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Abstract

Usability in information technology systems plays of vital role in conducting operations

safely and securely. The methods for judging usability vary greatly, which makes assessing

any aspect of usability difficult. In cases of either safety or security, the inability to iden-

tify usability shortcomings can be costly. This has been shown to be especially true for

the Supervisory Control and Data Acquisition (SCADA) systems responsible for controlling

national infrastructure.

The literature reveals a gap in analysis methods for the identification of unsafe system

states. The manner of entering these states is typically referred to as a misconfiguration,

and may be accidental or intentional. Code analysis methods are used to create abstract

representations of source code and binaries. The generated representations are used to

indicate a level of correctness in regards to coding practices. However, there is no method

currently being used for ladder logic written for SCADA systems which indicates correctness

beyond identifying code which will fail to run correctly.

In addressing this shortcoming, a static code analysis method was developed for the

generation of abstract representations of possible system states, namely Fault Trees. Inputs

into ladder logic are treated as initiating events, and the pathways through a system are

mapped with the possible end states emphasized for further analysis. In this way inputs to

a system can be looked at in regards to the possible states which the operator can place the

system in. If the undesirable states are identified, engineering methods can be applied to

mitigate or remove the undesired state. This may improve both security and usability in a

system.

To test the effectiveness of the static code analysis method created, a usability exper-

iment was conducted. A model SCADA pipeline was created based on case studies and
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pipeline accident reports from the National Transportation and Safety Board. Twenty five

test subjects operated the model pipeline in mock critical operating conditions. The model

was first programmed using a simple ladder logic program for control. This program un-

derwent the code analysis method studied, and was reconfigured to correct for the possibly

unsafe system states discovered. Users were asked to reconfigure pipeline flow using both

control programs to drive the model. Test subjects were then asked to ‘attack’ the model

with both the simple program and the program that had undergone code analysis. This was

done to more deliberately test the strength of the method, and to explore the relationship

between usability and security.

From this study it was shown that usability improvements, in relation to the model

tested, could be made by identifying unsafe system states by using the code analysis method

proposed. The number of accidental user misconfigurations resulting in an alarm condition

and intentional user misconfigurations resulting in an alarm condition was significantly re-

duced. It is believed that the method described shows promise as a means for conducting

code analysis for the improvement of both usability and security in SCADA systems.
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Chapter 1

Introduction

“The most destructive scenarios involve cyber actors launching several attacks

on our critical infrastructure at one time . . . attackers could also seek to disable

or degrade critical military systems and communication networks. The collective

result of these kinds of attacks could be a cyber Pearl Harbor. " - Leon Panetta

[Panetta 2012]

In March of 2007, Idaho National Laboratory conducted a test for the Department

of Homeland Security (DHS). This test simulated what could happen if an attacker was

able to take control of a power generation turbine. The purpose was to investigate system

vulnerabilities on Supervisory Control and Data Acquisition (SCADA) systems within utility

companies. The test is now commonly referred to as the Aurora Generator Test.

In the Aurora Generator Test, researchers were able to gain access to the SCADA system

controlling a power generator turbine. With access to the controls, researchers were able to

open a circuit breaker, wait for the generator to slip out of synchronism with the load, and

close the breaker [Zeller 2011]. This caused the power generation turbine to enter an out-

of-phase condition, resulting in violent physical and magnetic stresses that shut down the

generator and caused severe damage.

In 2005, two years before the Aurora Generator Test took place, a researcher named

Charles Mozina at Beckwith Electric was looking at the same problem from a different

perspective. Mozina described a problem where a circuit breaker could be accidentally

opened and closed at exactly the wrong moment. He called the mistake a multi-phase

generator fault [Mozina 2005]. Mozina’s paper described several other undesirable situations

where operators are able to accidentally close breakers and cause damage to generators. The
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multi-phase generator fault Mozina described is commonly referred to as a ‘million-dollar

mistake’ [Weiss 2014]. After the Aurora Generator Test, Joe Weiss, a managing partner at

Applied Control Solutions, explained the basic tenets behind the attack.

“Aurora exploits basic physics. It is a basic tenet of power engineering that you

do not close a breaker with the grid out of phase. Creating an out-of-phase

condition and starting equipment (intentionally or unintentionally - doesn’t have

to be malicious) will create significant torque on the equipment that can cause

substantial hardware damage." [Weiss 2014]

The Aurora Generator Test exposes how a safety and usability issue could be exploited

by an attacker, at which point the safety and usability issue becomes a security vulnerability.

In this case, the solution to both problems was to insert a Digital Cyber Protection Control

Device (DPCD) between the substation and the load. The DPCD detects an out of phase

condition event and isolates the substation before the demand of the grid can be applied

to the equipment [Swearingen et al. 2014]. The NERC CIP-002, a standard provided by

the North American Electric Reliability Corporation (NERC) for Critical Infrastructure

Protection (CIP), requires this protection for all generators deemed part of the nation’s

critical infrastructure [NERC 2008]. If this solution, which is now required because of the

Aurora Generator test, had been required previously, the security vulnerability may have

been avoided and the usability and safety issues resolved.

The tightly-coupled nature which exists between usability, safety, and security in SCADA

systems is a factor that this research seeks to explore. This tightly-coupled nature, as illus-

trated in the Venn diagram in Figure 1.1, suggests that if a vulnerability can be detected

and mitigated (or repaired), then in some cases all three problems can be at least partially

solved (X). It does not matter if the flaw is discovered due to a safety inspection, a usability

walkthrough, or a security audit.
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X

Security

Usability

Safety

Figure 1.1: Venn Diagram for Safety, Security, and Usability

1.1 Research Objectives

The literature, as reported in Chapter 2, reveals a gap in the incorporation of behavioral

static code analysis in identifying misconfiguration errors and unsafe system states. While

computer security researchers are exploring code analysis as a means to provide program be-

havior, program behavior and static code analysis is typically ignored in the development of

Industrial Control Systems (ICS). This is especially true in regards to user error prevention.

The identification of unsafe system states is critical in preventing possible user misconfigura-

tion errors and security vulnerabilities. ICSs currently struggle with reliance on commercial

off-shelf-components (COTS) and increasing complexity. This is a problem for which code

analysis is being developed [Brumley et al. 2011]. Thus, the objective of this research is to

bridge the gap between code analysis and safety engineering. By using static code analysis

as a means for providing accurate program behavior as an input to system safety engineer-

ing tools, unsafe system states may be better identified and subsequently improve system

security and reduce misconfiguration errors.

1.2 Research and Dissertation Organization

The chapters of this dissertation are organized according to the ACM publication format

as well as the Auburn University dissertation guide. The dissertation is comprised of five
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chapters. Chapter One is a traditional introduction, and Chapter Five is a traditional

conclusion. Chapter Two is a comprehensive review of the literature on Security, Safety,

and Usability in SCADA Systems. Chapter Three is the explanation and development of a

method for exploring the application of static code analysis to identify usability issues which

contribute to insecure and unsafe system states. Chapter Four reports on the application of

this method to a SCADA system modeled on historical NTSB scenarios, and the usability

experiment conducted to test the static code analysis method developed.
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Chapter 2

A Review of the Literature on Security, Safety, and Usability in SCADA Systems

“The Internet and all the systems we build today are getting more complex at a

rate that is faster than we are capable of matching. So while security in reality is

actually improving [...] the target is constantly shifting and as complexity grows,

we are losing ground." -Bruce Schneier [Chan 2012]

2.1 Introduction

On 8 November 2011, a possible cyber attack was reported at a water treatment plant

in Springfield, Illinois. It was difficult to tell what happened. There was a remote access in

the networking logs from a foreign IP address. A pump had been continually cycled on and

off until it had failed. When this information was leaked to the media, the Department of

Homeland Security responded with the following statement:

“At this time there is no credible corroborated data that indicates a risk to critical

infrastructure entities or a threat to public safety." [Finkle 2012].

‘pr0f’, a grey hat hacker, was incensed at the lack of attention being given to this prob-

lem. To prove a point, pr0f made a series of posts to pastebin (http://pastebin.com/Wx90LLum)

and twitter (https://twitter.com/pr0f_srs). While all of the posts highlighted vulnerabili-

ties in public Industrial Control Systems (ICSs), one contained a screenshot showing access

to the Human Machine Interface (HMI) for the South Houston, Virginia Water Treatment

Plant. pr0f had shown how easy it was to gain access to these systems. [CNET 2014]

5
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“As for how I did it, it’s usually a combination of poor configuration of ser-

vices, bad password choice, and no restrictions on who can access the interfaces."

[CNET 2014]

On 23 November 2011, the Industrial Control System Computer Emergency Response

Team (ICS-CERT) released a one page report which contained the following statement re-

garding the initial incident in Illinois.

“After detailed analysis of all available data, ICS-CERT and the FBI found no

evidence of a cyber intrusion into the SCADA system of the Curran-Gardner

Public Water District in Springfield, Illinois." [CERT 2014]

pr0f, in a very public manner, had shown that public ICSs are vulnerable. As an

individual pr0f had discovered, exploited, and released vulnerabilities to multiple public

SCADA systems. He had also done this while publicly admitting that he does not work with

SCADA systems or in computer security, and is not funded to do this work. This raised the

unsettling questions as to why the United States had not yet experienced a major recorded

cyber attack on the SCADA systems in charge of critical national infrastructure.

Retired Army General Keith Alexander gave one possible explanation in 2012 when

serving as the head of the National Security Agency.

“They’re practicing.” [Bloomberg 2014]

James Lewis, a cybersecurity fellow at the Center for Strategic and International Studies,

provided the following commentary on possible protections to our national infrastructure.

“You can engage intelligence operations to try to judge their [possible attackers]

capabilities and intent, or fall upon your knees and beg critical infrastructure to

make themselves a harder target, and we’re doing both." [Bloomberg 2014]

The goal of this dissertation is to develop a method which addresses the second path

which James Lewis offered. How can critical infrastructure be made a harder target? First,

a basic understanding of and research regarding SCADA systems and security is required.
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2.2 Introduction to SCADA

Figure 2.1: Example SCADA Architecture

As this dissertation is concerned with identifying usable security issues in Supervisory

Control and Data Acquisition Systems (SCADA) systems, it is important to first develop the

vocabulary and a basic understanding of SCADA. SCADA is used to monitor and control
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large scale processes. SCADA systems consist of highly specialized computer systems that

control critical infrastructure.

Figure 2.1 provides an example architecture for a SCADA system. The top of the figure

is the client level, which can include devices ranging from laptops to cell phones. The client

is a software product running on the device which typically consists of a Human Machine

Interface (HMI) and the means for connecting to the SCADA Node. The connection to

the SCADA Node may be via Internet, Intranet, Serial Connection or via the Local Area

Network (LAN). [Broadwin 2014]

A SCADA Node communicates in real-time with the automation equipment and con-

trol systems via Serial, Ethernet or proprietary communications (commercial drivers). The

SCADA Node re-transmits data between the automation hardware and the clients. In this

manner, the SCADA Node acts as a SCADA ‘server’. The SCADA Node also commu-

nicates with a database, or Object Linking and Embedding for Process Control (OPC)

server.[Broadwin 2014]

Daneels provides the following definition of a SCADA system which helps to address the

lowest level component of the SCADA system, the Programmable Logic Controller (PLC):

“SCADA stands for Supervisory Control And Data Acquisition. As the name in-

dicates, it is not a full control system, but rather focuses on the supervisory level.

As such, it is purely a software package that is positioned on top of hardware to

which it is interfaced, in general via Programmable Logic Controllers (PLCs)"

[Daneels and Salter 1999].

A PLC is a specialized microcontroller that uses programmable memory to store instruc-

tions and to implement functions such as logic, sequencing, timing, counting and arithmetic

to control machines and processes [Bolton 2009]. It is the microcontroller which interfaces

with the sensors and controls for the task being performed. Figure 2.2 is a graphical repre-

sentation of how a PLC operates.
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Figure 2.2: Basic PLC Operation

The program on a PLC is typically written using either Ladder Logic or a Hardware De-

scription Language (HDL), and the program is transferred to the PLC using either software

provided by the manufacturer or a specialized handheld programming tool.

Ladder logic is primarily used by PLC manufacturers in the United States. Ladder

logic was originally a written method to document the design and construction of relay

racks, which are nineteen inch wide racks originally used to hold railroad signaling equipment

or telecommunication relays. Since then, ladder logic has become a programming language

which represents a program using a graphical diagram similar to circuit diagrams. The name,

ladder logic, comes from the observation that these programs resemble the vertical rails and

horizontal rungs of a ladder. Figure 2.3 is an example ladder logic program which turns a

control on or off via a switch. Ladder logic is well suited to control scenarios where binary

values are concerned, and where interlocking and sequencing is the primary control problem.

Due to the nature of how ladder logic programs are executed, race conditions are possible.

[Erickson 1996] A race condition is a hazard caused when the sequence or timing of an action

is critical to the output, but the sequencing or timing may not be controllable. Typically,

PLCs are programmed and operate under strict constraints to avoid race conditions.

Figure 2.3: Example Ladder Logic Program
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In contrast, Hardware Description Languages (HDLs) are specialized computer lan-

guages used to program the structure, design and operation of electronic circuits, as well

as digital logic circuits. HDLs look more like a typical programming language as HDLs

are a textual description consisting of expressions, statements and control structures. One

important difference between most programming languages and HDLs is that HDLs explic-

itly include the notion of time. Verilog, a common HDL standardized as IEEE 1364, is the

example HDL used in this dissertation. Figure 2.4 is a translation of Figure 2.3 into Verilog.

always@(*) Control = Switch

Figure 2.4: Example Verilog Program

With the common vocabulary and basic information established regarding SCADA sys-

tems, it is now possible to discuss the problems facing SCADA systems and the research

being conducted in regards to SCADA security and usability.

2.2.1 SCADA Concerns and Current Best Practices

SCADA Security Concerns

Early communication in SCADA systems began using serial networks such as the RS-232

communication standard, which is still used today. These standards only support minimal

functionality with little or no attention to security [NRC 2002]. Messages are sent clear

text and are accepted without authentication [NRC 2002]. Meanwhile, SCADA systems

have been connected to newer communication mediums such as Ethernet, wireless, shared

lines, and the public Internet, meaning that SCADA systems are no longer isolated [NRC

2002]. In addition, SCADA systems are now largely dependent on Commercial Off-the-Shelf

Components (COTS) which expose SCADA systems to known threats to those components

[DHS 2009]. Further, the high cost and fragility of SCADA systems makes it expensive and

unlikely that the systems in use, and communication standards, will be updated [DHS 2009].
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In response to the threat caused from the lack of authentication and reliance on COTS

[Falco et al. 2002] [Fernandez and Fernandez 2005] [Hildick-Smith 2005] the President’s Crit-

ical Infrastructure Protection Board, the United Kingdom National Infrastructure Security

Coordination Centre, the Chemical Industry Data Exchange, and the General Accounting

Office (GAO) have all developed their own security recommendations [Ralston et al. 2007].

Given the high cost of updating and the previously isolated nature of SCADA systems,

industry was slow to respond to pressures to change [Ralston et al. 2007].

Table 2.1, adapted from a 2009 report from the Industrial Control Systems Cyber Emer-

gency Response Team (ICS-CERT) at DHS, helps to briefly layout the major security focuses

in SCADA [DHS 2009].
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Security Topic Information Technology

(IT)

Industrial Control Systems

(ICS)

Antivirus and Mobile Code Very common; easily deployed

and updated

Can be very difficult due to

impact on ICS; legacy systems

cannot be fixed easily

Patch Management Easily defined; enterprise wide

remote and automated

Very long runway to successful

patch install; OEM specific;

may impact performance

Technology Support

Lifetime (Outsourcing)

2-3 years; multiple vendors

ubiquitous support

10 - 20 years; same vendor

Cyber security Testing and

Audit (Methods)

Uses modern methods Testing has to be tuned to the

system; modern methods

inappropriate for ICS; fragile

equipment breaks

Change Management Regular and scheduled; aligned

with minimum use periods

Strategic scheduling; non-trivial

process due to impact

Asset Classification Common practice and done

annually; results drive cyber

security expenditure

Only performed when obligated;

critical asset protection

associated with budget costs

Incident Response and

Forensics

Easily developed and deployed;

some regulatory requirements;

embedded in technology

Uncommon beyond system

resumption activities; no

forensics beyond event

recreation

Physical and Environmental

Security

Poor (office systems) to

excellent (critical operations

systems)

Excellent (operations centers,

guards, gates and guns)

Secure Systems

Development

Integral part of development

process

Usually not an integral part of

systems development

Security Compliance Limited regulatory oversight Specific regulatory guidance

(some sectors)

Table 2.1: Comparison of Security Focus in Information Technology Systems and ICSs
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Currently the recommended defense for these issues is adapting a Defense in Depth

Strategy [DHS 2009] [CERT/CC 2013], which may prove unsustainable and inadequate to

the problem [Small 2011].

SCADA Usability and Safety Concerns

Security is a growing concern in SCADA systems. At the same time, safety programs and

accident prevention maintain a level of extreme importance. SCADA systems are responsible

for critical national infrastructure where there can be almost no interruption in service.

When industrial scale systems fail, the cost can be severe. The release of a cloud of methyl

isocyanate in Bhopal, India is one example of operator error that led to over 2,000 fatalities

[Mank 1992]. Safety programs and practices represent a unique area of application in that

the methods proposed have been tried and tested for much longer than modern IT security

programs [Leveson 2011] [Mil Std 882 2002].

‘Accidents happen’ is a frequently used mantra, and in many cases the explanation is

recorded as ‘operator error’. There is a tendency to believe that errors cannot be avoided,

and are just part of having people in the system. The following passage comes from Nancy

Leveson’s book, Engineering a Safer World, and discusses the time period when the engi-

neering community first began to question if operator error could be prevented and accidents

avoided. This opened the door to looking at ways to make systems safer by including human

factors considerations [Leveson 2011].

“The tendency to blame the operator is not simply a nineteenth century prob-

lem because it persists today. After World War II, the Air Force had serious

problems with aircraft accidents; for example, from 1952 to 1966, 7,715 aircraft

were lost and 8,547 people killed. Most of these accidents were blamed on pilots.

Some aerospace engineers in the 1950’s did not believe the cause was so simple
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and argued that safety must be designed and built into aircraft just like perfor-

mance, stability, and structural integrity are built in. Although a few seminars

were conducted and papers written about this approach, the Air Force did not

take it seriously until they began to develop intercontinental ballistic missiles:

there were no pilots to blame for the frequent and devastating explosions of these

liquid-propellant missiles." [Leveson 2011]

In addressing operator error in both safety and security situations researchers look to un-

derstand what makes a system usable. Alma Whitten stated what she saw as a shortcoming

in addressing this concern in her 2004 dissertation.

“...there was little research directly investigating usability for security." [Whitten

2004]

During this period of time, multiple researchers worked to address the problem of usable

security, mainly focusing on adjusting the user interface to be more intuitive and to follow

better design practices [Whitten 2004] [Zurko and Simon 1996] [Garfinkel 2005] [Wixon

and Wilson 1997]. Whitten references a paper by Anderson on Why Cryptosystems Fail.

Much of the early work in usability and computer security, including Whitten’s work, was

focused on cryptography and usability [Whitten and Tygar 1999], seemingly because of the

strong relationship with cryptography and security. Recent research in the industrial control

realm has applied the same design improvement thinking to address safety concerns, and has

demonstrated some success [Ikuma 2013].

The problem, seemingly, is that usability engineering does not necessarily prevent users

from making mistakes in either security or safety instances. The mistakes are still allowed.

The hope is simply that users will make fewer mistakes because they better understand their

actions and the consequences [Nielsen 1994]. The concept of foreseeable misuse addresses

this overall shortcoming in regards to safety engineering as a tool to address safety, usability,
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and security. Usually, foreseeable misuse is referred to in the sense of ‘reasonably’ foreseeable

misuse which is a legal term.

Foreseeable That which is credibly reasonable to expect, not merely what might conceiv-

ably occur [Black and Garner 1999].

Misuse Erroneous, improper, or unorthodox [Simpson et al. 1989].

Foreseeable Misuse Unorthodox usage which is objectively reasonable to expect.

Foreseeable misuse helps to highlight the problem with commonly practiced usability

testing for error prevention as it stands. The tenets of usability testing are generic, and do not

reliably detect that which is ‘objectively reasonable to expect’ [Dix 2004]. Whitten makes

this same point in her dissertation when she argues for determining possible user actions

before a usability test, ‘well-ahead-of-time’, instead of the current model which practices

‘just-in-time’ user guidance. [Collins et al. 1997] [Whitten 2004]

Greer makes the point that security improvements could hinder proper system function,

and notes that improperly implemented security is a typical reason for security failures as

employees will typically circumvent security in such situations [Geer 2006]. This is an issue

already raised by researchers in more information technology based approaches to usability

and security [Sasse 2003] [Adams and Sasse 1999] [Adams and Sasse 2001]. Safety researchers

seemingly have a better methodology on how to handle this problem. First, a ‘hierarchy of

controls’ is applied to safety problems when found via an engineering method. This method

is not present in computer security. The safety hierarchy of controls is:

1. Elimination : Removing the hazard.

2. Substitution : Replacing a hazard.

3. Engineered Controls : Isolation from a hazard.

4. Administrative Controls : Change how people work. (example: training)

15



5. Personal Protective Equipment : Provide backup protection from a hazard.

[Mannan and Lees 2005]

Identifying issues in a complex system can be difficult and, as such, requires more

complex engineering approaches. One of those methods is Fault Tree Analysis (FTA). Delong

provides us with a basic breakdown of FTA [DeLong 1970]. Clemens additionally provides

well organized materials which include the strengths and limitations of FTA [Clemens 2002].

Butler, while working for NASA, created a Fault Tree Compiler. The Fault Tree Compiler

was a program designed to predict top event probability for a given fault tree [Martensen

and Butler 1987]. Today, multiple commercial and open source tools exist which compute

predicted events from a fault tree [Isograph 2014] [Auvation 2014] [ItemSoftware 2014]. In

1992, Leveson wrote a paper on how to automate safety verification of programs written in

the Ada programming language, the main conclusion being that this technique worked well

in analyzing systems with a strong cyberphysical interaction. The success of this method

was also hypothesized to have been tied to the engineers viewing their programs in a different

manner [Leveson et al. 1991]. Winter tested a similar method on a automated control system

device with similar results [Winter 1995]. Both authors stated that the practice worked best

as a additional tool to existing code inspection methods and should not be used as the sole

method for possible fault identification.

There are several sets of tools in the same family as FTA relevant to this discussion.

Event Tree Analysis (ETA) differs from FTA in that ETA is a forward, bottom up, logical

modeling technique for both success and failure that explores responses through a single

initiating event and lays a path for assessing probabilities of the outcomes and overall system

analysis [Clemens and Simmons 1998]. Failure modes and effects analysis (FMEA) is a

review of as many components, assemblies, and subsystems as possible to identify failure

modes, their causes and their effects [Clemens and Simmons 1998]. There have been previous

attempts to apply FMEA to software with success in identifying failure points, but this

research did not consider usability or security [Reifer 1979].
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Previously, the point was made that accidents and attacks can follow similar paths. In

capitalizing on this feature, Schneier developed the concept of an attack tree. An attack tree

is a way of thinking about and describing the security of systems, and can be extended to

the development of an automatic database which describes the security of a system. This

can help in making decisions about how to improve security, or the effects of a new attack

on security. In this way, attack trees can be used by both attackers and defenders. [Schneier

1999]

Attack trees have previously been applied to SCADA systems at an administrative level,

demonstrating that they can be a useful tool for modeling threats and vulnerabilities in a

wide variety of systems not limited to Internet or IT systems. [Byres et al. 2004] [Edge 2007]

Though the research suggests that FTA and other system safety risk management tools

have been applied to software, few have actually attempted to integrate at the software

level. None have attempted to integrate with executables. The most success in integrating

system safety tools with software dependent systems has come from looking at systems with

strong cyber-physical attributes, and in using the system safety tools as an auditing method.

[Leveson et al. 1991] [Byres et al. 2004]

2.3 Code and Failure Analysis

In looking at current trends in computer security, Static and Dynamic Code Analysis

has recently shown promise in identifying flaws and program errors which can create possible

safety and security issues. The testing program, Fortify by Hewlett Packard, is a commercial

software product used to identify threats via Static Code Analysis.

Other academic and open source attempts at the same level of vulnerability detection

have been attempted. In one case, the human factors risks associated with programming

have been identified. Murphy created a open source programming graphical user interface

(GUI) which applied analysis techniques and used a novel interface to identify ‘code smell’

while programming [Murphy-Hill and Black 2010].
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Code smell was first discussed by Fowler, who defined code smell as a symptom in the

source code of a program that possibly indicates a deeper problem. Code smells are usually

not bugs. They are not technically incorrect and do not prevent the program from function-

ing. Instead, they indicate weaknesses in design that may be slowing down development or

increasing the risk of bugs or failures in the future.[Fowler 1999]

PEP8 is an example of a code standard for the Python programming language. In part,

PEP8 was designed as a code standard to improve maintainability in Python code. The

means to improving maintainability was to make the code easier to understand and more

readable. An example of doing this was by implementing a standard tab and space rule, and

integrating the standard into popular Python editors. This included automating layout tasks

by editing rulesets for VIM, the popular Linux terminal text editor. PyLint is an automated

tool for the detection of code smells based on the PEP8 standard [Logilab 2013].

Static Code Analysis tools exist for most of the common programming languages. CERT

developed the secure coding standard for Carnegie Mellon, and has standards for C, C++,

Java and Perl [CERT/CC 2013]. Numerous tools test against the CERT Secure coding stan-

dard, including Fortify, Rose, and the Secure Coding Analysis Laboratory (SCALe). Murphy

dives deeper into the types of behavior in general that need to be considered [Murphy-Hill

and Black 2012] .

Static Code Analysis suffers from shortcomings which are addressed by another type of

analysis, Dynamic Code Analysis [McCabe 2013]. Dynamic Code Analysis is the practice

of analyzing software as it is run on a virtual processor, and has the ability to monitor

code as it executes. Dynamic Code Analysis makes it possible to look at program behaviors

after the code has been compiled. This type of analysis also allows for detection of compiler

compromises. It is possible that a compiler could be written which introduces vulnerabilities

and malware into a program. Static Code Analysis would be unable to detect this type of

malicious behavior, but it may be detected using Dynamic Code Analysis.
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Where Static Code Analysis is based on ‘smell’, Dynamic Code Analysis is based on

‘taints’. Taints, like smells, were developed to combat the automatic generation of exploits.

Without the ability to automate detection of malware by creation of signatures or other

means, it would be difficult to ‘keep up’ with the attackers. Newsome discusses the need

for automatic taint analysis, and discusses in depth the application of taint analysis and

the issues with granularity, false positives, and the need for dynamic detection. Dynamic

detection operates by identifying un-trusted input sources, monitoring the propagation of

the untrusted input through a program, and detects when tainted data can be used in

a dangerous manner. Newsome summarizes the types of attacks that can be discovered.

[Newsome and Song 2005]

“This approach allows us to detect overwrite attacks, attacks that cause a sensitive

value (such as return addresses, function pointers, format strings, etc.) to be

overwritten with the attacker’s data. Most commonly occurring exploits fall into

this class of attacks" [Newsome and Song 2005].

Newsome also discusses the benefits of their approach.

“Our technique is based on the observation that in order for an attacker to change

the execution of a program illegitimately, he must cause a value that is normally

derived from a trusted source to instead be derived from his own input" [Newsome

and Song 2005].

Tools such as BAP [Brumley et al. 2011] and BitBlaze [Song et al. 2008] make use

of a intermediary compilation to create a model of symbolic execution using the Simple

Intermediate Language (SimpIL). In this way, data can tracked between sources and sinks,

or the points where data originates in a program and where it eventually goes. The main

steps of analysis are checking the taint introduction, taint propagation, and taint status. The

taint status is the value mainly used to determine the behavior of a program. The issues
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which then are important to this factor are the variance between the time of detection and

the time of the attack, and the possible recourses to detected ‘bad behavior’. Schwarz makes

it apparent that this method could be used for more than just security scenarios. Dynamic

taint analysis could possibly be used to detect and prevent human caused safety and security

misconfigurations at runtime.

Some tools and methods exist for code monitoring of ladder logic. Zifferer has a graphical

tool for monitoring SCADA ladder logic operation [Zifferer 1994]. Moon attempted the

automatic verification of sequential control systems using temporal logic, which like most

other SCADA code auditing techniques, is focused on detecting race conditions [Moon et al.

1992] [Moon 1994]. Zoubek looked at automatic verification of ladder logic programs, mostly

for certifying correct logical operation [Zoubek et al. 2003]. Petri nets have shown promise

in the ability to identify errors in both timing and logic in more complex SCADA systems,

and could serve as a better method for code analysis on SCADA Systems [Uzam and Jones

1998].

2.4 Limitations of the Existing Research

One primary limitation has been identified in the review of the existing literature. The

current state of the art in usable security for SCADA systems is highly fractured. Usability

research in SCADA is focused on the user interface [Ikuma 2013]. Security in SCADA

systems is focused on defense in depth [Small 2011] [DHS 2009]. The only research in

SCADA which considers the operational programs at the lowest level is typically concerned

with race conditions. In code analysis, there is almost no consideration of safety or usability.

This leaves a opportunity for research to be conducted in the application of safety engineering

methods to code analysis for the improvement of usable security in SCADA systems.
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2.4.1 Incorporating Code Analysis and Safety Engineering Tools for Improving

Usable Security in SCADA

The introduction of this dissertation looked at the Aurora Generator Test. Aurora was

a demonstration of utilizing a known safety vulnerability, after defeating defense in depth

protections, to cause physical damage to a power generation system. If the safety issue

would have been solved when it was discovered, the researchers conducting the test would

have been unable to attack the generator by opening and closing a breaker with the generator

out-of-phase.

Code analysis may have identified this unsafe system state [Uzam and Jones 1998],

and programmatically disallowed activation from an input if provided the correct safety

information. Safety engineering may be incorporated into this method to give engineers a

different view of their work [Leveson et al. 1991], and to provide the means to ‘engineer out’

possibly unsafe future states. However, there has been no attempt to include code analysis

and safety engineering methods for the improvement of usable security in SCADA systems.

This research aims to develop a method for applying code analysis and safety engineering

methods to SCADA systems, and to conduct a usability test to identify the strengths and

weaknesses of this method.
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Chapter 3

Developing a Code Behavior Analysis Method to Identify Possible Misconfiguration Errors

in SCADA

3.1 Abstract

Misconfigurations, depending on system design, can place a system into a possibly unsafe

state. It does not matter if the action is committed intentionally or accidentally. To help

identify the actions which can lead to misconfiguration errors in SCADA systems, a static

code analysis method was developed. This method creates abstract representations from

the rungs of ladder logic program used to control a Programmable Logic Controller. The

abstract representation used is based on Fault Tree Analysis, and hopefully makes it possible

to provide an indicator of correctness in regards to usability, safety, and security.

3.2 Introduction

Programmers employ static code analysis to check programs for errors without executing

them. Static code analysis provides an initial indicator of correctness. By constructing a

model of a program, the programmer has additional means to review what was created. The

abstract representation can be used to identify patterns which are indicative of possible errors

[Louridas 2006]. In many cases, programs may be syntactically correct: the program will

compile and run, but may still allow for behavioral errors. Analyzing code, specifically code

reviews, is one preferential method to detect and eliminate these types of errors. However,

code review is not always possible. It can be costly and difficult to both train programmers

and to bring them together. [Bardas 2010]
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In stark contrast, usability is measured only after a prototype has been created. Only

then can a usability test be conducted. There is no quick test to check for an indicator of

“correctness" in usability. Usability testing is typically considered separate from the main

engineering task, and as Whitten points out, there has been little work in investigating the

relationship between usability and security [Whitten 2004].

Given the limitations of current usability testing and security research, the first contri-

bution to research by this dissertation is the development of a static code analysis method

for SCADA systems which incorporates safety engineering tools, such as FTA, to identify

possibly unsafe system states. In the same way that static code analysis is being used to

identify unsafe code patterns, or smells, this method tries to identify unsafe states result-

ing from both accidental or malicious system misconfigurations. In identifying these unsafe

states, it is possible to simultaneously remove a user’s ability to make costly mistakes, and

to eliminate possible attack vectors. Such a method could help to provide engineers with an

initial indication of correctness regarding usable security.

3.3 Methods

3.3.1 Objective

The objective of this study was to develop a method for evaluating code written at the

lowest level of a SCADA system, the PLC, in order to generate indicators and patterns for

evaluating usability and security. This section of the dissertation is focused on the engineering

capabilities and realities of working with commonly used hardware and programs found in

SCADA systems. Experimentation at this point could not yet be conducted until a method

and an initial test bed had been created. As such, this study focuses on the test bed creation

and the development and refinement of the method used for the static analysis.
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3.4 Development

PLC operation, as shown in Figure 3.1, is relatively basic. The PLC is the main con-

troller for a physical process. The PLC takes input, operates on that information program-

matically, and manipulates outputs. Other controllers may exist in a complex system, but

the lowest level logic being operated on in a SCADA system exists in the PLC. In this way,

when provided with the inputs and outputs, it is possible to understand the system state

and the logic being considered solely by understanding what is taking place within the PLC,

or PLCs, provided that the input and output information is correct.

Figure 3.1: Example PLC Operation

Initially, development for this study was conducted using a Raspberry Pi with a PiFace

Digital Input Output controller. This hardware is shown in Figure 6.1. The main strength

behind this hardware and software test bed was that the PiFace allowed for PLC-like op-

eration, and is programmable in Python. Python is unique in that a coding standard has

already been developed [Guido van Rossum 2013] and tools such as Pylint exist to conduct

static code analysis. Pylint already allows for the creation of Unified Modeling Language

(UML) type representations of Python programs by using tools such as PyReverse [Logilab

2013].

While the Raspberry Pi was initially promising for this research, the lack of conformity

to what was in common use in SCADA systems was immediately notable. PLCs are designed

to be highly reliable, and as such their programming deviates too widely for existing code

analysis methods to apply. Typically, PLCs are programmed using either ladder logic or

HDL. A different test device needed to be identified.
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There is no shortage of PLCs in use in modern SCADA systems. The Allen-Bradley

MicroLogix 1000 was selected because of the availability to program both a physical hardware

device and a virtual device. A photograph of the Allen-Bradley Micrologix 1000 is shown in

Figure 6.2. There are many guides available for programming Allen-Bradley PLCs. Programs

for the MicroLogix 1000 and other Allen-Bradley PLCs can be written using RSLogix Micro.

The programs are transferred to the PLC using RSLinx Classic. Additionaly, the PLC

behavior can be emulated on a Windows machine by using RSLogix Emulate 500. This

combination of tools provided all of the hardware and software needed.

The manner in which the program is written, stored, and run on the PLC is important.

Allen-Bradley provides a separate guide for this information. Allen-Bradley PLCs, and most

other PLCs, function on an operating cycle which follows this order: [Allen-Bradley 1997]

1. Input scan

2. Program scan

3. Output scan

4. Service communications

5. Overhead

The operating cycle helps to ensure reliable behavior, and attempts to avoid race con-

ditions. Much of the study in conducting code analysis on a PLC has been to detect race

conditions [Zoubek et al. 2003]. The PLC processor provides control via the program written

to the device in the form of a Processor File. This file is broken down into a set of Program

Files and Data Files to be more manageable. The Program Files contain an ordered set of

files which contain the controller information (file 0, file 1), the main ladder program (file

2), the interrupt subroutines (file 3), and any other subroutine programs (files 4-15). The

file of interest for the purposes of static code analysis is the main ladder program (file 2).

[Allen-Bradley 1997]
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The Data Files contain status information associated with external input and output

(I/O). This includes all output and input states (file 0 and file 1), the status of the control

operation (file 2), internal relay logic storage (file 3), counter and accumulator information

(file 5 thru file 7), and the timer (file 4). [Allen-Bradley 1997]

The PLC main program was written using a ladder logic editor. The ladder logic

editor uses a graphical programming language based on electrical relay diagrams. In this

case, RSLogix Micro and LD Micro were used to create the programs. Figure 3.2 provides

a screenshot of RSLogix Micro running a basic control program while connected to the

hardware MicroLogix 1000.

Figure 3.2: RSLogix Micro Screen Shot

In order to demonstrate the method used to conduct code analysis on a PLC program,

an example program was used. A door interlock is an easily understood engineering problem

with interesting safety considerations. A interlock is commonly used to prevent undesired

states in a system. A household example is the door on a microwave. When the door is open

the circuit is broken and the microwave will not operate. This prevents the undesired state

of the microwave running with the door open.
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Another common application of an interlock at the scale which we are considering would

be an airlock. In an airlock, an inner door and an outer door are used in order to prevent

exposure from one area to another. The inner door and outer door are connected by an

intermediate space which can be pressurized or decontaminated as needed. Figure 3.3 is a

graphical representation of a door interlock.

Figure 3.3: Example Door Interlock

3.4.1 Method Development

Unimproved Program Analysis

The ladder logic in Figure 3.4 was written to control both the inner and outer door

independent of any safety measures, and was the most basic way to control the doors. In

this program there is no interlock between the doors. When the inner door switch is pressed,

the inner door opens. When the outer door switch is pressed, the outer door opens. The

switch and control represent the state of the door. In reality, a sensor may be required to

correctly show the state of the door as either open, closed, or possibly in an intermediate

state.
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Figure 3.4: Interlock Ladder Logic Program

Figure 3.5 shows the translation of the ladder logic program to Verilog. This demon-

strates a key task if this method is to work with European PLCs which are programmed with

HDL instead of ladder logic. Additional tools can be used with HDL as well. GTKWave,

as an example, simulates an HDL program’s execution as a testing measure. The method

of translation will not work in all cases as HDL is a more complex language and it may not

be possible or justifiable to translate all of the functionality of a HDL into a ladder logic

program.

always@(*) YInnerDoorCtrl = XInnerDoorSw

always@(*) YOuterDoorCtrl = XOuterDoorSw

Figure 3.5: Interlock Verilog Pseudocode

The next step in the method was to create a meaningful representation from the ladder

logic code for analysis. FTA can be created by treating each of the initiating contacts on

the individual rungs of the ladder logic program as an initiating event for each branch of

the fault tree. For example, the contacts labeled ‘XInnerDoorSw.’ and ‘XOuterDoorSw.’

become the initiating events for the branches of our first fault tree. Additional contacts on

the rung can be joined to the corresponding branch on the fault tree by using the appropriate

logical gate for inclusion. The branch of the fault tree will end with the rung, in our case

at the ‘coils’ labelled ‘YInnerDoorCtrl’ and ‘YOuterDoorCtrl’. The top-event and possibly
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intermediary events may not be able to be generated from the ladder logic and will have to

be created from further analysis.

The main ladder logic program file will vary depending on the editor used. Figure 3.6

is a file created by LD Micro. The program file typically begins with information on the

type of editor used and the processor for which the program is intended. This information

was removed as it is not needed, and does not provide behavioral information. The I/O list

provides the list of input and output values. In this case, XInnerDoorSw and XOuterDoorSw

are the door switches, and YInnerDoorCtrl and YOuterDoorCtrl are the door controls. The

program is sub-divided into rungs. If additional logic were included on the rungs, it would

have been placed in parallel sections of code nested under each rung. This is shown in later

figures.

Figure 3.6: Interlock Program File

With this file, it is possible to write a script which parses the ladder logic into a

LATEXdocument. This creates the beginning of the fault tree. In the example case, a top event

which describes the eventual physical world event is needed (Both Doors Open). Similar to

test driven development, the initial event should be a undesirable event. If no undesirable

event can be detected, then there is no necessary action to be taken and the representation

will serve as a indicator of correctness. First, the appropriate logic needs to be drawn from

the ladder logic program.
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In this example, the rungs are joined by an ‘and’ logic gate as they both need to be

activated in order to move down the branch. The observation is made that the air lock

integrity would be violated in this case. Figure 3.7 was created using LATEX, and was also

modeled using OpenFTA.

Both Doors

Open

YInnerDoorCtrl

and

YOuterDoorCtrl

XInnerDoorSw XOuterDoorSw

A

1 2

Figure 3.7: Interlock Fault Tree Diagram

For this example a cut set was created automatically using OpenFTA. A cut set is the

set of events that will assure that the system will not function [Moriarty 1990]. In our case

the cut set is the set of component failures that will cause system failure. The cut set is given

in a single row in Table 3.1 indicating that preventing either initiating event can prevent

violating the integrity of the airlock. The cut set and minimal cut set in this example are

the same, and were automatically generated by OpenFTA.

Table 3.1: Cut Set for Unimproved Interlock Fault Tree

1 2

To further illustrate this point, a state diagram in Figure 3.8 shows the transition

to possible end states based on initiating events. In this case, since the doors are being
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opened and closed by an operator, the state in ‘Both Doors Open’ is the possibly dangerous

misconfiguration state caused by opening both doors without shutting a door. With this

possible misconfiguration in mind, the next step is to attempt to apply the hierarchy of

controls to ‘engineer out’ the misconfiguration.

Figure 3.8: Interlock State Diagram

Improved Program Analysis

To improve the program, and to avoid the conceivable accidental state of an operator

simultaneously opening both doors at once, a negated contact is included in the ladder logic

program. A negated contact is indicated by a slash in the contact symbol. Figure 3.9 shows

the change in logic.

Figure 3.9: Improved Interlock Ladder Logic Program
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Figure 3.10 shows the improved program file in LD Micro. In this case, the additional

negated contact is placed inline for each individual rung. The logical statement is made

that the corresponding door control coil cannot be operated if the alternate door switch is

closed. In this case, the parallel statement causes the fault tree to be expanded to include

‘NOT’ logic as an initiating event. Figure 3.11 shows the resulting fault tree demonstrating

that if one door is opened the other door cannot be opened. There are multiple ways to

demonstrate this logic, and some rule sets may make automation possible but will result in

overly complex fault trees without additional analysis. Simultaneously, this may make the

resulting fault tree cumbersome as the model increases in complexity.

Figure 3.10: Improved Interlock Program File
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Both Doors

Open

YInnerDoorCtrl

XInnerDoorSw !XOuterDoorSw

YOuterDoorCtrl

XOuterDoorSw !XInnerDoorSw

A

B C

1
2

2
1

Figure 3.11: Improved Interlock Fault Tree Diagram

Figure 3.12 is the state diagram resulting from the changes made. This state diagram

shows that the state for ‘Both Doors Open’ is no longer possible when controlled from the

PLC. Sabotage and physical damage are possible ways to open both doors, but are not con-

sidered as they are not means which can be judged via code analysis. The inability to open

both doors might be a potentially unsafe engineering state depending on the specification

required for the doors. There may be a time when both doors need to be opened simultane-

ously for installing large equipment, cleaning, or evacuation. The next demonstration shows

how risk and mitigation steps might be included in the method in order to handle scenarios

where completely removing a state is less ideal.
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Figure 3.12: Improved Interlock State Diagram

Improved Program Analysis with Design Trade-Offs

The options for mitigating possibly unsafe states are numerous and depend largely on

the design decisions and trade-offs made by the stakeholders in charge of the project. For

this implementation, it is speculated that the state for both doors needs to be allowed but

should prevent accidental activation. Additionally, the override switch could be maintained

strictly in the physical realm where security is more assured. Other measures may include

adding a delay to the action, or providing a warning when the override is selected and both

doors are opened.

Figure 3.13 shows the inclusion of the override contact to the ladder logic program as

well as the addition of an alarm for when the override is activated. Figure 3.14 is the updated

program file generated by LDMicro.
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Figure 3.13: Override Interlock Ladder Logic Program

Figure 3.14: Override on Improved Interlock Program File
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The fault tree in Figure 3.15 was created using the method described, and was generated

using LATEX. It was necessary to manually include the final end state and the override

intermediate state. The left and middle branches were created by directly referencing the

ladder logic for Rung 1 and Rung 2. The alarm rung was not modeled as it does not lead

to a potentially undesirable system state. This makes the fault tree more complex than

necessary, but is still technically correct.

Figure 3.15: Override Interlock Fault Tree Diagram

With the inclusion of a new intermediate state and additional logic, a new cut set can

be generated. The fault tree was created and validated using OpenFTA. OpenFTA was also

used to generate the cut set and minimal cut set. The cut set in Table 3.2 now shows that all

three contacts need to be activated in order to transition into a possible unsafe state where

both doors can be opened simultaneously. An equivalent fault tree can be created using

alternate logic. In both Figure 3.15 and Table 3.2, the alarm branch was excluded despite

the alarm being added on a separate rung showing that it is activated with the override

contact.
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Table 3.2: Cut Set for Override Interlock Fault Tree

1 2 3

A simplified FTA can be created which is helpful in understanding the change in the

system from the addition of the override.

Both Doors

Open

XInnerDoorSw XOuterDoorSw XOvrrde

A

1 2 3

Figure 3.16: Simplified Override Interlock Fault Tree Diagram

Figure 3.17 is a final state diagram created to show that it is now possible to open both

doors of the airlock, but necessitates the activation of an override switch.

Figure 3.17: Override Interlock State Diagram
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3.5 Results

The result of this study is the development of a static code analysis method for gen-

erating fault trees from the main ladder logic program file run on PLCs. The ladder logic

written has been tested on both PLC hardware and PLC virtualization tools. This method

attempts to create a meaningful representation of the program used to control the lowest

level component of a SCADA system. The hope is that this representation can be used to

provide an indication of the level of correctness towards usable security.

3.6 Discussion

The static code analysis method described works with the common functions available

to both ladder logic and HDL which are easily translatable to the components and logic

used in FTA. However, the vocabulary used in FTA can be limiting, while the vocabulary

available to HDL and ladder logic are very expressive. An example of this problem came

in that few of the FTA editors tested support the ‘NOT’ logical symbol which is commonly

used in ladder logic. As such, compromises have had to be used occasionally.

With the complication in languages comes a problem with the simplicity of the method

described. As shown in Figure 3.15 versus Figure 3.16, the fault trees generated using this

method can be more complex than necessary, and may need to be simplified. This leads to

an additional issue with complexity.

The generation of fault trees using this method encounters formatting issues as the

fault trees generated begin to include more nodes. As the fault trees grow in complexity

readability decreases. A vector based graphical solution might be needed for a more complex

system in order to view the fault trees from varying levels of abstraction. This brings us to

a possible problem with one of the focuses of this study.

One of the focuses of this method is on security. Defense in depth, while previously

criticized as possibly proving unsustainable and inadequate to the problem, is still necessary
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even if this method is successful in identifying and removing possible misconfigurations.

Recent SCADA attack research has shown the ability to overwrite PLC logic which would

subvert the efforts made in applying this static code analysis method [Queiroz et al. 2009].

Finally, an additional limitation of this method is the reliance on a significant level of

manual interference and system knowledge to audit the fault trees generated. It is difficult

to measure the cost and benefit of applying this method. This is due in large part to the

wide variety of tasks for which PLCs are used. There has been a great deal of success in the

language used in ladder logic programming in this study, and to mitigate the possibility of

encountering a program where this method will fall short, the method has been tried on a

variety of ladder logic programs running on hardware and multiple virtualization tools.

3.7 Conclusion

The method described in this chapter is a starting point for conducting static code

analysis to identify misconfiguration errors related to usable security. The method has been

demonstrated to work on sample programs from a variety of hardware and software tools.

The next chapter discusses efforts made to study and test the effectiveness of this method

by conducting a usability experiment.
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Chapter 4

Developing Experiment

4.1 Abstract

Misconfigurations can be costly mistakes that place a system into an unsafe state. In

order to address these issues from a usability, safety and security standpoint with regards to

SCADA systems, a static code analysis method has been developed which generates Fault

Tree Analysis (FTA) artifacts from ladder logic programs running on a Programmable Logic

Controller (PLC). The static code analysis method generates a fault tree, which is used to

identify possibly unsafe system states, and the user actions that may lead to that unsafe

state. The hope is to provide an indicator of program correctness. In order to evaluate

the strengths and weaknesses of the proposed method, a model pipeline SCADA system

was developed. The static code analysis method was applied to this model, and controls

were implemented to mitigate or remove the unsafe states identified. Twenty five subjects

operated the model pipeline under mock critical operating conditions using ladder logic that

had undergone code analysis and ladder logic that had not. Test subjects were also asked to

‘attack’ the model pipeline in order to cause as many intentional misconfiguration errors as

possible. In this experiment, it was shown that for this model there was a significant decrease

in the number of misconfiguration errors that test subjects made, both unintentionally and

intentionally.
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4.2 Introduction

On 10 June 1999, an operator was overseeing a sixteen inch gasoline pipeline in Belling-

ham, Washington when both the primary and secondary SCADA computers began to gen-

erate errors. The system became unresponsive. Pressure in the pipeline began to build in

a section of the pipeline presumably damaged by an excavator. A full restart of the sys-

tem was conducted to regain control. At that time, the operator was notified of a gasoline

smell. It took 1 hour and 15 minutes from the time the pipeline started leaking until the

isolation valves were finally closed. The resulting fire killed three people and injured eight

others.[NTSB 2002a]

Seventeen years earlier, in 1982, a similar situation occurred at the Trans-Siberian nat-

ural gas pipeline. An estimated 3-kiloton explosion was the result of suspected software bugs

in code responsible for controlling the pipeline. The main difference between the Bellingham,

Washington incident and the Trans-Siberian pipeline accident was intent.

Allegedly, the bugs were maliciously left in the code. Thomas Reed, a former Secretary

of the Air Force, wrote the following about the attack. [Reed 2007]

“ ...the pipeline software that was to run the pumps, turbines, and valves was

programmed to go haywire, after a decent interval, to reset pump speeds and

valve settings to produce pressures far beyond those acceptable to the pipeline

joints and welds. The result was the most monumental non-nuclear explosion

and fire ever seen from space" [Reed 2007].

The reason these two cases are relevant is that they both deal with usability, security,

and software for SCADA systems. In both cases, the system was allowed to enter an unsafe

state. Both cases might have been prevented by programs operating at the highly reliable

PLC level. Code analysis may have been capable of detecting the unsafe system states and

preventing the commands and subsequent actions which directed the system to enter those

states.
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The purpose of this study was to identify a means for conducting static code analysis

relevant to usability, safety and security in SCADA systems. By providing engineers with an

indicator as to the level of code correctness, corresponding usability errors may be detected

during development and accidents prevented.

4.3 Methods

4.3.1 Objective and Hypothesis

The objective of this experiment was to test the ability of a static code analysis method

to aid in improving usability in SCADA systems. Usability, in this case, was treated as a

key method for enhancing both safety and security. The code analysis method created an

abstract representation of PLC ladder logic as branches for the creation of a fault tree. The

fault tree was then used to identify possibly unsafe system states. The unsafe systems states,

when viewed from a usability standpoint, are indications of possible user misconfigurations

which need to be addressed by a hierarchy of controls. In these cases, code reconfiguration is

needed to either engineer out the possibility of the unsafe state entirely, or the programmer

or engineer will need to provide a warning or mitigation step before allowing the system to

enter the unsafe state. Typically, these unsafe states can be difficult to detect as code and

systems increase in complexity.

In order to test the method as it applied to usability, an experiment was created. The

hypotheses of the experiment were:

Hypothesis 1 : The model pipeline SCADA system on which code analysis and reconfig-

urations have been conducted will have fewer errors caused from accidental misconfigurations

in comparison to a model pipeline SCADA system on which code analysis and reconfiguration

has not been conducted.

H0 : µtest subject accidental alarms without analysis = µtest subject accidental alarms with analysis

H1 : µtest subject accidental alarms without analysis > µtest subject accidental alarms with analysis

(4.1)
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The experiment also asked test subjects to ‘attack’ the model pipeline SCADA system

created. The second hypothesis of the experiment was:

Hypothesis 2 : The model pipeline SCADA system on which code analysis and reconfig-

uration have been conducted will have fewer errors caused from intentional misconfigurations

in comparison to a model pipeline SCADA system on which code analysis and reconfiguration

has not been conducted.

H0 : µtest subject intentional alarms without analysis = µtest subject intentional alarms with analysis

H1 : µtest subject intentional alarms without analysis > µtest subject intentional alarms with analysis

(4.2)

Additionally, the experiment also tested if there would be a difference in the amount of

time for test subjects to complete the assigned tasks between the model pipeline SCADA sys-

tem on which code analysis and reconfiguration had been conducted and the model pipeline

SCADA system on which code analysis and reconfiguration had not been conducted :

Hypothesis 3 : The difference in the amount of time that test subjects take to complete

a task on a model pipeline SCADA system on which code analysis and reconfiguration has

been conducted will be less in comparison to the amount of time it will take a test subject

to complete identical tasks on an otherwise identical model SCADA system on which code

analysis has not been conducted.

H0 : µtime to task completion without analysis = µtime to task completion with analysis

H1 : µtime to task completion without analysis > µtime to task completion with analysis

(4.3)

4.3.2 Experimental Design

In order to test these hypotheses, a model pipeline SCADA system was created and

the code analysis method applied. To realistically model a pipeline SCADA system, case

studies conducted by the National Transportation Safety Board (NTSB) were referenced.

The overall summary of the case study is made available from the NTSB [NTSB 2002a].
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The findings of the case study are provided verbatim from the conclusions section of the

NTSB report, and are the result of thirteen case studies conducted, twelve site visits, and

sixty nine individual interviews.

1. Most hazardous liquid pipeline operators use SCADA systems to monitor and control

their pipelines.

2. Operators reported that SCADA systems enhance both the safety and efficiency of

their pipelines.

3. Implementations of graphical standards developed for pipeline operations will increase

the likelihood that leaks will be detected quickly and that resulting damage from the

leaks will be minimized.

4. An effective alarm, review/audit system will increase the likelihood of controllers ap-

propriately responding to alarms associated with pipeline leaks.

5. Requiring controllers to train for leak detection tasks using simulators or non-computerized

simulations will improve the probability of controllers finding and mitigating pipeline

leaks.

6. Because the report form used by the Office of Pipeline Safety for companies to report

liquid pipeline accidents (PHMSA F 7000-1) does not require operators to provide

information about fatigue, such as controller work schedules, it is not possible to em-

pirically determine the contribution of fatigue to pipeline accidents using the Office of

Pipeline Safety accident database.

7. Ensuring constant monitoring of an entire pipeline using a computer-based leak detec-

tion technology would enhance the controller’s ability to detect large spills, increase

the likelihood of spill detection, and reduce the response time to large spills.

[NTSB 2002a]
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The recommendations based on these conclusions and previous usable security experi-

ments were heavily relied upon to aid in adding realism to the usability experiment in this

study [Whitten 2004] [Garfinkel 2005] [Ikuma 2013] [NTSB 2002a].

The goal of the model created was to be as realistic as possible without requiring specific

training for test subjects. The pipeline was based on a compilation of maps found for the

Sissonville, West Virgina [NTSB 2001], Winchester, Kentucky [NTSB 2002b], Carlsbad, New

Mexico [NTSB 2000] and Brenham, Texas pipeline accidents [NTSB 1993]. Two pipelines

are shown in the experiment. These pipelines were modeled as interconnected to allow

for inclusion of flow redirection due to ‘pigging operations’ and pipeline damage. Pigging

operations are when a section of pipeline is closed and a device known as a pig is sent

through the pipes to look for any possible structural weaknesses. Both pigging operations

and external damage are commonly cited events in creating abnormal operating conditions

for which there is no operating guidance. Since training is not typically conducted for this

type of event, the training effect is not considered as a solution to the usability problem

in this case. This was an attempt to aid in addressing an issue with the test subject pool

available for this experiment.

The test subject pool was largely comprised of graduate level engineering students at

Auburn University. While it is true that the situations given in the experiment are not

commonly trained, it is still believed that trained pipeline operators would perform differently

than the naive test subjects. While this is a possible limitation, as the experiment is meant

to test an engineering method to improve usability, the SCADA experience and background

of the test subjects is believed to have made little difference in the experiment.

The experiment still strived for realistic details, and as such overflow tanks were included

to model the salt dome storage operations conducted in the Brenham, Texas incident [NTSB

1993]. Pumping stations were placed along the routes to allow increased pressure for each

section of pipe. Valves were placed to control the flow of highly volatile liquid (HVL) into

the various sections and outlets along the route. Backwards flow was not allowed. Pressure
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indicators were included for each section of pipeline. In keeping with the recommendations

made by the NTSB in their report [NTSB 2002a], pressure trends over time were indicated

in a separate color coded display and an alarm acknowledgement and management system

was provided. The test subject misconfiguration errors were logged using the alarm system.

This meant that any misconfiguration that resulted in an alarm resulted in an error being

recorded. Misconfiguration errors which did not result in an alarm were not recorded. A

black and white screenshot of the pipeline system is shown in Figure 4.1. A larger and more

readable version is provided in Figure 6.5.

Figure 4.1: Pipeline Usable Security Simulator

A scenario was created which was intended to treat the test subjects as operators of the

designed pipeline. The operations were designed to take place under abnormal, and therefore

untrained, conditions. It it believed that the test subject, with computer competency to

operate graphical software but not expert level knowledge in either computer security or

SCADA operations, would be well suited to understanding and operating the model pipeline.
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The pipeline was divided into 4 separate sections numbered one to four from the top left

section to the lower right section of the pipeline. The valves of the pipeline were labeled as

Valves 1 thru Valve 13. Pipeline 4 is closed for ‘pigging operations’, and as such is labelled

as logged out and tagged out. Consistent with lock out tag out, Pipeline 4’s controls will not

respond to commands. Pipeline 1 has been damaged by contact with a truck, and as such

the flow will need to be redirected in order to safely maintain operations. The sections of the

pipeline are designed to be operated at a pressure of 4.7 psig. This value is based on liquid

natural gas transportation. In keeping with the scenario where Pipeline 1 has been damaged,

Pipelines 2-4 fail if the pressure reaches 8.0 psig while Pipeline 1 fails if the pressure reaches

6.4 psig. The overflow tanks rupture or overflow if the tanks are allowed to reach 106 % of

their indicated capacity. Pressure relief valves and tank overflows were not included as part

of the scenario. As the experiment is trying to test subjects ability to reconfigure a system

correctly, these safety devices were viewed as possible distractions to the test subjects. They

may be included in future testing.

The experiment was designed using Indusoft’s Web Studio v7.1 tool for developing

Human Machine Interfaces. Indusoft markets Web Studio as a collection of automation

tools for providing all of the building blocks needed to develop HMIs and SCADA systems

for embedded instrumentation solutions. Indusoft’s Web Studio was an ideal program for this

experiment because it offers the ability to integrate with real world hardware, is currently

used as an industry tool for integrating and controlling SCADA systems, and includes the

ability to simulate system reactions for test HMI’s via Visual Basic scripting. The ability to

write Visual Basic scripts was integral for mimicking system reactions since we were unable

to test on a real world pipeline.

Interestingly, it was possible to test both real world hardware as well as emulated hard-

ware. By using the MicroLogix 1000 PLC, it was possible to integrate ladder logic running

on a hardware PLC while simulating system reactions. The mimicked physical reactions are

provided via the Visual Basic script included in the appendix. The ability to communicate
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with our PLC, since we were restricted to a serial port connection, was provided by using

Virtual Serial Port Driver from Eltima Software. As this communication protocol is dated,

it was necessary to use a USB Serial Port emulator to connect the PLC and the PLC Emu-

lator, RSLogix Emulator to Indusoft Web Studio. RSLink Classic was used to connect both

RSLogix Emulator and the MicroLogix 1000 to the correct communication port.

While the pipeline was being created, it was important to also write the ladder logic

which would control the PLC and all of the output devices on the pipeline. Figure 4.2 shows

the unimproved experiment ladder logic. Using the method previously described in Chapter

3, the fault tree was created and the fault tree logic was completed with additional system

insight.
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Figure 4.2: Unimproved Pipeline Ladder Logic

The fault tree permutations were calculated to show the interaction between seventeen

initiating events coming from thirteen valves and four pumps. The permutations can be
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calculated using the Python script in Listing 6.2. Without simplification the possible per-

mutations of fault tree branches would have lead to the creation of 8,191 fault tree branch

combinations from the valves alone. Including the pumps increases the number of permuta-

tions to 13,171.

In order to simplify, the branches were sorted into event areas which were relevant to

each of the components where failure was a concern. The components anticipated to fail were

listed as Pipeline 1, Pipeline 2, Pipeline 3, Pipeline 4, Tank 1, and Tank 2. Additionally,

logic was built into the scenario to warn users against running pumps dry or from cycling

the pumps too often. This was in response to the suspected attack on the Virginia Water

Treatment Facility [CNET 2014]. Pipeline 4 was protected because it was shut down and was

considered locked out and tagged out from the proposed scenario. The selection method was

conducted to allow ‘pruning’ of large number of irrelevant branch permutations to simplify

the fault tree. For example, the branch generated for Valve 10 and Valve 12 have no impact

on Pipeline 1’s pressure. As such, it would make little sense to include them in the fault tree

for Pipeline 1.

This method did not initially include negative system states, or states where it was

necessary to think of a valve as closed. Branches needed to be generated to consider all

possible states; in this case the states were binary (open or closed versus open, closed, or in

an intermediate state). The final improvement to the method was to simplify sets of valves

together as either ‘sinks’ or ‘sources’. Sinks to a pipeline would be any complete combination

of valves thats allows for draining from a pipeline. A source is any complete set of valves

that would allow flow into a pipeline. For example, Valve 1 and Valve 2 are a complete set of

valves which feeds into Pipeline 1. Alternately, Valve 2 and Valve 4 also comprise a complete

source from Tank 1 if Tank 1 is not empty. Valve 5, Valve 9, Valve 11 and Valve 13 are a

complete sink which allows flow out of Pipeline 1. Additionally, Valve 5 and Valve 8 can be

considered a complete sink if Tank 2 is not full. This simplification allowed for checking of

states in the fault tree quickly and easily. Figure 4.3 is the final example of the fault tree
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generated by this method for Pipeline 1, and was drawn using LATEX. The pipeline was also

generated in OpenFTA. Pruning allowed us to reduce the number of total permutations to

29 by using the sources and sinks. The sinks and sources list is provided in Figure 6.1.

Figure 4.3: Pipeline 1 Fault Tree Example

In order to develop this test case further, it is worthwhile to show the cut set generated

by OpenFTA. The cut set given is provided in Table 4.1.

Table 4.1: Cut Set for Pipeline 1

Pump1 TankFull Valve1 Valve2 Valve4

Pump1 Valve1 Valve2 Valve5 Valve9

The cut set provides a number of means to protect Pipeline 1 from overpressure and

possible rupture. The means decided for the experiment in the reconfigured test was to

proactively shut off Pump 1 whenever the sink to Pipeline 1 was closed while the source

was open. By controlling the pumps, at least in this scenario, it becomes impossible to over

pressurize the varying lengths of pipeline. The lengths of pipeline are long enough that the

pressure is not maintained far down each line. This is why intermediate pumping stations
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would be required in the first place. The change in the ladder logic then becomes what is

shown in Figure 4.4.

Figure 4.4: Pump 1 Control Rung

This process was conducted until it was believed that no further unsafe system states

remained. Figures 6.9 and 6.10 provide the fully improved ladder logic.

4.3.3 Subjects

Based on previously referenced experiments similar to this one and the hypothesis to

be tested, it was decided to recruit 25 test subjects required for meaningful results [Whitten

2004] [Whitten and Tygar 1999] [Ikuma 2013] [Garfinkel 2005]. Experimentation was halted

after 25 test subjects were tested largely because an initial review of the data gathered

showed meaningful results after 16 participants.

Test subjects were recruited via email and flyer after permission was granted from

the Institutional Review Board (IRB) at Auburn University. Sample IRB documents are

included in the Appendix. Test subjects were screened for computer competency via an

online survey. A copy of the survey is located in the Appendix. While most of the test

subjects were graduate or undergraduate engineering students, some of the test subjects

were professionals working in the local area.

4.3.4 Experimental Apparatus

Test subjects were invited the Shelby Center at Auburn University for the experi-

ment. The experiment was conducted on a desktop computer running Windows 7 that

was preloaded with all of the software required. The test computer is shown in Figure 6.3.
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Gaze tracking data was captured using the EyeTribe tracking device on 10 of the partici-

pants. Additionally, mouse tracking data was gathered using IO graph. Unfortunately, even

though gaze tracking data was captured, analysis tools have not yet been made available to

analyze the data files collected via the EyeTribe gaze tracker. It is hoped that this data can

be analyzed and presented in a follow on publication.

Mouse tracking yielded some unique insight as to how users navigated the HMI screen.

Lines indicate where the mouse cursor was moved, while the circles generated indicate mouse

clicks. In this case, the larger the circle the more frequently a mouse was clicked in that

area. These results are discussed in this section as they are largely speculative.

The mouse movement seems to correlate with both the tasks that users are accomplish-

ing, as well as where they are looking on the screen. Some of the errant mouse clicks are

the results of the test switching between the survey screen, the main menu, and the main

experiment screen. The seemingly errant clicks probably indicate where the test subject was

clicking for the survey before the experiment began. Additional mouse tracking overlays are

provided in the Appendix.
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Figure 4.5: IOgraph Mouse Tracking Overlay

4.3.5 Protocol

Subjects were greeted at a time scheduled by the participant and the investigator.

Prior to participating in the experiment participants provided informed consent after the

investigator fielded any questions or requests for information.

Upon starting the experiment, participants were asked to sit at the computer while

any workstation adjustments were made if required for the gaze tracking equipment. The

participants were then asked to begin, and were greeted with the screen shown in Figure 4.6.
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Figure 4.6: Main Menu

The main menu guided participants first to the survey intended to gauge the partic-

ipants’ level of computer competency. The survey was conducted as a control to ensure

that participants had a high enough level of computer competency in order to successfully

navigate the experiment. No subjects were excluded due to computer competency concerns.

After completing the survey, the main menu screen guided participants to a brief tuto-

rial. A set of sample controls was displayed as shown in Figure 4.7, and participants were

prompted by on screen instructions as to their use. Upon completion, participants were re-

turned to the main menu. The main menu guided the participants to button 3a which started

the usability experiment. When this window was opened, a visual basic script selected at

random between the version of the test that had undergone code analysis and reconfigura-

tion, or the version that had not. The investigator, through a special prompt on the screen,

was able to see which version was selected in order to ensure the test was behaving correctly.

In each case, the opposite version would be selected for the follow-on test.
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Figure 4.7: Tutorial Screen

The participants were then read the following script after being returned to the main

menu.

“You are currently operating a pipeline responsible for transporting highly volatile

liquids over a great distance. The pipeline is configured so that all flow is going

through pipelines 1 and 3. This is because pipeline 4 is locked out and tagged

out for its required bi-annual inspection, or ‘pigging’ operation. The pressure in

pipeline 1 and 3 is currently at the ideal 4.7 psig (shown as psi in the HMI). You

have just received a phone call stating that a farmer has backed into pipeline 1 and

external damage is visible. Further inspection is required. You have been directed

to reconfigure the flow of the pipeline from pipelines 1 and 3 to pipelines 2 and

3. Do so without increasing the pressure in any of the pipelines if possible. All

steps will be considered complete when the flow has been successfully redirected
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and the pressure for pipeline 1 reads 0, pipeline 2 read 4.7, and pipeline 3 reads

4.7. Please begin when you are ready."

Participants were not prompted to ask questions, but if questions were asked the ques-

tions were answered until the participant was satisfied. The time to completion, actions,

and number and types of errors made were recorded automatically by a data-logger. As a

precautionary step the investigator recorded the time the experiment started until the time

that the pressures in all pipelines had either reached the appropriate level or until all re-

quired steps were taken. If damage was caused to the pipeline, it is possible that the correct

pressure might not be reached. The investigator also recorded all errors made and the order

in which those errors took place. The data points gathered were time in seconds to task

completion, and the number of alarm states that the pipeline experienced.

An error was recorded only when system alarms occurred indicating a warning or mock

physical damage. A specific order of operations could be conducted which would not place the

pipeline in an unsafe state and would reconfigure the pipeline. Additionally, there were orders

of operations which could be completed quickly enough which, even though the pipeline might

temporarily be in an unsafe system state, would not result in a system alarm.
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Figure 4.8: Experiment Screen

After the test was completed, the user was returned to the main menu where the next

test, 3b, would be selected. The same steps were followed with the same information being

recorded. After completing this test the user was returned to the main menu.

From the main menu the same experiment screen was displayed with random selection

of which version would be used to drive the experiment. The users were read the following

script for this section of the experiment:

“In this scenario you are now an attacker. You have managed to circumvent the

security of a major pipeline company. Your goal is to now cause as much damage

as possible. You will be allotted five minutes unless you wish to stop before then.

If you would like to stop sooner please say so, and if you would like to have more

time at the five minute warning please notify the investigator and more time will

be allotted."
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Again, questions were allowed, but the participants were not prompted. Any questions

asked would be answered until the test participant was satisfied. The same model as the

usability test was followed. Time to completion, actions, and number and misconfigurations

made was recorded automatically by a data-logger. As a precautionary step, the investigator

simultaneously recorded the time the experiment started until the participant stated that

they were finished. The experiment was conducted one more time with the alternate engine.

4.4 Results

All twenty five subjects completed the experiment. There were 11 possible errors, or

successful attacks depending on the stage of the experiment, which could be made by the

users. Errors and attacks were logged as any system alarm or warning, and are distinguished

by being either accidental or intentional misconfiguration errors. Both of the reconfigured

systems had fewer misconfiguration errors. For a normal reconfiguration, on average, users

made 1.92 misconfiguration errors per attempt. The results are discussed below with respect

to each hypothesis tested.

4.4.1 Time to Completion Difference for Users

The results, as given in Table 4.2, indicated that there is no significant difference in the

mean time for completing the Normal and Reconfigured tests. The p-value associated with

the paired difference test is 0.7511. A small p-value less than (0.05) indicates that there is

a statistically significant difference between the average time to complete each test. Based

on the p-value of 0.7511, there is no difference in the average time of completing either the

Normal or Reconfigured tests. In looking at the information further, a possible outlier was

discovered.
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Table 4.2: Descriptive Statistics for Time to Completion on Each Test in Seconds

Test Mean Median Standard Deviation IQR

Normal: User 142.4 130 111.9 83.5

Reconfigured: User 135.56 143 60.7 118

Subject 9 spent 10 minutes and 13 seconds on the first task that they were presented

with. Subject 9, in discussing with the investigator, revealed that they were green color blind

and had a difficult time seeing the state of the valves. The valves alternated between light

grey (off) and green (on) to indicate their state. Colorblindness was not a factor checked in

the survey, and was not considered before testing as a possible limitation. Discussion with

the test subject revealed that they had no problem identifying the state of the pump switches

as they more visibly moved up and down. As such, Subject 9 was deemed an outlier and his

time scores discarded. Table 4.3 provides the new time data with Subject 9’s time removed.

Table 4.3: Descriptive Statistics for Time to Completion on Each Test in Seconds: No Outlier

Test Mean Median Standard Deviation IQR

Normal: User 122.79 129.5 55.09 78.5

Reconfigured: User 134.75 125 61.88 119

The new paired test gave us the following: p-value=.2659. This p-value is smaller than

the original p-value with Subject 9 in the analysis, but shows that there is no significant

difference in the times to task completing for the experiment with the code analysis method,

and without. No other outliers were found in the any of the data collected.

4.4.2 Errors Made by Users

The number of errors the subjects made on the reconfiguration test were compared.

This data is shown in Table 4.4 An error was recorded only when a system alarm sounded

signifying theoretical physical damage would have occurred to the pipeline or when a warning

was recorded. Examples included rupturing Pipeline 1 or Pipeline 3, over pressuring Pipeline
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2, running any of the pumps without the flow of liquid, or overfilling and rupturing the tanks.

The p-value associated with this test was less than 0.0001. From this we see that there are

significant differences in the number of accidental misconfigurations that the subjects made

on the model that had undergone code analysis and the model that had not. The code

analysis method, in this experiment for this model pipeline SCADA system, appears to have

a significant effect on decreasing the number of errors the subjects made.

Table 4.4: Descriptive Statistics for the Errors in Each Test Based on Test Subject

Test Mean Median Mode Standard Deviation

Normal: User 1.92 2 2 1.222

Reconfigured: User 0.08 0 0 0.4

Normal: Attack 4.84 5 4.5 1.772

Reconfigured: Attack 0 0 0 0

4.4.3 Successful Attacks by Attackers

The number of errors that the subjects made while ‘attacking’ the model pipeline

SCADA system that had undergone code analysis and the model that had not were also

compared. This data is shown in Table 4.4 and Table 4.5. The p-value for this test was less

than 0.0001. As with the errors for the usability test, there was a significant decrease in

the number of intentional misconfigurations that the subjects made on the model that had

undergone code analysis in comparison to the model that had not. The code analysis method

appears to have a significant effect on decreasing the number of intentional misconfigura-

tions. In this way, there is a strong correlation between improving usability for safety and

improving usability for security. By addressing the problem with possible misconfiguration

errors by users, it may also be shown the intentional misconfigurations by attackers can be

prevented.
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Table 4.5: Successful Attacks Made Per Test

Test Normal: User Reconfigured: User Normal: Attack Reconfigured: Attack

Tank 1 Overflow 1 0 16 0

Tank 2 Overflow 1 0 17 0

Pipe 1 Cracked 7 0 20 0

Pipe 2 Overpressure 5 0 18 0

Pipe 3 Cracked 4 0 12 0

Pump 1 Run Dry 12 0 14 0

Pump 2 Run Dry 11 2 10 0

Pump 3 Run Dry 6 0 12 0

Pump 1 Cycling 1 0 2 0

Pump 2 Cycling 0 0 0 0

Pump 3 Cycling 1 0 0 0

Total 48 2 121 0

4.5 Discussion

Several of the shortcomings of this research have already been mentioned. The static

code analysis method described works with the common functions available to both ladder

logic and HDL which are easily translatable to the components and logic used in FTA.

However, the vocabulary used in FTA can be limiting, while the vocabulary available to

HDL and ladder logic are very expressive. An example of this problem came in that few of

the FTA editors tested support the ‘NOT’ logical symbol which is commonly used in ladder

logic. As such, compromises have had to be used occasionally.

Creating fault trees using this method may also encounter formatting issues as the fault

trees generated begin to include more nodes. As the fault trees grow in complexity readability

decreases. A vector based graphical solution might be needed for a more complex system in

order to view the fault trees from varying levels of abstraction. This brings us to a possible

problem with one of the focuses of this study.
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One of the focuses of this method is on security. Defense in depth, while previously

criticized as possibly proving unsustainable and inadequate to the problem, is still necessary

even if this method is successful in identifying and removing possible misconfigurations.

Recent SCADA attack research has shown the ability to overwrite PLC logic that would

subvert the efforts made in applying this static code analysis method [Queiroz et al. 2009].

An additional limitation of this method is the reliance on a significant level of manual

interference and system knowledge to audit the fault trees generated. It is difficult to measure

the cost and benefit of applying this method. This is due in large part to the wide variety of

tasks for which PLCs are used. There has been a great deal of success in the language used

in ladder logic programming in this study, and to mitigate the possibility of encountering a

program where this method will fall short, the method has been tried on a variety of ladder

logic programs running on hardware and multiple virtualization tools.

The experiment has several limitations that need to be discussed as well. Safety equip-

ment, such as pressure relief valves, was not included in the HMI being tested. This is viewed

as a minor shortcoming, but is possibly limiting as to the realism of the test. Validation was

conducted as rigorously as possible in regards to the model, but without real world data it

is difficult to say how valid the model pipeline was.

Test subjects create another interesting possible shortcoming. The majority of test

subjects were graduate level engineering students. A small set of the test subjects were

working professionals of varying backgrounds. While the data does not seem to suggest

that the mixing of test pools backgrounds had any effect, it is currently unknown if the

results would have been more indicative. Additionally, it is recognized that trained pipeline

operators would be likely to have different results than the SCADA naive test subjects

available.

Finally, the reliance on Visual Basic to provide interaction is a possible limiting factor

in the experiment. It is difficult to perfectly model the physical world, and while efforts were
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made to ensure experimental realism, without having a real world system to measure against

it is difficult to know the level of realism attained.

4.6 Conclusion

Neither pipeline models resulted in any significant difference in regards to task comple-

tion time for this experiment. However, the code analysis method in this experiment for this

model pipeline SCADA system showed significant reduction in both the number of inten-

tional and accidental misconfiguration that users or attackers could make. Thus, the static

code analysis method did help to significantly decrease the number of misconfigurations and

possibly unsafe system states that could occur in this experiment, and in this way helped to

improve security, safety, and usability while providing a indicator of code correctness.
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Chapter 5

Conclusion

5.1 Introduction

Static code analysis is used to provide a means of indicating correctness to a programmer

with having to execute the program. It is the hypothesized hope that lessons from static

code analysis can be used to help provide the same indication with regards to system safety,

security, and usability. The method designed and tested in this research is seemingly useful

for identifying potentially unsafe system states in ladder logic written for Programmable

Logic Controllers, and can potentially be used to improve usability and security. While this

study is not foolproof method, the experiments conducted have shown promise in the scope

to which it was applied.

5.2 Summary of Findings

A method of static code analysis useful to usable security in SCADA systems was

studied, and a collection of usability experiments were conducted in order to explore that

method. The findings of the research are summarized below.

1. Completion of tasks for a system which had undergone the previously described code

analysis method showed no difference for task completion time in comparison to a

nearly identical system where the code analysis method had not been applied.

2. The number of errors made by test subjects was greatly decreased for the experiment

conducted when the code analysis method was applied. It appears that misconfigura-

tion errors can be thought of as an engineering design problem, and that identifying
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and removing possible misconfiguration states, can be a highly effective means of re-

ducing possible user errors. This may be only true in cases where ladder logic can be

analyzed and where the misconfiguration errors can be successfully removed, or a level

of control applied.

3. The number of successful attacks made by an intruder can be greatly decreased for the

experiment conducted when the code analysis method developed has been applied. It

appears that when reducing the possible number of unsafe states resulting from user

misconfigurations, the number of unsafe states available to attackers is also reduced.

In this way, at least in regards to the experiment conducted, increasing the level of

usability by reducing possible misconfiguration states potentially increases the security

of a system.

5.3 Limitations of Research

Several of the shortcomings of this research have already been mentioned. The static

code analysis method described works with the common functions available to both ladder

logic and HDL which are easily translatable to the components and logic used in FTA.

However, the vocabulary used in FTA can be limiting, while the vocabulary available to

HDL and ladder logic are very expressive. An example of this problem came in that few of

the FTA editors tested support the ‘NOT’ logical symbol which is commonly used in ladder

logic. As such, compromises have had to be used occasionally.

With the complication in languages comes a problem with the simplicity of the method

described. As shown in Figure 3.15 versus Figure 3.16, the fault trees generated using this

method can be more complex than necessary, and may need to be simplified. This leads to

an additional issue with complexity.

Creating fault trees using this method may also encounter formatting issues as the fault

trees generated begin to include more nodes. As the fault trees grow in complexity readability

decreases. A vector based graphical solution might be needed for a more complex system in
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order to view the fault trees from varying levels of abstraction. This brings us to a possible

problem with one of the focuses of this study.

One of the focuses of this method is on security. Defense in depth, while previously

criticized as possibly proving unsustainable and inadequate to the problem, is still necessary

even if this method is successful in identifying and removing possible misconfigurations.

Recent SCADA attack research has shown the ability to overwrite PLC logic that would

subvert the efforts made in applying this static code analysis method [Queiroz et al. 2009].

An additional limitation of this method is the reliance on a significant level of manual

interference and system knowledge to audit the fault trees generated. It is difficult to measure

the cost and benefit of applying this method. This is due in large part to the wide variety of

tasks for which PLCs are used. There has been a great deal of success in the language used

in ladder logic programming in this study, and to mitigate the possibility of encountering a

program where this method will fall short, the method has been tried on a variety of ladder

logic programs running on hardware and multiple virtualization tools.

The experiment has several limitations that need to be discussed as well. Safety equip-

ment, such as pressure relief valves, was not included in the HMI being tested. This is viewed

as a minor shortcoming, but is possibly limiting as to the realism of the test. Validation was

conducted as rigorously as possible in regards to the model, but without real world data it

is difficult to say how valid the model pipeline was.

Test subjects create another interesting possible shortcoming. The majority of test

subjects were graduate level engineering students. A small set of the test subjects were

working professionals of varying backgrounds. While the data does not seem to suggest

that the mixing of test pools backgrounds had any effect, it is currently unknown if the

results would have been more indicative. Additionally, it is recognized that trained pipeline

operators would be likely to have different results than the SCADA naive test subjects

available.
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Finally, the reliance on Visual Basic to provide interaction is a possible limiting factor

in the experiment. It is difficult to perfectly model the physical world, and while efforts were

made to ensure experimental realism, without having a real world system to measure against

it is difficult to know the level of realism attained.

5.4 Recommendations for Future Research

• The first step in future research is to analyze the eye tracking data against the mouse

tracking data as soon as the tools are available. This data could help to lend additional

information as to how operators are viewing the system, and where their focus is being

held.

• The static code analysis method described in this study could be made more useful

through automation. It is recommended that this area be explored further to identify

the level of complexity which is capable of being analyzed. The automation can also

benefit from the inclusion of tools to create cuts sets and to simplify the fault trees

created. OpenFTA is recommended for this as it is open source and available for

possible extension.

• Given the large vocabulary available to ladder logic and HDL there is benefit to be

gained from attempting to replicate that capability using the logic available to FTA.

In this way, the method can be extended to include increasingly complex programs. It

may also be necessary to examine petri nets to further extend this method.

• More work needs to be conducted into improving the readability of increasingly complex

fault trees. It is recommended to study vector graphics approaches, and to integrate

with tools that allow varying levels of abstraction.

• Additional experiments can be conducted based on this method which include the

safety hardware excluded from the current model.
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6.3 Test Data

Table 6.1: Number of Errors for Each Test Organized by Subject

Subject Normal: User Reconfigured: User Normal: Attack Reconfigured: Attack

1 2 0 8 0

2 2 0 4 0

3 4 0 2 0

4 5 0 6 0

5 2 0 5 0

6 3 0 4 0

7 2 0 6 0

8 1 0 8 0

9 3 0 2 0

10 2 0 5 0

11 0 0 8 0

12 1 0 7 0

13 1 0 6 0

14 2 0 5 0

15 1 0 5 0

16 1 0 5 0

17 1 0 4 0

18 2 0 4 0

19 2 0 5 0

20 1 0 2 0

21 3 0 3 0

22 4 0 3 0

23 1 0 4 0

24 2 0 4 0

25 0 2 6 0

Total 48 2 121 0
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6.4 Fault Tree Generation

6.4.1 Sinks and Sources Permutations

Listing 6.1: Sinks and Sources Permutations

Sources :

P i p e l i n e 1

V1 V2

V4 V2

P ip e l i n e 2

V1 V3

V4 V3

P ip e l i n e 3

V1 V2 V5 V9

V1 V3 V7 V6 V9

V4 V2 V5 V9

V8 V9

P ip e l i n e 4

V1 V2 V5 V6 V10

V1 V3 V7 V10

V4 V2 V5 V6 V10

V8 V6 V10

Tank 1

V1 V4
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Tank 2

V1 V2 V5 V8

V1 V3 V7 V6 V8

Sinks :

P ip e l i n e 1

V5 V8

V5 V9 V11 V13

P ip e l i n e 2

V7 V10 V12 V13

V7 V6 V9 V11 V13

V7 V6 V8

P ip e l i n e 3

V11 V13

P ip e l i n e 4

V12 V13

Tank 1

V4 V2 V5 V9 V11 V13

V4 V3 V7 V10 V12 V13

V4 V2 V5 V6 V10 V12 V13

V4 V3 V7 V6 V9 V11 V13

V4 V2 V5 V8
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Tank 2

V8 V9 V11 V13

V8 V6 V10 V12 V13
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6.5 Test Hardware

Figure 6.1: Raspberry Pi with PiFace
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Figure 6.2: MicroLogix 1000
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Figure 6.3: Test Computer
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6.6 Screenshots

Figure 6.4: RSLogix Running Simple Test PLC Code
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Figure 6.5: Large Version Pipeline Usable Security Simulator
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Figure 6.6: IOgraph Mouse Tracking Overlay 1
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Figure 6.7: IOgraph Mouse Tracking Overlay 2
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Figure 6.8: IOgraph Mouse Tracking Overlay 3
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6.7 Source Code

Figure 6.9: Improved Ladder Logic for Pipeline Model Part 1
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Figure 6.10: Improved Ladder Logic for Pipeline Model Part 2

Listing 6.2: Permutations.py

import i t e r t o o l s

products = [ ' v1 ' , 'v2 ' , 'v3 ' , 'v4 ' , 'v5 ' , 'v6 ' , 'v7 ' , 'v8 ' , 'v9 ' ,

' v10 ' , ' v11 ' , ' v12 ' , ' v13 ' , 'p1 ' , ' p2 ' , ' p3 ' , ' p4 ' ]

permutat ions = 0

f o r L in range (1 , l en ( products )+1) :
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f o r subset in i t e r t o o l s . combinat ions ( products , L) :

p r i n t ( subset )

permutat ions = permutat ions+1

pr in t permutat ions
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6.7.1 VisualBasic Engine for InduSoft Web Studio 1

Listing 6.3: VisualBasic Engine for InduSoft Web Studio 1

' Var iab l e s a v a i l a b l e only f o r t h i s group can be dec l a r ed here .

'Loop va r i a b l e s

Dim i

Dim j

Dim k

Dim l

Dim m

Dim n

Dim o

Dim p

'−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

'−−−−−−−−−−Set I n i t i a l States−−−−−−−−−−

'−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

'Count up f o r pump cyc l e s t a t e s

For n = 1 To 4

I f $Pump [ n ] .PumpCmd = True And $Pump [ n ] . PumpState = False

Then

$Pump [ n ] . PumpCycles = $Pump [ n ] . PumpCycles +1

End I f

Next
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'The code con f i gu r ed here i s executed whi l e the cond i t i on

con f i gu r ed in the Execution f i e l d i s TRUE.

' Set s t a t e s f o r va lve s

For i = 1 To 13

$Valve [ i ] . State = $Valve [ i ] . Command

Next

' Set s t a t e s f o r the pumps

For j = 1 To 4

$Pump [ j ] . PumpState = $Pump [ j ] . PumpCmd

Next

' check f o r pump burnout

' Set Pump Burnout

For m = 1 To 4

I f $Pump [m] . PumpCycles > 35 Then

I f $Pump [m] . PumpState = True Then

$Pump [m] .PumpCmd = False

End I f

End I f

Next

' check f o r pump burnout

' Set Pump Burnout

For m = 1 To 4

I f $Pump [m] . PumpCycles > 35 Then

I f $Pump [m] . PumpState = True Then
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$Pump [m] .PumpCmd = False

End I f

End I f

Next

'−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

'−−−−−−−−−−−−−−−−−−Sa fe ty Features−−−−−−−−−−−−−−−−−−−

'−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

' pipe ove rp r e s su r e

For k = 1 To 4

I f $Pipe [ k ] . Sink = False Then

$Pump [ k ] .PumpCmd = False

$Pump [ k ] . PumpState = False

End I f

Next

' tank 1 over f l ow

I f $Tank [ 1 ] . Leve l > 100 Then

$Valve [ 4 ] . Command = False

$Valve [ 4 ] . State = Fal se

End I f

' tank 2 over f l ow

I f $Tank [ 2 ] . Leve l > 100 Then

$Valve [ 8 ] . Command = False

$Valve [ 8 ] . State = Fal se

End I f
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' pipe 3 ove rp r e s su r e

I f $Pipe [ 3 ] . Pres sure > 70 Then

$Pump [ 3 ] .PumpCmd = False

$Pump [ 3 ] . PumpState = False

$Pump [ 1 ] .PumpCmd = False

$Pump [ 1 ] . PumpState = False

$Pump [ 2 ] .PumpCmd = False

$Pump [ 2 ] . PumpState = False

End I f

'−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

' Set Sources and Sinks f o r Tanks and Pipes

'−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

'Test f o r whether sou r c e s and s i nk s are t rue

'Tank 1 Source

I f $Valve [ 1 ] . State = True And $Valve [ 4 ] . State = True Then

$Tank [ 1 ] . Source = True

Else

$Tank [ 1 ] . Source = Fal se

End I f

'Tank 1 Sink

'To Pipe 1

I f $Valve [ 4 ] . State = True And $Valve [ 2 ] . State = True Then
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$Tank [ 1 ] . Sink = True

'To Pipe 2

E l s e I f $Valve [ 4 ] . State = True And $Valve [ 3 ] . State = True Then

$Tank [ 1 ] . Sink = True

Else

$Tank [ 1 ] . Sink = False

End I f

'Tank 2 Source

'Pipe 1

I f $Valve [ 8 ] . State = True And $Valve [ 5 ] . State = True And $Valve

[ 2 ] . State = True And $Valve [ 1 ] . State = True Then

$Tank [ 2 ] . Source = True

'Pipe 2

E l s e I f $Valve [ 8 ] . State = True And $Valve [ 6 ] . State = True And

$Valve [ 7 ] . State = True And $Valve [ 3 ] . State = True And $Valve

[ 1 ] . State = True Then

$Tank [ 2 ] . Source = True

Else

$Tank [ 2 ] . Source = Fal se

End I f

'Tank 2 Sink

'To Pipe 3

I f $Valve [ 8 ] . State = True And $Valve [ 9 ] . State = True And $Valve

[ 1 1 ] . State = True And $Valve [ 1 3 ] . State = True Then

$Tank [ 2 ] . Sink = True
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'To Pipe 4

E l s e I f $Valve [ 8 ] . State = True And $Valve [ 6 ] . State = True And

$Valve [ 1 0 ] . State = True And $Valve [ 1 2 ] . State = True And $Valve

[ 1 3 ] . State = True Then

$Tank [ 2 ] . Sink = True

'To Tank 1 v ia Pipe 2

E l s e I f $Valve [ 8 ] . State = True And $Valve [ 6 ] . State = True And

$Valve [ 7 ] . State = True And $Valve [ 3 ] . State = True And $Valve

[ 4 ] . State = True Then

$Tank [ 2 ] . Sink = True

'To Tank 1 v ia Pipe 1

E l s e I f $Valve [ 8 ] . State = True And $Valve [ 5 ] . State = True And

$Valve [ 2 ] . State = True And $Valve [ 4 ] . State = True Then

$Tank [ 2 ] . Sink = True

Else

$Tank [ 2 ] . Sink = False

End I f

'Pipe 1 Source

'From input

I f $Valve [ 1 ] . State = True And $Valve [ 2 ] . State = True Then

$Pipe [ 1 ] . Source = True

'From Tank 1

E l s e I f $Valve [ 4 ] . State = True And $Valve [ 2 ] . State = True And $Tank

[ 1 ] . Leve l > 0 Then

$Pipe [ 1 ] . Source = True

Else

120



$Pipe [ 1 ] . Source = False

End I f

'Pipe 1 Sink

'To Pipe 3

I f $Valve [ 9 ] . State = True And $Valve [ 5 ] . State = True Then

$Pipe [ 1 ] . Sink = True

'To Pipe 4

E l s e I f $Pipe [ 4 ] . Source = True And $Valve [ 5 ] . State = True And

$Valve [ 6 ] . State = True Then

$Pipe [ 1 ] . Sink = True

'To Tank 2

E l s e I f $Valve [ 5 ] . State = True And $Tank [ 2 ] . Source = True Then

$Pipe [ 1 ] . Sink = True

Else

$Pipe [ 1 ] . Sink = False

End I f

'Pipe 2 Source

'From input

I f $Valve [ 1 ] . State = True And $Valve [ 3 ] . State = True Then

$Pipe [ 2 ] . Source = True

'From Tank 1

E l s e I f $Valve [ 4 ] . State = True And $Valve [ 1 ] . State = True And

$Valve [ 3 ] . State = True And $Tank [ 1 ] . l e v e l > 0 Then

$Pipe [ 2 ] . Source = True
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Else

$Pipe [ 2 ] . Source = False

End I f

'Pipe 2 Sink

'To Pipe 3

I f $Valve [ 7 ] . State = True And $Valve [ 6 ] . State = True And $Valve

[ 9 ] . State = True Then

$Pipe [ 2 ] . Sink = True

'To Pipe 4

E l s e I f $Valve [ 7 ] . State = True And $Pipe [ 4 ] . Source = True Then

$Pipe [ 2 ] . Sink = True

' Else Fa l se

Else

$Pipe [ 2 ] . Sink = False

End I f

'Pipe 3 Source

'From Pipe 1

I f $Valve [ 9 ] . State = True And $Pipe [ 1 ] . Sink = True Then

$Pipe [ 3 ] . Source = True

'From Pipe 2

E l s e I f $Valve [ 9 ] . State = True And $Pipe [ 2 ] . Sink = True And

$Valve [ 6 ] . State = True Then

$Pipe [ 3 ] . Source= True

'From Tank 2
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E l s e I f $Valve [ 9 ] . State = True And $Tank [ 2 ] . Sink = True And $Tank

[ 2 ] . Leve l > 0 Then

$Pipe [ 3 ] . Source = True

Else

$Pipe [ 3 ] . Source = False

End I f

'Pipe 3 Sink

I f $Valve [ 1 1 ] . State = True And $Valve [ 1 3 ] . State = True Then

$Pipe [ 3 ] . Sink = True

Else

$Pipe [ 3 ] . Sink = False

End I f

'Pipe 4 Source

'From Tank 2

I f $Tank [ 2 ] . Sink = True And $Valve [ 6 ] . State = True And $Valve

[ 1 0 ] . State = True Then

$Pipe [ 4 ] . Source = True

'From Pipe 1

E l s e I f $Pipe [ 1 ] . Sink = True And $Valve [ 6 ] . State = True And

$Valve [ 1 0 ] . State = True Then

$Pipe [ 4 ] . Source = True

'From Pipe 2

E l s e I f $Pipe [ 2 ] . Sink = True And $Valve [ 1 0 ] . State = True Then

$Pipe [ 4 ] . Source = True

Else
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$Pipe [ 4 ] . Source = False

End I f

'Pipe 4 Sink

I f $Valve [ 1 2 ] . State = True And $Valve [ 1 3 ] . State = True Then

$Pipe [ 4 ] . Sink = True

Else

$Pipe [ 4 ] . Sink = False

End I f

'−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

' Set Pre s su re s and Leve l s

'−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

'Tank 1

I f $Tank [ 1 ] . Source = True And $Tank [ 1 ] . Sink = False And $Tank [ 1 ] .

Leve l < 106 Then

$Tank [ 1 ] . Leve l = $Tank [ 1 ] . Leve l + . 5

E l s e I f $Tank [ 1 ] . Sink = True And $Tank [ 1 ] . Source = False And $Tank

[ 1 ] . Leve l > 0 Then

$Tank [ 1 ] . Leve l = $Tank [ 1 ] . Leve l −.5

E l s e I f $Tank [ 1 ] . Sink = True And $Tank [ 1 ] . Source = True And $Tank

[ 1 ] . Leve l > 0 Then

$Tank [ 1 ] . Leve l = $Tank [ 1 ] . Leve l −.1

End I f

'Tank 2
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I f $Tank [ 2 ] . Source = True And $Tank [ 2 ] . Sink = False And $Tank [ 2 ] .

Leve l < 106 Then

$Tank [ 2 ] . Leve l = $Tank [ 2 ] . Leve l + . 5

E l s e I f $Tank [ 2 ] . Sink = True And $Tank [ 2 ] . Source = False And $Tank

[ 2 ] . Leve l > 0 Then

$Tank [ 2 ] . Leve l = $Tank [ 2 ] . Leve l −.5

E l s e I f $Tank [ 2 ] . Sink = True And $Tank [ 2 ] . Source = True And $Tank

[ 2 ] . Leve l > 0 Then

$Tank [ 2 ] . Leve l = $Tank [ 2 ] . Leve l −.1

End I f

'Pipe 1

I f $Pipe [ 1 ] . Sink = True And $Pipe [ 1 ] . Source = True Then

I f $Pump [ 1 ] . PumpState = True And $Pipe [ 1 ] . Pres sure < 47

Then

$Pipe [ 1 ] . Pres sure = $Pipe [ 1 ] . Pres sure + 1

E l s e I f $Pump [ 1 ] . PumpState = False And $Pipe [ 1 ] . Pres sure <

10 Then

$Pipe [ 1 ] . Pres sure = $Pipe [ 1 ] . Pres sure + 1

E l s e I f $Pipe [ 1 ] . Pres sure > 10 And $Pump [ 1 ] . PumpState =

Fal se Then

$Pipe [ 1 ] . Pres sure = $Pipe [ 1 ] . Pres sure − 1

E l s e I f $Pipe [ 1 ] . Pres sure > 47 And $Pump [ 1 ] . PumpState =

True Then

$Pipe [ 1 ] . Pres sure = $Pipe [ 1 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 1 ] . Sink = False And $Pipe [ 1 ] . Source = True Then
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I f $Pump [ 1 ] . PumpState = True And $Pipe [ 1 ] . Pres sure < 65

Then

$Pipe [ 1 ] . Pres sure = $Pipe [ 1 ] . Pres sure + 1

E l s e I f $Pump [ 1 ] . PumpState = False And $Pipe [ 1 ] . Pres sure <

10 Then

$Pipe [ 1 ] . Pres sure = $Pipe [ 1 ] . Pres sure + 1

E l s e I f $Pipe [ 1 ] . Pres sure > 10 And $Pump [ 1 ] . PumpState =

Fal se Then

$Pipe [ 1 ] . Pres sure = $Pipe [ 1 ] . Pres sure − 1

End I f

El se

I f $Pipe [ 1 ] . Pres sure > 0 Then

$Pipe [ 1 ] . Pres sure = $Pipe [ 1 ] . Pres sure − 1

End I f

End I f

'Pipe 2

I f $Pipe [ 2 ] . Sink = True And $Pipe [ 2 ] . Source = True Then

I f $Pump [ 2 ] . PumpState = True And $Pipe [ 2 ] . Pres sure < 47

Then

$Pipe [ 2 ] . Pres sure = $Pipe [ 2 ] . Pres sure + 1

E l s e I f $Pump [ 2 ] . PumpState = False And $Pipe [ 2 ] . Pres sure <

10 Then

$Pipe [ 2 ] . Pres sure = $Pipe [ 2 ] . Pres sure + 1

E l s e I f $Pipe [ 2 ] . Pres sure > 10 And $Pump [ 2 ] . PumpState =

Fal se Then

$Pipe [ 2 ] . Pres sure = $Pipe [ 2 ] . Pres sure − 1
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E l s e I f $Pipe [ 2 ] . Pres sure > 47 And $Pump [ 2 ] . PumpState =

True Then

$Pipe [ 2 ] . Pres sure = $Pipe [ 2 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 2 ] . Sink = False And $Pipe [ 2 ] . Source = True Then

I f $Pump [ 2 ] . PumpState = True And $Pipe [ 2 ] . Pres sure < 65

Then

$Pipe [ 2 ] . Pres sure = $Pipe [ 2 ] . Pres sure + 1

E l s e I f $Pump [ 2 ] . PumpState = False And $Pipe [ 2 ] . Pres sure <

10 Then

$Pipe [ 2 ] . Pres sure = $Pipe [ 2 ] . Pres sure + 1

E l s e I f $Pipe [ 2 ] . Pres sure > 10 And $Pump [ 2 ] . PumpState =

Fal se Then

$Pipe [ 2 ] . Pres sure = $Pipe [ 2 ] . Pres sure − 1

End I f

El se

I f $Pipe [ 2 ] . Pres sure > 0 Then

$Pipe [ 2 ] . Pres sure = $Pipe [ 2 ] . Pres sure − 1

End I f

End I f

'PIPE 3

' c o r r e c t f o r sou r c e s being c l o s ed .

I f $Pipe [ 3 ] . Sink=True And $Pipe [ 3 ] . Source = True Then

'Pipe 1
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I f $Pipe [ 1 ] . Sink = True And $Pipe [ 1 ] . Source = True And

$Pipe [ 2 ] . Source = False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< $Pipe [ 1 ] . Pres sure Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure <10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure >10 And $Pump [ 3 ] .

PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure And

$Pump [ 3 ] . PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 1 ] . Sink = True And $Pipe [ 1 ] . Source = True And

$Pipe [ 2 ] . Sink= False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< $Pipe [ 1 ] . Pres sure Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < 10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > 10 And $Pump [ 3 ] .

PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1
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E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure And

$Pump [ 3 ] . PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 1 ] . Sink = True And $Pipe [ 1 ] . Source = True And

$Pipe [ 2 ] . Sink= False And $Pipe [ 2 ] . Source= False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< $Pipe [ 1 ] . Pres sure Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < 10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > 10 And $Pump [ 3 ] .

PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure And

$Pump [ 3 ] . PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 1 ] . Source = Fal se And $Pipe [ 2 ] . Source = False

Then

I f $Pipe [ 3 ] . Pres sure > 0 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure −1

End I f

End I f

'Pipe 2
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I f $Pipe [ 2 ] . Sink = True And $Pipe [ 2 ] . Source = True And

$Pipe [ 1 ] . Source = False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< $Pipe [ 2 ] . Pres sure Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < 10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > 10 .3 And $Pump [ 3 ] .

PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 2 ] . Pres sure And

$Pump [ 3 ] . PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 2 ] . Sink = True And $Pipe [ 2 ] . Source = True And

$Pipe [ 1 ] . Sink= False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< $Pipe [ 2 ] . Pres sure Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < 10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 2 ] . Pres sure And

$Pump [ 3 ] . PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1
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E l s e I f $Pipe [ 3 ] . Pres sure > 10 And $Pump [ 3 ] .

PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 2 ] . Sink = True And $Pipe [ 2 ] . Source = True And

$Pipe [ 1 ] . Sink= False And $Pipe [ 1 ] . Source= False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< $Pipe [ 1 ] . Pres sure Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < 10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > 10 And $Pump [ 3 ] .

PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure And

$Pump [ 3 ] . PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 1 ] . Source = Fal se And $Pipe [ 2 ] . Source = False

Then

I f $Pipe [ 3 ] . Pres sure > 0 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure −1

End I f

End I f

'PIPE 1 AND 2
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I f $Pipe [ 1 ] . Source = True And $Pipe [ 1 ] . Sink = True And

$Pipe [ 2 ] . Source = True And $Pipe [ 2 ] . Sink = True Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< $Pipe [ 1 ] . Pres sure + $Pipe [ 2 ] . Pres sure Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < $Pipe [ 1 ] . Pres sure + $Pipe [ 2 ] .

Pres sure Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure +

$Pipe [ 2 ] . Pres sure And $Pump [ 3 ] . PumpState =

Fal se Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure +

$Pipe [ 2 ] . Pres sure And $Pump [ 3 ] . PumpState = True

Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

End I f

E l s e I f $Pipe [ 3 ] . Sink = False And $Pipe [ 3 ] . Source = True Then

'Pipe 1

I f $Pipe [ 1 ] . Sink = True And $Pipe [ 1 ] . Source = True And

$Pipe [ 2 ] . Source = False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< 65 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1
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E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure <10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure >10 And $Pump [ 3 ] .

PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure And

$Pump [ 3 ] . PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 1 ] . Sink = True And $Pipe [ 1 ] . Source = True And

$Pipe [ 2 ] . Sink= False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< 65 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < 10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > 10 And $Pump [ 3 ] .

PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure And

$Pump [ 3 ] . PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 1 ] . Sink = True And $Pipe [ 1 ] . Source = True And

$Pipe [ 2 ] . Sink= False And $Pipe [ 2 ] . Source= False Then
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I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< $Pipe [ 1 ] . Pres sure Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < 10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > 10 And $Pump [ 3 ] .

PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure And

$Pump [ 3 ] . PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 1 ] . Source = Fal se And $Pipe [ 2 ] . Source = False

Then

I f $Pipe [ 3 ] . Pres sure > 0 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure −1

End I f

End I f

'Pipe 2

I f $Pipe [ 2 ] . Sink = True And $Pipe [ 2 ] . Source = True And

$Pipe [ 1 ] . Source = False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< 65 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < 10 Then
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$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > 10 .3 And $Pump [ 3 ] .

PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 2 ] . Pres sure And

$Pump [ 3 ] . PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 2 ] . Sink = True And $Pipe [ 2 ] . Source = True And

$Pipe [ 1 ] . Sink= False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< 65 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < 10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 2 ] . Pres sure And

$Pump [ 3 ] . PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > 10 And $Pump [ 3 ] .

PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 2 ] . Sink = True And $Pipe [ 2 ] . Source = True And

$Pipe [ 1 ] . Sink= False And $Pipe [ 1 ] . Source= False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< $Pipe [ 1 ] . Pres sure Then
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$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < 10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > 10 And $Pump [ 3 ] .

PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure And

$Pump [ 3 ] . PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 1 ] . Source = Fal se And $Pipe [ 2 ] . Source = False

Then

I f $Pipe [ 3 ] . Pres sure > 0 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure −1

End I f

End I f

'PIPE 1 AND 2

I f $Pipe [ 1 ] . Source = True And $Pipe [ 1 ] . Sink = True And

$Pipe [ 2 ] . Source = True And $Pipe [ 2 ] . Sink = True Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< 75 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < $Pipe [ 1 ] . Pres sure + $Pipe [ 2 ] .

Pres sure Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1
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E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure +

$Pipe [ 2 ] . Pres sure And $Pump [ 3 ] . PumpState =

Fal se Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure +

$Pipe [ 2 ] . Pres sure And $Pump [ 3 ] . PumpState = True

Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

End I f

' E l s e I f $Pipe [ 1 ] . Source = Fal se And $Pipe [ 2 ] . Source = False Then

' I f $Pipe [ 3 ] . Pres sure > 0 Then

' $Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

' End I f

El se

I f $Pipe [ 3 ] . Pres sure > 0 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

End I f

'Pipe 4

'Not used − could be coded f o r fu tu r e use − copy pipe 3

'Broken Pipe Overpressure Pipe 1

I f $Pipe [ 1 ] . Pres sure >= 64 Then

$Pipe [ 1 ] . Broken = True

End I f
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I f $Pipe [ 1 ] . Broken = True Then

I f $Pipe [ 1 ] . Pres sure > 0 Then

$Pipe [ 1 ] . Pres sure = $Pipe [ 1 ] . Pres sure − 1

End I f

End I f

'Broken Pipe Overpressure Pipe 2

I f $Pipe [ 2 ] . Pres sure >= 80 Then

$Pipe [ 2 ] . Broken = True

End I f

I f $Pipe [ 2 ] . Broken = True Then

I f $Pipe [ 2 ] . Pres sure > 0 Then

$Pipe [ 2 ] . Pres sure = $Pipe [ 2 ] . Pres sure − 1

End I f

End I f

'Broken Pipe Overpressure Pipe 3

I f $Pipe [ 3 ] . Pres sure >= 80 Then

$Pipe [ 3 ] . Broken = True

End I f

I f $Pipe [ 3 ] . Broken = True Then

I f $Pipe [ 3 ] . Pres sure > 0 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

End I f
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' Set Tank 1 Rupture

I f $Tank [ 1 ] . Leve l > 106 Then

$Tank [ 1 ] . Rupture = True

End I f

I f $Tank [ 1 ] . Rupture = True Then

I f $Tank [ 1 ] . Leve l > 0 Then

$Tank [ 1 ] . Leve l = $Tank [ 1 ] . Leve l − 1

End I f

End I f

' Set Tank 2 Rupture

I f $Tank [ 2 ] . Leve l > 106 Then

$Tank [ 2 ] . Rupture = True

End I f

I f $Tank [ 2 ] . Rupture = True Then

I f $Tank [ 2 ] . Leve l > 0 Then

$Tank [ 2 ] . Leve l = $Tank [ 2 ] . Leve l − 1

End I f

End I f

\end{verbatim}

\ subse c t i on {Visua l Bas ic Engine f o r Induso f t Web Studio 2}

\ begin { l s t l i s t i n g } [ b r e ak l i n e s=true ]
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' Var iab l e s a v a i l a b l e only f o r t h i s group can be dec l a r ed here .

'Loop va r i a b l e s

Dim i

Dim j

Dim k

Dim l

Dim m

Dim n

'−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

'−−−−−−−−−−Set I n i t i a l States−−−−−−−−−−

'−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

'Count up f o r pump cyc l e s t a t e s

For n = 1 To 4

I f $Pump [ n ] .PumpCmd = True And $Pump [ n ] . PumpState = False

Then

$Pump [ n ] . PumpCycles = $Pump [ n ] . PumpCycles +1

End I f

Next

'The code con f i gu r ed here i s executed whi l e the cond i t i on

con f i gu r ed in the Execution f i e l d i s TRUE.

' Set s t a t e s f o r va lve s

For i = 1 To 13

$Valve [ i ] . State = $Valve [ i ] . Command

Next
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' Set s t a t e s f o r the pumps

For j = 1 To 4

$Pump [ j ] . PumpState = $Pump [ j ] . PumpCmd

Next

' check f o r pump burnout

' Set Pump Burnout

For m = 1 To 4

I f $Pump [m] . PumpCycles > 35 Then

I f $Pump [m] . PumpState = True Then

$Pump [m] .PumpCmd = False

End I f

End I f

Next

' check f o r pump burnout

' Set Pump Burnout

For m = 1 To 4

I f $Pump [m] . PumpCycles > 35 Then

I f $Pump [m] . PumpState = True Then

$Pump [m] .PumpCmd = False

End I f

End I f

Next

'−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

' Set Sources and Sinks f o r Tanks and Pipes
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'−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

'Test f o r whether sou r c e s and s i nk s are t rue

'Tank 1 Source

I f $Valve [ 1 ] . State = True And $Valve [ 4 ] . State = True Then

$Tank [ 1 ] . Source = True

Else

$Tank [ 1 ] . Source = Fal se

End I f

'Tank 1 Sink

'To Pipe 1

I f $Valve [ 4 ] . State = True And $Valve [ 2 ] . State = True Then

$Tank [ 1 ] . Sink = True

'To Pipe 2

E l s e I f $Valve [ 4 ] . State = True And $Valve [ 3 ] . State = True Then

$Tank [ 1 ] . Sink = True

Else

$Tank [ 1 ] . Sink = False

End I f

'Tank 2 Source

'Pipe 1

I f $Valve [ 8 ] . State = True And $Valve [ 5 ] . State = True And $Valve

[ 2 ] . State = True And $Valve [ 1 ] . State = True Then

$Tank [ 2 ] . Source = True
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'Pipe 2

E l s e I f $Valve [ 8 ] . State = True And $Valve [ 6 ] . State = True And

$Valve [ 7 ] . State = True And $Valve [ 3 ] . State = True And $Valve

[ 1 ] . State = True Then

$Tank [ 2 ] . Source = True

Else

$Tank [ 2 ] . Source = Fal se

End I f

'Tank 2 Sink

'To Pipe 3

I f $Valve [ 8 ] . State = True And $Valve [ 9 ] . State = True And $Valve

[ 1 1 ] . State = True And $Valve [ 1 3 ] . State = True Then

$Tank [ 2 ] . Sink = True

'To Pipe 4

E l s e I f $Valve [ 8 ] . State = True And $Valve [ 6 ] . State = True And

$Valve [ 1 0 ] . State = True And $Valve [ 1 2 ] . State = True And $Valve

[ 1 3 ] . State = True Then

$Tank [ 2 ] . Sink = True

'To Tank 1 v ia Pipe 2

E l s e I f $Valve [ 8 ] . State = True And $Valve [ 6 ] . State = True And

$Valve [ 7 ] . State = True And $Valve [ 3 ] . State = True And $Valve

[ 4 ] . State = True Then

$Tank [ 2 ] . Sink = True

'To Tank 1 v ia Pipe 1

E l s e I f $Valve [ 8 ] . State = True And $Valve [ 5 ] . State = True And

$Valve [ 2 ] . State = True And $Valve [ 4 ] . State = True Then
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$Tank [ 2 ] . Sink = True

Else

$Tank [ 2 ] . Sink = False

End I f

'Pipe 1 Source

'From input

I f $Valve [ 1 ] . State = True And $Valve [ 2 ] . State = True Then

$Pipe [ 1 ] . Source = True

'From Tank 1

E l s e I f $Valve [ 4 ] . State = True And $Valve [ 2 ] . State = True And $Tank

[ 1 ] . Leve l > 0 Then

$Pipe [ 1 ] . Source = True

Else

$Pipe [ 1 ] . Source = False

End I f

'Pipe 1 Sink

'To Pipe 3

I f $Valve [ 9 ] . State = True And $Valve [ 5 ] . State = True Then

$Pipe [ 1 ] . Sink = True

'To Pipe 4

E l s e I f $Pipe [ 4 ] . Source = True And $Valve [ 5 ] . State = True And

$Valve [ 6 ] . State = True Then

$Pipe [ 1 ] . Sink = True

'To Tank 2

E l s e I f $Valve [ 5 ] . State = True And $Tank [ 2 ] . Source = True Then
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$Pipe [ 1 ] . Sink = True

Else

$Pipe [ 1 ] . Sink = False

End I f

'Pipe 2 Source

'From input

I f $Valve [ 1 ] . State = True And $Valve [ 3 ] . State = True Then

$Pipe [ 2 ] . Source = True

'From Tank 1

E l s e I f $Valve [ 4 ] . State = True And $Valve [ 1 ] . State = True And

$Valve [ 3 ] . State = True And $Tank [ 1 ] . l e v e l > 0 Then

$Pipe [ 2 ] . Source = True

Else

$Pipe [ 2 ] . Source = False

End I f

'Pipe 2 Sink

'To Pipe 3

I f $Valve [ 7 ] . State = True And $Valve [ 6 ] . State = True And $Valve

[ 9 ] . State = True Then

$Pipe [ 2 ] . Sink = True

'To Pipe 4

E l s e I f $Valve [ 7 ] . State = True And $Pipe [ 4 ] . Source = True Then

$Pipe [ 2 ] . Sink = True

' Else Fa l se
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Else

$Pipe [ 2 ] . Sink = False

End I f

'Pipe 3 Source

'From Pipe 1

I f $Valve [ 9 ] . State = True And $Pipe [ 1 ] . Sink = True Then

$Pipe [ 3 ] . Source = True

'From Pipe 2

E l s e I f $Valve [ 9 ] . State = True And $Pipe [ 2 ] . Sink = True And

$Valve [ 6 ] . State = True Then

$Pipe [ 3 ] . Source= True

'From Tank 2

E l s e I f $Valve [ 9 ] . State = True And $Tank [ 2 ] . Sink = True And $Tank

[ 2 ] . Leve l > 0 Then

$Pipe [ 3 ] . Source = True

Else

$Pipe [ 3 ] . Source = False

End I f

'Pipe 3 Sink

I f $Valve [ 1 1 ] . State = True And $Valve [ 1 3 ] . State = True Then

$Pipe [ 3 ] . Sink = True

Else

$Pipe [ 3 ] . Sink = False

End I f
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'Pipe 4 Source

'From Tank 2

I f $Tank [ 2 ] . Sink = True And $Valve [ 6 ] . State = True And $Valve

[ 1 0 ] . State = True Then

$Pipe [ 4 ] . Source = True

'From Pipe 1

E l s e I f $Pipe [ 1 ] . Sink = True And $Valve [ 6 ] . State = True And

$Valve [ 1 0 ] . State = True Then

$Pipe [ 4 ] . Source = True

'From Pipe 2

E l s e I f $Pipe [ 2 ] . Sink = True And $Valve [ 1 0 ] . State = True Then

$Pipe [ 4 ] . Source = True

Else

$Pipe [ 4 ] . Source = False

End I f

'Pipe 4 Sink

I f $Valve [ 1 2 ] . State = True And $Valve [ 1 3 ] . State = True Then

$Pipe [ 4 ] . Sink = True

Else

$Pipe [ 4 ] . Sink = False

End I f

'−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

' Set Pre s su re s and Leve l s

'−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

'Tank 1
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I f $Tank [ 1 ] . Source = True And $Tank [ 1 ] . Sink = False And $Tank [ 1 ] .

Leve l < 106 Then

$Tank [ 1 ] . Leve l = $Tank [ 1 ] . Leve l + . 5

E l s e I f $Tank [ 1 ] . Sink = True And $Tank [ 1 ] . Source = False And $Tank

[ 1 ] . Leve l > 0 Then

$Tank [ 1 ] . Leve l = $Tank [ 1 ] . Leve l −.5

E l s e I f $Tank [ 1 ] . Sink = True And $Tank [ 1 ] . Source = True And $Tank

[ 1 ] . Leve l > 0 Then

$Tank [ 1 ] . Leve l = $Tank [ 1 ] . Leve l −.1

End I f

'Tank 2

I f $Tank [ 2 ] . Source = True And $Tank [ 2 ] . Sink = False And $Tank [ 2 ] .

Leve l < 106 Then

$Tank [ 2 ] . Leve l = $Tank [ 2 ] . Leve l + . 5

E l s e I f $Tank [ 2 ] . Sink = True And $Tank [ 2 ] . Source = False And $Tank

[ 2 ] . Leve l > 0 Then

$Tank [ 2 ] . Leve l = $Tank [ 2 ] . Leve l −.5

E l s e I f $Tank [ 2 ] . Sink = True And $Tank [ 2 ] . Source = True And $Tank

[ 2 ] . Leve l > 0 Then

$Tank [ 2 ] . Leve l = $Tank [ 2 ] . Leve l −.1

End I f

'Pipe 1

I f $Pipe [ 1 ] . Sink = True And $Pipe [ 1 ] . Source = True Then

I f $Pump [ 1 ] . PumpState = True And $Pipe [ 1 ] . Pres sure < 47

Then
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$Pipe [ 1 ] . Pres sure = $Pipe [ 1 ] . Pres sure + 1

E l s e I f $Pump [ 1 ] . PumpState = False And $Pipe [ 1 ] . Pres sure <

10 Then

$Pipe [ 1 ] . Pres sure = $Pipe [ 1 ] . Pres sure + 1

E l s e I f $Pipe [ 1 ] . Pres sure > 10 And $Pump [ 1 ] . PumpState =

Fal se Then

$Pipe [ 1 ] . Pres sure = $Pipe [ 1 ] . Pres sure − 1

E l s e I f $Pipe [ 1 ] . Pres sure > 47 And $Pump [ 1 ] . PumpState =

True Then

$Pipe [ 1 ] . Pres sure = $Pipe [ 1 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 1 ] . Sink = False And $Pipe [ 1 ] . Source = True Then

I f $Pump [ 1 ] . PumpState = True And $Pipe [ 1 ] . Pres sure < 65

Then

$Pipe [ 1 ] . Pres sure = $Pipe [ 1 ] . Pres sure + 1

E l s e I f $Pump [ 1 ] . PumpState = False And $Pipe [ 1 ] . Pres sure <

10 Then

$Pipe [ 1 ] . Pres sure = $Pipe [ 1 ] . Pres sure + 1

E l s e I f $Pipe [ 1 ] . Pres sure > 10 And $Pump [ 1 ] . PumpState =

Fal se Then

$Pipe [ 1 ] . Pres sure = $Pipe [ 1 ] . Pres sure − 1

End I f

El se

I f $Pipe [ 1 ] . Pres sure > 0 Then

$Pipe [ 1 ] . Pres sure = $Pipe [ 1 ] . Pres sure − 1

End I f

End I f
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'Pipe 2

I f $Pipe [ 2 ] . Sink = True And $Pipe [ 2 ] . Source = True Then

I f $Pump [ 2 ] . PumpState = True And $Pipe [ 2 ] . Pres sure < 47

Then

$Pipe [ 2 ] . Pres sure = $Pipe [ 2 ] . Pres sure + 1

E l s e I f $Pump [ 2 ] . PumpState = False And $Pipe [ 2 ] . Pres sure <

10 Then

$Pipe [ 2 ] . Pres sure = $Pipe [ 2 ] . Pres sure + 1

E l s e I f $Pipe [ 2 ] . Pres sure > 10 And $Pump [ 2 ] . PumpState =

Fal se Then

$Pipe [ 2 ] . Pres sure = $Pipe [ 2 ] . Pres sure − 1

E l s e I f $Pipe [ 2 ] . Pres sure > 47 And $Pump [ 2 ] . PumpState =

True Then

$Pipe [ 2 ] . Pres sure = $Pipe [ 2 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 2 ] . Sink = False And $Pipe [ 2 ] . Source = True Then

I f $Pump [ 2 ] . PumpState = True And $Pipe [ 2 ] . Pres sure < 65

Then

$Pipe [ 2 ] . Pres sure = $Pipe [ 2 ] . Pres sure + 1

E l s e I f $Pump [ 2 ] . PumpState = False And $Pipe [ 2 ] . Pres sure <

10 Then

$Pipe [ 2 ] . Pres sure = $Pipe [ 2 ] . Pres sure + 1

E l s e I f $Pipe [ 2 ] . Pres sure > 10 And $Pump [ 2 ] . PumpState =

Fal se Then

$Pipe [ 2 ] . Pres sure = $Pipe [ 2 ] . Pres sure − 1

End I f
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Else

I f $Pipe [ 2 ] . Pres sure > 0 Then

$Pipe [ 2 ] . Pres sure = $Pipe [ 2 ] . Pres sure − 1

End I f

End I f

'PIPE 3

' c o r r e c t f o r sou r c e s being c l o s ed .

I f $Pipe [ 3 ] . Sink=True And $Pipe [ 3 ] . Source = True Then

'Pipe 1

I f $Pipe [ 1 ] . Sink = True And $Pipe [ 1 ] . Source = True And

$Pipe [ 2 ] . Source = False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< $Pipe [ 1 ] . Pres sure Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure <10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure >10 And $Pump [ 3 ] .

PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure And

$Pump [ 3 ] . PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f
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E l s e I f $Pipe [ 1 ] . Sink = True And $Pipe [ 1 ] . Source = True And

$Pipe [ 2 ] . Sink= False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< $Pipe [ 1 ] . Pres sure Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < 10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > 10 And $Pump [ 3 ] .

PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure And

$Pump [ 3 ] . PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 1 ] . Sink = True And $Pipe [ 1 ] . Source = True And

$Pipe [ 2 ] . Sink= False And $Pipe [ 2 ] . Source= False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< $Pipe [ 1 ] . Pres sure Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < 10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > 10 And $Pump [ 3 ] .

PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1
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E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure And

$Pump [ 3 ] . PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 1 ] . Source = Fal se And $Pipe [ 2 ] . Source = False

Then

I f $Pipe [ 3 ] . Pres sure > 0 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure −1

End I f

End I f

'Pipe 2

I f $Pipe [ 2 ] . Sink = True And $Pipe [ 2 ] . Source = True And

$Pipe [ 1 ] . Source = False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< $Pipe [ 2 ] . Pres sure Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < 10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > 10 .3 And $Pump [ 3 ] .

PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 2 ] . Pres sure And

$Pump [ 3 ] . PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f
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E l s e I f $Pipe [ 2 ] . Sink = True And $Pipe [ 2 ] . Source = True And

$Pipe [ 1 ] . Sink= False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< $Pipe [ 2 ] . Pres sure Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < 10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 2 ] . Pres sure And

$Pump [ 3 ] . PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > 10 And $Pump [ 3 ] .

PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 2 ] . Sink = True And $Pipe [ 2 ] . Source = True And

$Pipe [ 1 ] . Sink= False And $Pipe [ 1 ] . Source= False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< $Pipe [ 1 ] . Pres sure Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < 10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > 10 And $Pump [ 3 ] .

PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1
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E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure And

$Pump [ 3 ] . PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 1 ] . Source = Fal se And $Pipe [ 2 ] . Source = False

Then

I f $Pipe [ 3 ] . Pres sure > 0 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure −1

End I f

End I f

'PIPE 1 AND 2

I f $Pipe [ 1 ] . Source = True And $Pipe [ 1 ] . Sink = True And

$Pipe [ 2 ] . Source = True And $Pipe [ 2 ] . Sink = True Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< $Pipe [ 1 ] . Pres sure + $Pipe [ 2 ] . Pres sure Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < $Pipe [ 1 ] . Pres sure + $Pipe [ 2 ] .

Pres sure Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure +

$Pipe [ 2 ] . Pres sure And $Pump [ 3 ] . PumpState =

Fal se Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure +

$Pipe [ 2 ] . Pres sure And $Pump [ 3 ] . PumpState = True

Then
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$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

End I f

E l s e I f $Pipe [ 3 ] . Sink = False And $Pipe [ 3 ] . Source = True Then

'Pipe 1

I f $Pipe [ 1 ] . Sink = True And $Pipe [ 1 ] . Source = True And

$Pipe [ 2 ] . Source = False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< 65 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure <10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure >10 And $Pump [ 3 ] .

PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure And

$Pump [ 3 ] . PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 1 ] . Sink = True And $Pipe [ 1 ] . Source = True And

$Pipe [ 2 ] . Sink= False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< 65 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < 10 Then
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$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > 10 And $Pump [ 3 ] .

PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure And

$Pump [ 3 ] . PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 1 ] . Sink = True And $Pipe [ 1 ] . Source = True And

$Pipe [ 2 ] . Sink= False And $Pipe [ 2 ] . Source= False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< $Pipe [ 1 ] . Pres sure Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < 10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > 10 And $Pump [ 3 ] .

PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure And

$Pump [ 3 ] . PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 1 ] . Source = Fal se And $Pipe [ 2 ] . Source = False

Then

I f $Pipe [ 3 ] . Pres sure > 0 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure −1
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End I f

End I f

'Pipe 2

I f $Pipe [ 2 ] . Sink = True And $Pipe [ 2 ] . Source = True And

$Pipe [ 1 ] . Source = False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< 65 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < 10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > 10 .3 And $Pump [ 3 ] .

PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 2 ] . Pres sure And

$Pump [ 3 ] . PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 2 ] . Sink = True And $Pipe [ 2 ] . Source = True And

$Pipe [ 1 ] . Sink= False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< 65 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < 10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1
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E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 2 ] . Pres sure And

$Pump [ 3 ] . PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > 10 And $Pump [ 3 ] .

PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 2 ] . Sink = True And $Pipe [ 2 ] . Source = True And

$Pipe [ 1 ] . Sink= False And $Pipe [ 1 ] . Source= False Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< $Pipe [ 1 ] . Pres sure Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < 10 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > 10 And $Pump [ 3 ] .

PumpState = False Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure And

$Pump [ 3 ] . PumpState = True Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

E l s e I f $Pipe [ 1 ] . Source = Fal se And $Pipe [ 2 ] . Source = False

Then

I f $Pipe [ 3 ] . Pres sure > 0 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure −1

End I f
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End I f

'PIPE 1 AND 2

I f $Pipe [ 1 ] . Source = True And $Pipe [ 1 ] . Sink = True And

$Pipe [ 2 ] . Source = True And $Pipe [ 2 ] . Sink = True Then

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Pres sure

< 75 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pump [ 3 ] . PumpState = False And $Pipe [ 3 ] .

Pres sure < $Pipe [ 1 ] . Pres sure + $Pipe [ 2 ] .

Pres sure Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure + 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure +

$Pipe [ 2 ] . Pres sure And $Pump [ 3 ] . PumpState =

Fal se Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

E l s e I f $Pipe [ 3 ] . Pres sure > $Pipe [ 1 ] . Pres sure +

$Pipe [ 2 ] . Pres sure And $Pump [ 3 ] . PumpState = True

Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

End I f

' E l s e I f $Pipe [ 1 ] . Source = Fal se And $Pipe [ 2 ] . Source = False Then

' I f $Pipe [ 3 ] . Pres sure > 0 Then

' $Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

' End I f

El se

I f $Pipe [ 3 ] . Pres sure > 0 Then
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$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

End I f

'Pipe 4

'Not used − could be coded f o r fu tu r e use − copy pipe 3

'Broken Pipe Overpressure Pipe 1

I f $Pipe [ 1 ] . Pres sure >= 64 Then

$Pipe [ 1 ] . Broken = True

End I f

I f $Pipe [ 1 ] . Broken = True Then

I f $Pipe [ 1 ] . Pres sure > 0 Then

$Pipe [ 1 ] . Pres sure = $Pipe [ 1 ] . Pres sure − 1

End I f

End I f

'Broken Pipe Overpressure Pipe 2

I f $Pipe [ 2 ] . Pres sure >= 80 Then

$Pipe [ 2 ] . Broken = True

End I f

I f $Pipe [ 2 ] . Broken = True Then

I f $Pipe [ 2 ] . Pres sure > 0 Then

$Pipe [ 2 ] . Pres sure = $Pipe [ 2 ] . Pres sure − 1

End I f

End I f
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'Broken Pipe Overpressure Pipe 3

I f $Pipe [ 3 ] . Pres sure >= 80 Then

$Pipe [ 3 ] . Broken = True

End I f

I f $Pipe [ 3 ] . Broken = True Then

I f $Pipe [ 3 ] . Pres sure > 0 Then

$Pipe [ 3 ] . Pres sure = $Pipe [ 3 ] . Pres sure − 1

End I f

End I f

' Set Tank 1 Rupture

I f $Tank [ 1 ] . Leve l > 106 Then

$Tank [ 1 ] . Rupture = True

End I f

I f $Tank [ 1 ] . Rupture = True Then

I f $Tank [ 1 ] . Leve l > 0 Then

$Tank [ 1 ] . Leve l = $Tank [ 1 ] . Leve l − 1

End I f

End I f

' Set Tank 2 Rupture

I f $Tank [ 2 ] . Leve l > 106 Then

$Tank [ 2 ] . Rupture = True

End I f
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I f $Tank [ 2 ] . Rupture = True Then

I f $Tank [ 2 ] . Leve l > 0 Then

$Tank [ 2 ] . Leve l = $Tank [ 2 ] . Leve l − 1

End I f

End I f

I f $Pump [ 1 ] . PumpState = True And $Pipe [ 1 ] . Source = False Then

$Pump [ 1 ] . PumpRunTime = 100

End I f

I f $Pump [ 2 ] . PumpState = True And $Pipe [ 2 ] . Source = False Then

$Pump [ 2 ] . PumpRunTime = 100

End I f

I f $Pump [ 3 ] . PumpState = True And $Pipe [ 3 ] . Source = False Then

$Pump [ 3 ] . PumpRunTime = 100

End I f

6.7.2 Test Reconfiguration Visual Basic Script for InduSoft Web Studio

' Var iab l e s a v a i l a b l e f o r a l l S c r i p t groups from the Sc r i p t task

can be dec l a r ed and i n i t i a l i z e d here .

Dim i

' Procedures a v a i l a b l e f o r a l l S c r i p t groups from the Sc r i p t task

can be implemented here .

$Main_Engine = True
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$Improved_Engine = False

$Valve [ 1 ] . Command = True

$Valve [ 2 ] . Command = True

$Valve [ 5 ] . Command = True

$Valve [ 9 ] . Command = True

$Valve [ 1 1 ] . Command = True

$Valve [ 1 3 ] . Command = True

$Valve [ 3 ] . Command = False

$Valve [ 4 ] . Command = False

$Valve [ 6 ] . Command = False

$Valve [ 7 ] . Command = False

$Valve [ 8 ] . Command = False

$Valve [ 1 0 ] . Command = False

$Valve [ 1 2 ] . Command = False

$Tank [ 1 ] . Leve l = 10

$Tank [ 2 ] . Leve l = 80

$Pump [ 1 ] .PumpCmd = True

$Pump [ 3 ] .PumpCmd = True

$Pump [ 1 ] . PumpState = True

$Pump [ 3 ] . PumpState = True

$Pump [ 2 ] .PumpCmd = False
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For i =1 To 4

$Pump [ i ] . PumpCycles = 0

$Pump [ i ] . PumpRunTime = 0

Next

$Experiment_Reset = True
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