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Abstract

Classification using high-dimensional features arises frequently in many contemporary

statistical studies such as tumor classification using microarray or other high-throughput

data. In this dissertation we conduct a rigorous performance analysis of the two linear

methods for high-dimensional classification, Independence Rule (or Naive Bayes) and Fisher

discriminant both in theory and simulation. We know that, for the normal population model,

when all the parameters are known Fisher is optimal and Naive Bayes is suboptimal. But

in this dissertation we give the conditions under which Naive Bayes is optimal. Through

theory and simulation, we further, show that Naive Bayes performs better than Fisher under

broader conditions. We also study the associated feature selection methods. The two-sample

t-test is a widely popular feature selection method. But it heavily depends on the normality

assumption so we proposed a generalized feature selection algorithm which works regardless

of the distribution. Our generalized feature selection is a special case of two-sample t-

test, Wilcoxon-Mann Whitney Statistic and two-sample proportion statistic. We know that

Singular Value Decomposition(SVD) is a popular dimension reduction method in text mining

problems. Researchers take the first few SVDs which explain the largest variation. However,

in this dissertation we argue that the first few SVDs are not necessarily the most important

ones for classification. We then give a new feature selection algorithm for the data matrix

in text mining problem in high-dimensional spaces.
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Chapter 1

Introduction

Classification is a supervised learning technique. It arises frequently from bioinformat-

ics such as disease classifications using high throughput data like micorarrays or SNPs and

machine learning such as document classification and image recognition. It tries to learn a

function from training data consisting of pairs of input features and categorical output. This

function will be used to predict a class label of any valid input feature. Well known clas-

sification methods include (multiple) logistic regression, Fisher discriminant analysis, Naive

Bayes classifier, k-th-nearest-neighbor classifier, support vector machines, and many others.

When the dimensionality of the input feature space is large, things become complicated. Fan

and Fan (2008) study the impact of high dimensionality on classification. They pointed out

that the difficulty of high dimensional classification is intrinsically caused by the existence

of many noise features that do not contribute to the reduction of classification error. For

example, for the Fisher discriminant analysis, one needs to estimate the class mean vectors

and covariance matrix. Although individually each parameter can be estimated accurately,

aggregated estimation error over many features can be very large and this could significantly

increase the misclassification rate. This is another important reason that causes the bad per-

formance of Fisher discriminant analysis in high dimensional setting. Greenshtein and Ritov

(2004) and Greenshtein (2006) introduced and studied the concept of persistence, which

places more emphasis on misclassification rates or expected loss rather than the accuracy

of estimated parameters. In high dimensional classification, since we care much more about

the misclassification rate instead of the accuracy of the estimated parameters, estimating

the full covariance matrix and the class mean vectors will result in very high accumulation

error and thus low classification accuracy.
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1.1 Elements of Classification

Suppose we have some input space X and some output space Y . Assume that there

are independent training data (X i, Yi) ∈ X × Y , i = 1, . . . , n coming from some unknown

distribution P , where Yi is the i
th observation of the response variable andX i is its associated

feature or covariate vector. In classification problems, the response variable Yi is qualitative

and the set Y has only finite values. For example, in the cancer classification using gene

expression data, each feature vector X i represents the gene expression level of a patient,

and the response Yi indicates whether this patient has cancer or not. Note that the response

categories can be coded by using indicator variables. Without loss of generality, we assume

that there areK categories and Y = {1, 2, . . . , K}. Given a new observation X, classification

aims at finding a classification function g : X → Y , which can predict the unknown class

label Y of this new observation using available training data as accurately as possible. In

this dissertation, we consider the case when K = 2.

1.2 Organization

This dissertation is organized as follows: in chapter 2 we will set up the classification

problem, give some theories on misclassification error rates for Fisher and Naive Bayes,

introduce the sample model and we give some bounds on the sample misclassification error

rate of Naive Bayes, we study the associated feature selection methods, we will present some

simulation results. In chapter 3 we study our new generalized feature selection method. In

chapter 4, we present some results on the applications of high-dimensional classification in

text mining. In chapter 5, we give the summary for the dissertation and we present our

future work.

1.3 Notations

Here are some notations i used throughout this dissertation:
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• X1 and X0 are two random variables from the corresponding classes C1 and C0 with

sample sizes n1 and n0 respectively.

• p is the number of features (variables) and s is the number of features with non zero

mean difference.

• n is the total sample size for the two classes.

• µ1 and µ0 are the mean vectors of classes C1 and C0 respectively. µ̂1 and µ̂0 are the

sample mean vectors of classes C1 and C0 respectively.

• Σ1 and Σ0 are the covariance matrices for classes C1 and C0 respectively. Σ̂1 and Σ̂0

are the sample covariance matrices for classes C1 and C0 respectively.

• Σ is the common covariance matrix. Σ̂ is the sample common covariance matrix.

• ρ is the common correlation matrix. ρ(m) is the truncated m×m common correlation

matrix.

• D is the diagonal matrix for Σ. In other words, D is the variance matrix. D̂ is the

sample version.

• δNB (·) and δF (·) are the discriminant functions for Naive Bayes and Fisher respec-

tively. δ̂NB (·) and δ̂F (·) are the sample discriminant functions for Naive Bayes and Fisher

respectively.

•W (δNB, ·) andW (δF , ·) are the misclassification error rates for Naive Bayes and Fisher

respectively. W
(

δ̂NB, ·
)

and W
(

δ̂F , ·
)

are the sample misclassification error rates for Naive

Bayes and Fisher respectively.

• λmin (·) and λmax (·) are the smallest and largest eigenvalues.

• Y 1 and Y 0 are two singular value decomposition (svd) random variables from the

corresponding classes C1 and C0 with sample sizes n1 and n0 respectively.

3



Chapter 2

On High-Dimensional Classification for Sparse Signals

2.1 High-Dimensional Classification

Technological innovations have had deep impact on society and on various areas of

scientific research. High-throughput data from microarray and proteomics technologies are

frequently used in many contemporary statistical studies (see Dudoit et al. (2002)). In the

case of microarray data, the dimensionality is frequently in thousands or beyond, while the

sample size is typically in the order of tens. The large-p-small-n scenario poses challenges

for the classification problems. We refer to Fan and Lv (2010) for an overview of statistical

challenges associated with high dimensionality (Fan and et al. (2012)).

When the feature space dimension p is very high compared to the sample size n, the

Fisher discriminant rule performs poorly due to diverging spectra as demonstrated by Bickel

and Levina (2004). These authors showed that the independence rule in which the covariance

structure is ignored performs better than the naive Fisher rule (NFR) in the high dimensional

setting. Fan and Fan (2008) demonstrated further that even for the independence rules, a

procedure using all the features can be as poor as random guessing due to noise accumulation

in estimating population centroids in high-dimensional feature space. As a result, Fan and

Fan (2008) proposed the Features Annealed Independence Rule (FAIR) that selects a subset

of important features for classification. Dudoit et al. (2002) reported that for microarray

data, ignoring correlations between genes leads to better classification results. But recent

works try to show that the independence rule may lead to higher misclassification error rates

when there is correlation among the variables (for example, Fan and et al (2012)). In this

dissertation, we show that even under high correlations independence rule (or Naive Bayes)

can still dominate the Fisher rule at the sample level using subset of the features.
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2.2 Classification with Sparse Signals

We introduce the objective classification problem. We assume in what follows that the

variability of data under consideration can be described reasonably well by mean vector µ and

variance-covariance matrix Σ. Suppose that the random variables X1 and X0 representing

two classes C1 with mean vector µ1 and C0 with mean vector µ0 follow p−variate distributions

with densities f(X|θ1) and f(X|θ0) respectively with Σ the common covariance matrix

where θi ∈ Θ = {(µi,Σ) : µi ∈ R
p, det(Σ) > 0, i = 0, 1} is the parameter space consisting

of the mean vectors and the common covariance matrix. In other words,

X i ∼ fi(X|θi) = f(X|θi), i = 0, 1. (2.1)

Suppose that

µd = µ1 − µ0, µa = (µ1 + µ0)/2, D = diag(Σ) (2.2)

Let π0 and π1 be the class prior probabilities for classes C0 and C1 respectively. A new

observation X is to be assigned to one of C1 or C0. The optimal classifier is the Bayes rule:

δ(X, θ1, θ0) = 1

{

log
f(X|θ1)

f(X|θ0)
> log

π0

π1

}

, (2.3)

where 1 denotes the indicator function with value 1 corresponds to assigning X to C1 and 0

to class C0.

Unless specified, throughout this section we let that X1 ∼ Np(µ1,Σ) and X0 ∼

Np(µ0,Σ). Under these assumptions (2.3) becomes
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δ(X,µd,µa,Σ) = 1

{

µT
dΣ

−1(X − µa) >
π0

π1

}

. (2.4)

We propose the family of discriminant functions given by

δ(X,µd,µa,M) = 1

{

µT
dM

−1(X − µa) >
π0

π1

}

, (2.5)

where M is a p× p symmetric positive definite matrix.

We define the misclassification error rate of δ(X,µd,µa,M) as the following sum of

posterior probabilities

W (δ, θ) = π1P (δ(X,µd,µa,M) = 0|X ∈ C1) + π0P (δ(X,µd,µa,M) = 1|X ∈ C0), (2.6)

where θ ∈ {(µd,Σ),µd ∈ R
p, det(Σ) > 0}.

It is easy to show that the misclassification error rate of δ(X,µd,µa,M) (when π1 =

π0 = 1/2) is given below

W (δ, θ) = Φ̄

(

µT
dM

−1µd

2(µT
dM

−1ΣM−1µd)
1/2

)

, (2.7)

where Φ̄(·) = 1− Φ(·),Φ(·) is a CDF for standard normal distribution.

Note that if M = Σ and π1 = π0 = 1/2, then we have the Fisher discriminant rule

δF (X,µd,µa,Σ) = δ(X,µd,µa,Σ) = 1
{

µT
dΣ

−1(X − µa) > 0
}

, (2.8)

6



with corresponding misclassification error rate

W (δF , θ) = Φ̄

(

(µT
dΣ

−1µd)
1/2

2

)

. (2.9)

Alternatively, assuming independence of components and replacing off-diagonal elements of

Σ with zeros leads to a new covariance matrix

D = diag(Σ), (2.10)

and a different discrimination rule, the Naive Bayes,

δNB(X,µd,µa, D) = δ(X,µd,µa, D) = 1
{

µT
dD

−1(X − µa) > 0
}

, (2.11)

whose misclassification error rate is

W (δNB, θ) = Φ̄

(

µT
dD

−1µd

2(µT
dD

−1ΣD−1µd)
1/2

)

. (2.12)

We define sparse vector and signal as follows:

Definition 1. Suppose that µd = (α1, α2, . . . , αs, 0, . . . , 0)
T is the p × 1 mean difference

vector where αj ∈ R\{0}, j = 1, 2, . . . , s. We say that µd is sparse if s = o(p). Signal is

defined as Cs = µT
dD

−1µd =
s
∑

j=1

α2
j

σ2
j

where σ2
j is the common variance for feature j in the

two classes.

Some Examples of Sparse situations in real life:

• Gene Expression data (take p genes from two group of patients, most of them are the

same for the two group of patients and only s of them are different).

• Author Identification (two documents from two authors and they use equal proportion

of many words and there are only s few words which separate them).

Note that Σ can be partitioned as

7



Σ =







Σ11 Σ12

Σ21 Σ22






,

where Σ11 = Σ(m) is the m ×m truncated covariance matrix. We denote Dkj = diag(Σkj)

and D11 by D(m). Similarly, the sparse mean difference vector µd can be partitioned as

µd =













µ
(m)
d

µ
(s−m)
d

0p−s













,

assuming that m ≤ s.

Define ρ(m) = D
−1/2
11 Σ11D

−1/2
11 which is the m × m truncated correlation matrix. We

say that ρ(m) is the m×m equicorrelation matrix when ρ(m) =

(

ρkj

)

, ρkj = 1 if k = j and

ρkj = ρ ∈ [0, 1) otherwise.

In this dissertation we focused mainly on equicorrelation matrices as the they give us

bounds for the general correlation matrices. Also, when the general correlation structure is

unknown, we can design our experiments using equicorrelation structures.

Lemma 1. (a) If ρ(m) is the equicorrelation matrix defined above, the eigenvalues of ρ(m)

are λ1(ρ
(m)) = · · · = λm−1(ρ

(m)) = 1−ρ and λm(ρ
(m)) = 1+(m−1)ρ. Note that the smallest

eigenvalue is λmin(ρ
(m)) = 1− ρ and the largest eigenvalue is λmax(ρ

(m)) = 1 + (m− 1)ρ.

(b) Let 1 = (1, 1, . . . , 1)T is the m × 1 vector of ones and define B = 11T/m which is

the m ×m idempotent matrix. Note that ρ(m) can be written as ρ(m) = (1 + (m − 1)ρ)B +

(1− ρ)(Im −B). The inverse of ρ(m) is (ρ(m))−1 = 1
1+(m−1)ρ

B+ 1
1−ρ

(Im−B) where Im is the

m×m identity matrix.

Proof of Lemma 1: For (a) and (b) see Abadir and Magnus (2005, p241).

Lemma 2. If kΣ−1µd = M−1µd for some constant k 6= 0, then

W (δF , θ) = W (δ, θ).
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Proof of Lemma 2: From equations (2.7) and (2.9) and using the condition of lemma 2,

W (δ, θ) = Φ̄

(

µT
dM

−1µd

2(µT
dM

−1ΣM−1µd)
1/2

)

= Φ̄

(

kµT
dΣ

−1µd

2k(µT
dΣ

−1µd)
1/2

)

= Φ̄

(

(µT
dΣ

−1µd)
1/2

2

)

= W (δF , θ).

Note that if Σ is an equicorrelation matrix and M = D then lemma 2 means that Naive

Bayes and Fisher have the same error rates if µd is an eigenvector for Σ. Specifically, we

have the following result.

Theorem 2.1. If m ≤ s,µ
(m)
d = (α, α, . . . , α)T = α1, α 6= 0 and Σ(m) is the truncated m×m

equicorrelation matrix, then we have

W (δF , θ
(m)) = W (δNB, θ

(m)),

where θ(m) is the truncated parameter.

Proof of Theorem 2.1: Let us assume that the off-diagonals for Σ(m) are each ρ. Note

that D(m) = Im. We use the fact that 1T1 = m.

If we take k = 1 + (m− 1)ρ, using lemma 1 (a) and (b)

k(Σ(m))−1µ
(m)
d = kα

(

1
1+(m−1)ρ

11T/m+ 1
1−ρ

(Im − 11T/m)
)

1

= α1 = Imµ
(m)
d

= (D(m))−1µ
(m)
d .

Using lemma 2, the result follows by taking M = D(m).

We know that Σ(m) =

(

σkj

)

, 1 ≤ k ≤ j ≤ m, let us consider the following m × m

positive definite symmetric correlation matrix, ρ(m) = (D(m))−1/2Σ(m)(D(m))−1/2, defined

as ρ(m) =

(

ρkj

)

, ρkj = 1 when k = j and ρkj = ρjk ∈ R when k 6= j. Let us define

9



ρ̄ =
∑

k 6=j

ρkj
m(m− 1)

and ρmax = max
k 6=j

|ρkj|. Define ρ̄(m) =

(

ρkj

)

, ρkj = 1 when k = j and

ρkj = ρ̄ when k 6= j and ρ
(m)
max =

(

ρkj

)

, ρkj = 1 when k = j and ρkj = ρmax when k 6= j. In

other words, ρ̄(m) and ρ
(m)
max are equicorrelation matrices with off diagonals the mean of the

correlation coefficients and largest of the absolute values of the correlation coefficients, ρkj

when k 6= j respectively. We use the notation σkj = σ2
j when k = j.

Definition 2. If A and B are positive definite matrices of the same size, then we will write

A ≤ B if each entry of B −A is non-negative. |A| is the matrix we get from A by replacing

each entry of A by their absolute values. The spectral radius of matrix A is λmax(A).

Lemma 3. If |A| ≤ B, then λmax(A) ≤ λmax(|A|) ≤ λmax(B) which implies that λmax(ρ
(m)) ≤

λmax(ρ
(m)
max).

Proof of Lemma 3: See Horn and Johnson (1985, p491).

Lemma 4. Let M be the truncated m×m positive definite matrix with eigenvalues λ1(M) ≤

λ2(M) ≤ · · · ≤ λm(M) so that λ1(M) = λmin(M) and λm(M) = λmax(M). Then, for

X ∈ R
m, we have

λmax(M) = max
X 6=0

XTMX

XTX
and λmin(M) = min

X 6=0

XTMX

XTX

Proof of Lemma 4: See Johnson and Wichern (2007, p80).

Theorem 2.2. Suppose ρ(m) is an m ×m correlation matrix and µ
(m)
d is an m × 1 mean

difference vector. Then, we have the following bounds on the error rates of Fisher and Naive

Bayes which are given in equations (2.9) and (2.12) respectively:

(a)

Φ̄





√

(µ
(m)
d )T (D(m))−1µ

(m)
d

2
√

λmin(ρ(m))



 ≤ W (δw, θ
(m)) ≤ Φ̄





√

(µ
(m)
d )T (D(m))−1µ

(m)
d

2
√

λmax(ρ(m))



 ,

10



(b) Suppose, further, that λmin(ρ
(m)) ≥ λmin(ρ̄

(m)) = 1− ρ̄. Then

Φ̄





√

(µ
(m)
d )T (D(m))−1µ

(m)
d

2
√
1− ρ̄



 ≤ W (δw, θ
(m)) ≤ Φ̄





√

(µ
(m)
d )T (D(m))−1µ

(m)
d

2
√

1 + (m− 1)ρmax





where w = F or w = NB for the truncated parameter θ(m).

Proof of Theorem 2.2: (a) Note that the numerator for Fisher can be written as

(µ
(m)
d )T (Σ(m))−1µ

(m)
d = (µ

(m)
d )T (D(m))−1/2(ρ(m))−1(D(m))−1/2µ

(m)
d . Using lemma 4 we

have,

λmin((ρ
(m))−1)(µ

(m)
d )T (D(m))−1µ

(m)
d ≤ (µ

(m)
d )T (D(m))−1/2(ρ(m))−1(D(m))−1/2µ

(m)
d

≤ λmax((ρ
(m))−1)(µ

(m)
d )T (D(m))−1µ

(m)
d

which implies that

1
λmax((ρ(m))

(µ
(m)
d )T (D(m))−1µ

(m)
d ≤ (µ

(m)
d )T (D(m))−1/2(ρ(m))−1(D(m))−1/2µ

(m)
d

≤ 1
λmin((ρ(m))

(µ
(m)
d )T (D(m))−1µ

(m)
d .

Noting that Φ̄(
√
x/2) is a decreasing function of x we have the inequalities for Fisher.

Similarly, the denominator which is inside the square root for Naive Bayes can be written

(µ
(m)
d )T (D(m))−1Σ(m)(D(m))−1µ

(m)
d = (µ

(m)
d )T (D(m))−1/2ρ(m)(D(m))−1/2µ

(m)
d . Using lemma 4

we have,

λmin(ρ
(m))(µ

(m)
d )T (D(m))−1µ

(m)
d ≤ (µ

(m)
d )T (D(m))−1/2(ρ(m))−1(D(m))−1/2µ

(m)
d

≤ λmax(ρ
(m))(µ

(m)
d )T (D(m))−1µ

(m)
d .

Noting that Φ̄(K/
√
x) is an increasing function of x when K > 0 we have the inequalities

for Naive Bayes.

11



(b) Note that λmin(ρ̄
(m)) = 1− ρ̄ and using lemma 3 we have

λmin(ρ̄
(m)) ≤ λmin(ρ

(m)) ≤ λmax(ρ
(m)) ≤ λmax(ρ

(m)
max).

Using the bounds in part (a) and noting that Φ̄(K/
√
x) is an increasing function of x when

K > 0 we have the inequalities in part (b).

We need the bounds in theorem 2.2 (b), because in experimental designs we do not know

the actual correlations, if we know the maximum correlation, we can give the maximum error

rate for Fisher.

Corollary 1. If m ≤ s, then

max
θ(m)

W (δF , θ
(m)) = W (δF , θ

(m)
2 ) = W (δNB, θ

(m)
2 )

where θ
(m)
2 is the parameter which consists of the equal mean difference vectors and equicor-

relation matrix.

Proof of Corollary 1: Using theorem 2.2 (a), it is easy to see that the upper bound

for Fisher is achieved when we have equal mean difference vectors and equicorrelation ma-

trix. Therefore, max
θ(m)

W (δF , θ
(m)) = W (δF , θ

(m)
2 ) where θ

(m)
2 is the parameter which consists

of the equal mean difference vectors and equicorrelation matrix. But using theorem 2.1,

W (δF , θ
(m)
2 ) = W (δNB, θ

(m)
2 ). Hence, max

θ(m)
W (δF , θ

(m)) = W (δNB, θ
(m)
2 ).

Note that since Fisher is optimal, from corollary 1, the misclassification error rate for

Naive Bayes can be taken as a minimax estimator for the misclassification error rate for

Fisher over the parameter θ(m). Also, the maximum error rates for both Fisher and Naive

Bayes occur when we have equal mean difference vector and equicorrelation matrix.

For example, let µ1 = (α90, 04410)
T ,µ0 = (04500)

T , σkk = 1, σkj = ρ ∈ [0, 1), k 6= j. Then

we have the following graphs for the error rates of Fisher in equation (2.9)=Naive Bayes in

equation (2.12) using the first m = 90 features against the mean difference α for several ρ.
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Figure 2.1: The horizontal axis is the mean difference (α) and the vertical axis is the maximum

misclassification error rates. The different lines are the maximum error rates of Fisher, W (δF ,θ
(m)),

using the first m = 90 features for ρ = 0, 0.1, . . . , 0.9 from bottom to top respectively.

As we can see from the above figure, even at ρ = 0.7 with α = 1 standard deviation

difference, the maximum misclassification error rate is around 30%. Using theorem 2.2, we

know that any correlation matrix with maximum absolute value correlation coefficient of 0.7

would give lower than 30% misclassification error rate.

2.2.1 Sample Model

Suppose that X11,X12, . . . ,X1n1 are random samples coming from a distribution with

density function f(X|(µ1,Σ)) and X01,X02, . . . ,X0n0 are random samples coming from a

distribution with density function f(X|(µ0,Σ)).

The independence rule depends on the parameters µ1,µ0 and D = diag{σ2
1, . . . , σ

2
p}

and Fisher depends on the parameters µ1,µ0 and Σ. They can easily be estimated from the

samples

13



µ̂i =

ni
∑

k=1

X ik

ni
, i = 0, 1, µ̂a = (µ̂1 + µ̂0)/2, µ̂d = µ̂1 − µ̂0 (2.13)

Σ̂ = (Σ̂1 + Σ̂0)/2, (2.14)

where Σ̂i =
1

ni−1

ni
∑

k=1

(X ik − µ̂i)(X ik − µ̂i)
T .

D̂ = diag(Σ̂) = diag{(S2
1j + S2

0j)/2, j = 1, . . . , p}, (2.15)

where S2
ij =

ni
∑

k=1

(Xikj − X̄ij)
2

ni − 1
is the sample variance of the jth feature in class i and X̄ij =

ni
∑

k=1

Xikj

ni
. Assuming that we have comparable sample sizes and under normality assumptions

the plug-in discrimination functions can be written as

δ̂F (X, µ̂d, µ̂a, Σ̂) = 1
{

µ̂T
d Σ̂

−1(X − µ̂a) > 0
}

, (2.16)

and

δ̂NB(X, µ̂d, µ̂a, D̂) = 1
{

µ̂T
d D̂

−1(X − µ̂a) > 0
}

. (2.17)

If we have a new observation X from class C0, then the misclassification error rate of

δ̂F (X, µ̂d, µ̂a, Σ̂) is

14



W (δ̂F , θ0) = P (δ̂F (X, µ̂d, µ̂a, Σ̂) = 1|X ik, k = 1, . . . , ni, i = 0, 1) = Φ̄(ΨF ) (2.18)

where

ΨF =
(µ0 − µ̂a)

T Σ̂−1µ̂d
√

µ̂T
d Σ̂

−1ΣΣ̂−1µ̂d

. (2.19)

Similarly, the misclassification error rate of δ̂NB(X, µ̂d, µ̂a, D̂) is

W (δ̂NB, θ0) = P (δ̂NB(X, µ̂d, µ̂a, D̂) = 1|X ik, k = 1, . . . , ni, i = 0, 1) = Φ̄(ΨNB) (2.20)

where

ΨNB =
(µ0 − µ̂a)

T D̂−1µ̂d
√

µ̂T
d D̂

−1ΣD̂−1µ̂d

. (2.21)

In the next section, we always consider the misclassification error rate of observations from

C0, since the misclassification error rate of observations from C1 can be easily obtained by

interchanging n0 with n1 and µ0 with µ1.

2.2.2 Sample Misclassification Error Rates for Naive Bayes

Fan and Fan (2008) gave an upper bound for the sample misclassification error of the

Naive Bayes given in equation (2.20) using all the p features. Similar with them we give

lower and upper bounds on its misclassification error using only the important m features.
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Suppose our parameter space is

Γm = {(µ(m)
d ,Σ(m)) : (µ

(m)
d )T (D(m))−1µ

(m)
d ≥ Cm, λmin(ρ

(m)) ≥ a0, λmax(ρ
(m)) ≤ b0, min

1≤j≤m
σ2
j > 0},

(2.22)

where Cm is the minimum signal which depends only on the dimensionality m, a0, b0 are

positive constants and λmin(ρ
(m)), λmax(ρ

(m)) are the smallest and largest eigenvalues of the

m ×m correlation matrix ρ(m) respectively. Let n = n1 + n0 be the total sample size. Fan

and Fan (2008) stated their result as follows.

Theorem 2.3. Suppose that log p = o(n), n = o(p) and nCp → ∞. Then:

The classification error W (δ̂NB, θ) with θ ∈ Γp is bounded above as

W (δ̂NB, θ) ≤ Φ̄

(

[n1n0/(pn)]
1
2µT

dD
−1µd(1 + oP (1)) +

√

p/(nn1n0)(n1 − n0)

2
√

λmax(ρ){1 + n1n0/(pn)µT
dD

−1µd(1 + oP (1))}
1
2

)

Proof of Theorem 2.3: See Fan and Fan (2008).

Theorem 2.4. Suppose ρ(m) is an m ×m correlation matrix and µ
(m)
d is an m × 1 mean

difference vector. Suppose also that m ≤ s, logm = o(n), n = o(m) and nCm → ∞.

(a) Then, the classification error W (δ̂NB, θ
(m)) with θ(m) ∈ Γm is bounded below and

above as

Φ̄(Ψn(λmin(ρ
(m)))) ≤ W (δ̂NB, θ

(m)) ≤ Φ̄(Ψn(λmax(ρ
(m)))).

(b) Assume, further, that λmin(ρ
(m)) ≥ 1− ρ̄. Then we have:

Φ̄(Ψn(1− ρ̄)) ≤ W (δ̂NB, θ
(m)) ≤ Φ̄(Ψn(1 + (m− 1)ρmax)),

where

Ψn(x) =
[n1n0/(mn)]

1
2 (µ

(m)
d )T (D(m))−1µ

(m)
d (1 + oP (1)) +

√

m/(nn1n0)(n1 − n0)

2
√
x{1 + n1n0/(mn)(µ

(m)
d )T (D(m))−1µ

(m)
d (1 + oP (1))}

1
2

(2.23)
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Proof of Theorem 2.4:

(a) It can be shown that Ψ
(m)
NB which is the truncated version in equation (2.21) can be

bounded as

Ψ
(m)
NB ≥ (µ

(m)
0 − µ̂(m)

a )T (D̂(m))−1µ̂
(m)
d

√

b0(µ̂
(m)
d )T (D̂(m))−1D(m)(D̂(m))−1µ̂

(m)
d

(2.24)

because using lemma 4 we note that

(µ̂
(m)
d )T (D̂(m))−1Σ(m)(D̂(m))−1µ̂

(m)
d = (µ̂

(m)
d )T (D̂(m))−1(D(m))

1
2ρ(m)(D(m))

1
2 (D̂(m))−1µ̂

(m)
d

≤ (µ̂
(m)
d )T (D̂(m))−1(D(m))

1
2λmax(ρ

(m))(D(m))
1
2 (D̂(m))−1µ̂

(m)
d

≤ b0(µ̂
(m)
d )T (D̂(m))−1D(m)(D̂(m))−1µ̂

(m)
d

where b0 is from equation (2.22) and the remainder of the proof is similar with the one in

Fan and Fan (2008) for theorem 2.3 where they give asymptotic results for the numerator

and denominator for the right side of equation (2.24) using all the p features.

Similarly,

Ψ
(m)
NB ≤ (µ

(m)
0 − µ̂(m)

a )T (D̂(m))−1µ̂
(m)
d

√

b0(µ̂
(m)
d )T (D̂(m))−1D(m)(D̂(m))−1µ̂

(m)
d

(2.25)

because using lemma 4 we note that

(µ̂
(m)
d )T (D̂(m))−1Σ(m)(D̂(m))−1µ̂

(m)
d = (µ̂

(m)
d )T (D̂(m))−1(D(m))

1
2ρ(m)(D(m))

1
2 (D̂(m))−1µ̂

(m)
d

≥ (µ̂
(m)
d )T (D̂(m))−1(D(m))

1
2λmin(ρ

(m))(D(m))
1
2 (D̂(m))−1µ̂

(m)
d

≥ a0(µ̂
(m)
d )T (D̂(m))−1D(m)(D̂(m))−1µ̂

(m)
d

the second inequality is where we have used the assumption that λmin(ρ
(m)) ≥ a0 from

equation (2.22). The rest will be similar to the proof given in Fan and Fan (2008) for

theorem 2.3.
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(b) Using part (a) we have

Φ̄(Ψn(λmin(ρ
(m)))) ≤ W (δ̂NB, θ

(m)) ≤ Φ̄(Ψn(λmax(ρ
(m)))),

where Ψn is given in equation (2.23). Note that λmin(ρ̄
(m)) = 1 − ρ̄ and λmax(ρ

(m)
max) =

1 + (m− 1)ρmax. Using lemma 3 we have

λmin(ρ̄
(m)) ≤ λmin(ρ

(m)) ≤ λmax(ρ
(m)) ≤ λmax(ρ

(m)
max).

Using the bounds in part (a) and noting that Φ̄(Ψn(x)) is an increasing function of x

then we have the inequalities in part (b).

For example, let µ1 = (α90, 04410)
T ,µ0 = (04500)

T , σkk = 1, σkj = ρ ∈ [0, 1), k 6= j, n1 =

n0 = 30. The following compares the upper bound on the sample error rate given in theorem

2.2 (a) and the theoretical error rates for Naive Bayes given in equation (2.12), which is

the same as the theoretical upper bound given in theorem 2.2 (a), for several correlation

structures using the first m = 90 features.
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Figure 2.2: The horizontal axis is difference of the means (α) and the vertical is error rates. The

different lines are theoretical maximum error rate vs upper bound on the sample error rate for

Naive Bayes when ρ = 0.1, 0.5, 0.9 from bottom to top respectively using the first m = 90 features.

As we can see from the above figure, the upper bound for the sample misclassification

error rates are close to the maximum theoretical error rates when we use only the subset of

the features for the equicorrelation and equal mean difference case we consider.

2.3 Univariate and Multivariate t distribution

Definition 3. Univariate t-distribution with ν degrees of freedom and noncentrality param-

eter µZ/
√

V/ν can be defined as the distribution of the random variable T with

T =
Z + µZ
√

V/ν
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where Z is normally distributed with expected value 0 and variance 1; V has a chi-squared

distribution with ν degrees of freedom; Z and V are independent. If µZ 6= 0 it is called

non-central t-distribution otherwise it is central (Student’s) t-distribution (Wikipedia, 2013).

Student’s t distribution can be generalized to a three parameter location-scale family,

introducing a location parameter µ and a scale parameter σ, through the relation

X = µ+ σT

The resulting non-standardized Student’s t-distribution has a density denoted by,

t1(µ, σ
2, ν), has the form

f(x|µ, σ2, ν) =
Γ(ν+1

2
)

(πνσ2)1/2Γ(ν/2)[1 + (x−µ)2

νσ2 ](ν+1)/2
, (−∞ < x < ∞)

where −∞ < µ < ∞, σ2 > 0, and ν > 0.

Here, σ does not correspond to a standard deviation: it is not the standard deviation

of the scaled t distribution, which may not even exist; nor is it the standard deviation of the

underlying normal distribution, which is unknown.

Generalization of the univariate student-t distribution to multivariate situations takes

a number of forms. We shall concentrate on the one that is widely used in applied statistics

(Cornish 1954; Dunnett and Sobel 1954; Little and Rubin, 1987; Little, 1988; Lang, Little

and Taylor, 1989), which is defined as follows.

Definition 4. (The multivariate t distribution) Let Z = (z1, . . . , zp)
T ∼ Np(µZ ,Σ)(|Σ| >

0), τ ∼ Γ(ν/2, ν/2) , let Z and τ be independent, µ = (µ1, . . . , µp)
T be a p−dimensional

vector , and

X = τ−1/2Z + µ,
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then the (marginal) distribution of X is called multivariate t distribution with ν degrees of

freedom, denoted by

t ∼ tp(µ, µZ ,Σ, ν). (2.26)

If µZ = 0, (2.26) is called the central multivariate t distribution or simply the multi-

variate t distribution, denoted by

t ∼ tp(µ,Σ, ν); (2.27)

otherwise (2.26) is called noncentral multivariate t distribution.

Note that if Y ∼ Np(µY ,Σ) and S ∼
√

χ2
n1+n0−2/(n1 + n0 − 2) then X = S−1Y follows

a multivariate t-distribution. If µY = 0, it is central otherwise it is non-central.

2.4 Feature Selection: two-sample t-test

Dimension reduction or feature selection is an effective strategy to deal with high di-

mensionality. With dimensionality reduced from high to low, the computational burden

can be reduced drastically. Meanwhile, accurate estimation can be obtained by using some

well-developed lower dimensional method.

In the previous sections we showed that Fisher is optimal when there is no estimation

and Naive Bayes can perform well at the population level for broader conditions. Bickel and

Levina (2004) showed that estimation accumulates noise and Fisher breaks down when using

all the features. Fan and Fan (2008) also showed that using all the features for Naive Bayes

increases the misclassification error rate and suggested using the subset of features. To get

these features we appeal to the independence feature selection methods.
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A popular method for independence feature selection is the two-sample t-test (Tibshirani

et al., 2002, Fan and Fan, 2008), which is a specific case of marginal screening in Fan and

Lv (2008). Other componentwise tests such as the rank sum test are also popular.

We divide our data set into three groups: training, testing and validation data sets. We

rank the absolute values of the t-statistics from large to small and then we choose the first m

features. We choose the optimal m which minimizes the upper bound on the misclassification

error rate based on the validation data set.

Suppose that the noise vectors ǫik are i.i.d within class Ci with mean 0 and covariance

matrix Σi.

Fan and Fan (2008) gave a condition under which the two-sample t-test picks up all the

important s features with probability 1. They stated it as follows:

Condition 1.

(a) Assume that the vector µd = µ1 − µ0 is sparse and without loss of generality, only

the first s entries are nonzero.

(b) Suppose that ǫikj and ǫ2ikj−1 satisfy the Cramer’s condition, that is, there exist con-

stants ν1, ν2,M1 and M2, such that E|ǫikj|m ≤ m!Mm−2
1 ν1/2 and E|ǫ2ikj−σ2

ij | ≤ m!Mm−2
2 ν2/2

for all m = 1, 2, . . . .

(c) Assume that the diagonal elements of both Σ1 and Σ0 are bounded away from 0.

For unequal sample sizes, unequal variance, the absolute value of the two-sample t-

statistic for feature j is defined as

Tj =
|X̄1j − X̄0j |

√

S2
1j/n1 + S2

0j/n0

, j = 1, . . . , p. (2.28)

Theorem 2.5. Let s be a sequence such that log(p − s) = o(nγ) and log s = o(n1/2−γβn)

for some βn → ∞ and 0 < γ < 1/3. Suppose that min
1≤j≤s

|µd,j|
√

σ2
1j + σ2

0j

= n−γβn where µd,j is

the jth feature mean difference. Then under Condition 1, for x ∼ cnγ/2 with c some positive
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constant, we have

P

(

min
j≤s

Tj ≥ x and max
j>s

Tj < x

)

→ 1.

Proof of Theorem 2.5: See Fan and Fan (2008).

Note that asymptotically the two-sample t-test can pick up all the important features.

However we are interested in the probability of selecting all the important features (i.e the

probability of getting all the s features in the first s ordered t-statistics) in the short run.

Consider the following p t-statistics, T1, T2, . . . , Tp, defined in equation (2.28). We call

the s t-statistics corresponding to the s non zero mean differences, the non-centrals (which

are the important features in our case) and the remaining p − s as centrals. Suppose that

T(1), T(2), . . . , T(p) are the reverse order t-statistics. Let m′ =the largest rank assigned to

the non-centrals. For example, if m′ = s, it means the first s highest t-statistics contain

the s non-centrals, if m′ = s + 1, it means the first s + 1 highest t-statistics contain the s

non-centrals and etc.

Suppose, further that, T ∗
(1) ≥ T ∗

(2) ≥ · · · ≥ T ∗
(s) are the reverse order t-statistics for the

non-centrals and T(1) ≥ T(2) ≥ · · · ≥ T(p−s) are the reverse order t-statistics for the centrals.

We now give the formulas for probability of getting all the important s features in the

first m′ = s,m′ = s+ 1, . . . , m′ = p− 1 ordered t-statistics:

P (m′ = s) = P (T ∗
(s) > T(1))

P (m′ = s+ 1) = P (T ∗
(s) > T(2))

...

P (m′ = p− 1) = P (T ∗
(s) > T(p−s))

Generally, for i = s, . . . , p− 1

P (m′ = i) = P (T ∗
(s) > T(i−s+1)).
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We use simulation to calculate the above probabilities. The simulation results are based

on generating the p dimensional multivariate t-distribution of which dimension of s = 90

multivariate non-central t and dimension of p − s = 4500 − 90 = 4410 multivariate central

t with n1 = n0 = 30 with the covariance matrix for the underlying distribution Σ assumed

to be the p × p equicorrelation matrix with off diagonals ρ ∈ [0, 1). We use the definition

of multivariate t distributions whose marginal are also t. The definition is given in the 1994

PhD Dissertation (by Chuanhai Liu). The number of simulation is 100 for each case.

The following are the graphs of probability of getting all the important s features against

the standardized mean differences of the underlying population.
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Figure 2.3: Horizontal axis is the mean difference ( α) and vertical is probability of getting all the

important s features in the first s, s + 1, s + 2, s + 3, 3s/2, 2s t-statistics respectively. The results

are for ρ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 from bottom to top respectively.

As we can see from the first and last figures, when ρ = 0.6 and α = 1 standard deviation

difference, the probability of getting all the important features in the first s t-statistics is

below 45% and the probability of getting all the important features in the first 2s t-statistics

is around 80% respectively. We can see also that at around α = 1.5, we have 100% chance

of getting all the s features in the first 2s t-statistics with any ρ but we don’t have 100%

chance of getting all the s features in the first s t-statistic unless the correlation is very high.
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Figure 2.4: Horizontal axis is the number we go after s (call it, m′) and the vertical axis is

probability of getting all the important s features in the first s + m′ t-statistics for ρ = 0.5, 0.9

respectively. The different lines are for α = 1, 1.2, 1.4, 1.6, 1.8, 2 from bottom to top respectively.

As we can see from the above figure, when ρ = 0.9, we have around 90% chance of

getting all the important features for any α bigger or equal to 1. When we have large α and

higher correlation, we have 100% chance of getting all the important s features in the first

s t-statistics.

The following results are under the assumption that T1, . . . , Ts are noncentral multivari-

ate t-distribution (NCT) and Ts+1, . . . , Tp are central multivariate t-distribution (CT). We

also assume that the centrals are independent of the noncentrals.

Let T1, . . . , Ts have joint distribution function given by FNCT (t1, . . . , ts) := P (T1 ≤

t1, . . . , Ts ≤ ts) which is multivariate NCT and Ts+1, . . . , Tp have joint distribution function

given by FCT (ts+1, . . . , tp) := P (Ts+1 ≤ ts+1, . . . , Tp ≤ tp) which is multivariate CT.

P (m′ = s) = P (min
j≤s

|Tj | > max
j>s

|Tj|) = P (min
j≤s

|Tj| −max
j>s

|Tj| > 0) (2.29)

We have the following densities when x > 0:
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fmin
j≤s

|Tj |(x) = − d

dx
P (|T1| > x, . . . , |Ts| > x) (2.30)

fmax
j>s

|Tj |(x) =
d

dx
P (|Ts+1| < x, . . . , |Tp| < x) (2.31)

Then, the probability of getting all the important features in the first s t-statistics is

given by

∫ ∞

0

∫ x

0

fmin
j≤s

|Tj|(x)fmax
j>s

|Tj |(y)dydx (2.32)

For unequal sample sizes, equal variance the two-sample t-test takes the following form

Tj =
X̄1j − X̄0j

sp
√

1
n1

+ 1
n0

, for j = 1, 2, . . . , p,

where

sp =

√

(n1 − 1)S2
1j + (n0 − 1)S2

0j

n1 + n0 − 2
.

Note that under normality assumption on the underlying distribution we have

Tj ∼
N (0, 1) + (µd)j

√

χ2
n1+n0−2/(n1 + n0 − 2)

which is a t-distribution with n1+n0−2 degrees of freedom and (µd)j/
√

χ2
n1+n0−2/(n1 + n0 − 2)

as noncentrality parameter.
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But using the order statistic and noting that

F|X|(x) = P (|X| ≤ x) = P (−x ≤ X ≤ x) = FX(x)− FX(−x) (2.33)

for any random variable X we have the following density of |X|

f|X|(x) = fX(x) + fX(−x) (2.34)

For independent CT and independent NCT we have the following densities.

fmin
j≤s

|Tj|(x) = sf|TNC |(x)[1 − F|TNC |(x)]
s−1, 0 ≤ x < ∞ (2.35)

and

fmax
j>s

|Tj|(x) = (p− s)f|TC |(x)[F|TC |(x)]
p−s−1, 0 ≤ x < ∞ (2.36)

based on the assumption that T1, . . . , Ts are iid t-noncentral (TNC) with n1 + n0 − 2 degrees

of freedom and with

ncp =
√

(n1 + n0 − 2)/χ2
n1+n0−2 .α

noncentralilty parameter and Ts+1, . . . , Tp are iid t-central (TC) with n1 + n0 − 2 degrees of

freedom. Without loss of generality we assume the standard deviations for each feature is 1.

In addition, we assume that the centrals are independent of the noncentrals. Assuming that

α := (µd)1 = · · · = (µd)s 6= 0 and (µd)s+1 = · · · = (µd)p = 0 where µd = ((µd)1, . . . , (µd)p)
T .
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Equation (2.29) becomes

∫ ∞

0

∫ x

0

fmin
j≤s

|Tj|(x)fmax
j>s

|Tj |(y)dydx (2.37)

Motivated by this, we give a formula for the probability of getting all the important

features in the first s, s + 1, s + 2, . . . , p t-statistics. Let m′ be how far we go to get all the

important features after the first s t-Statistics. Here m′ takes the values m′ = 0, 1, . . . , p−s.

Let M be the random variable that denotes the number of the absolute value of the

central t which are bigger than the minimum of the absolute value of the noncentrals, then

M follows a binomial distribution with p− s trials and probability of success Pr = P (|T | −

min
j≤s

|Tj | > 0
∣

∣T1, . . . , Ts) parameters where T is any central t-distribution with n1 + n0 − 2

degrees of freedom. Therefore,

P (M = m′|p− s, P r) =

(

p− s

m′

)

(Pr)m
′

(1− Pr)p−s−m′

, m′ = 0, 1, . . . , p− s (2.38)

is the probability of getting all the important s features in the first m′ + s t-statistics.

The probability Pr can be calculated as follows:

Pr = P (|T | −min
j≤s

|Tj| > 0) =

∫ ∞

0

∫ x

0

f|T |(x)fmin
j≤s

|Tj|(y)dydx (2.39)

Let M
′

be the number of the absolute value of the noncentral t which are bigger than

the maximum of the absolute values of the centrals), M
′

follows a binomial distribution with

s number of trials and probability of success Pr
′

. Then

P (M
′

= m
′ |s, P r

′

) =

(

s

m′

)

(Pr
′

)m
′

(1− Pr
′

)s−m
′

, m
′

= 0, 1, . . . , s (2.40)
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where Pr
′

= P (|TNC | − max
j>s

|Tj| > 0
∣

∣Ts+1, . . . , Tp). TNC is any noncentral t-statistics with

n1+n0−2 degrees of freedom and ncp noncentrality parameter given above. The probability

Pr
′

can be calculated as follows:

Pr
′

= P (|TNC| −max
j>s

|Tj| > 0) =

∫ ∞

0

∫ x

0

f|TNC |(x)fmax
j>s

|Tj|(y)dydx (2.41)

The probability that exactly half of the important features appear in the first s (assume

it is even) T-statistics is given by

P (M
′

=
s

2
|s, P r

′

) =

(

s
s
2

)

(Pr
′ − (Pr

′

)2)
s
2 (2.42)

2.5 Simulation Results

Model 1: Equal sparse mean difference vector and equicorrelation matrix

for balanced group

We use simulation to compare the performance of Fisher and Naive Bayes. The sim-

ulation is done as follows: we generate training samples X11, . . . ,X1n1 and X01, . . . ,X0n0

from multivariate normal distribution with µ1 = (αs, 0p−s)
T and µ0 = (0p)

T with training

sample size n1 = n0 = 30 and p = 4500, s = 90. We then construct the discriminant functions

assuming Σ equicorrelation matrix with off diagonals ρ ∈ [0, 1) and we then calculated the

testing errors. The testing data sets are generated from multivariate normal distribution

from each class with the above means and covariance matrix. The sample size for testing

data is n1 = n0 = 50. We repeat the experiment 100 times. We report the average testing

errors over the 100 simulations.

The following figures compare the misclassification error rates of Naive Bayes and Fisher

when ρ = 0.5 and ρ = 0.9 respectively using the first 10, 30, 45 selected features selected

based on the two-sample t-test.
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Figure 2.5: Horizontal axis is the mean difference (α). The vertical axis is testing misclassification

error rate using the first 10, 30, 45 features for Naive Bayes vs Fisher. The first and second figures

are when ρ = 0.5, 0.9 respectively.

The above figures show us how Naive Bayes dominates Fisher on head to head compar-

ison using the same number of features. This result is consistent with our theoretical result

in theorem 2.1. Theorem 2.1 shows that under equal mean difference and equicorrelation

matrix, the Naive Bayes and Fisher are both optimal. But because of the noise accumu-

lation in estimating the covariance matrix (Bickel and Levina(2004), Fan and Fan (2008)),

we expect Naive Bayes to do better than Fisher at the sample level. When the number of

feature increases, Fisher will have an estimation error for the covariance matrix.

Model 2: Equal sparse mean difference vector and equicorrelation matrix

for unbalanced group

We do the simulations as above except we take n1 = 30 and n0 = 60 for the training

data with ρ = 0.5.
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Figure 2.6: Horizontal axis is the mean difference (α) and the vertical axis is testing misclassifica-

tion error rate.

As we can see from the above figure Naive Bayes still dominates Fisher for unbalanced

group on head to head comparison using the same number of features. Naive Bayes is not

affected much by the number of features we use but Fisher does. The reason for this is that

the error rate increases for estimating the inverse of the covariance matrix for Fisher when

the number of features increases.

Model 3: Equal sparse mean difference vector and random correlation matrix

We do the same simulation as above except we generate a positive definite p × p co-

variance matrix Σ whose eigenvalues are randomly generated in the interval [0.5, 45.5] and

we report the average testing errors over 100 simulations for Naive Bayes and Fisher in the

following figures. Note that λmax(Σ) = 45.49829, and λmax(ρ) = 4.989593 using the first 10

and 45 features respectively.
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Figure 2.7: Horizontal axis is the mean difference (α). The vertical axis is testing misclassification

error rate using the first 10 and 45 features for Naive Bayes vs Fisher.

The above figures show that Naive Bayes still dominates Fisher under random correlation

on head to head comparison of using the same number of features. We compare them using

10 and 45 features. We know that for large number of features, larger than (n1+n0−2 = 58)

number of features, Fisher breaks down as the sample covariance matrix is singular.

Model 4: Equal sparse mean difference vector and equicorrelation matrix

for Naive Bayes

We generate training samples X11, . . . ,X1n1 and X01, . . . ,X0n0 from multivariate nor-

mal distribution with µ1 = (αs, 0p−s)
T and µ0 = (0p)

T with training sample sizes n1 =

n0 = 30 and p = 4500, s = 90. We then construct the Naive Bayes discriminant assuming

Σ equicorrrelation matrix with off diagonals ρ ∈ [0, 1) and we then calculated the testing

errors. The testing data sets are generated from multivariate normal distribution from each

class with the above means and covariance matrix with sample sizes n1 = n0 = 50. We repeat

the experiment 100 times. We report the average testing errors over the 100 simulations.

The following are how Naive Bayes performs for ρ = 0.5.
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Figure 2.8: Horizontal axis is the number of features used divided by s = 90 and the vertical

axis is testing misclassification error rate. The different lines (starting from up) are for α =

1.0, 1.5, 2.0, 2.5, 3.0 respectively.
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Figure 2.9: Horizontal axis is the mean difference (α) and the vertical axis is testing misclassifica-

tion error rate using the first 90, 100, 135, 180 and 270 features.

As we can see from the above figures, the Naive Bayes is not affected much by the

number of features used. For example, for α = 1 standard deviation difference the testing

34



error rate is a little above 20% using even below 45 features. As far as the signal is not too

small, even with high correlation (ρ = 0.5) we get a decent classification.

2.6 Real Data Analysis: Leukemia Data

Leukemia data from high-density Affymetrix oligonucleotide arrays are available at

http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi. There are 7129 genes and 72 sam-

ples coming from two classes: 47 in class ALL (acute lymphocytic leukemia) and 25 in class

AML (acute mylogenous leukemia). Among these 72 samples, 38 (27 in class ALL and 11

in class AML) are set to be training samples and 34 (20 in class ALL and 14 in class AML)

are set as test samples.

Before analysis, we standardize each sample to zero mean and unit variance as follows:

we subtract the grand mean from both classes and divide each class by their class standard

deviation.

But in our analysis we used training sample sizes of n1 = 24 from class ALL and n0 = 13

from class AML. The validation sample sizes are n1 = 23 from class ALL and n0 = 12 from

class AML. We then compare Naive Bayes and Fisher on head to had comparison using the

same number of genes. As we can see from the figure, Naive Bayes dominates Fisher. Fisher

breaks down using more than 35 genes.
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Figure 2.10: Horizontal axis is the number of genes used and the vertical axis is testing misclassi-

fication error rate for Fisher vs Naive Bayes.

The following figure shows how Naive Bayes performs using the first 100 genes. The min-

imum error is 0.05714286 which is 2 misclassified genes out of the 35 genes in the validation

sample. The optimal number of genes selected is 43 using the validation data.
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Figure 2.11: Horizontal axis is the number of genes used and the vertical axis is testing misclassi-

fication error rate for Naive Bayes.
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2.7 Conclusion

In this chapter we considered a binary classification problem for sparse signals. We show

that Naive Bayes is viable alternative to Fisher and good for experimental design. We give

the conditions under which Naive Bayes performs as good as Fisher for the population model.

Because of the accumulation of estimation error for Fisher (see Bickel and Levina (2004)),

under these conditions, Naive Bayes performs better than Fisher for the sample model and

we see this on our simulation results based on fair comparison of the two methods. The

simulation results and the real data analysis support our theory. We give tight equal lower

and upper bounds on the misclassification error rates of the two methods for the population

model. These lower and upper bounds are based on the equicorrelation matrices formed

from the mean of the correlation coefficients and the maximum of the absolute values of the

correlation coefficients respectively. We show that our bounds are equal for equicorrelation

covariance matrices and in this sense Naive Bayes is a minimax estimator for Fisher. These

bounds make the Naive Bayes method practical method to use for experimental design.

Fan and et al. (2012) considered the class of linear discriminant functions of the form

δw(X) = 1{wT (X − µa) > 0} and their mission was to find the good data projection

w. In this chapter, we considered the class of linear discriminant functions of the form

δ(X,µd,µa,M) = 1
{

µT
dM

−1(X − µa) > 0
}

and our aim is to find the matrix M which

gives better result for the sample model. We show that, under certain conditions given in

lemma 2, these functions lead to better results. Specifically, we give the conditions under

which Naive Bayes is optimal. But in our work we considered smaller sample sizes (n1 =

n0 = 30) for training, (n1 = n0 = 50) for testing and large number of features (p = 4500)

with s = 90. Fan and et al.(2012) considered large sample sizes (n1 = n0 = 300) for both

training and testing and smaller dimension (p = 1000) with s = 10. They also compare

Fisher and Naive Bayes on different number of features. We compare Fisher and Naive

Bayes using the same number of features selected.
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Chapter 3

Generalized Feature Selection

3.1 Introduction

However the gene expression data are usually ultrahigh dimensional such that sample

size n is far smaller than the data dimension p which can make some classifiers not applicable.

As we know high dimension can easily cause overflow in the calculation of inverse matrices

that is required by some classifier. Typically, the calculation working load can be increased

dramatically by even adding one more gene.

Besides, it is well known that only few genes carry the useful information which can

determine a specific genetic trait, such as susceptibility to cancer while most of genes carry

nothing useful but the noises. Taking all the genes instead of the most informative ones

in to account in the process of classification can’t provide a better accuracy but result in

the widely inefficiency. Usually, a smaller set of genes are selected based the amount of the

information in terms of the group separation to be considered as the most important genes

in the process of classification. Basically, there are two ways to reduce the dimension of data:

• Select a subset of the original variables (genes) based on the power of class determi-

nation,

• Create new variables by combining the information of all the variables (genes) without

loss much information from the original variables.

Many statisticians prefer that firstly a smaller set of variables are selected by following a

certain variable screening method and then some optimal linear combinations of the selected

variables are finally created to proceed the classification while some directly perform the

classification after the variable screening.
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Dudoit et al (2002) performed gene screening based on the ratio of between-group and

within-group sums of squares. Many statisticians (Fan and Fan, 2008; Nguyen and Rocke,

2002; Ding and Gentleman, 2005) applied two-sample t-statistic which measures the distance

between two populations and can be used as the criterion to preliminarily select the most

important genes while other people (Liao et al , 2007) picked up the variables based on

Wilcoxon-Mann-Whitney (WMW) statistic which is also good measurement in terms of

group separation. Usually the variable screening method using WMW statistic is only slightly

less efficient than the one using t-statistic when the underlying populations are normal, and it

can be mildly or wildly more efficient than its competitors when the underlying populations

are not normal.

3.2 The Generalized Feature Selection

Fan and Fan (2008) gave a condition under which the two-sample t-test pick up all the

important s features with probability 1. Asheber Abebe and Shuxin Yin (PhD dissertation,

2010) gave a condition under which the Wilcoxon-Mann Whitney test can pick up all the im-

portant features with probability 1. Two-sample t-test heavily depends on (approximately)

normal distribution. So we propose a new generalized feature selection method. We give

a generalized condition under which any two-sample componentwise test Tj defined below

can pick up all the important features with probability 1. Our Tj for feature j is defined as

follows:

Tj =

∑n1

k=1w1kj −
∑n0

k=1w0kj

SE(
∑n1

k=1w1kj −
∑n0

k=1w0kj)
(3.1)

where wikj, i = 0, 1, is the statistic for feature j in class i and assume that the standard error

for any statistic T satisfies SE(T )
P−→ SD(T ) and we assume that for some interval on x > 0

we have
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P (|Tj − ηj | ≥ x) = 2(1− Φ(x))(1 + f(x, n)), (3.2)

where f(x, n) = f1(x, n) + f2(−x, n) = o(x),

and we define

ηj =
E(
∑n1

k=1w1kj)− E(
∑n0

k=1w0kj)

SE(
∑n1

k=1w1kj −
∑n0

k=1w0kj)
(3.3)

Note:

1. If we take w1kj = X1kj/n1 and w0kj = X0kj/n0 we get

Tj =
X̄1j − X̄0j

√

S2
1j/n1 + S2

0j/n0

which is the two sample t-test defined in Fan and Fan (2008).

2. If we take w1kj = r1kj and w0kj = k for 1 ≤ k ≤ n1, or 0 otherwise. Assuming

n1 ≤ n0. Here r1kj is the rank of X1kj in the combined ranking of feature j in the two classes

then we get

Tj = Uj

where Uj =
∑n1

k1=1

∑n0
k0=1 φ(X1k1j

,X0k0j
)

SD(
∑n1

k1=1

∑n0
k0=1 φ(X1k1j

,X0k0j
))

is the Wilcoxon-Mann Whitney statistic where

φ(x, y) = 1 if x− y < 0, 0 otherwise.

3. If Xikj is a binary data and if we take w1kj = X1kj/n1 and w0kj = X0kj/n0 in 1 then

we get the following two-sample proportion test statistic

Tj =
p1j − p0j

√

p1j(1− p1j)/n1 + p0j(1− p0j)/n0

where p1j = X̄1j and p0j = X̄0j.

The most important features will be the ones with large value of |Tj| for j = 1, . . . , p.
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We state the theorem and give the proof for our generalized theorem as follows:

Theorem 3.1. Assume that the vector µd = µ1−µ0 is sparse and without loss of generality

only first s entries are nonzero. Let s be a sequence such that log(p − s) = o(nγ) and

log s = o(nγ) for some 0 < γ < 1/3. Suppose min
1≤j≤s

|ηj| = n−γCn such that Cn/n
3γ
2 → c∗.

For t ∼ cn
γ
2 with some constant 0 < c < c∗/2 we have

P (min
j≤s

|Tj| ≥ t, and max
j>s

|Tj| < t) → 1.

Proof of Theorem 3.1: Without loss of generality we assume n1 ≤ n0.

Note that

P (min
j≤s

|Tj| ≥ t, and max
j>s

|Tj| < t) = 1− P (min
j≤s

|Tj | ≤ t, or max
j>s

|Tj| > t)

≥ 1− P (min
j≤s

|Tj| ≤ t)− P (max
j>s

|Tj | > t).

To prove that P (min
j≤s

|Tj| ≥ t, and max
j>s

|Tj| < t) → 1, it is enough to prove that

P (min
j≤s

|Tj| ≤ t) → 0 and P (max
j>s

|Tj| > t) → 0.

We divide the proof in two parts.

(a) Let us first look at the probability P (max
j>s

|Tj| > t). Using Boole’s inequality,

P (max
j>s

|Tj| > t) ≤
p
∑

j=s+1

P (|Tj| > t)

Since for j > s, ηj = 0, so by our assumption (3.2)

P (|Tj| ≥ t) = 2(1− Φ(t))(1 + f(t, n)). (3.4)
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Since for the normal distribution, it is easy to show the following tail probability in-

equality

1− Φ(t) ≤ 1√
2π

1

t
e

−t2

2 ,

equation (3.4) becomes

P (|Tj| ≥ t) = 2(1− Φ(t))(1 + f(t, n))

≤ 2√
2π

1

t
e

−t2

2 (1 + f(t, n)).
(3.5)

Then
p
∑

j=s+1

P (|Tj| > t) ≤ (p− s)
2√
2π

1

t
e

−t2

2 (1 + f(t, n)).

If we let t ∼ cn
γ
2 , then we have

(p− s)
2√
2π

1

t
e

−t2

2 (1 + f(t, n)) → 0

since log(p− s) = o(nγ) with 0 < γ < 1/3. Thus, we have

P (max
j>s

|Tj| > t) → 0.

(b) Now, we consider P (min
j≤s

|Tj| ≤ t). Define T̃j := Tj − ηj .

Then similar with the lines in (a), we have

∑

j≤s

P (|T̃j| ≥ t) ≤ s
2√
2π

1

t
e

−t2

2 (1 + f(t, n)) → 0 (3.6)

Let α0 := min
j≤s

|ηj| and it follows that

P (min
j≤s

|Tj| ≤ t) = P (min
j≤s

|T̃j + ηj | ≤ t) ≤ P (min
j≤s

|ηj| −max
j≤s

|T̃j| ≤ t) = P (max
j≤s

|T̃j | ≥ α0 − t).
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The inequality is from reverse triangle inequality.

Then

P (min
j≤s

|Tj | ≤ t) ≤ P (max
j≤s

|T̃j| ≥ α0 − t) (3.7)

If t ∼ cn
γ
2 and α0 ∼ n−γCn for some Cn/n

3γ
2 → c∗, since α0 − t ≥ t,

P (max
j≤s

|T̃j | ≥ α0 − t) ≤ P (max
j≤s

|T̃j| ≥ t).

Therefore, using equations (3.6) and (3.7) we have

P (min
j≤s

|Tj| ≤ t) → 0.

Combination of parts (a) and (b) complete the proof.

3.3 Conclusion

We know that the two-sample t-test heavily depends on the assumption that the popu-

lation are normally distributed. To over come the assumption, in this chapter we proposed

a generalized feature selection method which does not need normality assumption. We need

only asymptotic normality. Our generalized feature selection statistic is a special case of

two-sample t-test, Wilcoxon-Mann Whitney, and two-sample proportion test statistics. We

have shown that our generalized feature selection test method can pick up all the important

features with probability 1.
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Chapter 4

Applications of High-Dimensional Classification in Text Mining

4.1 Introduction

Text mining, also referred to as text data mining, roughly equivalent to text analytics,

refers to the process of deriving high-quality information from text. High-quality information

is typically derived through the devising of patterns and trends through means such as

statistical pattern learning.

Text categorization/classification (TC) is the grouping of a text into two or more classes

(Mahinovs & Tiwari, 2007). The goal of TC is to classify documents (academic articles,

emails, etc) into categories. For example, news articles into ”local” and ”global”, e-mails

into ”spam” and ”ham”, and customer feedbacks into ”positive” and ”negative” can be

classified.

Feature selection is the process of selecting a subset of relevant features for use in

model construction. The central assumption when using a feature selection technique is that

the data contains many redundant or irrelevant features which do not help separating the

classes. Redundant features are those which provide no more information than the currently

selected features, and irrelevant features provide no useful information in any context for

classification.

Weighting is a process consists of choosing terms which are important (contribute more

than others) for a document and giving these terms more importance (weight) in the analysis.

There are several methods to apply Weighting process; Boolean Retrieval, Term Frequency

Weighting, and Term Frequency-Inverse Document Frequency (Tf-Idf) Weighting Methods

(Adsiz, 2006).
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Boolean Retrieval : if a word occurs in a document then the weight of the word is 1,

otherwise it is 0.

akj =











1 if fkj > 0,

0 otherwise

where akj is the jth term of the kth document, and fkj is the number of occurrence of the

term in the document.

Term Frequency Weighting : In this method, the number of occurrences of a word in a

document is considered as weight for that word. That is, term frequency weight is equal to

the number of occurrence of the word in document.

akj = fkj.

Term Frequency-Inverse Document Frequency (Tf-Idf) Weighting: the tf-idf weights are

often used to evaluate how a word is significant to a document. We know that tf measures

how frequent a word in a document, while idf measures infrequency. We define the inverse

document frequency of a term as follows:

idfj = log
n

dfj
,

where n is the total number of documents and dfj is the number of documents in that the

word occurs.

Therefore, the tf-idf weighting value for the jth term of the kth document is given by

the following formula.

tf − idfkj = fkj(log
n

dfj
).

Vector Space Models for Text : Although the vector space model ignores the context

of each word in a document (commonly referred to as the ”bag of words” approach), it is

useful because it provides an efficient, quantitative representation of each document. In this

45



approach, documents are represented as vectors of length p, where p is the number of unique

terms that are indexed in the collection. For any given document, the jth entry of its vector

representation is typically a function of the frequency of term j in that document multiplied

by a weighting for the term. The vector for each document is generally very sparse (i.e., it

contains a high proportion of zeroes) because few of the terms in the collection as a hole are

contained in any one given document.

Text Preprocessing : In the text preprocessing, the key question is how to process un-

structured textual information and extract meaningful numeric indices from the text. There

are many special techniques for pre-processing text documents to make them suitable for

mining. We first parse the text of documents into separate words, perform following prepro-

cessing dimension reduction techniques and use the resulting information from the dimension

reduction to significantly improve the classification accuracy of the documents.

Stopwords and punctuations removal : The stopword list used in this dissertation has the

most frequent words that often do not carry much meaning. These words are the stopwords

list from English language. Since including non-informative words will dilute our analysis,

the data should be as clean and consistent as possible. After removing stopword list, a simple

collection of low-information or extraneous words that you want to remove from the text

such as a, an, the, be, with, by, etc., we can create a crucial start for obtaining valid and

useful results. Moreover, synonym list can also be used to improve the quality of the text

mining output, but creating the synonym list is a very labor intensive and time-consuming

process. Normally, a change in the stopword list and synonym lists can dramatically alter

the term weightings. Sometimes it is a bit hard to tune. The porter stemming algorithm

treats words with the same stem as synonyms and you can use it as a substitute to synonym

list. So by considering the costs and accuracy, we will not devote a large amount of effort to

create good stopword and synonym lists and only throw away all punctuations and English

language stopwords.
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Excluding too short and long strings : The next factor we have to consider is a length

of the character string. Short strings like us express a little useful information and mean-

while undesirably long and redundant strings are usually expected to have low frequencies.

According to several experiments on given dataset, excluding too long and too short strings

can highly reduce dimension and clean text. Thus, after removing all symbols but only

letters and digits, the strings whose length are less than three and larger than sixteen will

be excluded.

Porter stemming algorithm: English words like work can be inflected with a morpholog-

ical suffix to produce works, working, worked which share the same stem work. The porter

stemmer has five steps to progressively strip the suffixes as s, es, ed, ing, al, er, ic, able,

ment, ive, etc. for short and long stems.

In addition, some special word like kept has kept as its lemma. However, using the

porter stemmer, their link will be missed and the stemmed word for original word kept is

still kept. Since the porter stemmer operates on a single word without knowledge of the

context, and we cannot distinguish the words of different meanings solely depending on the

part of speech. It requires lemmatization, a dictionary look-up process, which can essentially

select the appropriate lemma depending on the context to solve this issue. But the porter

stemmer is normally run faster and easier to implement.

If p is the number of distinct terms in a collection of n = n1 + n0 documents, then

let A be the n × p matrix that represents this collection. This matrix is known as the

document-term matrix, where the documents are rows (taken as the observations) and the

terms are columns (taken as variables). The transpose of this matrix, where terms are rows

and documents are columns, is known as the term-document frequency matrix. Let the

document vectors be {X11,X12, . . . ,X1n1} for class C1 and {X01,X02, . . . ,X0n0} for class

C0. The document vectors for class Ci, i = 0, 1 can be written as

X ik = (Xik1 Xik2 . . . Xikp), k = 1, . . . , ni; i = 0, 1,
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where Xikj is the weight frequency of term j in document k from class i. The document-term

matrix is the n× p matrix given by

A =

































X11

...

X1n1

X01

...

X0n0

































.

As an example, consider these collection of two of my gmail message subjects with the

first is from class C1, which is in my inbox and the second one from class C0, which is in my

spam where each message subject is considered to be a document:

1. Application Confirmation

2. Sale-Ink and toner sale up to 85% off

Then the corresponding document-term frequency matrix with term frequency weighting

is displayed in the following table.

Documents and Application Confirmation Ink off Sale to toner up

X11 0 1 1 0 0 0 0 0 0

X01 1 0 0 1 1 2 1 1 1

4.2 Singular Value Decomposition (SVD) and Principal Component Analysis

(PCA)

Definition 5. Singular Value Decomposition (SVD): Let X be a n×p matrix of real numbers.

Then there exist an n× n orthogonal matrix U and a p× p orthogonal matrix V such that
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X = UΛV T , (4.1)

where the n × p matrix Λ has (j, j) entry λj ≥ 0 for j = 1, 2, . . . ,min(p, n) and the other

entries are zero. The positive constants λj are called the singular values of X .

The columns of U are called the singular values for documents and the columns of V

are the singular values for the terms.

The singular value decomposition can also be expressed as a matrix expansion that

depends on the rank r of X. Specifically, there exist r positive constants λ1, λ2, . . . , λr, r

orthogonal n×1 unit vectors u1,u2, . . . ,ur, and r orthogonal p×1 unit vectors v1, v2, . . . , vr,

such that

X =
r
∑

j=1

λjujv
T
j = U rΛrV

T
r ,

where U r = [u1,u2, . . . ,ur],V r = [v1, v2, . . . , vr], and Λr is an r × r diagonal matrix with

diagonal entries λj .

Here XXT has eigenvalue-eigenvector pairs (λ2
j ,uj), so

XXTuj = λ2
juj

with λ2
1, λ

2
2, . . . , λ

2
r > 0 = λ2

r+1, λ
2
r+2, . . . , λ

2
p for (p > n). Then vj = λ−1

j XTuj. Alternatively,

the vj are the eigenvectors of XTX with the same nonzero eigenvalues λ2
j .

Suppose that the random variables Y 1 and Y 0 representing two classes C1 with mean

vector µ1 and C0 with mean vector µ0 follow p−variate distributions with densities f(Y |θ1)

and f(Y |θ0) respectively with Σ the common covariance matrix where θi ∈ Θ = {(µi,Σ) :

µi ∈ Rp, det(Σ) > 0, i = 0, 1} is the parameter space consisting of the mean vectors and

the common covariance matrix. In other words,
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Y i ∼ fi(Y |θi) = f(Y |θi), i = 0, 1. (4.2)

Definition 6. Principal Component Analysis (PCA): Principal Component Analysis (PCA)

specifies that the square covariance or correlation matrix Σ is formed and then the eigenvalue

decomposition of Σ is calculated:

Σ = QΛQT , (4.3)

where Q is the p × p orthogonal matrix whose columns are the eigenvectors of Σ. Λ is the

diagonal matrix whose diagonal elements are the corresponding eigenvalues arranged in de-

creasing order.

The columns of Q are called the principal components. We call QT the projection weight

matrix W and the transformed data matrix S can be obtained from the original data matrix

X by

S = XW = XQ. (4.4)

Every data set has principle components, but PCA works best if data are Gaussian-

distributed. For large sample size data the central limit theorem allows us to assume Gaussian

distributions.

4.2.1 Comparing SVD and PCA

Although based on equivalent procedures, since PCA and SVD approach operate on

different data, they do not produce the same results. Depending on whether the raw data is

used or the covariance matrix is used, different vectors will be found as basis vectors for the

reduced space. If we were to use the mean-adjusted document-term frequency data, rather

than the raw data, the SVD approach and PCA, applied to the covariance matrix, would

produce identical results (Albright, Russ (2004)).

50



4.2.2 Sparse vectors for SVDs

Suppose that

µd = µ1 − µ0, µa = (µ1 + µ0)/2, D = diag(Σ), (4.5)

where µ1 = ( ¯SV D11, . . . , ¯SV D1p)
T and µ0 = ( ¯SV D01, . . . , ¯SV D0p)

T . Let tikj, k = 1, . . . , ni, i =

0, 1 be the SVD term score for variable j from class i in the training data matrix. The sample

mean vectors from classes C1 and C0, based on training data are given as,

¯SV D1j =
1

n1

n1
∑

k=1

t1kj and ¯SV D0j =
1

n0

n0
∑

k=1

t0kj, j = 1, . . . , p. (4.6)

Note that theoretically D = Σ, as the SVD’s are uncorrelated. Note also that the SVD’s are

approximately normally distributed.

We define sparse vector and signal for the SVDs as follows:

Definition 7. Suppose that µd = (α1, α2, . . . , αs, 0, . . . , 0)
T is the p × 1 mean difference

vector where αj ∈ R\{0}, j = 1, 2, . . . , s. We say that µd is sparse if s = o(p). Signal is

defined as Cs = µT
dD

−1µd =
∑s

j=1

α2
j

σ2
j

where σ2
j is the common variance for feature j in the

two classes.

4.2.3 Fisher and Naive Bayes Discriminant Functions for SVDs

Let π0 and π1 be the class prior probabilities for classes C0 and C1 respectively. A new

observation Y is to be assigned to one of C1 or C0. The optimal classifier is the Bayes rule:

δ(Y , θ1, θ0) = 1

{

log
f(Y |θ1)

f(Y |θ0)
> log

π0

π1

}

, (4.7)
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where 1 denotes the indicator function with value 1 corresponds to assigning Y to C1 and 0

to class C0.

Unless specified, throughout this section we let that Y 1 ∼ Np(µ1,Σ) and Y 0 ∼

Np(µ0,Σ). Under these assumptions (4.7) becomes

δ(Y ,µd,µa,Σ) = 1

{

µT
dΣ

−1(Y − µa) > log
π0

π1

}

. (4.8)

Note that if π1 = π0 = 1/2, then we have the Fisher discriminant rule:

δF (Y ,µd,µa,Σ) = 1
{

µT
dΣ

−1(Y − µa) > 0
}

, (4.9)

with corresponding misclassification error rate

W (δF , θ) = Φ̄

(

(µT
dΣ

−1µd)
1/2

2

)

. (4.10)

Alternatively, assuming independence of components and replacing off-diagonal elements of

Σ with zeros leads to a new covariance matrix,

D = diag(Σ), (4.11)

and a different discrimination rule, the Naive Bayes,

δNB(Y ,µd,µa, D) = 1
{

µT
dD

−1(Y − µa) > 0
}

, (4.12)
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whose misclassification error rate is

W (δNB, θ) = Φ̄

(

µT
dD

−1µd

2(µT
dD

−1ΣD−1µd)
1/2

)

. (4.13)

Note that when D = Σ, when the variables are uncorrelated, then Fisher and Naive

Bayes would coincide.

For the raw data: generally D 6= Σ, as the terms may be correlated, then Fisher and

Naive Bayes would produce different results.

For the SVD : since theoretically D = Σ, Fisher and Naive Bayes are equivalent. There-

fore, Naive Bayes is optimal method.

It is important for us to distinguish between discriminative and signal sets. The defini-

tions in (Mai etal., 2012) are given below.

Definition 8. A discriminative set is A = {j : {(Σ−1(µ1 − µ0)}j 6= 0}, since the Bayes

classification direction is Σ−1(µ1 − µ0). Variables in A are called discriminative variables.

Definition 9. The signal set is defined as Ã = {j : µ1j 6= µ0j}; variables in Ã are called

signals.

Ideally, Ã is the variable selection outcome of an independence rule. Practically, inde-

pendence rules pick the strongest signals indicated by the data. When Σ is diagonal, A = Ã.

For a general covariance matrix, however, the discriminative and the signal sets can be very

different.

In most text mining problems, we reduce the dimension of the feature space using the

Singular Value Decomposition (SVD). Researchers take the first few SVDs for classification.

They choose the first m important ones based on the ratio

∑m
j=1 λj

∑p
j=1 λj

which is the amount of variation explained by the first m SVDs.
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In this dissertation, we argue that the first few singular value decompositions (SVDs)

which account for most of the variation are not necessarily the most important ones for

classification. The variation comes from both noise and signal. If the variation of noise is

more than the variation for signal, even though, we have large variation, the SVD will not

carry much information for classification. Therefore, we further select the important SVDs

based on two sample t-test which gets us the discriminative set. We are motivated by the

following simple example:

Let µ1 = (α, 0, 0)T , α 6= 0,µ0 = (0, 0, 0)T , σjj = 1, and σkj = ρ ∈ [0, 1) when k 6= j

for j = 1, 2, 3. The eigen-values of Σ are λ1(Σ) = 1 + 2ρ, λ2(Σ) = 1 − ρ, and λ3(Σ) =

1 − ρ with one possible choice corresponding eigen-vectors e1 = (1/
√
3, 1/

√
3, 1/

√
3)T , e2 =

(1/
√
2,−1/

√
2, 0)T , and e3 = (1/

√
6, 1/

√
6,−2/

√
6)T respectively. Let X1 = (x11, x12, x13)

T

and X0 = (x01, x02, x03)
T be random vectors from classes C1 and C0 respectively. Then,

SV Dij = eTj (X i − µa), i = 0, 1, and j = 1, 2, 3. Therefore, the SVD vectors are Y 1 =

(SV D11, SV D12, SV D13)
T and Y 0 = (SV D01, SV D02, SV D03)

T for the two classes respec-

tively.

Our aim is to choose one SVD out of the three SVDs. The absolute value of the

expected two sample t-statistics are T1 = |α|√
3(1+2ρ)

√
1/n1+1/n0

, T2 = |α|√
2(1−ρ)

√
1/n1+1/n0

, T3 =

|α|√
6(1−ρ)

√
1/n1+1/n0

respectively. It is easy to show that the second SVD has higher absolute

value two sample t-statistic value than the first and third. Therefore, the important one for

classification will be the second SVD not the first.

We generalize the above example into the following theorem for equal mean difference

and equicorrelation matrix.

Theorem 4.1. Let µd be the p × 1 equal sparse mean difference vector, each with α 6= 0,

with the number of non-zero mean differences being s and Σ is an equicorrelation matrix

with off-diagonals ρ ∈ [0, 1). Suppose that (p − s)2 ≥ s2(p − 1) (which works for all ρ) or

ρ ≥ s2(p−1)−(p−s)2

(p−s)(p−1)+s2(p−1)
. Then there is an SVD with index j 6= 1 such that the absolute value of

its expected value of the t-statistic is the largest and has better classification performance.
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Proof of Theorem 4.1: Let us consider the mean difference vector µd and let j= the first

location, from left to right, for which we get all the s non-zero mean differences. It easy to

see that j = s, s+ 1, . . . , p. We want to show that for all j in {s, s+ 1, . . . , p} it is true that

the absolute value of the expected value of the jth SVD is bigger or equal to the absolute

value of the expected value of the 1st SVD.

Note that the eigen-values for Σ are λ1(Σ) = 1 + (p − 1)ρ, λ2(Σ) = λ3(Σ) = · · · =

λp(Σ) = 1− ρ. Let us take the following choice of eigen-vectors for Σ:

eT
1 =

(

1√
p
, 1√

p
, . . . , 1√

p

)

eT
2 =

(

1√
1×2

, −1√
1×2

, 0, . . . , 0
)

eT
3 =

(

1√
2×3

, 1√
2×3

, −2√
2×3

, 0, . . . , 0
)

...

eT
i =

(

1√
(i−1)×i

, . . . , 1√
(i−1)×i

, −(i−1)√
(i−1)×i

, 0, . . . , 0

)

...

eT
p =

(

1√
(p−1)×p

, . . . , 1√
(p−1)×p

, −(p−1)√
(p−1)×p

)

.

Let us consider the following absolute values of the expected values for the t-statistics:

E[T1] =
|eT1 µd|

SD(eT
1 µd)

=
s|α|/√p

√

1+(p−1)ρ
n1

+ 1+(p−1)ρ
n0

E[Tj ] =
|eTs+1µd|

SD(eT
s+1µd)

=
s|α|/

√
(s+1)s

√

1−ρ
n1

+ 1−ρ
n0

, for j = s

E[Tj ] =
|eTj µd|

SD(eT
j µd)

=
(j−s)|α|/

√
(j−1)j

√

1−ρ
n1

+ 1−ρ
n0

, for j = s+ 1, . . . , p.

It is enough to show that E[Tj ] ≥ E[T1] for j = s, s+ 1, . . . , p. It is obvious to see that

E[Ts] ≥ E[T1] for p >> s.

For j = p, E[Tp] =
(p−s)|α|/

√
(p−1)p

√

1−ρ
n1

+ 1−ρ
n0

. It is easy to see that the statement E[Tp] ≥ E[T1]

is equivalent to ((p− s)(p− 1)+ s2(p− 1))ρ+(p− s)2 − s2(p− 1) ≥ 0. If (p− s)2 ≥ s2(p− 1)

or ρ ≥ s2(p−1)−(p−s)2

(p−s)(p−1)+s2(p−1)
, it is easy to see the inequality holds. Hence, E[Tp] ≥ E[T1].
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Since E[Tj ] is a decreasing function of j, we have E[Tj] ≥ E[T1] for j = s + 1, s +

2, . . . , p− 1. This completes the first part of the proof.

To prove the second part of theorem 4.1: note that for the Naive Bayes rule the misclas-

sification error rate using the first SVD alone is Φ̄

(

(eT
1 µd)

T eT1 µd

2
√

(eT1 µd)
T λmax(Σ)eT

1 µd

)

= Φ̄

(

|eT1 µd|
2
√

λmax(Σ)

)

.

Similarly, and the misclassification error rate using the jth SVD alone is Φ̄

(

|eTj µd|
2
√

λj(Σ)

)

. From

the first part of theorem 4.1, we know that
|eT1 µd|

2
√

λmax(Σ)
≤ |eTj µd|

2
√

λj(Σ)
. Since, Φ̄(x) is a decreasing

function of x, the misclassification error rate using the first SVD alone is higher than the

misclassification error rate using the jth SVD alone. This completes the second part of the

proof.

Let us consider the following example to illustrate the conditions in theorem 4.1. Con-

sider p = 4500. The following figure shows s versus f(s) = s2(p−1)−(p−s)2

(p−s)(p−1)+s2(p−1)
, the right hand

side in the condition of theorem 4.1.
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Figure 4.1: The horizontal axis is s and vertical axis is f(s).
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As we can see from the above figure, we need s ≤ 66, before we make any restrictions

on ρ. For example, if we take s = 90, we need ρ ≥ 0.3019376 so that the conditions on the

theorem 4.1 to hold.

Note that the conditions in theorem 4.1 can be relaxed to s < p/2 if the first s features

have non-zero mean difference.

4.3 Partitioning of the Data Matrix into Training and Validation Data Matrices

We then take a random sample of size n∗
1 and n∗

0 (n∗ = n∗
1 + n∗

0) for validation and/or

prediction performance, leaving n1 and n0 from each class to be used in the training data

set, with n = n1 + n0 documents and p terms. Thus, N = n∗ + n = (n∗
1 + n∗

0) + (n1 + n0) =

(n∗
1+n1)+(n∗

0+n0). The rows of our original document-term matrix, A, are ordered so that

it can be represented as the joining of two matrices, the training document-term matrix, AT ,

and the validation document-term matrix, AV ,

A =







AT

AV






,

where the first n1 rows of AT represent the documents from class C1 training documents and

the next n0 rows of AT represent the class C0 documents, and the n∗
1 + n∗

0 rows of AV are

similarly ordered. It is conventional to choose n∗ ≤ n.

The prediction model is based on Singular Value Decomposition (SVD) of AT and the

SVD transformations derived from AT are used on the validation/prediction data in AV . So

in the next section, we focus on the SVD of the training data set.

4.3.1 Singular Value Decomposition of the Training Data Matrix

Suppose our document-term matrix, AT , is n × p where n represents the number of

documents and p represents the number of rows. Let AT be the centered document-term

matrix where the mean frequencies of each term are subtracted from the frequencies of these
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terms in each document. That is, the mean term frequency vector is given by,

ā =
1

n
(AT )

T .1 =
1

n

n
∑

i=1

ai. (4.14)

Then the centered training and validation document-term matrices are given subtracting

the mean term frequency vector, given in (4.14),

A∗ = A− ā, A∗
T = AT − ā and A∗

V = AV − ā. (4.15)

To keep the notion simple we just refer to the centered matrices in (4.15), as AT and AV .

The singular value decomposition (SVD) of AT is given as

AT = UΛV T , (4.16)

where U(n×n) is the eigenvector matrix of AT (AT )
T and V (p×p) is the eigenvector matrix of

(AT )
TAT . Recall, rank((AT )

TAT ) = rank(AT (AT )
T ) ≤ min(n, p). Note in our case, p >> n.

To keep track of its origin, i.e. the SVD is on the training matrix, we may denote U as UT .

SVD Scoring on variables (terms): V contains the weights for the SVD scoring on terms

and U contains the weights for SVD scoring on documents. We want the scores on terms so

the matrix containing the SVD scores is given as, transformed document-term matrix (rows

are the documents and columns are SVDs)

SVDT = ATV. (4.17)
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SVD Scoring on Observations (documents): U contains the weights for the SVD scoring

on document if we want the scores on documents for each term

SVD = UTAT . (4.18)

SVD Term Scoring on the hold-out data (validation term-document matrix, AV ): Using

the matrix V given in (4.16) and used in (4.17), the transformed SVD document-term matrix

for AV is given as

SVDATAV
= AV V. (4.19)

Notice that the transformation in (4.17) and (4.19) could be completed using the cen-

tered document-term matrix, A, given in (4.15), so

SV DA =







ATV

AV V






.

So, the columns in the above matrix contain the sample SVD values (SVD1, SVD2, . . . , SVDp)

for each document from each dataset (training and prediction) and each class (class C1 and

C0).

4.3.2 Sorting Features Based on T-statistics on the Training Data

In this process, for each of the N rows of SVDA from the above matrix (SVDA), we

compute the absolute value of the two sample t-statistics using the first N1 and N0 rows of

SVDA. Then we sort the rows of SVDA from the largest to smallest absolute t-statistics. Here

we assume that the SVDs are approximately normally distributed and are sparse vectors.
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4.4 Overall Prediction Modeling

4.4.1 Feature Selection Algorithm

The following are the steps for our new algorithm:

Step 1: Partition the rows of the document-term matrix into the training and vali-

dation document-term matrices, AT and AV , and produce the matrix A formed by joining

AT and AV .

Step 2: Compute the mean term frequency vector from AT and compute centered

matrices, A and AT .

Step 3: Get the SVD transform matrix V = VT based on AT , then compute then

transform the full document-term matrix SVDA = ATV = AV.

Step 4: Compute the absolute value of the two-sample t-statistics using the first N1+N0

rows of SVDA, then sort from the largest to smallest.

Step 5: Compute discriminant functions for all observations using the statistics (mean

vectors and variance-covariance matrix) from SVDA, and compute the misclassification errors

for the models that use, m = 1, 2, . . . , p features. The misclassification error rates are

calculated based on the Naive Bayes or Fisher discriminant rule.

4.5 Real Data Analysis

4.5.1 NASA flight data set

The NASA flight data set can be found at https://c3.nasa.gov/dashlink/resources/138/.

This is the dataset used for the SIAM 2007 Text Mining competition. This competition

focused on developing text mining algorithms for document classification. The documents in

question were aviation safety reports that documented one or more problems that occurred

during certain flights. The goal was to label the documents with respect to the types of
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problems that were described. This is a subset of the Aviation Safety Reporting System

(ASRS) dataset, which is publicly available. The data for this competition came from human

generated reports on incidents that occurred during a flight.

In our analysis we combined the training and testing data to get 28596 documents. We

then pick two flight problems (or two columns)-column 2 and column 19 which correspond

to the faults ”Operation in noncompliance” and ”Aircraft Malfunction” respectively because

these are the two largest faults out of the 22 faults. Each of the faults have uniquely 2081

and 2486 documents respectively. We divide our data into three groups: training (1081 from

the first fault and 1486 from the second fault), validation (500 from each of the two faults),

and testing (500 from each of the two faults). After cleaning we have p = 26694 terms. The

following graph shows how Naive Bayes vs Fisher performs.
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Figure 4.2: Horizontal axis is the number of features used and the vertical axis is testing misclas-

sification error rate for Fisher vs Naive Bayes.

As we can see from the above figure, Naive Bayes dominates Fisher. For Naive Bayes

classifier the optimal number of features (or terms) selected using the validation data set is

148 with minimum error rate 0.116.
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After we apply SVD transformations for the combined document-term matrix, the first

10 indexes for the rankings of the SVDs by applying two-sample t-test is 2, 6, 9, 7, 5, 19,

8, 15, 36, and 13. As we can see the first SVD does not show up even in the first 10 ranks.

The following figure shows how Naive Bayes and Fisher performs after we take the SVD

transformation on the training data. As we can see from the figure the SVD after we rank

them based on the two sample t-statistic performs better than the unranked ones for both

Naive Bayes and Fisher. We can also see that Naive Bayes and Fisher perform close to each

other as the SVDs are uncorrelated. This results supports our theoretical result given in this

chapter.
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Figure 4.3: Horizontal axis is the number of svds used and the vertical axis is testing misclassifi-

cation error rate for Naive Bayes vs Fisher.

For Naive Bayes classifier the optimal number of svds selected using the validation data

set is 28 with minimum error rate 0.117. Comparing it with before the SVD transformation,

we can see that we achieve almost the same error rate for fewer SVDs.
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4.5.2 DBWorld Email Messages

DBWorld mailing list announces conferences, jobs, books, software and grants. Pub-

lishing new announcements does not require to provide their category. Some writers use to

insert specific acronyms in the title (e.g. CFP, CFW, CFE), although it is not a widely

shared practice.

Michele Falannino (2011) have manually collected the last 64 e-mails that he received

and he has built two different data sets. The first one uses only the subjects, while the

second one uses bodies. Both data sets have been represented by a term-document matrix

using one of the most common data structure in Text mining: bag of words. Every e-mail

is represented as a vector containing p binary values, where p is the size of the vocabulary

extracted from the entire corpus. The binary value is 1 if the corresponding word belongs

to the document, 0 otherwise. Features are unique words extracted from the entire corpus

with some constraints: words that have more than 3 characters with a maximum length of

30 characters. Bag-of-words model produces a large number of features, also in the case in

which there are few documents. In both data sets, he has also removed stop words. The data

set of subjects has got 242 features while the second one has got 4702 features. Both have

64 = 29 + 35 samples. Each data set contains also a further binary feature that indicates

the class of each sample: 1 if the sample is an announcement of conference, 0 otherwise.

We then apply the Naive Bayes rule on the SVDs of the whole term-document matrix

based on the subjects. We then calculated the training errors based on the SVDs and the

SVDs ranked according to two-sample t−statistic. We call the SVDs ranked according to

the two-sample t-test SVD then FAIR (which is the Feature Annealed Rule given in Fan and

Fan (2008)). FAIR is applying the Naive Bayes rule on the selected features. As we can see

the ranked SVDs do have lower error rates than the SVDs without ranking them by their

corresponding two-sample t−test statistic. We do the same analysis for bodies too. The

following figures are for the subjects and the bodies respectively.
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Figure 4.4: Error rate vs number of svds for subjects. We can see that ranking the svds

based on their t-statistic improves the error rate. We need also fewer number of svds.
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Figure 4.5: Error rate vs number of svds for bodies. We can see that ranking the svds based

on their t-statistic improves the error rate. We need also fewer number of svds.
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4.6 Conclusion

In this chapter we considered a binary classification text mining problem. We know

that researchers take the first few SVDs which account for most of the variation. But we

have shown that the first singular value decompositions (svds) which account for most of

the variation are not necessarily the most important ones for classification. This is because

the noise may be higher than the signal for the first few svds. We then select the important

SVDs based on the two-sample t-test. We have given a new feature selection algorithm for

text mining problems. Our flight and DBWorld data analyses support our theory.
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Chapter 5

Summary and Future Work

5.1 Summary

In this dissertation we considered a binary classification problem when the feature di-

mension p is much larger than the sample size n. We know that Fisher is an optimal classifier

and Naive Bayes is sub optimal for the population model. But in the second chapter we

have given conditions under which Naive Bayes is optimal. Through theory, simulation and

data analysis we have shown that Naive Bayes is the practical method to use than Fisher for

high-dimensional data. In designing binary classification experiments, Fisher requires full

correlation structure but using equicorelation structure we can design our experiment using

Naive Bayes. Through simulation we characterized that the two-sample t-test can pick up

all the important features as far the signal is not too low. In the third chapter we proposed

a generalized independence feature selection method and we showed that our test statistic

can pick up all the important features with probability converging to 1. Our generalized fea-

ture selection method includes the two-sample t-statistic, Wilcoxon Mann Whitney statistic,

and the two-sample proportion test. In the fourth chapter we considered a two-class text

mining classification problem. We showed that the first few singular value decompositions

(svds) are not necessarily the most important ones for classification. When we first apply

svd transformation in our training document-term matrix, and we then further select the

important svds based on the two-sample t-statistic the misclassification error rates can be

reduced. We select the optimal number of svds based on the performance on the validation

data. Our data analyses examples have showed the improvement on the error rates.
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5.2 Future Work

Our future work include extending the two-class classification problem into multi-class

problem. We have theoretically tracked the sample error rates for Naive Bayes and we are

working on the sample error rate for Fisher. We are also interested in extending the theory

and simulation given for equicorrelation structure to any correlation structure. Extending

the simulation and theoretical results given in chapter 2 will be also an interest. In this

dissertation we considered only the two-sample t-test as our feature selection method. We

are working on the general theory for heavy tailed distributions. Specifically, applying the

generalized feature selection method for feature screening and comparing it with the features

selected using two-sample t-test.
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