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158 Typed Pages

Directed by Michael E. Baginksi

In this work, optimization methods are presented for the analysis of inverse and

design problems in electromagnetics. The current and future demands placed on design

engineers necessitate the hybridization of forward solvers (e.g., computational and empir-

ical methods) with novel optimization algorithms to yield engineering development and

analysis tools which are largely autonomous and not restricted to the familiar principles

employed in traditional design work. Two specific problems are addressed to demonstrate

the capabilities of the proposed methods.

First, several optimization algorithms (i.e., Sequential Quadratic Programming, the

Genetic Algorithm, and Particle Swarm Optimization) are presented for the estimation

of complex constitutive parameters of multilayered materials. Using X band waveguide

S-parameter measurements, the complex constitutive parameters of each individual layer

are extracted. The results are compared to measurements as well as those of single layer

techniques which estimate the constitutive parameters of individual materials.
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The second problem addressed is the automated design of waveguide filters. Initially,

a study is conducted into whether dielectric slabs randomly doped with conducting in-

clusions such as short, thin wires or thin patches could yield useful frequency dependent

reflection and transmission behaviors when placed inside a waveguide. Results obtained

by placing conducting patches on the slab’s surface were found promising. Therefore, op-

timization techniques were then employed to find the appropriate arrangement of patches

of the dielectric’s surface so that the resulting transmission response closely matched the

response specified by the user. Results of this study were verified by fabrication and

measurement for X band filters and, in all cases, found to be in excellent agreement.
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Chapter 1

Introduction

Over the last several years, both consumer and military demands for better per-

forming yet smaller and cheaper electromagnetic (EM) devices have overcome design

engineers’ ability to rely solely on traditional design techniques [1]. Specifically, per-

formance requirements for EM devices have created the need for new techniques and

technologies to be developed in order to meet the ever-increasing demand. Prior to the

early 1980’s, much of the design work was conducted via trial and error using empirical

or semi-empirical formulations. However, with the significant gains in computational

power and simultaneous development of accurate numerical electromagnetic solution

techniques in the 1980’s, designers could now reliably simulate many designs before ever

moving to the fabrication and measurement stage. Although this development was a

significant milestone in the evolution of EM design, the actual design process still relied

heavily on trial and error since engineers continued to use their intuition for design mod-

ifications. Of late, computational analysis tools and optimization methods have become

hybridized which has allowed designers to realize novel devices that would otherwise

have been impossible to conceive through traditional methods. This union of analysis

and optimization tools has also opened possibilities for reverse engineering processes

(inverse problems) such as characterization of complex manufactured devices and novel

multilayered materials to be used in Monolithic Microwave Integrated Circuits (MMIC).
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1.1 Electromagnetic Optimization

Historically, optimization has been applied to electromagnetics in two ways: viz.

inverse problems [2] and design problems [3]. An inverse problem is the task of using

limited information such as scattered fields or S-parameters to obtain the physical char-

acteristics of the scatterer. The parameters being solved for often include geometric

shape and dimensions, constitutive parameters (CP), position, and orientation. Opti-

mization algorithms typically require some initial estimate for the unknown parameters

and iterate until values are found which yield within the tolerance limits the same quan-

tity as that which was measured. The solution of an inverse problem is typically quite

difficult since limited information is available and, therefore, not sufficient for satisfying

uniqueness. Hence, there is the possibility that many solutions may return nearly iden-

tical information. To help curtail this problem, constraints are usually placed on the

physical characteristics of the object thereby reducing the chance of encountering mul-

tiple solutions. As an example, consider trying to determine the physical characteristics

of a scatterer using only a small sample of the radiated field. Without any assumptions

made, this problem lacks sufficient information to yield a meaningful solution. However,

if the scatterer shape is assumed known, then the CP may be calculated to a given degree

of accuracy.

Design optimization problems closely resemble their inverse counterparts with the

exception that the information provided to the optimizer is different. Inverse solvers

typically utilize measurements, whereas design optimizers are fed design goals as specified

by the design engineer. For example, a certain bandwidth characteristic may be desired
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for a patch antenna, and an optimization can be performed to determine the shape of

the patch that will yield the required results [4, 5].

1.2 Problem Statement

This research focuses on the development of novel optimization tools to automate

the design and characterization process for a wide range of EM engineering problems.

Toward this end, a series of specific problems are addressed even though the methods

presented may easily be adapted to a variety of similar tasks. Initially, the inverse prob-

lem technique is presented in which the complex permittivity of a single layer structure or

each individual layer of a multilayer structure are extracted using S-parameter data from

a loaded waveguide. Using this method, the complex permittivity of each layer in the

structure is extracted using a variety of optimization techniques. One of the fundamental

challenges associated with optimization techniques is the proper balance of convergence

rate and robustness (i.e., their ability to adequately search the entire solution space).

Therefore, the initial focus is placed on methods that improve the convergence character-

istics of the algorithms implemented here without sacrificing robustness. In addition to

considering different optimization techniques, a thorough investigation is conducted into

the effects of different error functions on the convergence characteristics and accuracy of

the optimization algorithms. By varying the mathematical form of the error functions

as well as the quality and quantity of S-parameter information included, conclusions

may be drawn about the maximum number of layers for which a specific error function

is effective. Some consideration is also given to the calibration effort required to make

3



accurate S-parameter phase and magnitude measurements since the availability and ac-

curacy of this information will have a dramatic effect on each algorithm’s performance.

After this analysis, the method is further modified to include the extraction of complex

permeability. Additional discussion of the optimization algorithms is given as this higher

dimensionality problem requires a more robust procedure.

The second primary area of focus pertains to the use of the aforementioned op-

timization algorithms to automate the design of EM devices. Specifically, this work

addresses the feasibility of obtaining (optimizing) reflection and transmission properties

using dielectric slabs as waveguide filters. The filters are analyzed using a hybrid Mode-

Matching/Finite Element Method (MM/FEM) which acts as the forward solver within

the context of the optimization algorithm and has been shown to be an efficient algo-

rithm for loaded waveguide problems [6, 7]. Two analyses are considered with regard to

the geometry of the filters. In the first, an attempt is made to characterize the feasibil-

ity of obtaining useful filter responses by embedding randomly oriented thin conducting

wires and other conducting objects (e.g., thin patches and small volumetric inclusions)

within the dielectric slab. Such a material would be quite novel since it would possess

designable filter characteristics and yet maintain similar visual and structural proper-

ties. For the practical applicability of this type of filter, the responses of the randomly

doped slabs would be required to maintain a certain level of consistency for given doping

levels (densities) and inclusion sizes. Consequently, a thorough analysis is conducted

into whether or not this method is both computationally and physically practical. In

the second part, desired waveguide filter responses are found by optimizing the shape

4



of conducting patch on the surface of the dielectric slab. This method has practical

advantages since fabrication of such a filter is relatively simple.

1.3 Overview and Historical Perspective

1.3.1 Optimization Techniques

Optimization refers to the solution of a problem that can be cast in the form

f (~x) = 0 where ~x is an n-dimensional vector of parameters, and f is referred to as

the error, objective, or fitness function. Depending on the problem to be solved, each of

the parameters xn may be continuous or discrete and may be bounded or unbounded.

The problem may also be subject to equality constraints of the form ci (~x) = 0 and/or

inequality constraints of the form gj (~x) ≥ 0. Within the field of optimization, there are

generally two classes of methods: local and global (the classes are also referred to as

deterministic and stochastic, respectively).

Local Optimization Techniques

Local optimization methods utilize information about an error function in the vicin-

ity of the current iteration’s parameter values. Chronologically, local methods were the

first to be developed and utilized for engineering development since they can usually

locate the optimal solution with a minimal number of error function evaluations depend-

ing on the initial guess and complexity of the algorithm. Generally, these techniques are

subdivided into two categories: direct search methods and gradient-based methods [8].

Direct search methods were first developed in the 1950’s [9] and received much

attention due to the fact that they do not explicitly utilize information about the gradient
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of the error function. At that time, this attribute was particularly beneficial since the

numerical computation of gradients was difficult due to computational limitations. These

were also the only methods available for optimization of discontinuous search spaces.

However, they were all but abandoned by the optimization community beginning in the

early 1970’s for a number of reasons outlined by Swann including the fact that there

were no mathematical proofs that such methods would ever converge to a minimum [10].

Within the last 10 years, however, direct search methods have regained popularity as

certain proofs are now available guaranteeing convergence [11–14].

Gradient-based optimization, as the name implies, relies on the gradient of the er-

ror function to formulate a search direction from which the function minimum can be

found. The Steepest Descent Methods [15] and others like them, in their simplest forms,

require the search space be continuous in its first derivative. Higher order methods such

as Newton’s Method [15] require that the Hessian (second-order derivative) be available.

Other methods include Quasi-Newton methods, Levenberg-Marquardt (LM) [16], Se-

quential Quadratic Programming (SQP) [15, 17–21], etc. These algorithms often obtain

the minimizing parameters with high accuracy and low computational cost provided that

the gradient and Hessian are easily and accurately calculable. When these methods are

applied to problems where the derivatives are not analytically available and must be cal-

culated by numerical means or where the search space is discontinuous, their accuracy

generally suffers or, in the worst case, may fail altogether. A similar problem occurs

when the search space has many minima such as in the case of Rastrigin’s function, a

6



function often used to benchmark optimization algorithms (see Fig. 1.1) [22]. An ex-

ample error surface for which local methods are particularly well-suited (surfaces having

only one minimum) is shown in Fig. 1.2.
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Figure 1.1: Rastrigrin’s function which has many local minima and a global minimum
located at (0, 0).

Of the gradient-based methods, SQP is currently considered to be one of the most

robust nonlinear programming (NP) methods available for optimization problems [20].

NP refers to the class of optimization problems in which the error functions are non-

linear in their parameters and constraints. Although SQP is considered to be a local

optimization method, it utilizes features which enhance its ability to avoid local min-

ima. By taking a quadratic expansion of the nonlinear error function, the Hessian and

Lagrangian operators can be efficiently approximated and used to create a Quadratic

7



X

Y

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.2: Error surface well-suited to local optimization problems.
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Programming subproblem. The solution of the subproblem results in the selection of

the line search direction. Depending on the accuracy of the initial guess, SQP has been

shown to exhibit second order convergence toward a local minimum. Therefore, when

local methods are needed in the problems presented in this dissertation, SQP is utilized.

For further discussion of SQP, the interested reader is referred to [15,17–19,21].

Global Optimization Techniques

Global optimization refers to the task of finding the absolute best set of parameters,

usually over a very large search space, which will minimize the error function. A large

number of methods have been developed to handle these tasks which include techniques

well-suited for combinatorial problems, discontinuous problems, constrained problems,

etc. Over the years, the methods have been grouped according to their approach to

the optimization. These groups include Branch and Bound Methods [23], Clustering

Methods [24], Evolutionary Algorithms [25], Statistical Methods [26], and miscellaneous

and hybrid techniques [27]. Of late, Evolutionary Algorithms including the Genetic Al-

gorithm (GA) [28], Particle Swarm Optimization (PSO) [29], and Differential Evolution

(DE) [30] have received considerable attention. These methods generally rely on stochas-

tic procedures to prevent the local minimum trapping that may hinder local methods.

In addition, they are particularly well-suited for problems having search spaces which

are discontinuous, constrained, multi-dimensional, noisy, and multi-extremal. Unfor-

tunately, this robustness results in a greater computational expense since many error

function evaluations are typically required to reach a good solution. Also, the methods
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are considered inexact because their convergence usually suffers once a solution is found

very close to the global minimum.

Of GA’s, PSO, and DE, GA’s are chronologically the first to have been devel-

oped [31–33]. GA’s are based on the concepts of evolutionary biology in which a “sur-

vival of the fittest” paradigm is adopted. The GA begins with selection of an initial

population of parameter values and selectively evolves the population toward the global

minimum of the search space. This method has been extensively researched and applied

to many problems found within the EM community since the error functions encoun-

tered here typically possess many of the qualities of difficult NP problems previously

mentioned in addition to the fact that the error functions are computationally expensive

to evaluate [34]. In fact, GA’s have been applied successfully to nearly all areas of elec-

tromagnetics including antenna design [35], phased arrays [36], and radar absorbers [37].

Thorough discussions regarding applications of GA’s to electrical engineering problems

can be found in [34,38,39].

PSO is similar to the GA in that it is a population-based technique which utilizes

information from the population to move toward a globally optimal solution. PSO,

developed by Eberhart and Kennedy in 1995, is based on social theories related to bird

flocking, insect swarms, and fish schools [29]. PSO begins with an initial population of

“particles” each of which has a particular location and velocity within the search space.

Utilizing the information of their “neighbors”, each particle can adjust its flight direction

and speed until all particles arrive at the global minima of the search space. Advanced

algorithms employ many features such as fully connected neighborhoods, particle inertia,

etc. which can accelerate convergence for particular applications [40, 41]. Recently,
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PSO has been applied to several EM problems including antenna design [42] and array

synthesis [43].

DE is also a population-based technique and was developed by Price and Storn to

solve the Chebychev Polynomial fitting problem [30]. It relies on simple vector algebra

operations on the population members to quickly generate new population members

which are closer to the global minimum. This technique has been shown in certain

instances to converge faster than other evolutionary algorithms [44] and is also well-suited

for parallelization. Although DE has yet to receive much attention in EM optimization,

some research has been conducted on antenna arrays [45] and inverse scattering [46].

Of the evolutionary algorithms discussed, the GA and PSO are utilized in this

work with the GA receiving a more extensive consideration. Details of the specific

implementations and modifications of the algorithms are given in later sections.

1.3.2 Constitutive Parameter Extraction

Multilayer substrate materials are currently used for many practical applications

that include Microwave Integrated Circuits (MIC), MMIC [47], radomes, spatial filters

for antenna beam shaping [48], and Frequency Selective Surfaces (FSS) [49].

By choosing the appropriate thicknesses and material parameters for the layers,

it is possible to synthesize composite structures with novel electromagnetic properties

otherwise not found in a single material [50]. Recently, attention has focused on non-

destructive methods of determining the constitutive parameters of each individual layer

of the substrate [51,52].
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There are a large number of methods for determining the permittivity or perme-

ability of a single homogeneous sample or the effective “bulk” properties of a layered

material. These methods include split-cylinder resonators, cavity resonators, TE10 split-

post dielectric and magnetic resonators, whispering-gallery resonators, transmission-line

and waveguide techniques, etc. [53–55]. For measurements of the complex permittivity

and permeability over broad frequency bands (e.g., X or L bands), transmission line

or waveguide techniques are generally preferred even though the achievable accuracy is

reduced due to unavoidable measurement errors [50, 56].

Some recent methods used to accurately estimate the complex permittivity of in-

dividual layers of a multilayered or inhomogeneous structure are given by Sanadiki and

Mostafavi [57], Zwick et al. [52], and Deshpande and Dudley [50]. Sanadiki and Mostafavi

provide a method of solving the inverse scattering problem using a least squares error

approach. This method is only tested against computer generated data and may be

sensitive to errors associated with measurements. Zwick et al., utilize a GA to find the

complex constitutive parameters for a multilayered sample by an evolutionary process.

Their method requires measurements be obtained over a frequency range or as a func-

tion of incidence angle for a given frequency and does not require phase information for

the transmission or reflection coefficients. Deshpande and Dudley’s algorithm employs

SQP and utilizes both magnitude and phase information of the measured S-parameters

which, in turn, requires very accurate system calibration. To the author’s knowledge,

no published work has address the issue of extracting both complex permittivity and

permeability from individual layers of a multilayered structure.
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1.3.3 Waveguide Filter Optimization

In recent years, there has been a steady increase in the demand for fast and effi-

cient passive waveguide filter design tools applicable to E-plane filters [58, 59], H-plane

filters [60], dual-band filters [61], etc. Thus, many researchers have begun exploiting

optimization techniques to alleviate the burden of traditional analytical design meth-

ods [62–67]. Although the majority of earlier work in filter design is focused on the de-

velopment of longitudinal filters (i.e., structures which are oriented longitudinally within

the waveguide) [58, 59, 61–67], of late, some work has been conducted in the design and

optimization of transverse filters (i.e., structures which have their prominent dimension

oriented parallel to the waveguide face) [68–70]. Transverse filters have the advantage of

being lightweight, low profile, and easy to manufacture. Additionally, transverse filters

do not require modification of the supporting waveguide structure as do some longitudi-

nal filters [67].

Lockyer and Vardaxoglou [68] and Seager et al. [69] have investigated transverse

filter performance using two-layer aperture arrays within the waveguide [68,69] and were

able to realize narrow bandpass filters using structures ∼1 mm thick. They have shown

that, for narrowband applications, a transverse filter can be constructed quite easily.

Alternatively, Monorchio et al. [70] developed an optimization technique to design a

wideband transverse filter for square waveguides based on a GA and Method of Moments

(MoM) solver [71]. Their approach optimized a FSS screen which transmitted K and Ka

bands while reflecting X and Ku bands.

Since transverse waveguide filters are basically bounded FSS, a brief history of FSS

optimization is also warranted. This topic has received significant attention due the
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complexity of the methods involved in creating these structures [71–78]. Manara et

al. [71] utilized a GA optimization procedure to refine the geometry of a multiband,

single layer FSS structure which could efficiently transmit L and S bands while reflecting

the Ka band. Parker et al. [73] also employed a GA to reduce the angular dependence

of the reflection band for a FSS. Bozzi et al. [75] and Li et al. [78] applied fast solvers to

the optimization problem thereby making the analysis of realistically complex structures

feasible. Chakravarty and Mittra [74, 76, 77] demonstrated the Micro-GA’s ability to

optimize multilayer spatial filters efficiently when several design parameters were allowed

to vary over realistic ranges. Finally, Ohira et al. [72] utilized the GA to optimize mask

shape for FSS elements using printed circuit technology.

1.4 Thesis Outline

The remainder of this dissertation is organized in the following manner. Chap-

ters 2 & 3 present the formulation, optimization algorithm, and results for the complex

constitutive parameter extraction technique. Chapter 4 presents the numerical technique

and results pertaining to the embedded conductor filters. In Chapter 5, modifications

of the optimization algorithms presented thus far are discussed as well as results for the

waveguide filters generated using surface patches. Finally, Chapter 6 presents conclusions

and suggestions for future work.
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Chapter 2

Complex Permittivity Extraction

2.1 Overview

In this chapter, the performance of several optimization techniques is evaluated

when applied to the multilayer complex permittivity extraction problem. S-parameter

measurements obtained from a loaded waveguide serve as an input to the inversion algo-

rithms. The methods to be considered are Sequential Quadratic Programming (SQP),

Genetic Algorithm (GA), and Particle Swarm Optimization (PSO). Their sensitivity

and performance relative to the choice of error function is also investigated. Simulations

are performed using computer generated S-parameters to quantify the performance of

each algorithm under ideal conditions. In order to determine the robustness of these

methods, the extracted permittivities determined by the algorithms are used to generate

S-parameter data sets for comparison to the measured S-parameters.

S-parameter X band waveguide measurements, provided by NASA Langley Re-

search Center [50], were made using the following dielectric materials: Bakelite, Ceramic,

Garlock-Rubber, and Nano Material. All of the materials are low-loss, non-magnetic,

and were found to have complex permittivities that remained nearly constant over the X

band [50]. They were used to create planar, single layer samples of various thicknesses,

with all samples having X band waveguide cross-sectional dimensions. The multilayer di-

electric structures were fabricated by placing single layer samples adjacent to one another

(see Fig. 2.1). All measurements were obtained using an HP-8510C Vector Network An-

alyzer for frequencies of 8.2 - 12.4 GHz (X band). Additionally, the complex permittivity
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of each single layer sample was determined using the Agilent 85071 Materials Measure-

ment Software [79,80] and compared to the values obtained from the algorithms.

2.2 Theory

Assuming that only the dominate TE10 mode propagates in the loaded waveguide,

as shown in Fig. 2.1, the formulation of the S-parameters can be expressed in terms of

each layer’s thickness (dn) and unknown permittivity (ǫ̂n) using ABCD-parameters as

shown below [81,82]:







An Bn

Cn Dn
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


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where γn and Zn are the propagation constant and wave impedance of the nth layer,

respectively, and can be expressed as

Zn =
jωµ

γn
(2.3)

and

γn =

√

(π/a)2 − ω2µε̂c (2.4)

where a is the longer dimension of the waveguide.
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Figure 2.1: Rectangular waveguide loaded with n-layer sample.
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The ABCD-parameters can be directly converted to S-parameters using the following

equations

S11 = (A + B/Z0 − CZ0 − D) /X

S12 = 2 (AD − CB)/X

S21 = 2/X

S22 = (−A + B/Z0 − CZ0 + D) /X

X = A + B/Z0 + CZ0 + D

(2.5)

where Z0 is the empty waveguide impedance.

2.3 Error Function Selection

The error functions used in the investigation are of the basic form given by

Err =

√

√

√

√

1

N

N
∑

i=1

[

f
(

[S]f,i

)

−f
(

[S]m,i

)]2
(2.6)

where N is the total number of frequency points, [S]f,i are the formulated S-parameters (2.5)

evaluated at frequency point i, and [S]m,i are the measured S-parameters at frequency

point i. Error functions can generally be grouped into two categories: (1) error func-

tions used to minimize differences in both phase and magnitude of the measured and

formulated scattering parameters, and (2) error functions that minimize only magnitude

variations of the measured and formulated scattering parameters. For the purposes of

this study, three error function definitions were used and found to accurately obtain the

permittivity of single and multilayer structures:
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Err3 =

√

√

√

√

1

N

N
∑

i=1

Mi + P1,i + P2,i (2.9)

where

Mi =
(∣

∣

∣
[S]f,i

∣

∣

∣
−
∣

∣

∣
[S]m,i

∣

∣

∣

)2

Pf1,i = 1 − |S11|2f,i − |S21|2f,i

Pf2,i = 1 − |S22|2f,i − |S12|2f,i

Pm1,i = 1 − |S11|2m,i − |S21|2m,i

Pm2,i = 1 − |S22|2m,i − |S12|2m,i

P1,i = (Pf1,i − Pm1,i)
2

P2,i = (Pf2,i − Pm2,i)
2

Err1, given in (2.7), includes both phase and magnitude information. It is a slightly

modified form of Deshpande and Dudley’s error function [50] and is applicable to materi-

als where the permittivity remains approximately constant over the measured frequency

range. The inclusion of measurement information over the entire frequency range tends

to minimize the effects of instrumentation error in the calculations. Err2, given in (2.8),

requires only magnitude information of the scattering parameters and is representative
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of the fitness (error) function used by Zwick et al. [52] and Queffelec and Gelin [54] .

The third error function Err3, given in (2.9), is unique in that it uses only magnitude

information but includes terms accounting for dissipated power. It was initially believed

that the inclusion of the power terms would increase the algorithms’ ability to accurately

determine the imaginary part of the permittivity. It should be noted that Eqns. (2.8)

and (2.9) are calculated in decibels which was found to decrease the time required to

find the global minimum in the solution space [52].

2.4 Optimization Algorithms

2.4.1 Sequential Quadratic Programming

Since publication of a series of expository papers in the 1970’s, SQP has become the

most popular method for solving Nonlinear Programming (NP) problems [83–85]. SQP,

itself, is not a specific NP algorithm but a framework under which many implementations

have evolved. A thorough treatment of the mathematical details of SQP and its sub-

algorithms is beyond the scope of this dissertation, and interested readers are referred

to the foundational papers on SQP [18, 86, 87]. Instead, a brief and general overview

is favored since specific implementations are readily available and deserve individual

treatment [88]. As mentioned in Section 1.3.1, the goal of NP is to solve the problem

f (~x) = 0 (2.10)

subject to the constraints
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ci (~x) = 0

gj (~x) ≥ 0

(2.11)

where ~x is the vector of optimization parameters, ci (~x) are the set of equality constraints

on ~x, and gj (~x) ≥ 0 are the set of inequality constraints on ~x. SQP’s novelty lies in its

ability to solve problems efficiently which are nonlinearly constrained. This is possible

through the quadratic approximation of the Lagrangian function. The Langrangian

function, in its unmodified form, is given by

L = f(~x) + ~uT~c (~x) + ~vT~g (~x) (2.12)

where ~u and ~v are the Lagrangian multipliers. The reasoning behind forming the

quadratic subproblem is that a number of techniques are available for solving error

functions which are quadratic and subject to linear constraints. Therefore, the approx-

imation is formed as a quadratic function around the current iterate’s location, and

the constraints are linearized. Once the quadratic approximation is formed, this can

be solved by a number of Quadratic Programming (QP) methods [15, 89, 90] to form a

line search direction. This eventually leads to the selection of the next evaluation point

which will converge to the minimum of f .

The basic SQP outline is given as follows:

1. Obtain initial parameters (i.e., initial guess).

2. Solve the QP problem at this point to obtain the line search direction.

3. Choose a step length such that the error is reduced sufficiently.
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4. Update the current iterate and Lagrangian multipliers for the next iteration.

5. Check stopping criteria (convergence).

6. Proceed to next iteration.

2.4.2 Genetic Algorithm

The GA, the foundations of which are found in evolutionary biology [25, 31–33], is

based on the concept of evolution. Therefore, much of the terminology used to explain

the algorithm is biological in nature. GA’s, like the other global optimization algo-

rithms used in this work, are somewhat immune to local minimum trapping since they

employ stochastic processes. GA’s find application in a wide variety of fields such as bio-

science [91], neural networks [92], economics [93], and many more [94]. The remainder

of the section outlines the GA implemented in this work.

The GA begins with the creation of a population of parameter values randomly dis-

tributed throughout the solution space (see Fig. 2.2). Each member of the population is

referred to as a “chromosome” and contains one “gene” storing a value for each parame-

ter in the function to be minimized. In traditional GA’s, each gene is encoded as an n-bit

binary string which is used for creation of the next population. Upon creation of the

initial population, the so-called fitness of each chromosome is evaluated by determining

the error function value associated with that chromosome’s list of parameters.

After fitness evaluation, a new population (generation) is created. Construction

of the new population begins by selecting a subset population representing the “best”

chromosomes (i.e., those chromosomes having the lowest error function value). These
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Figure 2.2: Flowchart illustrating the Genetic Algorithm procedure.
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“elite” chromosomes are inserted into the new population ensuring that these solutions

will not be eliminated from the new generation.

The crossover stage is the defining phase of the GA. First, two “parent” chromo-

somes are selected from the current generation using the binary tournament selection

method [38]. In binary tournament selection, two chromosomes are picked at random.

The chromosome with the best fitness is chosen as the first parent. This process is re-

peated for the second parent. Following selection of the parent chromosomes, the GA

generates a random number p ∈ [0, 1]. If p > pcrossover, the crossover rate, the two

parents are copied directly into the new population. Otherwise, a random position in

the parents’ binary string of encoded information is selected (see Fig. 2.3). The first

“child” is formed using the string of information to the left of the crossover point in the

first parent and the information to the right of the crossover point in the second parent.

The second child is formed using the remaining genetic information from each parent.

This process of selection and crossover is repeated until the new population is completed.

Using this concept, chromosomes with poor fitness that possibly possess “good” genetic

information have the opportunity to pass their traits on to future generations.

The next major phase of the GA is the mutation stage. For each child in the

new population (elite children excluded), a random number m ∈ [0, 1] is generated. If

m > pmutation, the mutation rate, no change is made to the chromosome. However, if

m < pmutation, one or two random bits of the chromosome are transposed (i.e., 1 ↔ 0).

This reduces the likelihood of local minima trapping.

The GA will discontinue if a chromosome is found to have a fitness value below 10−5

or if the maximum number of generations has been reached. Depending on the number
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Figure 2.3: Crossover between two parents using binary string encoding.
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of layers being characterized, the maximum number of generations is allowed to vary.

The specific details of this parameter’s selection will be discussed in Section 2.5.

GA Redundancy Removal

At each generation, during the creation of the new population, some chromosomes

may be duplicated. Several novel redundancy removal schemes were developed and their

effect on convergence rate was analyzed. The first scheme developed is referred to as

the Complete Elite Redundancy Removal GA (CERRGA). After a significant number

of generations, the GA converges to a population consisting of identical chromosomes

representing the best obtained solution to the fitness function (with the exception of

the occasional mutation). At this point, a traditional GA exits since simple mutation

alone is a very inefficient way of searching for new genetic information that will more

efficiently minimize the error function. In the CERRGA method, the GA checks for this

redundancy in the population for each new generation. When this situation occurs, one

copy of this redundant chromosome is kept as well as any mutations. The rest of the

population slots are filled with random chromosomes in the same manner in which the

initial population was generated, and the algorithm is restarted at the current iteration.

The next redundancy removal scheme employed was termed Incomplete Elite Re-

dundancy Removal GA (IERRGA). This method is very similar to CERRGA in that

elite chromosome redundancy is eliminated. However, IERRGA allows a factor to be set

that controls how much of the population is filled with elite chromosomes before the re-

dundancies are eliminated. In the results presented shortly, a 90% IERRGA scheme was

used. Therefore, the algorithm monitored the number of elite chromosome redundancies
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present in the population. If that number exceeded 90%, only one copy was kept and

the remaining population slots were filled with random chromosomes. This differs from

CERRGA in that the new random chromosomes have a greater chance of reproducing

with one of the elite copies. Therefore, in theory, there may be a greater number of

“good” chromosomes in the population at any one time than with CERRGA.

The last redundancy removal method monitors the population at each generation

and removes all redundancies. Therefore, only one copy of any chromosome is present

in the population. All emptied population slots are, as always, filled with random chro-

mosomes. This scheme is termed the Total Redundancy Removal GA (TRRGA).

These methods were tested using a computer generated S-parameter data set for one

layer (see Section 2.5). Fig. 2.4 shows the average fitness value of the best chromosome

at each generation from 20 simulations for all of the methods presented as well as the

unaltered GA (i.e., no redundancy removal). From the figure, it is obvious that the

TRRGA method provides significantly faster convergence than the traditional GA and

CERRGA and is better than IERRGA by approximately 80 generations. Therefore, the

results presented in the remaining sections correspond to those obtained by the TRRGA.

2.4.3 Particle Swarm Optimization

PSO was developed by Eberhart and Kennedy [29] as an optimization procedure

based on models of social behaviors such as bird flocking. In many ways, it bears a strong

resemblance to the GA except that there are no genetic operators such as crossover and

mutation. PSO handles the generation of a “new population” in a much different way as

will be explained. Similar to the GA, PSO has received much attention in a variety of
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fields including EM as previously mentioned. For a thorough review of previous research

regarding PSO, the interested reader is referred to Hu [95].

The PSO algorithm utilizes a population of “particles” which are given a position

and velocity within the search space. Each of these particles, depending on the complex-

ity of the algorithm, has a set of neighbors, so-called individuality and sociality factors

which determine how much they are influenced by their neighbors, and an inertia factor

which includes the effects of previous iterations. Each particle usually is also given a

“memory” of the best solution it has encountered which can also be made to affect the

particle’s propagation through the solution space. The following paragraphs detail the

PSO algorithm implemented in this work.

As with most Evolutionary Algorithms, PSO begins by initializing a population of

particles with a random location and velocity (see Fig. 2.6). In this implementation,

individuality and sociality factors and neighbors are also initialized. A common choice

of individuality and sociality factors is 2 [29]. A five-particle neighborhood is established

so that each particle is influenced by the two particles to its left and right (i.e., particle

3 has neighbors 1, 2, 4, and 5 while particle 4 has neighbors 2, 3, 5, and 6) as shown

in Fig. 2.5. The inertia factor is initialized to 1 such that the particle is also influenced

heavily by the previous iteration’s information.

Each particle’s fitness is then tested by evaluating the fitness function (forward

solution). If this fitness is better than the best previous fitness of that particle, the

current location is stored as the best. Also, if any fitness is encountered which is below

a fitness threshold, then the algorithm ends because a sufficient solution has been found.
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After every particle’s fitness has been evaluated, the velocity and, hence, next lo-

cation can be calculated. Below, a pseudocode is presented to explain this calculation.

This process is repeated for each particle.

%Return the neighbor who has had the best fitness

n = GetNeighborWithBestFitnessSoFar()

%Return the best location of that neighbor

n_Best = GetBestLocationOfParticle(n)

%Multiply the sociality factor by a random number [0,1]

Reduced_S = S_Factor*rand1

%Multiply reduced sociality factor by difference between

%neighbor’s best location and particle’s current location

n_Change = Reduced_S*(n_Best - p_Current)

%Multiply individuality factor by a random number [0,1]

Reduced_I = I_Factor*rand2

%Multiply reduced individuality factor by difference between

%particle’s best location and current location

p_Change = Reduced_I*(p_Best - p_Current)

%Get change in location for the particle by summing up all

%change contributions including the inertia factor multiplied

%by the current velocity

Change = inertia*p_Velocity + n_Change + p_Change

%Check to see if the change is greater than what is allowed.

%This helps limit changes that are too small or too large

%so that the particles better cover the search space

p_Velocity = CheckChange(Change, Max_Change, Min_Change)

%Update next location by adding current location to the

%calculated change in location

p_Next = p_Current + p_Velocity

Once this process is complete, the particles’ locations are updated for the next

iteration, and the procedure of fitness evaluation begins again. At each iteration, the

inertia factor is reduced by a uniform amount until it reaches 0.2. By reducing the

inertia at each iteration, the particles are slowly forced to converge. It was found that

this method resulted in a faster convergence rate than simply leaving the factor set to 1.

The PSO algorithm presented here was tested using the same one layer computer

generated data as presented in the previous section. Again, 20 runs were performed
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and the average convergence rate calculated. Fig. 2.4 shows the convergence curve for

the PSO as compared to the GA’s presented. While the PSO returns equally accurate

answers as compared to the GA, it requires many more iterations to do so than the

TRRGA method. Therefore, a complete analysis of the cases considered in the next

sections was not conducted using PSO. For brevity, the cases that were analyzed using

PSO are not presented since their results are the same as what was found using the GA.

2.5 Numerical Results

Computer generated S-parameter data sets for 1-, 2-, and 3-layer cases over X

band frequencies were initially used to test the accuracy of each extraction scheme.

The respective complex permittivities and thicknesses are shown in Table 2.1 (single

layer permittivity extraction used layer 1; 2-layer extraction used layers 1 and 2; 3-layer

extraction used all layers ordered accordingly). The initial complex permittivity guess

for all layers was set to ε̂initial = 5− j0.4, while the search space for both algorithms was

limited to 1 < Re (ε̂c) < 10 and 0 < Im (ε̂c) < 0.8.

Table 2.1: Complex Permittivities and Thicknesses for the 1-, 2-, and 3-Layer Computer
Generated Data Sets

Layer ε̂n dn (mm)

1 7 − j0.01 1

2 3 − j0.02 10

3 2 − j0.1 2

The SQP algorithm terminated for error function or directional derivative values

≤ 10−16 or after 5000 iterations. The GA’s population size was set to a value of 100

and terminated after 200, 1000, and 5000 generations for the 1-, 2-, and 3-layer cases,
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Figure 2.6: Flowchart illustrating the PSO procedure.
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respectively. The GA utilized an 80% crossover rate and 10% mutation rate (these values

are within the range of nominal values given by [38]).

In Table 2.2, the results for the 1-, 2-, and 3-layer cases using each algorithm (single

or multiobjective) and error function are shown. An “X” in the table indicates that the

algorithm extracted incorrect complex permittivity values for the indicated sample (i.e.,

the algorithm became trapped in a local minimum). For the multiobjective cases, each

term in the error functions (2.7)-(2.9) becomes an element of an error function vector.

For instance, in a multiobjective format, Eqn. (2.8) would then be given by

−−→
Err =

































√

1
N

N
∑
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√

1
N

N
∑
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√

1
N

N
∑

i=1
(|S12,f,i| − |S12,m,i|)2

√

1
N

N
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
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







. (2.13)

The vectorization of the error functions was expected to increase the sensitivity of the

SQP algorithm.

The results shown in the table indicate that all methods performed extremely well

for the single and double layer complex permittivity extraction. However, permittivity

extraction for the 3-layer sample was unsuccessful using SQP with error functions (2.8)

and (2.9). This is due to local minimum trapping indicating a poor initial estimate

(guess) of the complex permittivity. Alternatively, the GA was able to successfully

extract complex permittivity values using all three error functions independent of the

number of layers. It should also be noted that the error for both the real and imaginary
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Table 2.2: Results using ideal S-parameters
Error One Layer Two Layers Three Layers

Algorithm Objective
Function Error Time (s) Error Time (s) Error Time (s)

(2.7) 1.837e-9 59.1 1.729e-8 4.3 2.431e-8 6.8
Single (2.8) 2.702e-8 1.9 1.780e-7 65.6 X X

(2.9) 1.959e-11 50.1 1.396e-7 65.6 X X
(2.7) 1.712e-13 2.1 2.012e-9 72.7 6.245e-9 83.3

Multiple (2.8) 6.397e-9 54.4 8.538e-8 4.4 X X

SQP

(2.9) 2.183e-9 54.2 1.656e-7 3.1 X X

(2.7) 3.561e-7 68.8 2.636e-4 969 2.079e-4 6467.2
GA Single (2.8) 3.106e-6 103.1 2.003e-3 1136.4 1.151e-2 9683.3

(2.9) 3.147e-6 124.7 7.266e-3 2059 1.058e-2 11715
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parts of the complex permittivity is less than O(10−7) for the SQP using (2.7) and less

than O(10−3) for the GA using any of (2.7)-(2.9) for the 1-, 2-, and 3-layer cases.

2.6 Measurements Results

2.6.1 Single Layer Measurements

For measurements of single layer materials, samples of Bakelite (d = 3.277 mm), Ce-

ramic (d = 2.845 mm), Garlock Rubber (d = 1.702 mm), and Nano Material (d = 3.099

mm) were used. S-parameter data sets were generated using the extracted permittivity

value from each algorithm and then compared to the measured S-parameter values. Ad-

ditionally, the Agilent 85071 Materials Measurement Software was used to extract the

single layer permittivities for comparison to the values returned by SQP and the GA.

Fig. 2.7 shows a comparison of |S11| and |S21| for the measured S-parameters of the

Bakelite sample and those generated from the extracted permittivities returned by the

GA using error function (2.9). Fig. 2.8 shows similar results for the Garlock sample.

The excellent agreement shown in both figures is also observed for all other materials’

S-parameter comparisons using all algorithm/error function combinations.
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Figure 2.7: Magnitude of S11 and S21 for single layer Bakelite sample. The calculated
S-parameters are generated using the GA with error function (2.9).
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Figure 2.8: Magnitude of S11 and S21 for single layer Garlock Rubber sample. The
calculated S-parameters are generated using the GA with error function (2.9).
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Tables 2.3-2.6 show the results of the extracted complex permittivities for each

material using all optimization algorithms and error functions. Since error functions (2.8)

and (2.9) are calculated in decibels, a direct comparison of the error function values is not

necessarily indicative of the accuracy of the solution. Rather, summations of the RMS

errors between the magnitudes and phases of the formulated and measured S-parameters

(see Columns 6-7 in Tables 2.3-2.6) are better qualifiers of the accuracy of each solution

and expressed by
∑

ij

√

|Sij,f |2 − |Sij,m|2

∑

ij

√

(6 Sij,f )2 − (6 Sij,m)2
. (2.14)

The RMS errors between the measured S-parameters and those generated using the

Agilent 85071 Materials Measurement Software are also listed for comparison. It can

be concluded that all of the optimization techniques were effective in minimizing the

RMS errors of the S-parameters (both phase and magnitude). However, the GA using

either (2.8) or (2.9) was found to consistently produce the lowest magnitude error of the

S-parameters (column VI) and maintained a phase error generally no worse than the

other extraction methods.
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Table 2.3: Extracted Permittivity & Error for Bakelite
Error

Algorithm Objective
Function

ε′ ε′′
∑ |Sij |err

∑

6 Sijerr

(2.7) 3.7244 0.2237 0.02875 0.19899
Single (2.8) 3.7907 0.2528 0.01339 0.20948

(2.9) 3.7909 0.2530 0.01339 0.20952
(2.7) 3.5124 0.3464 0.09824 0.29814

Multiple (2.8) 3.7896 0.2656 0.01434 0.20685

SQP

(2.9) 3.8018 0.2577 0.01364 0.21206

(2.7) 3.7244 0.2238 0.02876 0.19898
GA Single (2.8) 3.7907 0.2528 0.01339 0.20948

(2.9) 3.7910 0.2530 0.01339 0.20954

85071 X X 3.6032 0.2347 0.06947 0.24004
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Table 2.4: Extracted Permittivity & Error for Ceramic
Error

Algorithm Objective
Function

ε′ ε′′
∑ |Sij |err

∑

6 Sijerr

(2.7) 1.1422 0.0000 0.03263 0.15330
Single (2.8) 1.1819 0.0004 0.00415 0.19111

(2.9) 1.1819 0.0006 0.00415 0.19151
(2.7) 1.1344 0.0000 0.03888 0.14662

Multiple (2.8) 1.1782 0.0518 0.04234 0.70040

SQP

(2.9) 1.1823 0.0050 0.00670 0.21894

(2.7) 1.1423 0.0000 0.03261 0.15333
GA Single (2.8) 1.1818 0.0001 0.00417 0.18989

(2.9) 1.1820 0.0010 0.00422 0.19331

85071 X X 1.1484 0.0043 0.02802 0.18255
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Table 2.5: Extracted Permittivity & Error for Garlock Rubber
Error

Algorithm Objective
Function

ε′ ε′′
∑ |Sij |err

∑

6 Sijerr

(2.7) 7.7850 0.0409 0.04200 0.13297
Single (2.8) 7.9837 0.1642 0.01669 0.17187

(2.9) 8.1358 0.1304 0.02075 0.20980
(2.7) 7.6184 0.0869 0.06706 0.08846

Multiple (2.8) 8.0340 0.1604 0.01425 0.18396

SQP

(2.9) 8.0347 0.1602 0.01424 0.18415

(2.7) 7.6184 0.0869 0.06707 0.08846
GA Single (2.8) 8.0340 0.1604 0.01425 0.18396

(2.9) 8.0348 0.1602 0.01424 0.18417

85071 X X 7.5320 0.1610 0.08267 0.06454
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Table 2.6: Extracted Permittivity & Error for Nano Material
Error

Algorithm Objective
Function

ε′ ε′′
∑ |Sij |err

∑

6 Sijerr

(2.7) 2.5165 0.0000 0.05783 0.08785
Single (2.8) 2.5989 0.0119 0.01058 0.18065

(2.9) 2.5989 0.0119 0.01058 0.18061
(2.7) 2.4916 0.0000 0.07457 0.06210

Multiple (2.8) 2.5842 0.0000 0.01671 0.15915

SQP

(2.9) 2.5837 0.0064 0.01530 0.16201

(2.7) 2.5165 0.0000 0.05779 0.08791
GA Single (2.8) 2.5989 0.0119 0.01057 0.18069

(2.9) 2.5989 0.0119 0.01057 0.18069

85071 X X 2.6872 0.0260 0.05989 0.27670
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2.6.2 Two Layer Measurements

The 2-layer structures used for the S-parameter measurements were Garlock Rub-

ber/Bakelite, Garlock Rubber/Ceramic, and Garlock Rubber/Nano Material with Gar-

lock Rubber used as the first layer for all cases. As discussed in Section 2.6.1, the three

error functions (2.7)- (2.9) were minimized using SQP and the GA. No change was made

to any paramater of the SQP algorithim, whereas the GA was allowed 1000 generations

before termination. The extracted permittivities were used to generate S-parameters

data sets for RMS error computation and were also contrasted to the Agilent 85071 re-

sults of the previous section. It should be mentioned that the Agilent 85071 software can

only determine the permittivity of single materials or provide bulk permittivity estimates

for composite structures.

Tables 2.7-2.9 show the extracted permittivities and S-parameter RMS errors for

the three 2-layer samples. Using 2-layer S-parameter data sets generated from the single

layer Agilent 85071 extracted permittivities, the RMS errors between these data sets and

the measured S-parameters were calculated and are also included in the tables. For the

Garlock Rubber/Bakelite sample, all algorithm/error function combinations achieved

RMS magnitude errors O(10−2) and phase errors O(10−2 ∼ 10−1). The magnitude of

the extracted permittivities for each layer showed excellent agreement with the extracted

single layer values. However, the imaginary part of the extracted permittivity for Garlock

Rubber showed an increased value when compared to the values given in Table 2.5.

For the Garlock Rubber/Ceramic and Garlock Rubber/Nano Material samples (see

Tables 2.8 and 2.9), the SQP algorithm was only effective at estimating the complex

permittivity values using error function (2.7). Using error functions (2.8) and (2.9),
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Table 2.7: Extracted Permittivity & Error for Garlock/Bakelite
Error Garlock Garlock Layer 2 Layer 2

Algorithm Objective
Function ε′ ε′′ ε′ ε′′

∑ |Sij |err

∑

6 Sijerr

(2.7) 7.9050 0.2207 4.0271 0.3274 0.0400 0.0647
Single (2.8) 7.5613 0.3626 3.9900 0.2563 0.0366 0.1997

(2.9) 7.8488 0.3343 3.9881 0.2583 0.0387 0.1036
(2.7) 7.8211 0.3080 4.0086 0.2908 0.0379 0.0991

Multiple (2.8) 7.9793 0.2813 3.9827 0.2980 0.0410 0.0699

SQP

(2.9) 7.9793 0.2813 3.9827 0.2980 0.0410 0.0699

(2.7) 7.9050 0.2207 4.0271 0.3274 0.0400 0.0647
GA Single (2.8) 7.5620 0.3625 3.9900 0.2563 0.0366 0.1994

(2.9) 7.8523 0.3336 3.9883 0.2585 0.0387 0.1027

85071 X X 7.5320 0.1610 3.6032 0.2347 0.1136 0.3289
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Table 2.8: Extracted Permittivity & Error for Garlock/Ceramic
Error Garlock Garlock Layer 2 Layer 2

Algorithm Objective
Function ε′ ε′′ ε′ ε′′

∑ |Sij |err

∑

6 Sijerr

(2.7) 7.9478 0.1169 1.2254 0.0373 0.0268 0.0601
Single (2.8) 1.0000 0.0712 6.1163 0.0963 0.0687 6.3055

(2.9) 1.0000 0.1167 6.1037 0.0656 0.0695 6.3189
(2.7) 7.8983 0.0405 1.2596 0.0649 0.0378 0.0686

Multiple (2.8) 1.0000 0.2616 6.1208 0.0066 0.0732 6.3536

SQP

(2.9) 1.0000 0.2616 6.1208 0.0066 0.0732 6.3536

(2.7) 7.9479 0.1169 1.2254 0.0373 0.0268 0.0601
GA Single (2.8) 8.0688 0.1916 1.1930 0.0000 0.0144 0.0639

(2.9) 8.0866 0.1927 1.2167 0.0000 0.0146 0.0654

85071 X X 7.5320 0.1610 1.1484 0.0043 0.0803 0.1267
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Table 2.9: Extracted Permittivity & Error for Garlock/Nano Material
Error Garlock Garlock Layer 2 Layer 2

Algorithm Objective
Function ε′ ε′′ ε′ ε′′

∑ |Sij |err

∑

6 Sijerr

(2.7) 7.6909 0.1382 2.7840 0.0585 0.0307 0.0490
Single (2.8) 2.5193 0.1860 5.4421 0.0110 0.0178 6.5273

(2.9) 2.5193 0.1978 5.4555 0.0020 0.0178 6.5223
(2.7) 7.6700 0.1435 2.7751 0.0380 0.0308 0.0552

Multiple (2.8) 2.4387 0.1856 5.3484 0.0152 0.0217 6.5841

SQP

(2.9) 2.4729 0.1596 5.4659 0.0147 0.0204 6.5315

(2.7) 7.6909 0.1382 2.7841 0.0585 0.0307 0.0490
GA Single (2.8) 7.7636 0.2344 2.6881 0.0142 0.0132 0.0942

(2.9) 7.7544 0.2510 2.6866 0.0068 0.0136 0.0972

85071 X X 7.5320 0.1610 2.6872 0.0260 0.0294 0.1103
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SQP was unable to correctly estimate each layer’s complex permittivity as evidenced

by the unacceptable large phase errors. It is apparent from the discrepancies in the

estimated permittivity values and the large S-parameter phase errors that this was a

result of local minimum trapping. Unlike SQP, the GA was successful in extracting the

complex permittivities using all error functions. The real and imaginary parts of the

permittivities showed excellent agreement with the extracted single layer values, and the

GA achieved RMS magnitude errors O(10−2) and phase errors O(10−2 ∼ 10−1).

2.6.3 Three Layer Measurements

The S-parameters for a 3-layer composite structure (Nano Material/Garlock Rub-

ber/Garlock Rubber) were measured. In accordance with the previous sections, Ta-

ble 2.10 shows the extracted permittivities and S-parameter RMS errors for the compos-

ite structure. SQP was effective in determining the complex permittivites of the sample

for all but the multiobjective form of (2.7). As in the previous cases, the GA succesfully

estimated the permittivities using all error functions. SQP and the GA returned RMS

magnitude errors O(10−2) and phase errors O(10−2 ∼ 10−1), respectively.

It was already determined that the algorithms and error functions would return

complex permittivity values nearly indistinguishable from the actual values for all com-

puter generated cases (SQP using (2.8) and (2.9) excepted). Therefore, the possible

reasons for the errors sited previously warrant an explanation. The most likely sources

of error for the single layer extractions stem from inaccuracies associated with instru-

mentation and sample thickness measurements. In addition to these errors, compound

structures may suffer from the presence of small air gaps between the layers as well as
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Table 2.10: Extracted Permittivity & Error for Nano Material/Garlock/Garlock
Error Layer 1 Layer 1 Layer 2 Layer 2 Layer 3 Layer 3

Algorithm Objective
Function ε′ ε′′ ε′ ε′′ ε′ ε′′

∑ |Sij |err

∑

6 Sijerr

(2.7) 2.8234 0.0615 8.3424 0.2413 8.1992 0.2086 .03571 .06789
Single (2.8) 2.9228 0.0064 8.2085 0.3069 7.3469 0.3813 .01132 .28668

(2.9) 2.9255 0.0133 8.1900 0.3014 7.3365 0.3561 .01178 .28771
(2.7) 2.7634 0.0371 8.3823 0.3812 8.3505 0.3224 .05696 .06735

Multiple (2.8) 4.1458 0.0082 4.7201 0.2681 2.2123 0.8000 .23606 3.6167

SQP

(2.9) 4.6797 0.0000 2.4478 0.6366 2.8608 0.0000 .14824 4.5302

(2.7) 2.8238 0.0625 8.3417 0.2402 8.1981 0.2051 .03568 .06775
GA Single (2.8) 2.9159 0.0125 8.1326 0.3000 7.4216 0.3630 .01254 .26070

(2.9) 2.9259 0.0136 8.1716 0.3000 7.3279 0.3552 .01185 .29188

85071 X X 2.6872 0.0260 7.5320 0.1610 7.5320 0.1610 .10697 .63053
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sample misalignment. Also, results obtained using (2.7) would be adversely affected by

any uncertainty in the phase planes’ positions.

2.7 Summary

In this chapter, the performance of complex permittivity extraction methods based

on SQP and the GA was contrasted using S-parameter measurements for 1-, 2-, and

3-layer samples. Three different error function definitions were also used to quantify

the performance of each algorithm in terms of the amount of S-parameter information

(magnitude only or magnitude and phase) available for the inversion process.

Computer generated S-parameter data was initially used to determine the attainable

accuracy of each algorithm/error function combination. The results of this portion of

the study clearly indicated that the extracted permittivity from the single and multilayer

cases was nearly identical to that used to generate the data when the GA was used. This

was also found to be true for SQP in all but two cases possibly due to local minima

trapping. This demonstrates that the GA is extremely accurate and would therefore be

limited only by the precision of the S-parameter measurements, whereas the performance

of SQP would also likely be limited by the accuracy of the initial guess.

The algorithm/error functions were used to extract the complex permittivity from

single layer S-parameter measurements, and it was evident that all of the optimization

techniques were highly effective at minimizing the RMS error(s) of the S-parameters

(both phase and magnitude). However, the GA using either (2.8) or (2.9) was found to

consistently produce the lowest magnitude error of the S-parameters and hence the best

estimate of the complex permittivity.
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When the same techniques were used for complex permittivity extraction from mul-

tilayer composite structures, the GA, for all cases considered, provided approximately

the same level of accuracy as that observed for the single layer cases. SQP, however,

failed to obtain accurate results for several of the cases considered. In summary, the GA

appeared to be the more robust algorithm in terms of its ability to always achieve a low

S-parameter RMS error and accurately obtain each layer’s complex permittivity.
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Chapter 3

Complex Constitutive Parameter Extraction

3.1 Overview

This chapter extends the procedure presented in Chapter 2 to allow extraction of

both complex permittivity and permeability for each layer in a multilayer sample. In

order to determine the accuracy of the method, the extracted constitutive parameters

(CP) are used to generate S-parameters for comparison with measured S-parameters.

Also, the single layer, complex CP extraction technique developed by Wolfson and Went-

worth [96, 97] is employed to provide further verification of the correct operation of the

code.

X band waveguide S-parameter measurements of three materials (Teflon, F40, and

F125) were obtained using an HP-8510C Vector Network Analyzer for the frequency

range of 8.2 - 10 GHz. Teflon was used to ensure the method obtained accurate results

for nonmagnetic and low loss materials. Further, two radar-absorbing materials (RAM),

F40 and F125 [98], were used to demonstrate extraction of complex permittivity and

permeability. Multilayer samples were constructed by placing the single layer samples

adjacent to one another in different combinations.
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3.2 Extraction Techniques

3.2.1 Wolfson-Wentworth Method

The Wolfson-Wentworth method consists of placing a sample in a section of rectan-

gular waveguide and measuring the S11 parameter with the waveguide terminated by two

offset shorts of differing length [96, 97]. The S-parameter measurements are required to

calculate the input impedance of the sample for each case. The input impedances along

with transmission line equations are then used to extract the complex permittivity and

permeability of the sample over the frequency range of interest. This approach requires

the material sample thickness to be less than one-half wavelength for the TE10 mode

inside the sample in order to avoid exciting higher order modes. However, a low loss

sample must be thick enough to provide significant reflections. If both of these conditions

cannot be met, spurious data for the extracted values of permittivity and permeability

can result at high frequencies. A detailed description of this method is given in [97].

3.2.2 CP Extraction Method Modifications

As discussed previously, the method of Chapter 2 is a 2-port technique requiring

a full set of S-parameters to extract complex permittivity for each layer of an n-layer

sample (see Fig. 2.1). Here, however, the method is modified to also account for mag-

netic materials. Appropriate modification of the forward solution only requires that the

propagation constant and wave impedance of (2.1) be expressed as

γi =

√

(π/a)2 − ω2µ0ε0

(

µ′
r,i − jµ′′

r,i

)(

ε′r,i − jε′′r,i

)

(3.1)
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Zi =
jωµ0

(

µ′
r,i − jµ′′

r,i

)

γi
(3.2)

where a is the maximum cross-sectional dimension of the waveguide. Calculation of the

S-parameters then follows the same procedure outlined in Section 2.2.

Once again, an error function analysis was carried out due to the fact that the

extraction both both ε̂ and µ̂ results in a higher dimensional search space. Therefore,

the conclusions previously drawn may be invalid for this situation. Initially, Err2 (2.8)

was considered and determined to be ill-suited for accurately estimating the CP since

S-parameter phase information becomes critical to the extraction process’s ability to

obtain low RMS errors. Therefore, two error functions involving both magnitude and

phase information were tested and are given by

Err =
1

N

N
∑

i=1

(∣

∣

∣
[S]f,i

∣

∣

∣
−
∣

∣

∣
[S]m,i

∣

∣

∣

)2

+
1

N

N
∑

i=1

(

6 [S]f,i − 6 [S]m,i

)2

(3.3)

Err =
1

N

N
∑

i=1

(

Re
(

[S]f,i

)

− Re
(

[S]m,i

))2

+
1

N

N
∑

i=1

(

Im
(

[S]f,i

)

− Im
(

[S]m,i

))2

(3.4)

where [S]f,i and [S]m,i are the formulated and measured S-parameters at frequency point

i, respectively, and N is the number of frequencies. After a number of studies, (3.4) was

found to give a lower overall RMS error for both magnitude and phase of the formulated
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and measured S-parameters. This may be due to a number of factors such as numer-

ical precision of the calculations and unequal weighting of the magnitude and phase

information in (3.3).

The Genetic Algorithm (GA) of Chapter 2 was determined to be an extremely robust

method for determining accurate values for complex permittivities from S-parameter

measurements. Sequential Quadratic Programming (SQP), a local optimization tech-

nique, was only able to accurately determine permittivity values in some cases due to

its severe dependence on the algorithm’s initial starting point (ε̂initial). However, SQP

was found to be 50 to 1700 times faster than the GA depending on the number of layers

(higher speed-up for larger number of layers). Also, SQP was shown to more accurately

obtain the value of the global minimum than the GA when the initial starting point was

in the vicinity of the minimum. In this section, a modified SQP algorithm is developed to

exploit SQP’s speed and accuracy while eliminating the issue of local minima trapping.

The novel multi-point SQP (MPSQP) presented here relies on the generation of P

randomly1 distributed initial guesses (ε̂initial, µ̂initial) to reach the global minimum in the

bounded solution space. The SQP algorithm is performed on each initial guess resulting

in P solutions. If a sufficient number of points are taken, the MPSQP will accurately and

quickly determine the global minimum by taking the solution with minimum error of all

the returned solutions. To ensure that the minimum has been accurately determined, the

MPSQP algorithm is repeated but bounded by a reduced search space centered about the

previously determined solution. In all cases considered, this added step returned results

identical to the results of the initial set of iterations. A study comparing the performance

1Uniform probability density function.
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of the GA and MPSQP for the extraction of single layer material parameters is presented

in Section 3.4.1.

3.3 Measurements

The test ports of an HP-8510C Vector Network Analyzer were connected to WR90

(X band) waveguide via coax-to-waveguide adapters. The calibration procedure follows

Wolfson’s outline of recommended instrument settings for improved measurement accu-

racy [99]. Higher accuracy was obtained when operating the analyzer in step sweep mode

with 128X averaging. A 2 ms dwell time was used to account for the analyzer settling

time and propagation delay due to coaxial cable length. Finally, the TE10 mode cutoff

frequency is entered as the waveguide delay (6.557 GHz for the WR90 waveguide used

in this work).

For the Wolfson-Wentworth method, the measurement reference plane is established

at the open end of the waveguide of sufficient length to allow unwanted modes to attenu-

ate before reaching the measurement reference plane. The reference plane was defined at

the end of this waveguide using an offset short calibration procedure [100]. The procedure

uses a short at the reference plane and offset shorts of lengths approximately λ/8 and

3λ/8, where λ is chosen to give maximum phase separation for the offset shorts across the

band [100]. For WR90 rectangular waveguide the optimum offset short lengths become

.483 cm and 1.455 cm. Following calibration, S11 is measured for the reference plane

terminated by both offset short loads. A short section of waveguide is then attached to

the reference plane, with the material sample placed in the far end of the guide. S11

is then measured for the sample terminated by both offset short loads. These values
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along with S11 measured for the offset shorts are inserted into the routine described by

Wolfson [97] to extract ε̂ and µ̂.

A through-response measurement for the method presented here requires two sec-

tions of waveguide for attenuation of unwanted modes. The measurement reference

planes are established at the ends of these two waveguides using a full 2-port calibra-

tion that employs a short, the pair of offset shorts described in the Wolfson-Wentworth

approach, and a direct connection. Following calibration, the material sample is placed

into a short section of waveguide which is then inserted between the two reference planes.

A complete set of S-parameters are then measured and the results used in the method

presented here.

3.4 Results

3.4.1 Single Layer Measurements

For the single layer materials, samples of Teflon (d = 4.8 mm), F40 (d = 1.524 mm),

and F125 (d = 3.3 mm) were used. S-parameter data sets were calculated from the values

extracted using the GA with the appropriately modified forward solver, MPSQP, and the

Wolfson-Wentworth method. These data sets were in turn compared to the measured

S-parameters. In addition to S-parameter comparisons, the extracted CP from each

algorithm were directly compared. It was initially assumed for the GA and MPSQP

that the CP were constant over the frequency band of interest, whereas the Wolfson-

Wentworth method makes no such assumptions. The results presented show that this

assumption was valid, and, therefore, it is used throughout this chapter. For materials

having frequency dependent CP, the algorithm can be easily modified.
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For all single layer optimizations, the GA utilized a population size of 100, crossover

rate of 80%, and mutation rate of 10%. The redundancy removal scheme of the TRRGA

was also employed to accelerate convergence. Since a single layer problem has a four

dimensional search space, the GA was allowed to iterate for 1000 generations which

corresponds to the parameter utilized in Section 2.6.2 for 4-D problems. For MPSQP,

the number of initial guesses (P ) was set to 100. The real parts of both the relative

permittivity and permeability were restricted to the range of .1 to 25, while the imaginary

parts were restricted from 0 to 8.

For the Teflon sample, the extracted constitutive parameters are nearly identical

for the GA and MPSQP as shown in Table 3.1. Good agreement is also shown between

these two methods and the results of the Wolfson-Wentworth method. The constitutive

parameter values listed for the Wolfson-Wentworth method are the average values over

the frequency band. The RMS errors between the MPSQP-generated and measured

S-parameter magnitudes and phases are listed in Table 3.2 and show excellent agree-

ment. The GA results were nearly identical to the MPSQP results and are not shown.

Analogous results were also obtained for the two RAM samples as shown in the tables.

In all cases, MPSQP returned slightly lower RMS S-parameter errors (generated versus

measured) than the Wolfson-Wentworth method and the GA. Figs. 3.1 and 3.2 show

comparisons of the extracted CP from MPSQP and the Wolfson-Wentworth method

over the entire frequency range. Figs. 3.3 and 3.4 show excellent agreement between the

MPSQP-generated S-parameters and the measured data.

Table 3.3 illustrates the improvement in performance when employing MPSQP in-

stead of the GA. Overall, the MPSQP showed an average speed-up of 21.1 (speed-up
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taken as the ratio of GA runtime to MPSQP runtime). Additionally, the MPSQP was

able, in all cases, to achieve slightly lower error function values which, in turn, directly

corresponded to lower S-parameter RMS errors. It is also worth noting that in Chapter 2

the speed-up of SQP over the GA scaled superlinearly with increasing number of layers.

Although not directly presented here, this was also observed with MPSQP and the GA

for the multilayer cases presented in the following sections. Therefore, it appears that

the MPSQP is an improved method for obtaining the material parameter values not only

in terms of its speed but also its accuracy in determining the global minimum.

Table 3.1: Single Layer Results
Method Teflon F40 F125

GA ε′ 2.05 12.7 6.97

MPSQP ε′ 2.03 12.7 6.98

Wolfson ε′ 2.07 12.9 7.95

GA ε′′ 0 0.187 0

MPSQP ε′′ 0 0.203 0

Wolfson ε′′ 0.027 0.673 0.693

GA µ′ 0.958 1.55 0.440

MPSQP µ′ 0.965 1.55 0.434

Wolfson µ′ 0.952 1.63 0.490

GA µ′′ 4.52e-3 1.24 0.516

MPSQP µ′′ 4.63e-3 1.24 0.515

Wolfson µ′′ 0.017 1.06 0.474
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Table 3.2: MPSQP Error for Single Layer Sample
Teflon F40 F125

RMS Error |S11| 1.47e-2 6.60e-3 1.25e-2

RMS Error |S12| 8.17e-3 5.14e-3 7.86e-3

RMS Error |S21| 8.20e-3 3.72e-3 1.43e-2

RMS Error |S22| 1.29e-2 4.35e-3 7.04e-3

RMS Error 6 S11 2.85e-2 2.60e-2 2.08e-2

RMS Error 6 S12 1.01e-2 2.05e-2 4.71e-2

RMS Error 6 S21 1.50e-2 1.41e-2 3.97e-2

RMS Error 6 S22 4.82e-2 2.77e-2 2.15e-2

Table 3.3: Performance Comparison of GA and MPSQP
Error Time (sec)

Material
GA MPSQP GA MPSQP

Teflon 1.53e-3 1.47e-3 810.2 48.6

F40 8.93e-4 8.93e-4 782.6 32.1

F125 1.35e-3 1.34e-3 790.9 35.6
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Figure 3.1: Comparison of MPSQP and Wolfson-Wentworth method extracted complex
permittivity values for F125 sample.
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Figure 3.3: Measured and generated S-parameter magnitudes for the F125 sample.
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3.4.2 Two Layer Measurements

The samples used for two layer S-parameter measurements were F125/Teflon, Teflon/F40,

and F125/F40. To ensure an accurate solution, P was set to 500 initial points. The in-

crease in P was necessary since the search space for a two layer problem has 8 dimensions.

The upper and lower bounds remained the same as those of the single layer case.

Table 3.4 shows the extracted parameter values as well as the error function value

and RMS errors between the generated and measured S-parameters. Overall, excellent

agreement is shown by the low error values for all material combinations. Additionally,

the extracted parameter values agree well with the values obtained from the single layer

optimization. Figs. 3.5 and 3.6 show the magnitude and phase of the generated and

measured S11 and S21 for the F125/Teflon sample. As with the data from Table 3.4,

the agreement between the extracted and measured data is well within the tolerance of

instrumentation error.
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Table 3.4: Results for Two Layer Samples
Sample F125/Teflon Teflon/F40 F125/F40

Layer F125 Teflon Teflon F40 F125 F40

ε′ 6.82 2.05 2.36 11.8 6.2 14.0

ε′′ 0 0 0 0.091 0 0

µ′ 0.444 0.997 1.08 1.06 0.402 0.492

µ′′ 0.546 0 9.72e-3 1.23 1.78 1.46

Error Function Value 2.29e-3 3.02e-3 2.73e-3

RMS Error |S11| 1.85e-2 7.30e-3 7.99e-3

RMS Error |S12| 1.39e-2 8.21e-3 1.04e-2

RMS Error |S21| 1.17e-2 1.03e-2 1.04e-2

RMS Error |S22| 2.02e-2 2.57e-2 1.85e-2

RMS Error 6 S11 2.88e-2 2.90e-2 4.96e-2

RMS Error 6 S12 4.91e-2 2.82e-2 6.12e-2

RMS Error 6 S21 4.40e-2 4.25e-2 6.83e-2

RMS Error 6 S22 2.64e-2 5.87e-2 5.99e-2
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3.4.3 Three Layer Measurements

A three layer F125/F40/Teflon sample’s S-parameters were measured and the com-

plex constitutive parameters extracted using MPSQP. The upper and lower bounds re-

mained unchanged while P was increased to 1000 due to the 12 dimensional search space.

Table 3.5 shows the extracted constitutive parameters for each layer as well as the error

function value and RMS errors between the measured and generated S-parameters. As

in the prior cases, the algorithm was able to successfully match the generated and mea-

sured S-parameters as evidenced by the very low RMS error values. Inspection of the

extracted parameter values shows that each of the materials was correctly classified and

agreement with the single and two layer parameter values was very good.

Table 3.5: Results for F125/F40/Teflon Sample
F125 F40 Teflon

ε′ 5.98 12.1 2.04

ε′′ 0 0 0.107

µ′ 0.411 1.90 1.08

µ′′ 0.495 1.49 0

Error Function Value 7.61e-4

RMS Error |S11| 7.03e-3

RMS Error |S12| 8.77e-3

RMS Error |S21| 8.48e-3

RMS Error |S22| 1.10e-2

RMS Error 6 S11 1.22e-2

RMS Error 6 S12 5.78e-2

RMS Error 6 S21 4.79e-2

RMS Error 6 S22 2.59e-2
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3.5 Summary

In this chapter, a method was presented for accurately extracting the complex per-

mittivity and permeability from each individual layer in a multilayer sample using S-

parameter waveguide measurements. The forward solution formulation presented in

Chapter 2 was modified to account for magnetic materials. Also, a modified SQP al-

gorithm (MPSQP) was presented which utilized a large number initial guess points to

alleviate the possibility of local minima trapping, a problem with gradient-based opti-

mization methods. Use of such an algorithm was beneficial since it provides significant

computational gains over traditional global optimization methods such as the GA. Specif-

ically, for the single layer cases presented here, the MPSQP showed an average speed-up

of 21.1 over the GA as well as improved accuracy.

S-parameter measurements were conducted on three material samples used to con-

struct multilayer samples. The MPSQP was used successfully to extract the complex CP

for each layer. These values were then compared with values extracted using the Wolfson-

Wentworth method (single layer cases only). Also, S-parameters were generated using

the extracted values and compared with the measured data. In all cases, results were

found to be in excellent overall agreement with both the Wolfson-Wentworth method

values and measured data. In summary, the MPSQP was found to be a computationally

efficient and robust algorithm for extracting complex CP from multilayer materials.
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Chapter 4

Waveguide Filters Using Conductor Doping of Dielectrics

4.1 Overview

In the previous chapters, novel optimization algorithms were presented for the so-

lution of inverse problems, namely, complex constitutive parameter extraction of mul-

tilayered materials. In this and the remaining chapters, the topic of optimal design

is addressed. The specific problem considered is that of optimizing the geometry of

waveguide filters to realize a specified transmission response.

Novel frequency-dependent reflectivity and transmittivity characteristics of dielec-

tric slabs have recently been shown to be achievable by embedding randomly oriented

thin conducting wires (inclusions) within a host slab [101]. A wide variety of electro-

magnetic behaviors have been observed by adjusting the wire length and doping level

(wire density). In addition to wires, thin conducting patches or small particles of var-

ious geometries may also be used as the dopant and, in the case of wires and patches,

either embedded or limited to the surface of the dielectric. The focus of this study is to

investigate the utility of random doping as a method for obtaining consistent reflection

and transmission frequency-dependent profiles. Additional consideration is given to the

feasibility of fabricating such materials.

4.2 Numerical Modeling

To determine the reflection and transmission characteristics of a doped dielectric

slab, a numerical procedure is necessary. Many numerical methods including Finite
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Element Method (FEM) (and hybrids) [101–109], Method of Moments (MoM) [110–113],

and Finite Difference Time Domain (FDTD) [114–122] have been applied to similar

problems with great success. However, edge-based FEM is most efficient for the problem

at hand because of its ability to easily account for inhomogeneous materials as well as

its suitability for closed region problems (i.e., waveguides, cavities, etc.) [123].

The computational domain of the FEM is created by placing the dielectric slab in-

side a waveguide as shown in Fig. 4.1 and discretizing the geometry using a tetrahedral

elements. In this manner, the reflection and transmission properties of the material can

be obtained in a computationally efficient manner. A mode-matching (MM) scheme,

which allows for the development of TE and TM modes, is used to truncate the com-

putational domain and permits the faces of the waveguide to be placed very close to

the slab [123,124]. Further reduction in computational intensity is achieved by utilizing

a multi-point Asymptotic Waveform Evaluation (AWE) [123] to quickly determine the

frequency response of the material over a wide band. The matrix solution of the FEM

problem is used to calculate the reflection (S11) and transmission (S21) coefficients which

define the filter’s response.

To further simplify the geometry and mesh generation as well as reduce solution

time, the following methodology is employed to generate the doped medium. In order to

model thin wires or conducting triangular patches, assume that the locations of the wires

or patch edges occupy the same locations as tetrahedral edges within the discretized slab

(see Fig. 4.2). Those edges where wires or patches exist can simply be assigned tangential

electric field values of zero. Since the unknowns in an edge-based FEM are the tangential

electric fields along the tetrahedral edges, this is equivalent to removing the appropriate
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Figure 4.1: Loaded waveguide geometry with doped slab. Boundary notations for FEM
formulation are indicated.
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rows and columns of the FEM matrix equation which results in a reduced set of linear

equations. Additionally, by this method, several different cases may be considered us-

ing the same matrix equation. All that is required is the appropriate removal of rows

and columns of the matrix, and, hence, no matrix reassembly is required. This results

in a computationally efficient procedure, especially beneficial to optimization problems

requiring many simulations. Although the edge locations within a given mesh are fixed,

modern unstructured mesh generators provide enough variety in edge orientation that

the wires/patches may still be assumed to be randomly placed [101]. Also notice that,

the wires are assumed to be infinitesimally thin elements and there is no provision to

include wire radius in the current formulation. To better illustrate this process, consider

the following example. To generate a doped slab with 100 wires, a random number

generator is used to select 100 numbers from a list numbering 1 to Nedges, the number

of edges within the discretized slab. This list maps to the corresponding edge numbers

which are then removed from the matrix equation as described. Generating a list of

edges corresponding to conducting patches is performed in the same manner with the

additional requirement that the three connecting edges composing a tetrahedral face

form one patch. Therefore, a doping level of 100 triangular patches would correspond to

the removal of 300 rows and columns from the FEM matrix equation.

4.3 Finite Element Formulation

The FEM presented here is formulated to solve for the S-parameters from a loaded

waveguide (see Fig. 4.1). Inside the waveguide, electromagnetic wave propagation is

governed by Maxwell’s equations. From these equations, the vector Helmholtz equation
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Figure 4.2: Discretized slab illustrating wires lying along tetrahedral edges. Notice some
edges join to form long, erratically shaped wires. Wires may also be located on interior
edges but are not shown here.
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for the electric field can be derived and is given by

∇× µ−1∇× ~E − ω2ε ~E = 0 (4.1)

where ~E is the electric field inside the waveguide, ω is the radian frequency of the wave,

and µ and ε are the permeability and permittivity, respectively, at any given point in the

domain. Within the waveguide, the electric field is subject to the boundary conditions

n̂ × ~E = 0 on Γ1 (4.2)

n̂ ×∇× ~E + γn̂ ×
(

n̂ × ~E
)

= ~U on Γ2,3 (4.3)

Eqn. (4.2) forces the tangential electric field to be zero along the waveguide walls.

Eqn. (4.3) is referred to as a boundary condition of the third kind. Boundary con-

ditions of this type are necessary to accurately truncate the computational domain of

the problem, and a discussion of their parameters will be given in a later section. Phys-

ically, (4.3) represents a relationship between the tangential electric and magnetic fields

along the boundary.

As with most numerical methods, the FEM procedure begins with a discretization

of the geometry into elements. Although there are many elements available, tetrahedral

elements, as shown in Fig. 4.3, are usually chosen due to their ability to conform to

arbitrarily shaped structures. Inside each element, the electric field can be approximated

by an expansion such as

~Ee =
6
∑

j=1

~Nj (x, y, z)Ej (4.4)
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where ~Ee is the electric field inside the eth element, ~Nj (x, y, z) is the vector basis function

associated with the jth tetrahedral edge, and Ej is defined as the electric field value at

the center of edge j projected along that edge’s direction. The vector basis functions

used in this work are termed the zeroth-order vector basis functions and given by

~Nj = ℓj (Lj1∇Lj2 − Lj2∇Lj1) (4.5)

where ℓj is the length of edge j and Ljα is the linear interpolation function (volume

coordinate) for the αth node bounding edge j (see Fig. 4.3) [123]. The necessity of edge-

based (vector) elements as opposed to more traditional node-based elements has been

discussed extensively in the literature [6, 103,125–155].

Following Galerkin’s procedure [123], the weighted residual of (4.1) is minimized

according to

Re
i =

∫

Ωe

~Ni ·
(

∇× µ−1∇× ~E − ω2ε ~E
)

dΩe (4.6)

where Re
i is the weighted residual corresponding to edge i of element e; ~Ni, defined

by (4.5), is the weighting function for edge i; and Ωe represents the domain of element

e. Using the first vector Green’s theorem, (4.6) can be cast in the weak form which is

given by

Re
i =

∫

Ωe

∇× ~Ni · ∇ × ~E − ω2εµ ~Ni · ~E dΩe −
∮

Γe

(

~Ni ×∇× ~E
)

· n̂ dΓe (4.7)
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Figure 4.3: Tetrahedral element showing edge and node numbering.
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From a vector identity, the integrand of the surface integral in (4.7) can be rewritten

in two different ways as shown by

(

~Ni ×∇× ~E
)

· n̂ =
(

n̂ × ~Ni

)

·
(

∇× ~E
)

= − ~Ni ·
(

n̂ ×∇× ~E
)

(4.8)

Since Galerkin’s method calls for the weighting and basis functions to be identical,

~Ni must satisfy the same boundary conditions as the electric field. Therefore, the second

term in (4.8) shows that the integrand is zero for the portion of the surface integral over

Γ1. Using the third form in (4.8), the weight residual can be rewritten as

Re
i =

∫

Ωe

∇× ~Ni · ∇ × ~E − ω2εµ ~Ni · ~E dΩe +

∫

Γe

2,3

~Ni ·
(

n̂ ×∇× ~E
)

dΓe
2,3 (4.9)

4.3.1 Absorbing Boundary Condition

Many domain truncation schemes exist as outlined in [123]. A simple first-order

absorbing boundary condition (ABC) method is presented here followed by a more accu-

rate Mode-Matching (MM) technique. Substituting (4.3) for the integrand of the surface

integral in (4.9), the weighted residual is given by

Re
i =

∫

Ωe

∇× ~Ni · ∇ × ~E − ω2εµ ~Ni · ~E dΩe +

∫

Γe

2,3

~Ni ·
(

~U − γn̂ × n̂ × ~E
)

dΓe
2,3 (4.10)

The remaining task is to determine appropriate values for γ and ~U . Assuming the

surfaces Γ2 and Γ3 are sufficiently far from the discontinuity in the waveguide, it can be

assumed that only the TE10 mode is propagating (no higher order or evanescent modes).
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It is also assumed that a unit amplitude TE10 mode wave is incident on Γ2. The total

field on Γ2 may then be written as

~E = ~Einc + ~Eref = sin
(πx

a

)

e−jkzz1 + R sin
(πx

a

)

ejkzz1 (4.11)

where R is the reflection coefficient, kz is the propagation constant of the empty waveguide,

and z1 is the position of Γ2. Applying (4.11) to the first term of the left-hand side of (4.3),

the following is determined:

n̂ ×∇× ~E = −ẑ ×∇× ~E = −jkz
~Einc + jkz

~Eref = jkz
~E − 2jkz

~Einc (4.12)

Equating this with (4.3), it is apparent that γ = jkz and ~U = −2jkz
~Einc since the total

field is assumed to be in the form of the TE10 mode. Along Γ3, a similar analysis can

be performed. The field along Γ3 can be expressed as

~E = ~Etr = T sin
(πx

a

)

e−jkzz2 (4.13)

where T is the transmission coefficient and z2 is the location of Γ3. Applying the same

procedure, it is easily determined that, along Γ3, γ = jkz and ~U = 0.

Substituting these results into (4.10), the weighted residual becomes

Re
i =

∫

Ωe

∇× ~Ni · ∇ × ~E − ω2εµ ~Ni · ~E dΩe

−
∫

Γe

2,3

~Ni · γn̂ × n̂ × ~E dΓe
2,3 +

∫

Γe

2

~Ni · ~U dΓe
2

(4.14)
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which can be rewritten as

Re
i =

∫

Ωe

∇× ~Ni · ∇ × ~E − ω2εµ ~Ni · ~E dΩe

+

∫

Γe

2,3

γn̂ × ~Ni · n̂ × ~E dΓe
2,3 −

∫

Γe

2

n̂ × ~Ni · ~U × n̂ dΓe
2

(4.15)

Substituting (4.4) into (4.15), the final form of the residual is obtained and given

by

Re
i =

6
∑

j=1

Ej

∫

Ωe

∇× ~Ni · ∇ × ~Nj − ω2εµ ~Ni · ~Nj dΩe

+

∫

Γe

2,3

γn̂ × ~Ni · n̂ × ~Nj dΓe
2,3 −

∫

Γe

2

n̂ × ~Ni · ~U × n̂ dΓe
2

(4.16)

Following the matrix assembly procedure outlined in [123], the final matrix equation

can be obtained and is written as

([S] − [T ] + [Q]) {E} = {b} (4.17)

The entries in the local element matrices are, therefore, given by

Se
ij =

∫

Ωe

∇× ~Ni · ∇ × ~Nj dΩe

T e
ij =

∫

Ωe

ω2εµ ~Ni · ~Nj dΩe

Qe
ij =

∫

Γe

2,3

γn̂ × ~Ni · n̂ × ~Nj dΓe
2,3

be
i =

∫

Γe

2

n̂ × ~Ni · ~U × n̂ dΓe
2

(4.18)
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4.3.2 Mode-Matching Domain Truncation

The above domain truncation method requires at least one wavelength separation

of Γ2 and Γ3 from the discontinuity in the waveguide [123]. This method is sufficient

when the frequency is low or when the waveguide load does not require a significant

number of unknowns. For complex structures or high frequencies, the ABC method is

somewhat inefficient. Therefore, an expansion of the unknown field at the boundary in

terms of the orthogonal waveguide modes (eigenfunctions) presents a means by which

the computational domain may be significantly reduced.

For the MM technique [6], the electric field along Γ2 can be expressed by

~E = ~Einc +

∞
∑

m=0

∞
∑

n=0

amn
~ETE

mneγmnz1 +

∞
∑

m=1

∞
∑

n=1

bmn

[

~ETM
mn + ẑETM

zmn

]

eγmnz1 (4.19)

where amn and bmn are expansion coefficients and γmn is the propagation constant of

the specified mode in the empty waveguide. The terms ~ETE
mn , ~ETM

mn , and ETM
zmn are the

normalized waveguide modes and are given by

~ETE
mn =

√
υmυn

nmn

(n

b
cos
(mπx

a

)

sin
(nπy

b

)

x̂ − m

a
sin
(mπx

a

)

cos
(nπy

b

)

ŷ
)

(4.20)

~ETM
mn =

2

nmn

(m

a
cos
(mπx

a

)

sin
(nπy

b

)

x̂ +
n

b
sin
(mπx

a

)

cos
(nπy

b

)

ŷ
)

(4.21)

ETM
zmn =

2k2
c

πγmnnmn
sin
(mπx

a

)

sin
(nπy

b

)

(4.22)

where υα is Neumann’s number, nmn =
√

n2 a
b

+ m2 b
a
, and kc is the cutoff wavenumber

of the specified mode. Note that (4.20-4.22) are orthogonal according to the following
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relationships:
b
∫

0

a
∫

0

~ETE
mn · ~ETE

m′n′dxdy = δmm′δnn′ (4.23)

b
∫

0

a
∫

0

~ETM
mn · ~ETM

m′n′dxdy = δmm′δnn′ (4.24)

b
∫

0

a
∫

0

~ETE
mn · ~ETM

m′n′dxdy = 0 (4.25)

b
∫

0

a
∫

0

ETM
zmnETM

zm′n′dxdy = δmm′δnn′

k2
c

γ2
mn

(4.26)

Therefore, the coefficients of (4.19) may be expressed according to the following deriva-

tion.

Firstly, the reflected electric field is written as

~Eref =
∞
∑

m=0

∞
∑

n=0

amn
~ETE

mneγmnz1 +
∞
∑

m=1

∞
∑

n=1

bmn

[

~ETM
mn + ẑETM

zmn

]

eγmnz1 (4.27)

from which amn may be obtained by taking a vector dot product on both sides by

~ETE
m′n′e−γ

m′n′z1 and integrating over Γ2 as is shown by

∫

Γ2

~ETE
m′n′e−γ

m′n′z1 · ~ErefdΓ2 =

b
∫

0

a
∫

0

~ETE
m′n′e−γ

m′n′z1 · ~Erefdxdy =

∞
∑

m=0

∞
∑

n=0

b
∫

0

a
∫

0

~ETE
m′n′e−γ

m′n′z1 · amn
~ETE

mneγmnz1dxdy

+
∞
∑

m=1

∞
∑

n=1

b
∫

0

a
∫

0

~ETE
m′n′e−γ

m′n′z1 · bmn

[

~ETM
mn + ẑETM

zmn

]

eγmnz1dxdy

(4.28)
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which results in

amn =

∫

Γ2

~ETE
mne−γmnz1 · ~ErefdΓ2 (4.29)

Similarly, bmn is found to be

bmn =

∫

Γ2

~ETM
mn e−γmnz1 · ~ErefdΓ2 (4.30)

Following a procedure similar to that of the previous section, (4.12) becomes

n̂ ×∇× ~E = n̂ ×∇× ~Einc

+
∞
∑

m=0

∞
∑

n=0

amnγmn
~ETE

mneγmnz1 −
∞
∑

m=1

∞
∑

n=1

bmn
k2

0

γmn

~ETM
mn eγmnz1

(4.31)

which by substitution of (4.29) and (4.30) into (4.31) can be written in terms of the total

field and incident field as

n̂ ×∇× ~E = ~P + ~U (4.32)

where

~P =
∞
∑

m=0

∞
∑

n=0

γmn
~ETE

mn

∫

Γ2

~ETE
mn · ~EdΓ2

−
∞
∑

m=1

∞
∑

n=1

k2
0

γmn

~ETM
mn

∫

Γ2

~ETM
mn · ~EdΓ2

(4.33)

~U = n̂ ×∇× ~Einc −
∞
∑

m=0

∞
∑

n=0

γmn
~ETE

mn

∫

Γ2

~ETE
mn · ~EincdΓ2

+
∞
∑

m=1

∞
∑

n=1

k2
0

γmn

~ETM
mn

∫

Γ2

~ETM
mn · ~EincdΓ2

(4.34)
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Similarly, on Γ3, (4.32) is used with ~U = 0. Therefore, (4.9) can now be expressed by

Re
i =

∫

Ω

∇× ~Ni · ∇ × ~E − ω2εµ ~Ni · ~E dΩ

+

∫

Γ2

~Ni ·
(

~P + ~U
)

dΓ2 +

∫

Γ3

~Ni ·
(

~P
)

dΓ3

(4.35)

where ~P and ~U are evaluated on the appropriate surfaces.

When expanded, (4.35) is given by

Re
i =

∫

Ω

∇× ~Ni · ∇ × ~E − ω2εµ ~Ni · ~EdΩ

+

∞
∑

m=0

∞
∑

n=0

γmn

∫

Γ2,3

~Ni · ~ETE
mndΓ2,3

∫

Γ2,3

~ETE
mn · ~EdΓ2,3

−
∞
∑

m=1

∞
∑

n=1

k2
0

γmn

∫

Γ2,3

~Ni · ~ETM
mn dΓ2,3

∫

Γ2,3

~ETM
mn · ~EdΓ2,3

+

∫

Γ2

~Ni ·
(

n̂ ×∇× ~Einc
)

dΓ2

−
∞
∑

m=0

∞
∑

n=0

γmn

∫

Γ2

~Ni · ~ETE
mndΓ2

∫

Γ2

~ETE
mn · ~EincdΓ2

+
∞
∑

m=1

∞
∑

n=1

k2
0

γmn

∫

Γ2,3

~Ni · ~ETM
mn dΓ2,3

∫

Γ2,3

~ETM
mn · ~EincdΓ2,3

(4.36)
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Substituting (4.4) yields

Re
i =

6
∑

j=1

Ej

∫

Ω

∇× ~Ni · ∇ × ~Nj − ω2εµ ~Ni · ~NjdΩ

+

∞
∑

m=0

∞
∑

n=0

γmn

∫

Γ2,3

~Ni · ~ETE
mndΓ2,3

∫

Γ2,3

~ETE
mn · ~NjdΓ2,3

−
∞
∑

m=1

∞
∑

n=1

k2
0

γmn

∫

Γ2,3

~Ni · ~ETM
mn dΓ2,3

∫

Γ2,3

~ETM
mn · ~NjdΓ2,3

+

∫

Γ2

~Ni ·
(

n̂ ×∇× ~Einc
)

dΓ2

−
∞
∑

m=0

∞
∑

n=0

γmn

∫

Γ2

~Ni · ~ETE
mndΓ2

∫

Γ2

~ETE
mn · ~EincdΓ2

+
∞
∑

m=1

∞
∑

n=1

k2
0

γmn

∫

Γ2,3

~Ni · ~ETM
mn dΓ2,3

∫

Γ2,3

~ETM
mn · ~EincdΓ2,3

(4.37)

which can be written in the matrix form of (4.17). Now, however, the elements Qij and

bi are expressed by

Qij =
∞
∑

m=0

∞
∑

n=0

γmn

∫

Γ2,3

~Ni · ~ETE
mndΓ2,3

∫

Γ2,3

~ETE
mn · ~NjdΓ2,3

−
∞
∑

m=1

∞
∑

n=1

k2
0

γmn

∫

Γ2,3

~Ni · ~ETM
mn dΓ2,3

∫

Γ2,3

~ETM
mn · ~NjdΓ2,3

(4.38)
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bi = −
∫

Γ2

~Ni ·
(

n̂ ×∇× ~Einc
)

dΓ2

+

∞
∑

m=0

∞
∑

n=0

γmn

∫

Γ2

~Ni · ~ETE
mndΓ2

∫

Γ2

~ETE
mn · ~EincdΓ2

−
∞
∑

m=1

∞
∑

n=1

k2
0

γmn

∫

Γ2,3

~Ni · ~ETM
mn dΓ2,3

∫

Γ2,3

~ETM
mn · ~EincdΓ2,3

(4.39)

The resulting matrix equation can be solved using any single matrix inversion scheme.

4.3.3 Scattering parameters

After a matrix solution is obtained, the S-parameters of the waveguide section must

be obtained. The scattering coefficients along the waveguide cross-sections can be written

as

S11 =
~Eref

~Einc

∣

∣

∣

∣

∣

z=z1

=
~E − ~Einc

~Einc

∣

∣

∣

∣

∣

z=z1

=
~E

~Einc

∣

∣

∣

∣

∣

z=z1

− 1 (4.40)

S21 =

~Etr
∣

∣

∣

z=z2

~Einc

∣

∣

∣

z=z1

=

~E
∣

∣

∣

z=z2

~Einc

∣

∣

∣

z=z1

(4.41)

where the electric fields expressed are the average field over the waveguide cross-section.

If only the TE10 mode is assumed to exist, this formulation of the S-parameters is

sufficient. However, in the case of the MM formulation, many modes may exist at the

boundary. Therefore, the S-parameter definition must be augmented to remove any

modes other than the TE10 mode. The S-parameters for this situation are expressed by

S11 =

∫

Γ2

~ETE
10 · ~EdΓ2

∫

Γ2

~ETE
10 · ~EincdΓ2

− 1 (4.42)
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S21 =

∫

Γ3

~ETE
10 · ~EdΓ3

∫

Γ2

~ETE
10 · ~EincdΓ2

(4.43)

4.3.4 Asymptotic Waveform Evaluation

The computation of filter’s response requires the solution of (4.17) over a broad range

of frequencies. This can be very time-consuming since the matrix must be inverted at

each discrete frequency point. When a filter has rapid variation over a narrow band, more

points are needed to accurately sample the response which only compounds the matrix

solution problem. In this section, a method for quickly evaluating (4.17) over a broad

frequency range is presented. This technique is referred to as Asymptotic Waveform

Evaluation [156]. In AWE, the matrix equation is expanded using a Taylor series and is

then converted to a rational Padé function. The procedure is as follows.

Consider a matrix equation of the following form

Ax = b (4.44)

In general, A, the square matrix, is frequency dependent as well as the unknown x and

the source term b. The AWE procedure begins with the expansion of x into a Taylor

series [156] as

x (f) =

Q
∑

n=0

mn (f − f0)
n (4.45)
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where the mn are unknown coefficients. A and b are then expanded into Taylor series as

well. For simplicity, consider only a two term expansion where

x (f) = m0 + m1 (f − f0)

A (f) = A (f0) + A′ (f0) (f − f0)

b (f) = b (f0) + b′ (f0) (f − f0)

(4.46)

where the primes indicate derivatives with respect to frequency. Substituting this into (4.44)

yields

A (f0)m0 + A (f0)m1 (f − f0) + A′ (f0) m0 (f − f0)

+A′ (f0) m1 (f − f0)
2 = b (f0) + b′ (f0) (f − f0)

(4.47)

Matching like powers of (f − f0) then gives the set of equations

A (f0)m0 = b (f0)

A (f0) m1 + A′ (f0) m0 = b′ (f0)

(4.48)

from which the moments of x may be solved recursively as

m0 = A−1 (f0) b0

m1 = A−1 (f0)
[

b′ (f0) − A′ (f0) m0

]

(4.49)

More generally, the solution of an arbitrary number of moments is given as

m0 = A−1 (f0) b0

mn = A−1 (f0)

[

b(n) (f0)

n!
−

n
∑

i=1

A(i) (f0)mi−1

i!

] (4.50)
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where A(i) is the ith derivative of A and b(n) is the nth derivative of b.

The Taylor series expansion has an inherently limited bandwidth. A prohibitive

number of terms are necessary to achieve practical bandwidths [123]. Therefore, x can

be represented as a well-behaved rational Padé function of the form

x (f) =

L
∑

i=0
ai (f − f0)

i

1 +
M
∑

j=1
gj (f − f0)

j

(4.51)

where L+M = Q and the best performance is obtained when M = L. Substituting (4.51)

into (4.45) yields the equations for gj and ai after some manipulation. They are given

by





























mL mL−1 mL−2 · · · mL−M+1

mL+1 mL mL−1 · · · mL−M+2

mL+2 mL+1 mL · · · mL−M+3

...
...

...
. . .

...

mL+M−1 mL+M−2 mL+M−3 · · · mL



















































































g1

g2

g3

...

gM























































= −























































mL+1

mL+2

mL+3

...

mL+M























































(4.52)

ai =
i
∑

j=0

gjmi−j 0 ≤ i ≤ L (4.53)

Theoretically, more and more terms can be added to (4.45) to achieve higher band-

width. However, there are several practical issues to consider. First, AWE is memory

intensive since the storage of the derivatives of A is required. Therefore, to maintain

reasonable memory limits, the number of terms must usually be kept low. Additionally,

solution of the higher order moments is difficult since these equations are ill-conditioned.
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Therefore, it may be necessary to perform the AWE procedure at multiple points within

the frequency band (A must be inverted each time). For this case, a multi-point AWE

procedure is needed where a few frequencies are judiciously chosen to maximally utilize

the bandwidth obtainable from a given level of expansion. In this work, an 8th order

expansion is employed (L = M = 4) as well as the Complex Frequency Hopping [157]

to automatically select the AWE frequencies. In other words, this method is a binary

search where initially the minimum and maximum frequencies of interest are chosen as

expansion points. After evaluation of these AWE solutions, the error between them is

checked at a number of points (2 evenly spaced points in this work). If the error is

below a certain tolerance, the solution is obtained. If not, the AWE is performed again

at the center frequency of the band. Once again, the error is checked at a number of

points between [fmin, fcenter] and [fcenter, fmax]. This procedure continues to divide the

frequency band as necessary until the error is below the tolerance. It was found that for

the problems considered here, around 5 AWE evaluations were required.

4.4 Method Verification

To verify the accuracy of each formulation presented, the S-parameters for an X

band waveguide loaded with a 1 cm thick slab (εr = 2.2) were calculated over the full

X band range. After running several test cases, the ABC formulation was determined

to be unsuitable for this study since the size of the computational domain necessary to

achieve reasonable accuracy was prohibitively large (number of unknowns). Using the

MM formulation, the slab was discretized as shown in Fig. 4.4. For the undoped slab, Γ2

and Γ3 were chosen to coincide with the faces of the dielectric. The resolution shown by
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Figure 4.4: Waveguide mesh used for method verification.
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Figure 4.5: Comparison of FEM and theoretical |S11| for the loaded waveguide.
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Figure 4.6: Comparison of FEM and theoretical |S21| for the loaded waveguide.
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the mesh is far greater than what is actually necessary but is used anyway for illustrative

purposes. The matrix solution (9458 unknowns) was carried out using UMFPACK [158],

an efficient direct solver. Figs. 4.5 and 4.6 show the magnitude of S11 and S21, respec-

tively, as obtained from theory and the numerical procedure. Two numerical solutions

are shown: one which employs the AWE and one which is a traditional discrete sweep.

In both cases, the results obtained are indistinguishable from the theoretical result. The

discrete sweep consumed 835.08 seconds of CPU time whereas the AWE sweep needed

only 84.22 seconds. Therefore, for optimizations presented later, the AWE will be used

in all work presented in the remainder of this dissertation.

4.5 Results and Discussion

All results discussed in this section refer to a host dielectric material (εr = 2.2,

µr = 1, d = 1 mm) placed in an X band rectangular waveguide (dimensions a = 2.29

cm, b = 1.02 cm) as shown in Fig. 4.1. The longitudinal dimension of waveguide was set

to 5 mm with the slab located at the center. The MM scheme was applied to the faces

of the waveguide and convergence of the solution was tested for a variety of situations

(e.g., undoped and doped slabs). In all cases, the solution was found to converge when

the MM scheme allowed up to the first 40 TE modes (and corresponding degenerate TM

modes).

To verify the accuracy of the FEM, the model was compared to the analytical solu-

tion for undoped slabs presented in Chapter 2 and found to be in excellent agreement.

The FEM results for doped cases were compared to models created in HFSS, a com-

mercially available FEM software tool [159]. For these comparisons, the dopants were
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manually inserted into the HFSS model. In all cases, agreement with the FEM was found

to be excellent as shown in Fig. 4.7.

Presently, fabrication techniques do not exist that would allow control of the place-

ment and orientation of dopants embedded within a host medium. Therefore, for ran-

domly doped materials to be useful they must exhibit nearly identical frequency responses

(S-parameters) for a given set of doping conditions (e.g., doping level, feature size, etc.).

To determine the consistency of the frequency response when using wire dopants, 20

different random wire distributions were selected for each doping level simulated and

their results compared. The discretized geometry detailed previously contained a total

of 1921 edges (average edge length 1.25 mm). Doping levels of 50, 100, 150, and 200

wires were each simulated (80 total simulations).

The results of these simulations clearly showed that randomly doped dielectric slabs

can, for some cases, exhibit notch filter behavior. However, the results lacked any signifi-

cant consistency, with number of notches, notch frequency, and level of attenuation being

unpredictable. Fig. 4.8 shows two profiles generated using 150 wires and illustrates the

extreme variation in the obtained responses. Upon further investigation, the cause of the

inconsistency was determined to be the wire selection process. During this procedure, no

mechanism was in place to prevent wires from connecting. Consequently, in many cases,

random selection of wire locations resulted in the presence of long, erratically shaped

wires an example of which is illustrated in Fig. 4.2. Therefore, a second set of simulations

was conducted with the algorithm appropriately modified to prohibit wire connection.

For this condition, only negligible notch behavior was developed in most cases. How-

ever, if a notch did appear, there was noticeable consistency in notch frequency (fnotch

96



9 10 11 12
−50

−40

−30

−20

−10

0

Frequency (GHz)

S
21

 (
dB

) HFSS

FEM

Figure 4.7: Comparison of magnitude of S21 for triangular patch doping using present
method and HFSS.
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= 12.3 GHz) among responses for a given doping level as well as a correlation between

doping level and notch frequency. Furthermore, there was no consistency in the level of

attenuation for a given doping level as shown in Fig. 4.9. Therefore, since neither the

allowance or prevention of wire connections would be controllable during fabrication of

such a material, it must be concluded that random doping of a dielectric slab with short

wires does not result in a material with any predictable and useful properties.

Even though randomly embedded wires in the dielectric showed no promise of pro-

ducing a useful material, random wire placement on the dielectric surface has shown some

utility. Fabrication of such a material is also relatively easy using printed circuit and

microelectronic fabrication techniques. To easily characterize the behavior of surface-

doped dielectrics, valid wire locations were limited to vertical (y-directed) edges on the

front face of the slab with no wire connections permitted. The limitation of vertical

wires on the slab face was motivated by the fact that this particular orientation of wires

would have the most dramatic effect on the wave propagation. Doping levels of 10, 20,

35, 50, 65, and 150 wires (selected from Nsurface = 380 total vertical edges) were each

simulated 20 times to examine the variation in the frequency responses. In all cases, the

reflection and transmission coefficients were found to be nearly identical to the undoped

slab’s response. Therefore, for this particular frequency range, 1 mm wires did not result

in any form of substantial frequency-dependent behavior.

In order to investigate the response’s dependence on wire length, 2 mm wires were

generated by connecting two vertically adjacent edges. Again, doping levels of 10, 20,

35, and 50 2 mm wires were each simulated 20 times to determine the utility of such

materials. In this case, all 10 wires cases produced responses nearly indistinguishable
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Figure 4.8: A wide variation of S21 responses is shown for the cases of randomly embed-
ded wires.
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Figure 4.9: Illustration of the wide range of notch behaviors observed even when wire
connections within the dielectric are not allowed.

100



from the undoped slab’s response. For the 20, 35, and 50 wire cases, a few of the

responses exhibited a notch filter behavior as shown in Fig. 4.10.

A series of 3 mm wire simulations were also performed which included 20 simulations

for each doping level of 10, 20, and 35 wires. Results for the 10 and 20 wire cases generally

showed a notch filter response in the 10-12 GHz range (see Fig. 4.11). In the 35 wire

simulations, however, the response typically showed the presence of two notches, one

between 9-10 GHz and another between 11-12 GHz (see Fig. 4.11).

In the final analysis, we can conclude that, for the cases studied, short wires do not

yield especially useful reflection and transmission properties for the doped dielectrics.

Although, their utility may be questioned, dielectrics with wires only on the surface are

certainly realizable using current printed circuit technology. Therefore, the consistency

of the random wire configurations’ responses no longer presents the same fabrication

problem observed in the embedded wire case. However, these conclusions may not be

valid for finite wire radius doping.

Noting the above behavioral trends seen in the thin wire cases, the response of

thin triangular patches (∼1 mm edge length) placed on the dielectric surface was also

investigated. For these simulations, no restrictions were placed on the possibility of

patches connecting to form larger conducting shapes since the fabrication is relatively

simple for any arbitrary surface pattern. Twenty simulations were performed for each

of the 10, 20, 30, 40, 50, and 75 patch doping levels (120 simulations total). For the

case of 10 patches, no significant deviations from the undoped response were observed.

At the higher doping levels, a large variation in the notch frequency, bandwidth, level of

attenuation, and number of notches was found. Fig. 4.12 shows several of the possible
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Figure 4.10: Magnitude of S11 and S21 for typical case of a dielectric slab doped with 50
2 mm wires.
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types of responses realizable using the higher doping levels. As expected, these results

indicate that surface patterning based on triangular patches allows a wider variety of

notch transmission profiles than thin wires. Therefore, should a certain type of notch

behavior be desired, it is necessary only to find the right combination of patches to realize

the required response. This problem is addressed in the next chapter.

4.6 Summary

An investigation into the possible use of randomly doped dielectrics in order to

obtain consistent and useful frequency response profiles has been presented. Using the

FEM, the types of responses and feasibility of fabrication of the doped dielectric slab is

discussed. The dopants considered include short wires embedded in the dielectric and

wires and triangular patches distributed on the surface of the dielectric. Generally, it was

found that random doping produces materials with random notch filter behavior. In the

case of embedded wires, it is impractical to fabricate such materials due to the sensitivity

of the frequency response to wire location and orientation. In other words, randomly

doped slabs do not exhibit any predictable or repeatable filter behavior and, therefore,

are unsuitable to practical use. However, printed circuit and microelectronic fabrication

techniques would easily allow the creation of useful dielectric slabs with wires or patches

printed on the surface. In the above studies, it was shown that wires less than 3 mm in

length (for X band) are likely to give transmission responses which are too narrowband

to be of any practical value. Alternatively, doping with thin triangular patches showed

a wide range of notch filter profiles of which many show potential utility.
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Chapter 5

Waveguide Filter Optimization Using Surface Patches

5.1 Overview

This chapter presents a novel optimization scheme utilizing a hybrid Mode-Matching/Finite

Element Method (MM/FEM) and Genetic Algorithm (GA) to evaluate the versatility

of transverse waveguide filter designs. The novelty of the method lies in its completely

autonomous framework. By specifying a desired transmission response in terms of scat-

tering parameters, the GA optimizes the filter design using the MM/FEM discussed in

Chapter 4 and [7,160] without any further input from the user. The power of this method

is demonstrated through the optimization of a number of useful X band (8.2 - 12.4 GHz)

waveguide filters. Additionally, practical concerns related to the fabrication and ele-

mental connectivity within the waveguide are addressed and necessary modifications are

discussed.

5.2 Numerical Procedure

5.2.1 Theory

The filter geometry used in this work is composed of a dielectric slab located within

an X band waveguide as represented in Fig. 5.1. Conducting patches printed on the front

face of the slab will perturb the transmission and reflection response (S-parameters) of

the slab possibly resulting in novel filter behavior within the frequency band of interest.

To characterize the response of such a geometry, a FEM forward solution technique is
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Figure 5.1: Rectangular waveguide with optimized filter.
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employed. The details of three-dimensional edge-based FEM formulations are discussed

in Chapter 4. A Mode-Matching (MM) scheme is employed on Γ2 and Γ3 which effectively

truncates the FEM domain [6, 7, 160].

5.2.2 Optimization Technique

The front face of the dielectric slab located within the waveguide was discretized

into a regular grid as shown in Fig. 5.2. During the iterative process, sets of pixels are

selected to be conductors, and the responses of the resulting structures are determined.

Over the course of several iterations, a set of pixels is found which yields the optimal

response.

Given the discrete nature of the gridding, the GA is an advisable choice for carrying

out the optimization. An overview of the GA have been presented in Chapter 2. Fig. 5.3

shows a flowchart of the GA implemented in this chapter. The pixel material is chosen

as the optimization parameter such that the front face of the slab is encoded into a

binary string where ’1’ represents a perfectly electrically conducting (PEC) patch and

’0’ represents the dielectric (no conductor). For all the cases presented in Section 5.3, the

slab surface is divided into a 20 x 10 grid (x vs. y) resulting in 200 pixels. To reduce the

search space, 4-fold symmetry is assumed as illustrated in Figs. 5.1 and 5.2. Therefore,

the search space is reduced to a 50 element binary string.

Initially, the typical elitism, crossover, and mutation operators are employed in the

GA. At each generation, the two best solutions are chosen as elite children and are

directly copied into the population of the next generation. Binary tournament selection

is used to choose members to be evaluated for crossover [38]. Single-bit and double-bit
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mutation is implemented as outlined in Chapter 2. The crossover and mutation rates are

chosen to be 80% and 10%, respectively [38]. Once again the Total Redundancy Removal

GA (TRRGA) scheme is employed to more aggressively search the solution space. The

population size is set as 20, and the algorithm terminates after 500 generations if a fitness

tolerance (0.01) has not been met. In the examples presented here, |S21| is the desired

filter characteristic, and the error function used to evaluate each population member is

given by

Err =
1

N

N
∑

i=1

(

∣

∣SFEM
21 (fi)

∣

∣−
∣

∣

∣
SDesired

21 (fi)
∣

∣

∣

)2
(5.1)

where N is the number of frequency points used and
∣

∣SFEM
21 (fi)

∣

∣ and
∣

∣SDesired
21 (fi)

∣

∣ are

the calculated and desired S21 parameters evaulated at frequency fi, respectively.

Once the best population member has a fitness value below a certain value (0.15

in this work), the redundancy removal scheme becomes inefficient. This tolerance level

represents an approximate point at which a “fine-tuning” scheme is better-suited to

further reduce the error than aggressive interrogation of the entire solution space. It

was found that switching to a high mutation rate (80%) as shown in Fig. 5.3 yielded

better performance since the search was then centered around the member with the best

fitness.

5.2.3 Practical Considerations

Ohira, et al. [72] cite a practical issue associated with FSS optimization. In their

work, a MoM code is employed to optimize an FSS element shape. They show that when

metal patches are joined only at the corners, the adopted MoM scheme does not allow
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current to flow between the patches. This represents a significant analysis difficulty in

terms of assuring that the optimized design would be realizable when fabricated. To

correct this deficiency, an automated geometry modification procedure known as the

Geometry Refinement Method (GRM) is required.

Fig. 5.4 shows two corner-connected patches and two mesh triangles at the patch

junction. The traditional FEM vector basis functions suffer from a weakness similar to

that described in [72]. The electric field inside the triangular patches on either side of

the metallized patches are represented by the set of basis functions. However, when two

sides of the triangle have no tangential electric field, only the basis function associated

with the outer edge remains to describe the field in this corner region (in the case of

zeroth-order basis functions). By definition, this function is zero-valued (both tangential

and normal components) at the corner where the PEC patches meet. Therefore, there

can be no electrical connection between the PEC patches (no surface charge is present).

Similar arguments hold even if the corner junction is discretized in a different fashion

such as when only one triangle edge rests along the patch or higher order functions are

used.

This issue is addressed by the GRM which is part of the GA as shown in Fig. 5.3.

After the generation of a new population member, the binary string is scanned for

corner-connected patches. When this condition is encountered, one of the two empty

pixels is filled (random decision) so as to eliminate the corner connection. The process

is repeated until no corner connections are present on the substrate grid. In addition to

resolving the problem presented by the basis functions, this method also eliminates any
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fabrication uncertainty as to whether or not a physical connection was actually made in

the measured sample.

Similarly, for the algorithm presented here, no PEC patches are allowed along the

outer ring of the grid (Fig. 5.4). This ensures that the edge patches are electrically

isolated from the waveguide walls. Thus, this requirement further reduces the search

space to a 36 bit binary string.

5.2.4 Forward Solution

The fitness evaluation of any population member can be carried out via a forward

solution using the MM/FEM. This method was found to be an efficient means of deter-

mining the S-parameters of the loaded substrate. For additional method verification, an

optimization was performed for a certain bandpass filter characteristic and then com-

pared to the same geometry simulated in HFSS [159]. Measurements of the fabricated

filter were also conducted to ensure that both computational techniques returned accu-

rate data. Fig. 5.5 shows the desired response compared to the optimized FEM response

as well as the results of HFSS and measurements. As indicated, the FEM scheme led

to errors in the computation of the fields. A probable explanation for these errors is

the mesh resolution. For the FEM to be a computationally efficient method, the mesh

generation was done before optimization so that one mesh, and therefore one matrix

could be used throughout the optimization. Also, each pixel was discretized as two tri-

angles in the mesh generation scheme. However, in the vicinity of patch corners, the

fields vary rapidly and a linear basis functions cannot realize this type of behavior. Ef-

forts were made to increase the resolution of the mesh, but the mesh generator available
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was not sophisticated enough to do this efficiently. The matrix resulting from this high

resolution mesh was too computationally intensive to invert and maintain a reasonable

optimization time.

HFSS, however, returned results that were in excellent agreement with the mea-

surements. Therefore, HFSS was integrated into the optimization scheme as the forward

solver. The accuracy of HFSS can be attributed to two things: (1) HFSS uses a higher

order basis function as opposed to the zeroth-order basis functions used in Chapter 4,

and (2) HFSS utilizes an adaptive solver which refines the mesh as necessary in the

vicinities of rapid field variation.

HFSS employs a MM scheme slightly different from that presented here. Through

a hybridization procedure, the field within the waveguide structure and the unknown

waveguide eigenfunction amplitudes required for the impedance match at Γ2 and Γ3 are

solved simultaneously. The forward solution begins with a 2.5D eigenvalue solution at

each of the ports. Now the field variation for each mode is known at the ports and the

unknown amplitudes can be solved for during the FEM solution. Therefore, this has the

benefit of directly providing the magnitude and phase of the S-parameters (TE10 mode)

at the waveguide ports.

5.3 Results

In this section, four design examples are presented to demonstrate the utility of the

proposed optimization technique. For all examples, the filter patterns are optimized on

a substrate (εr = 2.2, µr = 1, thickness = 0.7874 mm) placed in a section of WR90

waveguide as represented by Fig. 5.1. The model utilized in HFSS for the optimization
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procedure is shown in Fig. 5.6. The geometry is generated prior to the optimization, and

during the procedure, the algorithm simply selects which patches are to be conductors.

As previously mentioned, the GA is allowed to optimize the response until the RMS

error between the design goal and simulated responses is less than 0.01 or the algorithm

reaches 500 generations. Measurements of fabricated samples are carried out according

to the method presented in Section 3.3.

5.3.1 Notch Filter

As an initial test, a notch filter was specified with a center frequency of 10.4 GHz

and 3 dB bandwidth of 1.4 GHz. For the error function, only five points were evaluated:

the center frequency (|S21| = 0), two 3 dB points (|S21| = .5), and the ends of the X band

(|S21| = 1). After optimization, the 5-point RMS error between the simulated response

and the ideal response was 0.0933. The fabricated sample is shown as pattern A in

Fig. 5.7. Measurements showed excellent agreement with the simulation (RMS error =

0.0667) as well as the design goal. All three |S21| responses for this pattern are shown

in Fig. 5.8.

5.3.2 Bandpass Filter

A bandpass filter was optimized with center frequency of 10.3 GHz and 3 dB band-

width of 1.6 GHz. In this case, 51 points were evaluated for the error function. The

ideal response was specified as

|S21| = exp

(

−
(

f − 10.3 · 109
)2

1018

)

(5.2)
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Figure 5.6: HFSS model used for optimization
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Figure 5.7: Fabricated samples produced using the patterns generated by the optimiza-
tion procedure. A dime is shown for size reference.
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Figure 5.8: Comparison of S21 responses of ideal, simulated, and measured notch filter.
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where f is the frequency. The resulting RMS error between the ideal and simulated

responses was 0.0482. The filter pattern is noted as B in Fig. 5.7. Measured results

were found to be in excellent agreement with the ideal and simulated results as shown

in Fig. 5.9. The RMS error between the measurements and simulation was calculated to

be 0.0252.

5.3.3 Low Pass Filter

The next example optimized was a low pass filter with 3 dB frequency of 11.1 GHz.

The ideal response was specified as shown in Fig. 5.10. Optimization yielded pattern

C shown in Fig. 5.7 for which the RMS error was 0.0685. Again, agreement was quite

good between the ideal, simulated, and measured responses (see Fig. 5.10) with the

measurement error being 0.0252.

5.3.4 High Pass Filter

Finally, a high pass filter with 9.1 GHz 3 dB frequency was desired as shown in

Fig. 5.11. The optimization yielded pattern D in Fig. 5.7 which gave an RMS error

of 0.0368. Fig. 5.11 shows the ideal, simulated, and measured responses, all of which

show excellent agreement with the exception of a small error near 12 GHz. This small

error resulted in a slightly higher measurement error of 0.134 although, clearly, overall

agreement is excellent.

5.4 Summary

A general optimization scheme for designing transverse rectangular waveguide filters

has been presented and shown to yield excellent results for a wide variety of useful filter
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Figure 5.9: Comparison of S21 responses of ideal, simulated, and measured bandpass
filter.

122



9 10 11 12

-35

-30

-25

-20

-15

-10

-5

0

Frequency (GHz)

|
S

2
1

 
d

B
|

Ideal

Simulation

Measurements

Figure 5.10: Comparison of S21 responses of ideal, simulated, and measured low pass
filter.

123



9 10 11 12

-50

-40

-30

-20

-10

0

Frequency (GHz)

|
S

2
1

 
d

B
|

Ideal

Simulation

Measurements

Figure 5.11: Comparison of S21 responses of ideal, simulated, and measured high pass
filter.

124



responses. Additionally, this technique can be applied to waveguides of arbitrary cross

section while completely alleviating the burden of analytical design techniques. This

method employs a modified Genetic Algorithm to aggressively search a large discontinu-

ous solution space until a low RMS error has been achieved. At this point the fine-tuning

mechanism becomes active. Experiments included optimization of notch, bandpass, low

pass, and high pass filters, all of which showed extremely good agreement between ideal,

simulated, and measured |S21| responses.
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Chapter 6

Conclusions

With the wireless communications industry and military demand for smaller, higher

performance devices, traditional electromagnetic design methods are no longer suitable.

A hybridization of computational tools and optimization algorithms has become neces-

sary for the design challenges faced by today’s engineers. In response, this dissertation

presented several novel methods utilizing fast and efficient optimization techniques that

may lead to fully autonomous engineering design and inversion codes in the future.

In Chapter 2, a thorough characterization of optimization techniques and error

functions was conducted with regard to the extraction of complex permittivities from

multilayered dielectric slabs. Sequential Quadratic Programming (SQP), the Genetic

Algorithm (GA), and Particle Swarm Optimization (PSO) were applied to ideal and

measured S-parameter data, and the complex permittivities of each individual layer

were estimated. SQP was found to be a very fast method, but often suffered from

local minima trapping. GA and PSO, however, were able to accurately extract the

permittivities for multilayer materials (1, 2, and 3 layer materials discussed). After

application of the Total Redundancy Removal scheme to the GA, the convergence rate

was improved significantly, thereby establishing GA as the preferred method. Of the

three error functions considered, the function which utilized only magnitude information

achieved superior results in many cases. However, as the number of layers increased, the

inclusion of phase information within the error function was determined to be necessary.
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In Chapter 3, the method of Chapter 2 was extended to include the extraction of

complex permeability. To the author’s knowledge, no other efforts to date have been

successful in extracting the full set of complex constitutive parameters from individual

layers of multilayered slabs. Since this problem results in a much higher dimensionality

search space, a novel Multi-Point SQP algorithm was developed and presented to exploit

the efficiency and accuracy of SQP while improving its ability to avoid local minima.

Overall, the algorithm showed better accuracy than the GA for single layer cases and

was over 20 times faster in finding the global minimum.

In Chapter 4, a novel methodology for realizing waveguide filters was presented.

In this method, small, thin conducting wires (or other conducting shapes) are used to

randomly dope a dielectric slab. With proper selection of wire length and density, it was

shown that novel filter behaviors can result. However, when practical constraints on the

doping methods were applied, the resulting doped slabs showed either no useful filter

behavior or erratic behavior not controllable by modern fabrication processes. When

conducting patches were used and restricted to the surface of the slab, a variety of novel

notch filter characteristics were observed. Using this approach, fabrication difficulties can

be avoided since standard printed circuit technology can easily be used to manufacture

the filters. To realize specific filter responses, optimization algorithms could be employed

to correctly locate the placement of the conducting patches.

In Chapter 5, a method is presented to automate the design of waveguide filters

using surface patches on dielectric slabs loaded into the guide. This technique utilizes a

combination of a FEM forward solver (HFSS) in the context of a GA. The GA presented
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here was modified with a fine-tuning mechanism which becomes operational once the er-

ror has dropped below a certain threshold. Also, some practical fabrication concerns are

addressed by employing the Geometry Refinement Method to eliminate corner-connected

patches. The novelty and utility of this method were demonstrated by allowing the al-

gorithm to optimize patch configurations for a number of filter responses. In all cases,

the resulting structure showed excellent agreement with the desired response and was

further verified by fabrication and measurements.

6.1 Future Work

6.1.1 Constitutive Parameter Extraction

A number of suggestions are given in this section regarding possible avenues for

future research regarding the constitutive parameter extraction technique. As previously

addressed, the availability of limited information over a band of frequencies determines

the number of layers that can be accurately handled. With the addition of more layers

and uncertainties in layer thicknesses or number of layers, significantly more information

must be provided to limit the number of local minima within the search space. This

problem is not only affected by the dimensionality of the search space but by the accuracy

of the measured data available. To increase the amount of information available to the

extraction algorithm, a free space measurement technique [52] is suggested in which

information over both frequency and angle of incidence can be provided. To realize such

a scheme, modification of the forward solver is all that is required. With the current

availability of numerical electromagnetics codes to handle free space scattering, it is likely
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that this task could be implemented using FEM, Method of Moments, Finite Different

Time Domain, hybrid techniques, etc.

6.1.2 Waveguide Filters

Extensions to the waveguide filter design method of Chapter 5 are numerous. The

work can easily be extended to account for arbitrary waveguide cross sections since the

HFSS geometry is the only parameter requiring modification. Also, the method may

be extended to handle multiple layers or to also optimize dielectric thickness. These

modifications are trivial but would greatly increase the search space and, therefore,

computational intensity of the optimization. Also, it is not recommended, although

theoretically possible, to optimize for the dielectric constant of the slab since these

materials may not be readily available.

6.1.3 Extension To Antenna Design

The methodology utilized throughout this work may also be extended for the design

of antennas. Wire antenna shape can be optimized using the techniques presented here

to obtain novel radiation patterns or bandwidth characteristics. Similarly, the waveguide

filter design method can directly be applied to the automation of patch antenna design.

Simply changing the forward solver to an efficient Method of Moments code or modifying

the FEM code, the same optimization algorithm can be applied to design novel printed

circuit antennas.

In conclusion, the present work opens up new areas of research for accurate design,

simulation, and characterization of problems in a wide variety of fields. The inversion
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techniques presented have enormous significance to an array of topics including well-

logging, mineral location, unexploded ordnance discrimination, finance, etc. Also, the

hybridization of design methodologies and optimization techniques such as those pre-

sented here will ultimately lead to fully autonomous engineering tools thereby rapidly

accelerating the pace of technological development.
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