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Abstract

A graph G is edge-regular with parameters (n, d, λ) if G is regular of degree d on n

vertices and for all u, v ∈ V (G) such that uv ∈ E(G), |N(u) ∩N(v)| = λ, where N(v)

denotes the open neighborhood of a vertex v ∈ V (G). We explore the structure of edge-

regular graphs with particular emphasis on the case λ = 1.
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Chapter 1

Introduction

The goal of this dissertation is to add to the existing body of work regarding the existence

and structure of edge-regular graphs. Our primary results, which appear in Chapter 3,

address the question: For which orders, n, and degrees, d, do there exist edge-regular graphs

with λ = 1? Our efforts to classify those edge-regular graphs for which λ = 1 led to a

particular focus on edge-regular graphs in which each vertex has as its open neighborhood

the disjoint union of complete graphs, and this class of edge-regular graphs is described in

the second chapter.

A graph G = (V,E) has vertex set V (G) and edge set E(G). If an edge exists between

vertices u, v ∈ V (G), we say uv ∈ E(G). Distinct vertices u and v are said to be adjacent if

uv ∈ E(G). All graphs discussed herein will be finite and simple, meaning that the vertex

set is finite and there are no multiple edges between vertices and no loops from any vertex

to itself. We denote the open neighbor set or open neighborhood of a vertex v ∈ V (G) by

NG(v) = {u ∈ V (G) | uv ∈ E(G)} and the degree of v by dG(v) = |NG(v)|. When the

graph being referred to is clear from context, the subscript G may be omitted. The closed

neighborhood in G of v ∈ V (G) is N [v] = N(v) ∪ {v}. If S ⊆ V (G), S 6= ∅, the subgraph of

G induced by S has vertex set S and edge set {uv | u, v ∈ S and uv ∈ E(G)} and will be

denoted G[S]. The complete graph on n vertices will be denoted Kn. If E(G) = {uv | u, v ∈

V (G)}, we call G a complete graph. If E(G) = ∅, we say G is empty.

An edge-regular graph is a regular graph G for which there exists an integer λ such that

if uv ∈ E(G) then |N(u) ∩N(v)| = λ. That is, every pair of adjacent vertices in G have

exactly λ common neighbors. If G is an edge-regular graph with parameter λ, regular of

degree d on n vertices such that 0 < d ≤ n− 1, we write G ∈ ER(n, d, λ).
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A strongly regular graph is an edge-regular graph G ∈ ER(n, d, λ) for some n, d, and

λ, 0 < d < n − 1, for which there exists an integer µ such that for u, v ∈ V (G), u 6= v, if

uv /∈ E(G) then |N(u) ∩N(v)| = µ. That is, each pair of distinct non-adjacent vertices in

G have exactly µ common neighbors. If G is such a graph, we write G ∈ SR(n, d, λ, µ).

Strongly regular graphs have been described as lying “somewhere between the highly

structured and the apparently random [5].” They remain rare enough that the discovery of

new ones is always of interest, yet numerous and varied enough to defy easy classification.

So it stands to reason that the more abundant class of edge-regular graphs will be unlikely

to fall into tidy subclasses. Nonetheless some interesting results have been obtained for

edge-regular graphs satisfying various structural or extremal conditions.

1. In [9] all G ∈ ER(n, d, λ) satisfying d− λ ≤ 3 are described.

2. If G ∈ ER(n, d, λ) and λ > 0 then n ≥ 3(d − λ) ([10],[12]). In [12] the edge-regular

graphs with λ = 2 and n = 3(d−λ) are completely characterized, and in [17] the main

result in [12] is extended to a characterization of all edge-regular graphs satisfying

n = 3(d− λ) with λ > 0 even and d sufficiently large (depending on λ).

3. Edge-regular graphs with n = 3(d − λ) + 1, λ > 0, satisfying certain local structural

requirements are considered in [6] and [11]. The main result of [11] is of interest here:

For every d, ER(3d− 2, d, 1) = ∅.

If G and H are graphs, the join of G and H, formed by taking disjoint copies of G and

H and putting in all edges with one end in V (G) and the other in V (H), will be denoted

G ∨ H. The disjoint union, or sum, of G and H, formed by taking disjoint copies of G

and H and putting in no edges at all will be denoted G + H. If m is a positive integer,

mG = G+ · · ·+G, with G appearing m times in the sum.

A friendship graph is a graph of the form K1 ∨mK2 for some positive integer m, where

Kn indicates the complete graph on n vertices. A graph is clique friendly if and only if for

each v ∈ V (G), the graph induced by N [v] is K1 ∨mKp for some m, p ∈ N.
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Figure 1.1: A friendship graph K1 ∨ 3K2

The friendship graphs are, famously, the only finite simple graphs in which each pair

of distinct vertices has exactly one common neighbor [4]. A graph in which each pair of

distinct vertices has exactly k common neighbors is called k-friendly. The 0-friendly graphs

are mK1 + pK2, which are regular only if m = 0 or p = 0. For k > 1, any k-friendly graph

must be regular [1], and therfore also strongly regular with parameters (n, d, k, k) for some

d > 0. Thus, the friendship graphs, K1 ∨mK2 with m > 1 are the only k-friendly graphs

with k > 0 which are not regular.

In Chapter 2 we focus on edge-regular graphs which are clique-friendly, which we call

“regular clique assemblies” and describe the correspondence between regular clique assem-

blies and the geometric structures known as configurations. Among the regular clique as-

semblies are all edge regular graphs for which λ = 1, and this case is examined at length in

Chapter 3. Also in Chapter 3, the following questions are addressed extensively for λ = 1

and some observations are made for λ > 1:

1. For which triples (n, d, λ) does ER(n, d, λ) 6= ∅?

2. For which triples (n, d, λ) does ER(n, d, λ) contain a connected graph?

Chapter 4 describes the classes of graphs that result from relaxing certain requirements

in the definition of regular clique assemblies, and the final chapter enumerates some of the

remaining open problems.
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Chapter 2

Regular clique assemblies and corresponding structures

We shall begin by considering a subset of the edge-regular graphs known as regular

clique assemblies (RCAs), which we shall see are precisely those edge-regular graphs which

are also clique-friendly.

2.1 RCAs

The line graph of a graph G, denoted L(G), is formed by representing each edge in G with a

vertex in L(G). Two vertices in L(G) are adjacent if the associated edges in G are incident

with a common vertex in G.

The clique number of a graph G, denoted ω(G), is the maximum order of a clique in G.

The clique graph of G, denoted CL(G), is the graph whose vertices are the maximal

cliques of G, in which any two distinct maximal cliques of G are adjacent if and only if they

have at least one vertex in common.

If G has no isolated vertices and ω(G) = 2, then CL(G) = L(G), the line graph of G.

G is a regular clique assembly if G is regular, ω(G) ≥ 2, and

(1) every maximal clique of G is maximum;

(2) each edge of G is in exactly one maximum clique of G.

If G is a regular clique assembly on n vertices, regular of degree d, with k = ω(G), we

write G ∈ RCA(n, d, k). Certainly d ≥ k − 1. If d = k − 1, then the graph in question will

be of the form n
k
Kk, so for all that follows we will assume n > d > k − 1 ≥ 1.

4



Lemma 2.1. If G is a regular clique assembly, then any two different maximum cliques in

G have at most one vertex in common. Further, if H1, H2, and H3 are maximum cliques in

G, V (H1) ∩ V (H2) = {u}, V (H1) ∩ V (H3) = {v} and u 6= v, then V (H2) ∩ V (H3) = ∅.

Proof. If distinct maximum cliques in G had two vertices in common, then condition (2)

in the RCA definition would be violated. Suppose H1, H2, H3, u, and v are as described

above. Then H1, H2, and H3 are distinct maximum cliques. Suppose w ∈ V (H2) ∩ V (H3).

If w ∈ {u, v} then H1 and one of H2, H3 have two vertices in common, and condition (2)

is violated. Therefore w /∈ {u, v}. Then u, v, w induce a K3 in G, which is contained in a

maximal, and therefore maximum, clique H4 in G which is none of H1, H2, and H3. Then

uv is in both H1 and H4, violating (2).

Proposition 2.1. If G ∈ RCA(n, d, k) then k − 1 divides d, and for each v ∈ V (G),

G [NG(v)] ' d
k−1Kk−1. Conversely, if G is a graph on n vertices such that, for some m,

p ≥ 1, G [NG(v)] ' mKp for all v ∈ V (G), then G ∈ RCA(n,mp, p+ 1)

Proof. Suppose G ∈ RCA(n, d, k). Suppose that v ∈ V (G). A neighbor u of v is in the

unique maximum clique ' Kk containing the edge uv. Any two of the maximum cliques of

G containing v have only v in common, by Lemma 2.1; thus G [NG(v)] ' mKk−1 for some

m. Since G is d-regular, d = m(k − 1).

Now suppose that G is a finite simple graph such that for every v ∈ V (G), G [NG(v)] '

mKp for some positive integers m, p. Then G is regular of degree mp. G can contain no

Kp+2, and any Kr in G, r ≤ p + 1, must be contained in one of the Kp+1’s comprising the

closed neighbor set of any one of its vertices. (For all v ∈ V (G), G [NG[v]] ' K1 ∨mKp.)

Thus ω(G) = p+ 1, and (1) in the RCA definition holds; (2) is obvious.

Corollary 2.1. RCA(n, d, k) ⊆ ER(n, d, k − 2), with equality when k ∈ {2, 3}.

Proof. If G ∈ RCA(n, d, k), then, since every edge uv of G is contained in one Kk in G,

vertices outside which cannot be adjacent to both u and v, it follows that G is edge-regular

with λ = k − 2. If G ∈ ER(n, d, 0), then G is triangle-free and d-regular; clearly G ∈
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RCA(n, d, 2). Suppose that G ∈ ER(n, d, 1). Since, for any uv ∈ V (G), |NG(u) ∩NG(v)| =

1, G can contain no K4, and no K1 nor K2 in G is a maximal clique (d > 0). Thus ω(G) = 3

and (1) and (2) in the definition of RCAs hold. Therefore, G ∈ RCA(n, d, 3)

Theorem 2.1. If G ∈ RCA(n, d, k), (d > k − 1), then

CL(G) ∈ RCA
(

nd
k(k−1) ,

k(d−k+1)
k−1 , d

k−1

)
. Further, CL(CL(G)) ' G.

Proof. The vertices of CL(G) are the maximum cliques of G. Counting the ordered pairs

(v,K), K a maximum clique in G and v ∈ V (K), in two different ways, we find that the

number of maximum cliques in G is given by

(|V (G)|)(number of maximum cliques containing each vertex)

number of vertices in each clique
=

(n)( d
k−1)

k
=

nd

k(k − 1)
.

By Lemma 2.1, two maximum cliques in G are adjacent as vertices in CL(G) if and only if

they have exactly one vertex in common. Let K be a maximum clique in G and v ∈ V (K). In

view of Proposition 2.1, K is adjacent in CL(G) to each of d
k−1 − 1 = d−k+1

k−1 other maximum

cliques containing v — indeed, in CL(G) these cliques induce, with K, a clique of order d
k−1 .

By Lemma 2.1, the maximum cliques “adjacent to K at v” are distinct from the maximum

cliques adjacent to K at any other vertex of K. Then CL(G) is regular of degree k(d−k+1)
k−1 .

The maximum cliques adjacent to K at v are also not adjacent to the maximum cliques

adjacent to K at any other vertex. Suppose a clique H1 shares v with K and a clique H2

shares a vertex u 6= v with K. Then by Lemma 2.1 H1 and H2 have no vertices in common,

and thus the corresponding vertices in CL(G) are not adjacent.

It follows that CL(G)
[
NCL(G)(K)

]
' kK d

k−1
−1. Since this holds for every vertex K of

CL(G), by Proposition 2.1 we conclude that CL(G) ∈ RCA( nd
k(k−1) ,

k(d−k+1)
k−1 , d

k−1). Applying

this result with CL(G) replacing G, we find that

CL(CL(G)) ∈ RCA

 nd
k(k−1) ·

k(d−k+1)
k−1

d
k−1

(
d

k−1 − 1
) , d

k−1

(
k(d−k+1)

k−1 − d
k−1 + 1

)
d

k−1 − 1
,

k(d−k+1)
k−1
d

k−1 − 1

 = RCA(n, d, k).
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From this we take that CL(CL(G)) has the same number of vertices as G and is d-regular.

For v ∈ V (G), let S(v) denote the d
k−1 -clique induced in CL(G) by the k-cliques in G

that contain v; S : V (G) → V (CL(CL(G))) is clearly injective, and is therefore surjective.

If u and v are adjacent in G then S(u) and S(v) have a vertex in common in CL(G),

namely, the unique maximum clique in G containing the edge uv; therefore, S(u) and S(v)

are adjacent in CL(CL(G)). Since G and CL(CL(G)) are both d-regular, and S preserves

adjacency, it must also preserve non-adjacency. Therefore S is a graph isomorphism; so G

and CL(CL(G)) are isomorphic.

Corollary 2.2. G ∈ RCA(n, 2k − 2, k) for some n and k > 2 if and only if G is the line

graph of a triangle-free k-regular graph.

Proof. If G ∈ RCA(n, 2k − 2, k) and k > 2, then by Theorem 2.1, CL(G) ∈ RCA(2n
k
, k, 2),

so CL(G) is triangle-free and k-regular and G ' CL(CL(G)) = L(CL(G)). On the other

hand, if G = L(H), H triangle-free and k-regular, then H ∈ RCA(t, k, 2), for t = |V (H)|,

so G = L(H) = CL(H) ∈ RCA( tk
2
, 2(k − 1), k), again by Theorem 2.1.

By Corollary 2.1, regular clique assemblies with clique number k = 2 are precisely the

triangle-free regular graphs. For k = 3 they are the edge regular graphs with λ = 1; we shall

see that there are quite a few of these, although they are not quite as easy to find as the

triangle-free regular graphs.

The cartesian product of two disjoint graphs, G and H, denoted G�H, has vertex set

V (G)× V (H), and two vertices (g, h) and (g′, h′) in the product are adjacent if and only if

either g = g′ and h is adjacent to h′ in H, or h = h′ and g is adjacent to g′ in G.

Taking powers using the cartesian product of graphs, (Kk)
t ∈ RCA(kt, t(k − 1), k) for

all integers k, t ≥ 2, so there are non-trivial RCAs with clique number k for all k > 3.

By Theorem 2.1, CL((Kk)
t) ∈ RCA(kt−1t, k(t − 1), t), which enlarges the supply of these

assemblies somewhat. We can also produce RCAs by applying Theorem 2.1 with k ∈ {2, 3}.

If G ∈ RCA(n, d, 2) = ER(n, d, 0) and d > 1 then CL(G) = L(G), the line graph of G,

7



and, by Theorem 2.1, L(G) ∈ RCA
(
nd
2
, 2(d− 1), d

)
. If G ∈ RCA(n, d, 3) = ER(n, d, 1) and

d > 2, then CL(G) ∈ RCA(nd
6
, 3(d−2)

2
, d
2
).

By Theorem 2.1, if G ∈ RCA(n, k(k − 1), k), then CL(G) ∈ RCA(n, k(k − 1), k),

which naturally generates the question: is G necessarily isomorphic to CL(G)? And, if

not necessarily, then for which n and k does G ∈ RCA(n, k(k − 1), k) exist such that

G ' CL(G)? The answer to the first question is, generally: no, as we will see later. We

know very little about the second question, but we do know this: there is exactly one graph

in ER(15, 6, 1) = RCA(15, 6, 3), and therefore it is isomorphic to its clique graph.

2.2 Configurations

An incidence structure S is a triple (P ,B,J ) where P is a set of points, B is a set of lines (or

blocks), and J ⊆ P ×B is the incidence relation of S. If (p,B) ∈ J we say that the point p

lies on (or is contained in) the line B. A configuration (vr, bk) is an incidence structure of v

points and b lines such that each line contains k points, each point lies on r lines, and two

different points are connected by at most one line. Counting ordered pairs (p,B) ∈ P × B

where p ∈ B, we see that bk = vr for any configuration (vr, bk). If v = b (equivalently, r = k),

the configuration is symmetric and is denoted vk. A triangle or trilateral in a configuration

is a set of three points which are pairwise collinear but not all three contained in a single

line.

Proposition 2.2. Taking the vertices of a graph as points and maximal cliques as lines, an

element of RCA(n, d, k) corresponds to a trilateral-free configuration
(
n( d

k−1),
(

nd
k(k−1)

)
k

)
,

and a trilateral-free configuration (vr, bk) corresponds to an element of RCA(v, r(k − 1), k).

Proof. Suppose G ∈ RCA(n, d, k) and the incidence structure S is defined by P = V (G),

B = {{v1, . . . , vk} | {v1, . . . , vk} induces a maximal clique in G}. By definition, each edge of

G is contained in exactly one maximum clique, so a pair of points in P will be connected by

at most one line. Every maximal clique in G is maximum, so G cannot contain an induced

8



Figure 2.1: A configuration (92, 63) and corresponding graph in RCA(9, 4, 3)

K3 which is not contained in a maximum clique. Then S must be trilateral-free. Clearly P

contains n points and the number of points on each line in B is k. The number of maximum

cliques containing a vertex v ∈ V (G) is d
k−1 , so the corresponding v in P lies on d

k−1 lines.

The number of maximum cliques in G is determined as in the proof of Theorem 2.1. We

count d
k−1 maximum cliques for each of the n vertices. Each clique is counted k times, once

for each of its vertices, so the total number of maximum cliques in G, and thus the number of

lines in B, is nd
k(k−1) . Then the incidence structure S is a configuration

(
n( d

k−1),
(

nd
k(k−1)

)
k

)
.

Suppose (P ,B) is a trilateral-free (vr, bk) configuration and G is defined by V (G) = P

and u, v ∈ V (G), u 6= v, are adjacent in G if and only if u and v are in the same B ∈ B.

By definition G is a graph on v vertices. For u ∈ V (G), the corresponding point u in P is

contained in r lines, each containing k points and each pair of which intersect only at u. So

the degree of u in G is r(k − 1). A maximal clique in G corresponds to a set of pairwise

collinear points in P . We have supposed (P ,B) to be trilateral-free, so any set of pairwise

collinear points must all lie on a common line. Then a maximal clique in G corresponds to a

line in B. Thus the clique number of G is k and a maximal clique in G is maximum. An edge

in G corresponds to a pair of points in P , which, by definition, are connected by at most

one line. Then an edge in G must be contained in exactly on maximum clique. Therefore

G ∈ RCA(v, r(k − 1), k).
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If (P ,B) is a (vr, bk) configuration, then its dual (B,P) is a (bk, vr) configuration [8].

(In the dual, B ∈ B is in the block associated with p ∈ P if and only if p is in B in the

configuration (P ,B). In (P ,B) two different points are contained in at most one common

line. Consequently, lines in (P ,B) intersect in at most one point, so two points in the dual

(B,P) are incident to at most one common line.) It is clear that the dual of the dual

is the original configuration, and this observation provides an elegant alternate proof of

Theorem 2.1, when it is realized that if (P ,B) is trilateral-free, and G is the corresponding

regular clique assembly, then CL(G) is the graph corresponding to the dual (B,P) (which

is also trilateral-free, either by virtue of its correspondence to CL(G) or by direct proof).

The thrashing around in the proof of Theorem 2.1 has, in this proof, been absorbed into the

verification of the correspondence between trilateral free configurations and regular clique

assemblies.

A symmetric (nk) trilateral-free configuration corresponds to a graph in RCA(n, k(k −

1), k), one of the classes of regular clique assemblies closed under taking clique graphs.

Obviously G ∈ RCA(n, k(k − 1), k) is isomorphic to CL(G) if and only if the configuration

corresponding to G is isomorphic to its dual; so these are cases in which a graph isomorphism

question is interchangeable with a geometric isomorphism question.

By Proposition 2.2, a regular clique assembly with parameters (n, 6, 3) corresponds to

a trilateral-free symmetric configuration (n3). In Section 3.1.3 we consider ∪
n
ER(n, 6, 1) =

∪
n
RCA(n, 6, 3) at some length, so the primary result of [16] (Theorem 1.2) is of particular

interest:

Theorem 2.2 (Raney, 2013). For every n ≥ 15 except n = 16, there are trilateral-free (n3)

congurations.

Corollary 2.3. For every n ≥ 15 except n = 16, RCA(n, 6, 3) = ER(n, 6, 1) is non-empty.

In Section 3.1.3 we provide constructions for graphs in ER(n, 6, 1) for infinitely many

values of n and give an alternate proof that ER(n, 6, 1) is non-empty for all but finitely

many values of n.

10



Chapter 3

Edge-regular graphs

We shall focus most of our attention on the edge-regular graphs with λ = 1 with some

observations about edge-regular graphs with λ = 2 which are not regular clique assemblies.

3.1 λ = 1

By Corollary 2.1, ER(n, d, 1) = RCA(n, d, 3). We sum up the conclusions of Chapter 2 for

ER(n, d, 1) in the following.

Proposition 3.1. Suppose ER(n, d, 1) 6= ∅. Then

1. d is even;

2. 3 | nd

3. for each G ∈ ER(n, d, 1) and v ∈ V (G), NG[v] induces in G a friendship graph,

{v} ∨ d
2
K2;

4. if d > 2, each G ∈ ER(n, d, 1) is the clique graph of its clique graph, CL(G) ∈

RCA(nd
6
, 3
2
(d− 2), d

2
).

Conversely,

3.′ If G is a graph such that for some positive integer m, for each v ∈ V (G), G [NG[v]] '

{v} ∨mK2, then G ∈ ER(n, 2m, 1), n = |V (G)|; and

4.′ if G is the clique graph of some H ∈ RCA(nd
6
, 3
2
(d − 2), d

2
), for some integers n and

d > 2, then G ∈ ER(n, d, 1).

11



For non-negative integers d and λ, let Sλ(d) = {n | ER(n, d, λ) 6= ∅} and Scλ(d) = {n |

ER(n, d, λ) contains a connected graph }. Observe that Sλ(d) is closed under addition, since

if Gi ∈ ER(ni, d, λ), i = 1, 2, then G1 + G2 ∈ ER(n1 + n2, d, λ). Thus, to find Sλ(d) it

suffices to find Scλ(d).

3.1.1 d = 2

Clearly the only edge regular graphs with d = 2 and λ = 1 are the graphs mK3, m = 1, 2, . . ..

Therefore S1(2) = {3, 6, 9, . . .}. Obviously Sc1(2) = {3}.

3.1.2 d = 4

Corollary 3.1. G ∈ ER(n, 4, 1), n = |V (G)| if and only if G is the line graph of a triangle-

free 3-regular graph.

Proof. By Corollary 2.1, ER(n, 4, 1) = RCA(n, 4, 3); the conclusion follows from Corol-

lary 2.2.

As a side note, in Section 4 of [15] the authors consider a 4-regular K4-free graph G with

the property that for every u ∈ V (G), G [N [u]] = K1∨2K2. If H is the graph whose vertices

correspond to triangles in G and if vertices of H are adjacent if and only if the associated

triangles in G have a common vertex, then the authors conclude that G is the line graph

of H and H is 3-regular and make further remarks from which it follows that H is K3-free.

Thus Corollary 3.1 could also be drawn almost entirely from this observation.

By Proposition 3.1, if 3 - d and ER(n, d, 1) 6= ∅, then 3|n. Therefore, if 3 - d, S1(d) is

contained in {3, 6, 9, . . .}. By Remark 2 at the end of Chapter 1, plus a little work, the unique

smallest edge-regular graph with d = 4, λ = 1, is L(K3,3) with 9 = 3(4 − 1) vertices. For

m > 3 it is easy to obtain a connected bipartite — and therefore triangle-free — 3-regular

graph H on 2m vertices. Then L(H) ∈ ER(3m, 4, 1). Thus Sc1(4) = S1(4) = {9, 12, 15, ...}.

Corollary 3.2. There are exactly two graphs in ER(12, 4, 1), the line graphs of K4,4 −M ,

where M is a perfect matching in K4,4, and of the graph in Figure 3.1.

12



Figure 3.1: A graph whose line graph is in ER(12, 4, 1)

Proof. Both G1 = K4,4 −M and the other graph, G2, are 3-regular and triangle-free with

12 edges. Therefore, their line graphs are in ER(12, 4, 1). Since, by Theorem 2.1, each Gi is

the clique graph of its line graph, their line graphs are distinct.

Now suppose that G ∈ ER(12, 4, 1). By Corollary 3.1, G = L(H) for some H ∈

ER(8, 3, 0). If H is bipartite, then, because H is bipartite and regular, H is 1-factorizable

and so H must be K4,4 −M , for some perfect matching M .

If H is not bipartite, then, since H is K3-free on 8 vertices, H must contain either a C5

or a C7 or both. If H contains a C5, it must be induced in H, because H is triangle-free.

Each vertex on the C5 must therefore be adjacent to exactly one of the 3 vertices not on the

C5. If one of those vertices were adjacent to 3 vertices on the C5, there would be a triangle

in H. Therefore 2 of the 3 vertices off the C5 are adjacent to 2 vertices each, on the C5,

and the third is adjacent to one vertex on the cycle and both of the other off-cycle vertices.

From there it is easy to see that H must be G2, the graph depicted above.

If H contains a C7 then, because the one vertex off the cycle is adjacent to only 3 vertices

on the cycle, H must contain two chords of the cycle. Any chord of a C7 which does not

create a K3 must create a C5, so H contains a C5. Therefore H ' G2.

13



Corollary 3.1 shows that ER(n, 4, 1) contains a connected graph for infinitely many n,

and we shall soon see that ER(n, 6, 1) contains a connected graph for infinitely many n. In

passing, we note that these facts point to a powerful difference between the class of all edge

regular graphs and the class of strongly regular graphs. An elementary necessary condition

for SR(n, d, λ, µ) to be non-empty is that d(d − λ − 1) = µ(n − d − 1) [2]. It follows that

for given d, λ satisfying d > λ + 1 there can be only finitely many pairs (n, µ) such that

SR(n, d, λ, µ) 6= ∅. If µ > 0, any graph in SR(n, d, λ, µ) is connected. Corollary 3.1 and

the construction to come show that for (d, λ) ∈ {(4, 1), (6, 1)}, there are infinitely many n

such that ER(n, d, λ) contains a connected graph. It is an open question whether or not

ER(n, d, 1) contains a connected graph for infinitely many n, for d > 6, d even, except for

d = 10, as we shall see.

3.1.3 d = 6

By a remark in the Introduction, if ER(n, 6, 1) 6= ∅ then n ≥ 3(6 − 1) = 15. We shall see

that ER(15, 6, 1) contains exactly one graph and then use that graph to construct connected

graphs in ER(n, 6, 1) for infinitely many values of n. By Corollary 2.3, S1(6) = {15} ∪

{17, 18, 19, ...}. We shall give an alternate proof for many of these values and consider Sc1(6)

as well.

Suppose m and k are positive integers. Let [m] = {1, . . . ,m} and let
(
[m]
k

)
denote the

set of all k-subsets of [m]. If 1 ≤ k ≤ m
2

, the Kneser graph K(m, k) has vertex set
(
[m]
k

)
, with

u, v ∈
(
[m]
k

)
adjacent if and only if u ∩ v = ∅

Lemma 3.1. If m and k are integers satisfying 1 ≤ k ≤ m
2

, then K(m, k) ∈ ER(
(
m
k

)
,
(
m−k
k

)
,
(
m−2k
k

)
).

If m ≥ 4, K(m, 2) ∈ SR(
(
m
2

)
,
(
m−2
2

)
,
(
m−4
2

)
,
(
m−3
2

)
).

Proof. The verification is straightforward.

Corollary 3.3. If k ≥ 1, K(3k, k) ∈ ER(
(
3k
k

)
,
(
2k
k

)
, 1).

Theorem 3.1. K(6, 2) is the unique graph in ER(15, 6, 1).
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Proof. For any graph G ∈ ER(n, 6, 1) = RCA(n, 6, 3), for any n, if u, v, w ∈ V (G) induce a

K3 in G then, by Lemma 2.1 and its corollaries, the subgraph of G induced by N [{u, v, w}] =

N [u] ∪ N [v] ∪ N [w] has a spanning subgraph as depicted in Figure 3.2. By Corollary 3.3,

K(6, 2) ∈ ER(15, 6, 1). For any G ∈ ER(15, 6, 1), for any u, v, w ∈ V (G) inducing K3 in G,

all 15 of G’s vertices are on display in Figure 3.2. The edges of G not depicted are among

the 12 vertices of V (G)\{u, v, w}. Consider x1. All 4 vertices to which x1 is adjacent besides

x2 and v are among the zj and the yj. But x1 cannot be adjacent to both z1 and z2, for

instance, because the unique common neighbor of z1 and z2 is u. Therefore x1 is adjacent

to at most one of z1, z2, to at most one of z3, z4, to at most one of y1, y2, and to at most

one of y3, y4. Therefore, x1 is adjacent to exactly one of z1, z2, to exactly one of z3, z4, etc.,

because x1 must have 4 neighbors among the 8 vertices.

v

u w

x4

x3x2

x1

z1

z2

z3

z4 y4

y3

y2

y1

Figure 3.2: Spanning subgraph of G[N [{u, v, w}]] for any K3 = G[{u, v, w}] in G ∈
ER(n, 6, 1), for some n

Therefore, u and x1 have exactly 3 common neighbors, v and two among z1, . . . , z4. But,

because the diagram in Figure 3.2 will be the same (except for the vertex names), no matter

which K3 you start with, u and x1 could be any two non-adjacent vertices in G. Therefore

G is strongly regular: G ∈ SR(15, 6, 1, 3). According to [11], K(6, 2) is the only graph in

SR(15, 6, 1, 3).
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For those who don’t care for proof by appeal to websites, a more laborious proof can

be given which provides an independent corroboration of the fact that K(6, 2) is the unique

member of SR(15, 6, 1, 3). The full structure of the graph induced by the edges of G among

the 12 vertices of G− {u, v, w}, excluding the edges shown in Figure 3.2 (x1x2, x3x4, etc.),

can be deduced from the assumption that G ∈ ER(15, 6, 1). For a somewhat shorter proof,

note that that graph on 12 vertices must be in ER(12, 4, 1); of the two possibilities given

in Corollary 3.2, L(G2), where G2 is the non-bipartite graph depicted, can be ruled out as

follows.

Let H be a graph in ER(12, 4, 1) on vertices xi, yi, zi, i = 1, 2, 3, 4, which completes the

graph in Figure 3.2 to a graph G ∈ ER(15, 6, 1). Observe that the xi, the yi, and the zi are 3

independent sets of 4 vertices each, in H, and that x1 and x2 can have no common neighbor

in H. The same holds for x3 and x4, for y1 and y2, for y3 and y4, for z1 and z2, and for z3

and z4. Also, by what has been noted already, if i ∈ {1, 2}, j ∈ {3, 4}, and w ∈ {x, y, z},

then wi and wj are not adjacent in G, and therefore have 3 neighbors in common in G —

and therefore have two neighbors in common in H.

Keeping in mind that vertices of H adjacent in G− E(H) can have no common neigh-

bor in H, we see that if H = L(Q) where Q is one of the 3-regular graphs mentioned in

Corollary 3.2, K4,4 −M or G2, then Q must have a proper edge-coloring with 3 colors such

that each color class can be partitioned into two matchings of two edges each, with pairs of

edges from different 2-edge matchings within the color class commonly adjacent to exactly

two other edges not in that color class. It can be verified directly that G2 has no such edge-

coloring, and that K4,4 −M has essentially only one. (To see this, in each case color the 3

edges incident to a single vertex with the colors x1, y1, z1. Then ask: which edges can or

must be colored x3, x4? And then: where does the color x2 go? By this time it will be clear

that G2 has been eliminated, and that the edge coloring of K4,4 −M is essentially unique.)

Thus G is unique.
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3.1.3.1 Construction of connected graphs in ER(n, 6, 1) for

infinitely many n

Start with the graph shown in Figure 3.2; we call this the primary scaffold. Each vertex in it

has degree 2 or 6, any two vertices adjacent in the scaffold have a unique common neighbor

in the scaffold, and non-adjacent vertices in the scaffold have at most one common neighbor.

We can build new scaffolds with these properties from the primary scaffold in a number of

ways. We shall describe the most straightforward construction method, leading to graphs in

ER(15+16k, 6, 1), k = 1, 2, . . ., and then mention variations of the method that can produce

graphs in ER(n, 6, 1) for many other n, including all n ≥ 47.

In a scaffold, each vertex of degree 6 is finished, and each vertex of degree 2 is unfinished.

Produce a new scaffold by joining an unfinished vertex to the vertices of a 2K2 whose vertices

are new to the scene. The 4 new vertices are unfinished in the new scaffold, and the formerly

unfinished vertex to which they are joined is finished. The number of vertices has increased

by 4 and the number of unfinished vertices has increased by 3.

The primary scaffold has 15 vertices, 12 of them unfinished. Therefore, after t iterations

of the new-scaffold-generating process, the resulting scaffold will have 15+4t vertices, 12+3t

of them unfinished. When t = 4k for some integer k, we have a scaffold on 15 + 16k vertices,

with 12(k + 1) of them unfinished.

At such a point we can stop building scaffolds and attempt to complete the scaffold we

have to a graph in ER(15 + 16k, 6, 1) by executing the following plan: partition the set of

unfinished vertices in the scaffold into k + 1 sets P1, . . . , Pk+1 of 12 vertices each and then

put edges among the vertices of Pj, for each j, so that the graph on those vertices, with

those edges, is one of the two graphs in ER(12, 4, 1) mentioned in Corollary 3.2.

For any choice of the Pj, and any insertion of the edges of one of the graphs in

ER(12, 4, 1) on the vertices of the Pj, j = 1, . . . , k + 1, the resulting graph on 15 + 16k

will be regular of degree 6, any two adjacent vertices will be joined by one or two edges

(possibly one from the scaffold and one inserted) and will have one or two neighbors in
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common (possibly one common neighbor in the scaffold and one in the imposed graph from

ER(12, 4, 1)). We need to make arrangements so that there are no doubled edges in the

completed graph and no two adjacent vertices in the completed graph have two common

neighbors in that graph.

We posit the following requirements on P1, . . . , Pk+1 and on the graphs Hj ∈ ER(12, 4, 1)

obtained by inserting edges among the vertices of Pj, j = 1, . . . , k + 1:

Each Pj must be partitionable into 3 sets Q1j, Q2j, Q3j of 4 vertices each such that if u ∈ Qij,

v ∈ Qtj, 1 ≤ i < t ≤ 3, then u, v are distant at least 3 from each other in the scaffold.

Explanation: Each graph in ER(12, 4, 1) has chromatic number 3 and vertex independence

number 4. The Qij will be independent sets of vertices in Hj, so pairs of vertices adjacent

in Hj will be from different Qij. Therefore, because vertices in Qij and Qtj for t 6= i are

distant at least 3 from each other in the scaffold, there will be no chance that an edge of the

imposed Hj will double an edge of the scaffold. It is now sufficient to take care that no two

vertices adjacent in Hj have a common neighbor in the scaffold and that no two vertices in

Pj adjacent in the scaffold have a common neighbor in Hj.

Since two vertices adjacent in Hj are in Qij for different values of i, they are distant

at least 3 from each other in the scaffold, and therefore have no common neighbor in the

scaffold. Now suppose that u, v ∈ Pj are adjacent in the scaffold. Then they must belong to

the same Qij, since no two vertices in different Qij can be adjacent in the scaffold.

Since any 4 unfinished vertices in the scaffold induce one of 4K1, 2K1 + K2, or 2K2 in

the scaffold, we can require that each Qij be partitioned into two 2-element sets, R1ij and

R2ij, such that no vertex in R1ij is adjacent to any vertex in R2ij in the scaffold. Then

form Hj ' L(K4,4) − M with R1,1,j, R2,1,j,. . ., R1,3,j, R2,3,j playing the roles of {x1, x2},

{x3, x4},. . ., {z1, z2}, {z3, z4}, respectively, in a copy of L(K4,4 −M) which completes the

primary scaffold depicted in Figure 3.2 to K(6, 2).

Observe that the recommendation above for taking Hj ' L(K4,4 −M) under certain

circumstances is not an iron-clad requirement. It may well be that L(K4,4 −M) may be
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successfully imposed upon Pj in other ways than the recommended way, or that L(G2) (see

Corollary 3.2) may be successfully imposed, even if some Qij, i ∈ {1, 2, 3}, contains a pair

of vertices adjacent in the scaffold. L(G2) may certainly be used if Pj is an independent set

of vertices in the scaffold.

In Figure 3.3 are depicted two very different scaffolds of order 31, each with 24 unfinished

vertices partitioned into two sets of 12 vertices, each of which is partitioned into 3 sets of

4 vertices each, satisfying the requirement that two vertices from different partition sets of

4 within either set of 12 are distant at least 3 from each other in the scaffold. In neither

circumstance is the partition into 12-vertex subsets unique. In the top example, if the

partition of the unfinished vertices into 12-vertex sets is as given, then the partition within

each into 4-element sets is forced. This is not true in the other example. In each case, we

intend L(K4,4−M) to be the graph imposed on each 12-vertex partition set for the completion

of the given scaffold to a graph in ER(31, 6, 1). We are certain that this is the only possible

choice of an imposed graph from ER(12, 4, 1) no matter what the partition choices for the

top scaffold, and we are pretty sure that the same holds for the bottom scaffold. As k goes

up, the 12(k + 1) unfinished vertices in scaffolds of order 15 + 16k become more numerous

and “spaced away” from each other, offering many more choices for admissible partitions

into 12-vertex sets. It becomes easier to make arrangements so that L(G2) (see Cor. 4) can

be used in the construction.

It is clear that ER(15+16k, 6, 1) 6= ∅ for k = 0, 1, 2, . . ., by the preceding. This disproves

the conjecture that ER(n, 6, 1) 6= ∅ implies that 3|n.

It is not clear that different choices made in building the scaffold and then completing

it to a graph in ER(15 + 16k, 6, 1) will result in non-isomorphic graphs. There is only one

graph in ER(15, 6, 1) (Theorem 3.1); it would be interesting to know how many isomorphism

classes of graphs are represented in ER(31, 6, 1).
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Figure 3.3: Two different scaffolds of order 31, with admissible partitions of the unfinished
vertices into two 12-vertex sets, admissibly: {x1, x2, . . . , z3, z4}, {x′1, x′2, . . . , z′3, z′4}
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3.1.3.2 Orders of (connected) edge-regular graphs with d = 6 and λ = 1

In this subsection we are going to find all but a finite subset of Sc1(6).

Let the scaffold-building operation described previously, in which an unfinished vertex

is joined to a new 2K2, be called Method 1, or M1 for short. Here are two other scaffold-

building operations.

M2: Take two unfinished vertices, a distance ≥ 3 from each other in the current scaffold;

join them and join each to a new vertex. Finish each by joining it to a K2 — the K2s being

disjoint and formed from new vertices.

Note that the number of vertices has increased by 5 and the number of unfinished

vertices has increased by 3.

M3: Take 3 unfinished vertices, any two distant at least 3 from each other in the current

scaffold. Make them the vertices of a K3, and then join each up to its own K2, whose vertices

are new and unfinished in the new scaffold.

The number of vertices has increased by 6, and the number of unfinished vertices has

increased by 3.

Proposition 3.2. {15, 18, 27} ∪ ({n | n ≥ 31}\{40, 41, 42, 43, 44, 46}) ⊆ Sc1(6) ⊆ S1(6).

Further, {30, 42, 46} ∈ S1(6) and 16 /∈ S1(6).

Proof. Starting with the primary scaffold (Figure 3.2), we perform M1 a times, M2 b times,

and M3 c times to obtain a scaffold with 15 + 4a + 5b + 6c vertices and 12 + 3(a + b + c)

unfinished vertices. By previous remarks, it is clear that Z = {15 + 4a+ 5b+ 6c | a, b, c are

non-negative integers and a + b + c ≡ 0 mod 4} ⊆ Sc1(6). It is straightforward to see that

Z = {15}∪ {31, 32, . . .}\{40, . . . , 46}. For a connected graph in ER(18, 6, 1), see Figure 3.4.

Note that (K3)
3 ∈ ER(27, 6, 1). Let H be C10 plus a 1-factor which creates no 3-cycles and

let G = L(H). By Corollary 3.1, G ∈ ER(15, 4, 1), so the Cartesian product of G with K3

is in ER(15 · 3, 4 + 2, 1) = ER(45, 6, 1). 30=15+15, 42=15+27, and 46=15+31 are in S1(6)
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because S1(6) is closed under addition. That 16 /∈ S1(6) follows from the main result of

[7].

v

u w

x4

x3x2

x1

z4

z3

z2

z1 y4

y3

y2

y1

ba

c

Triangles not appearing above: ax3y2, by3z2, cx2z3, x1y1z1, x2y2z2, x3y3z3, x4y4z4

Figure 3.4: A graph in ER(18, 6, 1)

3.1.4 d ≥ 8

As previously noted, S1(d) = {n | ER(n, d, 1) 6= ∅} is non-empty for every even positive

integer d, and is closed under addition. For d not divisible by 3, we can deduce quite a lot

about S1(d) with little effort.

Proposition 3.3. Suppose that d > 0 is even and 3q is the largest integer power of 3 that

divides d. Then S1(d) contains all sufficiently large integer multiples of 32q+1.

Proof. It has already been shown that S1(2) = {3, 6, 9, . . .} and that S1(4) = {9, 12, 15, . . .}.

Let d = 2t, t ≥ 3. Then 3q||t. Since (K3)
t ∈ ER(3t, d, 1), we have 3t ∈ S1(d). Since
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(Kt)
3 ∈ RCA(t3, 3(t − 1), t), it follows by Theorem 2.1 that CL ((Kt)

3) ∈ RCA(3t2, d, 3) =

ER(3t2, d, 1), so 3t2 ∈ S1(d). Clearly 32q+1||3t2. Since q ≤ ln t
ln 3

, it follows (applying a bit of

calculus) that 2q + 1 ≤ 2 ln t
ln 3

+ 1 ≤ t for all t ≥ 3. Therefore the greatest common divisor of

3t2 and 3t is 32q+1.

Let a = 3t2

32q+1 and b = 3t−2q−1. Then a and b are relatively prime positive integers. By a

well-known theorem of Frobenius (and Sylvester, and others), every integer from (a−1)(b−1)

on is expressible as a combination ax + by, x, y ∈ N. Since S1(d) is closed under addition,

and contains 32q+1a and 32q+1b, it follows that S1(d) contains 32q+1c for every integer c ≥

(a− 1)(b− 1).

Corollary 3.4. If d > 6 is even and not divisible by 3 then S1(d) contains all integer

multiples of 3 from (d
2

4
− 1)(3

d
2
−1 − 1) · 3 onward.

Proof. Since 3 - d, q = 0, and a, b in the proof of Proposition 3.3 are d2

4
, 3

d
2
−1, respectively.

The conclusion follows, not from Proposition 3.3, but from a conclusion at the end of its

proof.

v

u w

pd−2

pd−3p2

p1

r1

r2

rd−3

rd−2 qd−2

qd−3

q2

q1

· · ·

· · · · ·
·

Figure 3.5: A spanning subgraph of G[N [{u, v, w}]], G ∈ ER(n, d, 1) for some n
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Figure 3.6: Left: a graph in ER(42, 8, 1); right: K(6, 2), as used to complete the numbered
vertices on the left

What about Sc1(d)? For all d > 2, even, we have that 3
d
2 , 3d2

4
∈ Sc1(d) [because of (K3)

d
2

and CL
(

(K d
2
)3
)

]. Can we say more for d > 6?

Observe that the graph in Figure 3.5 has order 3(d − 1), the famous lower bound for

n ∈ S1(d). If there were a graph in ER(3(d− 1), d, 1), as was the case when d = 6, then we

could take the graph in Figure 3.5 as a preliminary scaffold and build larger scaffolds upon

it, as we did in the case d = 6, with a view to “finishing” them to graphs in ER(n, d, 1) for

some values of n.

Figure 3.6 shows a graph in ER(42, 8, 1) which has been constructed by beginning with

a scaffold as in Figure 3.5 and joining new vertices such that there remain 24 unfinished

vertices of degree 4 and 15 unfinished vertices of degree 2. To finish the vertices of degree 4,

we may cautiously add the edges of one of the graphs in ER(12, 4, 1) to the vertices labelled

I in Figure 3.6 and then do the same for the vertices labeled II. To finish the vertices of

degree 2, we add the edges of the Kneser graph K(6, 2) as shown on the right of Figure 3.6.
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This example was constructed much more carefully than the graphs in Section 3.1.3,

and does not suggest an obvious generalization, so possible constructions for the case d ≥ 8

remain of interest.

Proposition 3.4. If d > 2 then ER(3(d− 1), d, 1) = SR(3(d− 1), d, 1, d
2
).

Proof. Clearly ER(3(d− 1), d, 1) ⊇ SR(3(d− 1), d, 1, µ) for any µ. If G ∈ ER(3(d− 1), d, 1)

then d is even and for every triangle uvw in G, there is a spanning subgraph of G as depicted

in Figure 3.5. The proof now proceeds by the argument in the proof of Theorem 3.1, about

the case d = 6:

p1 and p2 can have no common neighbor but v, neither is adjacent to any pi, i > 2, and

neither can be adjacent to two adjacent vertices among the qi, nor among the ri; it follows

that each has d−2
2

neighbors among the qi and among the ri. Therefore, p1 and u have

1 + d−2
2

= d
2

common neighbors. Since p1 and u could be any two vertices not adjacent in G,

it follows that G is strongly regular with µ = d
2
.

Corollary 3.5. ER(3(d− 1), d, 1) 6= ∅ if and only if d ∈ {2, 4, 6, 10}.

Proof. The second-best-known necessary condition for SR(n, d, λ, µ) 6= ∅, the integrality

condition ([2], [4]), is that each of 1
2

[
(n− 1)± (n−1)(µ−λ)−2d√

(µ−λ)2+4(d−µ)

]
is a non-negative integer.

Plugging n = 3(d−1), λ = 1, µ = d
2
, and simplifying, we find that 1

2
(3d−4±(3d−20+ 48

d+2
))

must be non-negative integers.

Among even integers greater than 2, the possibilities for d are 4, 6, 10, and 22. Spence’s

website [18] shows a graph, and only one graph, in SR(27, 10, 1, 5). That SR(63, 22, 1, 11) =

∅ can be shown using a less well-known necessary condition for the existence of a strongly

regular graph, the absolute bound. See [14], Theorem 21.4.

Corollary 3.6. 24 ∈ Sc1(8).

Proof. Consider G ∈ ER(27, 10, 1), and any one of the spanning “scaffolds” depicted in

Figure 3.5, with d = 10. The edges of G not pictured in Figure 3.5 induce H ∈ ER(24, 8, 1).
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If H were not connected then one of its components would be edge-regular with d = 8, λ = 1,

on no more than 12 vertices. Since 12 < 21 = 3(8− 1), this is impossible.

Corollary 3.7. Sc1(10) contains all sufficiently large multiples of 3.

Proof. Starting with the scaffold in Figure 3.5, with d = 10, apply the scaffold-building

analogs of Methods 1, 2, 3 that were used in the case d = 6 to build new scaffolds in which

the number of unfinished vertices is a multiple of 24. Finish these off to make connected

edge-regular graphs with d = 10 and λ = 1 by the method analogous to that used in the

case d = 6, using the graph H referred to in the proof of Corollary 3.6 as L(K4,4 −M) was

used in the d = 6 constructions. There follows the verification that graphs in ER(3q, 10, 1)

can be so constructed for all sufficiently large integers q.

In the case d = 10, each instance of Method 1 increases the number of vertices by 8 and

the number of unfinished vertices by 7; Method 2 increases the number of vertices by 13 and

the number of unfinished vertices by 11; and Method 3 increases the number of vertices by

18 and the number of unfinished vertices by 15. As in the case d = 6, it is obvious that the

distance requirements to be satisfied in applying these methods and in finishing scaffolds to

edge-regular graphs with d = 10, λ = 1, are not a problem: distances between unfinished

vertices in the scaffold remain the same or increase as the scaffolds are built. Therefore,

since we are starting with a scaffold with 27 vertices, 24 of them unfinished, it suffices to

show that T = {8a + 13b + 18c | a, b, c ∈ N and 7a + 11b + 15c ≡ 0 mod 24} contains all

sufficiently large multiples of 3.

Clearly T is closed under addition; therefore, T is closed under taking non-negative

integer combinations. We have that 8·1+13·1+18·2 = 57 ∈ T and 8·6+13·0+18·2 = 84 ∈ T .

Therefore, for all d, e ∈ N, 57d+84e = 3(19d+28e) ∈ T . By the famous theorem of Frobenius

mentioned earlier, T contains 3t for all t ≥ (19− 1)(28− 1).

3.2 λ > 1

We begin with an observation which will prove useful in constructing certain graphs later.
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Theorem 3.2. Suppose G ∈ ER(n1, d1, λ) and H ∈ ER(n2, d2, λ). Then G�H ∈ ER(n1n2, d1+

d2, λ).

Proof. By definition, V (G�H) = V (G) × V (H), so |V (G�H)| = |V (G)| |V (H)| = n1n2.

Suppose (g, h) ∈ V (G�H). Then dG�H(g, h) = |NG�H(g, h)| = |{(g′, h′) ∈ V (G�H) | gg′ ∈

E(G)orhh′ ∈ E(H)} = dG(g) + dH(h) = d1 + d2. If (g, h) and (g′, h′) are adjacent in G�H,

then either they are contained in the same copy of G or the same copy of H. Then their

common neighbors will either be the λ common neighbors of g and g′ in V (G) or the λ

common neighbors of h and h′ in V (H). Thus G�H ∈ ER(n1n2, d1 + d2, λ).

Taking λ = 1, H = K3 ∈ ER(3, 2, 1), we can see that Sc1(d) is infinite for all d even,

d > 2: this claim holds for d = 4 by Corollary 2.1, for d even, d > 4, taking the Cartesian

product of (K3)
d−4
2 with each connected graph in ∪

n
ER(n, 4, 1) shows that Sc1(d) is infinite.

Proposition 3.5. The cartesian product of strongly regular graphs is not strongly regular.

Proof. Let G and H be strongly regular graphs. By definition G and H are neither empty

nor complete. There exist g1, g2 ∈ V (G) and h1, h2 ∈ V (H) such that g1g2 /∈ E(G) and

h1h2 /∈ E(H). Then (g1, h1) and (g2, h2) are vertices in V (G�H) that are not adjacent

and have no common neighbors. There also exist g′1, g
′
2 ∈ V (G) and h′1, h

′
2 ∈ V (H) such

that g′1g
′
2 ∈ E(G) and h′1h

′
2 ∈ E(H). Then (g′1, h

′
1) and (g′2, h

′
2) are not adjacent in G�H,

and they have (g1, h2) and (g2, h1) as their common neighbors. Thus G�H is not strongly

regular.

Given G ∈ SR(n1, d1, λ1, µ1) and H ∈ SR(n2, d2, λ2, µ2), G�H cannot be strongly

regular, but if λ1 = λ2 = λ, G�H ∈ ER(n1n2, d1 + d2, λ) by Theorem 3.2. So the rather

extensive collection of known strongly regular graphs is a powerful resource for generating

new edge-regular graphs, as demonstrated by Proposition 3.7 at the end of this section.

We have seen that ER(n, d, 1) = RCA(n, d, 3), and we will now show that for some

values of n and d, ER(n, d, 2)\RCA(n, d, 4) 6= ∅. If G ∈ ER(n, d, 2) and u, v ∈ V (G) are

adjacent, then the subgraph induced by N [u] ∩N [v] will be as in one of the following:
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u

v

Figure 3.7: G [N [u] ∩N [v]] = K4 if u and v are adjacent in G ∈ ER(n, d, 2) and G is
clique-friendly

u

v

Figure 3.8: If G ∈ ER(n, d, 2) is not clique-friendly, G[N [u] ∩ N [v]] = K2 ∨ 2K1 for some
pair of adjacent vertices u and v.

The octahedral and icosahedral graphs are examples of edge-regular graphs which are

not clique friendly and which have N [u] ∩N [v] = K2 ∨ 2K1 for all pairs of adjacent vertices

u and v.

Thus far we have only described graphs in ER(n, d, 2), for some n and d, for which

G[N [u] ∩ N [v]] is the same for any choice of adjacent vertices u and v. For a graph G ∈

ER(n, d, 2), could u ∈ V (G) have distinct neighbors v and w such that G[N [u] ∩ N [v]] =

Figure 3.9: The octahedral graph is in ER(6, 4, 2).
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Figure 3.10: The icosahedral graph is in ER(12, 5, 2).

u

v x w

uv w

Figure 3.11: Possibilities for G[N [u] ∩ (N [v] ∪N [w])]

K2 ∨ 2K1 and G[N [u] ∩N [w]] = K4? If so, the subgraph induced by N [u] ∩ (N [v] ∪N [w])

must be one of the graphs in Figure 3.11.

Upon closer examination we see that the graph on the left in Figure 3.11 is not per-

missible, because |N(u) ∩N(x)| = 3, so in a graph with the local neighborhood structure

described above, G[N [u]∩ (N [v]∪N [w])] would be K1 ∨ (P3 +K3), as depicted on the right

of Figure 3.11.

Let G be the octahedral graph shown in Figure 3.9. Note that G ∈ ER(6, 4, 2) and K4 ∈

ER(4, 3, 2). By Theorem 3.2, G�K4 ∈ ER(24, 7, 2). If v ∈ V (G�K4), then the subgraph

generated by the closed neighborhood of v is K1 ∨ (C4 +K3) and contains K1 ∨ (P3 +K3).

By Corollary 2.2, G ∈ RCA(n, 6, 4) if and only if G is the line graph of some triangle-free

4-regular graph. Such a line graph would be in ER(n, 6, 2) for some n; however, not every
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graph in ∪
n
ER(n, 6, 2) is the line graph of some triangle-free 4-regular graph. For instance,

the graph in ER(25, 6, 2) depicted in Figure 3.12 is not the line graph of anything because

it contains induced subgraphs of the form K1,3, known as claws, and it is known that any

line graph must be claw-free [7].

Figure 3.12: A graph in ER(25, 6, 2)

Proposition 3.6. For all d ≥ 3 there exists n such that ER(n, d, 2) 6= ∅.

Proof. As previously noted, K4 ∈ ER(4, 3, 2), the octahedral graph is in ER(6, 4, 2), and the

icosahedral graph is in ER(12, 5, 2). Let GO denote the octahedral graph. If d ≥ 6, then d =

3a+4b for some non-negative integers a and b and (K4)
a� (GO)b ∈ ER(4a6b, 3a+4b, 2).

Proposition 3.7. For all even d ≥ 4, there exists n such that ER(n, d, 3) 6= ∅.

Proof. Clearly K5 ∈ ER(5, 4, 3). The triangular graph Tm is the line graph of the complete

graphKm [3] and is known to be strongly regular with parameters
(
m(m−1)

2
, 2(m− 2),m− 2, 4

)
.

In particular, T5 ∈ SR(10, 6, 3, 4) ⊆ ER(10, 6, 3). If d ≥ 4 is even, then d = 4a + 6b for

non-negative integers a and b and (K5)
a� (T5)

b ∈ ER(5a10b, 4a+ 6b, 3).
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Here we end our consideration of edge-regular graphs. Several open questions for λ = 1,

d > 6 and for λ > 1 are given in Chapter 5. In the chapter to follow, we revisit the definition

of regular clique assemblies and consider the implications of relaxing certain conditions of

that definition.
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Chapter 4

Relaxations of the definition of RCAs

Recall from Chapter 2:

G is a regular clique assembly if G is regular, ω(G) ≥ 2, and

(1) every maximal clique of G is maximum;

(2) each edge of G is in exactly one maximum clique of G.

In constructing this definition, it was conjectured privately that condition (1) above

may not be necessary. The idea was quickly dispelled by the counterexample seen in Figure

4.1, but led to the consideration of what the graphs with (1) removed would look like. The

three classes of graphs that follow are the results of relaxing, one at a time, (1), (2), and the

requirement of regularity.

4.1 RCA*

Define G ∈ RCA∗(n, d, k) if G is regular on n vertices, k = ω(G) ≥ 2, and each edge of G is

in exactly one maximum clique of G.

Proposition 4.1. RCA∗(n, d, k) ⊇ RCA(n, d, k), with equality when k ∈ {2, 3}.

Proof. Clearly RCA∗(n, d, k) ⊇ RCA(n, d, k). Suppose G ∈ RCA∗(n, d, 2) for some n and d.

A maximal clique in G which is not maximum would be an isolated vertex. Since ω(G) = 2,

G contains at least one edge. G cannot be regular of degree d > 0 and contain isolates. So

every maximum clique of G is also maximum. Thus RCA∗(n, d, 2) = RCA(n, d, 2). Now

suppose G ∈ RCA∗(n, d, 3) for some n and d. A maximal clique in G which is not maximum

is either an isolate or an edge which is contained in no K3. G cannot contain isolates for
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the same reason mentioned above, and every edge must be contained in a K3 by definition.

Thus every maximal clique in G is maximum, and RCA∗(n, d, 3) = RCA(n, d, 3).

We have ruled out maximal cliques of order 1 or 2, but for k ≥ 4, couldG ∈ RCA∗(n, d, k)

contain a maximal clique of order less than k? An example is given below.

Figure 4.1: G ∈ RCA∗(12, 6, 4)\RCA(12, 6, 4)

It is shown in Ch. 3, and is easy to see, that the line graph of a triangle-free k-regular

graph is in RCA(n, 2(k−1), k) for some n. Similarly, if k > 2, the line graph of any k-regular

graph is in RCA∗(n, 2(k − 1), k). (When k = 2, this conclusion fails for any graph with K3

among its components.)

It is possible for a graph G ∈ RCA∗(n, d, k), k ≥ 5 to contain maximal cliques of

more than one order. A configuration is given below which corresponds to an element of

RCA∗(25, 12, 5) containing some maximal cliques of size 3 and some of size 4.

The following result may help the verification that the graph depicted in Figure 4.2 is

in RCA∗(25, 12, 5).

Proposition 4.2. Suppose that G is d-regular on n vertices and ω(G) = k > 1. Then

G ∈ RCA∗(n, d, k) if and only if:

(i) any two maximum cliques of G have at most one vertex in common, and
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Figure 4.2: A configuration corresponding to G ∈ RCA∗(25, 12, 5)\RCA(25, 12, 5)

(ii) each vertex of G is in exactly d
k−1 different maximum cliques.

Proof. Suppose that G ∈ RCA∗(n, d, k). Then (i) holds because every edge of G is in exactly

one maximum clique of G. For the same reason, the edges incident to any v ∈ V (G) are

partitioned into groups of k − 1 each, one for each maximum clique containing v. Thus (ii)

holds.

Now suppose that (i) and (ii) hold. Suppose that e = uv ∈ E(G). Since v is of degree

d and is in exactly d
k−1 different cliques of order k = ω(G), by (ii), and since these cliques

are edge-disjoint, by (i), the edges of G incident to v must be partitioned into the sets of

k − 1 edges incident to v in cliques. Thus e belongs to exactly one maximum clique. Since

e ∈ E(G) was arbitrary, G ∈ RCA∗(n, d, k).

4.2 RCA**

Define G ∈ RCA∗∗(n, d, k) if G is regular on n vertices, k = ω(G) ≥ 2, and every maximal

clique of G is maximum. So each edge in G is in at least one maximum clique.
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Proposition 4.3. RCA∗∗(n, d, k) ⊇ RCA(n, d, k), with equality when k = 2.

Proof. Clearly RCA∗∗(n, d, k) ⊇ RCA(n, d, k). Suppose G ∈ RCA∗∗(n, d, 2) for some n and

d. Since ω(G) = 2, every edge is a maximum clique, so certainly every edge is in exactly one

maximum clique. Thus RCA∗∗(n, d, 2) = RCA(n, d, 2).

For k ≥ 3 could G ∈ RCA∗∗(n, d, k) contain an edge which is in more than one maximum

clique? An example in which every edge is in two maximum cliques is given below.

Figure 4.3: G ∈ RCA∗∗(6, 4, 3)\RCA(6, 4, 3)

Note that while G /∈ ER(6, 4, 1) = RCA(6, 4, 3), G is, in fact, in ER(6, 4, 2). If G ∈

RCA∗∗(n, d, k), must all edges be in the same number of maximum cliques? Certainly not.

In the graph below edges are in either one or three maximum cliques.

Figure 4.4: 2K2 ∨ 3K1 ∈ RCA∗∗(7, 4, 3)
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Other graphs of this form are

mKp ∨
(
p(m− 1)

q
+ 1

)
Kq ∈ RCA∗∗ (p(2m− 1) + q,mp+ q − 1, p+ q) .

If p, q > 1, different edges in one of these graphs could be in 1, m, or p(m−1)
q

+ 1 maximal

cliques.

4.3 Clique Assemblies

G is a clique assembly if ω(G) ≥ 2, and

(1) every maximal clique is maximum;

(2) every edge of G is in exactly one maximum clique of G.

If G is a clique assembly on n vertices with k = ω(G) we say G ∈ CA(n, k). Clique assemblies

are very easily constructed by connecting Kks such that any two Kks have at most one vertex

in common and if any three Kks are mutually adjacent, their intersection is a single vertex.

Not only are all such graphs clique assemblies: it is easy to see that all clique assemblies are

constructible in this way.

Kk
Kk

Kk Kk

Kk
Kk

Kk
Kk

Kk

Kk Kk
Kk

Kk

Figure 4.5: A clique assembly

Recall that the clique graph, CL(G), is formed by replacing each maximal clique of G

with a single vertex, and allowing two vertices in CL(G) to be adjacent if and only if the
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Kk
Kk

Kk Kk

Kk
Kk

Kk
Kk

Kk

Kk Kk
Kk

Kk
Kk

Figure 4.6: Not a clique assembly

corresponding cliques in G have at least one vertex in common. If G ∈ CA(n, k) for some

n and k, a clique of order m in CL(G) necessarily corresponds to a set in G of m k-cliques

which all have exactly one common vertex.

Among the clique assemblies:

1. Every triangle-free graph is in CA(n, 2) for some n.

2. The line graph of any triangle-free graph in which every vertex has degree either k or

1 and every component has at least one vertex of degree k is in CA(n, k) for some n.

3. From a tree, T , on n vertices, we can construct G ∈ CA(n(k − 1) + 1, k) by replacing

each vertex in T with a clique of size k and for any adjacent vertices in T let the

corresponding cliques in G share one vertex. (It does not matter which vertex is

chosen, but different choices may give different resulting graphs G.)

4. From any graph, H, we can similarly construct G ∈ CA(n, k) for some n, k |V (H)| −

|E(H)| ≤ n ≤ k |V (H)| by replacing each vertex in H with a clique of size k. For

adjacent vertices in H, let the corresponding cliques in G share one vertex, and take

care with any clique in H to let the corresponding set of cliques in G all have one

vertex in common and be otherwise pairwise disjoint. Denote the clique in G induced

by v ∈ H by C(v). Note that uv ∈ E(H) implies that C(u) and C(v) have exactly

one common vertex, but the converse is not true. In the example below, all cliques in
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G must have a single vertex in common to satisfy the definition above, even though

many of the corresponding vertices in H are not adjacent.

KkKk Kk

Kk Kk Kk

Kk

H G

Figure 4.7: Due to the structure of H, there is a single vertex in G which is the intersection
of every pair of maximal cliques in G.
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Chapter 5

Conclusions and future work

Some open problems from each of the chapters as well as some concluding remarks are

given.

5.1 Chapter 2

The discovery of the correspondence between regular clique assemblies and configurations

has laid to rest many of the questions we might have posed, but it seems entirely likely that

viewing these structures from a graph theoretic perspective could lend insight to questions

in the future.

5.2 Chapter 3

1. Are there methods of constructing graphs in ER(n, d, 1) for d > 6, d 6= 10 using a

similar technique to the scaffold-building operations in 3.1.3 for d = 6 and in 3.1.4 for

d = 10?

2. It is shown in Chapter 2 that if G ∈ RCA(n, d, k) for some n, d, and k ≥ 2, then

G ' CL(CL(G)). Does this equation hold for any G ∈ ER(n, d, λ)\RCA(n, d, λ− 2),

for some n, d, λ?

3. What else can we say about ER(n, d, λ)\RCA(n, d, λ− 2), for some n, d with λ > 1?

5.3 Chapter 4

1. For X ∈ {RCA∗, RCA∗∗}, for which (n, d, k) is X(n, d, k) non-empty?
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2. For k ≥ 5 and RCA∗(n, d, k) 6= ∅, what orders of maximal cliques can occur in graphs

in RCA∗(n, d, k)?

3. Is every graph H the clique graph of a clique assembly with clique number k, for k

sufficiently large? If so, can the smallest k for which this happens be quickly determined

by looking at H?
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