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Abstract

Differencing in computer science is often used to quickly determine differences between

two files. While this works well for plain text files, such as source code, applying differencing

to binary executable files is more difficult. Compiled binary files contain lists of instructions

that when executed, perform operations using functions and data specified by a higher level

programming language, such as C++. Syntactic changes to these instructions, changes in

the form of an instruction, do not always reflect semantic changes, changes in the behavior

of an instruction. Depending on the settings and optimizations of the compiler, a series of

instructions from a binary executable could perform the same function as a different series

of instructions from a different binary. These types of differences are difficult to detect using

current binary differencing methods.

This dissertation explores software reverse engineering, binary differencing, and software

semantics vs. syntax. We define a framework, we call Data Flow Binary Differencing, for

performing binary differencing using data flow analysis and comparing the semantics of

the data flow within a pair of functions. We discuss three use cases that illustrate how to

implement the Data Flow Binary Differencing framework and show how our technique stands

up against challenges faced by other binary differencing techniques.

Our major contribution of this research is using data flow and assembly language se-

mantics to define a method to compare a pair of functions and test for similarities. We also

discover that testing for semantic differences versus syntactic differences within a binary can

expose semantic differences introduced by an optimizing compiler.

ii



Acknowledgments

“For the Lord gives wisdom; from his mouth come knowledge and understanding.”

Proversb 2:6

It cannot be understated how grateful I am to my adviser, Dr. David Umphress, for

his patience, support, and encouragement, without which I would not have finished this

dissertation. I also would like to thank my committee members, Dr. Overbey, Dr. Cross,

and Dr. Hamilton for their time and support of this research. Auburn is an excellent

university because of professors like you.

At times this road became lonely and frustrating, I would like to thanks my labmates for

providing encouragement, entertainment, and sometimes just an attentive ear to whatever

problem I was facing, even though you probably didn’t care. Thank you Devin, Patrick,

Chris, Sarah, and Jim for all the laughs and for letting me hang out in your lab. Special

thanks to C.W Perr for pushing me through the final months and weeks of this dissertation.

If anyone ever asks me why I did this, I’ll answer to make my Mom and Dad proud.

Thank you, Mom and Dad, for all your encouragement and prayer, even when you didn’t

understand what I was talking about. I would also like to thank my twin sister, Jeni. You

inspire me so much!

The real person that earned this dissertation is my wife, Selena. I just wrote the paper.

She has been there through the tears, tantrums, and thwarted attempts to give up. You

define me hun! Thanks you for believing in me and always having my back. I love you more

everyday!

My most important recognition belong to my Heavenly Father for forgiveness, wisdom,

and putting all the people I just mentioned in my life. Thank you God for everything!

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Software Reverse Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Binary Differencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Program Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Research Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Symbol Name Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Signature Hash Map Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Structural Analysis Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Semantic Matching using Symbolic Execution . . . . . . . . . . . . . . . . . 14

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Using Data Flow for Function Matching . . . . . . . . . . . . . . . . . . . . . . 16

3.1 A Framework for Data Flow Binary Differencing . . . . . . . . . . . . . . . . 17

3.1.1 Step 1: Slicing Instructions . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.2 Step 2: Extracting Semantics . . . . . . . . . . . . . . . . . . . . . . 19

3.1.3 Step 3: Testing for Equality . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Implementing Data Flow Binary Differencing . . . . . . . . . . . . . . . . . . . 21

iv



4.1 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Research Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Use Case 1: Simple Arithmetic Calculation . . . . . . . . . . . . . . . . . . . 23

4.3.1 Analysis & Observations . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3.2 Step 1: Creating Slices . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.3 Step 2: Extracting Semantics . . . . . . . . . . . . . . . . . . . . . . 30

4.3.4 Step 3: Testing Equality . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Use Case 2: Exploring limitations of Data Flow Binary Differencing . . . . . 34

4.4.1 Analysis & Observations . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.2 Step 1: Creating Slices . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.3 Step 2: Extracting Semantics . . . . . . . . . . . . . . . . . . . . . . 43

4.4.4 Step 3: Testing Equality . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Use Case 3: Applying Data Flow Binary Differencing to Actual Malware . . 49

4.5.1 Analysis & Observations . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5.2 Step 1: Slicing Instructions . . . . . . . . . . . . . . . . . . . . . . . 54

4.5.3 Step 2: Extracting Semantics . . . . . . . . . . . . . . . . . . . . . . 59

4.5.4 Step 3: Testing for Equality . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Research Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Limitations and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

v



B Assembly Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

C Python scripts for unrolling the Fibonacci loop . . . . . . . . . . . . . . . . . . 85

vi



List of Figures

1.1 Full call graph of helloworld.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Close up of helloworld.c call graph showing _main function . . . . . . . . . . . 7

1.3 Control flow graph for _main function of helloworld.c . . . . . . . . . . . . . . . 7

2.1 Overview of the disassembly process . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Overview of the Data Flow Binary Differencing process . . . . . . . . . . . . . . 17

4.1 Control Flow Graph of fib() optimization level 0 . . . . . . . . . . . . . . . . . . 36

4.2 Control Flow Graph of fib() optimization level 1 . . . . . . . . . . . . . . . . . . 37

4.3 Control Flow Graph of fib() optimization level 2 . . . . . . . . . . . . . . . . . . 38

4.4 Control Flow Graph of rndnick() optimization level 0 . . . . . . . . . . . . . . . 52

4.5 Control Flow Graph of rndnick() optimization level 1 . . . . . . . . . . . . . . . 53

vii



List of Tables

4.1 Use Case 1: Sources and Sinks for SimpleMath and SimpleMath2 . . . . . . . . 27

4.2 Structural Analysis of fib() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Use Case 2: Sources and Sinks for fib() optimization level 0 . . . . . . . . . . . 40

4.4 Use Case 2: Sources and Sinks for fib() optimization level 1 . . . . . . . . . . . 41

4.5 Use Case 2: Sources and Sinks for fib() optimization level 2 . . . . . . . . . . . 41

4.6 Structural Analysis of rndnick() . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.7 Use Case 3: Sources and Sinks for rndnick() optimization level 0 . . . . . . . . . 55

4.8 Use Case 3: Sources and Sinks for rndnick() optimization level 1 . . . . . . . . . 56

4.9 Equations that make Listings 4.33 and 4.38 equal. . . . . . . . . . . . . . . . . . 61

5.1 Summary of Binary Differencing Techniques . . . . . . . . . . . . . . . . . . . . 68

viii



List of Listings

4.1 SimpleMath.c Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 SimpleMath2.c Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 SimpleMath disassembled by IDA Pro . . . . . . . . . . . . . . . . . . . . . 24

4.4 SimpleMath2 disassembled by IDA Pro . . . . . . . . . . . . . . . . . . . . . 25

4.5 Difference between source code of Simplemath and SimpleMath2 . . . . . . . 26

4.6 Backwards Slicing SimpleMath with source at line 19 and sink at line 23 . . 28

4.7 Forward Slicing SimpleMath with source at line 19 and sink at line 23 . . . . 29

4.8 Backwards Slicing SimpleMath2 with source at line 17 and sink at line 24 . . 29

4.9 Semantics for Listing 4.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.10 Semantics for Listing 4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.11 Semantics for Listing 4.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.12 The Z3 Python API prove() function . . . . . . . . . . . . . . . . . . . . . . 31

4.13 Testing slices of SimpleMath and SimpleMath2 for equality. . . . . . . . . . . 32

4.14 Output of Listing 4.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.15 Backward slice of fib() optimization level 0 from line 17 to line 35 . . . . . . 42

4.16 Backward slice of fib() optimization level 1 from line 10 to line 17 . . . . . . 42

4.17 Backward slice of fib() optimization level 2 from line 12 to line 21 . . . . . . 42

4.18 Backward slice of fib() optimization level 1 from line 24 to line 26 . . . . . . 43

4.19 Backward slice of fib() optimization level 2 from line 32 to line 37 . . . . . . 43

4.20 Fibonacci array address calculation using optimization levels 0 and 1 . . . . 44

4.21 Output of Listing 4.20 including Line 32 . . . . . . . . . . . . . . . . . . . . 45

4.22 Output of Listing 4.20 excluding Line 32 . . . . . . . . . . . . . . . . . . . . 46

4.23 Fibonacci array address calculation using optimization levels 1 and 2 . . . . 46

ix



4.24 Output of Listing 4.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.25 Fibonacci loop semantics from optimization levels 1 and 2 . . . . . . . . . . 48

4.26 Output of Listing 4.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.27 Source code for rndnick function . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.28 Optimization Level 0: Slice created from return value of _getTickCount@0

and argument of _srand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.29 Optimization Level 0: Slice created from arguments to _memset . . . . . . . 57

4.30 Optimization Level 0: Slice created from return value of _rand at line 23 . . 57

4.31 Optimization Level 0: Slice created from return value of _rand on line 43 . . 57

4.32 Optimization Level 0: Slice created from source at line 67 . . . . . . . . . . . 58

4.33 Optimization Level 0: Slice created from the arguments to _strncpy at line 75 58

4.34 Optimization Level 0: Slice created from arg_0 and return value. . . . . . . 58

4.35 Optimization Level 1: Slice created from return value of _getTickCount@0

and argument of _srand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.36 Optimization Level 1: Slice created from return value of _rand at line 26 . . 58

4.37 Optimization Level 1: Slice created from return value of _rand at line 44 . . 59

4.38 Optimization Level 1: Slice created from arguments to _strncpy . . . . . . . 59

4.39 Optimization Level 1: Slice created from arg_0 and return value . . . . . . . 59

4.40 Modeling the x86 “imul esi” instruction in Python . . . . . . . . . . . . . . . 60

4.41 Calculating esp in unoptimized rndnick() . . . . . . . . . . . . . . . . . . . . 61

4.42 Python script that compares first _rand call in the unoptimized rndnick() to

optimization level 1 rndnick() . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.43 Python script that compares the second _rand call in the unoptimized rnd-

nick() to optimization level 1 rndnick() . . . . . . . . . . . . . . . . . . . . . 63

4.44 Output of Listing 4.42 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.45 Output of Listing 4.43 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.1 Hello World source code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

x



A.2 Source code for fib.c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B.1 Assembly of fib.c compiled with -O0 . . . . . . . . . . . . . . . . . . . . . . . 78

B.2 Assembly of fib.c compiled with -O1 . . . . . . . . . . . . . . . . . . . . . . . 79

B.3 Assembly of fib.c compiled with -O2 . . . . . . . . . . . . . . . . . . . . . . . 80

B.4 Assembly of sdbot05b.cpp compiled with -O0 . . . . . . . . . . . . . . . . . 81

B.5 Assembly of sdbot05b.cpp compiled with -O1 . . . . . . . . . . . . . . . . . 82

C.1 Python script that compares fib() -O1 and -O2 by unrolling 0 times . . . . . 85

C.2 Python script that compares fib() -O1 and -O2 by unrolling 1 time . . . . . 86

C.3 Python script that compares fib() -O1 and -O2 by unrolling 2 times . . . . . 87

C.4 Python script that compares fib() -O1 and -O2 by unrolling 3 times . . . . . 89

xi



Chapter 1

Introduction

Software engineering is the process followed by a development team to create well-

structured, intuitively designed, and easily maintainable software. There are many different

approaches to software engineering, but, in general, each approach includes iterating through

phases dedicated to specifying requirements, designing, writing code, testing, and maintain-

ing. The output of each of these phases is an refinement of the previous phase. Software is

designed based on requirements, but the design will not necessarily reveal the requirements.

The same can be said of the source code and resulting executable binary file: these products

do not always reveal the thought put into the requirements and design and in some cases do

not even follow the agreed upon requirements and design.

1.1 Software Reverse Engineering

Software reverse engineering takes the reverse approach from the software engineering

process. “Reverse engineering is the process of analyzing a subject system to create represen-

tations of the system at a higher level of abstraction.”[Chikofsky and Cross 1990] Another

way to describe reverse engineering is “the process of extracting the knowledge or design

blueprints from anything man-made.”[Eilam 2005] The goal of software reverse engineer-

ing is to recover the higher level information that is typically lost in the refinement of the

software engineering process. Working typically only with the software executable binary,

the software reverse engineer wants to discover the requirements and design of a software

product.

The purpose of the software reverse engineering process depends on the goal of the

reverse engineering project. In the field of cybersecurity, software reverse engineering is
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extremely useful in malware analysis, bug hunting, and software exploitation. Software

reverse engineering is also used to re-engineer legacy software where the source code has been

lost or is inaccurate. Another important use of software reverse engineering is to implement

interoperability between software products. In the absence of source code, software reverse

engineering is often the only solution to maintenance and modification of software.

1.1.1 Binary Differencing

Detecting differences in source code, also called ‘diffing’, has been studied extensively

[Fluri et al. 2007; Maletic and Collard 2004; Thummalapenta et al. 2009; Kagdi et al.

2007]. Many techniques and tools are available to allow a software engineer to take two

versions of the same source code and quickly find the changes between the two versions,

such as treating the source code as a sequence of lines and applying a sequence-comparison

algorithm [Hirschberg 1977; Hunt and Szymanski 1977; Miller and Myers 1985].

Binary differencing is a much less studied area, since comparing binary files can be

difficult. This research focuses on comparing binary executable files. By definition, a binary

file is simply a large file of data represented in bytes. A binary executable file contains a

list of simple machine instructions that move data between memory and registers, perform

mathematical operations, and modify the order of execution of future instructions. These

instructions are intermingled with data, so it can be difficult to compare binary executable

files directly. A binary analysis tool, called a disassembler, is needed to extract the list of

instructions from the other data contain in a binary file.

Once we have a list of instructions, comparing two lists of instructions can also be diffi-

cult. Small changes in source code can cause a much larger number of changes in the resulting

compiled binary. Understanding where a direct source code change originally occurred can

be hidden by these indirect changes. For example, [Gao et al. 2008] reports that changes to

5 lines of source code in a security patch to the gzip application changed all 75 non-empty

functions in the resulting binary. Compiler optimizations or changes to local variables in a
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source file can effect how registers are allocated in the binary and cause many changes to

register usage throughout the binary file. The same is true for memory and data locations

in a binary: immediate values and memory addresses are calculated at compile time and

changes to source code or compiler settings that shift data or memory locations can change

every other memory address in the binary. Each of these changes to registers, immediate

values, or addresses in an instruction is easy to detect but do not always map directly to an

actual change in the source code.

Binary differencing in software is important to combating the spread of malicious soft-

ware. Malware often exhibits the same behavior and functionality with small differences

between versions and reverse engineering a new version of a piece of malware often requires

duplication of effort. A reverse engineer has to re-discover functions and design details

already found in the original version. Little effort is required to change source code and

recompile. Malware authors take advantage of this problem to evade detection by signature

based anti-malware software, which uses a hash or signature of the binary file’s bytes to

identify malicious binary files. Malware on Windows and Android platforms are created

using modular frameworks that make designing new variations of a single piece of malware

easy by providing commonly used functions and utilities. The malware author simply needs

to fill in specific details to create unique binaries [Barat et al. 2013; Jiang and Zhou 2013].

Being able to identify these families of malware quickly allows a defender to focus on specific

changes between a new variant and a known sample.

Being able to determine changes in software is also important to testing software patches.

Proprietary software patch notes often do not fully describe the security problem fixed by the

binary patch. Software patches also should be tested prior to deployment to mission critical

systems. Using binary differencing techniques, a reverse engineer can determine the changes

between the patched and unpatched software and determine if applying the software patch is

necessary. Patching software in production systems can be expensive, time consuming, and

can run the risk of introducing new software bugs [Cavusoglu et al. 2006]. Binary differencing
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can help determine the necessity of a software patch to help justify the expense and to lower

the risk of a patch introducing a new bug.

In order to compare binaries, the reverse engineer needs to break the executable binary

file into objects suitable for comparison and apply structure to these objects. Using this

structure, the reverse engineer can determine which objects exist in both versions and which

do not. This is not a simple task since the high-level language constructs and structure are

not found in the compiled version of the software.

1.1.2 Program Structure

Programming has evolved from sequential statements with the occasional IF-ELSE and

DO constructs to Object-Oriented Design. Program structure is what makes software man-

ageable by humans, whereas computers execute millions of instructions without concern for

where they come from or how they are related. Software developers typically break down

atomic functionality of a large software product into chunks and implement each chunk using

whatever is provided by the software language. Each chunk accomplishes a specific task and

can often be developed by different developers or teams of developers. The only requirement

of each chunk is that it accomplishes its specific task and communicates well with the other

chunks.

The largest chunks that make up a software product are steps, which are collections of

independently executable code commonly called libraries. Libraries often represent a specific

feature or area of functionality of a program.

The next level of chunks are functions and objects. Functions are sections of code

with a well-defined purpose that can be executed from other areas within the program and,

optionally, take input from the caller or return data to the caller. Objects extend the idea

of functions by limiting code to the data it manipulates. Procedures and objects require

data which comes in many different representations such as arrays, linked lists, or trees.

Finally, each of these chunks is arranged inside the program using conditional blocks, switch

4



blocks, and loops that controls the flow of the program. These chunks make developing and

understanding the software easier for the development team.

When software is compiled, much of this well thought-out structure can be destroyed by

the compiler and linker. Source code files and static system libraries are linked into the same

file. Small functions may be inlined, creating one larger chunk out of two smaller chunks.

Inefficient code may be optimized by the compiler, such as unrolling a loop where the setup

and branching statements cost more than the internal statements. Redundancies within the

code may be removed by the compiler to make the resulting binary code smaller or faster.

Further, [Balakrishnan and Reps 2010] has shown that the compiler cannot be completely

trusted because it and its optimizer tools may subtly, yet significantly, alter the behavior of

the program, a phenomenon knows as “What you see is not what you execute”. Ultimately,

the executable binary file loses much of the structure of the source code and becomes one

large chunk of executable statements represented in a machine language.

This transformation from source code to machine language makes software reverse en-

gineering difficult. The software reverse engineer needs to recreate some structure in order

to aid in the understanding of the design, functionality, and requirements of the software.

Mining meaning from a binary is time consuming without source code and requires the re-

verse engineer to have knowledge about low-level software, such as assembly language, and

computer architecture concepts, such as memory management, in addition to programming

knowledge.

To begin creating structure, the executable binary file is disassembled into basic blocks

and functions. In general, a basic block is defined as a group of instructions which are

always executed together. Functions begin at the target of call statements and end at

a retn instruction. In practice, this process can be difficult and is best performed by a

disassembler such as IDA Pro [Hex Rays 2014]. The full details of the disassembly process

are described further in [Eagle 2011].
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Using call graphs and control flow graphs, the disassembly process creates a graph of

graphs of a binary that provides the reverse engineer a view that contains functions, loops,

and conditional execution paths. Figure 1.1 shows the full call graph of a simple “Hello

World!” program. The full call graph is quite large even though the _main function only

makes two calls, one to a local function called _getNext() and the other to a library function

_printf(), which can be seen in Figure 1.2. Figure 1.3 shows the control flow graph for the

_main function. Each node in the call graph represents a control flow graph. These nested

graphs are what is meant by graph of graphs. Source code for this program can be found in

Appendix A, Listing A.1.

Figure 1.1: Full call graph of helloworld.c

These graphs, a listing of instructions, and other data provided by the disassembly tool

are usually the starting point for a reverse engineering project. This process can require

much less work if the reverse engineer has already analyzed a similar binary with similar

functions by using binary differencing techniques to detect the functions that have changed

between the versions. The goal of binary differencing is to recognize functions and basic

blocks that exist in a previous version of the binary, thus cutting down on the effort required

to reverse engineer the binary. This allows the reverse engineer to focus on the functions

that contain changes in the binary without having to determine which functions have not

changed.
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Figure 1.2: Close up of helloworld.c call graph showing _main function

Figure 1.3: Control flow graph for _main function of helloworld.c
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1.2 Problem Statement

Existing methods to detect changes between different versions of the same binary use

static and dynamic techniques. Static techniques include function name matching; matching

functions and blocks based on characterizing “signatures”; and structural matching of func-

tions and blocks. These techniques are limited in their ability to discriminate differences in

functionality versus differences in form, such as syntactic changes introduced by an optimiz-

ing compiler. Such false negatives represent time wasting changes that the reverse engineer

must investigate.

Dynamic techniques, on the other hand can detect semantic differences using symbolic

execution [Schwartz et al. 2010], but these techniques can be computationally intensive and

are typically employed when static techniques have been exhausted. [Gao et al. 2008]

Detecting semantic differences in binaries, as opposed to syntactic differences, is the

goal of binary differencing since semantic differences represent a change in functionality.

This is a difficult task since syntactic and semantic differences are difficult to tell apart with

current binary differencing techniques. Binary differencing techniques need the capability to

distinguish between changes that are a direct result of a source code change that modifies

program behavior from indirect changes, such as compiler optimizations, that do not affect

program behavior.

1.3 Research Summary

This dissertation describes Data Flow Binary Differencing, a technique we developed

for use in reverse engineering software. The technique is enabled by data flow analysis over

a disassembled binary executable file. By identifying data flows, we are able to translate the

series of instructions that represent a data flow into another representation that allows us to

compare two data flows from different binary files. If we determine the two data flows are

identical, we have shown the binaries that contain these data flows are similar.

8



The major contribution of this research is the blending of data flow analysis, assembly

language semantics, and symbolic execution to create a three step framework for testing

functions from separate binary files for similarities. We implement the Data Flow Binary

Differencing technique using three use cases of increasing complexity that illustrate the

application of the three step framework. For each use case, we create binaries that fail

current binary matching techniques by introducing non-semantic differences in the source

code or by compiling the source code at different optimization levels. We successfully identify

similarities between the binaries from each use case. We also identify semantic differences

introduced by an optimizing compiler as limitations of the Data Flow Binary Differencing

technique.
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Chapter 2

Literature Survey

Binary differencing begins with disassembling a binary file into a series of instructions,

basic blocks, and functions. Figure 2.1 shows a simplified overview of this process. A binary

file is disassembled by a disassembly tool (in this example IDA Pro) to instructions, then a

control flow graph is created from these instructions. The disassembler performs the analysis

required to separate instructions into basic block and functions.

Figure 2.1: Overview of the disassembly process
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2.1 Symbol Name Matching

The simplest way to match functions between binaries is to match symbol names found

in the listing of disassembled instructions. [Wang et al. 2000] demonstrates this by using

the symbol names in a binary to match functions with the same symbol name in a similar

binary. This can be a fast technique to determine if two binaries contain the same or different

functions, but it is dependent on the existence of symbols within a binary. Even if symbols

are available in a binary, differences in symbols may indicate only a function name change

and does not always reflect a change in the function, thus rendering this approach ineffective.

2.2 Signature Hash Map Matching

To overcome the inability to match functions when symbol names contain small changes,

[Wang et al. 2000] uses a hashing-based basic block matching algorithm between basic blocks

and functions to create a signature that can be used to check for identical blocks and functions

in another binary. [Oh 2009] uses a similar approach by creating a fingerprint hash map of

basic blocks, then comparing basic blocks using the computed fingerprints. Both of these

techniques depend on creating a unique signature resilient to simple changes such as symbol

renaming and register allocation. Signatures are created using instructions inside each basic

block, but volatile instruction element, such as address offsets, registers used, and immediate

operands, might need to be ignored since they can be changed by the compiler between builds,

even without source code changes [Wang et al. 2000].

The signature hash map matching technique depends on the contents of a basic block

to detect differences. Source code modifications or compiler or linker optimizations that

change instructions such that a different signature is calculated will cause false negatives in

the output of this technique when trying to match functions between two binaries. Some of

these weaknesses can be overcome, such as instruction reordering implemented by [Oh 2009].

By executing an instruction order normalizing routine in which instructions are ordered by
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dependency on each other and sorted by number of bytes, the signature hash map matching

technique can increase matching of basic blocks when instructions have simply been reordered

inside a basic block. Other weaknesses that do not reflect semantic differences, such as

compiler optimizations, cannot be corrected using signature hash map matching.

Signature hash map matching also suffers from collisions when an executable contains

short basic blocks. This means identical signatures are calculated over two separate basic

blocks within the same executable. The blocks may only differ in elements ignored by the

signature calculating algorithm, so they end up having the same signature. [Oh 2009] simply

ignores these collisions but suggests that associating signatures with adjacent signatures

in the control flow graph, a linked block signature can be checked against colliding block

signatures, potentially elimination single block collisions.

2.3 Structural Analysis Matching

Another approach to detect similarities and differences between binaries is to ignore the

instructions completely and focus solely on the control flow and call graphs of two binaries

as a means to determine similarities between them. Using the call graph, the executable is

visualized as a directed graph with functions represented as nodes and the call relationships

between functions as edges. The control flow graph for each function is then used to create a

directed graph with nodes representing basic blocks and edges representing jump statements.

These graphs can be compared for isomorphism, indicating a match between functions.

Comparing undirected graphs can be computationally expensive so [Flake 2004] intro-

duces a simpler method that compares the number of nodes and edges within a graph. This

is a fast, although imprecise, technique to test for isomorphism between two graphs. If two

graphs contain a different number of nodes and edges, they cannot be isomorphic. This is a

quick technique to generate a small subset of potential graph based matched functions for

further analysis.
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[Flake 2004] and [Dullien and Rolles 2005] both implement a more precise structural

analysis matching technique by generating metadata about each function. [Flake 2004] uses

a triplet to record the number of basic blocks in a function, number of edges in the function,

and number of edges in the call tree starting at the function. For example, the _main

function of helloworld.c in figure 1.3 would have a triplet of {4,4,2}, corresponding to its

4 nodes, 4 edges (2 conditional, 2 unconditional), and 2 calls (to _getNext and _puts).

Functions then are matched according to their metadata represented by this triplet.

[Dullien and Rolles 2005] extends this idea of a triplet by creating what they call se-

lectors. A selector is an algorithm that, given two sets of nodes, returns either a node

from each set (indicating a match) or the empty set (no matching nodes found). These two

sets of nodes represent basic blocks, functions, and call graphs from the two binaries being

tested. Selectors are run iteratively over a collection of nodes until no more matches are

made between the two sets. Example of selectors from [Dullien and Rolles 2005] include:

k-indegree/k-outdegree selector (which selects nodes that contain k indegree or outdegree

edges), recursive node selector (which selects nodes that link to themselves), same name

selector (selects nodes with identical symbol name), same string selector (selects nodes that

reference the same string), and call graph node selector (selects nodes from the call graph

which have the same triplet describe by [Flake 2004]).

Structural analysis matching will not detect small changes to source code such as chang-

ing a “less-than” comparison to a “less-than or equal” or the modification of a data type such

as changing a local variable from an int to an unsigned int. Either of these changes could

represent a security flaw in the application. [Economou 2009] uses structural analysis but

also applies heuristics such as instruction counting and calculating a checksum over the basic

block, to increase the possibility of detecting small source code changes. Adding introspective

analysis to each function and basic block improves structural code analysis techniques but

still can falsely identify changes within a function that do not actually change the program

behavior.
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Another problem for this technique is that small source code changes or compiler op-

timization might completely rearrange basic blocks, changing the control flow graph. Opti-

mizing compilers can also break apart a single block, adding unconditional jump statements

between these sub-blocks. This is especially true of Microsoft’s linker. [Flake 2004] The other

code changes are harder to detect without including the actual instructions in the analysis

or extending the analysis method.

Structural analysis matching techniques also tend to break down when the binary con-

tains a number of small functions. In general, basic blocks tend to have exactly two children,

which represents conditional branches. For a binary with many small functions, multiple

function can have the same structure, number of blocks, and call graphs. This makes it

difficult for structural analysis matching to distinguish differences between small functions.

[Dullien and Rolles 2005]

2.4 Semantic Matching using Symbolic Execution

[Gao et al. 2008] implemented symbolic execution and theorem proving as a dynamic

binary differencing technique to test basic blocks for semantic differences. This technique

can differentiate between syntactic and semantic differences, but due to computation re-

quirements, is only useful for matching individual basic blocks and not functions.

In order to perform symbolic execution, this technique operates on a simple intermediate

language. The process takes two basic blocks, identifies the input and output registers, and

represents the instructions of each in the intermediate language, which may or may not

fully represent the semantics of a machine language. Next, symbolic execution is used to

represent the final values of the output registers using the input registers symbols. The two

basic block are functionally equivalent if a theorem prover is able to show that the symbolic

output values are the same for both. [Gao et al. 2008] never found an example where the

simplicity introduced by utilizing an intermediate language hid a semantic change in the

14



machine language, but the possibility exists. Using symbolic execution to detect semantic

differences between binary is a good possibility but can be computationally intensive.

The largest weakness of [Gao et al. 2008]’s method is that it only allows for the compari-

son of basic blocks. When comparing two functions using this method, the basic block could

be determined to be different, when the functions, in fact, may be functionally equivalent.

This could be due to compiler optimization that has modified the function’s structure so

that the semantics of a basic block in one of the functions is split between two basic block

in the other function.

2.5 Summary

In practice, some or all of these techniques are incorporated into tools when used on

practical reverse engineering exercises. All static techniques share a weakness of difficult in

determining is a change in a binary is a semantic change or a syntactic change. This is often

left up to the reverse engineer, who can waste time and resources determining an identified

change by one of these methods is actually not a functional change at all.
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Chapter 3

Using Data Flow for Function Matching

Considering the limitations of the binary differencing techniques discussed in Chapter

2, our approach shifted the focus from program structure to data structure as a source of

comparison. We accomplish this by looking at data flow through a function and comparing

the data flow to another function to determine if the two functions are similar. We call

this method Data Flow Binary Differencing. This research applies the data flow concepts

of dynamic analysis to static analysis so as to identify behavior changes in binaries which

may also have structural changes that do not affect behavior. Using data flow analysis to

determine function and basic block matching between binaries allows for syntactic differences

in implementation, but is able to use the program’s data to determine if any semantic changes

occurred between the binaries. Focusing on data flow allows for syntactic differences to exist

in the machine languages of two binary executables while preserving the semantics of the

intent of the instructions.

We limit the application of our research to comparing two function to determine if they

contain similar behavior, regardless of syntactic differences. We assume that, as part of an

analysis of a binary executable file we have discovered two functions we believe to contain

similarities, but applying the differencing techniques discussed in Chapter 2 suggests the

two function are different. Our research begins at this point in the analysis and attempts to

prove the two functions contain similarities. Our research does not attempt to replace exist-

ing binary differencing methods, but to provide another technique for determining matches

between functions.
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3.1 A Framework for Data Flow Binary Differencing

Our Data Flow Binary Differencing framework consists of three different steps. Both

binaries under comparison are processed in the first two steps and the comparison occurs in

the third. The first step identifies slices of instructions within a function, where a slice is a

series of instructions. Each slice begins with a data read (load mnemonic) or as the return

value of a call instruction, and ends with either a data write (store mnemonic) or at the end

of the data flow, the data flow we are following is no longer used. The second step translates

the series of instructions to a representation that explicitly represents the semantics. From

the semantics, the stream of instructions is represented as a logical formula. In the final step,

this logical formula is compared to another logical formula to test for equality. Overall this

framework allows for comparison of data usage between binaries with similar functions. We

make the assumption that the behavior of a function is exposed by how it interacts with data

and we represent this interaction with a logical formula that can be compared to another

formula to test for similar behavior.

Figure 3.1: Overview of the Data Flow Binary Differencing process

Data Flow Binary Differencing addresses the limitation of the existing structural, sig-

nature, and symbolic analysis methods described in Chapter 2. This technique is not depen-

dent on the control flow graph of a function, a weakness of the Structural Analysis Matching

method, nor does this technique depend on syntactic signatures used by the Signature Hash

Map Matching technique. Our technique is very similar to the Semantic Matching using
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Symbolic Execution although by focusing on data we are able to generate semantic repre-

sentations across basic blocks without creating computationally intensive requirements.

3.1.1 Step 1: Slicing Instructions

The first step takes the idea of slicing from [Jackson and Rollins 1994], who implement

two sets of variable instances, sources and sinks, to create a linear graph showing the in-

structions that cause the definition of a source to affect the use of a sink. A slice represents

the list of instructions that affect the value of the data use at the sink starting at the data

definition at the source. The purpose of slicing in our research is to extract from a binary

a subset of instructions that define a data flow. We use both forward and backward slicing

from [Jackson and Rollins 1994]. Slicing follows the data uses from the source, ending at the

sink for forward slicing, and follows data definitions from the sink backward through the

instruction flow to the source for backward slicing. Both methods record each instruction

that contains a data dependency, generating a series of instruction that represent a data

flow.

The primary means of identifying sources and sinks is memory reads and memory writes,

respectively defined in our research by a mov instruction with an operand that references a

memory location. By slicing between these two points, we obtain the list of instructions that

operate on a piece of data. The other primary means of identifying sources and sinks are

call instructions. Viewed from the perspective of the calling code, sources can be defined as

the return value from a subroutine and sinks can be defined as the arguments to a subroutine.

Using call instructions to identify sources and sinks allows us to model data flow to

and from a subroutine. For well known subroutines, such as standard library functions

and system calls, we look up the number of arguments so we know which data definitions

belong to the slice. We then introduce constraints on the sources and sinks from the call

instruction to simplify the matching in the third step. For example, if we know the return

value of a standard library function is always ‘1’ or ‘0’, then we can simplify the comparisons
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in Step 3 by only considering ‘1’ or ‘0’ as potential values for this variable within a data

flow. We also do this for conditional branching conditions. For a data flow that follows a

conditional path, we record the condition and, in Step 3, use this as a constraint for the

data along this path. An example is a jump condition that is dependent on the value of one

symbolic variable being less than another. We include this constraint in our comparison of

these data flows which decreases the possible values the symbolic variable can represent.

3.1.2 Step 2: Extracting Semantics

In contrast to high level languages such as C++ and Java, machine languages do not

differentiate between data types, such as Int or Bool. Data is simply an n-bit binary value

where n is determined by the operation of the instructions and width of addressable mem-

ory. Instructions perform logical or arithmetic transformations on these n-bit binary values

and move them between memory locations or registers. These logical transformations con-

sist of bitwise operations such as and, or, shl (unsigned left shift), and sar (signed right

shift). Arithmetic transformation are mathematic calculations over bit vectors such as add,

sub, and imul (integer multiply). The goal of this step is to extract the semantics of the

series of instructions created in Step 1. This means explicitly representing the behavior of

instructions belonging to complex architectures, where the result of an instruction depends

on the contents of the EFLAGS register, the size of the operands, and the mnemonic of the

instruction. Each data flow identified in the slicing step is processed in the extracting step.

Some instructions do not contribute to data flow analysis. These instructions can be

discarded within the slicing step, but often it is useful to maintain full knowledge of semantics

since this could lead to simplification in the comparison step. For example, a test instruction

performs a bitwise and on the two operands and modifies the Adjust Flag (AF), Carry Flag

(CF), Overflow Flag (OF), Parity Flag (PF), Sign Flag (SF), and Zero Flag (ZF). The CF

and OF flags are set to zero. The SF is set to the most significant bit of the result of the

and operation. The ZF flag is set to 1 if the result of the and is 0, otherwise the ZF flag is
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set to 0. The parity flag is set to 1 if the result of the and operation has an even number of

1 bits. The value of the AF flag is undefined after a test instruction. The result of the and

operation is discarded.[Intel Corporation 2014] Subsequent instructions, such as jle (jump

less than or equal), use these flags to modify control flow. Using this control flow information

we can create constraints for program slices that simplify the comparison between data flows,

but we do not need the control flow information to represent the data flow. This is further

illustrated in Chapter 4.

3.1.3 Step 3: Testing for Equality

Once we extract the semantics of a series of instructions that represent a single data

flow, we test it against data flows in another function we believe contains similar behavior

by symbolically representing input to the data flows and testing both flows to see if they

produce the same results. We translate the semantics to a single logical expression with

symbolic bit vector inputs that evaluates to a single output. We do this for each series of

instructions that we would like to test against each other for similarities. We then attempt

to prove the logical expressions obtained from the semantics of each series of instruction is

equal for the possible values of the symbolic bit vectors. Otherwise, we know the series of

instructions contain a semantic difference.

3.2 Conclusion

Our approach to solve the problems identified in Chapter 2 with current binary differ-

encing techniques entails using data flow to characterize the behavior of functions. Using

data flow circumvents dependencies on program flow as well as internal structure of a binary

or function. We build our research on symbolic execution but focus wholly on data flow

as the source of our symbols, allowing us to overcome the computationally requirements of

traditional symbolic execution.
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Chapter 4

Implementing Data Flow Binary Differencing

4.1 Research Objective

The primary research goal is to determine if syntactic differences between two function

represent semantic differences. If we determine that syntactic differences between two func-

tions are not semantic differences, we have confidence that the function are similar, meaning,

although the functions look different in their assembly language representation, they per-

form the same action or actions. We compare the Data Flow Binary Differencing method

to the other differencing methods discussed in Chapter 2, specifically Signature Hash Map

Matching and Structural Analysis Matching, since these matching techniques perform the

same basic action of testing two functions for similarities. We ignore Symbol Name Matching

since the matching criteria for this method has nothing to do with the syntax or semantic

of a function.

We operate under the assumption that we have two functions that we want to test

for differences, ultimately deciding if the functions contain similar behavior. Having some

knowledge about the binaries we are testing and an indication that two functions might

be equal is the starting point for our research. We do not attempt to solve the complete

problem of performing binary differencing without any prior knowledge about the binaries

or functions, only to provide another matching technique to test functions that will be

used alongside existing techniques. Any difference that cannot be successfully matched

semantically between functions is reported to the reverse engineer for further analysis.
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4.2 Research Overview

To demonstrate proof of feasibility of our approach, we use IDA Pro ver. 6.6 [Hex

Rays 2014] and Python ver. 2.7.3 to execute the first two steps of the Data Flow Binary

Differencing Framework and then use the Z3 SMT solver ver. 4.3.2 [Microsoft Research 2014]

to test for equality in the third step. From the available tools, this approach provided the

greatest flexibility while meeting our research goals.

The process begins by compiling the use cases using GCC 4.7.2 on Debian 7 (Linux ker-

nel 3.2.0-4-amd64). Once we have creating sample binaries, we use IDA Pro to disassemble

the binaries to assembly language instructions. After disassembly, IDA performs a number

of static analyses on the instructions including identifying local variables, auto-generating

and populating names for known symbols, and creating a graph view of basic blocks and

control flow of the instructions. Using this information, we create slices of instructions based

on the method discussed in Section 3.1.1. Next, we extract the semantics of each instruc-

tion contained within each slice and explicitly represent the behavior of each instruction

using Python. We test the two outputs for equality using Z3, a software solver for SMT

(Satisfiability Modulo Theories), an extension of the Satisfiability (SAT) problem.

The assembly language listing and control flow graph figures presented in this disserta-

tion are generated by IDA Pro. For local variables located on the stack, IDA Pro assigns a

label to that variable relative to the position of the variable on the stack. For example, a

variable located at the offset -Ch from the base of the stack, usually the value of the ebp

register, would be referenced in IDA Pro as [ebp+var_C]. To represent hexadecimal in this

dissertation we follow the format used by IDA Pro and represent hexadecimal values with “h”

and hexadecimal addresses with“0x”, such as -Ch is a value and [0x080486A3] is an address.

The following sections describe three use cases, each illustrating increasing complexity

and achieving slightly different research objectives. These uses cases were selected to cover

the three fundamental program flow constructs found in programming languages, sequential

execution, conditional execution, and looping.
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4.3 Use Case 1: Simple Arithmetic Calculation

Our first use case illustrates the approach using a simple mathematic example and

allows us to show how the Data Flow Binary Differencing technique is applied. We create

two functions that add two numbers together. The second function adds these two numbers

in a different order and has an additional addition and subtraction operation but ultimately

arrives at the same result as the first function. The goal of this use case is to show that

our technique can be applied to syntactically different functions with semantically equal

functionality.

Listings 4.1 and 4.2 are compiled using gcc, resulting in the 32-bit assembly language

shown in Listings 4.3 and 4.4.

Listing 4.1: SimpleMath.c Source Code

1 #include <stdlib.h>
2
3 int main(int argc , char *argv []){
4 int w, x, y, z;
5 x = 2;
6 y = 3;
7 w = 5;
8 z = x + y;
9 return z;}

Listing 4.2: SimpleMath2.c Source Code

1 #include <stdlib.h>
2
3 int main(int argc , char *argv []){
4 int x, y, z;
5 x = 2;
6 y = 3;
7 z = y + x + x - x;
8 return z;}
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Listing 4.3: SimpleMath disassembled by IDA Pro

1 ; int __cdecl main(int argc , const char **argv , const char **envp)
2 public main
3 main proc near
4
5 var_10= dword ptr -10h
6 var_C= dword ptr -0Ch
7 var_8= dword ptr -8
8 var_4= dword ptr -4
9 argc= dword ptr 8
10 argv= dword ptr 0Ch
11 envp= dword ptr 10h
12
13 push ebp
14 mov ebp , esp
15 sub esp , 10h
16 mov [ebp+var_4], 2
17 mov [ebp+var_8], 3
18 mov [ebp+var_C], 5
19 mov eax , [ebp+var_8]
20 mov edx , [ebp+var_4]
21 add eax , edx
22 mov [ebp+var_10], eax
23 mov eax , [ebp+var_10]
24 leave
25 retn
26 main endp
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Listing 4.4: SimpleMath2 disassembled by IDA Pro

1 ; int __cdecl main(int argc , const char **argv , const char **envp)
2 public main
3 main proc near
4
5 var_C= dword ptr -0Ch
6 var_8= dword ptr -8
7 var_4= dword ptr -4
8 argc= dword ptr 8
9 argv= dword ptr 0Ch
10 envp= dword ptr 10h
11
12 push ebp
13 mov ebp , esp
14 sub esp , 10h
15 mov [ebp+var_4], 2
16 mov [ebp+var_8], 3
17 mov eax , [ebp+var_4]
18 mov edx , [ebp+var_8]
19 add edx , eax
20 mov eax , [ebp+var_4]
21 add eax , edx
22 sub eax , [ebp+var_4]
23 mov [ebp+var_C], eax
24 mov eax , [ebp+var_C]
25 leave
26 retn
27 main endp
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4.3.1 Analysis & Observations

The source code of SimpleMath and SimpleMath2 contain minor syntactic differences

shown using the diff command in Listing 4.5. Since this function contains only one basic

block, the Structural Analysis Matching technique alone attempts to match this function to

any other function with a single basic block. The Signature Hash Map Matching technique

fails because the additional instructions in SimpleMath2 will cause the Signature Hash Map

Matching technique to generate a different signature than SimpleMath.

Listing 4.5: Difference between source code of Simplemath and SimpleMath2
$ d i f f SimpleMath . c SimpleMath2 . c
4c4
< in t w, x , y , z ;
−−−
> in t x , y , z ;
7 ,8 c7
< w = 5 ;
< z = x + y ;
−−−
> z = y + x + x − x ;

SimpleMath includes an additional local variable declaration on line 4, int w, and an

additional assignment on line 7 of Listing 4.1, w = 5. IDA Pro identifies the additional local

variable w in SimpleMath and assigns it the label var_C (Listing 4.3 line 6 and 18). We can

see from the assembly in Listing 4.3, after the definition of var_C on line 18 the data is never

used so this variable does not contribute to a data flow.

SimpleMath adds the local variables x and y on line 8 of Listing 4.1. SimpleMath2 does

the same but also performs an additional addition and subtraction on line 7 of Listing 4.2.

The value assigned to the local variable z is the same as the value returned by the main

function in both programs despite the additional mathematic operations on line 7 of Sim-

pleMath2. We know that, semantically, x + y == y + x + x - x is true. Our technique

will prove the semantic equality of these calculation by proving these output values are equal.
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4.3.2 Step 1: Creating Slices

Sources are defined as memory load operations. Lines 19, 20, and 23 in SimpleMath1

read data from memory (the stack in this case) and load that value into a register. Lines 17,

18, 19, and 24 in SimpleMath21 also read data from memory. Sinks are defined as memory

store instructions and as the return value of the function (the value in eax at retn). Also

depending on the memory usage of the function, the return value could also be a source, as

it is in this case. Data is written to the stack at lines 16, 17, 18, and 22 in SimpleMath1 and

lines 15, 16, and 23 in SimpleMath21 so we consider these instructions as sinks. The return

value of both functions is also a sink, line 23 in SimpleMath1 and line 24 in SimpleMath21.

Table 4.1 lists all sources and sink in both programs’ main() functions.

Table 4.1: Use Case 1: Sources and Sinks for SimpleMath and SimpleMath2

File Line Type Instruction
SimpleMath 19 Source mov eax, [ebp+var_8]
SimpleMath 20 Source mov edx, [ebp+var_4]
SimpleMath 23 Source mov eax, [ebp+var_10]
SimpleMath 16 Sink mov [ebp+var_4], 2
SimpleMath 17 Sink mov [ebp+var_8], 3
SimpleMath 18 Sink mov [ebp+var_C], 5
SimpleMath 22 Sink mov [ebp+var_10], eax
SimpleMath 23 Sink mov eax, [ebp+var_10]
SimpleMath2 17 Source mov eax, [ebp+var_4]
SimpleMath2 18 Source mov edx, [ebp+var_8]
SimpleMath2 20 Source mov eax, [ebp+var_4]
SimpleMath2 24 Source mov eax, [ebp+var_C]
SimpleMath2 15 Sink mov [ebp+var_4], 2
SimpleMath2 16 Sink mov [ebp+var_8], 3
SimpleMath2 23 Sink mov [ebp+var_C], eax
SimpleMath2 24 Sink mov eax, [ebp+var_C]

We can see from Table 4.1, a few sinks are found at higher line numbers than any of

the identified sources. Without a prior source, we cannot create a slice that includes these
1Line numbers reference Listings 4.3 and 4.4
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sinks, so we must ignore them. We also ignore the the last source in both functions since no

corresponding sink exists.

We use both forward and backward slicing to calculate slices. Listings 4.6 and Listings

4.7 illustrate the difference between forward and backward slicing.

To calculate a backward slice, we look for all data dependencies between the source

and sink that influence the value at the sink. Conceptually, we start at the sink and

follow use-define chains backward through the instruction flow until we reach the source.

Starting at the sink in Listing 4.6, the instruction mov eax, [ebp+var_10] defines eax

using [ebp+var_10]. So we look backwards through the instruction flow for a defini-

tion of [ebp+var_10] and add the instruction to the slice. The previous instruction, mov

[ebp+var_10], eax, is added to the slice because it defines [ebp+var_10] and uses eax.

Now we look for instructions that define eax. The add eax, edx instruction defines eax and

uses eax and edx, so we now look for definitions of eax and edx. The next two previous in-

structions mov eax, [ebp+var_8] and mov edx, [ebp+var_4] define eax and edx, so they

are also added to the slice. The instruction mov eax, [ebp+var_8] is also the source so we

have finished calculating this slice.

Listing 4.6: Backwards Slicing SimpleMath with source at line 19 and sink at line 23

1 mov eax , [ebp+var_8]
2 mov edx , [ebp+var_4]
3 add eax , edx
4 mov [ebp+var_10], eax
5 mov eax , [ebp+var_10]

Calculating a forward slice is similar, but follows define-use chains from the source to

the sink. The source instruction on line 191, mov eax, [ebp+var_8], defines eax using the

data from [ebp+var_8], so we look for uses of eax in the following instructions. The next

instruction, mov edx, [ebp+var_4] is not added to the slice because it does not use eax.

The add eax, edx instruction uses eax, so it is added to the slice. The add eax, edx
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redefines eax so we continue looking for uses of eax until we reach the sink. The remaining

instructions including the sink are part of the use-define chain with add eax, edx, so they

are also added to the slice. The final resulting slice is shown in Listing 4.7. The slice obtained

from forward slicing is missing an instruction included in the backward slice, Listing 4.6.

Listing 4.7: Forward Slicing SimpleMath with source at line 19 and sink at line 23

1 mov eax , [ebp+var_8]
2
3 add eax , edx
4 mov [ebp+var_10], eax
5 mov eax , [ebp+var_10]

Our method allows for the creation of forward or backward slices. In Steps 2 and 3 of

our framework, we test if either slicing method matches a slice from another binary, with a

successful match representing a semantic match between data flows.

Continuing with our process, we calculate a backward slice from SimpleMath2, Listing

4.4. The resulting slice is show in Listing 4.8.

Listing 4.8: Backwards Slicing SimpleMath2 with source at line 17 and sink at line 24

1 mov eax , [ebp+var_4]
2 mov edx , [ebp+var_8]
3 add edx , eax
4 mov eax , [ebp+var_4]
5 add eax , edx
6 sub eax , [ebp+var_4]
7 mov [ebp+var_C], eax
8 mov eax , [ebp+var_C]

Looking back at Table 4.1, we see that the slice from SimpleMath, shown in Listing

4.6, contains all possible sources and sinks in the function, so any other slice generated from

this table would be a subset of this slice. The same is true for the slice in Listing 4.8 from

SimpleMath2.
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4.3.3 Step 2: Extracting Semantics

We extract the behavior of each slice in preparation for symbolic execution, modeling the

behavior in Python. Listings 4.9, 4.10, and 4.11 contain the results of extracting semantics

for each slice in SimpleMath and SimpleMath2. Actual instructions appear as comments in

the Python code for reference.

Listing 4.9: Semantics for Listing 4.6

1 eax = var_8 #mov eax , [ebp+var_8]
2 edx = var_4 #mov edx , [ebp+var_4]
3 eax = eax + edx #add eax , edx
4 var_10 = eax #mov [ebp+var_10], eax
5 eax = var_10 #mov eax , [ebp+var_10]

Listing 4.10: Semantics for Listing 4.7

1 eax = var_8 #mov eax , [ebp+var_8]
2 eax = eax + edx #add eax , edx
3 var_10 = eax #mov [ebp+var_10], eax
4 eax = var_10 #mov eax , [ebp+var_10]

Listing 4.11: Semantics for Listing 4.8

1 eax = var_4 #mov eax , [ebp+var_4]
2 edx = var_8 #mov edx , [ebp+var_8]
3 edx = edx + eax #add edx , eax
4 eax = var_4 #mov eax , [ebp+var_4]
5 eax = eax + edx #add eax , edx
6 eax = eax - var_4 #sub eax , [ebp+var_4]
7 var_C = eax #mov [ebp+var_C], eax
8 eax = var_C #mov eax , [ebp+var_C]

Extracting semantics was performed manually by translating each instruction to the

equivalent Python expression. [Intel Corporation 2014] We chose Python as the intermediate

language is it allows us to use the Python API for the Z3 solver, discussed in the next step.
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Other tools are available that implement an intermediate language such as S2E [Chipounov

et al. 2011] and BAP [Brumley et al. 2011], but none of these tools are designed to allow

analysis over multiple binary files at the same time.

All of our use cases employ x86 machine language instructions that could be modeled

explicitly in the Python programming language.

4.3.4 Step 3: Testing Equality

After obtaining the semantics for each slice, we symbolically execute the slices and

test if it matches the behavior of another slice. We implement this using the Microsoft Z3

solver’s Python API. We use the prove() function from Z3’s Python API, which creates an

assert statement that attempts to disprove the equality of the two input statements. The

prove() function takes a single input argument, for example prove (P), and tries to solve

the negation of that equation, Not(P) == True . If the solver cannot prove Not(P), then

it has indirectly proven P == True .

Listing 4.12 shows a simple example using the prove function from the Z3 Python API.

Here we create two symbolic bit vectors, both 32-bit in length, and instruct prove to test if

they are equal. Since both values are symbolic, Z3 is free to chose any value for each value.

We do not provide any constraints for the variables so Z3 chooses different values which

invalidates the statement a == b.

Listing 4.12: The Z3 Python API prove() function

Python 2.7.3 (default , Mar 13 2014, 11:03:55)
[GCC 4.7.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> from z3 import *
>>> a = BitVec ("a",32)
>>> b = BitVec ("b",32)
>>> prove (a == b)
counterexample
[b = 0, a = 4294967295]
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For our use cases, we pass prove() a statement representing testing two slices for equal-

ity, prove (slice1 == slice2). prove() tells us that it has “proven” the statement (our

slices are equal) or it provides a counterexample showing us the symbolic values in the

counterexample that invalidate our statement.

Our goal is to prove that slices in SimpleMath are equal to slices from SimpleMath2.

We compare both Listing 4.6 and 4.7 to Listing 4.8. We test both the forward and backward

slices calculated from SimpleMath to the backward slice calculated from SimpleMath2. The

complete Python script that implements these tests is shown in Listing 4.13. Running this

script produces the output in Listing 4.14.

Listing 4.13: Testing slices of SimpleMath and SimpleMath2 for equality.

1 from z3 import *
2
3 s = Solver ()
4 var_4 = BitVec("var_4", 32)
5 var_8 = BitVec("var_8", 32)
6
7
8 #Semantics of backward slicing SimpleMath from line 19 to line 23
9 eax = var_8 #mov eax , [ebp+var_8]
10 edx = var_4 #mov edx , [ebp+var_4]
11 eax = eax + edx #add eax , edx
12 var_10 = eax #mov [ebp+var_10], eax
13 eax = var_10 #mov eax , [ebp+var_10]
14 sm_slice1 = eax
15
16 #Semantics of forward slicing SimpleMath from line 19 to line 23
17 #We don’t know the value of eax , so it is replaced with a symbol
18 edx = BitVec("edx", 32)
19
20 eax = var_8 #mov eax , [ebp+var_8]
21 eax = eax + edx #add eax , edx
22 var_10 = eax #mov [ebp+var_10], eax
23 eax = var_10 #mov eax , [ebp+var_10]
24 sm_slice2 = eax
25
26 #Semantics of backward slicing SimpleMath2 from line 17 to line 24
27 eax = var_4 #mov eax , [ebp+var_4]
28 edx = var_8 #mov edx , [ebp+var_8]
29 edx = edx + eax #add edx , eax
30 eax = var_4 #mov eax , [ebp+var_4]
31 eax = eax + edx #add eax , edx
32 eax = eax - var_4 #sub eax , [ebp+var_4]
33 var_C = eax #mov [ebp+var_C], eax
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34 eax = var_C #mov eax , [ebp+var_C]
35 sm2_slice1 = eax
36
37
38 print "sm_slice1 :", sm_slice1
39 print "sm_slice2 :", sm_slice2
40 print "sm2_slice1 :", sm2_slice1
41
42 print "Testing sm_slice1 == sm2_slice1 :"
43 prove (sm_slice1 == sm2_slice1)
44
45 print "Testing sm_slice2 == sm2_slice1 :"
46 prove (sm_slice2 == sm2_slice1)

Listing 4.14: Output of Listing 4.13

1 sm_slice1 : var_8 + var_4
2 sm_slice2 : eax + var_4
3 sm2_slice1 : var_4 + var_8 + var_4 - var_4
4 Testing sm_slice1 == sm2_slice1 :
5 proved
6 Testing sm_slice2 == sm2_slice1 :
7 counterexample
8 [var_8 = 0, eax = 4294967295]

From lines 4 and 5 of Listing 4.14, we see that the Z3 solver is able to prove the

backward slice from SimpleMath, sm_slice1 in Listing 4.14, matches the backward slice

from SimpleMath2, sm2_slice1 in Listing 4.14. The symbolic representation of sm_slice1 is

var_8 + var_4 and the symbolic representation of sm2_slice1 is var_4 + var_8 + var_4

- var_4. Z3 is able to prove var_8 + var_4 == var_4 + var_8 + var_4 - var_4.

Lines 6 and 7 of Listing 4.14 show the result of comparing the forward slice from Sim-

pleMath to the backward slice from SimpleMath2. The solver is unable to prove these two

slices are equal and provides a counterexample. Symbolically, the solver tries to prove eax

+ var_4 == var_4 + var_8 + var_4 - var_4. The left side of this equation has an extra

variable not present on the right side, eax. The solver returns values for var_8 and eax that

invalidate this equation for all values of var_4.
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4.3.5 Conclusion

The SimpleMath use case illustrates each step of the Data Flow Binary Differencing

framework by creating slices of instructions based on sinks and sources, extracting the se-

mantics from these instructions, and then symbolically testing slices from both programs

for equality. When creating slices, forward and backward techniques do not always produce

the same slice, so we should test both methods when calculation slices. By comparing the

backward slice from SimpleMath and the backward slice from SimpleMath2, we have shown

the Data Flow Binary Differencing method for detecting semantically equal, yet syntactically

different, functions is successful with this simple example.

4.4 Use Case 2: Exploring limitations of Data Flow Binary Differencing

Use Case 2 demonstrates the validity of our approach on artifacts that contain condi-

tional program flow in the form of loops. This use case is designed to test the limitations

of Binary Data Flow Differencing, specifically to see how our approach handles looping. We

know that symbolic execution for program analysis tends to have trouble with loops. This

was a major limitation of using S2E [Chipounov et al. 2011] or BAP [Brumley et al. 2011]

for this research because both implementations require the intermediate language to unroll

loops before invoking the SMT solver.

We chose to illustrate the use case with a program that calculates Fibonacci numbers,

creating different versions by compiling it with different optimization levels. The use of

different optimization levels introduces syntactic differences without modifying the semantics

of the program.

GCC supports 4 levels of optimizations. Level 0 instructs the compiler to generate ma-

chine instructions without reordering statements or enabling optimizations. At level 1, the

compiler tries to reduce code size and execution time without performing any optimizations

that increase compilation time. Level 2 includes all the optimizations at level 1 plus op-

timizations that do not involve a space-speed tradeoff, so the resulting executable will not
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increase in size. Level 3 optimizes beyond level 2 by turning on more expensive optimization

that can increase compile time and the resulting file size. We used these optimization levels

to created semantically identical binaries with syntactic differences.

The source code for our Fibonacci program can be found in Appendix A, Listing A.2.

As with our first use case, we build Fibonacci with GCC 4.7.2 on Debian 7 using all four of

the optimization levels. Our Fibonacci function takes one argument, n, calculates an array

of Fibonacci values, and returns the requested value, the n-th Fibonacci number. The fib()

function calculates the array of Fibonacci values by setting the first and second Fibonacci

numbers to 0 and 1, respectively, and then loops over an addition operation that adds the

previous two Fibonacci numbers and stores the result in the next array location.

We use optimization levels 0, 1, and 2 for our analysis. The binary resulting from

optimization level 3 was almost identical to level 2 so we exclude it from the analysis.

After compiling the source code at each of the optimization levels 0, 1, and 2, we use IDA

Pro to disassemble the resulting binaries. In Appendix B we show the disassembled fib()

functions from each optimization level. Each binary contains a main() function as well as

other imported standard library functions not shown, since these additional functions are

not relevant to our research.

Figures 4.1, 4.2, and 4.3 show the Control Flow Graph (CFG) of fib() at each optimiza-

tion level 0, 1, and 2.

4.4.1 Analysis & Observations

In looking at the conventional function matching techniques, the Structural Analysis

technique depends on similarities between the CFGs to detect similar functions. Table 4.2

shows a way to perform structural analysis on fib(). The matching algorithm attempts to

match functions that contain the closest number of basic blocks, edges, and calls. None of

the functions under analysis from the three optimization levels contain the same number of

basic blocks, edges, or calls so Structural Analysis matching fails.
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Figure 4.1: Control Flow Graph of fib() optimization level 0
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Figure 4.2: Control Flow Graph of fib() optimization level 1
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Figure 4.3: Control Flow Graph of fib() optimization level 2
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Table 4.2: Structural Analysis of fib()

Optimization Level Number of Blocks Edges Calls
-O0 4 4 0
-O1 4 5 0
-O2 5 6 0

The Signature Hash Map matching technique attempts to create signatures of each basic

block using the mnemonics and operands of the instructions. None of the basic blocks in

Figures 4.1, 4.2, and 4.3 contain identical instructions so each basic block will have a different

signature. Figures 4.2 and 4.3 both contain a basic block with exactly two mov instructions,

but with different operands. Ignoring the operands, Signature Hash Map Matching could

generate a signature that matches basic blocks containing two mov instructions, but every

other basic block has a different signature so ultimately this matching technique could only

match one of four or five basic blocks between these functions.

From a reverse engineering perspective, the fib() function is complicated. Each binary is

compiled using the exact same source code but with different compiler optimization enabled,

the disassembled instructions contain many syntactic differences that make understanding

the behavior of each binary difficult.

As for the behavior of the functions, the first operation that occurs is the calculation of

the array size and address to store the Fibonacci numbers. The number of Fibonacci numbers

to calculate is passed to the function as arg_0. The function uses this value to calculate the

number of bytes required to hold the Fibonacci array and subtracts that number from the

current stack address to create space to store the array.

Optimization level 0 results in a complicated approach to calculate the Fibonacci array

shown in Listing B.1,lines 17-35 whereas the other optimization levels use a much simpler

approach to calculate the array shown in Listing B.2, lines 10-15 for optimization level 1 and

Listing B.3, lines 12-18 for optimization level 2.
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4.4.2 Step 1: Creating Slices

Tables 4.3, 4.4 and 4.5 show the sources and sinks from each binary. Without optimiza-

tions, the binary includes many memory operations. Optimization levels 1 and 2 have fewer

memory load and stores that optimization level 0, which makes runtime faster.

Table 4.3: Use Case 2: Sources and Sinks for fib() optimization level 0

Line Number Type Instruction
17 Source mov eax, [ebp+arg_0]
36 Source mov eax, [ebp+var_14]
38 Source mov eax, [ebp+var_14]
44 Source mov eax, [ebp+var_C]
46 Source mov eax, [ebp+var_14]
47 Source mov edx, [eax+edx*4]
48 Source mov eax, [ebp+var_C]
50 Source mov eax, [ebp+var_14]
51 Source mov eax, [eax+edx*4]
53 Source mov edx, [ebp+var_14]
54 Source mov edx, [ebp+var_C]
58 Source mov eax, [ebp+var_C]
61 Source mov eax, [ebp+var_14]
62 Source mov edx, [ebp+arg_0]
63 Source mov eax, [eax+edx*4]
65 Source mov ebx, [ebp+var_4]
20 Sink mov [ebp+var_10], edx
26 Sink mov [ebp+var_1C], 0x10
35 Sink mov [ebp+var_14], eax
37 Sink mov dword ptr [eax], 0
41 Sink mov dword ptr [eax+4], 1
40 Sink mov [ebp+var_C], 2
55 Sink mov [eax+edx*4], ebx
63 Sink mov eax, [eax+edx*4]

There are many possible individual slices that can be calculated from Table 4.3 given

the large number of sources and sinks. A much smaller number of slices can be calculated

from the other two binaries. The slices that were relavent to this research were slices that

captured the behavior of the array size calculation and the loop. Listings 4.15, 4.16, and

4.19 show the slices that capture the array size and address calculation for each binary.
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Table 4.4: Use Case 2: Sources and Sinks for fib() optimization level 1

Line Number Type Instruction
10 Source mov ebx, [ebp+arg_0]
24 Source mov ecx, [eax+4]
32 Source mov eax, [esi+ebx*4]
17 Sink mov dword ptr ds:0[eax*4], 0
18 Sink mov dword ptr ds:4[eax*4], 1
26 Sink mov [eax+8], ecx
32 Sink mov eax, [esi+ebx*4]

Table 4.5: Use Case 2: Sources and Sinks for fib() optimization level 2

Line Number Type Instruction
12 Source mov esi, [ebp+arg_0]
32 Source mov ecx, [eax+4]
33 Source mov ebx, [eax]
42 Source mov edx, [ebp+arg_0]
51 Source mov eax, [edi+edx*4]
21 Sink mov dword ptr ds:0[eax*4], 0
22 Sink mov dword ptr ds:4[eax*4], 1
37 Sink mov [eax+8], ecx
51 Sink mov eax, [edi+edx*4]

We use two approaches to generate a slice that captures the loop instructions for each

optimization level. The first is a naive approach in which we calculate a backward slice be-

tween the functions input value, arg_0, and the final assignment to eax, the return value. As

explained in Section 4.4.4, we perform this analysis only on binaries compiled at optimization

levels 1 and 2. Slicing between reading arg_0 and writing the final eax represents a slice

from the input to the output. Ultimately, we have to unroll each loop in order to model the

linear execution of the assembly language. This is the same limitation we discovered trying

to S2E [Chipounov et al. 2011] or BAP [Brumley et al. 2011] for this research. We discuss

this further in Section 4.5.4. These slices are listing alongside their semantics in Appendix

C.

The second approach takes a slice from the source and sink inside the loop. Listings

4.18 and 4.19 show these slices from optimization levels 1 and 2 binaries.
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Listing 4.15: Backward slice of fib() optimization level 0 from line 17 to line 35

1 mov eax , [ebp+arg_0]
2 add eax , 1
3 lea edx , [eax -1]
4 mov [ebp+var_10], edx
5 shl eax , 2
6 lea edx , [eax +3]
7 mov eax , 10h
8 sub eax , 1
9 add eax , edx
10 mov [ebp+var_1C], 10h
11 mov edx , 0
12 div [ebp+var_1C]
13 imul eax , 10h
14 sub esp , eax
15 mov eax , esp
16 add eax , 3
17 shr eax , 2
18 shl eax , 2
19 mov [ebp+var_14], eax

Listing 4.16: Backward slice of fib() optimization level 1 from line 10 to line 17

1 mov ebx , [ebp+arg_0]
2 lea eax , ds:16h[ebx*4]
3 and eax , 0FFFFFFF0h
4 sub esp , eax
5 mov eax , esp
6 shr eax , 2
7 lea esi , ds:0[ eax*4]
8 mov dword ptr ds:0[eax*4], 0

Listing 4.17: Backward slice of fib() optimization level 2 from line 12 to line 21

1 mov esi , [ebp+arg_0]
2 add esi , 1
3 lea eax , ds:12h[esi*4]
4 and eax , 0FFFFFFF0h
5 sub esp , eax
6 mov eax , esp
7 shr eax , 2
8 mov dword ptr ds:0[eax*4], 0
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Listing 4.18: Backward slice of fib() optimization level 1 from line 24 to line 26

1 mov ecx , [eax +4]
2 add ecx , [eax]
3 mov [eax+8], ecx

Listing 4.19: Backward slice of fib() optimization level 2 from line 32 to line 37

1 mov ecx , [eax +4]
2 mov ebx , [eax]
3 add ecx , ebx
4 add edx , 1
5 mov [eax+8], ecx

4.4.3 Step 2: Extracting Semantics

After calculating slices using forward and backward slicing between sources and sinks,

we translate each statement into an intermediate representation using Python. Most of

the instructions contained in the slices described above are assignments and mathematical

calculations, which simplifies the translation process.

Using symbolic bit vectors to represent unknown register and memory values also simpli-

fies the modeling of certain instructions since the Z3 Python API overloads the corresponding

Python functions with functions that mimic the machine instruction. Examples of this are

the shifting instructions, shl and slr, where we are able to model shl using the overloaded

« operator and shr using the overloaded » operator. The Z3 Python API also provides

functions such as unsigned division, UDiv(), used on line 24 of Listing 4.20 for use with

symbolic bit vectors.

Listing 4.20 contains slices from optimization levels 0 and 1 that perform the array size

and address calculation and Listing 4.23 contains the same slices from optimization levels

1 and 2. Listings C.1, C.2, C.3, and C.4 show the slices obtained from unrolling the loop

in optimization levels 1 and 2, and Listing 4.25 contains the slices that capture the internal
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loop semantics from optimization levels 1 and 2. These listing also contain the Python code

that executes the Z3 solver to test for equality between the pairs of slices.

4.4.4 Step 3: Testing Equality

The first slices we compare are the slices that calculate the size and address for the

fib[] array. Lines 21-39 of Listing B.1 and lines 14-21 of Listing B.2 calculate the array

size and address for the unoptimized binary and the binary compiled at optimization level

1. After slicing and extracting the semantics, we obtain the equations in listing 4.21 as the

symbolic values of the array address at the end of each slice. The solver cannot prove these

slices are equal and outputs a counterexample of values for arg_0 and esp.

Listing 4.20: Fibonacci array address calculation using optimization levels 0 and 1

1 from z3 import *
2
3 s = Solver ()
4
5 esp = BitVec(’esp’, 32)
6 #Since both functions modify esp , we create copies
7 #for each function.
8 esp_0 = esp
9 esp_1 = esp
10 arg_0 = BitVec(’arg_0’ ,32)
11
12 #fib.c compiled with -m32 -O0
13 eax = arg_0 # mov eax , [ebp+arg_0]
14 eax = eax + 0x1 # add eax , 1
15 edx = eax - 0x1 # lea edx , [eax -1]
16 var_10 = edx # mov [ebp+var_10], edx
17 eax = eax << 0x2 # shl eax , 2
18 edx = eax + 0x3 # lea edx , [eax+3]
19 eax = 0x10 # mov eax , 10h
20 eax = eax -0x1 # sub eax , 1
21 eax = eax + edx # add eax , edx
22 var_1C = 0x10 # mov [ebp+var_1C], 10h
23 edx = 0 # mov edx , 0
24 eax = UDiv(eax , var_1C) # div [ebp+var_1C]
25 eax = eax * 0x10 # imul eax , 10h
26 esp_0 = esp_0 - eax # sub esp , eax
27 eax = esp_0 # mov eax , esp
28 #This add instruction is the only semantic difference
29 #between the two optimization levels.
30 #Uncommenting this line prevents the solver from
31 #proveing the equality of these two slices.
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32 eax = eax + 0x3 # add eax , 3
33 eax = eax >> 0x2 # shr eax , 2
34 eax = eax << 0x2 # shl eax , 2
35 fib0 = eax # mov [ebp+var_14], eax
36
37
38 # fib.c -m32 -O1
39 ebx = arg_0 # mov ebx , [ebp+arg_0]
40 eax = ebx * 0x4 + 0x16 # lea eax , ds:16h[ebx *4]
41 eax = eax & 0xFFFFFFF0 # and eax , 0FFFFFFF0h
42 esp_1 = esp_1 - eax # sub esp , eax
43 eax = esp_1 # mov eax , esp
44 eax = eax >> 0x2 # shr eax , 2
45 fib1 = eax * 0x4 + 0 # mov dword ptr ds:0[ eax*4], 0
46 print "Optimization Level 0:"
47 print " ",fib0
48 print "Optimization Level 1:"
49 print " ",fib1
50
51 prove (fib0 == fib1)

Listing 4.21: Output of Listing 4.20 including Line 32

Optimization Level 0:
(esp - UDiv (15 + (arg_0 + 1 << 2) + 3, 16)*16 + 3 >> 2) << 2

Optimization Level 1:
(esp - (arg_0 *4 + 22 & 4294967280) >> 2)*4 + 0

counterexample
[arg_0 = 210894847 , esp = 1016143305]

The reason these slices are not equal is that Line 32 of Listing 4.20, add eax, 3, causes

the slice of instructions from the unoptimized binary to differ semantically from the binary

compiled at optimization level 1. This was a calculation inserted by the compiler and,

most likely, represents a rounding and byte alignment calculation. This is an example of

a semantic area where the source code does not define behavior, but that the compiler

is free to make a decision about memory locations and usage. This is a limitation we

identified when comparing semantics extracted from data flow. Instructions resulting from a

memory operation in a higher level source code language (where explicit memory control is

not exposed to the developer) could contain semantic differences between non-optimized and

optimized compilations. After removing the add eax, 3 instruction from the unoptimized
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slice, the solver is able to prove the equations are equal, shown in Listing 4.22. We cannot

definitely determine the significance of this addition instruction within the unoptimized slice,

but it illustrates that testing for similar functions using semantics can fail when the compiler

introduces differences not controlled by the source code.

Listing 4.22: Output of Listing 4.20 excluding Line 32

Optimization Level 0:
(esp - UDiv (15 + (arg_0 + 1 << 2) + 3, 16)*16 >> 2) << 2

Optimization Level 1:
(esp - (arg_0 *4 + 22 & 4294967280) >> 2)*4 + 0

proved

To compare the array address calculation from optimization levels 1 and 2, we compare

the slices from Listings 4.16 and 4.17. Listing 4.23 shows the python script that compares

this slice with the same slice from the binary compiled at optimization level 1. Listing 4.24

contains the output from Listing 4.23 showing the “proved” result from the solver, meaning

these slice are equal.

Listing 4.23: Fibonacci array address calculation using optimization levels 1 and 2

1 from z3 import *
2
3 s = Solver ()
4
5 ############################################################
6 #fib.c compiled using -m32 -O1
7 #declare symbolic variables
8 arg_0 = BitVec("arg_0" ,32)
9 esp = BitVec("esp" ,32)
10
11 ebx = arg_0 # mov ebx , [ebp+arg_0]
12 eax = ebx * 4 + 0x16 # lea eax , ds:16h[ebx*4]
13 eax = eax & 0xfffffff0 # and eax , 0FFFFFFF0h
14 esp = esp - eax # sub esp , eax
15 eax = esp # mov eax , esp
16 eax = eax >> 0x2 # shr eax , 2
17 # lea esi , ds:0[eax*4]
18 fib1 = eax # mov dword ptr ds:0[ eax*4], 0
19
20 ############################################################
21 #fib.c compiled using -m32 -O2
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22 #declare symbolic variables
23 arg_0 = BitVec("arg_0" ,32)
24 esp = BitVec("esp" ,32)
25
26 esi = arg_0 # mov esi , [ebp+arg_0]
27 esi = esi + 1 # add esi , 1
28 eax = esi*4 + 0x12 # lea eax , ds:12h[esi*4]
29 eax = eax & 0xfffffff0 # and eax , 0FFFFFFF0h
30 esp = esp - eax # sub esp , eax
31 eax = esp # mov eax , esp
32 eax = eax >> 0x2 # shr eax , 2
33 # cmp [ebp+arg_0], 1
34 # lea edi , ds:0[eax*4]
35 fib2 = eax # mov dword ptr ds:0[ eax*4], 0
36
37 print "Optimization Level 1:"
38 print " ",fib1
39 print "Optimization Level 2:"
40 print " ",fib2
41
42 prove (fib1 == fib2)

Listing 4.24: Output of Listing 4.25

Optimization Level 1:
esp - (arg_0 *4 + 22 & 4294967280) >> 2

Optimization Level 2:
esp - ((arg_0 + 1)*4 + 18 & 4294967280) >> 2

proved

Testing the looping behavior is more difficult than the array calculation. Creating slices

according to our method that can be extracted to semantics and solved using an SMT solver

is a difficult task because using a symbolic variable for a loop counter will cause the solver to

run indefinitely. Our idea of using instructions that affect control flow to create constraints

on the data flow was successful but required that we unroll the loop the same number of

time in both functions before testing for equality. To our knowledge, no SMT solver supports

looping in the way we would need to use it to model looping behavior using symbolic variables

without unrolling loops to create non-cyclic models of the instructions.

For the naive slicing approach to capture the loop discussed in Section 4.4.2, We un-

roll the loop within the fib() function 0, 1, 2, and 3 times from the binaries compiled at
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optimization levels 1 and 2. We use the information gained from control flow to determine

constraints for the symbolic variables and unroll the loop equal numbers of times in both

binaries, verifying the output after each unrolling. The Python scripts in Appendix C model

slices of instructions starting at arg_0 and ending at the return value of the fib() function.

Each of the Python scripts in Appendix C illustrates that manually unrolling the loop in the

binaries compiled at optimization levels 1 and 2 can prove the slices are equal.

A better solution that does not require unrolling loops is to calculate smaller slices and

try to determine if subsets of the function’s behavior match. Using the slices from Listings

4.18 and 4.19 we are able to compare a data flow that performs the addition operation contain

within the Fibonacci loop, reavealing that the behavior of these two slices is identical. Listing

4.25 shows a Python script testing the slices and semantics using the Z3 SMT solver. Listing

4.26 contains the output from this script.

Listing 4.25: Fibonacci loop semantics from optimization levels 1 and 2

1 from z3 import *
2
3 s = Solver ()
4
5 ############################################################
6 #fib.c compiled using -m32 -O1
7 #declare symbolic variables
8 eax = BitVec("eax" ,32)
9 mem = Array("mem", BitVecSort (32), BitVecSort (32))
10 arg_0 = BitVec("arg_0" ,32)
11
12 ecx = mem[eax+4] # mov ecx , [eax+4]
13 ecx = mem[eax] + ecx # add ecx , [eax]
14 mem = Store(mem , eax+8, ecx) # mov [eax+8], ecx
15
16 fib1 = mem
17
18 ############################################################
19 #fib.c compiled using -m32 -O2
20 mem = Array("mem", BitVecSort (32), BitVecSort (32))
21
22 ecx = mem[eax+4] # mov ecx , [eax+4]
23 ebx = mem[eax] # mov ebx , [eax]
24 ecx = ecx + ebx # add ecx , ebx
25 mem = Store(mem , eax+8, ecx) # mov [eax+8], ecx
26
27 fib2 = mem
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28
29 print "Optimization Level 1:"
30 print " ",fib1
31 print "Optimization Level 2:"
32 print " ",fib2
33 prove (fib1 == fib2)

Listing 4.26: Output of Listing 4.25

Optimization Level 1:
Store(mem , eax + 8, mem[eax] + mem[eax + 4])

Optimization Level 2:
Store(mem , eax + 8, mem[eax + 4] + mem[eax])

proved

4.4.5 Conclusion

Use Case 2 includes a loop that is dependent on an input argument, which made calcu-

lating the exact behavior of the loop difficult since the input argument is represented as a

symbolic variable. While we were able to prove the entire functions were semantically equal

by unrolling the loop a static number of times, this also put unreasonable constraints on the

input variable since the input variable decided the number of times the loop is unrolled. A

better solution was to capture a smaller slice within the loop to compare the behavior inside

the loop. The implications of this approach is that Data Flow Binary Matching is able to

match some of the behavior of these functions, but not all of their behavior. This is an

acceptable result for our research since a partial match is a better solution than no match

at all, which is the result of the other binary matching techniques.

4.5 Use Case 3: Applying Data Flow Binary Differencing to Actual Malware

Use Case 3 applies our research to live malware. We chose this example to provide

a real world look at how using Data Flow Binary Differencing might apply to a realistic

problem faced by a reverse engineer. We compile the malware from source code at various
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optimization levels so we can introduce syntactic differences into the malware’s functions

without changing the semantics. Metamorphic malware uses these same techniques to evade

signature-based anti-virus detection techniques without relying on encryption. [Walenstein

et al. 2007]

The malware we are analyzing is sdbot version 0.5b. Sdbot is the client software installed

on victim computer used to create a botnet, a large collection of infected computers an

attacker can use for malicious actions such as launching a distributed denial of service (DDoS)

attack. This malware is classified as a Trojan horse, a type of malware that tricks the user

into installing itself usually through social engineering. Once installed and running on the

victim computer, sdbot opens a backdoor that allows an attacker to perform various malicious

actions on the infected system, such as stealing data or taking remote control of the victim

computer. Sdbot is controlled through IRC (Internet Chat Relay), by connection to an IRC

server and joining a chat room where the attacker is able to issue commands. IRC requires

that each user connected to a server have a unique nickname so sdbot generates a random

nickname before connecting to a IRC server. This nickname is the identity of each bot in the

chat room and how the attacker can interact with each specific bot if desired. We chose the

function that randomly generates this nickname as the target of our analysis. The source

code for this function is shown in Listing 4.27.

The rndnick() function takes one argument, a pointer to a string buffer, returns a pointer

to a string buffer, and contains 3 local variables, two integers and a 12 character length array.

A number of system calls are used inside this functions. GetTickCount() is passed to srand()

in order to initialize the random number generator. Next, memset() writes zeros to the 12

character long array, nick[]. A for() loop is used to fill the nick[] array using random

ASCII characters between nick[0] and nick[4] to nick[7] depending on the value of nl,

followed by a NULL string terminator. This results is a random string of lowercase ASCII

character either between 4 and 7 character in length. Finally the 12 characters of nick[]

are copied to strbuf and the pointer to strbuf is returned.
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Listing 4.27: Source code for rndnick function

1 char * rndnick(char *strbuf)
2 {
3 int n, nl;
4 char nick [12];
5
6 srand(GetTickCount ());
7 memset(nick , 0, sizeof(nick ));
8 nl = (rand ()%3)+4;
9 for (n=0; n<nl; n++) nick[n] = (rand ()%26)+97;
10 nick[n+1] = ’\0’;
11
12 strncpy(strbuf , nick , 12);
13 return strbuf;
14 }

The full assembly language for rndnick() compiled at optimization level 0 is shown in

Appendix B Listing B.4 and compiled at optimization level 1, in Listing B.5. Figures 4.4

and 4.5 show the Control Flow Graphs for these functions.

4.5.1 Analysis & Observations

Both rndnick() functions from optimization levels 1 and 2 have different control flow

graphs so Structural Analysis Matching fails. Table 4.6 shows the structural metadata for

rndnick(). Also both functions have different instructions for each of their basic blocks,

therefore signatures generated for each basic block will be different and Signature Hash Map

Matching also fails.

Table 4.6: Structural Analysis of rndnick()

Optimization Level Number of Blocks Edges Calls
0 5 4 6
1 6 7 5

One syntactic and semantic difference we notice between the binaries is the systems call

to memset has been removed from the binary compiled at optimization level 1. The compiler

has decided since the rndnick() function does not use all 12 characters it allocates, and since
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Figure 4.4: Control Flow Graph of rndnick() optimization level 0
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Figure 4.5: Control Flow Graph of rndnick() optimization level 1
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line 10 of source code, Listing 4.27, adds a string terminating NULL, zeroing out the array

isn’t necessary. At optimization level 1, the compiler removes this system call replacing it

with a couple of mov instructions writing zeros to the start of the nick[] array. The intent

of the source code was to write zeros to all 12 memory addresses of the nick[] array. This

is a semantic change internal to the function although is remedied by the call _strncpy at

the end of the function. The function _strncpy will write zeros to the end of the destination

if the source string is less than the number of bytes passed as an argument to _strncpy.

In this case, _strncpy is called with 12 bytes as the num argument. The _memset functions

actually performs redundant actions with _strncpy so the compiler has removed it.

4.5.2 Step 1: Slicing Instructions

We perform slicing on both binaries in the same way as the previous two use cases. We

begin by identifying the sources and sinks within both binaries. Tables 4.7 and 4.8 show the

sources and sinks from the unoptimized and level 1 optimized binaries, respectively. Line

number are from Listings B.4 and B.5.

The call instructions are identified as sources in both functions. More specifically,

the value of eax after the call is executed is the data we use when slicing the instructions

following the call instruction and the arguments used by the call instructions are sinks.

This allows for the capture of data flow to and from a sub-function.

Listings 4.28, 4.29, 4.30, 4.31, 4.32, 4.33, and 4.34 contain the slices obtained from the

unoptimized binary and Listings 4.35, 4.36, 4.37, 4.38, and 4.39 show the slices from the

level 1 optimized binary.

Listing 4.28, 4.29, 4.33, 4.35, and 4.38 all result from backward slicing from identified

input argument to the listed call instruction. Backward slicing is the only slicing technique

that works for capturing data flow to a called sub-function. We do not initially know how
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Table 4.7: Use Case 3: Sources and Sinks for rndnick() optimization level 0

Line number Type Instruction
16 Source call _GetTickCount
17 Source call _srand
22 Source call _memset
23 Source call _rand
43 Source call _rand
58 Source mov edx, [ebp+var_C]
64 Source mov eax, [ebp+var_C]
67 Source mov eax, [ebp+var_C]
73 Source mov eax, [ebp+arg_0]
75 Source call _strncpy
76 Source mov eax, [ebp+arg_0]
16 Sink mov [esp], eax
18 Sink mov dword ptr [esp+8], 0Ch
19 Sink mov dword ptr [esp+4], 0
21 Sink mov [esp], eax
37 Sink mov [ebp+var_10], eax
38 Sink mov [ebp+var_C], 0
60 Sink mov [edx], al
69 Sink mov [ebp+eax+var_1C], 0
70 Sink mov dword ptr [esp+8], 0Ch
72 Sink mov [esp+4], eax
74 Sink mov [esp], eax
76 Sink mov eax, [ebp+arg_0]
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Table 4.8: Use Case 3: Sources and Sinks for rndnick() optimization level 1

Line Number Type Instruction
20 Source call _GetTickCount
22 Source call _srand
26 Source call _rand
44 Source call _rand
70 Source mov edx, [esp+3Ch+arg_0]
72 Source call _strncpy
73 Source mov eax, [esp+3Ch+arg_0]
21 Sink mov [esp+3Ch+var_3C], eax
23 Sink mov dword ptr [esp+3Ch+var_28], 0
24 Sink mov [esp+3Ch+var_24], 0
25 Sink mov [esp+3Ch+var_20], 0
54 Sink mov [ebx], cl
66 Sink mov [esp+ebp+3Ch+var_28+1], 0
67 Sink mov [esp+3Ch+var_34], 0Ch
69 Sink mov [esp+3Ch+var_38], eax
71 Sink mov [esp+3Ch+var_3C], eax
73 Sink mov eax, [esp+3Ch+arg_0]

far back the arguments are calculated so we must follow the identified input arguments

backwards until no more use-define pairs exist in the slice.

Listing 4.30, 4.31, 4.32, 4.36, and 4.37 were generated using forward slicing between a

source and sink. This creates a series of instructions where the definition of the data at the

source and subsequent use-define pairs influence the data use at the sink.

Listing 4.34 and 4.39 are obtained by slicing between the function’s input arguments

arg_0 and the function’s return values.

Listing 4.28: Optimization Level 0: Slice created from return value of _getTickCount@0
and argument of _srand

1 call _GetTickCount@0
2 mov [esp], eax ; unsigned int
3 call _srand
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Listing 4.29: Optimization Level 0: Slice created from arguments to _memset

1 mov dword ptr [esp+8], 0Ch ; size_t
2 mov dword ptr [esp+4], 0 ; int
3 lea eax , [ebp+var_1C]
4 mov [esp], eax ; void *
5 call _memset

Listing 4.30: Optimization Level 0: Slice created from return value of _rand at line 23

1 call _rand
2 mov ecx , eax
3 mov eax , ecx
4 imul edx
5 mov eax , ecx
6 sar eax , 1Fh
7 sub edx , eax
8 mov eax , edx
9 add eax , eax
10 add eax , edx
11 sub ecx , eax
12 mov edx , ecx
13 lea eax , [edx +4]
14 mov [ebp+var_10], eax

Listing 4.31: Optimization Level 0: Slice created from return value of _rand on line 43

1 call _rand
2 mov ecx , eax
3 mov eax , ecx
4 imul edx
5 sar edx , 3
6 mov eax , ecx
7 sar eax , 1Fh
8 sub edx , eax
9 mov eax , edx
10 imul eax , 1Ah
11 sub ecx , eax
12 mov eax , ecx
13 add eax , 61h
14 mov [edx], al
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Listing 4.32: Optimization Level 0: Slice created from source at line 67

1 mov eax , [ebp+var_C]
2 add eax , 1
3 mov [ebp+eax+var_1C], 0

Listing 4.33: Optimization Level 0: Slice created from the arguments to _strncpy at line 75

1 mov dword ptr [esp+8], 0Ch ; size_t
2 lea eax , [ebp+var_1C]
3 mov [esp+4], eax ; char *
4 mov eax , [ebp+arg_0]
5 mov [esp], eax ; char *
6 call _strncpy

Listing 4.34: Optimization Level 0: Slice created from arg_0 and return value.

1 mov eax , [ebp+arg_0]
2 retn

Listing 4.35: Optimization Level 1: Slice created from return value of _getTickCount@0
and argument of _srand

1 call _GetTickCount@0
2 mov [esp+3Ch+var_3C], eax ; unsigned int
3 call _srand

Listing 4.36: Optimization Level 1: Slice created from return value of _rand at line 26

1 call _rand
2 mov ecx , eax
3 imul edx
4 mov eax , ecx
5 sar eax , 1Fh
6 sub edx , eax
7 lea eax , [edx+edx*2]
8 sub ecx , eax
9 lea eax , [ecx +4]
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Listing 4.37: Optimization Level 1: Slice created from return value of _rand at line 44

1 call _rand
2 mov ecx , eax
3 imul esi
4 sar edx , 3
5 mov eax , ecx
6 sar eax , 1Fh
7 sub edx , eax
8 imul edx , 1Ah
9 sub ecx , edx
10 add ecx , 61h
11 mov [ebx], cl

Listing 4.38: Optimization Level 1: Slice created from arguments to _strncpy

1 mov [esp+3Ch+var_34], 0Ch ; size_t
2 lea eax , [esp+3Ch+var_28]
3 mov [esp+3Ch+var_38], eax ; char *
4 mov eax , [esp+3Ch+arg_0]
5 mov [esp+3Ch+var_3C], eax ; char *
6 call _strncpy

Listing 4.39: Optimization Level 1: Slice created from arg_0 and return value

1 mov eax , [esp+3Ch+arg_0]
2 retn

4.5.3 Step 2: Extracting Semantics

As with the previous use cases, we take each line of the slice and transform its behavior

into Python code using symbolic variables where we do not know actual values. We compare

and analyze each slice from Listings 4.28 to 4.39 in Section 4.5.4.

Translating the imul instruction to Python was cumbersome since the semantics of

the instruction differ depending on the number of operands and the operands are symbolic.

According to [Intel Corporation 2014], the imul instruction, when used with a single operand,

takes the operand and multiplies it with the contents of the eax register placing the result
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in the concatenation of the edx and eax registers. In mathematical terms, for imul esi

this looks like esi*eax = [edx:eax] where : represents concatenation of the two registers.

This was difficult to model explicitly in Python since we are using symbolic variables, but

the Z3 solver’s Python API provides a few functions that allow us to implement the imul

instruction accurately. We were able to zero extend the two factors so that the result product

was actually 64-bits wide. Then we extracted the two 32-bit halves of the product into the

edx and eax registers. Listing 4.40 shows the results of this implementation.

Listing 4.40: Modeling the x86 “imul esi” instruction in Python

1 r = ZeroExt (64,esi) * ZeroExt (64,eax)
2 edx = Extract (63,32,r)
3 eax = Extract (31,0,r)

4.5.4 Step 3: Testing for Equality

Comparing the slices from Listings 4.28 to 4.35, 4.33 to 4.38,and 4.34 to 4.39, we can

see that these slices are identical, if certain variables are equal between the two optimization

levels, assuming data exists at the same location in both functions.

Comparing Listings 4.28 to 4.35, if esp from 4.28 equals esp+3Ch+var_3C in 4.35, the

slices are identical. The label var_3C is inserted by IDA and represents a constant value,

-3Ch. 3Ch+var_3C means 3Ch-3Ch = 0 so these slices are equal since esp is the same as

esp+0

Considering 4.33 and 4.38, if the equations in table 4.9 are valid, with values on the left

from 4.33 and values on the right from 4.38, these slices are also equal.

We have already discussed that the var_ labels followed by a hex value represents

subtraction by that hex value, so we can the the first, third, and last equations in Table 4.9

are equal when we replace the var_ with the negative hex value and solve.
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Table 4.9: Equations that make Listings 4.33 and 4.38 equal.

esp+8 == esp+3Ch+var_34
ebp+var_1C == esp+3Ch+var_28

esp+4 == esp+3Ch+var_38
ebp+arg_0 == esp+3Ch+arg_0

esp == esp+3Ch+var_3C

We can confirm the second and fourth equations are equal by looking at the instruc-

tions that modify esp at the start of the rndnick() function from the binary compiled at

optimization level 0 shown in Listing 4.41. At the start of the rndnick() function, the ebp

and esp registers point to the base of the stack. Once data is pushed on the stack the esp

register will be decremented so that it points to the next free memory address on the stack.

The push instruction in Listing 4.41 subtracts 4 bytes from esp and the sub exp, 38h in-

struction subtracts 38h bytes from esp. The difference between ebp and esp is now -3Ch

bytes. This means ebp in the rndnick() function from the unoptimized binary is equal to

esp+3Ch in rndnick() from the level 1 optimized binary. This proves the second and fourth

equations in Table 4.9 are equal. By solving each of the equations in Table 4.9 we prove the

slices in Listings 4.33 and 4.38 are equal, meaning both rndnick() functions pass the same

arguments to _strncpy.

The slices in Listings 4.34 and 4.39 are equal if epb in 4.34 equals esp+3Ch in 4.39. We

just proved this from the previous analysis so we know these slices are also equal.

Listing 4.41: Calculating esp in unoptimized rndnick()

1 push ebp
2 mov ebp , esp
3 sub esp , 38h

Next we compare the slices in Listings 4.30 and 4.31 from the unoptimized binary to

the slices in Listings 4.36 and 4.37 from the level 1 optimized binary. These slice represent

the data flow resulting from the call _rand instructions. After translating these slices to

Python, we were able to prove their equality using the same process described in the other
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use cases. Listing 4.42 and 4.43 contain the full Python scripts these slices and Listing 4.44

and 4.45 show the output of these scripts.

Listing 4.42: Python script that compares first _rand call in the unoptimized rndnick() to
optimization level 1 rndnick()

1 from z3 import *
2
3 rand = BitVec(’rand’, 32)
4 unk = BitVec(’unk’, 32)
5 s.add(rand >= 0)
6 ########################################
7 # sdbox05b -O0
8
9 eax = rand # call _rand
10 ecx = eax # mov ecx , eax
11 edx = unk # edx is unknown
12 # assume edx matches unknown input from other function
13 # imul edx
14 r = ZeroExt (64,edx) * ZeroExt (64,eax)
15 edx = Extract (63,32,r)
16 eax = Extract (31,0,r)
17
18 eax = ecx # mov eax , ecx
19 eax = LShR(eax , 31) # sar eax , 1Fh
20 edx = edx - eax # sub edx , eax
21 eax = edx # mov eax , edx
22 eax = eax + eax # add eax , eax
23 eax = eax + edx # add eax , edx
24 ecx = ecx - eax # sub ecx , eax
25 edx = ecx # mov edx , ecx
26 eax = eax + 4 # lea eax , [edx+4]
27 var_10 = eax # mov [ebp+var_10], eax
28 rndnick0 = var_10
29 print "Optimization level 0: "
30 print rndnick0
31 ########################################
32 # sdbox05b -O1
33
34 eax = rand # call _rand
35 ecx = eax # mov ecx , eax
36 edx = unk # edx is unknown
37 # assume edx matches unknown input from other function
38 # imul edx
39 r = ZeroExt (64,edx) * ZeroExt (64,eax)
40 edx = Extract (63,32,r)
41 eax = Extract (31,0,r)
42
43 eax = ecx # mov eax , ecx
44 eax = LShR(eax , 31) # sar eax , 1Fh
45 edx = edx - eax # sub edx , eax
46 eax = edx + edx*2 # lea eax , [edx+edx*2]
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47 ecx = ecx - eax # sub ecx , eax
48 eax = eax + 4 # lea eax , [ecx+4]
49 rndnick1 = eax
50 print "Optimization level 1: "
51 print rndnick1
52
53 prove (rndnick0 == rndnick1)

Listing 4.43: Python script that compares the second _rand call in the unoptimized rndnick()
to optimization level 1 rndnick()

1 from z3 import *
2
3 s = Solver ()
4
5 var_1C = BitVec(’var_1C ’, 32)
6 var_C = BitVec(’var_C’, 32)
7 rand = BitVec(’rand’, 32)
8 mem = Array("mem", BitVecSort (32), BitVecSort (8))
9
10 unk = BitVec("unk" ,32)
11
12 s.add(rand >= 0)
13 ########################################
14 # sdbox05b -O0
15 eax = rand # call rand
16 ecx = eax # mov ecx , eax
17 edx = unk # edx is undefined
18 # assume edx matches unknown input from other function
19 eax = ecx # mov eax , ecx
20 # imul edx
21 r = ZeroExt (64,edx) * ZeroExt (64,eax)
22 edx = Extract (63,32,r)
23 eax = Extract (31,0,r)
24
25 edx = LShR(edx , 3) # sar edx , 3
26 eax = ecx # mov eax , ecx
27 eax = LShR(eax ,31) # sar eax , 1Fh
28 edx = edx - eax # sub edx , eax
29 eax = edx # mov eax , edx
30 eax = eax * 0x1A # imul eax , 1Ah
31 ecx = ecx - eax # sub ecx , eax
32 eax = ecx # mov eax , ecx
33 eax = eax + 0x61 # add eax , 61h
34 ecx = var_1C # lea ecx , [ebp+var_1C]
35 edx = var_C # mov edx , [ebp+var_1C]
36 edx = edx + ecx # add edx , ecx
37 # mov [edx], al
38 mem = Store(mem , edx , Extract(7,0,eax))
39 rndnick0 = Extract(7,0,eax)
40 print "Optimization level 0: "
41 print rndnick0
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42 ########################################
43 # sdbox05b -O1
44 ebx = BitVec(’var_28 ’, 32)
45 mem = Array("mem", BitVecSort (32), BitVecSort (8))
46
47 eax = rand # call _rand
48 ecx = eax # mov ecx , eax
49 # imul esi
50 esi = unk # esi is unknown
51 # assume esi matches unknown input from other function
52 r = ZeroExt (64,esi) * ZeroExt (64,eax)
53 edx = Extract (63,32,r)
54 eax = Extract (31,0,r)
55
56 edx = LShR(edx , 3) # sar edx , 3
57 eax = ecx # sub edx , eax
58 eax = LShR(eax ,31) # sar eax , 1Fh
59 edx = edx - eax # sub ecx , edx
60 edx = edx * 0x1A # imul edx , 1Ah
61 ecx = ecx - edx # sub ecx , edx
62 ecx = ecx + 0x61 # add ecx , 61h
63 # mov [ebx], cl
64 mem = Store(mem ,ebx ,Extract(7,0,ecx))
65
66 rndnick1 = Extract(7,0,ecx)
67 print "Optimization level 1: "
68 print rndnick1
69
70 prove (rndnick0 == rndnick1)

Listing 4.44: Output of Listing 4.42

Optimization level 0:
Extract (63, 32, ZeroExt (64, unk)*ZeroExt (64, rand)) -
LShR(rand , 31) +
Extract (63, 32, ZeroExt (64, unk)*ZeroExt (64, rand)) -
LShR(rand , 31) +
Extract (63, 32, ZeroExt (64, unk)*ZeroExt (64, rand)) -
LShR(rand , 31) +
4
Optimization level 1:
Extract (63, 32, ZeroExt (64, unk)*ZeroExt (64, rand)) -
LShR(rand , 31) +
(Extract (63, 32, ZeroExt (64, unk)*ZeroExt (64, rand)) -
LShR(rand , 31))*

2 +
4
proved
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Listing 4.45: Output of Listing 4.43

Optimization level 0:
Extract(7,

0,
rand -
(LShR(Extract (63,

32,
ZeroExt (64, unk)*ZeroExt (64, rand)),

3) -
LShR(rand , 31))*

26 +
97)

Optimization level 1:
Extract(7,

0,
rand -
(LShR(Extract (63,

32,
ZeroExt (64, unk)*ZeroExt (64, rand)),

3) -
LShR(rand , 31))*

26 +
97)

proved

We have proven equality of all the slices created from the level 1 optimized binary,

but we have two slices, Listing 4.29 and 4.32, remaining from the unoptimized binary that

we could not match. This means the data flow identified by these two slices was either not

captured by the slices we created in the optimized binary or a semantic change exists. For an

automated implementation of our technique, we would alert the user of these non-matched

slices as well as the sources and sinks that do not belong to a matched slice.

We manually analyze these slices to understand the reason they were not matched.

The slice in Listing 4.32 represents writing a zero to the end of the nick[] array. This

same behavior is represented at line 66 of rndnick() from the level 1 optimized binary.

Employing the same approach we used to prove Listing 4.33 and 4.38 are equal, we test that

the calculated addresses this slice and this instruction are equal. This means solving the

equation ebp + ebp +var_C + 1 + var_1C == esp + ebp + 3Ch + var_28 +1. Setting

ebp as constant, the only remaining variable is esp from the optimization level 1 binary. By
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analyzing the instructions at the top of rndnick() that manipulate esp, we determine that

ebp = esp - 3Ch, which plugged into the equation above satisfies the equally statement,

meaning the slice represents the same behavior as the instruction.

The remaining slice, Listing 4.29, contains the list of instructions that setup the call

to _memset discussed in Section 4.5.1. This missing data flow does represent a semantic

difference, but after further analysis we determine that the behavior of these instructions were

actually redundant with the call _strncpy instructions which explains why the compiler

removed this data flow. Ultimately, this change did not represent a significant difference but

is a semantic difference that exists between the two binaries.

4.5.5 Conclusion

This use case illustrates that semantic differencing can be used on real world problems

faced by real world security engineers and reverse engineers. We were able to show how Data

Flow Binary Differencing handles the call instruction and creates slices to capture behavior

surrounding the use of sub-procedures. Although this use case also includes looping, we were

able to prove the compared functions contained the same data flows without having to unroll

the loops since linear slices within the loops were captured by the use of sources and sinks.
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Chapter 5

Research Conclusion and Future Work

Our research goal was to provide another means of testing two functions to deter-

mine if they are similar, a common requirement in reverse engineering binary software. We

compared our research to fundamental, yet very different, approaches used to compare func-

tions, Symbol Name Matching, Signature Hash Matching, and Structural Analysis Matching.

Specifically, our research goal was to be able to prove that two functions were actually similar

after these matching techniques failed to show the function’s similarities. By focusing on

data flow, we were able to use the semantics of the function to test if they perform the same

actions.

5.1 Research Contributions

Our research fills a gap in the currently available techniques for binary differencing.

Table 5.1 compares the three techniques discussed in Chapter 2 with our technique. Symbol

Name Matching is useful for analysis that focuses on the symbol names, but does not have the

capability to detect differences within Functions, Instructions, or Semantics. Signature Hash

Map Matching, Structural Analysis Matching, and Data Flow Binary Differencing can detect

differences present in the Functions, but Structural Analysis Matching fails for functional

changes that do not alter the control flow graph. Only Signature Hash Map Matching and

Data Flow Binary Differencing are able to detect differences within a basic block. Finally,

our technique is the only available approach that allow for comparing semantics using data

flow.
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Table 5.1: Summary of Binary Differencing Techniques

Technique Compares
Symbols Functions Basic Blocks Instructions Semantics

Symbol Name Matching Y N N N N
Signature Hash Map Matching N Y Y Y N
Structural Analysis Matching N Y N N N
Data Flow Binary Differencing N Y Y Y Y1

Using data flow to identify semantically identical behavior is the key contribution for our

research. Our technique does not depend on the structure or the syntax of the instructions,

only the effects of the structure and syntax on the data. We do not consider this to be “the”

answer to binary differencing, yet it can be an additional tool to aid the reverse engineering

of software. When used along side other binary matching technique, Data Flow Binary

Differencing can be applied where other techniques fail, to gain a higher confidence that

two functions contain similarities or differences. We also were able to discover semantic

differences introduced by the compiler due to optimization. Both Use Cases 2 and 3 contained

semantic differences between compiled binaries. While the primary use of Data Flow Binary

Matching is to detect semantic similarities between binaries, we also show that this technique

can detect semantic differences.

5.2 Limitations and Challenges

The largest challenge our research faced was figuring out how to deal with the loops in

Use Case 2 (Fibonacci) and Use Case 3 (sdbot’s rndnick() function). Our solutions for Use

Case 2 were, first unroll the loops and compare each unrolling to each other starting at the

input argument and ending with the return value of the function, and second to calculate

a slice from within the loop and representing unknown values as symbolic variables. Both

methods were able to prove the calculated slices were equal. By unrolling the loop, we were

able to symbolically execute the entire data flow from input to output of the function. A

better solution was to look inside the loops for data flow and compare the semantics of
1Using data flow.
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the data flow inside each loop. This does not give us a complete view of the behavior of

the functions, but is enough to determine that the two functions are similar, achieving our

research goal.

The loop contained in Use Case 3 did not create the same level of challenge as the

loop in Use Case 2. The primary reason for this difference is the loop index in Use Case

2 was derived from the input argument for the function and had to be represented using a

symbolic variable in our analysis. Had we implement the loop in Use Case 2 as it was derived

directly from the semantics of the assembly language and if the SMT solver was able to loop

over these statements, the solver would never finish since the loop terminating condition is

symbolic. The same problem did not occur in Use Case 3 because the semantics within the

loop of Use Case 3 could be contained within a single data flow. The loop index and the

loop terminating condition are not part of the data flow inside the loop statements.

Another challenge we faced and were not able to overcome was comparing the calculation

of the memory array in Use Case 2 between the optimization level 0 and 1 binaries. Our

conclusion is that the two calculations are actually different. The compiler is freely able

to calculate memory locations and addresses as long as the end result follows the intent of

the source code. In Use Case 2, the unoptimized binary uses a slightly different method

to calculate the starting memory address for the local array than the optimized binaries.

Although this is a limitation of the Data Flow Binary Differencing technique, this is still a

semantic difference discovered by our technique.

5.3 Future Work

The next step of our research is to automate the process of creating slices, transforming

slices to an intermediate language, and then testing the slices for equality. The most likely

path for this continuation of our research would be to incorporate Data Flow Binary Differ-

encing into a tool like S2E [Chipounov et al. 2011] and BAP [Brumley et al. 2011], but these

69



tools would need to be modified to add the ability for to analyze multiple binaries at one

time or be able to extract semantics and reuse them in the analysis of a different binary.

We believe that using semantic for reverse engineering is a very important research topic

for the future. Our look at using semantics for binary differencing is just one area where

applying semantics to reverse engineering can be used. Our work could be expanded to look

at creating signatures based on semantics to be able to detect the presence of similar code in

many binaries and allow a reverse engineer to detect code reuse or the theft of proprietary

algorithms.

An area we did not include in this research was inter-procedural slicing. Future research

should include research on how to implement inter-procedural slicing for Data Flow Binary

Differencing so that we could also detect function in-lining. Currently we can only detect

this as a semantic difference, but for a completely in-lined function, we should be able to use

semantics to determine if the in-lining actually creates any differences. In order to do this

we need to be able to begin a slice prior to a call instruction, follow the execution through

the sub-procedure, and, using the return value of the sub-procedure, continue slicing until

our sink is reached.

Beyond expanding the scope of this research, we also identified a few more narrow op-

portunities for further research. As we discuss in Section 5.1, an interesting contribution of

this research was the discovery of semantical differences introduced by the compiler. The

potential exists for compiler optimizations to introduce security vulnerabilities detectable

as semantic differences. This research area could help discover very hard to detect vulner-

abilities that result from optimizations, as well as classifying “safe” and “unsafe” compiler

optimization and under what circumstances certain optimization could introduce vulnera-

bilities.

We could also further investigate semantic differences, such as the array address calcula-

tion in Use Case 2, that do not affect the program state. Being able to identify these types of

differences could allow for a more precise implementation of Data Flow Binary Differencing
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that is able to ignore these slight differences or at least report their existence to the reverse

engineer. Knows that a semantic difference exists but that it doesn’t not affect the program

state, such as placing a data structure at a byte higher address than a non-optimized im-

plementation, allows the reverse engineer to focus on other important differences or at least

judge the impact of this semantic change in the context of the rest of the program state.

Beyond Data Flow Binary Differencing, we also identified a few areas related to symbolic

execution that warrant further research. Currently, an SMT solver designed for reverse

engineering does not exist. There are many assembly language constructs that are difficult

to translate into the solver specific language such as loops and jumps. Having a more natural

means of expressing these constructs in a language an SMT solver can reason about would

be a good addition to the currently available tools for program analysis using symbolic

execution.
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Appendix A

Source Code

Listing A.1: Hello World source code

1 #include <stdio.h>
2
3 int getNext(int num);
4
5 int main (){
6 int i=0;
7
8 while (i < 3){
9 i = getNext(i);
10 printf("%s", "Hello World !\n");
11 }
12 return 0;
13 }
14
15 int getNext(int num){
16 return num++;
17 }

Listing A.2: Source code for fib.c

1 #include <stdio.h>
2
3 int fib(int n)
4 {
5 /* Declare an array to store fibonacci numbers. */
6 int f[n+1];
7 int i;
8
9 /* 0th and 1st number of the series are 0 and 1*/
10 f[0] = 0;
11 f[1] = 1;
12
13 for (i = 2; i <= n; i++)
14 {
15 /* Add the previous 2 numbers in the series
16 and store it */
17 f[i] = f[i-1] + f[i-2];
18 }
19
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20 return f[n];
21 }
22
23 int main ()
24 {
25 int n = 12;
26 printf("%d", fib(n));
27 return 0;
28 }
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Appendix B
Assembly Language

Listing B.1: Assembly of fib.c compiled with -O0

1 ; =========== S U B R O U T I N E =============
2 ; Attributes: bp-based frame
3 public fib
4 fib proc near
5 var_1C = dword ptr -1Ch
6 var_14 = dword ptr -14h
7 var_10 = dword ptr -10h
8 var_C = dword ptr -0Ch
9 var_4 = dword ptr -4
10 arg_0 = dword ptr 8
11 push ebp
12 mov ebp , esp
13 push ebx
14 sub esp , 24h
15 mov eax , esp
16 mov ecx , eax
17 mov eax , [ebp+arg_0]
18 add eax , 1
19 lea edx , [eax -1]
20 mov [ebp+var_10], edx
21 shl eax , 2
22 lea edx , [eax +3]
23 mov eax , 10h
24 sub eax , 1
25 add eax , edx
26 mov [ebp+var_1C], 10h
27 mov edx , 0
28 div [ebp+var_1C]
29 imul eax , 10h
30 sub esp , eax
31 mov eax , esp
32 add eax , 3
33 shr eax , 2
34 shl eax , 2
35 mov [ebp+var_14], eax
36 mov eax , [ebp+var_14]
37 mov dword ptr [eax], 0
38 mov eax , [ebp+var_14]
39 mov dword ptr [eax+4], 1
40 mov [ebp+var_C], 2
41 jmp short loc_80484A9
42 ; ----------------------------------------------
43 loc_8048481:
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44 mov eax , [ebp+var_C]
45 lea edx , [eax -1]
46 mov eax , [ebp+var_14]
47 mov edx , [eax+edx*4]
48 mov eax , [ebp+var_C]
49 lea ebx , [eax -2]
50 mov eax , [ebp+var_14]
51 mov eax , [eax+ebx*4]
52 lea ebx , [edx+eax]
53 mov eax , [ebp+var_14]
54 mov edx , [ebp+var_C]
55 mov [eax+edx*4], ebx
56 add [ebp+var_C], 1
57 loc_80484A9:
58 mov eax , [ebp+var_C]
59 cmp eax , [ebp+arg_0]
60 jle short loc_8048481
61 mov eax , [ebp+var_14]
62 mov edx , [ebp+arg_0]
63 mov eax , [eax+edx*4]
64 mov esp , ecx
65 mov ebx , [ebp+var_4]
66 leave
67 retn
68 fib endp

Listing B.2: Assembly of fib.c compiled with -O1

1 ; =========== S U B R O U T I N E ===============
2 ; Attributes: bp-based frame
3 public fib
4 fib proc near
5 arg_0 = dword ptr 8
6 push ebp
7 mov ebp , esp
8 push esi
9 push ebx
10 mov ebx , [ebp+arg_0]
11 lea eax , ds:16h[ebx*4]
12 and eax , 0FFFFFFF0h
13 sub esp , eax
14 mov eax , esp
15 shr eax , 2
16 lea esi , ds:0[ eax*4]
17 mov dword ptr ds:0[eax*4], 0
18 mov dword ptr ds:4[eax*4], 1
19 cmp ebx , 1
20 jle short loc_8048470
21 mov eax , esi
22 mov edx , 2
23 loc_804845E:
24 mov ecx , [eax +4]
25 add ecx , [eax]
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26 mov [eax+8], ecx
27 add edx , 1
28 add eax , 4
29 cmp ebx , edx
30 jge short loc_804845E
31 loc_8048470:
32 mov eax , [esi+ebx*4]
33 lea esp , [ebp -8]
34 pop ebx
35 pop esi
36 pop ebp
37 retn
38 fib endp

Listing B.3: Assembly of fib.c compiled with -O2

1 ; ============ S U B R O U T I N E ============
2 ; Attributes: bp-based frame
3 public fib
4 fib proc near
5 arg_0 = dword ptr 8
6 push ebp
7 mov ebp , esp
8 push edi
9 push esi
10 push ebx
11 sub esp , 0Ch
12 mov esi , [ebp+arg_0]
13 add esi , 1
14 lea eax , ds:12h[esi*4]
15 and eax , 0FFFFFFF0h
16 sub esp , eax
17 mov eax , esp
18 shr eax , 2
19 cmp [ebp+arg_0], 1
20 lea edi , ds:0[ eax*4]
21 mov dword ptr ds:0[eax*4], 0
22 mov dword ptr ds:4[eax*4], 1
23 jle short loc_80484AC
24 mov eax , edi
25 xor ebx , ebx
26 mov ecx , 1
27 mov edx , 2
28 jmp short loc_804849D
29 ; --------------------------------------------------
30 align 8
31 loc_8048498:
32 mov ecx , [eax +4]
33 mov ebx , [eax]
34 loc_804849D:
35 add ecx , ebx
36 add edx , 1
37 mov [eax+8], ecx
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38 add eax , 4
39 cmp esi , edx
40 jnz short loc_8048498
41 loc_80484AC:
42 mov edx , [ebp+arg_0]
43 mov eax , [edi+edx*4]
44 lea esp , [ebp -0Ch]
45 pop ebx
46 pop esi
47 pop edi
48 pop ebp
49 retn
50 fib endp
51 ; ---------------------------------------------------

Listing B.4: Assembly of sdbot05b.cpp compiled with -O0

1 ; =============== S U B R O U T I N E ==================
2 ; Attributes: bp-based frame
3 ; _DWORD __cdecl rndnick(char *)
4 public __Z7rndnickPc
5 __Z7rndnickPc proc near
6
7 var_1C = byte ptr -1Ch
8 var_10 = dword ptr -10h
9 var_C = dword ptr -0Ch
10 arg_0 = dword ptr 8
11 push ebp
12 mov ebp , esp
13 sub esp , 38h
14 call _GetTickCount@0 ; GetTickCount ()
15 mov [esp], eax ; unsigned int
16 call _srand
17 mov dword ptr [esp+8], 0Ch ; size_t
18 mov dword ptr [esp+4], 0 ; int
19 lea eax , [ebp+var_1C]
20 mov [esp], eax ; void *
21 call _memset
22 call _rand
23 mov ecx , eax
24 mov edx , 55555556h
25 mov eax , ecx
26 imul edx
27 mov eax , ecx
28 sar eax , 1Fh
29 sub edx , eax
30 mov eax , edx
31 add eax , eax
32 add eax , edx
33 sub ecx , eax
34 mov edx , ecx
35 lea eax , [edx +4]
36 mov [ebp+var_10], eax
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37 mov [ebp+var_C], 0
38 jmp short loc_40286E
39 ; ---------------------------------------------------------
40 loc_40283A:
41 call _rand
42 mov ecx , eax
43 mov edx , 4EC4EC4Fh
44 mov eax , ecx
45 imul edx
46 sar edx , 3
47 mov eax , ecx
48 sar eax , 1Fh
49 sub edx , eax
50 mov eax , edx
51 imul eax , 1Ah
52 sub ecx , eax
53 mov eax , ecx
54 add eax , 61h
55 lea ecx , [ebp+var_1C]
56 mov edx , [ebp+var_C]
57 add edx , ecx
58 mov [edx], al
59 add [ebp+var_C], 1
60 loc_40286E:
61 mov eax , [ebp+var_C]
62 cmp eax , [ebp+var_10]
63 jl short loc_40283A
64 mov eax , [ebp+var_C]
65 add eax , 1
66 mov [ebp+eax+var_1C], 0
67 mov dword ptr [esp+8], 0Ch ; size_t
68 lea eax , [ebp+var_1C]
69 mov [esp+4], eax ; char *
70 mov eax , [ebp+arg_0]
71 mov [esp], eax ; char *
72 call _strncpy
73 mov eax , [ebp+arg_0]
74 jmp short locret_4028A8
75 ; ------------------------------------------------------
76 dd 0E8240489h
77 dd 7C58h
78 ; ------------------------------------------------------
79 locret_4028A8:
80 leave
81 retn
82 __Z7rndnickPc endp

Listing B.5: Assembly of sdbot05b.cpp compiled with -O1

1 ; =============== S U B R O U T I N E ===================
2 ; _DWORD __cdecl rndnick(char *)
3 public __Z7rndnickPc
4 __Z7rndnickPc proc near ;
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5
6 var_3C = dword ptr -3Ch
7 var_38 = dword ptr -38h
8 var_34 = dword ptr -34h
9 var_28 = byte ptr -28h
10 var_24 = dword ptr -24h
11 var_20 = dword ptr -20h
12 arg_0 = dword ptr 4
13 push ebp
14 push edi
15 push esi
16 push ebx
17 sub esp , 2Ch
18 call _GetTickCount@0 ; GetTickCount ()
19 mov [esp+3Ch+var_3C], eax ; unsigned int
20 call _srand
21 mov dword ptr [esp+3Ch+var_28], 0
22 mov [esp+3Ch+var_24], 0
23 mov [esp+3Ch+var_20], 0
24 call _rand
25 mov ecx , eax
26 mov edx , 55555556h
27 imul edx
28 mov eax , ecx
29 sar eax , 1Fh
30 sub edx , eax
31 lea eax , [edx+edx*2]
32 sub ecx , eax
33 lea eax , [ecx +4]
34 test eax , eax
35 jle short loc_401D50
36 lea ebx , [esp+3Ch+var_28]
37 mov ebp , ecx
38 lea edi , [esp+ecx+3Ch+var_24]
39 mov esi , 4EC4EC4Fh
40 loc_401D27:
41 call _rand
42 mov ecx , eax
43 imul esi
44 sar edx , 3
45 mov eax , ecx
46 sar eax , 1Fh
47 sub edx , eax
48 imul edx , 1Ah
49 sub ecx , edx
50 add ecx , 61h
51 mov [ebx], cl
52 add ebx , 1
53 cmp ebx , edi
54 jnz short loc_401D27
55 add ebp , 4
56 jmp short loc_401D55
57 ; -------------------------------------------------
58 loc_401D50:
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59 mov ebp , 0
60 loc_401D55:
61 mov [esp+ebp+3Ch+var_28 +1], 0
62 mov [esp+3Ch+var_34], 0Ch ; size_t
63 lea eax , [esp+3Ch+var_28]
64 mov [esp+3Ch+var_38], eax ; char *
65 mov eax , [esp+3Ch+arg_0]
66 mov [esp+3Ch+var_3C], eax ; char *
67 call _strncpy
68 mov eax , [esp+3Ch+arg_0]
69 add esp , 2Ch
70 pop ebx
71 pop esi
72 pop edi
73 pop ebp
74 retn
75 __Z7rndnickPc endp
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Appendix C
Python scripts for unrolling the Fibonacci loop

Listing C.1: Python script that compares fib() -O1 and -O2 by unrolling 0 times

1 from z3 import *
2
3 s = Solver ()
4
5
6 ############################################################
7 #fib.c compiled using -m32 -O1
8 #declare variables
9 mem = Array("mem", BitVecSort (32), BitVecSort (32))
10 arg_0 = BitVec("arg_0" ,32)
11 esp = BitVec("esp" ,32)
12
13 #assume arg_0 >= 0 and arg_0 <= 1
14 s.add(arg_0 >= 0)
15 s.add(arg_0 <= 1)
16
17 ebx = arg_0 # mov ebx , [ebp+arg_0]
18 eax = (ebx * 4) + 0x16 # lea eax , ds: 16h[ebx *4]
19 eax = eax & 0xFFFFFFF0 # and eax , 0FFFFFFF0h
20 esp = esp - eax # sub esp , eax
21 eax = esp # mov eax , esp
22 eax = eax >> 2 # shr eax , 2
23 esi = eax * 4 # lea esi , ds:0[eax *4]
24 mem = Store(mem , (eax *4)+0, 0) # mov dword ptr ds:0[ eax *4]
25 mem = Store(mem , (eax *4)+4, 1) # mov dword ptr ds:0[ eax *4]
26 # cmp ebx , 1
27 # jle short loc_804870
28 # assum ebx <= 1
29 #--------------
30 eax = mem[esi+ebx*4] # mov eax , [esi+ebx *4]
31
32 fib1 = eax
33 ############################################################
34 #fib.c compiled using -m32 -O2
35 #declare variables
36 mem = Array("mem", BitVecSort (32), BitVecSort (32))
37 arg_0 = BitVec("arg_0" ,32)
38 esp = BitVec("esp" ,32)
39
40 esi = arg_0 # mov esi , [ebp+arg_0]
41 esi = esi + 1 # add esi , 1
42 eax = (esi * 4) + 0x12 # lea eax , ds:12h[esi *4]
43 eax = eax & 0xFFFFFFF0 # and eax , 0FFFFFFF0h
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44 esp = esp - eax # sub esp , eax
45 eax = esp # mov eax , esp
46 eax = eax >> 2 # shr eax , 2
47 # cmp [ebx+arg_0], 1
48 edi = eax * 4 + 0 # lea edi , ds: 0[eax *4]
49 mem = Store(mem , (eax *4)+0, 0) # mov dword ptr ds:0[ eax*4], 0
50 mem = Store(mem , (eax *4)+4, 1) # mov dword ptr ds:0[ eax*4], 1
51 # jle short loc_80484AC
52 # assume arg_0 <= 1
53 #--------------
54 edx = arg_0 # mov edx , [epb+arg_o]
55 eax = mem[edi+edx*4] # mov eax , [edi+edx *4]
56
57 fib2 = eax
58
59 ############################################################
60 #Test for equality
61 prove (fib1 == fib2)

Listing C.2: Python script that compares fib() -O1 and -O2 by unrolling 1 time

1 from z3 import *
2
3 s = Solver ()
4
5
6 ############################################################
7 #fib.c compiled using -m32 -O1
8 #declare variables
9 mem = Array("mem", BitVecSort (32), BitVecSort (32))
10 arg_0 = BitVec("arg_0" ,32)
11 esp = BitVec("esp" ,32)
12
13 #assume arg_0 > 1 and arg_0 <= 2
14 s.add(arg_0 == 2)
15
16 ebx = arg_0 # mov ebx , [ebp+arg_0]
17 eax = (ebx * 4) + 0x16 # lea eax , ds: 16h[ebx *4]
18 eax = eax & 0xFFFFFFF0 # and eax , 0FFFFFFF0h
19 esp = esp - eax # sub esp , eax
20 eax = esp # mov eax , esp
21 eax = eax >> 2 # shr eax , 2
22 esi = eax * 4 # lea esi , ds:0[eax *4]
23 mem = Store(mem , (eax *4)+0, 0) # mov dword ptr ds:0[ eax *4]
24 mem = Store(mem , (eax *4)+4, 1) # mov dword ptr ds:0[ eax *4]
25 # cmp ebx , 1
26 # jle short loc_804870
27 # assum ebx <= 1
28 #--------------
29 eax = esi # mov eax , esi
30 edx = 2 # mov edx , 2
31 #--------------
32 ecx = mem[eax+4] # mov ecx , [eax+4]
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33 ecx = ecx + mem[eax] # add ecx , [eax]
34 mem = Store(mem ,eax+8,ecx) # mov [eax+8], ecx
35 edx = edx + 1 # add edx , 1
36 eax = eax + 4 # add eax , 4
37 # cmp ebx , edx
38 # jle short loc_804870
39 # assume ebx < edx (ebx == 2)
40 #--------------
41 eax = mem[esi+ebx*4] # mov eax , [esi+ebx *4]
42
43 fib1 = eax
44 ############################################################
45 #fib.c compiled using -m32 -O2
46 #declare variables
47 mem = Array("mem", BitVecSort (32), BitVecSort (32))
48 esp = BitVec("esp" ,32)
49
50 esi = arg_0 # mov esi , [ebp+arg_0]
51 esi = esi + 1 # add esi , 1
52 eax = (esi * 4) + 0x12 # lea eax , ds:12h[esi *4]
53 eax = eax & 0xFFFFFFF0 # and eax , 0FFFFFFF0h
54 esp = esp - eax # sub esp , eax
55 eax = esp # mov eax , esp
56 eax = eax >> 2 # shr eax , 2
57 # cmp [ebx+arg_0], 1
58 edi = eax * 4 + 0 # lea edi , ds: 0[eax *4]
59 mem = Store(mem , (eax *4)+0, 0) # mov dword ptr ds:0[ eax*4], 0
60 mem = Store(mem , (eax *4)+4, 1) # mov dword ptr ds:0[ eax*4], 1
61 # jle short loc_80484AC
62 # assume arg_0 <= 1
63 #--------------
64 eax = edi # mov eax , edi
65 ebx = 0 # xor ebx , ebx
66 ecx = 1 # mov ecx , 1
67 edx = 2 # mov edx , 2
68 #--------------
69 ecx = ecx + ebx # add ecx , ebx
70 edx = edx + 1 # add edx , 1
71 mem = Store(mem ,eax+8, ecx) # mov [eax+8], ecx
72 eax = eax + 4 # add eax , 4
73 # cmp esi , edx
74 # assume esi == edx (esi == 2)
75 #--------------
76 edx = arg_0 # mov edx , [epb+arg_o]
77 eax = mem[edi+edx*4] # mov eax , [edi+edx *4]
78
79 fib2 = eax
80
81 ############################################################
82 #Test for equality
83 prove (fib1 == fib2)

Listing C.3: Python script that compares fib() -O1 and -O2 by unrolling 2 times
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1 from z3 import *
2
3 s = Solver ()
4
5
6 ############################################################
7 #fib.c compiled using -m32 -O1
8 #declare variables
9 mem = Array("mem", BitVecSort (32), BitVecSort (32))
10 arg_0 = BitVec("arg_0" ,32)
11 esp = BitVec("esp" ,32)
12
13 s.add(arg_0 == 3)
14
15 ebx = arg_0 # mov ebx , [ebp+arg_0]
16 eax = (ebx * 4) + 0x16 # lea eax , ds: 16h[ebx *4]
17 eax = eax & 0xFFFFFFF0 # and eax , 0FFFFFFF0h
18 esp = esp - eax # sub esp , eax
19 eax = esp # mov eax , esp
20 eax = eax >> 2 # shr eax , 2
21 esi = eax * 4 # lea esi , ds:0[eax *4]
22 mem = Store(mem , (eax *4)+0, 0) # mov dword ptr ds:0[ eax *4]
23 mem = Store(mem , (eax *4)+4, 1) # mov dword ptr ds:0[ eax *4]
24 # cmp ebx , 1
25 # jle short loc_804870
26 # assum ebx <= 1
27 #--------------
28 eax = esi # mov eax , esi
29 edx = 2 # mov edx , 2
30 #--------------
31 ecx = mem[eax+4] # mov ecx , [eax+4]
32 ecx = ecx + mem[eax] # add ecx , [eax]
33 mem = Store(mem ,eax+8,ecx) # mov [eax+8], ecx
34 edx = edx + 1 # add edx , 1
35 eax = eax + 4 # add eax , 4
36 # cmp ebx , edx
37 # jle short loc_804870
38 # assume ebx > edx (ebx == 3)
39 #--------------
40 ecx = mem[eax+4] # mov ecx , [eax+4]
41 ecx = ecx + mem[eax] # add ecx , [eax]
42 mem = Store(mem ,eax+8,ecx) # mov [eax+8], ecx
43 edx = edx + 1 # add edx , 1
44 eax = eax + 4 # add eax , 4
45 # cmp ebx , edx
46 # jle short loc_804870
47 #ebx <= edx (ebx == 3)
48 #--------------
49 eax = mem[esi+ebx*4] # mov eax , [esi+ebx *4]
50
51 fib1 = eax
52 ############################################################
53 #fib.c compiled using -m32 -O2
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54 #declare variables
55 mem = Array("mem", BitVecSort (32), BitVecSort (32))
56 esp = BitVec("esp" ,32)
57
58 esi = arg_0 # mov esi , [ebp+arg_0]
59 esi = esi + 1 # add esi , 1
60 eax = (esi * 4) + 0x12 # lea eax , ds:12h[esi *4]
61 eax = eax & 0xFFFFFFF0 # and eax , 0FFFFFFF0h
62 esp = esp - eax # sub esp , eax
63 eax = esp # mov eax , esp
64 eax = eax >> 2 # shr eax , 2
65 # cmp [ebx+arg_0], 1
66 edi = eax * 4 + 0 # lea edi , ds: 0[eax *4]
67 mem = Store(mem , (eax *4)+0, 0) # mov dword ptr ds:0[ eax*4], 0
68 mem = Store(mem , (eax *4)+4, 1) # mov dword ptr ds:0[ eax*4], 1
69 # jle short loc_80484AC
70 # assume arg_0 <= 1
71 #--------------
72 eax = edi # mov eax , edi
73 ebx = 0 # xor ebx , ebx
74 ecx = 1 # mov ecx , 1
75 edx = 2 # mov edx , 2
76 #--------------
77 ecx = ecx + ebx # add ecx , ebx
78 edx = edx + 1 # add edx , 1
79 mem = Store(mem ,eax+8, ecx) # mov [eax+8], ecx
80 eax = eax + 4 # add eax , 4
81 # cmp esi , edx
82 # assume esi != edx (esi == 3)
83 #--------------
84 ecx = mem[eax+4] # mov ecx , [eax+4]
85 ebx = mem[eax] # mov ebx , [eax]
86 #--------------
87 ecx = ecx + ebx # add ecx , ebx
88 edx = edx + 1 # add edx , 1
89 mem = Store(mem ,eax+8, ecx) # mov [eax+8], ecx
90 eax = eax + 4 # add eax , 4
91 # cmp esi , edx
92 # assume esi == edx (esi == 3)
93 #--------------
94 edx = arg_0 # mov edx , [epb+arg_o]
95 eax = mem[edi+edx*4] # mov eax , [edi+edx *4]
96
97 fib2 = eax
98
99 ############################################################
100 #Test for equality
101 prove (fib1 == fib2)

Listing C.4: Python script that compares fib() -O1 and -O2 by unrolling 3 times

1 from z3 import *
2
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3 s = Solver ()
4
5
6 ############################################################
7 #fib.c compiled using -m32 -O1
8 #declare variables
9 mem = Array("mem", BitVecSort (32), BitVecSort (32))
10 arg_0 = BitVec("arg_0" ,32)
11 esp = BitVec("esp" ,32)
12
13 s.add(arg_0 == 4)
14
15 ebx = arg_0 # mov ebx , [ebp+arg_0]
16 eax = (ebx * 4) + 0x16 # lea eax , ds: 16h[ebx *4]
17 eax = eax & 0xFFFFFFF0 # and eax , 0FFFFFFF0h
18 esp = esp - eax # sub esp , eax
19 eax = esp # mov eax , esp
20 eax = eax >> 2 # shr eax , 2
21 esi = eax * 4 # lea esi , ds:0[eax *4]
22 mem = Store(mem , (eax *4)+0, 0) # mov dword ptr ds:0[ eax *4]
23 mem = Store(mem , (eax *4)+4, 1) # mov dword ptr ds:0[ eax *4]
24 # cmp ebx , 1
25 # jle short loc_804870
26 # assum ebx <= 1
27 #--------------
28 eax = esi # mov eax , esi
29 edx = 2 # mov edx , 2
30 #--------------
31 ecx = mem[eax+4] # mov ecx , [eax+4]
32 ecx = ecx + mem[eax] # add ecx , [eax]
33 mem = Store(mem ,eax+8,ecx) # mov [eax+8], ecx
34 edx = edx + 1 # add edx , 1
35 eax = eax + 4 # add eax , 4
36 # cmp ebx , edx
37 # jle short loc_804870
38 # assume ebx > edx (ebx == 4)
39 #--------------
40 ecx = mem[eax+4] # mov ecx , [eax+4]
41 ecx = ecx + mem[eax] # add ecx , [eax]
42 mem = Store(mem ,eax+8,ecx) # mov [eax+8], ecx
43 edx = edx + 1 # add edx , 1
44 eax = eax + 4 # add eax , 4
45 # cmp ebx , edx
46 # jle short loc_804870
47 # assume ebx > edx (ebx == 4)
48 #--------------
49 ecx = mem[eax+4] # mov ecx , [eax+4]
50 ecx = ecx + mem[eax] # add ecx , [eax]
51 mem = Store(mem ,eax+8,ecx) # mov [eax+8], ecx
52 edx = edx + 1 # add edx , 1
53 eax = eax + 4 # add eax , 4
54 # cmp ebx , edx
55 # jle short loc_804870
56 # assume ebx <= edx (ebx == 3)
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57 #--------------
58 eax = mem[esi+ebx*4] # mov eax , [esi+ebx *4]
59
60 fib1 = eax
61 ############################################################
62 #fib.c compiled using -m32 -O2
63 #declare variables
64 mem = Array("mem", BitVecSort (32), BitVecSort (32))
65 esp = BitVec("esp" ,32)
66
67 esi = arg_0 # mov esi , [ebp+arg_0]
68 esi = esi + 1 # add esi , 1
69 eax = (esi * 4) + 0x12 # lea eax , ds:12h[esi *4]
70 eax = eax & 0xFFFFFFF0 # and eax , 0FFFFFFF0h
71 esp = esp - eax # sub esp , eax
72 eax = esp # mov eax , esp
73 eax = eax >> 2 # shr eax , 2
74 # cmp [ebx+arg_0], 1
75 edi = eax * 4 + 0 # lea edi , ds: 0[eax *4]
76 mem = Store(mem , (eax *4)+0, 0) # mov dword ptr ds:0[ eax*4], 0
77 mem = Store(mem , (eax *4)+4, 1) # mov dword ptr ds:0[ eax*4], 1
78 # jle short loc_80484AC
79 # assume arg_0 <= 1
80 #--------------
81 eax = edi # mov eax , edi
82 ebx = 0 # xor ebx , ebx
83 ecx = 1 # mov ecx , 1
84 edx = 2 # mov edx , 2
85 #--------------
86 ecx = ecx + ebx # add ecx , ebx
87 edx = edx + 1 # add edx , 1
88 mem = Store(mem ,eax+8, ecx) # mov [eax+8], ecx
89 eax = eax + 4 # add eax , 4
90 # cmp esi , edx
91 # assume esi != edx (esi == 4)
92 #--------------
93 ecx = mem[eax+4] # mov ecx , [eax+4]
94 ebx = mem[eax] # mov ebx , [eax]
95 #--------------
96 ecx = ecx + ebx # add ecx , ebx
97 edx = edx + 1 # add edx , 1
98 mem = Store(mem ,eax+8, ecx) # mov [eax+8], ecx
99 eax = eax + 4 # add eax , 4
100 # cmp esi , edx
101 # assume esi != edx (esi == 4)
102 #--------------
103 ecx = mem[eax+4] # mov ecx , [eax+4]
104 ebx = mem[eax] # mov ebx , [eax]
105 #--------------
106 ecx = ecx + ebx # add ecx , ebx
107 edx = edx + 1 # add edx , 1
108 mem = Store(mem ,eax+8, ecx) # mov [eax+8], ecx
109 eax = eax + 4 # add eax , 4
110 # cmp esi , edx
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111 # assume esi == edx (esi == 4)
112 #--------------
113 edx = arg_0 # mov edx , [epb+arg_o]
114 eax = mem[edi+edx*4] # mov eax , [edi+edx *4]
115
116 fib2 = eax
117
118 ############################################################
119 #Test for equality
120 prove (fib1 == fib2)
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