useful to split the derivation into 
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separate axial, torsional, and bending computations. The primary assumptions made in this 

derivation are as follows: 

 Yarns are transversely isotropic (y and z directions are equivalent) 

 The circular yarns do not need a shear area correction term 

 Thermal effects are neglected 

 

Figure 16- Straight beam element; diagram 

 

Axial Forces - Axial Stiffness (X-direction) is found by integration of the governing differential 

equation 
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)    

And, considering equilibrium 

         
To yield 

     
   

   
 

  

 
 

( 11 ) 

     
   

   
 

   

 
 

( 12 ) 

A similar argument yields the reciprocal relationship for node 2, and the equations can be 

combined in the matrix form 
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Twisting Moments - Torsional Stiffness (Z-direction) is found by integration of the governing 

differential equation 

       
  

  
 

And from equilibrium it is known that 

         
 

To yield 

     
   

   
 

  

 
 

( 13 ) 

     

   

   
 

   

 
 

( 14 ) 

A similar argument for the second node yields the full set of torsion relations, in matrix form; 
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}    
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] 

 

Shearing Forces – Lateral deflection (   ) due to shearing forces has two components, one from 

bending strain (  ) and a second from shear strain (  ). 

 

        
 

The two governing differential equations are given by 

 
   

  
      

 

  
    

   
          

 
Integration of these equations and application of boundary conditions yields 

 

      
    

 

 
 

    
 

 
 

       

  
 

          

  
 

Where  
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And from equilibrium 

         

              

Applying boundary conditions, the four reactions can be found 
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Considering the same calculations from the second node: 

     
    

       
 

( 19 ) 

      
    

       
 

( 20 ) 

Bending Moments – Using the same governing bending equation, but with boundaries that only 

allow deformation in rotation, the deflection for a pure moment is given as 
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From these relationships, the reactions are found 
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( 23 ) 

And from symmetry 

 

            
       

      
 

( 24 ) 

 

The same derivation can be used for shear deformation in the Z direction and bending 

deformation about the Y direction. The full set of equations ( 11 ) through ( 24 ) are combined to 

form the beam element stiffness matrix  shown on the following page ( 25 ). 
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Three Dimensional Rotation  

     Because the beams will be arbitrarily oriented in 3d-space, a rotation matrix is defined. 

Following the notation of (Logan, 2007 ), the transformation matrix is 

 

   [

       
       
       
       

] 

( 26 ) 

Where 

      [

   ̂    ̂    ̂

   ̂    ̂    ̂

   ̂    ̂    ̂

]  [
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   ̂    ̂    ̂
   ̂    ̂    ̂

] 

( 27 ) 

is the direction cosine matrix for the beam X-axis. 

 

Simplifying the direction cosines for radially symmetric beams (round cross section): 

 

 ̂         ̂  ̂        ̂  ̂        ̂  ̂ 

 

      ̂  
     

 
                  ̂  

     

 
                  ̂  
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Combined; 
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( 28 ) 

 

Unless  ̂          or  ̂          , for which, respectively; 

 

      [
   
   

    
]     or           [

    
   
   

] 

 

Finally, the transformed stiffness matrix is found: 

 

 ̂       
( 29 ) 

This completes the derivation of the beam element stiffness matrix. 

Development of Curved Beam Element Stiffness and Rotation Matrix 

 

Figure 17 – Curved beam element; diagram 

     The stiffness matrix for the curved beam (Figure 17) will now be developed. It has the same 

degrees of freedom as the straight beam. Following Weaver (Weaver & Gere, 1990), the 

compliance matrix     
 for the ‘frame’ loads in the curved beam is given by: 
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( 30 ) 

 

Where a shear correction term has been directly added on each of the relevant degrees of 

freedom. The frame-load (forces acting in the element plane) stiffness matrix is the inverse of the 

compliance matrix. 

    
 (    

)
  

  

End-loads must be transformed into element coordinates. Because the local coordinate system is 

in the x-y plane, this requires a simple rotation about the z-axis 
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] 

The complete stiffness matrix (to include both nodes) can be found using transformation 

matrices 
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( 31 ) 
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( 32 ) 

The ‘grid’ loading (forces acting perpendicular to the element plane) compliance matrix has two 

components: the flexural component (    
)
    

 is 
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( 33 ) 

The torsional components is (    
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( 34 ) 

Which can be summed and inverted to find the grid-load stiffness matrix 
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)
  

 

The full stiffness matrix       is found using the same transforms as for the frame loading, but 

replacing ( 32 ) with the following: 

    [

     

      

   

] 

The full 12x12 stiffness matrix is constructed,  

   [
       

      
] 

Noting that the node numbering must be resorted to match that of the straight beams ( 25 ). This 

completes the local stiffness matrix construction. 

     Because the curved member is circular, the orientation of the curved beam must match the 

expected curve around the cylindrical mandrel.  Only beams which lie against the mandrel 

surface are curved, and the beam is oriented as shown in __. Because of the curvature, the 

element axes must be aligned in the global system completely (i.e. the exact direction-cosine 

matrix of ( 27 ) must be used). The model construction which finds the orientation of the helix 

also specifies completely the local beam coordinates system. Note that the beam does not lie 
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exactly on the mandrel surface: that would require an elliptical element. However, the curved 

beam as presented here provides significant benefit over the straight element, as shown in the 

coil-spring test case in the next section.  

 

Figure 18 - Curved beam element orientation on the mandrel surface 

Modeling Joint Intersections 

     The geometry model determined the yarn intersection locations and set the spacing between 

the yarns to the sum of the two intersecting yarn’s radii. The intersection physically consists of 

the yarn radius composite, with a thin film of resin between them. The length of this intersection 

is small compared with other dimensions in the structure, and thus could lead to an ill-

conditioned solution if incorporated with the rest of the model. Finally, physical measurement of 

the joint intersection as a ‘unit’ is easy compared with calculating the stiffness that arises from 

the constituent materials. In physical testing it has been found that the strength of joints (and so 

perhaps the area of intersection) does not vary significantly with yarn diameter. With these 

concerns, yarn intersections from one yarn centerline to the next are modeled with a ‘3-d Spring’ 

element (Figure 19).  This element is very similar to the beam element – it can deflect axially, 

bend, and twist – however it is given (extrinsic) spring rates on each degree of freedom rather 

than calculating them from material (intrinsic) properties. It is assumed that all joints in the 
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structure have comparable stiffness, regardless of yarn diameter (and hence regardless of element 

length). Using these concepts, the joints are modeled using an element specified by three 

parameters: axial stiffness    (N), bending stiffness    (Nm^2), and torsional stiffness    

(Nm^2). The element stiffness matrix is given by ( 35 ). 

 

[
 
 
 
 
 
 
 
 
 
 
 
 
               
                       

                         
               
                  
                   

             
                  

                    
             
              
              ]

 
 
 
 
 
 
 
 
 
 
 
 

 

( 35 ) 

     Though the stiffness of the joint intersection used is comparable to the yarn stiffness, strength 

considerations should not use the yarn strength. The resin is significantly weaker than the yarns 

in certain loads, and any failure mechanisms should use physical experiments or 

micromechanical modeling to determine the limits of joint strength. In the same way that a 

physical measurement could be made of joint ‘spring rates’ in the preceding discussion, a similar 

measurement of (extrinsic) joint strength could also be made. 

 

Figure 19 - Example of joint-intersection beam elements 
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Application of Loads and Boundary Constraints 

The loads and constraints will be applied only to the ends of the structure. To facilitate this 

connection, all the endmost nodes of the structure are joined together radially; creating a single 

‘master node’ to which loads and constraints can be directly applied. The radial ‘plate’ is formed 

of essentially rigid (4 orders of magnitude more rigid than the yarns) bar elements. The program 

automatically determines the number of yarns and appropriate node locations for the connection 

(Figure 20). 

 

Figure 20 - Demonstration of the rigid bodies to which constraints and loads are applied 

The loads and boundaries are applied in the six degrees of freedom available to the master node 

on each end of the structure. Without loss of generality and to help ensure no redundancy, 

displacement constraints can be applied to both ends of the structure, while forces and moments 

can only be applied to the upper end. The naming convention used for each of the constraints is 

as follows (Table 3): 
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Table 3 – Degree of freedom labels and notation 

 Linear X Linear Y Linear Z Angular X Angular Y Angular Z 

Lower Displacement ldx ldy ldz lrx lry lrz 

Upper Displacement udx udy udz urx ury urz 

Upper Load Fx Fy Fz Mx My Mz 

 

Each of the load scenarios which will be tested in the physical experiments (Chapter 4) can be 

implemented as shown in Table 4. This completes the description of both the internal model 

(mesh) and boundary conditions. The next stage is the construction of the matrix problem, the 

solution, and the post-processing of the model. 

Table 4 – Displacement and Load Boundary Conditions for each load scenario 

 Lower Displacement Upper Displacement Upper Load 

Tension

 

ldx=ldy=ldz=0 

lrx=lry=lrz=0 
* all DoF free* Fz > 0 

Compression

 

ldx=ldy=ldz=0 

lrx=lry=lrz=0 
* all DoF free* Fz < 0 

Torsion

 

ldx=ldy=ldz=0 

lrx=lry=lrz=0 
urx=ury=0 Mz > 0 

Pure Bending

 

ldx=ldy=ldz=0 

lrx=lry=lrz=0 
* all DoF free* Mx > 0 

3-Point Bending 

(complex example) 

ldx=ldy=0 

lrz = 0 

udz = 0 

urx=ury=0 
Fx>0 

 

Solution and Post-Processing 

The simple form of the Finite Element solution is shown in equation ( 36 ) . 

             

( 36 ) 

The specification of all the node locations and their interconnections was given in Chapter 2 and 

the foregoing discussion. These geometry descriptions are then combined with the element 

stiffness model into the global stiffness matrix  , for a description of the process see, for 
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example, (Cook, Malkus, Plesha, & Witt, 2002). The constraints on the boundaries remove 

degrees of freedom from the master nodes, and the loads to be used constitute the   component 

of Equation ( 36 ). It is now possible to solve for the deflection of the structure   using matrix 

algebra.  

     When solving the finite element problem, it is common, as occurs here, that the size of K be 

very large, and the solution of Equation ( 36 ) very computationally expensive. A typical O-ACS 

finite element solution has over 8000 degrees of freedom. To remedy this, sparse matrix abilities 

within MATLAB were used in the construction of   and in the solution (Gilbert, Moler, & 

Schreiber, 1991). The size is not so large that a direct solution of the matrix cannot be readily 

found, and so iterative methods for FE solutions were not considered useful in this work. 

Visualization of Results 

     As fell_point is to be used as a design tool, it is useful to include a method for visualizing 

FEA results. This allows verification that the loads and constraints were properly applied, as well 

as quick confirmation that the deflection is of the magnitude expected. The geometry model 

provided a basis for the visualization; Each yarn path is swept with a tubular cylinder of the 

appropriate diameter to generate the initial (un-deformed) shape. After the FE solution is found, 

this same path sweep is used along each yarn using the locations of the (now displaced) nodes. 

Some examples of deformed shapes are shown in Figure 21. The blue and purple structure is the 

tube after deformation and the gray ‘shadow’ is the original shape. 
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Compression Cantilever Bending Torsion 

   

Figure 21 – Visualizing the model after deformation has occured 

Sources of Error 
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     The primary concept used in the finite element model development was the beam element. 

Because the yarns are slender and connect at interspaced points, it was considered to be 

advantageous to use beams rather than (e.g.) 3D solid elements or shells. This allows an easy 

connection between the geometry and the finite element model as well. Some limitations of the 

model have been enumerated already in the geometry chapter which similarly effect the finite 

element model. These include the fact that yarns are round, yarns are not limited in their radius 

of curvature, and intersections are approximated by intrusion. All these assumptions give 

individual yarns more stiffness (in general) than they might have if such effects were modeled. 

The beam concept relies heavily on the fact that yarn properties are taken from the testing of 

actual yarns, and not extrapolated from intrinsic properties of their constituents.  

     Another source of model weakness is treatment of the yarn intersection joints. The complex 

interaction of two tangent yarns and a resin film have been combined into a single spring rate. 

This is a good method if joint properties are to be measured in physical testing, however it does 

not allow the development of structural stiffness from more basic properties such as the resin and 

yarn individual moduli.  

     One of the aspects of beam elements which detracts from accuracy is they do not inherently 

predict buckling failure. The O-ACS concept concentrates mass into bundles that are more stable 

than a thin sheet. However, if the structure becomes ‘open’ enough, those bundles will certainly 

themselves be prone to instability. This effect should be considered if structural strength is to be 

determined. The current model is designed for stiffness concerns, and thus does not include these 

effects.  

     As mentioned in the chapter on geometry, the yarns at the end of the structure are not 

supported as well as the rest of the O-ACS yarns. The effect of this natural discretization is 

discussed in detail in the next chapter. 

     A key goal of the finite element model is to provide a platform for the subsequent geometry 

optimization. Hence, compromises made in these regards are deemed valid for the purposes of 

this work. A balance has been made between speed and comprehension of the model vs. inherent 

accuracy; the former concepts have been emphasized. 

 

Conclusion 
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     This concludes the development of the Finite Element solver in fell_point. The underlying 

assumptions of the model have been stated, and a modeling method built on those. The primary 

art used in the model is the beam finite element and its advanced forms. Straight and curved 

beam elements form models of the individual yarns. At the intersections of yarns, a beam-spring 

formulation is used to represent the connection. A method for application of loads distributed to 

the end of an O-ACS tube model was created, and shown to be capable of representing the load-

cases under which a beam is loaded, as required by the thesis simulation objectives.  

     The following chapter will evaluate the accuracy of the Finite Element solver using test cases. 

After showing that the model is capable of matching theoretical results in those test cases, the 

model is used to evaluate the effects of O-ACS design variables on structural stiffness. Possible 

sources of error in the model will also be discussed therein. 
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Finite Element Model Application 
 

Goals and Objectives 

     The finite element model and programming structure have been developed; it should now be 

applied. First, a series of trial problems are solved using the model. These trials will test the 

element stiffness’, the element rotations and connectivity, the ability to apply loads, and the 

retrieval of deformation solutions. The theoretical deformations are presented and compared to 

the model, proving that it is capable of producing theoretical solutions to moderately complex 

scenarios. Once the model is proven valid, open-structure tubes are modeled. Several variables in 

the design of O-ACS tubes are known to produce large effects on the performance of the 

structures. A comprehensive review of all the parameters, and their effect on structural stiffness, 

is presented. Possible sources of model error are compared.  

Comparison with Theory (Straight Beam and Software Tests) 

Straight, Cantilever Beam Test 

     Having explored the hypothesis and assumptions used in constructing the finite element 

model of the open-structure, it is desirable at this stage to ensure the model behaves 

appropriately under common loading scenarios. Beam elements should be tested in trivial cases 

to show the element construction, element connectivity, load application, and post-processing are 

all computed properly. Two tests are performed. The first test simply shows that a line of beam 

elements loaded as a cantilever has the correct deflection magnitude. The solution is known from 

elementary beam theory. This is, of course, only a test of the programming and not of the 

element accuracy since the same equations used to check the model were used to create it.  The 

second case involves element rotations and a combined loading, and is the test case used by 

Logan as a demonstration exercise (Logan, 2007 ). 

     The first example is simply a line of beam elements fixed at the left end and loaded in 

cantilever at the right end. Obviously this test is only valid for the straight beam elements. The 

expected deflection in the vertical direction is given by the beam bending equations as 
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( 37 ) 

where the first term on the left-hand side is bending, and the second is shearing. The angular 

deflection is a function of the bending alone 

  
   

   
 

( 38 ) 

It is expected that the traditional beam element deflection   is only accurate on long span-

lengths, and that the shear-corrected beam perfectly matches the equations in all cases. It is also 

anticipated that both beams accurately predict the angular deflection.  The parameters for the two 

inch diameter beam are listed in Table 5. The model visualization output is shown in Figure 22, 

and the deflection results under an end load of 100 kips are shown, for various span lengths, in 

Table 6. The number of elements does not, of course, change the results for the tip deflection due 

to the nature of beam elements and beam-bending equation origins. Again, the chart is a test of 

the software assembly; the fact that the deflection results are exactly correct is trivial. 

Table 5 – FEA Sraight Beam Test 1: Material properties 

 Value 

Elastic Modulus (ksi) 30000 

Shear Modulus (ksi) 10000 

Cross-sectional Area (in^2)   

Area Moment of Inertia (in^4) 
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Figure 22 – FEA Test 1; a simple cantilever 

Table 6 – FEA Straight Beam Test 1: Results  

Beam Length (in) 1 5 10 50 

Theoretical Deflection (in/1000) -4.598 -192.8 -1447 -177000 

Theoretical Rotation (rad/1000) -2.122 -53.05 -212.2 -5305 

Traditional Beam Deflection (in/1000) -1.414 -176.8 -1414 -176800 

TB Deflection % Error 225 9.00 2.25 0.09 

Traditional Beam Rotation (rad) -2.122 -53.05 -212.2 -5305 

TB Rotation % Error 0 0 0 0 

Shear-Corrected  Beam Deflection (in) -4.598 -192.8 -1447 -177000 

SC Deflection % Error 0 0 0 0 

Shear-Corrected Beam Rotation (rad) -2.122 -53.05 -212.2 -5305 

SC Rotation % Error 0 0 0 0 

 

Test for Beam 3D Rotation and Multiple Loads 

     The second simple example comes from an exercise by Logan (Logan, 2007 ). This tests the 

beam element rotation matrices and the ability to handle multiple loads. The test consists of a 

space-frame with three mutually orthogonal beams. The intersection of the beams is loaded with 
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a force in the Y direction of -50 (kips), and a torque about the X-axis of -1000 (kips*in) as seen 

in the visualization (Figure 23). 

 

Figure 23 – FEA Test 2; a space frame 

The deflection given by Logan is compared with the results of the fell_point and seen to match 

exactly; demonstrating that element connectivity, rotation in three dimensions, and load 

applications all work properly (Table 7). 

Table 7 – FEA Straight Beam Test 2: results 

 Free node Y 

Deflection (in) 

Free node X 

Rotation (rad) 

Result from Logan -0.014 -0.004 

Result in fell_point -0.014 -0.004 

 

Test of the fell_point Load Application and Constraints 

     The final simple test will check the ability for the rigid body end caps to properly transfer 

loads into the O-ACS yarns during simulation. The load case will be a ‘structure’ consisting of 

only two yarns. The load will deflect these two simultaneously, and the results should simply 

reflect the expected results of the test of a beam. The beam properties are listed in Table 8. The 

equations used to calculate the theoretical deflection are listed in the table of results (Table 9). 

Error is due to deformation of the end caps; the amount of error induced by this small deflection 

decreases with structure length. 
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Table 8 – FEA Straight Beam Test 3: Material properties 

 Value 

Elastic Modulus (Pa) 100e9 

Shear Modulus (Pa) 4.0e9 

Yarn Diameter (mm)     

Structure Height (mm) 127 

Number of Elements 14 

 

Table 9 – FEA Straight Beam Test 3: Results 

 Compression Cantilever Applied Moment 

 

 
  

Governing Equation   
  

  
   

   

   
 

  

  
   

   

   
 

Load  10000 10 -1 

Theoretical Solution 2.5064 (mm) 133.8 (mm) 78.9 (mm) 

FE Solution 2.5084 (mm) 132.35 (mm) 78.4 (mm) 

% Error 0.0798 -1.096 -0.646 
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Comparison with Theory (Curved Beam Test) 

     Simple beam elements were tested in trivial cases previously to ensure proper behavior. It is 

now appropriate to ensure the model behaves appropriately under a more complicated loading 

scenario. The first test of the full model is of a single coil in compression - a coil-spring 

configuration. Under axial load, the spring compresses. The size of each element is identical, and 

with similarly identical material properties each element is found to have the same load. The 

theoretical axial spring rate of the coil is given by the equation ( 39 ) 

   
   

    
 

( 39 ) 

This test particularly shows the ability of the curved beam elements to handle course mesh 

discretization. The values used in the analysis are presented in Table 10. A comparison between 

the model and theoretical values are given in Table 11. The curved beam achieves an accuracy of 

within 1% using only 12 elements, whereas the straight beam requires 125 elements to achieve 

similar accuracy; the curved beam is practically 10 times as efficient in this load case. 

Table 10 – FEA Curved Beam Test: Material properties 

 Specification 

Minor 

Diameter (in) 
0.245 

Major 

Diameter (in) 
1.7 

Shear 

Modulus (psi) 
10.5e6 

Elastic 

Modulus (psi) 
45e6 

Number of 

Coils 
5.5 
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Table 11 – FEA Curved Beam Test: Results 

 

Number of Nodes N=15 N=25 N=50 N=100 N = 1000 

Elements per 360 deg. 2.5 4.4 8.9 18 182 

Theoretical 175 175 175 175 175 

Straight Beam 591.85 272.02 194.28 178.80 173.99 

SB % Error 238.19 55.43 11.02 2.17 -0.57 

Curved Beam 173.80 174.92 175.12 175.14 175.20 

CB % Error -0.69 -0.05 0.06 0.08 0.11 

 

Effect of Natural Discretization 

     O-ACS tubes have a natural discretization into trusses which gives them their high specific 

stiffness, but which simultaneously makes the yarns at the structures end vulnerable to excessive 

deformation. This can be pictured as a girder which is missing some struts from the end of the 

beam: without a cross-member to transfer the tension and compression across the structure, the 

end of the beam is very weak (Figure 24).  

 

Figure 24 – The effect of a missing cross-member on girder stiffness 
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In the O-ACS tube, the yarns at the end are at varying distances from an intersection; and 

provide little stiffness beyond the closest joint. This effect will greatly change the calculated 

deflection (and thus, stiffness) of the structures. On a short length, the end-most yarns constitute 

a large portion of the structure, and so play a large role in the total deflection. As the beam grows 

longer, the deflection of the end-most yarns will become negligible compared to the deflection of 

the rest of the structure (Figure 25). The error occurs periodically as the end is closer or farther 

from the joint intersections. Two examples of free-end lengths are given in Figure 26 where the 

difference is clear. Because of this effect, the stiffness of a given geometry should only be tested 

on long spans. Where the effect can have large impact on results - such as during optimization – 

care should be taken that consistent end conditions are compared. The problem will occur when 

structure height is changed while keeping helix angle constant, or when changing helix angle on 

a constant structure length.  

 

Figure 25 - Effect of natural discretization on predicted stiffness 
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Figure 26 - Left: Short free-lengths at 0.13 m.   Right: Long free lengths at 0.14m. 

Results for O-ACS Tubes 

     Examples of the FEA simulation of O-ACS tubes are given here. First, the examples will 

demonstrate the control parameters of the finite element formulation to determine the effect of 

discretization. Secondly, simulations are given showing the relationships among the design 

variables (helix angle, number of axials, etc.) which will drive the optimization (Chapter 5). 

Finally, a range of samples has been specified for validation of the Finite Element model with 

physical tests. The results of the simulation for these samples are presented here, and the results 

analyzed in Chapter 4.  

     The base trial structure is the ‘typical’ Open-structure (Figure 27). This particular sample 

serves as the mid-point for both the physical testing and for the parametric plots shown below. 
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All controllable values for this structure are given in Table 12. The parameters will be held 

constant in subsequent plots unless otherwise specified. Yarn properties that require special 

measurement are adopted from Branscomb (Branscomb, Minimal Weight Composites Utilizing 

Advanced Manufacturing Techniques, 2012) and Kothari (Kothari, 2014). In some cases the yarn 

strength may be affected by the braiding process and other variables not considered in the model: 

thus care must be taken that the effective yarn properties be measured from meaningful samples. 

 

Figure 27 – The O-ACS tube model to be used as a datum 

Table 12 – Starting geometry specification for Computer Experiments 

Braid Geometry Specification Material Model 

Mandrel Diameter (m) 0.0444 Yarn Elastic Modulus (GPa) 100 

Helix Angle (deg.) 45 Yarn Shear Modulus (GPa) 1.5 

Pitch (m) 0.1396 Effective Bending Modulus (GPa) 80 

Discretization   (1/1) 2 Yarn Effective Diameter (mm) 2.0 

warp/weft/axial carrier loading 4/4/8-TT Joint Axial Stiffness (kN) 123 

Height (m) 1 Joint Bending Stiffness (Nm^2) 0.06 

Number of Wraps (1/1) 1.4322 Joint Torsional Stiffness (Nm^2) 0.12 

Machine Definition   (1/1) 32 Yarn Density (g/cc) 1.40 

 

     The analysis of each design variable – the driving Braid and Yarn parameters in Table 12 - 

will be performed for compression, pure bending, and torsion. There are seven design variables 

not including the carrier loading conditions. The carrier loading will only be varied in 

meaningful combinations (increase number of axials, decrease number of wrapping yarns, etc.). 

Some of these characteristics are easily changed by structure design, such as helix angle or 

mandrel diameter. Others are material properties which are somewhat fixed so long as carbon 

yarns are being used. However, it is important for design and understanding that the effect of 

each component of the material be understood to see the strengths and weaknesses of the choice 

of carbon yarn and resin joints as currently employed in O-ACS design. The plots on the 

following pages show these simulations: the caption for each figure describes the test.  
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Figure 28-Effect of Varying Helix Angle on O-ACS specific stiffness  
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Figure 29 - Effect of Varying Mandrel Diameter on O-ACS specific stiffness 
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Figure 30- Variation of Discretization Step – Effect on O-ACS stiffness 
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Figure 31 – Effect of variation of Yarn Diameter on O-ACS specific stiffness 
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Figure 32 - Effect of variation of joint intrusion 
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Variation of Elastic Modulus 

 

  

Figure 33 - Variation of Yarn Elastic Modulus 

Variation of Yarn Shear Modulus 

 

  

Figure 34 - Variation of Yarn Shear Modulus 
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     The plots above give a complete overview of the effect of sweeping design variables through 

their respective, physically realistic, ranges. It is difficult to see how this information is best used 

in design. For this purpose, radar plots are very effective. Here are presented plots showing the 

effect of small variations of some parameters near the values for the ‘average’ tube as listed in 

Table 12. These charts should be compared later to those in the chapter on validation. The first 

three plots show the effect of design variables - helix angle, mandrel diameter, and number of 

axial yarns – on stiffness’. The next three show response of stiffness – axial, bending, and 

torsional – to variation of design parameters.  
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Figure 35 – Radar plots of design variables and their effect on specific stiffness 
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Figure 36 – Radar plots of specific stiffness and their reaction to parameter variation 

Conclusion 

     A Finite Element processor has been developed. The model takes the discretized braid 

geometry model and interprets the yarns and intersection as beam elements. Common beam 

elements were found inadequate to represent the helical nature of the braider yarns, and a curved 

beam element was used. The finite element primitives such as load application and element 

orientation were confirmed to be accurate using simple test cases. The goal of the model is to 

allow extrapolation beyond physical testing for structure design. In this pursuit, several 

parameters of the braids were varied to find their effect on the structure. The three important 

stiffness ‘directions’ are Axial, Bending, and Torsional stiffness. In Bending and Torsion, the 

mandrel diameter is found to have the most beneficial effect on structure specific stiffness. This 

is intuitive since the weight does not increase, but the ‘moment of inertia’ of the cross section 

increases significantly. Because the amount of material does not increase, the effect of additional 

diameter is nearly linear, and not quartic (to the fourth power) as might be expected based on 

moment of inertia concepts. In compression, the axial stiffness of the yarns is most important. A 

key discovery is that specific stiffness in all loads increases significantly with smaller ratios of 

yarn diameter to mandrel diameter (until the limit of yarn stability). This helps prove the 

hypothesis that open-structures have an advantage as the minimal weight composite solution. 

Joint stiffness does not significantly affect the results within the range tested. This would not be 

true if they joints were made to carry more load, such as by removing all axial yarns. Finally, the 
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use of a composite yarn has many benefits: currently O-ACS could not be manufactured if the 

pre-impregnated yarn concept was not used. However, as with all composites, the yarns suffer 

greatly from a low shear modulus. An increase in yarn shear modulus of only a few GPa would 

increase O-ACS stiffness more than ten percent, with no cost in mass.  
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Experiment Design 
 

     The design of open-structures will soon encompass a huge field when they become 

commercially viable. Eventually, all design variables might be iterated and compared to better 

determine the characteristics of ideal braided lattice composites. For now, it is important to 

quickly cover a wide range of possible structures to find relationships among the key variables. 

Once a yarn material and size has been selected (currently limited by manufacturing 

capabilities), the next major design variables are mandrel size, yarn helix angle, and the ratio of 

axial to braid reinforcement. The specimen collection in the test sample is chosen such that 

empirical models can be fit to the measured data. Next, the loads to be applied to the structure 

are determined, and proper test methods for those developed. The description of the test methods 

is brief as the design of test methods is not the focus of this work. 

Designing the Sample 

     To date, a systematic study of the effects of O-ACS structural parameters and their effect on 

structure performance has not been completed. The current application targets for the O-ACS are 

for structures where size and weight limits impose constraints. A range from one to three inches 

is the focus. While there are thousands of combinations of structures that can be made on the 

maypole machine, this study focuses on isolating the effect of geometry, and maintains 

symmetric forms throughout. Some of the main ‘degrees of freedom’ in the design of open-

structure tubes are shown in Figure 37. The first structure shown is a basic true tri-axial: eight 

axial yarns, four warp, four weft, and a 45 degree helix angle. The structure can be modified in 

several ways. First, helical yarns could be added to the basic structure; perhaps for torsional 

stiffness. Alternately, axial yarns could be added to increase compressive strength. Yet another 

alternative is to keep the yarn-count the same as the basic structure, but to change the helix 

angle; perhaps affecting both torsional and bending stiffness. Any combination of these is also 

valid.  
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Figure 37 – Major design variable sof the O-ACS structure 

     Each of these parameters is a dimension that the structure can be designed on. Practically, 

some of these directions are limited. A clear example is the helix angle variation (Figure 38). 

Angles which are too shallow do not provide good compression in the helical yarns at the braid 

point, and so are impractical. Similarly, a very high helix angle will not provide proper axial 

tension. Some constraints are also placed on the ratio of yarn-to-mandrel diameters. If this ratio 

is large, the structure begins to close and form a traditional tube. If too open, the structure lacks 

any geometric reinforcement benefits of the O-ACS concept. 

 

Figure 38 – Example of Design Variable with limited range 

     The range of structure parameters tested for this work is presented in Table 13. These 

degrees-of-freedom were chosen as they have the largest influence on structure performance 

once a particular yarn has been chosen. The range of dimensions specified are within the 

manufacturing capabilities of a composite braider, and represent a full range of expected 

structure performance. 
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Table 13 – Range of test sample design variables 

 Low Mid High 

Non-dimensional (-1) (0) (1) 

Mandrel Diameter (in) 1.00 1.75 2.50 

Helix Angle (deg.) 30 45 60 

Number of Axials (#) 4 8 12 

 

     If every possible combination of the above were tested, 27 unique samples would be required. 

Design-of-experiment techniques can greatly reduce the number of test samples by assuming 

certain polynomial relationships between variables (Lundstedt, et al., 1998). If the relationships 

among variables were assumed to be linear, only 8 experiments would be needed. For more 

generality here, a quadratic (2
nd

 order) relationship is assumed. The equation for the relationship 

among the three variables is assumed to be adequately approximated by ( 40 ). 

     ∑    

 

   

 ∑∑       

 

   

 

   

   

( 40 ) 

Expanding terms, this relationship can be written  

                         
                       

               
    

( 41 ) 

The    terms are the independent variables, each    is a constant parameter,   is a random 

experimental error present in each experiment, and   is the dependent relationship between 

variables. Because it is an experiment and some error is expected, the equation will be solved in 

a least squares sense. As there are 10 unknown parameters, the model requires a minimum of ten 

experiments to be constrained. However, the error is unknown, and additional experiments will 

reduce the modeling error. Using a modified central composite design, 15 experiments are 

required. A true central composite design cannot be used since some parameters (the number of 

axials for instance) are very difficult to vary in a continuous manner. The experiments still 
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include a ‘neutral’ experiment (using values labeled ‘Mid’ in Table 13), and an experiment along 

each parameter direction. For the present work, the experiments required are listed in Table 14.  

Table 14 – Designed experiment specimen list 

Experiment # Mandrel Diameter (in) Helix Angle (deg.) Number of Axials 

1 -1 1.00 -1 30 -1 4 

2 1 2.5 -1 30 -1 4 

3 -1 1.00 1 60 -1 4 

4 1 2.5 1 60 -1 4 

5 -1 1.00 -1 30 1 12 

6 1 2.5 -1 30 1 12 

7 -1 1.00 1 60 1 12 

8 1 2.5 1 60 1 12 

9 0 1.75 0 45 0 8 

10 -1 1.00 0 45 0 8 

11 1 2.5 0 45 0 8 

12 0 1.75 -1 30 0 8 

13 0 1.75 1 60 0 8 

14 0 1.75 0 45 -1 4 

15 0 1.75 0 45 1 12 

 

     There are several benefits to the designed experiment approach beyond the reduction in 

testing needed. A major benefit of the polynomial model is that it will allow some extrapolation 

to be done in the initial consideration of new design concepts. Once the parameters in ( 41 ) are 

established, new values for the variables can be entered; within a similar range of values the 

model will predict expected responses for the new values. Also, if an additional variable was to 
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be considered, it would require only 10 additional experiments to have a 2
nd

 order model in four 

variables instead of three (a test of all possible combinations would require an additional 54).  

     Having chosen the size and shape of the samples, the method of constraint should be chosen. 

The method used was adopted from Branscomb (Branscomb, Minimal Weight Composites 

Utilizing Advanced Manufacturing Techniques, 2012), and consists of ‘potted’ end-caps, which 

encase the structure in resin within a threaded metal cap. The resin provides a solid connection 

between the metal cap and the structure yarns. The threaded cap is easily connected in a variety 

of fixtures suitable for testing the various modes. The test fixture design is explored in the next 

section. 

     The last consideration in specifying the experimental samples is the length of tube to be 

tested. The primary consideration is that the length includes at least one full repeating pattern of 

structure; this ensures local stiffness deviations within the structure do not affect the overall 

equivalent stiffness. To have a full repeated pattern in a 2.5 inch mandrel, 60 degree helix sample 

requires a 14.6 inch sample length. The next consideration is the testing equipment: the current 

testing equipment in use limits the length of uniaxial samples to approximately 24 inches 

(including the length of the potted end-caps). In most bending tests, a longer sample gives more 

information about the bending stiffness, and shorter samples yield more information about the 

shear stiffness. This effect has been eliminated by use of the pure bending test – in which no 

linear force is carried by the structure and therefore there is no shear effect. From the 

considerations above, the sample length is chosen to be 18 inches; this is the longest sample 

length which fits the test rig while allowing for three inches of potting in the end-caps. 

Determination of Test Procedures 

     The open-structure samples will be tested in several modes of beam loading. As stated in the 

first chapter, the goal of these experiments is to validate the stiffness predictive abilities of the 

FEA model. For this reason, the experiments are designed to measure loads and deflection in a 

linear range of the structure response. While some observations will be made regarding strength 

as an extension to the core work, it is not currently a primary consideration. It is desired to 

determine the effect of each variable (mandrel diameter, etc.) on the deflection response. In other 

words, for each loading condition we seek a relationship between the variables (        ) and 
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the response (   that can be approximated by a 2
nd

 order model ( 41 ). The loads to be considered 

are uni-axial tension and compression, pure moment bending, and torsion. Each case is shown in 

Figure 39. A brief explanation for the selection of each test, and the procedure used to conduct 

each one, is given in the following paragraphs.  

 

Figure 39 –Loading conditions to be tested 

     Torsion is a torque or twist about the main axis of the tube. This load case is seen in 

applications such as drive shafts, drill shafts, and wind-turbine blades (aerodynamic loads). The 

expected result is that the helix angle and the mandrel diameter will have the largest effect on 

torsional stiffness. This test is performed using a dedicated torsion testing machine which holds 

one end fixed and applies a rotation on the other end, measuring the torque and angle of twist. 

The test fixture for torsion testing is shown in Figure 40. 

 

Figure 40 – The torsion testing setup 
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The angular deflection and Torque applied are measured. The torsional stiffness ‘JG’ is retrieved 

from the raw torque vs angular deflection data using 

   (
  

   
)      (Nm^2) 

( 42 ) 

     Tension/compression is a pull/push along the tube main axis. This is the most likely loading 

that the O-ACS will encounter. Applications include truss members and many other uses in a 

similar condition. While this is perhaps conceptually the easiest test to perform, it is expected 

that the strength of the structures in tension will exceed the testing machine capacity. NASA has 

expressed interest in the fabrication of O-ACS trusses as a major component in the Space Launch 

System (SLS). In that application (and many like it) the primary load will be compression. 

Connections for the open-structures will certainly ensure that the O-ACS itself be loaded only in 

tension and compression as a ‘two-force member’. Compression is also the most obvious 

condition in which open-structure tubes should exceed equivalent weight thin-walled tubes; 

where a thin-walled tube will become unstable and buckle, the individual yarns in the open-

structure will not fail. Because the intent of this thesis is to study the stiffness (not strength) of 

the O-ACS, only one of the tension/compression tests is needed. Compression testing is 

performed so that more rigid available fixtures can be utilized: steel bearings and caps are used 

to ensure only compressive (i.e. no bending) loads are applied (Figure 41). 
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Figure 41 – The compression testing setup 

The linear deflection and force applied are measured. The axial stiffness ‘AE’ is retrieved from 

the raw force vs. deflection data using 

   (
 

 
)      (N) 

( 43 ) 

     Bending is a relatively untested loading condition for common tubes. Examples of bending 

loads include camera booms, cranes, and robotic arms. Most of the cases are actually cantilever 

bending. Cantilever bending has loads due both to shear and bending moments – the relative 

effects of which are significant when the beam length and beam diameter are within an order of 

magnitude. To isolate only the bending load, a ‘pure bending’ test will be used. This test 

involves the application of a bending moment to each end of the structure, but no net force is 

applied. This presents several convenient results. Shear is not induced and can be safely ignored 

in calculation of the effective stiffness. The shape taken is nominally a circular arc, allowing 

easy measurement of the deflection. Finally, it prevents applying force locally to yarns within the 

structure – an important consideration when the entire beam stiffness is sought. The test fixture 

developed for this test is shown in Figure 42. 
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Figure 42 – The pure bending testing setup 

The linear deflection and load applied are measured. The end supports each have a known 

spacing ‘a’ between supports. The bending stiffness ‘EI’ is retrieved from the raw force vs. 

deflection data using 

   (
 

 
)  

   

 
 

( 44 ) 

Test Fixture Design 

Because the computational tests will involve end-loading with rigid end-plates, this condition is 

replicated in the test samples. To facilitate connecting the structures to various test equipment, 

steel threaded couplers (pipe nipples) are placed at each end. The structure is potted in epoxy 

within this coupler ring. It is important that these end caps be collinear, and that the potted 

structure be also aligned within them. The procedure for potting the structure is shown in Figure 

43. Because epoxy should not be allowed to jam in the coupler threads, a sheet of plastic 

vacuum-bagging material is used to keep the epoxy from leaking. Step 1 shows the necessary 
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materials: Pipe nipple, pipe coupler, plastic sheet, and rubber band. Step 2 is to thread the 

coupler and nipple together with plastic sheet between: this will contain the resin. It was found to 

be very helpful to glue the sheet in place first with (e.g.) superglue to prevent resin leakage. In 

Step 3, the rubber band is used to support the free ends of the plastic, which can be trimmed as 

desired at this point. The two end caps ready, Step 4 shows the fixture; the ends of the structure 

are wrapped with a cloth material to evenly space it from the walls of the nipple and keep it 

aligned therewith. Finally, Step 5 shows the fixture completed; the couplers are bound to the rod 

with (e.g.) hose clamps, the fixture is placed in a vertical orientation, and the ends can be 

subsequently potted. It is desirable that the rod have a channel in it to help align the couplers. 

The sixth step is the finished sample, ready for testing. 

 

Figure 43 – Demonstration of end-cap potting 
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Figure 44 - Example of potted end-caps on various diameters 

Conclusion 

     An experiment was designed to test several major O-ACS design variables in an efficient 

manner. The testing procedures for the different load scenarios were briefly described. A method 

for constraining the ends of the open structure tubes was adopted and formalized (Branscomb, 

Minimal Weight Composites Utilizing Advanced Manufacturing Techniques, 2012). The actual 

test results are presented in the next chapter. Possible sources of error resulting from these test 

procedures are described there. The experiment is designed such that a very wide range of 

samples is tested. This may lead to inaccuracy of results since no test is repeated multiple times 

to find error bounds on the test. Doing so would not be helpful with the current state of O-ACS 

manufacture: the braiding process is not yet consistent enough for such statistics to be 

meaningful when the process is automated. Instead, the assumed polynomial model will give an 

estimate of the test error, as well as comparison with the finite element model. 
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Experiment Results and Model Validation 
 

     Having described previously an experiment of fifteen specimens, the test results are now 

presented. The experiment produces an empirical (curve fit) model which can be used for design 

of structures with properties near the tested values. The mode also helps see the relative strength 

of effects among the design variables. The same fifteen tests were repeated in the finite element 

model. Comparisons between the physical and finite-element results demonstrate the relative 

utility, strengths, and weaknesses of the two forms of design. Graphical methods are presented to 

help utilize the test data in future O-ACS design. 

Physical Experiment Results 

     The results of the physical testing are recorded in Table 15. The results for a thin carbon tube 

are also included for comparison. 

Table 15 – Physical Experiment test samples and results 

  Sample Stiffness 

Visualization Axial AE 

(kN) 

Bending EI 

(Nm^2) 

Torsion JG 

(Nm^2) 

1 

 

501.7 130.2 
53.51 

2 

 

511.8 386.2 148.43 

3 

 

541.8 90.5 53.06 

4 

 

560.5 381.2 270.79 
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5 

 

1055 279.0 43.15 

6 

 

1264 1178.6 126.91 

7 

 

1114 328.1 43.19 

8 

 

1314 1224.7 306.55 

9 

 

957.8 501.2 138.39 

10 

 

929.9 170.2 47.30 

11 

 

1031 725.5 266.40 

12 

 

996.7 422.8 102.20 

13 

 

987.5 427.4 145.00 

14 

 

617.9 240.4 131.41 

15 

 

1219 571.2 151.38 
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Physical Experiment Polynomial Model Fit 

     The results of the experiments were used to construct a polynomial model in the form of 

equation ( 41 ). The simple quadratic model can be seen to do a fair job of predicting the axial 

stiffness within the range tested. Each of the three modes of testing is presented below. The 

results for each mode of testing are presented graphically. The interpretation of results follows 

the listed graphs and tables of fit. Note while reading that the values of the coefficients yield 

insight into the physical relationships. Larger magnitude coefficients demonstrate strong effects 

of their associated variables in ( 41 ).The prediction ability of the simple quadratic model is very 

good considering the efficiency of the model. 
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Axial Compression 

Table 16 – Physical Test: Axial Empirical Model Coefficients 

                                     

Value -218.0 110.5 10.25 101.5 -51.29 0.269 16.28 -0.106 -0.009 -0.236 

 

 

Figure 45 – Physical test: axial model 

 

Figure 46 - Physical test: axial model 
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Pure Bending 

Table 17 – Physical Test: Bending Empirical Model Coefficients 

                                     

Value 496.1 -382.3 -5.23 -46.3 92.2 0.719 51.51 0.0263 0.223 0.026 

 

 

Figure 47 - Physical test: bending model 

 

Figure 48 - Physical test: bending model fit 
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Torsion 

Table 18 – Physical Test: Torsion Empirical Model Coefficients 

                                     

Value 42.64 -117.8 2.994 -5.53 17.994 3.484 2.234 -0.085 0.097 -0.014 

 

 

Figure 49 - Physical test: torsion model 

 

Figure 50 - Physical test: torsion model fit 
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FEA Experiment Results 

     The Geometry and Finite Element model was used to create a simulation of each of the fifteen 

test specimens, and simulated them in each of the four loading conditions. The results of the 

simulation, and images of each structure, are listed in Table 19. 

Table 19 – Finite Element experiment test samples and results 

  Sample Stiffness 

Visualization 
Axial AE 

(kN) 

Bending 

EI (Nm^2) 

Torsion JG 

(Nm^2) 

1 
 

818.0 81.6 38.5 

2 

 

912.5 500.2 164.4 

3 

 

276.9 27.9 39.4 

4 

 

585.5 320.1 233.5 

5 
 

2821.1 280.7 36.9 

6 

 

3149.4 1724.4 169.5 

7 
 

2019.4 201.2 43.9 

8 

 

2128.6 1166.4 323. 4 
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9 

 

1484.9 410.6 128.9 

10 

 

1106.2 110.2 34.4 

11 

 

1638.7 889.0 240.1 

12 

 

1869.0 512.2 95.8 

13 

 

948.8 264.0 124.4 

14 

 

719.6 200.6 143.9 

15 

 

2596.7 722.6 151.3 

 

FEA Experiment Polynomial Model Fit 

     The results of the FEA simulations were also used to construct polynomial models in the form 

of equation ( 41 ). The results for each test are presented below. A discussion of their 

interpretation follows. 
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Axial Compression 

Table 20 – FEA Test: Axial Empirical Model Coefficients 

                                     

Value -46.55 325.06 1.696 212.7 -177.4 7.381 30.99 -0.182 -3.29 0.459 

 

 

Figure 51 – FEA test: axial model 

 

Figure 52 - FEA test: axial model fit 
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Pure Bending 

Table 21 – FEA Test: Bending Empirical Model Coefficients 

                                     

Value -104.3 -437.6 23.67 -35.89 154.3 -4.07 78.24 -0.169 -1.264 0.116 

 

 

Figure 53 - FEA test: bending model 

 

Figure 54 - FEA test: bending model fit 



80 

 

Table 22 – FEA Test: Torsion Empirical Model Coefficients 

                                     

Value 52.91 13.64 1.447 -25.67 -26.7 2.96 5.28 -0.067 0.273 0.049 

 

 

Figure 55 - FEA test: torsional model 

 

Figure 56 - FEA test: torsion model fit 
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Comparison of Physical and Simulation Results 

     The chief goal of this validation process is to confirm that the model adequately represents the 

relationship among structure design variables. The polynomial model allows a way to compare 

the effects seen in physical testing with those predicted by the model. For reference, Table 16 

through Table 18 and Table 20 through Table 22 are consolidated into Table 23, below. To 

compare the model’s fitting ability, the error given is the difference between the FEA and 

physical coefficient value, divided by the largest coefficient of the table. 

Table 23 – Comparison of FEA and Physical Experiment Results 

                                      

C
o
m

p
re

ss
io

n
 Exp. -218.0 110.5 10.25 101.5 -51.29 0.269 16.28 -0.106 -0.01 -0.24 

FEA -46.55 325.06 1.696 212.7 -177.4 7.381 30.99 -0.182 -3.29 0.459 

% 

max 
N/A 66.0 -2.63 34.2 -38.8 2.18 4.52 -0.02 -1.01 0.22 

B
en

d
in

g
 

Exp. 496.1 -382.3 -5.23 -46.3 92.2 0.719 51.51 0.0263 0.223 0.026 

FEA -104.3 -437.6 23.67 -35.89 154.3 -4.07 78.24 -0.169 -1.26 0.116 

% 

max 
N/A -11.1 5.83 2.1 12.5 -0.96 5.38 -0.04 -0.3 0.018 

T
o
rs

io
n

 

Exp. 42.64 -117.8 2.994 -5.53 17.994 3.484 2.234 -0.085 0.097 -0.01 

FEA 52.91 13.64 1.447 -25.67 -26.7 2.96 5.28 -0.067 0.273 0.049 

% 

max 
N/A 111.6 -1.31 -17.09 -37.9 -0.44 2.58 0.016 0.149 0.053 

 

     Each loading condition (Compression, Bending, and Torsion) is now summarized. The effect 

of design variables will be explained, as well as the ability of the model to accurately predict the 

response to design variables. The polynomial model is useful for prediction and extrapolation, 

but it is hard to directly visualize the independent effect of each design variable: plots are 
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provided below summarizing these effects as seen in physical data. Some of the qualitative 

remarks below are the author’s opinion of these data as he interprets them. 

     The compression test shows a strong dependence on Diameter and Number of Axials.  The 

Diameter effect is a regressive polynomial, that is; there is a point at which increasing the 

diameter will no longer increase the structure stiffness. This is due to the increase of free span-

length between joint intersections, which are increasingly weak in bending. The shear modulus 

of the composite yarn is significantly lower than elastic modulus, thus making the yarn ‘beams’ 

weak in lateral loading. The Axial yarns, as expected, contribute most to the axial stiffness. The 

relationship is nearly linear with number of axials present. Alignment of the axials could also 

affect this: fewer braider yarns or lower braid angles improve alignment at the cost of increasing 

free span length (decreasing support from the helical yarns). The relative merit of the two effects 

should be considered in design. The effect of directly varying single parameters is shown in 

Figure 57. The x-axis is non-dimensional using the values from Table 13. The compression 

testing method may not be adequate for the range of stiffness seen in the open structures. The 

potted end compliance may affect the measured stiffness. This would explain the slightly 

nonlinear response to the number of axials, which one would expect a direct increase in stiffness 

as more axial yarns are added. The finite element model properly represents the response to 

design variables, but the magnitudes it gives are too high. This could be due to the poor 

alignment of the yarns in the test samples, and could be fixed by the use of higher tension 

carriers when braiding. 
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Figure 57 – Axial Stiffness in a narrow band of test variables 

 

Figure 58– Axial Specific Stiffness in a narrow band of test variables 

     The pure bending test shows much interaction between variables. Number of axials adds to 

the stiffness significantly, though the axials on the sides of the structure do not add much 

support: thus the response is regressive with respect to number of axial yarns. The helix angle 

does not significantly affect the stiffness: while lower angles align more fibers with the bending 

stresses, it reduces their ability to stabilize the axial yarns (as was seen in the axial test). The 

diameter directly and exponentially increases the structure stiffness, though the effect of opening 

the span is again seen here (Figure 59). The Finite Element model again over-predicts the actual 

stiffness, though it does a very good job of modeling the relationships between variables. Error 

in the physical test may again have been introduced through the potted end-caps.  
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Figure 59 – Bending Stiffness in a narrow band of test variables 

 

Figure 60 – Bending Specific stffness in a narrow band of test variables 

     The torsion test showed the best fit between physical testing and the finite element model. 

The torsional stiffness is seen to be nearly linearly dependent on mandrel diameter. Number of 

axials has little or no effect on the torsional stiffness. The helix angle has an effect that is more 

pronounced when the tube is of a large diameter. In particular it is seen that helix angles near 56 

degrees provide the most support, probably due to stability against axial loading. The test was 

very stable and repeatable, and requires low loads (relative to the other two tests). This could be 

a reason for improved correlation between these tests and the FEA model. 
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Figure 61 – Torsional Stiffness in a narrow band of test variables 

 

Figure 62 – Torsional Specific Stiffness in a narrow band of test variables 

     A final method for visualizing the designs is the radar plot, adopted from Broderick 

(Broderick, 1985). The radar plot allows quick understanding of the effect of each variable on 

the structure. The plots shown below demonstrate the specific stiffness change due to a change in 

design variable. The first three (Figure 63) show how a single variable affects all load cases. The 

next three (Figure 64) show how a load case is affected by all three variables. The plots are non-
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dimensional, such that they can show the relative effect of each variable in a clear manner. The 

numeric values can be found in the plots above. 
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Figure 63 – Effect of design variables on specific stiffness 
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Figure 64 – response of specific stiffness to design variables  
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Sources of Error 

     As was done for the geometry and finite element models previously, possible sources of error 

in the physical tests are noted here. The sources of error can be roughly divided into those 

induced by the prototype fabrication, and those produced by the testing procedures.  

     First, the manufacture of O-ACS tubes is far from mature. The machinery used is designed to 

braid fine fibers and tows, with far less friction and tension than the carbon yarns provide. To 

overcome the tension, it often requires manual intervention at the braid point to ensure yarns do 

not kink and bind. This intervention is irregular and causes some errors in the tubes. It produces 

axial misalignment from the tube axis and arching in the helical yarns, both of which weaken the 

tube geometry. Also, the O-ACS joints are very weak compared to the yarns. It is difficult to 

determine whether the joints are intact and contributing to structure stiffness: some could be 

broken during curing or transport without operator knowledge. Finally, the abrasion during braid 

formation damages the carbon yarns somewhat. The extent of this damage is not uniform and 

varies from structure to structure.  

     These sources of error in the test samples could be eliminated by the use of a different 

braiding machine. For example, a machine designed to braid wire would have the tension and 

carrier motion capable of constructing uniform structures with no human intervention. This 

would improve axial alignment, helical tensioning, and helix angle verification. If such a 

machine was used, yarns could be made with a more protective jacket to prevent abrasive harm. 

The yarn jacket could also, perhaps, be designed of a material which is impervious to the 

abrasion. Experiments have shown that fiber-glass yarn-jacket axial fibers may fulfill this 

purpose. The final prototype error needing solution is the joint strength. Joint strength is 

dominated by the resin used. A resin which has designed structural properties would assist 

tremendously here. The current resin is a laminating resin, which is good for maintaining fiber 

alignment but not suited for joint bonding. Again, experiments with a structural adhesive have 

shown that a different resin choice is a valid solution here, if it is cost-effective. 

     Secondly, the test procedures are not fully developed. The purpose of this work is to provide a 

platform for optimization, and effort is being made by others in the Auburn Advanced Braiding 

lab to develop suitable test procedures. A preliminary review of the ASTM testing standards 

shows a lack of methods for thin-walled tubes, and for composite tubular structures in general. 
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The author believes that his testing method for compression is washing out O-ACS results due to 

compliance in the resin potting used. This method was adopted from a time when the 

development of open-structures was comparative and not predictive; it is now time a more 

rigorous testing system be designed as models are made needing confirmation.  A possible 

solution is to pot the structures in machined aluminum or steel blocks of precise dimension: 

reducing the amount of resin which contributes to overall compliance. The main justification for 

these claims regarding potting is the fine results of the torsion test: because the torsional stiffness 

of the O-ACS is low compared to the resin potting, the potting had a very minimal effect on the 

test results. Another source of test error is end-cap alignment. While effort was made to keep the 

end caps aligned, the threaded caps are not perfectly re-aligned between structure potting and 

subsequent testing. A final computation of the error in the model is presented in  

Table 24 - Error between physical testing and finite element 

 Mean Error Standard Deviation Plotted in: 

Compression 60.2% 57% Figure 46 

Bending -8.4% 32.6% Figure 48 

Torsion -5.7% 16.6% Figure 50 

 

Conclusion 

     An experiment was designed which covered a wide range of O-ACS geometries. Fifteen 

open-structure prototypes were fabricated, and a design-of-experiment method was used to fit a 

polynomial model between samples. The results of the physical testing yielded insight into the 

relationship of design variables on the structure stiffness and specific stiffness. The most 

important revelation from the testing is that diameter is a very effective design decision: 

increasing the diameter of O-ACS tubes does not effectively increase their weight, but 

significantly affects their bending and torsional stiffness. This advantage should be used when 

finding applications of the tubes for commercial purposes. Another revelation is that the helical 

yarns often do very little for the structure besides stabilizing axial yarns. To this end, it is 

expected that they could be made much smaller than the axials to increase the specific stiffness 

in both axial compression and bending.  
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     The same fifteen O-ACS configurations were tested in fell_point. The model fits the bending 

and torsional data well (Figure 53 and Figure 55), but consistently over-estimates the axial 

stiffness (Figure 52). The possible reasons for mismatch have been explored in the Finite 

Element chapter. The model sufficiently simulates the effect of major structure design variables -

helix angle, mandrel diameter, number of axials, and yarn diameter – and is a valid basis for 

extrapolating open-structure design and designing optimal braided lattice structures.  
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Optimization Model 
 

     Having developed tools that automate the analysis of lattice composites, focus can now be 

given to tools which design them. Structural optimization – the programmatic design of shapes 

and topologies based on cost function minimization - is a mature field which has developed to 

suit many diverse engineering disciplines. Starting with the seminal paper by Michell a century 

ago (Michell, 1904), based on principles applied by Maxwell (Maxwell, 1864), structural 

optimization has found application in the design of frame structures. The concept of frame 

structures as more efficient topologies than smooth or continuous media can be derived quite 

heuristically by observations of nature, or rigorously by application of General Relativity 

(Vasiliev & Gurdal, 1999). The present objective is to apply established optimization techniques 

within the special constraints imposed by the braiding process. 

Establishment of the Optimization Technique 

     Developments in optimization of structures have been summarized by several authors, many 

of whom write work specific to one application or topic (Bendsoe & Sigmund, 2003). Much of 

the literature on engineering optimization is not specific to structural design, though the 

principles of general optimization often find their way into structural applications (Vanderplaats, 

1984) (Arora, 1989).  The particular topics covered specifically by ‘structural optimization’ can 

roughly be broken into size, shape, topology, and truss optimization. Size optimization is the 

selection among similar designs, within a narrow range, to best achieve the objective. An 

example would be the design of a structural tube diameter and wall thickness, without 

considering whether the tube is in the ideal location to maximize its contribution to the objective.  

Shape optimization seeks to modify the boundaries of a structure to yield a more efficient whole. 

Determining the ideal arrangement of crenulation within a plate would fit in this field. Topology 

optimization is the penalization of internal structural mass, which does not contribute to design 

objectives. These techniques are usually the most general as they allow algorithms the most 

design freedom in establishing efficient structures. Because of the freedom inherent in the 

technique, careful constraint must be placed to ensure designs can be manufactured after design. 

Finally, truss optimization – closely related to size optimization – finds the ideal connection of a 
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frame network between nodes which are set in space. One of the accepted modern references on 

topological and shape optimization is the work of Bendsoe and Sigmund (Bendsoe & Sigmund, 

2003). All of the methods described above are summarized neatly in that work.  

     The unique aspect of this research is the design of optimal geometries within the constraint of 

the braiding process. The possible geometries of the O-ACS must conform to the abilities of 

Maypole braiding. It is within this scope that an optimum is sought. A major concern in the 

choice of procedures is that the design-space be smooth within these limits. It was found during 

the Finite Element development previously that open-structure efficiencies will always be 

improved by the increase of mandrel diameter; thus the design diameter should be as large as the 

application allows. The ideal helix angle can be solved by simple Newton iteration, and again 

does not require the application of any special techniques. The remaining concerns primarily 

consider the location and loading of the yarns. In this work, the optimal structure is the ‘most 

efficient’ in a stiffness sense; that is, it is the structure within the design space which provides the 

highest stiffness for its weight. Where is this design to be found? The most rigid structure will, 

generally, be the one with the most material; meaning the maximum stiffness will always be the 

braid with all carriers loaded with their largest possible yarn. This structure will not be, however, 

the most efficient design possible, as it probably contains some portions which contribute 

significantly to the stiffness, and some portions which are barely loaded at all. Thus we seek to 

find the sub-space within the set of ‘fully loaded machine’ that contains only portions which 

contribute to the stiffness against a given load. The goal of the optimization algorithm to choose 

which yarns contribute best to the structure stiffness, and which yarns are oversized (or 

completely unnecessary) based on their individual contribution to structural rigidity. The 

implementation of these concepts in the mathematical statement of the optimization procedure is 

described below. 

Optimization Statement and Constraint Discussion 

     It was seen in the previous section that the heart of the optimization lies in selection of yarn 

diameters (or removal of yarns as diameter goes to zero). The optimization procedure for O-ACS 

design is now formalized. Formalization requires the mathematical description of an objective 

function, design variables, and constraints. The objective is a mathematical description of the 

goal or mission of the simulation. Design variables are the engineering quantities which can be 
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modified and which affect the achievement of the objective. Constraints are limits imposed on 

the design variables which ensure the resulting design does not reach forbidden spaces (practical 

or physical limits and requirements). These design components are outlined in Figure 65, and 

described in detail below. The method for solving the optimization problem should be conducive 

to the form of the problem (finite element) and to the types of constraints imposed on the system. 

The Optimality Criteria method will be used for its speed with the number of degrees of freedom 

present in the simulation, and its suitability for topological optimization (Haftka, Gurdel, & 

Kamat, 1990) (Sigmund, 2001). 

 

Figure 65 – Optimization Statement Outline 

     The design variables and constraints are most easily considered. The present problem has two 

forms of constraints active. First, there are constraints inherent to the simulation, a feature of the 

mathematical model used. It has already been stated that a structure can be completely specified 

once the machine, helix angle, and all yarn diameters (including 0 diameter) have been declared. 

One additional constraint is, of course, that the deflection comes from the finite element solution.  
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Second are the constraints that serve as boundaries on the design. These constraints are the 

desired design results. First, it is clear that one essential goal in this work could always be to 

minimize the weight of the structure, subject to displacement and stress constraints. However, a 

more practical formulation at present in creating efficient structures is to make the weight itself 

the constraint, and let the objective be to minimize the compliance (external energy). Using this 

approach, the structure will be ‘the most rigid for its given weight’, rather than ‘the lightest 

weight for a given deflection’. This concept is now clarified and formalized. 

     The objective of ‘specific stiffness’ has been mentioned throughout this work, but not yet 

clarified as a proper mission for O-ACS design. The applications for O-ACS, originally designed 

as ‘minimal weight’, are closely tied to creating structures which, for their weight, are the most 

rigid possible. This concept in an ‘external’ sense is easy to see; given a structure of a certain 

length, subject to a known load vector, determine the structure which for its weight will deflect 

the least. The deflection and the applied force define the external work done on the structure. The 

structure will gain energy exactly proportional to this load and deflection.  The most efficient 

structure can be considered the one which will provide the least deflection under that load (i.e. it 

will have the least external energy or ‘compliance’). Yarns within the structure will be strained 

due to the external work, and thus in any structural element, the work is known. Because the 

yarns are not (necessarily) aligned with the external load, the amount of work done on the 

structure is affected more by some yarns than by others due to the loads they carry and their 

individual deformation due to that load. Thus the objective is to minimize the compliance of the 

structure. The mathematical statement of this objective is  

                    

( 45 ) 

for the entire structure (Bendsoe & Sigmund, 2003) (Sigmund, 2001). This statement must be 

interpreted in a way that makes sense for the analysis at hand. In the ‘power-law’ approach to 

topological optimization (Bendsoe & Sigmund, 2003), this statement is solved by computing the 

element-wise contribution to compliance, and penalizing element density        with a 

power  . Note that this is not quite the same as ( 45 ), but is an objective which will try to force 

the removal of elements with intermediate density: 
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          ∑    
   

     

 

   

 

( 46 ) 

Using this equation, each element is evaluated for its contribution to the compliance, and updated 

on each iteration (the update technique is described in the next paragraph). However, elements in 

the current analysis should not be allowed freedom to change independently; yarns should have a 

constant diameter   along their entire length  . The objective is reformulated and grouped to find 

the yarn-wise compliances: 

          ∑∑    
         

 

   

 

   

 

            
    

      

( 47 ) 

Thus, on every iteration, each yarn’s compliance will be computed, and the diameter updated. It 

is clear that this is nearly equivalent to ( 46 ), since a change in diameter will affect the stiffness 

of the element as well. In other words, the penalization was added as a somewhat heuristic way 

to force a solution where        , and in our current problem intermediate values of yarn 

diameter           are acceptable. 

Review of the Optimality Criteria Method 

     The objective is now clear, but it is yet undecided how each yarn’s relative contribution to 

compliance should be determined. More specifically, we must know how a change in the yarn 

diameter will affect the stiffness: then the yarns which have the largest effect are retained, and 

those with the smallest effect are removed. The sensitivity will be found using the Optimality 

Criteria (OC) method (Haftka, Gurdel, & Kamat, 1990). This method uses Kuhn-Tucker 

optimality formulation, and is accepted as an established topological optimization technique 

(Rozvany, 2009). The OC method can be summarized, for a single constraint, as follows (Haftka, 

Gurdel, & Kamat, 1990): Given a set of design variables and their reciprocal 
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Formulate the objective and constraints in terms of the reciprocal variable 

Minimize      

Subject to         

The Kuhn-Tucker optimality criterion (assuming the constraint   is critical and the objective is 

nearly linear with respect to   ) is 

  

   
  

  

   
                     

( 48 ) 

Which can be solved for the Lagrange multiplier 

  

  
   

  
   

 
                    

              
  

The design variables should now be resized to move closer to the objective. This can be achieved 

by increasing the effective variables, and decreasing the ineffective ones. A common method for 

the update is (Bendsoe & Sigmund, 2003) (Haftka, Gurdel, & Kamat, 1990) 

  
      

        
    

( 49 ) 

Where 

   

  
   

  
   

                                       

And   is a numeric damping coefficient. If the constraint is active, 
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And the multiplier in ( 49 ) can be determined: 
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     ∑  

   

   
 

 

   

 

Of course, because the equations above assumed the objective was linear in design variables, the 

actual change in    is practically limited to a small value. This completes the general description 

of the optimality criteria method.  

Implementation of the Optimality Criteria Method 

     For the problem at hand, each of the components above will be interpreted in light of ( 47 ). It 

would be desirable for the effect of yarn diameter (design variable) on the compliance (objective) 

to be simply  

   

   
    

          [a false equality] 

( 50 ) 

Unfortunately    is certainly not linear in   , as required by ( 48 ). The axial stiffness of the yarn 

is proportional to   , while bending and torsional stiffness are proportional to    , and only the 

small shear term proportional to  . In order to better follow the OC method, it is proposed that 

the design variable be transformed: instead of using the diameter, use the square of diameter 

                         

If it is assumed that the axial stiffness of the yarn is significant compared to its bending and 

torsional stiffness, then the compliance is nearly linear in  , and the sensitivity therefore is nearly 

constant. The effect of yarn diameter squared (design variable) on the compliance (objective) is 

then (more accurately) 

   

   
    

      

( 51 ) 

The change in volume (cost) of a change in yarn diameter (design variable) is 

  

   
 

  

 
 

( 52 ) 
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If the objective was truly linear in  , we could solve for the new design variables in a single step 

  
        

 
 

    

  
   

 
  
   

 

( 53 ) 

However, to maintain careful treatment of the remaining nonlinearity in ( 51 ), the total change in 

diameter is limited to a step change in diameter (usually <5% of the initial diameter). Let   be 

this move limit, and       the numeric damping coefficient. The update scheme is 

summarized: 

  
    {

                     
 

                

    
 

                      
 

            

                  
 

            

} 

( 54 ) 

Retrieving Structural Quantities from the FE Solution 

      The optimization method requires computation of the internal energy (compliance) of each 

element in the structure. Computation of the structure compliance obviously requires the 

extraction of load and/or strain data from each element after the finite element solution has been 

computed. By storing the element stiffness matrices during construction of the global stiffness 

matrix, the element loads can be retrieved from the deformation solution 

                                 

By the computations of each element’s deflection 

                           

( 55 ) 

                           

( 56 ) 
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( 57 ) 

If only certain dimensions of the compliance are to be considered (for instance, if only axial load 

is of concern) then the weighted compliance can be computed 

         
           

   

( 58 ) 

Where   is a one-by-six weighting vector, with at least one non-zero element. Using only the 

axial component (               ) would result in the sensitivity function ( 51 ) being very 

close to linear, which helps the convergence to a global minimum and increases the solution 

speed.  

Addition of Practical Braiding Constraints 

     It was specified earlier that the design variables are individual yarns, instead of single 

elements, because practically yarns must have constant diameter along their length. Another 

constraint, not accessible to the model, is in the braiding process itself; because braider yarns are 

in tension during the braiding process, a uniform structure will not be created unless the 

clockwise and counter-clockwise tensions are nearly equivalent. An easy remedy for this is to 

always match a warp and weft carrier, such that they carry the tension in opposite directions and 

balance the tension. To consider this effect, the optimization solver in fell_point can be 

commanded to group pairs of yarns such that their diameters remain the same. By considering 

the average sensitivity ( 51 ) of the two yarns, they are forced to update equally ( 53 ). 

     A similar concern arises when certain boundary conditions are used in analysis. For instance, 

a cantilever load-case can be used for simulation in place of three-point bending, and the 

boundaries are identical. However, the simulation will not be able to account for the symmetry in 

three-point bending which is lost in the cantilever. Thus, in addition to balancing the tensions 

(matching warp to weft and vice versa) the program allows an option to match yarn rotated by 

180 degrees (match warp to opposite side warp, and weft to opposite side weft). An example of 

the difference between a balanced and matched result compared to an unlimited result are shown 

in Figure 66 for a short, cantilever beam under asymmetric loading. While the structure on the 
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left may be the actual optimal solution, clearly the one on the right is more practical in 

manufacturing and application.  

 

Figure 66 - Left: No braidability constraints, Right: balanced and matched 

Optimal Strut Design - Uniaxial Compression 

     A primary application of O-ACS may be in the creation of struts for space-craft or supports in 

a larger space-frame. It would be expected that the ideal strut would consist of mostly axial 

reinforcement. In fact, without consideration of stability limits (buckling) the ideal strut is simply 

a ring of equally sized axial yarns; this is expected since simple axial yarns can achieve perfect 

structural efficiency (Michell, 1904). The axial compression load-case serves as a good test of 

the optimization algorithm. The solution can also be limited to a volume fraction which requires 

the retention of some braider yarns and will demonstrate those which, if present, proved the most 

support to the structure. The baseline configuration for the optimization is given in Table 25. 

Remember that the baseline is from a fully loaded machine, and begins as the tube shown in 

Figure 67. 
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Table 25 – Baseline open-structure for optimization 

 Value 

Machine Definition 32 Carrier Maypole 

Helix Angle (deg.) 

 

45 

Structure Height (mm) 279.3 

Mandrel Diameter (mm) 44.45 

Yarn Maximum Diameter (mm) 2.0 

Target Volume Fraction 25% 

Material Properties {Retained from Table 12} 

 

Figure 67 - Start of optimization: O-ACS tube from fully loaded machine 

The final result is near the expected result of only axial reinforcement (Figure 68) as expected 

from the most basic structural optimization concepts (Michell, 1904). In fact, a reduction of the 

target volume to 23% would eliminate helical yarns entirely, and only 16 evenly sized axial 

yarns would remain. The results with the fine helical yarns are shown to illustrate the (more 

practical) intermediate solution. The axial yarns are all of equal size. A fine mesh of helical yarns 

helps contain them. By making the helical yarns as small as possible, not only is their weight 

decreased, but the axial yarns maintain straighter paths (less undulation) along the structure.  

 

Figure 68 - Optimal Strut (Compression Load) 
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Optimal Driveshaft Design – Torsion 

     The ideal torsional shaft (Figure 69) is also mostly intuitive: helical yarns carry the load along 

their axis more efficiently than an interlaced structure. Again, all the final yarns are of equal 

diameter. The final helix angle of 44 degrees is easily explained by the Michell theory, which 

would say the yarns carry the torsion most efficiently along their axis. The effect of helix angle 

(alone) on specific stiffness for this tube with no axials is shown in Figure 70.  

 

Figure 69 - Optimal Driveshaft (torsional load) 

 

Figure 70 - Optimal Driveshaft: effect of helix angle 

 

Optimal Boom Design – Cantilever Bending  

     Cantilever bending is the first structure from which the optimization results yields insight into 

design. First, the upper and lower axial yarns are maintained. While it is doubtful that the idea of 

area moment of inertia can be directly applied to a truss structure that lacks a solid cross section 
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(see Figure 29), the increase in diameter and distance of structural material from the structure 

centerline certainly increases the diameter. The real insight is that some helical yarns in the O-

ACS must be maintained to carry shear loads and to put the upper and lower axials into tensile 

and compressive loads rather than bending. Traditional planar theory for bending trusses would 

suggest that the reinforcement between upper and lower should form equilateral triangles (such 

as in a Warren girder). We see the cantilever O-ACS is more efficient with a shallow helix angle, 

related to the ability to transfer the radial end-load into axial stresses in the upper and lower 

yarns (Figure 73). Another curious effect of the shallower angle is that the axials are more 

symmetric than in a case with steeper angle.  

 

Figure 71 - Optimal Boom (cantilever bending load) 

 

Figure 72 - Optimal Boom loading diagram 
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Figure 73 – Optimal Boom: effect of helix angle 

 

Figure 74 - Suboptimal Beam with less symmetric axial yarn placement 

 

Optimal Bridge Design – Three-Point Bending 

     Finally, a three-point bending load is tested and the structure optimized (Figure 75). While the 

large upper and lower axials are maintained, there is a much higher reliance on the helical yarns 

to carry shear. This is simply a feature of the length of the beam used. A long beam would give a 

result closer to the boom bending results from before, as seen in Figure 77.  
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Figure 75 - Optimal Bridge (three-point bending load) 

 

Figure 76 - Optimal Bridge loading diagram 

 

Figure 77 - Optimal Bridge on a longer span (where shear load is less meaningful) 

Comparison to Suboptimal Designs and Commercial Products 

 

Sources of Error 

     Most of the errors that may exist in the optimization are the same as those which apply in the 

Finite Element analysis. New errors are limited only to numeric precision. There are widely 



107 

 

varying scales of numbers in the geometry, finite element construction, finite element solution, 

and element load retrieval. These varied scales gradually decreases the numeric precision at each 

step in the simulation. This only causes issues when the sensitivities (Equation ( 51 )) are 

calculated: A problem which is expected to yield a symmetric result may not do so because small 

errors in trigonometric functions cause (very small) differences in the sensitivities. When the 

multipliers are found (Equation ( 53 )) any minute difference in the compliance values will force 

nearly symmetric problems into drastically asymmetric ones. This issue was solved by 

reformulating the geometry model to solve the compression and tension down to arbitrarily close 

precision. This accounted for the largest source of errors, and was resolved. Fortunately, in most 

cases where optimization is useful - bending, for instance – the sensitivities of the various yarns 

are vastly different, and the numeric precision does not come into any effect.  

Conclusion 

     The optimization considers all the parameters of the structure as either constraints or design 

variables. The user of a design tool as presented here is typically designing within the constraints 

of a single braiding machine. Any given machine has a maximal loading capacity (maximum 

number of packages and uniaxial yarns) which creates a structure that bounds the upper limit on 

the total material present in the structure and thus bounds the limit of strength and stiffness. It 

may be found that loading fewer packages will create a structure with higher specific stiffness. 

Thus yarns are removed from the fully-loaded structure (in a mathematically sustainable manner) 

until the optimal structure is determined. Optimality Criteria optimization was used to determine 

the way individual yarns contribute to structure stiffness.  

     Several concepts of O-ACS design have proceeded from this work. First, diameter should 

always be increased to the limit of the application’s space constraints. This both increases the 

distance of yarns from the neutral axis, and (for a given weight) will have less undulation 

between the yarns (as the ratio of mandrel diameter to yarn diameter increases). Helix angle is 

determined by parameter sweep or by Newton iteration. Yarn diameters are, as mentioned, 

determined using optimality. The results have proven insightful into the relationships among 

yarn locations. Axial reinforcement is helpful with any axial stress (whether due to axial or 

bending loads). The helical reinforcement is more varied in the way it assists the structure; 

sometimes it carries load itself, and other times it transfers load from one set of axials to another. 
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Because the optimal designs are often not directly intuitive, the optimization has achieved its 

goal of yielding insight into O-ACS design. A comparison between the optimized beams, 

samples from the test-matrix, and commercial competition are presented in the following review. 
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Review and Conclusion 
 

     The complete tool-set for the analysis and design of O-ACS structures has been developed. A 

geometry model was created starting with the kinematics of the braiding machine, compressing 

the structure against a mandrel, and tensioning the yarns in simulation. The individual yarns were 

discretized and given the structural properties of beams. A platform for applying loads and 

constraints to the open-structure was developed, allowing the computation of structure 

deformation and loads within the yarns and yarn intersections. The finite-element model was 

compared to physical samples, and found capable of accurately predicting torsional and bending 

stiffness. Finally, the model was used to create an optimization model capable of determining 

optimal yarn-placement for creating designed minimal-weight composite structures. All these 

simulations have been developed in ~2400 lines of MATLAB code. To be a practical design 

tool, the capabilities of the program must be made accessible to any engineer not familiar with 

the code or programming. To this end, a graphic user interface (GUI) was made for fell_point 

which allows easy setup and use of the tools (Figure 78). 

 

Figure 78 - The fell_point graphic user interface 
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    The GUI allows the easy selection of carrier loading, and structure dimensions such as height, 

helix angle, and mandrel diameter (Figure 79). The machine definition (maximum number of 

carriers) is fixed based on the user’s machine access and needs. The units are independent: the 

examples here use SI units (kg, m, s).  

 

Figure 79 - Geometry Module control panel 

The geometry is quickly displayed and a loading diagram for the structure is provided to show 

where the carriers would be loaded on the machine. In this way, a braider unfamiliar with 

braiding patterns can visualize the structure he expects to make, before committing to setting up 

the machine. This also allows the engineer to design a structure, and provide the braider with 

machine loading information (Figure 80). 

 

Figure 80 - Visualization window 

      The geometry can be immediate analyzed for deflection under a specified load case. Yarn 

properties (diameter and stiffness) can be entered and will update the geometry model if 

required. Constraints on the upper and lower yarn boundaries can be applied on the six degree of 

freedom at each end. A force, moment, or combination of both can be applied at the upper node 

(Figure 81). 



111 

 

 

Figure 81 - Analysis setup and material model control panel 

     After initial analysis, the load and geometry can be used as the starting point for an 

optimization. The user simply specifies a final volume fraction and simple rules about when to 

end the optimization process. The matching and balancing constraints, as well as minimum yarn 

diameter, can also be imposed to drive the optimization toward results which can be realistically 

manufactured. Again, a loading diagram is generated for the final geometry such that the optimal 

design can be immediately taken to manufacturing. 

     Finally, the output visualization characteristics can be controlled. The view point, coloring, 

and shading are all accessible changes. This allows aesthetic control of the visualization, so that 

the images can be used for later reference or in a report, etc. (Figure 82).  

 

Figure 82 - Optimization and Visualization control panels 

Lessons Learned and Extensions of the Present Work 

     The intent of the framework developed here is to create tools that will yield insight into O-

ACS design. From each step of the design process (geometry, analysis, and optimization), there 
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are pieces of the code design which have been instructional in O-ACS design. There is always a 

limit where more detail in a simulation is not practical, and should no longer be added to a 

model. The author believes that the current model, for its present goals, is complete. Should 

future work wish to extend the objectives, some helpful guidance in that regard is presented here.  

     Much work was done in the construction of a geometry model based on concepts of braiding. 

The rule-based method for geometry was found to solve quickly and to arbitrary required 

precision. While the model appears to be a consistent representation of the physical geometry, 

the comparison was only made visually. By using an optical or Computational Tomography 

scanner, a 3-dimensional image of an actual structure could be directly compared to a model 

generated in fell_point. The discrepancies that I would expect could be found would be the 

following (which should serve as improvement goals for future development): 

 The yarns are not circular in cross section. The model presented here assumes all yarns 

are truly circular for both geometry and strength computation 

 The intersection of yarns is a flattening of two yarns. The model assumes this can be 

represented by the intrusion of yarns through each-other 

 The real yarns may have enough bending stiffness to resist the shortest path assumption. 

In other words, there may be a curvature limit at yarn intersections. This is easily 

programmed, but requires significantly higher discretization than is currently used 

 Axial yarn paths are not straight. This is a matter of manufacturing precision and the error 

should be eliminated as the O-ACS manufacturing process is better refined 

Other than the concerns listed above, the geometry model should be a fair representation of 

physical geometry.  

     The finite element model guiding concept is the use of beam elements to represent yarns. As 

the yarns become better understood, the beam-element formulation used could be improved as 

well. This could include non-circular cross-sections, directional stiffness, and failure modes. The 

fell_point code has been organized such that incorporation of future element types is not 

complex. The joint intersections could also use a more detailed evaluation than was given here. 

Also, a major advantage of the O-ACS concept may be their resistance to buckling: no treatment 

of buckling stability was presented here. If it is more useful, the geometry from fell-point could 

be exported as key-points for use in a commercial finite element code. This would allow 
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extension to include solid elements rather than beams, and very detailed modeling of the yarn 

intersection and the resin joints. 

     The optimization is fundamentally sound. It could be extended to incorporate multiple 

constraints, or simply different constraints such as stress (once stress limits are known), or target 

deflections. The optimality criteria method used was selected for its easy extension to these and 

other goals. The beam element model was, as predicted, a good method for implementing the 

optimization due to the fast solution speed and inherent organization of yarn elements into 

groups. A problem that was not studied in detail is the manner in which the shifting yarns will 

force the optimization to local minima – or whether a global minima is actually present for all 

possible initial conditions. For practical purposes, the optimization gave results that were close to 

those that were expected. In axial tension and compression, axial yarns dominate the stiffness, 

and in torsion the helical yarns dominate – both of these are intuitive. In the various bending 

cases, the important revelation is the importance of retaining helical yarns for stability. While the 

axial yarns farthest from the neutral axis do contribute to the bending stiffness, it was found that 

certain patterns of helical reinforcement carry the load from upper to lower surface of the tube. 

Also, in short beams and cantilevers the helical yarns are actually better reinforcement than the 

axials. The optimal angle of the helical yarns is also very important to the stiffness, particularly 

for the torsional load case, where the result is not intuitive. When actual applications of the open-

structure come to light, the optimization will be very useful in quickly establishing O-ACS 

solutions, and to see if optimized O-ACS tubes may have higher specific stiffness than 

commercial thin-wall tube equivalents.  

     Though not the direct focus of this work, much was discovered about the manufacturing and 

testing of O-ACS tubes. The manufacturing concerns have been described in detail in Appendix 

A. The primary result of the authors manufacturing experience has been to find that open-

structures can, indeed, be manufactured using Wardwell-style carriers. The key is careful loading 

of the carriers and preparation of the pulleys and tensioning springs to account for the oversized, 

stiff, O-ACS yarn. The testing is known to be a problem and is current the focus of research 

elsewhere in the Auburn Advanced Braiding Lab. Particularly troublesome was the lack of 

rigidity in the compression test. Unless the samples are held in fixtures significantly more rigid 

than the structure itself, the test will be troubled. Perhaps an optical strain method could be 
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employed to eliminate the errors. Both the bending and torsion tests were successful, and match 

the Finite-Element model well.  

     Having created tools for their design, it is now possible to evaluate the effectiveness of O-

ACS as a designed structure. They have many benefits over commercial tubes in their 

manufacturing range: Thin-walled tubes become impractical below a limit which is clearly seen 

in the range of available commercial tubes (Branscomb, Minimal Weight Composites Utilizing 

Advanced Manufacturing Techniques, 2012). The ability to increase the diameter (and thus 

bending and torsional stiffness) without increasing the mass of an open-structure is unique to its 

design. This work sought to find even better improvements by designing O-ACS tubes for their 

intended loading scenario. The results of the optimized tubes are presented in the following four 

figures. All tubes compared were chosen to have approximately equal weight per unit length 

(less than 1.5 g/cm). This limits the diameter of the commercial tubes to be about 2.5 mm, 

whereas the open-structures are all 4.375 mm diameter. This may initially sound like an unfair 

comparison (especially in bending and torsion); but that advantage is the entire key feature of the 

O-ACS: ability to increase diameter without a significant in mass. The Aluminum 6061 tube is 

the largest diameter, commercially available tube which weighs less than 1.5 g/cm; the stiffness’ 

for that tube were computed using known material properties. The smooth-walled carbon fiber 

(CF) tube is also the largest diameter, commercially available tube which weighs less than 1.5 

g/cm; the data for that tube was measured. It is a pulltruded tube with a woven exterior layer. All 

O-ACS tubes are computed using fell_point, which is has been validated well for torsion and 

bending, though not well for compression (see Chapter 6). In Figure 83, the axial stiffness of the 

tubes is compared. This is the least reliable of the charts, since the model was not well validated 

in compression, and the effect of buckling within the O-ACS tube is unknown. However, the 

results are appropriate as an initial estimate since the modulus of the carbon yarn is higher than 

that of the aluminum, and the volume fraction is typically higher than that of the CF tube 

(Branscomb, Minimal Weight Composites Utilizing Advanced Manufacturing Techniques, 

2012). The second figure (Figure 84) shows the torsional results. The O-ACS tube is predicted to 

have 4 times that of the thin-walled carbon fiber tube. This is the dominance of diameter. Figure 

85 and Figure 86 both show a large improvement over their commercial counterparts as well. In 

the cantilever load case the open-structure is over 14 times as rigid as the metal tube. All these 
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data confirm that designed tubes will dominate traditional thin-walled tubes in all loading 

conditions besides uniaxial compression; and perhaps there as well if buckling is considered.  

 

Figure 83- - O-ACS design axial stiffness comparison 
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Figure 84 - O-ACS design torsional stiffness comparison 

 

Figure 85 - O-ACS design bending stiffness comparison 
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Figure 86 - O-ACS design 3-point bending comparison 

     As stated in the introduction, the objective of this thesis is: 

To create design tools, useful to an engineer unfamiliar with the intricacies of O-ACS design, 

which compute optimal stiffness-to-weight O-ACS geometries – within constraints of design 

loads, a machine definition, and material properties. 

     The simulation tools from the very start have kept the constraints of Maypole braiding 

machines in their construction. The combination of a geometry simulation, FE analysis tools, and 

a topological optimization method have provided the tools. Proper techniques have been applied 

to accurately represent the composite yarns present in the structures. The simulation was 

validated against a very wide range of test samples, and found to be a fair prediction of actual O-

ACS tube stiffness. Using a compliance based optimization method allows rapid establishment 

of the most efficient O-ACS geometries, without requiring detailed specification of design 

deflection or even of material strength. The design tools have been incorporated into a GUI 

which is accessible to any engineer, and will certainly improve the speed and accuracy with 

which open-structure tubes can be designed and manufactured.  
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Appendix 
 

Guidelines for Manufacturing Open-Architecture Composite Structures 

Using Conventional Maypole Braiding Equipment 

     Braided lattice composites show promise as a novel replacement in minimal weight structural 

applications. The concept provides two key advantages over existing minimal weight structures. 

First is their lightweight reinforcement due to special geometries and materials, which can be 

easily designed for specified loading constraints. Second, the braiding process ideally maintains 

low manufacturing costs due to high throughput, low material waste, and significant automation 

of the manufacturing process. It is this second concern which is addressed in this report. 

     To date, much experimentation in the design of Open-Architecture Composites Structures (O-

ACS) is performed in the Auburn University Advanced Braiding Lab. The lab mainly utilizes 

two Maypole braiders; one 32-carrier and a second larger 64-carrier model. O-ACS fabrication 

involves large, tough yarns for which the traditional maypole braider using standard (#2BX) 

carriers is not well suited. While a larger machine (such as used for braiding steel cables) could 

be purchased, the use of specialized equipment severely restricts the cost-effective production of 

O-ACS. Thus, it is important to explore the abilities and limits of braiding lattices with 

traditional braiding equipment. Three main components of the fabrication process must be 

considered: yarn design, braider preparation, and mandrel treatment.  

Yarn – Design for Manufacturing 

     While the O-ACS designer has certain weight and stiffness goals, it is important that the 

design be realizable using available equipment. Currently, yarns less than 30000 denier are 

braidable on a conventional Maypole braider with #2BX carriers. Some considerations when 

designing yarn are listed below. 

I. Core 

a. The core of the yarn can be made in any size – 48K Carbon (approx. 23000 Den. 

dry) is the ideal size that allows braidable structures in the range from one inch to 

three inch mandrel diameter. 
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b. The jacket axial yarns can contribute to the yarn uni-axial strength and stiffness. 

However, because of the interlacing, they do not contribute as well as the 

perfectly aligned core fibers. Thus, fibers expected to provide strength and 

stiffness should be found primarily in the core. 

II. Jacket Axials 

a. The number of axial yarns in the jacket (usually high strength fiber, 4 or 8 are 

utilized) significantly affects subsequent braidability of the O-ACS. Fewer is 

typically better, unless they be of such diameter that they cause the cross section 

to become ‘square’. 

b. Fiberglass jacket axials are very smooth – this facilitates easier braiding of the O-

ACS and also reduces the ‘splinters’ present in cured yarns with carbon jacket 

axials. 

c. Jacket axials should be pre-impregnated if structural fibers are used. This 

significantly affects micro-joint bonding the in the cured O-ACS structure. 

d. Jacket axials must be kept in tension during the braiding process. If they are not, 

there is a tendency for the jacket to ‘slip’ and expose a small length of core (.25 

inches). This has been achieved with clamped eyelets behind the axial ports in the 

braider. 

III. Jacket Braiders 

a. A true tri-axial geometry has very little inherent bending stiffness due to the 

interlacing (undulation) in the axial fibers. It is recommended that yarn jacket be 

true tri-axial braid 

b. Jacket helix angles between 30 and 40 degrees (from yarn axis) are braidable. The 

shallower angles allow faster production but slightly affect knotting  

c. Jacket braiders of textured nylon have (to date) proven very beneficial in 

promoting bonding between yarns in the micro-joints 

An example of a very braidable yarn is given in Table 26. Here we reiterate the key 

characteristics of this yarn as they meet the points noted above: The total size is less than 30000 

D which will allow the use of #2BX carriers. The main structure (and mass) is in the core. The 

helix angle is 30 degrees, which is the shallowest angle which prevents knotting during braiding. 
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The jacket braider yarns are nylon to help bonding, while the axials are glass for flexibility and 

low splintering. The resin used (UCF3330) is low-tack resin designed for braiding.  

Table 26 - A braidable 48K CF core yarn specification 

 Specification 

Core 48K T700 Carbon (UCF3330 Pre-preg) 

Jacket Braiders 4x500D Nylon warp, 4x500D Nylon weft 

Jacket Axials 1500D S-glass (UCF3330 Pre-preg) 

Helix Angle 30 degrees (from yarn axis) 

 

Braider – Adjustment and Tuning for Use with O-ACS Yarns 

     The major limitation of the conventional braider is the carrier. Most of the modifications and 

preparatory actions required apply to every carrier which will be used. Nearly all parameters of 

the carrier configuration must be adjusted; pulley position, spring tension and retention, and 

bobbin winding all contribute to successful braiding. Proper procedure is described below in the 

order used during carrier loading and subsequent braiding. 

     First, the bobbins must be would properly. Usually the very fine yarns and fibers used on 

these braiding machines ensures that the yarn easily slips from the bobbin to the stationary 

carrier pulley. With the larger O-ACS yarns, the yarn will bind when being retrieved from the 

ends of the bobbin if not wound properly. Proper winding ensures that the winding tension is 

very high. The carbon yarns are not damaged by the tension and are not elastic so the high 

tension has no problematic effects. Proper winding also ensures that the yarn wraps neatly from 

one end of the carrier to the other. The pitch should be set so that the yarn wraps neatly and is 

compact. Any fall-off or build-up of the yarn on the bobbin ends will certainly cause binding. A 

clean bobbin (end-caps especially) helps smooth release when braiding. Make sure the yarn is 

not allowed to hang slack from the bobbin before loading, as the stiff yarn will attempt to uncoil 

itself and ruin the tight winding. Approximately 40 meters of the yarn in Table 26 will fit on a 

standard #2BX bobbin.  

     The bobbin is then loaded into a carrier. The carriers with rollers are superior for large yarns 



124 

 

(and wire, coincidentally), while the carriers with eyelets are best for fibers. Remaining notes 

consider only roller carriers. The stationary roller must be placed at such an angle that the yarn 

will be contained when the bobbin is completely full. The roller will appear to be set at an 

extreme outward angle. It is acceptable to leave it in this configuration even if the bobbin has 

little yarn. The sliding pulley should be bent such that it will not interfere with the stationary 

pulley even when fully extended. This position is usually farther ‘inward’ than the natural 

position, though proper setting typically requires observation and individual adjustment. Even 

after these adjustments, sometimes the upper pulley simply will not allow the catch to release. 

This can be solved by loosening the set screw and moving the pulley along the shaft away from 

the base. Only a small adjustment here should be needed. 

     The carrier springs are the next issue. A mismatch in tension between the axial and helical 

yarns is necessary. The helical yarns should be as tightly braided as possible (i.e. use the stiffest 

springs). The axial tension should then start low and be slowly increased until the helical tension 

cannot overcome the axials when braiding. This error will be seen as loose helical yarns in the O-

ACS which do not lay down against the mandrel surface. For the yarn specified in Table 26, as 

many as 8 axials can be braided before the braider yarn tension will not overcome the drag, 

though this claim may be slightly dependent on mandrel diameter. Some preparation to the rest 

of the machine should be made. The carriers will bend under the tension of the heavy springs and 

all the friction present in the pre-impregnated yarns. They will often bend so far as to crash into 

the carriers that move in the opposite direction. This will cause a loud popping/snagging noise in 

the machine, and usually cannot be seen. The best solution is to put empty bobbins on the 

machine to act as ‘bumpers’ for the carriers that are actually braiding. 

     A last practical consideration is minimizing waste at the beginning of braid formation. This 

reduces waste and is often necessary with mandrels that are nearly the length of the structure 

needed. The first consideration is where the yarns are attached at the fell-point before the 

braiding is begun. The yarns should be taped to the mandrel as closely as practical to their proper 

place in the braid. This can be visualized by running the braider until the packages are at easily 

understood positions (12 o’clock, 3 o’clock, etc.) and pulling the yarns to the fell-point in the 

same visible arrangement. The helix angle should also be matched before the braiding is begun, 

as it can waste several wraps if allowed to settle itself without guidance. Run the traverse, 

watching for the yarn on the side of the mandrel to make the appropriate angle from fell-point to 
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uppermost carrier.  Depending on the helix angle of the O-ACS tube, sometimes a forming ring 

must be used. This has been seen to actually help with yarn tensioning issues, and is usually not a 

problem. A six inch ring has been successfully used for tubes from one to three inches diameter. 

     This concludes the machine and carrier preparation requirements. The key aspects of carrier 

preparation are shown in Figure 87. While the forgoing offered specific advice, it is perhaps 

sufficient to suggest that every effort be made to be neatly prepared, any specifics follow from 

this simple rule and practice. 

 

Figure 87 – Demonstration of proper carrier loading 

 

Mandrel – Preparation for Removal of Cured Final Components 

     A mandrel shape is chosen based on the O-ACS geometry that is desired. Typically round and 

polygonal mandrels are all possible, so long as the cross-section is strictly convex. Usually the 

mandrels are metal: aluminum is a good compromise between rigidity and weight. Often a 

simple ‘tube’ is sufficient if properly prepared. The mandrel preparation involves two stages of 

surface prep, and a specific process for the starting and ending of O-ACS braiding. The mandrel 
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will be polished and the surface treated to allow easy removal of the structure and to prevent 

bonding of the laminating resin to the mandrel surface. When forming the O-ACS braid, 

consideration must be given that no obstruction be cured beneath the composite as this will cause 

difficulty in mandrel extraction. 

     First, the mandrel should be selected and inspected for imperfections. During the braiding 

process, the Open-Structure will be tightly formed against the mandrel surface.  When using a 

circular mandrel, any deviation from round will cause the O-ACS to become locked to the 

mandrel. Care must be taken not to drop or otherwise impact and damage the mandrel. It is 

particularly important that only one end be used for clamping in the support brackets, as the 

clamping will damage the mandrel. Once the mandrel is selected and the clamping end marked, 

the remaining length of the mandrel should be polished.  

     With a given braider tension, it will be found that the smaller the mandrel the greater the 

pressure of the O-ACS against the mandrel surface when cured (and vice-versa). Thus, it is 

particularly important that smaller mandrels be polished well and cleaned regularly. Polygonal 

mandrels typically have lower pressure and require less prep (The use of vacuum bagged curing 

negates these comments). After polishing as required, the mandrel surface should be thoroughly 

cleaned using methylene chloride (commonly called Aircraft Remover) to remove all traces of 

contaminants. This is followed by rinsing with a solvent such as acetone. Finally, the surface 

should be treated with a mold release agent (Frekote 770NC is a good choice). This finalizes the 

static preparation of the mandrel. These steps should be repeated whenever the mandrel surface 

begins to foul due to excess resin or misuse.  

     Second, care must be taken when securing the yarns to the mandrel before braiding begins, 

and when encapsulating the ends of a length of braid before removal from the braiding machine. 

The chief goal is to ensure no materials are between the cured braid and the mandrel surface.  

     When setting the machine for braiding, yarns will be pulled down from the carriers to the 

mandrel. They are most easily attached at this point by wraps of tape (flash tape is a good 

choice). While the tape is sufficient to hold the yarns in place initially, it cannot resist the high 

tension of the actual braiding process. Thus, a clamp can be used over the tape to secure the 

yarns. Standard hose clamps work well for round mandrels and can be formed to almost any 

mandrel shape. After the yarns are securely clamped, the structure can now be braided. 
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     After braiding is complete, the machine is stopped and the yarns still trail from the carriers 

down to the fell point. At this time, both ends of the braided structure should be wrapped with 

tape. On the farthest end, the yarns beyond the tape (which begin their accent to the carriers) can 

be cut using a razor. A sharp razor will not damage the mandrel surface significantly and allows 

for a clean cut. This leaves the end contained by one ring of tape. At the nearest (starting) end, 

the clamp should now be removed. The tape which was used in the initial setup of the machine 

(formerly under the clamp) should be pulled away, leaving only the secondary tape. This will 

leaves the ends of the structure free for a few inches: this excess can be timed away with the 

razor. The structure is now held in place by two rings of tape which are only on the outside of the 

braid, and the part is ready for curing. After curing, if all the steps have been followed carefully, 

the structures can be easily removed by pulling away the tape and sliding the structure off the 

end of the mandrel. The mandrel preparation procedure has been illustrated in Figure 88. 
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Figure 88 – Proper procedure to ensure mandrel can be removed after braiding 

Speed Calculations 

     As a matter of practical interest within the Auburn Advanced Braiding Lab, equations for the 

calculation of traverse and braider speed relationships have been developed (Figure 89). These 

relate specifically to the Wardwell Composite Braider in the Auburn Lab. The model has been 

confirmed for multiple mandrel diameters. An example is shown in Figure 90. Typically a 

traverse speed of 24 inches per minute allows quick braiding while maintaining supervision over 

the machine.  

calculator   Equation 

Mandrel dia (in) 2.5 input A 

Helix (deg) 60 input B 

Traverse (in/min) 24 input C 

Traverse Setting 864 C*36 

Braider Setting 366 

       

                     
 

 

Figure 89 – Calculations for braider and traverse speed 
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Figure 90 – Confirmation of braid speed and helix calculations 
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