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Abstract

Monotonic versions of classical topological properties have been of some interest for

several years. That adding monotonic to a covering property makes it stronger is well-

known, but exactly how much stronger is still, in many cases, unknown. Here we trace the

progression of results regarding monotonic covering properties, and then look at monotonic

versions of metacompactness and meta-Lindelöfness, providing a useful property these spaces

exhibit, and from that obtain several original results, many of which answer open questions.

We strengthen a theorem of G. Gruenhage, (that monotonically compact, T2 spaces are

metrizable) by showing that compact, T2, monotonically metacompact spaces are metrizable.

We also show that every monotonically metacompact space is hereditarily metacompact,

and show by way of a counterexample that Bennett, Hart, and Lutzer’s theorem that every

regular, developable, metacompact space is monotonically metacompact cannot have the

condition “developable” weakened to “quasi-developable”, or replaced by “stratifiable”. In

examining several different spaces for their relationship to this property, we also show that

a monotonically Lindelöf space need not be monotonically metacompact.
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Chapter 1

Introduction

General topology is a complex and intricate field of mathematics. It is often the case

that we not only look at a property and its interactions and relationships to other known

properties, but it is also common to consider some special properties that are modifiers of

other properties. These “meta”- properties are quite prevalent throughout topology - there

are many well-known results involving properties that are locally, hereditarily, or relatively

some common property. Here we take a look at one of these “meta”-properties, monotoni-

cally, and its relationship to some common topological covering properties.

The idea of a covering property being monotonic has its roots in the definition of a prop-

erty that has nothing to do with open covers. Monotonic normality was first examined in

Borges’ paper[7], in 1966, and Zenor officially named the property in 1970 in his joint paper

with Heath and Lutzer [19]. After that there was quite an explosion of material regarding

this new property. Shortly after, the style of this definition was adapted and applied to other

kinds of properties, including those of primary interest here, covering properties.

K.P. Hart, in his online review of Junilla and Kunzi’s Ortho-bases and Monotonic Prop-

erties, described a process for obtaining a monotonic version of any well-known covering

property: “by requiring that there is an operator, R, that assigns to every open cover a

refinement of the right kind in such a way that R(O) refines R(U) whenever O refines U

[18].”

Using this process, just about any covering property can be “upgraded” into a monotonic

property, thus obviously acquiring a new property. The resulting monotonic version of the

property turns out to be stronger than the original covering property, often much stronger.
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For example, Gruenhage [15] showed that every monotonically compact Hausdorff space

must be a compact metric space.

Most of the topological covering properties have monotonic versions that have been

examined over the years. Monotone paracompactness was one of the first considered in

1993 by Gartside and Moody, [11], although they did not define it by monotonizing the

standard definition of paracompactness. It turns out that the utilization of several different,

although equivalent, characterizations of paracompactness has given rise to several different,

unequal monotone properties. Indeed, we give an example which shows that monotonizing

he standard definition of paracompactness yields a different property than that of Gartside

and Moody.

Monotonically compact and monotonically Lindelöf were both initially considered around

2005, and over the years there have been several results published regarding those properties

as well. The properties of monotonically metacompact and monotonically meta-Lindelöf

have been some of the most recently examined of the monotonic covering properties, and are

the two that receive the greatest consideration here.

The monotonically metacompact property was first introduced by Popvasillev in 2009,

as an extension of the monotonically compact property [30]. He showed that neither of the

ordinal spaces ω1 nor ω1 + 1 are monotonically (countably) metacompact. Bennett, Hart,

and Lutzer later showed that any metric space as well as any metacompact Moore space is

monotonically metacompact, and discovered several other results relating to monotone met-

compactness in LOTS and GO-spaces; in particular, they proved that every monotonically

metacompact compact LOTS is metrizable [4]. More recently Liang-Xue Peng and Hui Li

have extended some results for monotonically compact and monotonically Lindelöf spaces to

monotonically metacompact spaces [26].
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The definition of monotone metacompactness studied here is that of Popvassilev1, and

will be formally defined in the next chapter. Our work extends several of the results men-

tioned above, most notably we show that every compact, monotonically metacompact, Haus-

dorff space is metrizable, which is an extention of a theorem by Gruenhage, and answers a

question asked by Popvassilev [30] and by Bennett, Hart, and Lutzer [4]. Additionally

we show that every T3, monotonically metacompact space having caliber ω1 is hereditarily

Lindelöf, which is an extention of G. Gruenhage’s theorem [14]. We also show that every

monotonically metacompact space must be hereditarily metacompact, which we use to an-

swer another question of Bennet, Hart, and Lutzer. Finally we examine several spaces which

have appeared in the literature regarding other monotonic properties. We show whether

these spaces are monotonically metacompact or monotonically meta-Lindelöf or not, and

consequently show that a space can be monotonically Lindelöf without being monotonically

metacompact, among other results.

1.1 Definitions

Most of the advanced definitions used throughout will be provided as needed. A gen-

eral understanding of basic topology is assumed, essentially any information provided in

a first-year graduate level topology course, and definitions and techniques most commonly

introduced there will be omitted. I will, for the reader’s benefit, put some of the most fre-

quently used “basic” definitions below, in addition to any special notations I use. For a more

in depth examination of any of these definitions, the reader is encouraged to review [9].

By a space we will mean a topological space.

By a refinement of an open cover, we will mean a collection of open sets every element

of which is contained in some element of the original open cover. In other words we will say

1In the literature, there is another definition of monotone countable metacompactness, which is given by
Good, Knight, and Stares [13]. Their definition utilizes decreasing sequences of closed sets, and has been
shown that their definition is the class of β-spaces of Hodel [36]. Consequently, as explained in [30] and
[4], this definition and the defnition of monotonically (countably) metacompact of Popvassilev are entirely
different, and neither implies the other.
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V refines U , and write V ≺ U , if for every V ∈ V there exists U ∈ U such that V ⊂ U .

Unless otherwise stated, we will not assume that a refinement of an open cover also covers

the space.

If X is a space and U is a collection of its subets, then for S ⊂ X, we will say the star

of S with respect to U is st(S,U) =
⋃
{U ∈ U : S ∩ U 6= ∅}.

An open cover V is a star-refinement of U if for every V ∈ V there exists some U ∈ U

such that st(V,V) ⊂ U .

A collection U of open subsets of a space X is locally finite if any point in the space has

a neighborhood that intersects only finitely many members of the collection, and is point-

finite if any point in the space is contained in only finitely many elements of the collection.

Obviously every locally finite collection of sets is point-finite.

For a topological space X, and a propery P , we will say that X is hereditarily P if every

subset of X also has property P .

Although the reader is assumed to be familiar with the concepts of compactness and

Lindelöfness, there are several other covering properties whose monotonic versions will be

explored here. A list of all of the important definitions, and their relationships to each other

is given:

Definition 1. A space X is compact if every open cover U of the space X has a finite

subcover.

Definition 2. A space X is Lindelöf if every open cover U of the space X has a countable

subcover.

It is easily seen that every compact space is Lindelöf.

Definition 3. A space X is paracompact if for every open cover U of X, there is an open

refinement, V, covering the space, such that V is locally finite.

It is known that every compact space and every T3, Lindelöf space is paracompact.
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Definition 4. A space X is metacompact (meta-Lindelöf) if for every open cover U of

X, there exists an open refinement V covering the space, such that V is point-finite (point-

countable).

Paracompact spaces are metacompact, and metacompact spaces are meta-Lindelöf.

Compact

Lindelöf

Paracompact Metacompact

Meta-Lindelöf

Figure 1.1: Relationships between weakenings of compactness.

Metrizability is another property that is very prominent in set theoretic topology that

the reader is assumed to be familiar with, but some of the important, though less well known

weakenings of metrizability will also be examined regarding their relationship to monotonic

covering properties. The following is a list of these properties and their known relationships:

Definition 5. A topological space (X, τ) is a metric space or metrizable if there is a

metric d : X ×X → [0,∞) such that the topology induced by d is τ .

Every metric space is known to be paracompact. For a metric space to be compact or

Lindelöf, however, requires additional properties.

Definition 6. A space X is protometrizable if it is paracompact and has an orthobase.

An orthobase for a space X is a base B for the topology on X such that for any collection

F ⊂ B, either
⋂
F is open, or

⋂
F = {x}, and F is a local base at x.

Every metrizable space is protometrizable.

Definition 7. A space X is stratifiable if for every open set U , one can assign a countable

collection of open sets Un = {Un}n∈ω, such that:
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i. Un ⊂ U ;

ii.
⋃
n∈ω

Un = U ;

iii. Un ⊂ Vn whenever U ⊂ V .

Every metric space is stratifiable.

Definition 8. A space X is quasi-developable if there exists a sequence {U1,U2, . . . } of

collections of open subsets of X such that for each x ∈ X and each open set O containing x,

there exists n ∈ ω such that for some U ∈ Un, x ∈ U , and each element of Un that contains

x is contained in O. In other words, st(x,Un) ⊂ O.

Definition 9. A space X is developable if it is quasi-developable, and each collection Ui

in the defining sequence is an open cover of X. Regular developable spaces are called Moore

spaces.

It is known every metric space is a Moore space, and it is obvious that every developable

space is quasi-developable.

Metrizable

StratifiableDevelopable

Quasi-developable

Protometrizable

Figure 1.2: Relationships between weakenings of metrizability.

Separability is another important property in general topology, and we frequently con-

sider weakenings of it. The relationships between these properties is given in the following

figure. These implications are not reversible in ZFC.

Definition 10. A space X is separable if it contains a countable dense subset.
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Definition 11. A space X has caliber ω1 if for any uncountable collection of nonempty

open sets U = {Uα}α∈ω1 there exists an uncountable A ⊂ ω1 such that
⋂
α∈A

Uα 6= ∅. .

Definition 12. A space X has property K if every uncountable collection of open sets has

an uncountable linked subcollection.

A collection of sets is linked if the intersection of any two sets from the collection is non-

empty.

Definition 13. A space X satisfies the countable chain condition (CCC) if every pair-

wise disjoint collection of non-empty open subsets of the space is countable.

Separable → caliber ω1 → property K → CCC

Figure 1.3: Relationships between weakenings of separability.

In the literature, the monotonic covering properties are often considered within the

framework of special topological spaces - two of the most common are linearly ordered

topological spaces, and generalized order spaces:

Definition 14. A space X is a linearly ordered topological space (LOTS) if it is

totally ordered, and the topology on X is the order topology generated by taking all sets of

the form:

(−∞, b) = {x : x < b},

(a,∞) = {x : a < x}, and

(a, b) = {x : a < x < b}

as a basis.

Definition 15. A space X is a GO-space if X has a linear ordering such that the topology

on X is T2 and has a base of order-convex sets. Equivalently, X is homeomorphic to a

subspace of a LOTS.
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In several of our results we make good use of some “counting arguments” from partition

calculus. Partition calculus is an area of set theory devoted to the study of Ramsey Theory,

and often considers the combinatorics of infinite sets. For more information on partition

calculus, we refer the reader to [20]. Two theorems we apply several times are:

Theorem 1.1.1. Ramsey’s Theorem: - ω → (ω)rn : Assume r, n ∈ ω. If the r-element

subsets of a countably infinite set A are divided into n-many different pots, (Pot I, Pot II,

... , Pot n), then there is an infinite subset A′ ⊂ A , such that all the r-element subsets of

A′ are in the same pot.

Theorem 1.1.2. Erdos’ Theorem - ω1 → (ω, ω1)
2: If the unordered pairs {a, b} of ele-

ments an uncountable set A are divided into two pots, say Pot I and Pot II, then there is

either an infinite subset of A, all pairs of which are from Pot I, or there is an uncountable

subset of A, all pairs of which are from Pot II.
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Chapter 2

Main Results

Our initial interest in spaces having monotone covering properties started with the

examination of monotonically metacompact spaces, and the attempt to answer an open

question posed both by Bennett, Hart, and Lutzer [4], as well as by Popvassilev [30]: whether

every montonically metacompact, compact, Hausdorff space is metrizable. In exploring that

question, it became useful to consider the related property of monotonically meta-Lindelöf,

and we found several results related to that property as well.

Definition 16. A space X is monotonically (countably) metacompact if there is

a function r that assigns to each (countable) open cover U of a space X, a point-finite

open refinement r(U) covering X such that if V is a (countable) open cover of X and V

refines U , then r(V) refines r(U). The function r is called a monotone (countable)

metacompactness operator.

Definition 17. A space X is monotonically meta-Lindelöf if there is a function r that

assigns to each open cover U of a space X, a point-countable open refinement r(U) covering

X such that if V is an open cover of X and V refines U , then r(V) refines r(U).

In many ways these two properties behave much like the original covering properties. It

is easy to see that closed subspaces of monotonically metacompact or monotonically meta-

Lindelöf spaces are monotonically metacompact and monotonically meta-Lindelöf, respec-

tively. Similarly it is trivially seen that every monotonically compact space is monotonically

metacompact, and that all the implications in Figure 2.1 hold. It is also known that these

implications are not reversible.

Initially we attempted to address the open question by applying the definition of mono-

tonically metacompact directly. While it is possible to show spaces are not monotonically
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Monotonically Compact

Monotonically Lindelöf

Monotonically Paracompact Monotonically Metacompact

Monotonically Meta-Lindelöf

Figure 2.1: Relationships between monotone compactness-type properties.

metacompact by using only the definition, it can be very cumbersome, as you can see in

Example 3.1.1, and we found it significantly easier to apply a property that these spaces ex-

hibit involving a special neighborhood-pair assignment, described in Lemma 2.0.3. Almost

all of the results here are found by applying that lemma, which was inspired by a similar

characterization described in [15].

For a space X let PX be the collection of all triples p = (xp, Up
0 , U

p
1 ) where Up

0 , Up
1 are

open in X, and xp ∈ Up
0 ⊂ Up

0 ⊂ Up
1 .

Lemma 2.0.3. Suppose X is monotonically (countably) metacompact. Then to each p ∈ PX

one can assign an open V p satisfying:

i. xp ∈ V p ⊂ Up
1 ;

ii. Whenever (countable) Q ⊂ PX , then either
⋂
q∈Q

V q = ∅, or there exists a Q′ ⊂ Q, with

Q′ finite, such that for any q ∈ Q there exists q′ ∈ Q′ such that either V q ⊂ U q′

1 or

V q ∩ U q′

0 = ∅.

Proof. Let X be monotonically (countably) metacompact, r the monotonically (countably)

metacompact operator, and PX defined as above. Notice that for every p ∈ PX , Up =

{Up
1 , XrUp

0} is an open cover of X. Also note that r(Up) is a point-finite refinement of Up.

Let V p be any V ∈ r(Up) such that xp ∈ V . Obviously V p is open and xp ∈ V p ⊂ Up
1 .

Now let Q ⊂ PX , (|Q| = ω), and we will assume that
⋂
q∈Q

V q 6= ∅.
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Let U =
⋃
{U q : q ∈ Q}. U is a (countable) open cover of X, and for all q ∈ Q, U q ≺ U .

Thus r(U q) ≺ r(U) for all q ∈ Q.

Let t ∈
⋂
q∈Q

V q, and let U ′ = {U ∈ r(U) : t ∈ U}. Since r(U) refines U , for each U ∈ U ′

there is some q(U) ∈ Q such that {U} ≺ U q(U). Let Q′ = {q(U) : U ∈ U ′}.

We show that this Q′ satisfies the conclusion of condition (ii). Suppose q ∈ Q. We have

{V q} ≺ r(U q) ≺ r(U), and t ∈ V q, so there is some U ∈ U ′ such that V q ⊂ U . Then from

{V q} ≺ {U} ≺ U q(U), we have V q ⊂ U
q(U)
1 or V q ∩ U q(U)

0 = ∅, as desired.

We also have a monotonically meta-Lindelöf version of Lemma 2.0.3:

Lemma 2.0.4. Suppose X is monotonically meta-Lindelöf. Then to each p ∈ PX one can

assign an open V p satisfying:

i. xp ∈ V p ⊂ Up
1 ;

ii. Whenever Q ⊂ PX , then either
⋂
q∈Q

V q = ∅, or there exists a Q′ ⊂ Q, with Q′ countable,

such that for any q ∈ Q there exists q′ ∈ Q′ such that either V q ⊂ U q′

1 or V q ∩U q′

0 = ∅.

Proof. The proof of Lemma 2.0.4 is identical to that of Lemma 2.0.3, one just needs to

substitute “countable” for “finite” in the proof, and ignore the parenthetical comments. In

all other ways, the proofs are the same.

There is a “weaker” version of these lemmas that are implied by monotone (countable)

metacompactness, and monotone meta-Lindelöfness, respectively. The proof of these lem-

mas follow in the same manner as in Theorem 2.3 in [15]. This version of the property is

sometimes easier to work with, since one need not worry about dealing with PX and the

triples. However, when using it to show that a spaces is not monotonically (countably)

metacompact, it requires that there be several points in a space that exhibit the space not

being monotonically metacompact, which may not be possible to find. (Many spaces we

considered had only one non-isolated point, thus rendering the following lemma useless.)
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Lemma 2.0.5. Let X be a monotonically countably metacompact T3-space, and Y ⊂ X.

If for each y ∈ Y , Uy is some open neighborhood containing y, then there exists an open

neighborhood Vy of y with Vy ⊂ Uy such that if Y ′ ⊂ Y , and
⋂
y∈Y ′

Vy 6= ∅, then there is a finite

Y ′′ ⊂ Y ′ such that Y ′ ⊂
⋃
y∈Y ′′

Uy.

Proof. Let U ′y be an open neighborhood of y such that U ′y ⊂ Uy. Then p(y) = (y, U ′y, Uy) ∈

PX . Set Vy = V p(y) ∩ U ′y, where V p(y) is as in Lemma 2.0.1; also suppose Y ′ ⊂ Y , and⋂
y∈Y ′

Vy 6= ∅. Suppose that no finite Y ′′ ⊂ Y ′ satisfying the conclusion of the lemma exists.

Then we can find y0, y1, ... ∈ Y ′ such that yn 6∈
⋃
i<n

Uyi . Let Q = {(yn, U ′yn , Uyn) : n ∈ ω}.

Then there must be a finite subset Q′ of Q satisfying the conclusion of Lemma 2.0.3. Let

n ∈ ω be such that (yi, U
′
yi
, Uyi) ∈ Q′ implies that i < n. By Lemma 2.0.3, there must

be i < n such that either V p(yn) ⊂ Uyi or V p(yn) ∩ U ′yi = ∅. Now, yn ∈ V p(yn) r Uyi , so

V p(yn) 6⊂ Uyi . But V p(yn) ∩ U ′yi ⊃ Vyn ∩ Vyi and Vyn ∩ Vyi 6= ∅. So V p(yn) ∩ U ′yi 6= ∅, a

contradiction, and hence the lemma holds.

This lemma also has a monotonically meta-Lindelöf version, whose proof is essentially

identical to the one given above, just substituting “countable” in place of “finite”.

Lemma 2.0.6. Let X be a monotonically meta-Lindelöf, T3-space, and Y ⊂ X. If for each

y ∈ Y , Uy is some open neighborhood containing y, then there exists an open neighborhood

Vy of y with Vy ⊂ Uy such that if Y ′ ⊂ Y , and
⋂
y∈Y ′

Vy 6= ∅, then there is a countable Y ′′ ⊂ Y ′

such that Y ′ ⊂
⋃
y∈Y ′′

Uy.

Proof. Same as above.

For our first major result, (Theorem 2.0.10), we utilize the following property: A space

X has caliber ω1 if for any uncountable collection of nonempty open sets U = {Uα}α∈ω1

there exists an uncountable A ⊂ ω1 such that
⋂
α∈A

Uα 6= ∅. Another way to think of this
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property is that for the space X, there is no uncountable, point-countable collection of open

sets in X.

The following lemma will be useful in proving later results, and is a good example that

makes use of Lemma 2.0.5.

Lemma 2.0.7. If the T3-space X is monotonically (countably) metacompact, and has caliber

ω1, then X is hereditarily Lindelöf.1

Proof. If X is not hereditarily Lindelöf, it contains a right-separated subspace {xα : α <

ω1} []. That is, for each α ∈ ω1, there exists an open neighborhood Uxα of xα such that

Uxα ∩ {xβ : β > α} = ∅. Now let Vxα be as in Lemma 2.0.5. Since X has caliber ω1, there

must be an uncountable A ⊂ ω1 such that
⋂
{Vxα : α ∈ A} 6= ∅. From Lemma 2.0.5, there

must be a finite A′ ⊂ A such that {xα : α ∈ A} ⊂
⋃
β∈A′ Uxβ , which is impossible. Hence X

is hereditarily Lindelöf.

The next two lemmas and subsequent theorem together answer in the affirmative the

question posed by both Popvassilev in [30] and Bennett, Hart, and Lutzer, in [4], “Is every

compact, monotonically (countably) metacompact, Hausdorff space metrizable?” The proofs

make good use of Lemma 2.0.3. This proof originally appeared in [8]. It should be noted

that proof of Lemma 2.0.9 is similar to the proof that monotonically compact Hausdorff

spaces having property (K) are metrizable, which was proved in [15].

Lemma 2.0.8. Let X be compact T2 and monotonically countably metacompact. Then X

has caliber ω1.

Proof. Assume the hypotheses and suppose X does not have caliber ω1. Then there exists a

collection of nonempty open sets Û = {Uα : α ∈ ω1} such that any uncountable subcollection

of Û has empty intersection. In other words, Û is a point-countable collection.

1The proof of this lemma is essentially identical to the proof of Theorem 2.4 of [15].
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Pick x0 ∈ U0, and let α0 = 0. Since Û is point countable, there exists an α1 ∈ ω1 such

that x0 6∈ Uα1 . Pick xα1 ∈ Uα1 . Suppose that xαγ and Uαγ have been defined for each γ < δ,

where δ < ω1, such that:

(i) xαγ ∈ Uαγ

(ii) γ < γ′ < δ ⇒ xαγ 6∈ Uαγ′

By point-countability, there exists an αδ such that Uαδ ∩{xαγ : γ < δ} = ∅. Now choose

xαδ ∈ Uαδ . In this manner, we get an uncountable collection A ⊂ ω1 and xα ∈ Uα for every

α ∈ A, but xα 6∈ Uβ for any β > α, where β ∈ A.

By regularity, for each α ∈ A we can find a U ′α such that xα ∈ U ′α ⊂ U ′α ⊂ Uα. Let

Uα = {Uα, X r U ′α}, for each α ∈ A. Then Uα is an open cover of X for each α, and

r(Uα) ≺ Uα.

Since X is compact, for each α ∈ A there exists a finite Vα ⊆ {V ∈ r(Uα) : V ⊂ XrU ′α}

such that X r Uα ⊂
⋃
Vα. Also notice that xα 6∈

⋃
Vα.

Since we have uncountably many finite collections Vα, there exists n ∈ ω and an A′ ⊂ A,

with |A′| = ω1, such that |Vα| = n for all α ∈ A′. Denote Vα = {Vα,1, Vα,2, ... Vα,n} for all

α ∈ A′.

Let A′′ ⊂ A′ have order type ω. Note that for s < t in A′′, we have xs 6∈ Ut, hence

xs ∈
⋃
Vt. Put {s, t} in Pot i if xs ∈ Vt,i. From Ramsey’s Theorem, there is an infinite

B ⊂ A′′ and an m ≤ n such that s < t ∈ B implies that {s, t} ∈ Pot m, and thus xs ∈ Vt,m.

If s0 = minB then xs0 ∈ Vt,m for all t ∈ B r {s0}.

Let U =
⋃
{Ut : t ∈ B r {s0}}. If xs0 ∈ V ′ ∈ r(U), then there is some t ∈ B \ {s0} such

that V ′ ⊂ Ut or V ′ ⊂ (X \ U ′t). Since xs0 6∈ Ut, the latter must hold and so xt 6∈ V ′. Thus,

for every V ′ ∈ {V ∈ r(U) : xs0 ∈ V } there exists a k(V ′) ∈ B \ {s0} such that xk(V ′) 6∈ V ′.

Let d ∈ B such that d > k(V ′), for every V ′ ∈ {V ∈ r(U) : xs0 ∈ V }. We have

xs0 ∈ Vd,m ∈ r(Ud) ≺ r(U), so there exists a V ′ ∈ r(U) such that Vd,m ⊂ V ′. But k(V ′) < d

implies xk(V ′) ∈ Vd,m ⊂ V ′, which is a contradiction.
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Lemma 2.0.9. Let X be compact T2 and monotonically countably metacompact. If X has

caliber ω1, then X is metrizable.

Proof. Assume that X is compact, T2, monotonically countably metacompact with operator

r, and has caliber ω1.

By Lemma 2.0.7, X is hereditarily Lindelöf, and hence perfectly normal. Suppose X is

not metrizable. Choose x0, y0 ∈ X such that x0 6= y0, and let U0 be an open neighborhood

of x0 with y0 6∈ U0. Suppose α < ω1 and xβ, yβ, and Uβ have been chosen for each β < α.

There cannot exist a countable collection of open sets in X that separates points in the T0

sense, for otherwise, by perfect normality, we would also then have a collection that separates

points in the T1 sense, making X metrizable (see, e.g., Theorem 7.6 of [16]). Therefore there

are points xα and yα, xα 6= yα, such that if β < α, then Uβ ∩{xα, yα} = ∅, or {xα, yα} ⊂ Uβ.

Now let Uα be an open neighborhood of xα with yα 6∈ Uα. Thus we have defined xα, yα, and

Uα for each α ∈ ω1.

For each α ∈ ω1, let U ′α be open such that xα ∈ U ′α ⊂ U ′α ⊂ Uα. Let pα = (xα, U
′
α, Uα),

and let V pα be as in Lemma 2.0.3.

Since X has caliber ω1, there is an uncountable A ⊂ ω1 such that
⋂
{V pα ∩ U ′α : α ∈

A} 6= ∅. For β < α ∈ A, we will put {α, β} in Pot I if V pα 6⊂ Uβ; otherwise put {α, β} in

Pot II.

We claim that there can be no infinite subset A′ of A which is homogeneous for Pot I.

If there were, we may assume A′ has order type ω. Then from Lemma 2.0.3, there must be

a finite A′′ ⊂ A′ such that for any α ∈ A′ there is some β ∈ A′′ such that V pα ⊂ Uβ ( since⋂
{V pα ∩ U ′α : α ∈ A} 6= ∅, the alternative V pα ∩ U ′β = ∅ never holds). But then choosing

α ∈ A′ with α > β for every β ∈ A′′ yields a contradiction.

Hence by Erdos’ theorem ω1 → (ω, ω1)
2, there is an uncountable A′′ ⊂ A′ that is

homogenous for Pot II. In other words, β < α ∈ A′′ implies that V pα ⊂ Uβ.
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Applying hereditarily Lindelöf, we must have a γ < ω1 so that for every µ, ν ∈ ω1 r γ ,

⋃
α∈A′′rµ

{xα, yα} =
⋃

α∈A′′rν

{xα, yα}

If β is the least element of A′′ r γ, then yβ ∈
⋃

α∈A′′rβ

{xα, yα} =
⋃

α∈A′′r(β+1)

{xα, yα}.

For each α ∈ A′′ r (β + 1), we have that Uβ ⊃ V pα 3 xα and thus {xα, yα} ⊂ Uβ. Thus

Uβ ⊃
⋃

α∈A′′r(β+1)

{xα, yα} and so Uβ ⊃
⋃

α∈A′′r(β+1)

{xα, yα}, and consequently yβ ∈ Uβ, a

contradiction.

Theorem 2.0.10. Let X be compact T2 and monotonically countably metacompact. Then

X is metrizable.

Proof. This theorem is immediate from the above two lemmas.

2.1 Just from the Lemmas

Although both Lemma 2.0.3 and Lemma 2.0.5 are quite powerful and quite useful when

it comes to proving things involving monotonically metacompact property (Lemmas 2.0.4

and 2.0.6 for monotonically meta-Lindelöf spaces), it is known that the “weaker” lemmas,

2.0.5 and 2.0.6, are not equivalent to the original properties of monotonically metacompact

and monotonically meta-Lindelöf, respectively.

If we let X be the one-point compactification of an uncountable discrete space, and we

define Vy = {y} if y is isolated, and Vy = Uy if y is the single non-isolated point, we can

easily see that this space satisfies the conclusion of Lemma 2.0.5, but it is not monotonically

countably metacompact, since it is compact but not metrizable.
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Similarly, in Example 3.8.1 we show that the one-point Lindelöfication of a discrete

space of size greater than or equal to ω2 is not monotonically meta-Lindelöf, but this space,

with a similar definition for the Vy’s as that described above, will satisfy the conclusion of

Lemma 2.0.6.

Unfortunately, it is currently unknown whether there are any spaces that are not mono-

tonically metacompact or monotonically meta-Lindelöf, but will satisfy the conclusion of

Lemma 2.0.3 or Lemma 2.0.4, respectively.

Considering the above, it is quite natural to see which of the above results could be

obtained just from the lemmas themselves. It actually turns out that most of the results can

be obtained by just applying lemmas. What follows looks at just that.

In G. Gruenhage’s “Monotonically Compact and Monotonically Lindelöf spaces”, one

finds the “original” lemma relating a monotone covering propery to the neighborhood-pair

assignment. In proving that monotonically compact Hausdorff spaces are metrizable [14],

the author applied both the definition of monotonically compact directly, as well as the

characterization given by the lemma. We looked at the proof, and found that only the

lemma was necessary to achieve the result. While this was later found to be a known result,

our result was found independently.

In a similar manner, we then examined the above proof of Theorem 2.0.10, and found

that only the lemma was necessary for that result.

Theorem 2.1.1. Let X be compact, Hausdorff, and satisfy the conclusion of Lemma 2.0.3.

Then X is metrizable.

Proof. Assume X is not metrizable. Then from Lemma 2.0.9 (which only employed the

definition of monotonically metacompact in order to apply Lemma 2.0.3) X can not have

caliber ω1. So there exists an uncountable, point-countable collection U = {Uα}α∈ω1 , of open

sets in X. Without loss of generality, we can assume that there exists pα ∈ Uα such that for

all β > α, pα 6∈ Uβ.
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Since X is regular, we can find open U0
α and U1

α such that pα ∈ U0
α ⊂ U0

α ⊂ U1
α ⊂ U1

α ⊂ Uα.

Notice that the collections {U0
α}α∈ω1 and {U1

α}α∈ω1 also witness X not having caliber ω1.

Now the triple (x,X r U1
α, X r U0

α) ∈ PX for all x 6∈ U1
α. Thus, by Lemma 2.0.3 we get a

V (x, α) ⊂ X r U0
α, satisfying the conclusion of the Lemma.

If we consider the collection {V (x, α) : x ∈ (X r U1
α)}, then since X is compact,

there must be a finite subcollection covering X r Uα. Call this finite subcolletion Vα =

{V (xα,i, α)|i = 1, ..., kα}. Now there exists A ⊂ ω1, |A| = ω1, and k ∈ ω, such that

kα = |Vα| = k for all α ∈ A. From here, we will simply induct on the value of k, to get a

contradiction and finish the proof. However, we will first prove the following claim that will

allow us to more efficiently complete the induction:

Claim 1. Let F be a proper subset of {1, 2, . . . , k}. Suppose F has the following property:

(∗): There is an uncountable subset A′ of A such that for any β < α ∈ A′, we have

pβ 6∈
⋃
i∈F

V (xα,i, α).

Then there is some F ′ with F ( F ′ ⊆ {1, 2, . . . , k} such that F ′ satisfies (∗).

Proof of Claim 1. Assume F ⊂ {1, 2, . . . , k} and that F satisfies (∗) above.

If β0 = minA′, then pβ0 6∈ Uα for all α ∈ (A′ r {β0}). So pβ0 ∈ (X r Uα) for all

α ∈ (A′ r {β0}).

From (∗) we have that pβ0 6∈ V (xα,i, α) for any i ∈ F . So for all α ∈ (A′ r {β0}) there

exists jα ∈ ({1, 2, ..., k}r F ) such that pβ0 ∈ V (xα,jα , α).

Now, since |A′r{β0}| = ω1 then uncountably often jα = j, so let Â = {α ∈ (A′r{β0}) :

pβ0 ∈ V (xα,j, α)}.

Notice then that
⋂
α∈Â

V (xα,j, α) 6= ∅.

Now, for β < α ∈ Â, put {α, β} in Pot I if pβ ∈ V (xα,j, α) and in Pot II otherwise. By

ω1 → (ω, ω1)
2 we have that either there exists an infinite B ⊂ Â such that B is homogeneous

for Pot I, or there exists an uncountable B ⊂ Â such that B is homogenous for Pot II.

19



Assume that B is infinite homogeneous for Pot I. WLOG, B has order type ω. Then

β < α ∈ B implies that pβ ∈ V (xα,j, α).

If we now apply Lemma 2.0.3 to Q = {(xα,j, X r U1
α, X r U0

α) : α ∈ B}, then since⋂
α∈B

V (xα,j, α) 6= ∅, we get a finite B′ ⊂ B such that for each α ∈ B there exists α′ ∈ B′ with

either V (xα,j, α) ⊂ (X r U0
α′) or V (xα,j, α) ∩ (X r U1

α′) = ∅.

Choose α ∈ B with α > max(B′).

For no α′ ∈ B′ will V (xα,j, α)∩(XrU1
α′) = ∅. If there were such an α′, then V (xα,j, α) ⊂

Uα′ , which is a contradiction, since pβ0 ∈ V (xα,j, α) but pβ0 6∈ Uα′ .

So we must have V (xα,j, α) ⊂ (X r U0
α′). But this is also a contradiction, since p′α ∈

V (xα,j, α) ∩ U0
α′ .

So there is no infinite subset of Â that is homogeneous for Pot I. But then we must have

that there exists an uncountable B ⊂ Â such that B is homogenous for Pot II.

Thus, if we let F ′ = F ∪ {j}, then B is an uncountable subset of A such that for all

β < α ∈ B we have pβ 6∈
⋃
i∈F ′

V (xα,j, α). And thus F ′ satisfies (∗). This proves Claim 1.

We now complete the proof of the theorem.

It is easy to see that if F0 = ∅, then F trivially satisfies (∗): since F0 is empty, then⋃
i∈F0

V (xα,i, α) = ∅, and hence, A itself is an uncountable set such that pβ 6∈
⋃
i∈F0

V (xα,i, α).

Now, from the claim there exists F1 ) F0 such that F1 satisfies (∗). If F1 6= {1, 2, ..., k},

then apply the claim again to F1 to get a superset F2. We can continue in this way un-

til we get Fn = {1, 2, . . . , k}. But, if Fn = {1, 2, . . . , k} satisfies (∗), we get our desired

contradiction: for then we have an uncountable A′ ⊂ A such that ∀β < α ∈ A′, we have

pβ 6∈
⋃
i∈Fn

V (xα,i, α). But this then implies that pβ ∈ Uα, since
k⋃
i=1

V (xα,i, α) covers X r Uα.

But this is a contradiction to our initial assumption on pβ 6∈ U1
α for all α > β.

Hence X must have caliber ω1, and is therefore metrizable.
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In [4], Bennett, Hart, and Lutzer showed that every monotonically (countably) meta-

compact, monotonically normal space must be paracompact, but left it open if such spaces

must be hereditarily paracompact. We answer that question in the affirmative below. First,

we will adapt a characterization given by Gruenhage, Michael, and Tanaka involving hered-

itarily meta-Lindelöf spaces.

If U = {Uα}α∈A is a well-ordered cover of a space X, then define α(x) to be the first α

such that x ∈ Uα. Also denote Ũα = {x ∈ X : α(x) = α}. Clearly Ũα = Uα \
⋃
β<α

Uβ, and

thus Ũα ⊂ Uα.

Lemma 2.1.2. (Gruenhage, Michael, and Tanaka) [17] The following are equivalent:

a. X is hereditarily meta-Lindelöf;

b. Every well-ordered open cover U = {Uα}α∈A of X has a point-countable open refinement

V such that for any x ∈ X there exists V ∈ V such that x ∈ V ⊂ Uα(x);

c. Every well-ordered open cover U = {Uα}α∈A of X has a point-countable open refinement

V = {Vα}α∈A such that Ũα ⊂ Vα ⊂ Uα for all α.

We show that a similar characterization exists for hereditarily metacompact spaces:

Lemma 2.1.3. The following are equivalent:

a. X is hereditarily metacompact;

b. Every well-ordered open cover U = {Uα}α∈A of X has a point-finite open refinement V

such that for any x ∈ X there exists V ∈ V such that x ∈ V ⊂ Uα(x);

c. Every well-ordered open cover U = {Uα}α∈A of X has a point-finite open refinement

V = {Vα}α∈A such that Ũα ⊂ Vα ⊂ Uα for all α.

Proof. (a) → (b): Assume X is hereditarily metacompact, and λ is an ordinal, indexing the

well-ordered open cover U of X. We will induct on λ, the size of the indexed open cover.
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For λ = 1, this is trivial: if V = U , then V satisfies (b).

If λ is a successor ordinal, (λ = α + 1 for some α), then the well-ordered open cover

{Uβ}β<α of
⋃
β<α

Uβ must have a point-finite open refinement V ′ that satisfies (b) in the lemma.

It is easy to see that V = V ′∪{Uα} is a refinement of U that also must satisfy the conditions

of (b).

Now, if λ is a limit ordinal, let W be a point-finite open refinement of the open cover

U of X. For each W ∈ W choose α(W ) < λ such that W ⊂ Uα(W ). For each α < λ, the

well-ordered open cover {Uβ}β<α of
⋃
β<α

Uβ must have a point-finite open refinement Vα that

satisfies (b).

Define V = {W ∩ V : W ∈ W , V ∈ Vα(W )+1} . Since W and Vα are point-finite

open covers, then so is V . If we suppose x ∈ X and pick W ∈ W so that x ∈ W , then

x ∈ Uα(W ) ⊂
⋃
{Uβ : β < (α(W ) + 1)}. Thus, there exists V ∈ Vα(W )+1 with x ∈ V ⊂ Uα(x).

Therefore, W ∩ V ∈ V , and x ∈ W ∩ V ⊂ Uα(x). So V is a refinement of U and V satisfies

the conditions of (b).

(b)→ (c): Let U be a well-ordered open cover of X, indexed by A. Choose an open cover

V of X as in (b). For each α ∈ A, let Vα =
⋃
{V ∈ V : V ⊂ Uα, but V 6⊂ Uβ for any β < α}.

Then it is easy to verify that the well ordered cover {Vα : α ∈ A} satisfies (c).

(c) → (a): Suppose that Y ⊂ X and that X satisfies (c). Let W = {Wα}α<λ be a

well-ordered open cover of Y , each Wα open with respect to the subspace topology. Now,

for each α < λ, there exists a Uα open in X, such that Uα ∩ Y = Wα. If we let Uλ = X,

then U = {Uα}α≤λ is a well-ordered open cover of X. Since X satisfies (c), we then can let

V = {Vα}α≤λ be a point finite open refintement of U with Ũα ⊂ Vα ⊂ Uα for all α ≤ λ.

Note that each y ∈ Y is an element of Ũα for some α < λ. Thus {(Vα ∩ Y : α < λ} must

be a point-finite open refinement of W covering Y . Hence Y is metacompact, and so X is

hereditarily metacompact.
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The following lemma shows that any space satisfying just the conclusion of Lemma

2.0.5 will satisfy condition (c.) of the above characterization, and thus we get that every

monotonically metacompact space is hereditarily metacompact. So the “weak” lemma has

considerable strength after all!

Lemma 2.1.4. Let X satisfy the conclusion of Lemma 2.0.5. Then X is hereditarily meta-

compact.

Proof. Let X satisfy Lemma 2.0.5, and let U = {Uα}α∈A be a well-ordered open cover of X

indexed by A. For all x ∈ X let α(x) be the least α such that x ∈ Uα. So for each x, we have

that x ∈ Uα(x) r
⋃

β<α(x)

Uβ. Define Ũα = {x : α(x) = α} and note that Ũα = Uα r
⋃
β<α

Uβ.

By Lemma 2.0.5, for all x ∈ Ũα, there exists Vx such that x ∈ Vx ⊂ Uα, such that the

Vx’s satisfy the conclusion of 2.0.5. Let Vα =
⋃
x∈Ũα

Vx.

Claim: {Vα}α∈A is point-finite.

Assume not. Then there exists a y ∈ X and an infinite A′ ⊂ A, such that y ∈ Vα for

all α ∈ A′. Thus for all α ∈ A′, y ∈
⋃
x∈Ũα

Vx. So, since y is in each of those unions, then

for each α ∈ A′ there exists xα ∈ Ũα with y ∈ Vxα . WLOG, A′ has order type ω. Applying

the lemma to the set Y ′ = {xα : α ∈ A′} will yield the contradiction. Since y ∈ Vxα for all

α ∈ A′, then
⋂
α∈A′

Vxα 6= ∅. So, from the lemma, there must exist a finite A′′ ⊂ A′ such that

Y ′ ⊂
⋃
α∈A′′

Uα. Now, if we let γ ∈ A′ such that γ > max(A′′), then xγ ∈
⋃
α∈A′′

Uα, but for

α ∈ A′′, Uα ∩ Ũγ = ∅, and hence xγ 6∈
⋃
α∈A′′

Vα, a contradiction.

Thus {Vα}α∈A is point-finite.

Lemma 2.1.3 and Lemma 2.1.4 together give us:

Corollary 2.1.5. Every monotonically countably metacompact space is hereditarily meta-

compact.
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A similar argument to Lemma 2.1.4, but exchanging point-finite for point-countable,

will show that any space satisfying the conclusion of Lemma 2.0.6 will satisfy condition

(c.) of Theorem 2.1.2, and thus must be hereditarily meta-Lindelöf, yielding the following

corollary:

Corollary 2.1.6. Every monotonically meta-Lindelöf space is hereditarily meta-Lindelöf.

It is known that every hereditarily metacompact, monotonically normal space is hered-

itarily paracompact. This comes from the combination of the known fact that no stationary

subset of a regular uncountable cardinal is metacompact (or even meta-Lindelöf), combined

with the result of Balogh and Rudin, that a monotonically normal space is hereditarily para-

compact if and only if it does not contain a copy of such a stationary subset [2]. From this,

we have that since a monotonically meta-Lindelöf space is hereditarily meta-Lindelöf, then

it cannot contain a copy of a stationary subset of a regular uncountable cardinal. Thus we

get the following corollary, which answers a question of Bennett, Hart, and Lutzer [4]:

Corollary 2.1.7. Any monotonically normal, monotonically meta-Lindelöf space is heredi-

tarily paracompact.

The above result was shown by Li and Peng in [27], our result was found independently,

and utilizes the hereditarily meta-Lindelöf result of Corollary 2.1.7.

The property of a monotonic covering property implying a space has the property hered-

itarily is not universal, however. Popvassilev and Porter have shown that while a space that

is monotonically paracompact under the definition of Gartside and Moody must be heredi-

tarily paracompact, they have also gone on to show that montonically paracompact in the

locally finite sense need not imply hereditarily paracompact [29].
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Chapter 3

Examples

In this section we look at some monotonic covering properties of some specific spaces.

Some of our results about these spaces answer open questions, while others are examples

for pedagogical purposes. Still others have been examined due to their prominence in the

literature with regards to other monotonic properties. First we will start with a few spaces

that were examined initially in order to gain an understanding of how the properties of

monotonically metacompact and monotonically meta-Lindelöf really “worked”.

3.1 Alexandroff Duplicate of the Interval

Example 3.1.1 is actually a corollary of Theorem 2.0.10. Since the space is compact and

Hausdorff, but it is not metrizable, it therefore cannot be monotonically metacompact. The

direct proof, however, shows that proving a space is not monotonicaly metacompact directly

from the definition can be quite cumbersome.

The Alexandroff Duplicate consists of two copies of the unit interval, [0, 1], called X0

and X1. All points in X1 are isolated, and for points in X0, a basic open neighborhood of

x0 is of the form (a0, b0) ∪ ((a1, b1) r {x1}) , where x0 ∈ (a0, b0).

Figure 3.1: The Alexandroff Duplicate of [0, 1]
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Example 3.1.1. The Alexandoff Duplicate of [0, 1] is not Monotonically Metacompact.

Proof. Let X be the Alexandroff Duplicate. For each x ∈ [0, 1] let Ux = {{x1}, X r {x1}}.

Then for each x ∈ [0, 1], Ux is an open cover of X. Assume that X is monotonically

metacompact, and let r be the monotoniclly metacompact operator. Now, since r(Ux) is

point finite, then for any x ∈ [0, 1] there are only finitely many V ∈ r(Ux) such that x0 ∈ V .

Therefore, there are rationals ax and bx such that x0 ∈ (a0x, b
0
x) ∪ ((a1x, b

1
x) r {x1}) ⊆

⋂
{V ∈

r(Ux) : x0 ∈ V }. Let Ox = (a0x, b
0
x) ∪ ((a1x, b

1
x) r {x1}.

Now, the preceding can be done for all x ∈ [0, 1] and the corresponding Ux, and since

there are only countably many rationals in [0, 1], there must be an uncountable A ⊂ [0, 1]

such that (a0x, b
0
x) = (a0, b0) for all x ∈ A. In other words, Ox = (a0, b0) ∪ ((a1, b1) r {x1})

for each x ∈ A.

Let U =
⋃
{Ux : x ∈ A}. For every U ∈ r(U), since {U} ≺ U , there exists x(U) ∈ A

such that {U} ≺ Ux(U). Let q ∈ (a0, b0) and pick x ∈ A such that x 6∈ {x(U) : q ∈ U ∈ r(U)}.

Now r(Ux) ≺ r(U), so {Ox} ≺ r(Ux) ≺ r(U). Therefore there exists U ∈ r(U) such that

Ox ⊆ U . But x(U)1 6∈ U , while x(U)1 ∈ Ox, a contradiction.

Thus X is not monotonically metacompact.

3.2 The Double Arrow Space

This next example is a space that is somewhat similar to the Alexandroff Duplicate.

Like the previous example, the Alexandroff Double Arrow space is also a compact, Hausdorff

space. It is also known to be hereditarily Lindelöf, hereditarily separable, but not metrizable,

so just like the previous example, as a corollary to Theorem 2.0.10, it is not monotonically

metacompact. The proof here helps illustrate, however, how Lemma 2.0.3 can be used to

show a space is not monotonically metacompact.

The Double Arrow space is the space X = [0, 1] × {0, 1}. We will call the “top” unit

interval X1 and the “bottom” unit interval X0. The topology on X is given by: for a point

x ∈ X1, a basic open set is of the form ((x, a) × {0}) ∪ ([x, a) × {1}), where a ∈ [0, 1],
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x < a < 1. If x ∈ X0, then a basic open set is of the form ((b, x]×{0})∪ ((b, x)×{1}) where

0 < b < x. Another way to describe this space is that it is the top and bottom edges of the

unit square with the lexicographic order.

Figure 3.2: The Double Arrow space

Example 3.2.1. The Double Arrow Space is not monotonically metacompact.

Proof. Let X be the Double Arrow space. Let a ∈ (0, 1). For each x < a, x ∈ (0, 1), let

Ux = ((x, a)× {0}) ∪ ([x, a)× {1}). Then Ux is a basic open set containing the point (x, 1).

Since X is regular, we can find another basic open set U0
x such that x ∈ U0

x ⊂ U
0

x ⊂ Ux.

So px = (x, U0
x , Ux) ∈ PX . Suppose X is monotonically metacompact. Then from Lemma

2.0.3, for each px we have Vpx satisfying the lemma. Now, without loss of generality, we

can assume that Vpx is a basic open set of the form ((x, bx) × {0}) ∪ ([x, bx) × {1}), where

x < bx < a, and that the right endpoint, bx, is rational. Now, since there are uncountably

many Vpx ’s, there are uncountably many that have the same rational right endpoint bx = b.

Similarly since there are uncountably many Vpx with right endpoint b, but only countably

many rational numbers, there must exist a rational q such that for uncountably many of

those px, x < q < b. Let A be the set of all x such that Vpx = ((x, b)× {0}) ∪ ([x, b)× {1}),

and x < q < b. We will pass to an infinite subset A′ of A, such that inf(A′) 6∈ A′. Now, the

point (q, 1) ∈ Vpx for all px ∈ A′. Hence
⋂
x∈A′

Vpx 6= ∅. From Lemma 2.0.3, this means there

must exist a finite A′′ ⊂ A′, so that for any x ∈ A′, there exists x′ ∈ A′′, such that either

Vpx ⊂ Upx′ , or Vpx ∩ U0
x′ = ∅. The latter is impossible, so the former must be the case. Yet,
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since inf(A′) 6∈ A′, then choosing x ∈ A′ such that x < min(A′′) yields a contradiction, for

Vpx 6⊂ Uy whenever x < y. Hence X is not monotonically metacompact.

3.3 Ceder and McAuley Spaces

One of the more examined problems involving monotonic metacompactness has been

the attempt to discover which properties, when combined with metacompactness, will give

monotonically metacompact. It was shown in [4] that every metacompact Moore space is

monotonically metacompact. But which properties, weaker than developable, will give the

same result? In [4] it was asked which stratifiable spaces were monotonically metacompact,

and in particular, if either the Ceder space or McAuley space held this property. These two

spaces are quite similar, and a description of these spaces is taken from [1].

The McAuley space is defined as X = X0 ∪ X1 where X0 = {(x, 0) : x ∈ R}, and

X1 = {(x, y) ∈ R2 | y > 0}. A basic open neighborhood for a point x = (x0, 0) ∈ X0 is of

the form M

(
x,

1

n

)
= {x} ∪

{
(x′, y′) ∈ X | y′ < 1

n
|x′ − x| < 1

n2

}
, for n ∈ N. The points

x = (x′, y′) ∈ X1 have the usual Euclidean open balls as basic neighborhoods.

The Ceder space uses the same underlying set for X, and as in the McAuley space,

basic open neighborhoods of points above the x-axis are Euclidean open balls. A basic

open neighborhood for a point x = (x0, 0) ∈ X0 is anything of the form C

(
x,

1

n

)
=

{x} ∪
{

(x′, y′) ∈ X : y′ < n−
√
n2 − (x′ − x)2, |x′ − x| < 1

n

}
, for n ∈ N.

Figure 3.3: The McAuley bowtie space and Ceder space
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Li and Peng [26] examined this space, and were able to show that is was paracompact,

and hence metacompact, utilizing a direct argument, but were not able to determine if it

was monotonically metacompact. We show that the McAuley space is not monotonically

meta-Lindelöf, hence not monotonically metacompact either. A similar argument will show

that the Ceder space is neither monotonically metacompact nor monotonically meta-Lindelöf

as well, thus showing that it is not enough for a regular, metacompat space to be stratifiable

in order for it to be monotonically metacompact.

Example 3.3.1. The McAuley Space is not monotonically metacompact.

Proof. Let X be the McAuley space. For each x ∈ X, choose a basic open neighborhood U1
x

with x ∈ U1
x . Since X is regular, we can find some other basic open neighborhood U0

x of x,

such that x ∈ U0
x ⊂ U0

x ⊂ U1
x . Thus p = (x, U0

x , U
1
x) ∈ PX .

Assume that X is monotonically metacompact. Then by Lemma 2.0.4, for each p =

(x, U0
x , U

1
x) ∈ PX , there is an open V x ⊂ X satisfying the conclusions of the lemma. Without

loss of generality, we may assume each V x is also a basic neighborhood. For each x ∈ X0,

we may also consider the set V x ∩X0 = (ax, bx)×{0} to be an interval in X0 with rational

endpoints, such that ax < x < bx.

Now, since X0 is uncountable, then for some a, b ∈ Q and for some uncountable A ⊂ X0,

we must have V ∩ X0 = (a, b) × {0} for all x ∈ A. Then if Q = {(x, U0
x , U

1
x) : x ∈ A} we

have from Lemma 2.0.4 that since
⋂
x∈A

V x 6= ∅, and V x ∩ U0
x′ 6= ∅ for any x, x′ ∈ A, then

there must be a countable A′ ⊂ A such that for any x ∈ A there exists y ∈ A′ such that

V x ⊂ U1
y . Yet if x 6= y ∈ A, then V x 6⊂ U1

y , since there will be some point (y, z) ∈ X1 such

that (y, z) ∈ V x, but for no z > 0 is the point (y, z) ∈ U1
y , a contradiction. Thus X is not

monotonically meta-Lindelöf.
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The Ceder space, as described above, is quite similar to the McAuley space, and the

proof that the Ceder space is not monotonically metacompact is almost identical to the

above proof, it is just the shape of the basic open sets that have changed.

3.4 The Sequential Fan Space

This next example was motivated by a result of Levy and Matveev [25] in which they

show that under the Continuum Hypothesis the sequential fan space is monotonically Lin-

delöf. It is currently unknown whether the space is monotonically Lindelöf in ZFC. We

show here, however, that the space is not monotonically (countably) metacompact. In par-

ticular, this means that even though regular Lindelöf spaces are (countably) metacompact,

monotonically Lindelöf does not imply monotonically (countably) metacompact.

The sequential fan space can be defined as follows: X = (ω×ω)∪{∞}, where all points

in ω × ω are isolated and an open neighborhood of ∞ is of the form B(∞, f) = {(m,n) ∈

(ω × ω) | f(m) ≤ n} where f ∈ ωω.

To show this space is not monotonically metacompact, we will first show two lemmas

useful in dealing with the functions in this space.

Given two functions f, g ∈ ωω, we will say f ≤∗ g if for all but finitely many n ∈ ω, we

have f(n) ≤ g(n).

We will also say that a collection F ⊂ ωω of functions is ≤∗-unbounded if for any g ∈ ωω

there exists f ∈ F such that g ≤∗ f .

Lemma 3.4.1. If F ⊂ ωω is ≤∗-unbounded and F =
⋃
n∈ω

Fn, then there exists a n0 ∈ ω such

that Fn0 is ≤∗-unbounded.

Proof. Assume not. Then for each n ∈ ω, there exists gn ∈ ωω such that for every f ∈ Fn

we have f(i) < gn(i) for all sufficiently large i ∈ ω.

Define a function g∗ ∈ ωω by g∗(k) =
k∑
i=0

gi(k).
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Then gn ≤∗ g∗ for all n ∈ ω, and it follows that g ≤∗ g∗ for all g ∈ F , which is a

contradiction.

Armed with the above lemma, we are now able to show that the sequential fan space is

not monotonically metacompact.

Example 3.4.2. The sequential fan space is not monotonically countably metacompact.

Proof. Assume that X is monotonically countably metacompact, and note that if B(∞, g) ⊂

B(∞, f) ⇔ f(n) ≤ g(n) for all n ∈ ω.

Notice that for each f ∈ ωω, pf = (∞, B(∞, f), B(∞, f)) ∈ PX . Since X is mono-

tonically countably metacompact, then by Lemma 2.0.3, there is a gf ∈ ωω such that

∞ ∈ B(∞, gf ) ⊂ B(∞, f), and for each F ⊂ ωω there exists a finite F ′ ⊂ F such that

for any f ∈ F there is a f ′ ∈ F ′ with f ′(n) ≤ gf (n) for all n ∈ ω.

For each f ∈ ωω, put f ∈ Fn if gf (0) = n. From Lemma 3.4.1, there exists an n0 ∈ ω

such that Fn0 is ≤∗-unbounded in ωω. Now, for each f ∈ Fn0 put f ∈ Fn0,n if gf (1) = n.

Again, from Lemma 3.4.1, there exists a n1 ∈ ω such that Fn0,n1 is ≤∗-unbounded. Continue

on in this way: if Fσ has been defined, where σ ∈ ω<ω, let k = |σ| and partition Fσ by

placing f ∈ Fσ into Fσ_n if f(k) = n. Then there exists a nk ∈ ω such that Fσ_nk is

≤∗-unbounded. We get a g∗ ∈ ωω such that for each f ∈ Fg∗�n, gf�n = g∗�n , and Fg∗�n is

≤∗-unbounded in ωω for each n ∈ ω.

There exists a f0 ∈ ωω such that f0 6≤∗ g∗, or in other words, f0(i) > g∗(i) for infinitely

many i ∈ ω. Let i0 ∈ ω be the first such that f0(i0) > g∗(i0).

Now Fg∗�(i0+1) is ≤∗-unbounded in ωω, so there exists a f1 ∈ Fg∗�(i0+1) such that f1(i) >

g∗(i) for infinitely many i ∈ ω. So gf1(i0) = g∗(i0) < f0(i0), where B(∞, gf1) 6⊂ B(∞, f0).

Again let i1 ∈ ω be greater than i0 such that f1(i1) > g∗(i1). We will continue on in this

way.
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In general, assume that fj ∈ Fg∗�(ij−1+1)
has been chosen for all j ≤ k ∈ ω, such that

g∗(i) < fj(i) for infinitely many i ∈ ω.

Let ik be the first greater than ik−1 such that fk(ik) > g∗(ik). But then since Fg∗�(ik+1)
is

≤∗-unbounded in ωω, we have that there exists a fk+1 ∈ Fg∗�(ik+1)
such that fk+1(i) > g∗(i)

for infinitely many i ∈ ω, while fk+1(n) < g∗(n) for all n ≤ k.

So, proceeding thus for all k ∈ ω, we get a collection Q = {f0, f1, f2, ..., fk, ...} of

elements of ωω such that gfk 6≥ fi if i < k.

By Lemma 2.0.3, there exists a Q′ ⊂ ω, |Q′| < ω, such that for any k ∈ Q, there exists a

j ∈ Q′ such that B(∞, gfk) ⊂ B(∞, fj), whence gfk ≥ fj. So let m = max{k ∈ ω : fk ∈ Q′}.

But fm+1 ∈ Q is guaranteed by construction to have gf(m+1)
6≥ fk for all k ∈ Q′, which is a

contradiction. Therefore the sequential fan is not monotonically metacompact.

3.5 Single Ultrafilter Space

Another space that was examined by Levy and Matveev [25] with regards to the mono-

tone Lindelöf property was the single ultrafilter space. Similar to the sequential fan space,

under the Continuum Hypothesis it was found that there exists a single ultrafilter space

that is monotonically Lindelöf. It is not currently known if every single ulrafilter space is

monotonically Lindelöf, however, nor if the single ultrafilter space is monotonically Lindelöf

in ZFC. We examined this space, and found that no single ultrafilter space is monotonically

(countably) metacompact.

Recall, that a collection of subsets F of a topological space X is a filter if for any two

elements Fa, Fb ∈ F , then Fa ∩ Fb ∈ F , and if for any F ∈ F , and any G ⊂ X with F ⊂ G

then we must have G ∈ F . A filter on a space X is an ultrafilter if there is no strictly finer

filter containing it. An equivalent condition for an ultrafilter is it is a filter such that for

any subset B of the space, either B or its complement X rB is an element of the filter. An

ultrafilter is call a free ultrafilter if
⋂
F = ∅.
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The single ultrafilter space, or the single ultrafilter space on ω, is the space: X = ω∪{F}

where F is a free ultrafilter on ω. In X, the points of ω are isolated, and a basic neighborhood

of F is any member F of the ultrafilter, together with the point F .

We will need to utilize two useful lemmas in order to show that this space is not mono-

tonically (countably) metacompact.

For two infinite sets A and B, we will say that A ⊂∗ B if ArB is finite.

Lemma 3.5.1. If F is a free ultrafilter on ω, and if F =
⋃
n∈ω

Fn, then ∃n ∈ ω such that

6 ∃A ⊂ ω with A infinite and A ⊂∗ F for all F ∈ Fn.

Proof. Assume not. Then for all n ∈ ω there exists An ⊂ ω such that An ⊂∗ F for all

F ∈ Fn. By shrinking the An’s if necessary, we may assume that they are pairwise disjoint.

Now, for each F ∈ Fn, F ∩ An 6= ∅. Thus, if A =
⋃
n∈ω

An, we have that for all F ∈ F ,

F ∩ A 6= ∅. So, A ∈ F .

For each n ∈ ω, divide An into A0
n and A1

n, where A0
n∩A1

n = ∅ and A0
n∪A1

n ⊂ An. Then

A0
n ∩ F 6= ∅, and A1

n ∩ F 6= ∅ for all F ∈ Fn.

Now, if we consider
⋃
n∈ω

A0
n and

⋃
n∈ω

A1
n, notice that for all F ∈ F , F ∩

⋃
n∈ω

A0
n 6= ∅, and

F ∩
⋃
n∈ω

A1
n 6= ∅. So both

⋃
n∈ω

A0
n and

⋃
n∈ω

A1
n are in F , yet

⋃
n∈ω

A0
n ∩

⋃
n∈ω

A1
n = ∅, which is

impossible. Hence the lemma holds.

A set P is called the pseudointersection of a filter F if P r F is finite for every F ∈ F .

Notice that a collection of sets F that satisfies (∗) in the following lemma implies that F

has no infinite pseudointersection.

Lemma 3.5.2. Suppose that F is a collection of sets satisfying:

(∗) Whenever F =
⋃
n∈ω

Fn, then there exists n ∈ ω such that there does not exist A ⊂ ω,

|A| = ω, with A ⊂∗ F for all F ∈ Fn.
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Then whenever F =
⋃
n∈ω

Fn, ∃n ∈ ω such that Fn satisfies (∗).

Proof. Suppose that F satisfies (∗), and F =
⋃
n∈ω

Fn, but that for all n ∈ ω, Fn does not

satisfy (∗). Then for each n ∈ ω, Fn =
⋃
m∈ω

Fn,m, and for each m ∈ ω, there exists Am ⊂ ω

with |Am| = ω, such that Am ⊂∗ F for every F ∈ Fn,m. So, F =
⋃
n∈ω

⋃
m∈ω

Fn,m, and every

Fn,m has infinite pseudointersection, which violates F satisfying (∗).

Example 3.5.3. The single ultrafilter space is not monotonically metacompact.

Proof. Assume that X is monotonically metacompact, with monotone metacompactness

operator r.

Now for each F ∈ F , pF = (F , F ∪ {F}, F ∪ {F}) ∈ PX . Since X is monotonically

metacompact, then by Lemma 2.0.3, then there is a V pF ∈ F such that V pF ⊂ F , and for

each Q ⊂ PX , there exists a finite Q′ ⊂ Q such that for any pF ∈ Q there is a pF ′ ∈ Q′ such

that V pF ⊂ F ′.

For each n ∈ ω, let Fn = {F ∈ F | n ∈ V pF }. Then F =
⋃
n∈ω

Fn.

By Lemma 3.5.1, there exists n0 ∈ ω such that Fn0 satisfies (∗) from Lemma 3.5.2. Now, for

each n ∈ (ω r n0), let Fn0,n = {F ∈ Fn0 | n ∈ V pF }. Applying Lemma 3.5.2, we then have

that ∃n1 ∈ (ω r n0) such that Fn0,n1 satisfies (∗). In general, if we have constructed Fσ, for

σ ∈ ω<ω, such that Fσ satisfies (∗) from Lemma 3.5.2, we can let Fσ_n = {F ∈ Fσ | n ∈ V F},

and then from Lemma 3.5.2, we get that there exists ni ∈ (ω r S), where S is the range of

σ and i = |σ|, such that Fσ_ni satisfies (∗).

Thus we get a sequence s = (n0, n1, . . .), such that Fs�n has no infinite pseudointersection

for any n ∈ ω, and ran(s�n) ⊂ V F , for any F ∈ Fs�n .

If we let G = {n0, n1, ..., }, then there exists F0 ∈ F such that G 6⊂∗ F0. In other words,

G r F0 is infinite. Now let i0 ∈ ω such that ni0 ∈ (G r F0). Then there is F1 ∈ Fn0,...,ni0

such that Gr (F0 ∪ F1) is infinite. We will continue on in this way:
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In general, assume that F0, F1, ..., Fk have all been found such that Gr(
k⋃
0

Fj) is infinite.

Let nik ∈ Gr (
k⋃
0

Fj). Then there exists Fk+1 ∈ Fn0,n1,...,nik
such that Gr (

k+1⋃
j=0

Fj) is infinite.

Proceeding this way for all k ∈ ω, we get a collection Q = {F0, F1, ..., Fk, ...} of elements of

F such that V Fk 6⊂ Fi if i < k. (This is because ni ∈ V Fk r Fi.)

If Q = {Fi : i ∈ ω}, then by Lemma 2.0.3, there exists a finite Q′ ⊂ Q, such that for

any Fk ∈ Q, there exists Fj ∈ Q′ such that V Fk ⊂ Fj. So, let m = max{k ∈ ω : Fk ∈

Q′}. We have that Fm+1 is guaranteed by the construction to have V
pF(m+1) 6⊂ Fk for all

pFk ∈ Q′, which is a contradiction. Therefore the single ultrafilter space is not monotonically

metacompact.

3.6 A Stratifiable, Monotonically Paracompact, Not Protometrizable Space

The next example was motivated by a question of Gartside and Moody [11], who after

defining monotone paracompactness using star-finite refinements, asked if it would have been

equivalent for their definition to use the standard locally finite refinements instead.

Definition 18. A space is monotonically paracompact (using star-refinements) if

there exists a function m : C → C,(where C is the set of open covers of X) such that:

(MP1) for every U ∈ C, m(U) star-refines U

(MP2) if U refines V then m(U) refines V.

Gartside and Moody [11] were able to show that for T1 spaces their version of monoton-

ically paracompact was equivalent to a space being protometrizable, but made no progress

on the locally finite verison of monotonically paracompact.
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Definition 19. A space X is monotonically paracompact (in the locally finite

sense) if there exists a function r assigning to each open cover U of X a locally finite

open refinement r(U) such that for any other open cover V, whenever V refines U then we

must have r(V) refines r(U).

Stares [32] observed that utilizing different equivalent definitions of paracompactness can

give rise to definitions of monotonically paracompact that are not equivalent and showed it

to be the case for the following two characterizations of paracompactness:

Theorem 3.6.1. (Michael) [28] A space X is paracompact if and only if for each open coeer

U of X there is a semineighborhood D of the diagonal in X2 such that {D[x] : x ∈ X} refines

U .

Theorem 3.6.2. (Kelley) [22] A space X is paracompact if and only if for each open cover

U of X there is a neighborhood D of the diagonal in X2 such that {D[x] : x ∈ X} refines U .

When “monotonized”, these two equivalent and similarly worded characterizations of

paracompactness yield different classes of spaces. If we let C denote the collection of open

covers of a space X, S denote the collection of semi-neighborhoods of the diagonal in X2,

and N the colleciton of neighborhoods of the diagonal in X2, then the monotonized versions

of the above characterizations are defined as follows:

Definition 20 (Stares). A space X is monotonically semineighborhood refining (MSNR)

if there is a map r : C → S such that:

a. {r(U)[x] : x ∈ X} refines U for each U ∈ C,

b. r(U) ≺ r(V) whenever U ≺ V.

Definition 21 (Stares). A space X is monotonically neighborhood refining (MNR) if

there is a map r : C → N such that:
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a. {r(U)[x] : x ∈ X} refines U for each U ∈ C,

b. r(U) ≺ r(V) whenever U ≺ V.

Stares showed that X being MNR is equivalent to the space being protometrizable,

and hence MNR is equivalent to monotonically paracompact (under Gartside and Moody’s

definition). He also showed that if X is MNR it is obviously MSNR. However, he goes

on to show that the McAuley space (see Example 3.3.1 above), is a space that is not pro-

tometrizable, (it is stratifiable but not metrizable), so cannot be MNR, yet he showed this

space is MSNR. Considering this in the light of our above findings for the McAuley space,

this gives a monotonized characterization of paracompactness that does not imply monotone

meta-Lindelöfness.

Although Stares showed that different, equivalent definitions for paracompactnesss can

give rise to different classes of spaces when monotonized, he was not able to determine

whether the monotonized version of the standard definition of paracompactness, using locally

finite refinements, and the defnition of monotonically paracompact given by Gartside and

Moody give rise to different monotonic properties.

We show here an example of a space that is monotonically paracompact under the

locally finite definition, and stratifiable, but not protometrizable and hence not monotonically

paracompact by Gartside and Moody’s definition.1

Example 3.6.3. Let X = (ω1 × ω) ∪ {∞}, where points of ω1 × ω are isolated, and a basic

open neighborhood of∞ is of the form B(α, n) = {(β,m) : α ≤ β, n ≤ m}∪{∞}. Then X is

stratifiable and monotonically paracompact in the locally finite sense, but not protometrizable.

X is stratifiable. Let U be an open subset in X. If ∞ ∈ U , let Un = U for all n ∈ ω. If

∞ 6∈ U , then let Un = U ∩ {(b,m) : m ≤ n} .

That condition (i) of Definition 7 holds is obvious, since all sets are clopen in X.

1Popvassilev and Porter independently obtained a similar example, although their example is not
stratifiable.[29]

37



Condition (ii) is just as obvious: if ∞ ∈ U , it is trivial, and if ∞ 6∈ U , then clearly⋃
n∈ω

Un = U .

For condition (iii), let U and V be open subsets of X, with U ⊂ V . If ∞ ∈ V , then

Un ⊂ Vn for all n ∈ ω, since Un ⊆ U and Vn = V for all n ∈ ω. If ∞ 6∈ V , then condition

(iii) is just as easily realized, since Un = U ∩ {(b,m) : m ≤ n} ⊆ V ∩ {(b,m) : m ≤ n} = Vn

for all n ∈ ω.

Thus X is stratifiable.

X is monotonically paracompact. Let U be an open cover of X.

Define U∞ = {U ∈ U :∞ ∈ U}, and UB∞ = {(B(α, n) : B(α, n) ⊂ U, for some U ∈ U∞}.

For any basic open neighborhood B(α, n) of ∞, we will often wish to refer its minimum

point, (α, n).

Now, we are only interested in the maximal elements of UB∞. (A basic open set V is

maximal in UB∞ if V 6⊆ U for every U ∈ UB∞). Let ÛB∞ be the collection of all maximal

elements of UB∞.

Notice that if B(β1,m1), B(β2,m2) ∈ ÛB∞ then β1 6= β2 and m1 6= m2. In fact, we must

have either β1 < β2 and m1 > m2, or β1 > β2 and m1 < m2.

Claim: ÛB∞ is finite.

Suppose that {(α1, n1), (α2, n2), ..., (αi, ni), ...} is an infinite collection of distinct min-

imal points from elements of ÛB∞. Consider the collection of all unordered pairs from that

infinite collection: {{(αi, ni), (αj, nj)} : i, j ∈ ω}.

We will put {(αi, ni), (αj, nj)} in Pot I if i < j and αi > αj, and in Pot II otherwise. By

Ramsey’s Theorem there exists an infinite A ⊂ ω, such that the pairs {{(αk, nk), (αt, nt)} :

k, t ∈ A} are all in the same pot.

If Pot I is homogenous for A, then we must have ∀i < k ∈ A, αi > αk, and we get an

infinite decreasing sequence of elements in ω1, which is impossible.
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If Pot II is homogeneous for A, and if i is the least element of A, then αi ≤ αk for all

k ∈ A, we must have ni ≥ nk for all k ∈ A, and thus we have infinitely many elements of ω

less than some specific element ni ∈ ω, also a contradiction.

Thus ÛB∞ contains only finitely many elements. Define r(U) = ÛB∞ ∪ {{(α, n)} : (α, n) 6∈⋃
ÛB∞}.

Claim: r is the desired monotone paracompactness operator.

i.) r(U) refines U :

This is obvious since each element of r(U) is either a singleton, or is a basic open

neighborhood of ∞, chosen because it was contained in some element of U .

ii.) r(U) is locally-finite.

If some point of (ω1 × ω) were contained in infinitely many elements of r(U), then

the point ∞ would also be contained in infinitely many elements of r(U) as well. But

there are only finitely many elements in ÛB∞. So any isolated point has a neighborhood,

namely the point itself, which meets only finitely many members of r(U). It remains

to show that r(U) is locally finite at ∞. But any member of ÛB∞ is a neighborhood of

∞ which meets only other members of ÛB∞, which is finite.

iii.) If V is any open cover of X with U ≺ V , then r(U) ≺ r(V).

Let U ′ ∈ r(U). Then there exists U ∈ U such that U ′ ⊂ U . Now, since U ≺ V , then

there must exist V ∈ V such that U ⊂ V , and hence U ′ ⊂ V . Now, U ′ is a basic open

subset of X. If U ′ is a singleton, then we’re done. If ∞ ∈ U ′, then since U ′ is a basic

open subset contained in V , we must have that U ′ ∈ VB∞. If U ′ ∈ V̂B∞ then we’re done.

If U ′ 6∈ V̂B∞ then it means that U ′ is not maximal in VB∞. Hence there exists a V ′ ∈ V̂B∞

such that U ′ ⊂ V ′. But then V ′ ∈ r(V), and so U ≺ V .

So r is a monotone paracompactness operator, and X is monotonically paracompact.
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X is not protometrizable. Assume that X is protometrizable. Then X is paracompact and

has an orthobase. It should first be noted that the collection of basic open neighborhoods

described above is not an orthobase for X. Consider the collection F = {B(α1, n) : n ∈ ω}

for some fixed a1 ∈ ω1. Then
⋂
F = {∞}, but F is not a base at ∞ since no member of F

is a subset of the open neighborhood B(α2, n) of∞ for any α2 > α1. Now, we claim that no

other collection of open subsets of X can be an orthobase. So assume X has an orthobase

B. First, start by choosing B0 ∈ B so that ∞ ∈ B0. Next, let B0(α0, n0) be any basic open

set of ∞, such that B0(α0, n0) ⊂ B0. Now, since B is an orthobase, there exists a B1 ∈ B

such that ∞ ∈ B1 ⊂ B0(α0, n0). But now we can let B1(α1, n1), with α1 > α0 and n1 > n0,

be a basic open set of ∞, such that B1(α1, n1) ⊂ B1.

In general, assuming we have Bk ∈ B, and Bk(αk, nk) selected for all i ≤ k such that

∞ ∈ Bk−1(αk−1, nk−1) ⊂ Bk ⊂ Bk(αk, nk) then since B is an orthobase, there must be a

Bk+1 ∈ B such that Bk+1 ⊂ Bk(αk, nk). Then we can select a basic open set Bk+1(αk+1, nk+1),

with αk+1 > αk and nk+1 > nk, such that ∞ ∈ Bk+1(αk+1, nk+1) ⊂ Bk+1. We do this for all

k ∈ ω.

In this way we get a countable collection, F = {Bk ∈ B : k ∈ ω} of open subsets such

that
⋂
F =

⋂
k∈ω

Bk(αk, nk) = {∞}. But the sequence αk must be bounded in ω1 and hence

there exists β ∈ ω1 such that for all k ∈ ω, β > αk. Thus, for all Bk ∈ F , B(β, n) 6⊂ Bk for

any specific n ∈ ω. So
⋂
k∈ω

Bk is not open, and {Bk : k ∈ ω} is not a base at ∞. So B is not

an orthobase.

Corollary 3.6.4. The locally finite version of monotonically paracompact is not equivalent

to the version studied by Gartside and Moody [11].
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Figure 3.4: The Song space

3.7 The Song Space

In [23] it was asked “Is it consistent that every countable, monotonically Lindelöf space

is metrizable?”. Song [31] answered this in the negative by constructing a space that was

Hausdorff, countable, and monotonically Lindelöf, but not metrizable.2 We show that this

space is monotonically metacompact.

The space defined by Song is:

Let A = {an : n ∈ ω} and B = {bm : m ∈ ω} and let Y = {(an, bm) : n,m ∈ ω}. Then

define X = Y ∪ A ∪ {a} where a 6∈ Y ∪ A.

Finally, define a topology on X by: every point of Y is isolated. A basic open neighbor-

hood of a point an ∈ A is of the form Uan(m) = {an} ∪ {(an, bj) : j > m}, for some m ∈ ω.

A basic open neighborhood of a is of the form Ua(k) = {a} ∪ {(an, bm) : n > k, m ∈ ω} for

some k ∈ ω. 3

Example 3.7.1. The Song Space is monotonically metacompact.

Proof. For any open cover V of X, let p(V) = min{k : {Ua(k)} ≺ V}. For each n ∈ ω define

q(n,V) = min{m : {Uan(m)} ≺ V}.

Finally, we will define r(V) = (A×B) ∪ {Ua(p(V))} ∪ {Uan(q(n,V)) : n ∈ ω}.

Claim: r is a monotone metacompactness operator.

2Song’s space is not regular, so the question remains if there is a regular example of a space exhibiting
these properties.

3In Song’s original definition of the space, a basic neighborhood of a is of the form Ua(F ) = {a} ∪⋃
{(an, bm) : an ∈ Ar F, m ∈ ω} where F is any finite subset of A. The definition we give is equivalent.
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It is easy to see that if V is an open cover of X, that r(V) covers X, and that r(V) is

point-finite open refinement of V . This last is because the points a and an, for each n ∈ ω,

are in exactly one element of r(V), and any point in (A × B) is in at most three open sets

in r(V).

So assume that W and V are open covers of X with W ≺ V , and let W ′ ∈ r(W).

Obviously, if W ′ = {(ai, bj)} for some i, j ∈ ω, then W ′ ∈ V . If W ′ = Ua(p(W)) or

W ′ = Uan(q(n,W)), then first note thatW ≺ V implies p(W) ≥ p(V) and q(n,W) ≥ q(n,V).

So there exists V ′ = Ua(p(V)) ∈ r(V ) or V ′ = Uan(q(n,V)) ∈ r(V) such that W ′ ⊂ V ′. Thus

r(W) ≺ r(V), and X is monotonically metacompact.

3.8 One Point Lindelöfication

This example is another space examined due to its presence in the literature relating

to the monotone Lindelöf property. In [25] Levy and Matveev show that the one point

Lindelöfication of the discrete space of cardinality ω1 is monotonically Lindelöf. They also

show the one point Lindelöfication of a discrete space of cardinality ≥ ω2 is not monotonically

Lindelöf. [25]. We strengthen the result by showing that the one point Lindelöfication of

the discrete space of cardinality ≥ ω2 is not monotonically meta-Lindelöf, and hence not

monotonically metacompact..

Let X be the one point Lindelöfication of an uncountable discrete space of size greater

than or equal to ω2. For simplicity, we will consider X = ω2 ∪ {∞}, where points of ω2 are

isolated, and a basic open set of ∞ contains all but countably many points of ω2.

Example 3.8.1. The one point Lindelöfication X of an uncountable discrete space of size

greater than or equal to ω2, is not monotonically meta-Lindelöf.

Proof. Let X be the one point Lindelöfication of an uncountable discrete space of cardinality

ω2, and assume that X is monotonically meta-Lindelöf.
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Now, for each x ∈ ω2 let Ux = X r {x} be a basic open neighborhood of ∞. Notice,

that for all x ∈ ω2 the triple (∞, Ux, Ux) ∈ PX . Hence from Lemma 2.0.4, for each x ∈ ω2,

we get an open Vx, such that ∞ ∈ Vx ⊂ Ux. Also note that
⋂
x∈ω2

Ux 6= ∅.

Now with this space it is actually more useful to consider the complements of the above

open sets: thus since for each x ∈ ω2, Vx = X r Cx, where Cx is a countable subset of ω2,

we will consider the collection {Cx : x ∈ ω2} and note that for all x ∈ ω2, x ∈ Cx.

Rephrasing the conclusion of Lemma 2.0.4 in terms of this space and the complements

of these open sets yields the following:

For every A ⊂ ω2 there exists a countable B ⊂ A such that for each x ∈ A there exists b ∈ B

such that b ∈ Cx.

Now, from A3.5 in “Cardinal Funcitons in Topology” by Juhasz4, if we let F : ω2 →

P(ω2) be the function assigning to each x ∈ ω2 its respective Cx, then we get that there

exists M ⊂ ω2, |M | = ω2, such that for any x 6= y ∈M , x 6∈ Cy, and y 6∈ Cx.

We will apply the adapted conclusion of the monotone meta-Lindelöf lemma to the

collection M to arrive at our contradiciton.

From the lemma, there must exist a countable M ′ ⊂M , such that for any x ∈M , there

exists a y ∈M ′ with y ∈ Cx. Let x ∈M rM ′. Then for every y ∈M ′, we have y ∈ Cx. But

this contradicts x 6= y implying that x 6∈ Cy and y 6∈ Cx.

Therefore X is not monotonically meta-Lindelöf.

4Juhasz’s theorem states: If |X| = α and β < α and F : X → P(X) satisfies ∀x inX, x 6∈ F (x) and
∀x ∈ X, |F (x)| < β then ∃M ⊂ X, |M | = α, such that M is free. We will utilize a related theorem, which
modifies the Juhasz’s as follows:If |X| = α and β < α and F : X → P(X) satisfies ∀x inX, |F (x)| < β then
∃M ⊂ X, |M | = α, such that for any x 6= y ∈M , x 6∈ F (y) and y 6∈ F (x).
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3.9 Quasi-developable Spaces

Bennett, Hart, and Lutzer [4] also asked whether a metacompact, quasi-developable

space must be monotonically metacompact. The following example, given by Bennett in [3],

combined with Lemma 2.1.4 answers this question in the negative.

Let X be [0, 1] × [0, 1]. Let T be an uncountable, dense subset of [0, 1] such that the

only compact (with respect to the usual topology on [0, 1]) subsets of T are countable. If

t ∈ T and ε is a positive real number, let D(t, ε) = {z ∈ X : |z − (t, ε)| < ε} ∪ {(t, 0)}. In

other words, D(t, ε) is a disc of radius ε that is tangent to the x-axis at (t, 0), together with

the point (t, 0) itself. Let a basis for the topology on X consist of all sets of the following

form:

i. D(t, ε) if t ∈ T and ε > 0

ii. R ∩X where R is any open (in the usual topology) set in R2.

Example 3.9.1. (Bennett) [3] X is a separable, Lindelöf, ℵ1-compact quasi-developable

regular space that is not a Moore space, does not have a point countable base, and is not

hereditarily metacompact.

Since this space is Lindelöf, it is paracompact. But the subspace T ∪{(x, y) : 0 < y ≤ 1}

is not metacompact. It is actually easy to see it is not meta-Lindelöf, and hence X is neither

hereditarily metacompact nor hereditarily meta-Lindelöf. Now from Lemma 2.1.4 we can

give the following corollary:

Corollary 3.9.2. There is a separable, Lindelöf, quasi-developable regular space that is not

monotonically meta-Lindelöf.
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Chapter 4

Summary and Outlook

The monotonically metacompact and monotonically meta-Lindelöf covering properties

have, in recent years, been examined fairly assiduously. Despite this fact, there is still quite

a bit that is not known regarding these properties.

We have shown that every compact, Hausdorff, monotonically countably metacompact

space is metrizable. This is an extension of both the result of Bennett, Hart, and Lutzer

that every compact, monotonically metacompact LOTS is metrizable, and the related result

of Gruenahge involving the stronger covering property, monotonically compact, that every

monotonically compact Hausdorff space is metrizable, and answers the question posed by

Popvassilev and Bennett, Hart, and Lutzer.

In proving this theorem, we have introduced two useful properties (Lemma 2.0.3 and

Lemma 2.0.5) that monotonically metacompact spaces possess, and shown that the first prop-

erty alone is enough to get metrizability in compact, Hausdorff spaces. We have shown that

these properties, and hence monotone metacompactness as well, imply a space is hereditarily

metacompact. We also extended Lemma 2.0.3 and Lemma 2.0.5 to versions implied by the

monotonically meta-Lindelöf property, and showed that every monotonically meta-Lindelöf

space is hereditarily Lindelöf.

We show that Lemma 2.0.5 is not equivalent to either the monotone metacompactness

property or Lemma 2.0.3. However, we put forth this question:

Question 4.0.1. Is there a space satisfying the conclusion of Lemma 2.0.3, that is not

monotonically metacompact?

In [4] it was shown that every metrizable space, as well as every metacompact Moore

space was monotonically metacompact, and asked which other properties, when paired with
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metacompactness, would be monotonically metacompact. By means of counterexamples, we

show that neither quasi-developable, nor stratifiable can replace the Moore property, and

thus answer a couple of questions posed by Bennet, Hart, and Lutzer in [4]. However, we

were unable to answer one of their questions fully, so we restate here:

Question 4.0.2. Must a hereditarily metacompact, quasi-developable space be metacompact?

In response to another question put forth by Bennett, Hart and Lutzer, and utilizing

the hereditarily meta-Lindelöf result previously mentioned, we independently showed a result

initially published by Li and Peng, that every monotonically normal, monotonically meta-

metaöf space is hereditarily paracompact.

Finally, in Example 3.6.3 we took a look at the some of the many “monotonically para-

compact properties”, and by means of an example, showed that monotonically paracompact

in the locally finite sense is not equivalent to monotonically paracompact in the sense of

Gartside and Moody. This was a result also discovered independantly by Popvassilev and

Porter, although our example was a space with the added property of being stratifiable.

Since monotonically paracompact in the locally finite sense is the most natural definition of

monotonically paracompact, yet is now known to be different from the version studied by

Gartside and Moody, it would definitely be worth investigating this property further.

We looked at the monotone metacompactness and monotone meta-Lindelófness cover-

ing properties with regard to several spaces over the course of this paper, and in a couple

of examples showed that a monotonically Lindelöf space need not be montotonically meta-

compact, however we are still unable to characterize these properties completely with regard

to countable spaces, even those having only a single non-isolated point, hence we give the

following question:

Question 4.0.3. Must every countable space that is monotonically metacompact be metrizble?
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J. 59(134) (2009), no. 3, 835 - 845.

[11] P.M. Gartside and P.J. Moody, “A Note on Proto-metrisable Spaces”, Topology and its
Applications, 52(1993) 1-9.

[12] C. Good and L. Haynes, “Monotone Versions of Countable Paracompactness”, Topology
and its Applications 154(2007), 734 - 740.

[13] C. Good, R.W. Knight, and I. Stares, “Monotone Countable Paracompactness,” Topol-
ogy and its Applications 101(2000), 281 - 298.

[14] G. Gruenhage, “Monotonically compact, T2 spaces are metrizable”, Questions and An-
swers in General Topology, 27 vol. (1) (2009), 57-59.

47



[15] G. Gruenhage, “Monotonically Compact and Monotonically Lindelöf Spaces”, Questions
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Answers in General Topology 26 (2008), no. 1, 13-27.

[25] R. Levy and M. Matveev, “Some more examples of monotonically Lindelöf and not
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