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Abstract

This dissertation develops an application of the state-of-the-art convex optimization al-

gorithms to the vehicle state estimation problem. The main challenge in this field is that

the time-varying uncertain parameters and nonlinearity are both contained in the vehicle

dynamical models. In the automotive control systems products, the gain-scheduled control

and estimation algorithms are widely used to deal with these difficult components. However,

the tuning of the stable controller and observer parameters is a heuristic and time-consuming

task. A vast amount of simulation and validation experiments have to be implemented to

verify the performance of the algorithm. Sometimes, the trial-and-error cycle is inevitable.

Therefore, an efficient gain-scheduled observer design methodology for both linear and non-

linear systems is the main topic of this dissertation.

First, the linear-parameter-varying (LPV) representation of the three degree-of-freedom

(DOF) bicycle model is presented, where the longitudinal velocity and acceleration are

treated as the online measurable time-varying parameters. The LPV design methodology

overcomes some eminent drawbacks of the traditional gain scheduled design methods. In

the LPV framework, the search of the globally convergent observer parameters are resorted

to a semidefinite programming problem. It is also shown that some robust controller design

methods can be applied to develop an optimal unstructured LPV observer.

Next, the LPV observer is extended to a gain-scheduled interval observer where the vari-

ation range of the uncertain cornering stiffness parameters is incorporated into the observer

design. Instead of a single estimation curve for each state variable, the interval observer

computes the lower and upper bounds of all the admissible values of the states in the pres-

ence of parametric uncertainty. For automotive active safety systems, this envelope provides
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an estimation of the worst case bounds for the critical vehicle state under uncertain road

conditions.

Although the gain-scheduled interval observer directly takes the uncertain cornering

stiffness parameters into consideration, the tire-road friction is a highly complex nonlinear

phenomenon such that the linear observer is far from satisfactory in some extreme maneuvers.

To further improve the performance of the estimation algorithm, a nonlinear observer design

methodology is also developed for a class of differentiable Lipschitz continuous nonlinear

systems. Since the nonlinear bicycle model also contains the time-varying parameters, the

time invariant nonlinear observer is further augmented to a gain scheduled nonlinear observer.

The simulation results demonstrate the validity of the proposed gain-scheduled observer

design to provide accurate and robust estimation of vehicle states, such as tire slip angles in

the presence of time-varying parameters and nonlinearities.

All the vehicle state estimation algorithms proposed in this dissertation are verified by

using the simulation data from CarSim, a commercial vehicle simulation software package.

Additionally, all the observer design methodologies are formulated in a high-level systematic

approach, which allow them to be applied to other systems.
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Chapter 1

Introduction

1.1 Motivation

The first automobile powered by an internal combustion engine was built by Karl Benz

more than one hundred years ago. Since then, the vehicle technologies have been continuing

to evolve such that the motor vehicle always represents the latest technical achievements

in the fields of mechanical, material, electrical and information engineering. Nowadays, the

automobile has already become a computer-driven high-tech product. Hundreds of micro

controllers are mounted on a single vehicle that govern the operation from complex power-

train systems to body control systems. Especially, the ever-increasing demand for safety and

driving comfort makes the major OEMs and suppliers invest heavily on the research and

development of safety and advanced driver assistance systems (ADAS). Various automotive

active safety systems, such as anti-lock braking systems (ABS), traction control (TC), cruise

control (CC) and electronic stability control (ESC), are becoming standard installations for

all the vehicles on the market. All these electronic control units (ECU) aim at keeping the

vehicle away from crash and maintaining the stability. The stability of the vehicle is affected

by crucial factors, such as tire-road friction forces, side slip angle, rollover index and so on.

However, no commercial vehicles are equipped with sensors that can directly measure these

signals due to either cost concerns or technical challenges. This dilemma provides a need

for an algorithm that can efficiently and accurately estimate those critical vehicle states.

Therefore, vehicle state estimation attracts numerous researchers both from industry and

academia. It is also an important technique in one of today’s most popular research fields

— autonomous vehicle driving systems.
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Generally, the vehicle state estimation algorithm can be classified as two categories:

kinematic approach and dynamical model based approach. The kinematic approach relies

on the geometry of motion together with the measurements from inertial measurement units

(IMU) and some advanced vehicle velocity sensors, such as GPS receiver, lidar and radar,

to estimate the speed related signals. Due to the lack of verification from physical laws,

the measurement error has a huge impact on the estimation accuracy in this approach.

The dynamical model based approach incorporates a physical model in the estimator, which

partially overcomes the disadvantage of high sensitivity to the quality of sensor signals in the

kinematic approach. However, the highly nonlinear and uncertain vehicle dynamic models

make the design of the robust controller or estimator extremely challenging. This dissertation

aims at providing a systematic approach for the robust nonlinear vehicle state estimator

design such that those nonlinear and time-varying uncertain dynamical models can be treated

in a rigorous way. The research results also prove that the linear matrix inequalities (LMIs)

based convex optimization algorithms is a powerful tool in the systems and control theory.

1.2 Contributions

The main contributions of this dissertation are the following three aspects:

1) The linear parameter varying (LPV) modeling and control design technique aims at

overcoming some critical weak points of the traditional gain-scheduled controller, such

as local stability rather than global stability. Various significant theoretical break-

through and successful applications were achieved in the past twenty years. Although

the gain-scheduled controllers are very common in automotive control systems, old de-

sign techniques still dominate in real-world applications. The elegant LPV theoretical

method has just appeared in automotive literature for a few years. This dissertation

contributes an example that applies the LPV design methodology to develop the gain

scheduled observer, in which the measured inertia signals, such as longitudinal velocity

and acceleration, are treated as the scheduling parameters for slip angle estimation.
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This result also relaxes the assumption of the constant longitudinal velocity that is

used by many previous research papers. The robust design methods that minimize

the estimation error resulting from the uncertainty of scheduling parameters are also

discussed.

2) Another contribution is that a systematic interval observer design method for both

linear-time-invariant (LTI) and linear-parameter-varying (LPV) systems with para-

metric uncertainty has been proposed and applied to the bicycle model, where the

cornering stiffnesses are the uncertain parameters with known variation ranges. Unlike

previous methods reported in the literature for LTI/LPV interval observers, the well-

developed semidefinite programming (SDP) approach [58] [54] is proposed to search for

the qualified observer gains, which result in a robustly stable and cooperative observer

error dynamical system.

3) To take the nonlinearity in the tire-road friction model into consideration, a nonlinear

observer design technique is developed in a unified framework for both time invariant

and parameter varying Lipschitz nonlinear systems that are differentiable with respect

to state variables. In addition to ensuring asymptotic convergence, extension of this

observer design technique to optimization of a L2 performance criterion is presented,

which enables the observer to handle the unknown disturbance inputs. Next, augmen-

tation of this technique to parameter varying nonlinear (PVNL) systems is developed.

Different from methods suggested in the LPV literature, a simple but non-conservative

finite dimensional relaxation method for quadratic parameter dependent LMIs is pre-

sented. These results constitute the first systematic observer design methodology in

literature for PVNL systems to the best of the author’s knowledge.
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1.3 Dissertation Outline

This dissertation is organized as follows. First, some background knowledge in control

theory is reviewed in Chapter 2. Next, linear parameter varying (LPV) modeling and ob-

server design methodology is applied to the bicycle model for slip angle estimation in Chapter

3. Both perfect measurement and imperfect measurement with bounded error of the schedul-

ing parameters is discussed in detail. In Chapter 4, the focus is on the gain-scheduled interval

observer with uncertain cornering stiffness parameters. Finally, nonlinear tire-road friction

is incorporated into the bicycle model in Chapter 5. With this nonlinearity, the observer

development for time invariant differentiable nonlinear system and its augmentation to the

parameter varying nonlinear (PVNL) system is presented in this chapter. The conclusions

of this dissertation and recommendation for future research directions are stated in Chapter

6.
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Chapter 2

Preliminaries

In this chapter, some background knowledge in control theory are briefly reviewed.

These concepts will be referred to frequently in the later chapters of observer development.

2.1 Linear Fractional Representation (LFR)

Linear fractional representation (LFR) is a widely used modeling method in classical

robust control theory. The basic idea is to represent the feedback loop as the interconnection

of the generalized plant P and the controller K (lower LFR), or represent the uncertain

process model as the interconnection of nominal model P and the uncertainty block ∆

(upper LFR) [56] [38].

Figure 2.1: Upper and lower linear fractional representation

The transfer functions from the exogenous input w to the performance output z in the

two cases are shown below.

• Transfer Function for Upper LFR

z = [P22 + P21∆(I − P11∆)−1P12]w (2.1)
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• Transfer Function for Lower LFR

z = [P11 + P12K(I − P22K)−1P21]w (2.2)

where the transfer function matrix of the generalized plant P has the following form.

P (s) =

 P11(s) P12(s)

P21(s) P22(s)

 (2.3)

Here, it is implicitly assumed that the inter-connection in both cases are well-posed (no

singular algebraic loop). LFR is the basis of many well-developed methods in linear robust

control theory, such as µ analysis, H∞ controller design and so on [56]. In this dissertation,

the focus is the interconnection of the nominal model and the uncertainty block. In what

follows, an example to illustrate how to derive the upper linear fractional representation for

an uncertain LTI system whose state space matrices depend on the uncertainty parameter

δ = (δ1, . . . , δk)
T affinely will be presented [54].

Suppose the following state space model with parametric uncertainty is given.

 ẋ

z

 =

 A(δ) B(δ)

C(δ) D(δ)


 x

w

 (2.4)

The affine δ dependence implies

 A(δ) B(δ)

C(δ) D(δ)

 =

 A0 B0

C0 D0

+
k∑

i=1

δi

 Ai Bi

Ci Di

 (2.5)

The above matrices can be factorized as

 Ai Bi

Ci Di

 =

 Li,1

Li,2

( Ri,1 Ri,2

)
(2.6)
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where

 Li,1

Li,2

 and
(

Ri,1 Ri,2

)
have full column and row rank respectively. Such a

factorization can be obtained by hand calculation and it is not unique in general. Then, the

original system can be described as

 ẋ

z

 =

 A0 B0

C0 D0


 x

w

+

 L1,1 · · · Lk,1

L1,2 · · · Lk,2




w1

...

wk


z1
...

zk

 =


R1,1 R1,2

...
...

Rk,1 Rk,2


 x

w


(2.7)

The vectors (w1 · · · wk)
T and (z1 · · · zk)T are related by


w1

...

wk

 =


δ1I

. . .

δkI




z1
...

zk

 (2.8)

where the size of the diagonal matrix δiI is equal to the number of columns or rows of Li,1

Li,2

 or
(

Ri,1 Ri,2

)
respectively. In the next chapter, this method to derive the

linear fraction representation of the bicycle model with uncertain longitudinal velocity and

acceleration parameters will be applied.

2.2 Linear Matrix Inequalities (LMIs)

Linear matrix inequalities (LMIs) were first applied in control system analysis by Yakubovich

in the 1960s. Since 1990, the appearance of efficient numerical solvers, such as the ellipsoid

method and the interior point algorithm, accelerated the application of LMIs to various engi-

neering problems. Nowadays, it has become a standard numerical tool in control community
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[58] [35] [54]. Many important methodologies in mathematical system theory and control,

such as H2/H∞ control, robust model predictive control, linear-parameter-varying (LPV)

controller design, system identification, hybrid control system analysis and development are

based on this technique.

Although the LMIs used in some papers may have a very large dimension and look

quite complicated, the application of LMIs can make the system analysis and controller

design easier. In what follows, this powerful method is quickly reviewed.

2.2.1 Definition of LMI and BMI

A linear matrix inequality (LMI) is a special semidefinite constraint that has the fol-

lowing form [58] [54]:

F (x) = F0 + x1F1 + · · ·+ xmFm ≤ 0 (2.9)

where x = (x1, . . . , xm)
T with xi ∈ R denotes the collection of all the decision variables.

Fi = F T
i , i = 0, 1, . . . ,m are fixed symmetric real matrices. The symbol ”≤” represents

a negative semidefinite constraint. Similarly, the positive semidefinite constraint can be

defined by the symbol ”≥”. From the above definition, the two following properties for F (x)

are obvious:

1. Each element in the matrix F (x) is an affine function of x;

2. F (x) is a symmetric matrix;

A bilinear matrix inequality is another special semidefinite constraint that has the fol-

lowing form [65]:

F (x, y) = F0 +
m∑
i=1

xiFi +
n∑

j=1

yiGi +
m∑
i=1

n∑
j=1

xiyjFi,j ≤ 0 (2.10)

where x = (x1, . . . , xm)
T , y = (y1, . . . , yn)

T with xi, yj ∈ R denote the collection of all the

decision variables. Fi = F T
i , Gi = GT

i , Fi,j = F T
i,j, i = 0, 1, . . . ,m, j = 1, . . . , n are all fixed
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symmetric real matrices. Similar as the LMI, F (x, y) is a symmetric matrix. Different from

the LMI, each element in the matrix F (x, y) is a bi-affine function of x and y, which implies

that the BMI degenerates to a LMI in x for fixed y and a LMI in y for fixed x.

Because the BMI is a more general semidefinite constraint than the LMI, they can

describe much wider classes of constraint sets and can be used to represent more types of

optimization and control problems. However, the main drawback of the BMI is that it is

much more difficult to handle computationally than the LMI. In the application of control,

several mathematical tricks are developed to transfer the BMI constraint to a LMI constraint.

In what follows, concentration will be on the review of mathematical background of LMIs

and its application in control. The BMI will be occasionally referred.

2.2.2 Convexity

As demonstrated in the following, the semidefinite condition for F (x) is indeed a convex

set for the x [54].

Lemma 1 If the LMI in Eq. (2.9) is feasible, all the feasible points constitute a convex set.

Proof: Suppose x and y are two feasible points, such as F (x) ≥ 0 and F (x) ≥ 0. Any point

in the line segment between x and y can be represented as λx+ (1− λ)y, 0 ≤ λ ≤ 1. Then,

the affine matrix function F (λx+ (1− λ)y) can be evaluated as

F (λx+ (1− λ)y) = λF (x) + (1− λ)F (y) ≥ 0 (2.11)

2.2.3 Congruence Transformation and Schur Complement

Congruence transformation and Schur complement are two frequently used methods that

transfer a BMI constraint to an equivalent LMI constraint [65]. From matrix theory, it is

known that the congruence transformation does not change the number of positive, negative
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and zero eigenvalues of a symmetric matrix. Therefore, an infinite number of equivalent

LMIs can be derived.

Lemma 2 (Congruence Transformation) The semidefinite condition F (x) ≤ 0 in Eq.

(2.9) or F (x, y) ≤ 0 is feasible if and only if its congruence transformation is feasible.

MTF (x)M ≤ 0, NTF (x, y)N ≤ 0 (2.12)

where M and N are both non-singular real matrices.

Lemma 3 (Schur Complement) The real symmetric block matrix shown below is negative

definite  Q ST

S R

 ≺ 0 (2.13)

if and only if either of the following two sets of semidefinite constraints is feasible.

1) Q ≺ 0 and R− STQ−1S ≺ 0

2) R ≺ 0 and Q− SR−1ST ≺ 0

where the symbol ≺ represents a negative definite constraint.

Proof: The Schur complement can be proven from the following two congruence transfor-

mations for the matrix

 Q ST

S R

.
 I 0

−SQ−1 I


 Q ST

S R


 I −Q−1ST

0 I

 =

 Q 0

0 R− SQ−1ST



 I −STR−1

0 I


 Q ST

S R


 I 0

−R−1S I

 =

 Q− STR−1S 0

0 R
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Hence, the negative definite constraint in Eq. (2.13) is equivalent to the negative definite

constraints on the diagonal blocks of its two congruence transformations.

One of the most frequently used applications of Schur complement in robust control

theory is the linearization of the algebraic Riccati inequality (ARI).

ATP + PA+ PBR−1BTP +Q ≺ 0 (2.14)

where R = RT ≻ 0. The symmetric matrix P is the decision variable. This is a quadratic

matrix inequality rather than a LMI due to its quadratic dependence on P . By applying

Schur complement, the following equivalent LMI can be obtained

 ATP + PA+Q PB

BTP −R

 ≺ 0 (2.15)

where each element of the matrix on the left side depends affinely on the elements of P . It

will be shown later that this LMI is the basis of H∞ analysis of the LTI systems.

2.2.4 Feasibility and Optimization

Generally, the application of LMIs in control can be classified into two categories: fea-

sibility and optimization problems [54].

1. Feasibility Problem: This aims at verifying whether there exists at least one point

in the decision parameter space such that the given LMI constraint in Eq. (2.9) is

feasible. The search for the candidate Lyapunov function for stability analysis is such

an example, which will be shown later.
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2. Optimization Problem: This aims at minimizing a linear cost function of x with

the LMI in Eq. (2.9) as a constraint.

minimize cTx

subject to F (x) ≥ 0
(2.16)

Due to the convexity of the LMI constraint, this is indeed a convex optimization

problem. The local minimum is just the global minimum [57].

Once the LMI problem is formulated, the numerical solvers, such Sedumi 1.3 or SDPT3, can

be applied to verify the feasibility of the LMIs. If a linear cost function is given, the solver

will return the global minimum of the convex optimization problem. To demonstrate the

application of LMIs in control, a few examples are shown below.

1) Lyapunov Stability Analysis

This is a LMI feasibility problem, which aims at searching for a qualified Lyapunov

function to verify the asymptotic stability of the LTI system, whose state equation has

the form of ẋ = Ax. The LMIs for this problem are shown as what follows

P ≻ 0, ATP + PA ≺ 0 (2.17)

where all the elements in the matrix P constitute the decision variables which the

numerical solver searches for.

2) Least Square with Linear Inequality Constraints

This is an optimization problem, whose mathematical formulation is shown below

minimize ∥y −Hx∥22

subject to Ax ≤ b
(2.18)
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where y represents the measurement sequence and x denotes the collection of param-

eters to be estimated. H is assumed to be a matrix with full-column rank. The

equivalent LMI optimization problem is formulated as the following form

minimize γ

subject to

 γ (y −Hx)T

y −Hx I

 ≥ 0, Ax ≤ b
(2.19)

where the LMI constraint comes from Schur complement of the scalar quadratic poly-

nomial inequality γ − ∥y −Hx∥22 ≥ 0. Due to reformulation, an additional decision

variable γ is added to the original set of decision variables x.

2.2.5 Application of LMIs in Observer Design for LTI Systems

Due to the focus of this dissertation on the application of the LMIs in the observer design,

an example to illustrate the LMI based observer design for the LTI system is presented in the

remaining part of this section. The Luenberger observer is a well-structured estimator for a

linear system. It is composed of a copy of the plant model and a linear output correction

term.

Luenberger Observer: Given a linear system

ẋ = Ax

y = Cx
(2.20)

The Luenberger observer has the following form

˙̂x = Ax̂+ L(y − Cx̂) (2.21)

where L is an observer gain such that (A−LC) is a Hurwitz matrix. The stability region of L

is defined by a set of polynomial inequalities, which is a non-convex set in general. Classical
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ways of tuning the observer gain L are pole placement, steady-state continuous-time Kalman

filter, etc. Tuning of the observer gain L can also be done through solving a set of matrix

inequalities.

Convergence Conditions for Luenberger Observer: The observer state x̂ in Eq.

(2.21) will converge to the state x of the original system in Eq. (2.20) asymptotically, if the

following define constraints are feasible

P ≻ 0

(AT − CTLT )P + P (A− LC) ≺ 0
(2.22)

where P and L are matrix decision variables. Unfortunately, the 2nd inequality in Eq. (2.22)

is a bilinear matrix inequality due to the term PL, which is difficult to solve. Fortunately,

the change of variable method (a 30-year old trick) helps us to linearize this matrix inequality

[54].

Change of Variable Method: Suppose the matrix Q is defined as

Q = PL (2.23)

Then, the bilinear matrix inequality condition in Eq. (2.22) becomes a linear matrix in-

equality condition as

P ≻ 0

(ATP − CTQT ) + (PA−QC) ≺ 0
(2.24)

where P and Q are matrix decision variables. If this LMI is feasible, the observer gain L

can be constructed as

L = P−1Q (2.25)

However, the structured Luenberger observer is not the only option. In the robust control

literature, the unstructured observer is often more popular [55] [48] [12].
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Unstructured Observer: Given a linear system

ẋ = Ax

y = Cx
(2.26)

The generalized unstructured observer has the following form

˙̂x = Aox̂+Boy (2.27)

where Ao, Bo are matrix decision variables that make the observer output signal x̂ converge

to x asymptotically. The observer error state equation is

ẋ− ˙̂x = (A−BoC)x− Aox̂

= (A−BoC)(x− x̂) + (A− A0 −BoC)x̂
(2.28)

If the Lyapunov function is chosen as V = (x− x̂)TP (x− x̂), P ≻ 0, then the quadratic form

of its derivative along the trajectory becomes

 x− x̂

x̂


T  (A−BoC)TP + P (A−BoC) P (A− Ao −BoC)

(A− Ao −BoC)TP 0


 x− x̂

x̂

 (2.29)

The semidefinite constraint that guarantees the asymptotic convergence must has the fol-

lowing form

P ≻ 0,

 (A−BoC)TP + P (A−BoC) P (A− Ao −BoC)

(A− Ao −BoC)TP 0

 ≺ 0 (2.30)

where the matrices P , Ao and Bo are the decision variables. However, this semidefinite

constraint depends on the decision variables bilinearly, which is difficult to find a feasible

solution in general. Fortunately, the change variable method can still be applied to obtain
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an equivalent LMI constraint shown below.

P ≻ 0,

 (ATP + PA)− (CTQT
2 +Q2C) PA−Q1 −Q2C)

ATP −QT
1 − CTQT

2 ) 0

 ≺ 0 (2.31)

Once, the feasible matrix variables P , Q1 and Q2 are returned by the solver, the observer

state space matrices Ao, Bo can be derived as

Ao = P−1Q1, Bo = P−1Q2 (2.32)

Unsurprisingly, the resulting observer always has exactly the same structure with the Luen-

berger observer

Ao = A− LC, Bo = LC (2.33)

where L is the feedback gain in the Luenberger observer. However, it will be shown that the

unstructured observer may not have the same structure with the Luenberger observer in the

presence of model uncertainty in the next chapter.

2.3 Dissipativity

Dissipativity theory has achieved much attention in the analysis of dynamical systems

and controller design in the past twenty years [54]. The powerfulness of this method lies in

the fact that it does not discriminate the linear and nonlinear systems in general. Therefore,

many methods developed for linear systems can be easily extended to nonlinear systems. It

is shown that many popular system analysis methods, such as L2 gain analysis and integral

quadratic constraint (IQC), are the special cases of dissipativity [45].

2.3.1 Definition

First, this section begins with a review of the definition of passivity which is a special

case of the generalized dissipativity.
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Definition of Passivity:

Passivity theory is an energy based method to analyze the stability of the ODE system

using input-output relationship. It is one of the most commonly used design methodologies

in nonlinear control literature.

Definition of Passivity [8]: For the dynamical system represented by the state space

model

ẋ = f(x, u)

y = h(x, u)
(2.34)

where f : Rn × Rp → Rn is locally Lipschitz, h : Rn × Rp → Rm is continuous, f(0, 0) = 0,

and h(0, 0) = 0. This system is said to be passive if there exists a continuously differentiable

positive semidefinite function V (x) (called a storage function) such that

V̇ =
∂V

∂x
f(x, u) ≤ uTy, ∀(x, u) ∈ Rn ×Rp (2.35)

or

V (T )− V (0) ≤
∫ T

0
(uTy)dt, ∀(x, u) ∈ Rn ×Rp (2.36)

Usually, the Lyapunov function is used as a storage function. Also, similar to the Lya-

punov function, it is not necessary for the storage function to have physical interpretations

[5]. For example, the inner product
∫ T
0 (uTy)dt may not represent the true energy flow into

the system. However, many stability analysis results in physics are based on the the storage

function and energy flow with clear physical interpretations, such as Hamiltonian mechanics

and electrical circuit theory. In general, passivity is a conservative condition for stability.
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Definition of Dissipativity:

Besides the inner product of input and output, other types of energy flow can also be

applied. This leads to the more general dissipativity theory, which is the basis of some

optimal control design methodologies.

Definition of Dissipativity [54] [3]: For the dynamical system represented by the

state space model in Eq. (2.34), this system is said to be dissipative w.r.t. the supply rate

function S(u, y) if there exists a continuously differentiable positive semidefinite function

V (x) (called the storage function) such that

V̇ =
∂V

∂x
f(x, u) ≤ S(u, y), ∀(x, u) ∈ Rn ×Rp (2.37)

or

V (T )− V (0) ≤
∫ T

0
S(u, y)dt, ∀(x, u) ∈ Rn ×Rp (2.38)

The supply rate function S(u, y) is usually chosen as a general quadratic polynomial of u

and y.

S(u, y) = yTQy + 2yTSTu+ uTRu

=
(

yT uT

) Q ST

S R


 y

u

 (2.39)

S(u, y) = uTy in the passivity condition and S(u, y) = 0 in the stability condition are just

special cases of the generalized supply rate function.

2.3.2 Applications in Control

In the remaining part of this section, a few examples that apply the dissipativity theory

to the system analysis and design of control systems is presented.
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Kalman-Yakubovich-Popov Lemma

For linear systems, the dissipativity inequality in terms of the state space model is

connected with the frequency domain inequality through the Kalman-Yakubovich-Popov

(KYP) Lemma [3].

Lemma 4 (Kalman-Yakubovich-Popov Lemma:) For the following LTI system

ẋ = Ax+Bu, y = Cx+Du ⇐⇒ T (s) = D + C(sI − A)−1B (2.40)

Suppose (A, B) is controllable. Then, there exists a positive definite matrix P satisfying the

following dissipativity inequality,

 ATP + PA PB

BTP 0

−

 C D

0 I


T  Q ST

S R


 C D

0 I

 ≤ 0 (2.41)

if and only if the transfer matrix T (s) satisfies the frequency domain inequality (FDI) shown

below.

 T (iω)

I


∗ Q ST

S R


 T (iω)

I

 ≥ 0, ∀ω ∈ R ∪ {∞}, iω /∈ λ(A) (2.42)

The semidefinite condition in Eq. (2.41) is simply the multiplier matrix for the quadratic

form of the dissipativity inequality in Eq. (2.37).

∂V

∂x
f(x, u)− S(u, y) = x

u


T 

 ATP + PA PB

BTP 0

−

 C D

0 I


T  Q ST

S R


 C D

0 I



 x

u

 (2.43)
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Positive Real Lemma

For linear systems, the positive real lemma relates the frequency domain inequality

with the passivity condition in time domain [8]. It can be treated as a special case of the

Kalman-Yakubovich-Popov lemma.

Lemma 5 (Positive Real Lemma:) For the LTI system in Eq. (2.40), the following

positive real condition is satisfied

T ∗(iω) + T (iω) ≥ 0 ⇐⇒

 T (iω)

I


∗ 0 0.5I

0.5I 0


 T (iω)

I

 ≥ 0 (2.44)

if and only if the LMI constraint shown below is feasible

 ATP + PA PB

BTP 0

−

 C D

0 I


T  0 0.5I

0.5I 0


 C D

0 I

 ≤ 0 (2.45)

Note: The LMI in Eq. (2.45) is just the multiplier matrix of the quadratic form of the

following dissipativity inequality.

V̇ − uTy = xT (ATP + PA)x+ 2xTPBu− uTy ≤ 0 (2.46)

where the storage function V = xTPx.

Bounded Real Lemma

The bounded real lemma is used for L2 gain analysis of a LTI system in robust control

theory [38] [54]. It is also treated as a special case of Kalman-Yakubovich-Popov lemma.
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Lemma 6 (Bounded Real Lemma:) For the LTI system in Eq. (2.40), its L2 gain is

upper bounded by γ as shown below,

T ∗(iω)T (iω) ≥ γ2I ⇐⇒

 T (iω)

I


∗ −I 0

0 γ2I


 T (iω)

I

 ≥ 0 (2.47)

if and only if the LMI constraint shown below is feasible

 ATP + PA PB

BTP 0

−

 C D

0 I


T  −I 0

0 γ2I


 C D

0 I

 ≤ 0 (2.48)

The LMI in Eq. (2.48) is just the multiplier matrix of the quadratic form of the following

dissipativity inequality

V̇ − (γ2uTu− yTy) = xT (ATP + PA)x+ 2xTPBu− (γ2uTu− yTy) ≤ 0 (2.49)

where the storage function V = xTPx.

The bounded real lemma is the basis of the linear H∞ control theory. By using Schur

Complement and congruence transformation, a few matrix inequalities, each of which is

equivalent to Eq. (2.48), can be derived [54].

• Two LMI conditions:

 ATP + PA+ CTC PB + CTD

BTP +DTC DTD − γ2I

 ≤ 0 (2.50)


ATP + PA PB CT

BTP −γI DT

C D −γI

 ≤ 0 (2.51)
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• One quadratic matrix condition (algebraic Riccati inequality):

ATP + PA+ CTC + (PB + CTD)(γ2I −DTD)−1(BTP +DTC) ≤ 0 (2.52)

The semidefinite constraints in Eq. (2.50) and (2.52) are the same as those in Eq. (2.15)

and (2.14) respectively, if the matrices D, Q and R satisfy the following conditions.

D = 0, Q = CTC, R = γ2I

2.4 S-Procedure

The S -Procedure is a LMI related approach that is widely used in robust control theory

and stability analysis of nonlinear systems [58]. Let σ0(x), . . . , σk(x) be scalar quadratic

functions of the variable x ∈ Rn. The following condition is satisfied

σ0(x) ≤ 0 for all x such that σi(x) ≤ 0, i = 1, . . . , k (2.53)

if there exist τ1, . . . , τk ≥ 0, such that

σ0(x)−
k∑

i=1

τiσi(x) ≤ 0 (2.54)

If the quadratic function σi(x) is represented as σi(x) = xTAix+ Bix+ Ci, then Eq. (2.54)

can be written as the linear matrix inequality (LMI) form as

 A0 BT
0

B0 C0

−
k∑

i=1

τi

 Ai BT
i

Bi Ci

 ≤ 0 (2.55)

In optimization theory, Eq. (2.54) is the Lagrange dual of Eq. (2.53). It is also important

to remember that all the quadratic polynomials σi(x), i = 0, . . . , k should be indefinite to

make the S -Procedure non-trivial.
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The two conditions in Eq. (2.53) and Eq. (2.54) are not equal, in general, except for

some special cases [35]. Therefore, S -Procedure just gives us a sufficient condition for the

negativeness of σ0(x) on the semi-algebraic set defined by σi(x) ≤ 0, for all i = 1, . . . , k.

However, this trade off can lead to numerical tractable conditions in the application of

systems and control theory.

A few typical applications of the S -Procedure in control application are listed below.

σ0(x) ≤ 0 σ1(x), . . . , σk(x) ≤ 0 Application

Derivative of a Can-
didate Lyapunov Func-
tion

Interested Domain in
the state space

Estimation of Domain
of Attraction

Dissipativity Inequality Semi-Algebraic Set for
Uncertainty

Robust Optimal Con-
trol

Expected Least Square
Level for Curve Fitting

Pre-Specified Range
for Parameter Search

System Identification

However, the S -Procedure results in a conservative sufficient condition for the non-

positiveness of σ0(x). In many control applications, one single quadratic polynomial con-

straint, such as σ1(x) ≤ 0, is enough. Surprisingly, the S -Procedure becomes lossless in this

case. If multiple quadratic polynomial constraints are unavoidable, the conservatism can be

relieved by substituting the positive semidefinite functions as the multipliers for τ1, . . . , τk in

Eq. (2.54) or (2.55). This leads to the Generalized S -Procedure [63].

2.5 Stability Analysis of A Lure System

Stability analysis of a Lure system, which is composed of a LTI system in the forward

loop and a memoryless nonlinear block in the feedback loop, is an old but important research

topic in robust control theory and nonlinear system analysis. Its block diagram is shown

in Fig. 2.2 below. In some standard textbooks of nonlinear systems and control, Circle
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Criterion, Popov Criterion and Small Gain Theorem are commonly used for stability analysis.

In the later chapters of this dissertation, the LMI based asymptotic stability criterion for Lure

system will be applied to design the nonlinear observer. Therefore, it is worth presenting a

brief review of this type of system.

Figure 2.2: Lure System

The state space model of the Lure system is shown as

ẋ = Ax+Bw

z = Cx+Dw

w = ∆(z)

(2.56)

where ∆(·) is a nonlinear Lipschitz continuous time-varying function. The relationship of

its input and output signals z and w is covered by a homogeneous quadratic polynomial

inequality in the form of Eq. (5.17).

 z

w


T  Q ST

S R


 z

w

 ≤ 0 (2.57)

where Q, R are real symmetric matrices. S is a real matrix with a compatible dimension.

This quadratic polynomial inequality can be used to represent many important semi-algebraic

sets, such as the sector condition, passivity and the L2 gain of a Lipschitz continuous function.

• The sector condition can be interpreted geometrically as shown in Fig. 2.3 below.
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Figure 2.3: Sector Condition

The corresponding algebraic condition for the sector condition is

(w −K1z)
T (w −K2z) ≤ 0

⇕ z

w


T


KT
1 K2 +KT

2 K1

2
−KT

1 +KT
2

2

−K1 +K2

2
I


 z

w

 ≤ 0

(2.58)

where K1, K2 are constant matrices. It is also easy to see that the L2 gain constraint

for z and w is just a special case of this general sector condition

wTw − γ2zT z ≤ 0, γ > 0 (2.59)

where γ denotes the L2 gain.

• The passivity condition can be interpreted geometrically as shown in Fig. 2.4 below.

The corresponding algebraic condition for the passivity condition is
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Figure 2.4: Passivity Condition

wT z ≥ 0

⇕ z

w


T  0 −I

−I 0


 z

w

 ≤ 0

(2.60)

The following theorem shows the LMI based sufficient conditions for the asymptotic

stability of this Lure system.

Theorem 1 ([18]) The feedback interconnected system in Eq. (2.56), where the input-

output relationship of the operator ∆(·) satisfies the homogeneous quadratic polynomial in-

equality in the form of Eq. (2.57), is asymptotically stable if the following linear matrix

inequalities (LMIs) are feasible.

P ≻ 0 ATP + PA PB

BTP 0

−

 C D

0 I


T  Q ST

S R


 C D

0 I

 ≺ 0
(2.61)
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Proof: If the quadratic Lyapunov function V (x) = xTPx with P ≻ 0 is chosen, its derivative

is

V̇ (x) =

 x

w


T  ATP + PA PB

BTP 0


 x

w

 (2.62)

From the state space model in Eq. (2.56), the vector (x w)T and (z w)T are related by a

linear mapping as  z

w

 =

 C D

0 I


 x

w

 (2.63)

Then, the quadratic polynomial constraint in the form of Eq. (2.57) is equivalent to

 x

w


T  C D

0 I


T  Q ST

S R


 C D

0 I


 x

w

 ≤ 0 (2.64)

Finally, applying the S -Procedure to Eq. (2.62) and (2.64), the second LMI in Eq. (2.61)

can be obtained.

2.6 Conclusions

Some basic concepts in control theory that are discussed frequently in this dissertation

were briefly reviewed in this chapter. Many of them resort to a LMIs based optimization

problem. As shown above, one of the important applications of LMIs is to search for a

candidate Lyapunov function such that the asymptotic stability of the linear or some special

nonlinear systems can be proven. In the later chapters, these LMIs based optimization

algorithms will applied to search for the Lyapunov function and convergent observer gains

in a systematic way.
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Chapter 3

Linear Parameter Varying (LPV) Observer Design for Three DOF Bicycle Model

From this chapter, the state-of-the-art convex optimization algorithms will be applied

to develop the robust observer for vehicle state estimation. Although the focus is constrained

on the three degree-of-freedom bicycle model, the observer design procedure is formalized

in a high-level systematic way which allows it to be applied to other systems. First, the

linear tire-road friction model will be considered in this chapter. The observer design with

the consideration of uncertain cornering stiffness and nonlinear tire model will be discussed

in the next two chapters.

The research on linear parameter varying (LPV) modeling and control design techniques

started in late of the 1980s. It aims at overcoming some critical weak points of the tradi-

tional gain-scheduled controller, such as local stability rather than global stability. Various

significant theoretical breakthroughs and successful applications were achieved in the past

twenty years. Although the gain-scheduled controllers are very common in automotive con-

trol systems, old design techniques still dominate in real-world applications. This elegant

theoretical method has just recently appeared in automotive literature in the last few years.

Before the discussion of the applications of the LPV design technique in observer design, a

brief overview of this method is presented.

3.1 Introduction of LPV Technique

LPV models are the basis of modern gain-scheduling control algorithms. It was initiated

by Dr. Jeff Shamma (now a professor in Georgia Tech) and his Phd advisor Michael Athans

at Massachusetts Institute of Technology (MIT) in the late 1980s. In classical gain-scheduling

control methods, the controller gains are the function of linearized model parameters around

28



each equilibrium point. Therefore, only local stability and performance is guaranteed [24].

Some ad hoc methods of interpolation of gains are needed to preserve a stable transition

from one operating point to another.n the contrary, the LPV controller is automatically

gain scheduled. It allows design of a nonlinear controller (with the state variables as the

scheduling parameters) by using very mature linear control algorithms, such as LQR and

H∞. The resulting controller can guarantee both stability and performance globally.

3.1.1 LPV Modeling

Linear parameter varying (LPV) systems are described by linear differential equations

whose parameters depend on some online measured signals (possibly in a nonlinear fashion).

A typical LPV model has the following state space form [46]

ẋ = A(θ)x+B(θ)u

y = C(θ)x+D(θ)u
(3.1)

where the time-varying parameter θ is regarded as an ”exogenous” real-time measured signal.

Typical assumptions on θ are the bound on magnitude and rate of variation, e.g., θ ≤ θ ≤ θ

and θ̇ ≤ θ̇ ≤ θ̇ for all t ≥ 0, where the bar below is a lower bound and the bar above is an

upper bound. In the subsequent analysis, the notation (θ, θ̇) ∈ Θ × Θd will be frequently

used instead, where Θ and Θd are the parameter spaces that contain θ and θ̇ respectively.

Hence, the state space form in Eq. (3.1) can be regarded as a collection of linear systems

(linear differential inclusion). Later, it will be shown that θ, θ, θ̇ and θ̇ provide valuable

information in the stability analysis and syndissertation of a gain scheduled controller.

From a linear perspective, θ is treated as a time-varying signal, which is independent of

the state variables. Therefore, the state space form in Eq. (3.1) can also be regarded as a

linear time varying (LTV) system. However, the following two points make the LPV system

different from the traditional LTV system.
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1) The parameter θ can only be measured in real time. No future parameter values

are available. Hence, the control signal is constrained to be a causal function of the

parameter. However, some control algorithms for LTV system explicitly use the future

information of this parameter [53] [7].

2) Furthermore, the LPV framework can be extended to represent a nonlinear dynamical

model. In this case, it is called a ”quasi-LPV” model, where the time-varying parameter

θ is a nonlinear function of the measurable state variables [53]. In this case, the

parameter becomes ”endogenous”. In the LPV model, the complex nonlinearity is

hidden behind the time-varying parameter which results in a linear but non-stationary

dynamical system. For example, the state equation of an input affine nonlinear system

can be transferred to a LPV state equation as

ẋ = f(x) + g(x)u ⇐⇒ ẋ = A[θ(x)]x+B[θ(x)]u (3.2)

where f(x) = A[θ(x)]x, g(x) = B[θ(x)]. Here, it is assumed that θ(x) is a state

dependent measurable parameter. An application example will be presented shortly

to illustrate this quasi-LPV representation of the nonlinear model.

It is also worth mentioning that the LPV system is strongly connected with the other

two modeling formalisms shown below [46].

1. Hybrid Dynamical Systems: Hybrid dynamical systems possess both continuous

and discrete state variables. A special case related to LPV framework is a model with

discrete valued parameters, e.g.

θ(t) ∈ [θ1, . . . , θn]

LPV Systems constitute a specific case of hybrid systems, where the underlying con-

tinuous dynamics are linear and the discrete switching dynamics are exogenous.
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2. Jump Linear Systems: Jump linear systems can be viewed as a case of LPV sys-

tems in which parameter trajectories evolve according to a probabilistic rule. In the

literature, it is also called ”Jump Markov Systems”, in which the design of control

laws typically exploits the known transition probabilities of the parameters’ stochastic

evolution.

3.1.2 Stability Analysis of LPV Systems

For stability analysis, the following three different methodologies are proposed to analyze

the asymptotic stability of the LPV system in the literature [7].

1. Single quadratic Lyapunov function (SQLF) V = xTPx;

2. Parameter dependent quadratic Lyapunov function (PDQLF) V = xTP (θ)x or V =

xTP (λ)x;

3. Linear fractional representations (LFR) which relies on µ analysis or small gain theorem

for performance optimization and robustness analysis;

Here, an example will be presented to illustrate the application of the 1st approach for

stability analysis.

For the LPV system ẋ = A(θ)x, where the parameter vector θ ∈ Rm×1 belongs to

a parameter space Θ. The stability analysis resorts to searching for a Lyapunov function

V = xTPx such that the following LMIs are feasible [54].

P ≻ 0, AT (θ)P + PA(θ) ≺ 0, ∀ θ ∈ Θ (3.3)

This is indeed an infinite dimensional LMI feasibility problem due to its continuous depen-

dence on the parameter θ. Fortunately, if the parameter space Θ is a convex hull with

finite vertices and A(θ) depends affinely on θ, there exists a sufficient and necessary finite

dimensional LMI relaxation condition as shown in Lemma 7 [7] [53] [54].
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Lemma 7 Suppose the parameter space Θ is a convex hull with finite vertices and A(θ)

depends affinely on θ ∈ Rm×1. Then, the LMIs in Eq. (3.3) are feasible if and only if they

are feasible on all the vertices of Θ.

Proof: A(θ) is an affine matrix function of θ ∈ Rm×1 as shown below.

A(θ) = A0 +
m∑
j=1

θjAj (3.4)

where θj denotes the jth element of θ. A0, A1, . . . , Am are all constant matrices. Any

parameter θ in the convex hull Θ can be represented as a convex combination form shown

below.

θ =
k∑

i=1

λiθ
(i) (3.5)

where θ(i) denotes one of the k vertices of Θ. λi, i = 1, . . . , k are the normalized scheduling

parameters that satisfy the following convex condition.

k∑
i=1

λk = 1, with 0 ≤ λi ≤ 1, ∀ i = 1. . . . , k

Substituting the right side of Eq. (3.5) for θ in Eq. (3.4), the state matrix A(θ) can be

obtained as the similar convex combination form shown below.

A(θ) = A0 +
m∑
j=1

(
k∑

i=1

λiθ
(i)
j

)
Aj

= A0 +
k∑

i=1

λi

 m∑
j=1

θ
(i)
j Aj


=

k∑
i=1

λiA(θ
(i))

(3.6)

Furthermore, the parameter dependent matrix AT (θ)P + PA(θ) can be represented as

AT (θ)P + PA(θ) =
k∑

i=1

λi[A
T (θ(i))P + PA(θ(i))] (3.7)
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If: The nonnegativity of λi in Eq. (3.7) guarantees that AT (θ)P + PA(θ) is negative

definite if AT (θ(i))P + PA(θ(i)) is a negative definite matrix ∀ i = 1, . . . , k.

Only if: The necessity is quite straightforward. Suppose the negative definite condition

of AT (θ(i))P + PA(θ(i)) is violated at some vertex. Then, AT (θ)P + PA(θ) cannot be a

negative definite matrix ∀ θ ∈ Θ, which leads to a contradiction.

In general, the parameter dependent LMI constraints make the stability analysis for LPV

system more complex than the LTI system. Next, Fig. 3.1 and 3.2 are used to illustrate the

difference between the LPV model and the LTI model with fixed parameters.

Figure 3.1: The state trajectory with fixed parameters

In Fig. 3.1, the dynamics are linear time invariant in each isolated layer. But, the

state trajectory will cross different layers with different LTI dynamics as the the parameter

θ varies as shown in Fig. 3.2. For the stability analysis, it is expected that the projection of

the state trajectory on the X plane converges to the origin asymptotically irrespective of the

variation of θ. This leads to the infinite dimensional LMI feasibility problem in Eq. (3.3).
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Figure 3.2: The state trajectory with varying parameters

3.1.3 LPV Controller

The exogenous signals or scheduling parameters collected in the vector θ reflect the

changes in process dynamics as operating conditions change. Controller parameters should

also be adaptive to the variation in the models such that both stability and performance are

preserved. However, classical gain scheduling control systems have some eminent drawbacks

that are listed below [24] [53].

1. In classical gain scheduling approaches, the controller parameters are tuned only based

on local linearized model. Hence, adequate performance and in some cases even sta-

bility is not guaranteed at operating conditions other than the design points;

2. Due to the lack of the information of global behavior, searching for the gain scheduling

function for multivariable controllers that guarantees the stable transition from one

operating point to another is often a tedious and time consuming task;

In general, LPV techniques provide a systematic design procedure for gain-scheduled mul-

tivariable controllers. This methodology allows stability, performance and robustness to be
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incorporated into a unified framework. Besides θ, the scheduling parameters in the con-

troller can also include θ̇, the derivative of θ, if it is measurable [7] [46]. This provides

additional design freedom to improve the performance of the controller. Similar as the LPV

process model, the state-space model of the LPV controller depends causally on the history

of scheduling parameters (θ θ̇). In what follows, an example will be presented to illustrate

the basic design procedure.

Suppose the state space model of the controller has the following form.

ẋc = Ac(θ, θ̇)xc +Bc(θ, θ̇)y

u = Cc(θ, θ̇)xc

(θ, θ̇) ∈ Θ×Θd (3.8)

where Θ and Θd represent the parameter spaces for θ and θ̇ respectively. Here, it is assumed

that there is no feedthrough term in the controller for simplicity. The goal of the controller

is to stabilize the LPV process in Eq. (3.1) back to zero from any initial condition asymp-

totically. In many applications, the affine parameter dependent controller receives special

attention in past research. An example of the state space matrices of this controller are

shown below

Ac(θ) = Ac,0 + θ1Ac,1 + . . .+ θkAc,k, Bc(θ) = Bc,0 + θ1Bc,1 + . . .+ θkBc,k

Cc(θ) = Cc,0 + θ1Cc,1 + . . .+ θkCc,k

where the matrices Ac,i, Bc,i, Cc,i, i = 0, 1, . . . , k are decision variables of some SDP algorithm.

Here, there is no assumption on the specific gain scheduled controller structure. All the

analysis will be discussed from a general perspective. The state equation of the closed-loop

system is shown below.

 ẋ

ẋc

 =

 A(θ) B(θ)Cc(θ, θ̇)

Bc(θ, θ̇)C(θ) Ac(θ, θ̇) +Bc(θ, θ̇)D(θ)Cc(θ, θ̇)


︸ ︷︷ ︸

ACL(θ,θ̇)

 x

xc

 (3.9)
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Similar to Eq. (3.3), the semidefinite constraints for the asymptotic stability of the closed-

loop system becomes

P ≻ 0, AT
CL(θ, θ̇)P + PACL(θ, θ̇) ≺ 0, ∀ (θ, θ̇) ∈ Θ×Θd (3.10)

In most practical applications, this is the feasibility problem of an infinite dimensional bi-

linear matrix inequality (BMI). In some cases, several mathematical tricks can be applied

to transform it to a LMI problem. Alternatively, the positive definite matrix P can be pre-

selected and the BMI is degenerated to a LMI for the controller parameters. But this BMI

problem is difficult to solve in general.

Another challenging task is to relax the infinite dimensional semidefinite constraints to

a finite dimensional one [46] [22] [21]. If the closed-loop state matrix ACL(θ, θ̇) depends on

θ and θ̇ affinely and both Θ and Θd are convex hulls, it is only necessary to guarantee the

semidefinite constraints on all the vertices of Θ and Θd as proven in Lemma 7. However,

the state space model of the closed-loop system usually depends on the parameters θ and θ̇

quadratically or even high-order polynomially. Various relaxation techniques reported in the

literature, such as S-Procedure, parameter space gridding, multi-convexity or slack variable

method can be applied.

Finally, it is important to remember the following two conclusions.

• If the infinite dimensional semidefinite constraints in Eq. (3.10) are feasible, the closed-

loop system is globally asymptotic stable;

• If the scheduling parameter θ or θ̇ is state dependent, the controller in Eq. (3.8) is

called a ”Quasi-LPV” controller. In this case, the linear control design methods are

indeed used to develop a nonlinear controller;
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3.1.4 A Numerical Example

In the previous section, the LPV design methodology is discussed in a very abstract level.

In the last part of this section, a simple application example is presented to demonstrate the

application of this method to develop the controller for a highly nonlinear system.

Suppose the height of the liquid level in a tank is expected to be regulated [24]. By

using Bernoulli equation, the following nonlinear ODE can be derived.

ḣ =
1

A(h)
(qi − a

√
2gh) (3.11)

where h is the height of the liquid level; qi is the incoming liquid flow rate, which is the

control signal here; A(h) is the cross-sectional area of a tank at the height h; a and g are

the outlet pipe diameter and gravity constant, respectively.

Now, our task is to design a gain-scheduled PI controller that regulates the level height

h to any desired height hd from any positive initial condition. The height h is a measured

signal for feedback and gain scheduling.

1. Step 1: Transform nonlinear ODE to LPV form

Let’s define the state variable x1 as

x1 =
√
hd −

√
h

Suppose hd is a constant. Then, the derivative of x1 is

ẋ1 = − 1

2
√
h

(
1

A(h)
(qi − a

√
2gh)

)

If the measured time-varying parameter θ is defined as

θ =
1

2
√
hA(h)
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the derivative of x1 becomes the following LPV form

ẋ1 = a
√
2gθ(

√
hd − x1)− θqi

2. Step 2: Gain-Scheduled PI Controller

The control signal qi from the gain-scheduled PI controller is

qi = θKp(
√
hd −

√
h) + θKi

∫ t

0
(
√
hd −

√
h)dt

where θKp and θKi represent the linear scheduled gains. Next, the 2nd state variable

x2 is defined as the output of the integrator of the PI controller. Its derivative is

ẋ2 = θKix1

Then, the state space model of the closed-loop system is

ẋ1 = −(a
√
2gθ + θ2Kp)x1 − θx2 + θr

ẋ2 = θKix1

where r = a
√
2ghd is regarded as an exogenous constant reference input. The param-

eter dependent state space matrices A(θ), B(θ) are

A(θ) =

 −a
√
2gθ − θ2Kp −θ

θKi 0

 , B(θ) =

 θ

0



3. Step 3: Search for The Stabilizing Controller Gains Kp, Ki

Both x1 and x2 are expected to converge to 0 asymptotically. For simplicity, the non-

parameter dependent Lyapunov function as V = xTPx, P > 0 can be selected. Its
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derivative is

V̇ =

 x

r


T  AT (θ)P + PA(θ) PB(θ)

BT (θ)P 0


 x

r


If there exists a positive definite matrix P and two gains Kp, Ki such that

 AT (θ)P + PA(θ) PB(θ)

BT (θ)P 0

 < 0, ∀ θ ∈ [θ, θ]

then the level height h will converge to hd asymptotically. However, there are two

obstacles that make the search of P , Kp, Ki satisfying the above matrix inequality

problem extremely challenging.

(a) There are infinite numbers for the values of θ. The decision variables P , Kp, Ki

should make the semidefinite constraints feasible for each value of θ, which is

indeed an infinite dimensional problem;

(b) Even for a fixed value of θ, this matrix inequality is bilinear in the decision

variable, which implies the non-convexity of the problem;

4. Step 4: Finite Dimensional Relaxation

In this example, the finite dimensional relaxation method that conquers the 1st obstacle

will be presented. For the 2nd one, a positive definite matrix P can be pre-selected such

that the above semidefinite constraint degenerates to a LMI problem . In what follows,

S-Procedure is used to transform infinite dimensional BMI to finite dimensional BMI

without any conservatism. First, the θ dependent state space matrices are rewritten

in the following form.

A(θ) = θ

 −a
√
2g −1

Ki 0


︸ ︷︷ ︸

A1

+θ2

 −Kp 0

0 0


︸ ︷︷ ︸

A2

, B(θ) = θ

 1

0


︸ ︷︷ ︸

B1
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Then, the θ dependent bilinear matrix inequality can be written as

 I

θI


T



0 0 0.5(AT
1 P + PA1) 0.5PB1

0 0 0.5BT
1 P 0

0.5(AT
1 P + PA1) 0.5PB1 AT

2 P + PA2 0

0.5BT
1 P 0 0 0


︸ ︷︷ ︸

W

 I

θI

 < 0

where 0 and I represent the zero and identity matrix with compatible dimensions. It

is obvious that this BMI is feasible (independent of θ) if the matrix W is negative

definite. However, negative definiteness of W is a very conservative condition, because

the constraint θ ≤ θ ≤ θ implies that the matrix (I, θI)T is always contained in a

polytope with vertices definded by θ and θ.

The basic idea of S-Procedure based relaxation is to use a multiplier matrix that

captures the semi-algebraic set of θ and apply Lagrangian duality theory to build a

matrix whose eigenvalues are the upper bound of the original bilinear matrix. Hence,

a sufficient condition for the original infinite dimensional BMI can be derived. The

condition is also necessary in the case that only one multiplier exists.

As mentioned before, the time-varying parameter θ is always constrained in the closed

set [θ, θ], which implies

θ ≤ θ ≤ θ ⇐⇒ (θ − θ)(θ − θ) ≤ 0

The quadratic form of this inequality is

 1

θ


T  θ θ −0.5(θ + θ)

−0.5(θ + θ) 1


 1

θ

 ≤ 0
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It is trivial to extend the scalar quadratic polynomial inequality to the higher dimen-

sional matrix form.

 I

θI


T  θ θI −0.5(θ + θ)I

−0.5(θ + θ)I I


︸ ︷︷ ︸

M

 I

θI

 ≤ 0

where I represents the identity matrix with appropriate dimensions.

The S-Procedure can then be applied to derive the following sufficient and necessary

finite dimensional BMI condition for the original infinite dimensional case

W − τM < 0, τ > 0 (3.12)

where τ is the Lagrangian multiplier. Finally, if the matrix P is chosen as an identity

matrix, the semidefinite constraint in Eq. (3.12) becomes a LMI feasibility problem

for Kp, Ki and τ . Therefore, any feasible solution results in a globally convergent gain

scheduled PI controller.

5. Step 5: Simulation Results

The simulation results for this tank level control system in the case of two desired level

heights can be seen in Fig. 3.3 below. It clearly shows that the tank level converges

to the desired height quickly.

3.2 LPV Observer Design for The Bicycle Model

Besides the gain scheduled controller, the LPV design methodology can also be applied

to develop a gain scheduled observer. The state-of-the-art LMIs based optimization method

will be applied to solve the challenging vehicle state estimation problem in this section.

The bicycle model, in which the longitudinal velocity and acceleration are treated as online

measured time-varying parameters, will be used for the basis of gain scheduled observer
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Figure 3.3: Simulation results of the tank lever control system with a gain scheduled PI
controller.

development. First, the observer design with perfect measurement of scheduling parameters

is presented. Then, the robustness design methodology that improves the performance with

respect to the measurement uncertainty will also be discussed.

3.2.1 LPV Representation of The Bicycle Model

Figure 3.4: Bicycle Model

A 3-DOF bicycle model is widely used to represent lateral vehicle dynamics and study

active safety systems in various automotive control literature [16]. In a bicycle model, the
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left and right wheels are represented by one wheel each at the front and rear of the vehicle.

An illustration of the bicycle model is shown in Fig. 3.4. The definitions of some associated

kinematic parameters are also shown in Fig. 3.4. Three basic equations that are used to

derive the state space representation of the bicycle model are listed below.

1. Linear Tire-Road Friction Model: The lateral tire forces at front and rear tires are

proportional to the front and rear slip angles respectively.

Fy,f = Cfαf , Fy,r = Crαr (3.13)

where Cf , Cr are the front and rear tire cornering stiffness respectively.

2. Kinematic model for definitions of slip angles:

αf = δ − vy + ar

vx
, αr =

br − vy
vx

, β =
vy
vx

(3.14)

where αf , αr are the slip generated at the front and rear axles and β is the net effect

of total slip generated;

3. Newton-Euler Equations for Dynamic Model:

M(v̇y + vxr) = Fy,f + Fy,r

Iz ṙ = aFy,f − bFy,r

(3.15)

where M, Iz, a, b are the mass, yaw inertia, the distance of front and rear wheels from the

center of gravity (CG) of the vehicle. Cf , Cr are the cornering stiffness for the front and

rear tires. vx, vy, ay are the longitudinal velocity, lateral velocity and lateral acceleration of

the CG. r, δ, δ̇ are the yaw rate, steering angle and its derivative, which are treated as the

measured input signals.

Note: Different choice of the state variables leads to two difference forms of the linear

state-space model.
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1) Choosing slip angle β of the CG and yaw rate r as the state variables leads to the

following state space model that depends on 1/vx quadratically;


β̇

ṙ

 =


−Cf + Cr +Mv̇x

Mvx

−aCf + bCr

Mv2x
− 1

−aCf + bCr

Iz
−a2Cf + b2Cr

Izvx




β

r

+


Cf

Mvx

aCf

Iz

 δ (3.16)

2) Choosing lateral velocity vy of CG and yaw rate r as the state variables leads to the

following state space model that depends on 1/vx affinely;


v̇y

ṙ

 =


−Cf + Cr

Mvx

−aCαf + bCr

Mvx

−aCf + bCαr

Izvx
−a2Cf + b2Cr

Izvx




vy

r

+


Cf

M
δ − vxr

aCf

Iz
δ

 (3.17)

3) If the slip angles of the front and rear wheels αf , αr are chosen as the state variables

[34], this leads to the following state space model that also depends on 1/vx affinely;


α̇f

α̇r

 =


−ax
vx

− Cf

vx

(
1

M
+

a2

Iz

)
Cr

vx

(
ab

Iz
− 1

M

)

Cf

vx

(
ab

Iz
− 1

M

)
−ax
vx

− Cr

vx

(
1

M
+

b2

Iz

)



αf

αr



+


ax
vx

1 1

0 0 1




δ

δ̇

r



(3.18)

Most of the prior work of controller/observer design is based on the following two as-

sumptions.

1. Longitudinal velocity vx is a known constant (v̇x = 0);

2. Cornering Stiffness Cf , Cr are known time-invariant parameters;
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Based on these two assumptions, a LTI observer or a Kalman filter can be developed. How-

ever, the LTI observer is insufficient to capture the variation of the dynamics. Therefore, a

vx dependent observer has the potential for better performance. Moreover, the variation of

cornering stiffness parameters will lead to biased estimation results. In this dissertation, the

following two approaches will be used to relax the limitation of the above two assumptions.

1. LPV based gain-scheduled observer —– using longitudinal velocity vx and accel-

eration ax as the online scheduling parameters;

2. Interval observer —– producing an envelope to cover all the possible state trajecto-

ries resulting from the variation of cornering stiffness Cf , Cr;

The first approach, LPV based gain-scheduled observer design, will be the topic of this

chapter. While the interval observer design will be discussed in the next chapter.

Traditional gain-scheduling design methods are inherently ad hoc and the resulting

scheduled observer provides no stability or performance guarantee for rapid changes in the

scheduling variables vx. LPV model framework directly takes the variation of vx and its

derivative ax into consideration, if these signals can be measured or estimated online. This

design methodology uses a strict mathematical method to develop a gain-scheduled observer

based on the measurement of vx and ax. Both stability and performance are guaranteed

globally. Strictly speaking, the LPV representation in Eq. (3.16), (3.17) and (3.18) is the

”Quasi-LPV” model of the nonlinear system, where the longitudinal velocity vx is also a

state variable with its own dynamics. However, the LPV model hides all the nonlineari-

ties behind this parameter. Hence, for the Quasi-LPV case, the LPV observer is indeed a

nonlinear observer because the scheduling parameter is a state variable. The LPV based

gain-scheduling design methodology allows the user to design a nonlinear observer by using

very mature linear observer design methods, such as H2 and H∞ filters. In the remaining

part of this chapter, the LPV observer design for the bicycle model will be investigated in

great detail.
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3.2.2 LPV Observer Design with Perfect Knowledge of Scheduling Parameter

Three different state space representations of the bicycle model have been discussed

above. Here, the one that uses the front and rear slip angles as the state variables x =

(αf αr)
T will be adopted. This affine parameter dependent state space model also signifi-

cantly simplifies the observer design shown here

ẋ = (θ1A1 + θ2A2)x+ (B0 + θ2B2)u

y = Cx
(3.19)

where the scheduling parameters θ1, θ2 and the state space matrices A1, A2, B0, B2, C are

defined as

θ1 =
1

vx
, θ2 =

ax
vx

A1 =


−Cf

(
1

M
+

a2

Iz

)
Cr

(
ab

Iz
− 1

M

)

Cf

(
ab

Iz
− 1

M

)
−Cr

(
1

M
+

b2

Iz

)
 , A2 =


−1 0

0 −1



B0 =

 0 1 1

0 0 1

 , B2 =

 1 0 0

0 0 0

 , C =
(

1 −1

)

In this LPV representation, the complex longitudinal dynamics are hidden behind the

time-varying parameter sets θ = (θ1, θ2). With the information of the variation interval of

vx and ax, such as vx ≤ vx ≤ vx, ax ≤ ax ≤ ax, the four vertices of the polytopic parameter

space Θ that contains θ can be derived as

θ(1) =


1

vx

ax
vx

 , θ(2) =


1

vx

ax
vx

 , θ(3) =


1

vx

ax
vx

 , θ(4) =


1

vx

ax
vx

 (3.20)
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The output equation y = Cx comes from the kinematic relation between the slip angles

and the measured signals shown below.

δ − a+ b

vx
r = αf − αr (3.21)

The corresponding LPV observer has the following state equation

˙̂x = (θ1A1 + θ2A2) x̂+ (B0 + θ2B2)u+ L(θ) (y − Cx̂) (3.22)

where the observer gain L(θ) depends on the scheduling parameter θ = (θ1, θ2) affinely.

L(θ) = L0 + θ1L1 + θ2L2 (3.23)

The state equation for the observer error e = x− x̂ becomes

ė = (θ1(A1 − L1C) + θ2(A2 − L2C)− L0C) e (3.24)

The tuning parameters L0, L1 and L2 should guarantee the asymptotic stability of this

observer error state equation for all the possible values of θ in the domain Θ. The stability

analysis method for LPV systems discussed in the previous section can be applied here. The

asymptotic convergence of the LPV observer is guaranteed if a Lyapunov function whose

derivative is globally negative irrespective of the variation of θ1 and θ2 exists. Therefore, the

design of a LPV observer resorts to finding a feasible solution for the following semidefinite

constraints.

P ≻ 0 and [A(θ)− L(θ)C]TP + P [A(θ)− L(θ)C] ≺ 0, ∀θ ∈ Θ (3.25)

This is indeed an infinite dimensional problem as the parameter θ is defined in continuous

space. However, the observer error state matrix A(θ)− L(θ)C depends affinely on θ, which
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implies that it is sufficient and necessary to guarantee the feasibility of the semidefinite

constraints on all the vertices of Θ as proven in Lemma 7.

Therefore, the observer error state equation is asymptotic stable if the observer gains

L0, L1 and L2 make the following SDP constraints feasible.

P ≻ 0(
AT (θ(1))− CTLT (θ(1))

)
P + P

(
A(θ(1))− L(θ(1))C

)
≺ 0(

AT (θ(2))− CTLT (θ(2))
)
P + P

(
A(θ(2))− L(θ(2))C

)
≺ 0(

AT (θ(3))− CTLT (θ(3))
)
P + P

(
A(θ(3))− L(θ(3))C

)
≺ 0(

AT (θ(4))− CTLT (θ(4))
)
P + P

(
A(θ(4))− L(θ(4))C

)
≺ 0

(3.26)

Again, the change of variable method discussed in the last chapter can be applied to trans-

form the BMI problem to the following LMI problem.

P ≻ 0(
AT (θ(1))P + PA(θ(1))]− [CTQT (θ(1)) +Q(θ(1))C

)
≺ 0(

AT (θ(2))P + PA(θ(2))]− [CTQT (θ(2)) +Q(θ(2))C
)
≺ 0(

AT (θ(3))P + PA(θ(3))]− [CTQT (θ(3)) +Q(θ(3))C
)
≺ 0(

AT (θ(4))P + PA(θ(4))]− [CTQT (θ(4)) +Q(θ(4))C
)
≺ 0

(3.27)

where Q(θ) = Q0+ θ1Q1+ θ2Q2. Once a feasible solution has been found, the observer gains

L0, L1 and L2 can be obtained as

L0 = P−1Q0, L1 = P−1Q1, L2 = P−1Q2 (3.28)

3.2.3 LPV Observer Design with Uncertain Scheduling Parameter

In real-world applications, perfect measurement or estimation of the scheduling param-

eters becomes unrealistic. The convergence achieved by the above LPV observer based on

the nominal model may be destructed by a small amount of measurement or estimation
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error. Therefore, it is necessary to develop a design methodology that takes the uncertainty

in the scheduling parameters into consideration. In what follows, two types of robust LPV

observers will be discussed.

Robust Gain-Scheduled Luenberger Observer

Besides the asymptotic convergence, the observer gains L0, L1 and L2 are also expected

to minimize the estimation error in terms of some widely used performance measure in con-

trol, such as the H2 or H∞ norm [54] [59]. Next, the design methodology will be formulated

in a high level systematic way, which allows it to be used in other systems.

Suppose the system under study has the following LPV model

ẋ = A(θ)x+B(θ)u, y = Cx (3.29)

where A(θ), B(θ) are affine matrix functions of the scheduling parameter θ ∈ Rk×1.

A(θ) = A0 + θ(1)A1 + · · ·+ θ(k)Ak, B(θ) = B0 + θ(1)B1 + · · ·+ θ(k)Bk (3.30)

The LPV Luenberger observer is formulated as

˙̂x = A(θm)x̂+B(θm)u+ L(θm)(y − Cx̂) (3.31)

where θm denotes the measured or estimated scheduling parameter. The deviation of θm

from θ is represented by θ∆ as

θ∆ = θ − θm (3.32)
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The observer gain L(θm) also depends on θ affinely as shown in Eq. (3.23). Then, the

observer error state equation becomes

ẋ− ˙̂x = [A(θ)− L(θ)C](x− x̂) +B(θm)u+ L(θm)(y − Cx̂)

= [(A0 − L0C) +
∑k

i=1 θ(i)(Ai − LiC) +
∑k

i=1 θ∆(i)LiC](x− x̂)

+
∑k

i=1 θ∆(i)(Aix̂+Biu)

(3.33)

It can be seen that the measurement or estimation error θ∆ will induce extra disturbance

terms
∑k

i=1 θ∆(Aix̂ + Biu) that keep the observer error from converging to zero even if the

state matrix (A0−L0C)+
∑k

i=1 θ(i)(Ai−LiC)+
∑k

i=1 θ∆(i)LiC is asymptotic stable. To reduce

the sensitivity of the observer error on this disturbance input, some robust control design

techniques, such as H2 and H∞ optimization, can be utilized. To facilitate the subsequent

analysis, the following observer error state equation will be used.

ė = [(A0 − L0C) +
∑k

i=1 θ(i)(Ai − LiC) +
∑k

i=1 θ∆(i)LiC]e+
∑k

i=1 θ∆(i)(Aix̂+Biu)

= AL(θ, θ∆)e+BL(θ∆)w

(3.34)

The vector input signal w = (x̂T uT )T is treated as an exogenous disturbance for the observer

error. AL(θ, θ∆) and BL(θ∆) are the abbreviation of the matrices shown below.

AL(θ, θ∆) = (A0 − L0C) +
∑k

i=1 θ(i)(Ai − LiC) +
∑k

i=1 θ∆(i)LiC

BL(θ∆) = [
∑k

i=1 θ∆(i)Ai
∑k

i=1 θ∆(i)Bi]
(3.35)

H2 Observer Design

First, a review of some basic knowledge of the H2 performance criterion for a MIMO

process with a transfer function T (s) is presented. The H2 norm is defined as [56] [38]

∥T∥2 =
√

1

2π
trace

(∫ ∞

−∞
T (iω)T ∗(iω)dω

)
(3.36)

50



Suppose the state space realization of T (s) is ẋ = Ax + Bu, y = Cx. Applying Parseval’s

Theorem [38], the following formula can be obtained.

∥T∥22 = trace
(∫ ∞

0
[CeAtB]T [CeAtB]dt

)

= trace

BT
∫ ∞

0
eA

T tCTCeAtdt︸ ︷︷ ︸
Q0

B



= trace

C
∫ ∞

0
eAtBBT eA

T tdt︸ ︷︷ ︸
P0

CT


(3.37)

where P0 and Q0 are called the controllability and observability Gramians, which are also

the solution of the following Lyapunov equations.

Lemma 8 [38] The H2 norm of a LTI system ẋ = Ax+Bu, y = Cx can be computed as

∥T∥22 = trace(CP0C
T ), where AP0 + P0A

T +BBT = 0

∥T∥22 = trace(BTQ0B), where ATQ0 +Q0A+ CTC = 0
(3.38)

H2 performance criterion is one of the most widely used cost functions in optimal control.

Its physical meaning can be interpreted from both a deterministic and stochastic perspective

[54] [38] as shown below.

1) Deterministic Interpretation of H2 Norm: Let ek be the standard unit vector

and denote the output of

ẋ = Ax, y = Cx, x(0) = Bek
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Note that this is identical to an impulsive input in channel k. Since zk = CeAtBek, its

energy can be computed as

∫ ∞

0
zTk (t)zk(t)dt = eTkB

T
(∫ ∞

0
eA

T tCTCeAtdt
)
Bek

After summing over k, ∥T∥22 = trace(BTQ0B) can be derived. Therefore, the squared

H2 norm is the energy sum of transients of output response.

∑
k

∫ ∞

0
∥zk(t)∥2 dt = ∥T∥22

2) Stochastic Interpretation of H2 Norm: Let w be the white noise input for the LTI

system ẋ = Ax+Bw. Recall that the state-covariance matrix P (t) = E[x(t)xT (t)] can

be computed by solving the following matrix differential equation.

Ṗ (t) = AP (t) + P (t)AT +BBT , P (0) = E[x(0)xT (0)]

In the steady-state case (Ṗ (t) = 0), limt→∞E[x(t)xT (t)] = limt→∞ P (t) = P0 can be

obtained. Furthermore, the following result can be inferred with z = Cx.

lim
t→∞

E[z(t)zT (t)] = lim
t→∞

trace(E[Cx(t)xT (t)C]) = trace(CP0C
T )

Therefore, the squared H2 norm is equal to the asymptotic variance of output of the

LTI system ẋ = Ax+Bu, y = Cx, where w is the white noise input.

It is also worth mentioning that the state feedback LQR control is equivalent to the

optimization of the H2 norm of the LTI system ẋ = Ax + Bu, y = Cx [50]. The cost

function of the LQR control is shown in Eq. (3.39)

J =
∫ ∞

0
[xTQx+ uTRu]dt (3.39)
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where Q = QT , Q ≥ 0, R = RT , R ≻ 0. If the state feedback control law u = −Kx is used,

the cost function J becomes

J =
∫ ∞

0
[xT (Q+KTRK)x]dt (3.40)

It is obvious that this cost function is nothing but the energy of the transient output response

of the LTI system with the output matrix C satisfying CTC = Q+KTRK.

As can be seen from Eq. (3.34), the measurement or estimation error θ∆ acts as a

disturbance input for the observer error state equation. If θ∆ is a zero-mean stochastic

measurement or estimation error, the H2 optimization technique can be applied to minimize

the asymptotic variance of the observer error. The search for the optimal observer gains

L0, L1 and L2 in terms of the optimal H2 performance criterion resorts to the following

semidefinite programming problem [54] [50]

minimize γ

subject to

P ≻ 0, trace(Z) < γ,

 P I

I Z

 ≻ 0

 AT
L(θ, θ∆)P + PAL(θ, θ∆) PBL(θ∆)

BT
L (θ∆)P −γI

 ≺ 0, ∀(θ, θ∆) ∈ Θ×Θ∆

(3.41)

where the matrices AL(θ, θ∆) and BL(θ∆) are defined in Eq. (3.35). The semidefinite condi-

tions in Eq. (3.41) come from the result in Lemma 8, but the derivation procedure is omitted

here.

H∞ Observer Design

H∞ performance criterion is another widely used cost function in control. For the

application in the observer design, it can be applied to minimize the upper bound of the
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L2 gain from the disturbance input w to the observer error e as shown in Eq. (3.34). The

mathematical formulation of the H∞ optimization problem is shown below [56] [38].

minimize γ

subject to

√∫ ∞

0
e2(t)dt ≤ γ

√∫ ∞

0
w2(t)dt

(3.42)

As mentioned in the previous chapter, the L2 gain constraint can be transformed to

a semidefinite constraint, such as Eq. (2.48), (2.50), (2.51) or (2.52). Similar to the H2

case, the observer error state equation in Eq. (3.34) is used as the basis for H∞ observer

design. The search for the optimal observer gains L0, L1 and L2 in terms of the optimal H∞

performance criterion resorts to the following semidefinite programming problem

minimize γ

subject to

P ≻ 0
AT

L(θ, θ∆)P + PAL(θ, θ∆) PBL(θ∆) I

BT
L (θ∆)P −γI 0

I 0 −γI

 ≺ 0, ∀(θ, θ∆) ∈ Θ×Θ∆

(3.43)

where the matrices AL(θ, θ∆) and BL(θ∆) are defined in Eq. (3.35).

Unstructured Robust LPV Observer

As mentioned in the last chapter, structured Luenberger Observer is not the only for

state estimation. In this section, the development of an optimal unstructured LPV observer

will be discussed. The block diagram of the generalized process model interconnected with

the unstructured observer is shown in Fig. 3.5 below.

In this scheme, an observer is designed without any pre-defined structure such that

the norm of the observer error e = x − x̂ is minimized [55]. The ∆ block is a diagonal
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Figure 3.5: The block diagram of the uncertain plant model and the unstructured observer

matrix whose diagonal elements are composed of the measurement or estimation error of

the scheduling parameters. Initially, the robust unstructured observer design is discussed

in a high-level systematic approach. Later, it will be shown how to transform the bicycle

model with uncertain scheduling parameters to this generalized plant representation. First,

the state space models of both the generalized process and the unstructured observer will be

discussed.

• The generalized plant with uncertainty: The state space model of the intercon-

nection of the generalized plant with the ∆ block can be seen in what follows

ẋ = A(θm)x+B(θm)u+Bww, y = Cx

z = Czx+Dzu, w = ∆z = ∆Czx+∆Dzu
(3.44)

where θm ∈ Rk×1 denotes the collection of measured or estimated scheduling parame-

ters. The diagonal matrix ∆ has the following form

∆ =


θ(1)− θm(1)

. . .

θ(k)− θm(k)

 (3.45)
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where θ(i), i = 1, . . . , k denotes the ith real scheduling parameter. In essence, the diag-

onal terms are the difference of real scheduling parameters and the measured/estimated

scheduling parameters. Treating w and z as the state-dependent internal signals, the

state equation for the uncertain generalized plant can be rewritten as

ẋ = [A(θm) +Bw(θm)∆Cz]x+ [B(θm) +Bw∆Dz]u (3.46)

• The unstructured observer: The unstructured LPV observer has the following state

equation

˙̂x = Ao(θm)x̂+Bou(θm)u+Boy(θm)y (3.47)

where u and y denote the measured input and output signals of the process. Ao(θm),

Bou(θm) and Boy(θm) are the affine matrix functions of the measured scheduling pa-

rameter θm ∈ Rk×1.

Ao(θm) = Ao,0 + θm(1)Ao,1 + · · ·+ θm(k)Ao,k

Bou(θm) = Bou,0 + θm(1)Bou,1 + · · ·+ θm(k)Bou,k

Boy(θm) = Boy,0 + θm(1)Boy,1 + · · ·+ θm(k)Boy,k

(3.48)

The matrices Ao,i, Bou,i, Boy,i, i = 0, 1, . . . , k are the decision variables that the control

engineers are looking for such that some performance criteria, such as H2 and H∞

norm, are optimized.

When the unstructured observer in Eq. (3.47) is applied, the observer error state equa-

tion becomes

ẋ− ˙̂x

= [A(θm) +Bw∆Cz −Boy(θm)C]x− Ao(θm)x̂+ [B(θm) +Bw∆Dz −Bou(θm)]u

= [A(θm) +Bw∆Cz −Boy(θm)C](x− x̂)

+[A(θm) +Bw∆Cz −Boy(θm)C − Ao(θm)]x̂+ [B(θm) +Bw∆Dz −Bou(θm)]u

(3.49)
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Similar to the structured observer, the following observer error state equation will be used

to facilitate the subsequent analysis

e = Ae(θm, θ∆)e+Be(θm, θ∆)w (3.50)

where the vector input signal w = (x̂T uT )T is treated as an exogenous disturbance for the

observer error. Ae(θm, θ∆) and Be(θm, θ∆) are the abbreviation of the matrices shown in Eq.

(3.51).

Ae(θm, θ∆) = A(θm) +Bw∆Cz −Boy(θm)C

Be(θm, θ∆)

= [A(θm) +Bw∆Cz −Boy(θm)C − Ao(θm) B(θm) + Bw∆Dz −Bou(θm)]

(3.51)

Then, the H2 or H∞ optimization technique as discussed for the LPV Luenberger observer

can be applied to search for the observer state space matrices Ao,i, Bou,i ,Boy,i, i = 0, 1, . . . , k

as shown in Eq. (3.48).

• H2 Observer Design: Similar to Eq. (3.41), the search for the optimal observer

matrices Ao,i, Boy,i and Bou,i, i = 0, 1, . . . , k in terms of the optimal H2 performance

criterion resorts to the following semidefinite programming problem

minimize γ

subject to

P ≻ 0, trace(Z) < γ,

 P I

I Z

 ≻ 0

 AT
e (θm, θ∆)P + PAe(θm, θ∆) PBe(θm, θ∆)

BT
e (θm, θ∆)P −γI

 ≺ 0, ∀(θ, θ∆) ∈ Θ×Θ∆

(3.52)

where the matrices Ae(θm, θ∆) and Be(θm, θ∆) are defined in Eq. (3.51).
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• H∞ Observer Design: Similar to Eq. (3.43), the search for the optimal observer

matrices Ao,i, Boy,i and Bou,i, i = 0, 1, . . . , k in terms of the optimal H∞ performance

criterion resorts to the following semidefinite programming problem

minimize γ

subject to

P ≻ 0
AT

e (θm, θ∆)P + PAe(θm, θ∆) PBe(θm, θ∆) I

BT
e (θm, θ∆)P −γI 0

I 0 −γI

 ≺ 0, ∀(θ, θ∆) ∈ Θ×Θ∆

(3.53)

where the matrices Ae(θm, θ∆) and Be(θm, θ∆) are defined in Eq. (3.51).

Finite Dimensional Relaxation

The semidefinite conditions in Eq. (3.41), (3.43), (3.52) and (3.53) are indeed infinite

dimensional LMI constraints due to their continuous dependence on the parameters θm and

θ∆. To make them numerically tractable, it is necessary to convert them to finite dimensional

LMI constraints. It is easy to find that the left side of all these semidefinite constraints are

affine matrix functions of the scheduling parameters θm and θ∆. Therefore, it is sufficient

and necessary to guarantee the feasibility of these semidefinite constraints on all the vertices

of the polytopic spaces Θ and Θ∆ as proven in Lemma 7. However, the search for these

vertices is not a trivial task, which will be discussed next in detail.

First, a general result for the vertices of the polytopic space for the real vector (x1, x1x2)
T

is presented.

Lemma 9 Suppose x1, x2 ∈ R satisfying the lower and upper bounds conditions x1 ≤ x1 ≤

x1, x2 ≤ x2 ≤ x2. Then, the vector (x1, x1x2)
T lies in a polytopic space with the four vertices
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shown below.  x1

x1x2

 ,

 x1

x1x2

 ,

 x1

x1x2

 ,

 x1

x1x2

 (3.54)

Proof: The two real variables x1 and x2 can be represented as the following convex combi-

nation forms

x1 = λ1x1 + λ2x1, x2 = η1x2 + η2x2 (3.55)

where λ1 + λ2 = 1, η1 + η2 = 1 with λi, ηi ≥ 0, i = 1, 2. Then, x1x2 can be written as

x1x2 = (λ1x1 + λ2x1)(η1x2 + η2x2)

= λ1η1x1x2 + λ1η2x1x2 + λ2η1x1x2 + λ2η2x1x2

(3.56)

From Eq. (3.55), the equations shown below can be derived.

x1 = λ1(η1 + η2)x1 + λ2(η1 + η2)x1

(λ1 + λ2)(η1 + η2) = λ1η1 + λ1η2 + λ2η1 + λ2η2 = 1
(3.57)

Therefore, the vector (x1, x1x2)
T can be represented as the convex combination form shown

below

 x1

x1x2

 = λ1η1

 x1

x1x2

+ λ1η2

 x1

x1x2

+ λ2η1

 x1

x1x2

+ λ2η2

 x1

x1x2

 (3.58)

with
∑

i

∑
j λiηj = 1 and λiηj ≥ 0, i, j = 1, 2.

Similarly, the vertices of the polytopic space for a more complex real vector (x1, x1x2, x1x3, x1x2x4)
T

can also be derived.

Lemma 10 Suppose x1, x2 x3, x4 ∈ R satisfying the lower and upper bounds conditions x1 ≤

x1 ≤ x1, x2 ≤ x2 ≤ x2, x3 ≤ x3 ≤ x3, x4 ≤ x4 ≤ x4. Then, the vector (x1, x1x2, x1x3, x1x2x4)
T
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lies in a polytopic space with the sixteen vertices shown below.



x1

x1x2

x1x3

x1x2x4


,



x1

x1x2

x1x3

x1x2x4


,



x1

x1x2

x1x3

x1x2x4


,



x1

x1x2

x1x3

x1x2x4




x1

x1x2

x1x3

x1x2x4


,



x1

x1x2

x1x3

x1x2x4


,



x1

x1x2

x1x3

x1x2x4


,



x1

x1x2

x1x3

x1x2x4




x1

x1x2

x1x3

x1x2x4


,



x1

x1x2

x1x3

x1x2x4


,



x1

x1x2

x1x3

x1x2x4


,



x1

x1x2

x1x3

x1x2x4




x1

x1x2

x1x3

x1x2x4


,



x1

x1x2

x1x3

x1x2x4


,



x1

x1x2

x1x3

x1x2x4


,



x1

x1x2

x1x3

x1x2x4


(3.59)

Proof: The four real variables x1, x2, x3 and x4 can be represented as the following convex

combination forms

x1 = λ1x1 + λ2x1, x2 = η1x2 + η2x2, x3 = β1x3 + β2x3, x4 = ρ1x4 + ρ2x4 (3.60)
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where λ1 + λ2 = 1, η1 + η2 = 1, β1 + β2 = 1, ρ1 + ρ2 = 1 with λi, ηi, βi, ρi ≥ 0, i = 1, 2.

Then, x1x3 and x1x2x4 can be written as

x1x3 = (λ1x1 + λ2x1)(β1x3 + β2x3)

= λ1β1x1x3 + λ1β2x1x3 + λ2β1x1x3 + λ2β2x1x3

= λ1β1(η1 + η2)(ρ1 + ρ2)x1x3 + λ1β2(η1 + η2)(ρ1 + ρ2)x1x3

+λ2β1(η1 + η2)(ρ1 + ρ2)x1x3 + λ2β2(η1 + η2)(ρ1 + ρ2)x1x3

(3.61)

x1x2x4 = (λ1x1 + λ2x1)(η1x2 + η2x2)(ρ1x4 + ρ2x4)

= λ1η1ρ1x1x2x4 + λ1η1ρ2x1x2x4 + λ1η2ρ1x1x2x4 + λ1η2ρ2x1x2x4

+λ2η1ρ1x1x2x4 + λ2η1ρ2x1x2x4 + λ2η2ρ1x1x2x4 + λ2η2ρ2x1x2x4

= λ1η1ρ1(β1 + β2)x1x2x4 + λ1η1ρ2(β1 + β2)x1x2x4 + λ1η2ρ1(β1 + β2)x1x2x4

+λ1η2ρ2(β1 + β2)x1x2x4 + λ2η1ρ1(β1 + β2)x1x2x4 + λ2η1ρ2(β1 + β2)x1x2x4

+λ2η2ρ1(β1 + β2)x1x2x4 + λ2η2ρ2(β1 + β2)x1x2x4

(3.62)

From Eq. (3.56), x1x2 can be represented as

x1x2 = λ1η1(β1 + β2)(ρ1 + ρ2)x1x2 + λ1η2(β1 + β2)(ρ1 + ρ2)x1x2

+λ2η1(β1 + β2)(ρ1 + ρ2)x1x2 + λ2η2(β1 + β2)(ρ1 + ρ2)x1x2

(3.63)

Furthermore, the following equality can be derived from Eq. (3.60)

(λ1 + λ2)(η1 + η2)(β1 + β2)(ρ1 + ρ2) =
∑
i

∑
j

∑
k

∑
m

λiηjβkρm = 1 (3.64)

where i, j, k, m = 1, 2. Therefore, the vector (x1, x1x2, x1x3, x1x2x4)
T can be represented

as the convex combination form shown below
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x1

x1x2

x1x3

x1x2x4



= λ1η1β1ρ1



x1

x1x2

x1x3

x1x2x4


+ λ1η1β1ρ2



x1

x1x2

x1x3

x1x2x4


+ λ1η1β2ρ1



x1

x1x2

x1x3

x1x2x4



+λ1η1β2ρ2



x1

x1x2

x1x3

x1x2x4


+ λ1η2β1ρ1



x1

x1x2

x1x3

x1x2x4


+ λ1η2β1ρ2



x1

x1x2

x1x3

x1x2x4



+λ1η2β2ρ1



x1

x1x2

x1x3

x1x2x4


+ λ1η2β2ρ2



x1

x1x2

x1x3

x1x2x4


+ λ2η1β1ρ1



x1

x1x2

x1x3

x1x2x4



+λ2η1β1ρ2



x1

x1x2

x1x3

x1x2x4


+ λ2η1β2ρ1



x1

x1x2

x1x3

x1x2x4


+ λ2η1β2ρ2



x1
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+λ2η2β2ρ2



x1

x1x2

x1x3

x1x2x4


(3.65)

with
∑

i

∑
j

∑
k

∑
m λiηjβkρm = 1 and λiηjβkρm ≥ 0, i, j, k, m = 1, 2.

For the case of perfect measurements of the scheduling parameters, the vector θ =

( 1
vx
, ax

vx
)T can be abstracted as the form of (x1, x1x2)

T with x1 =
1
vx

and x2 = ax. Applying

Lemma 9, the four vertices of the polytopic parameter space Θ can be obtained

θ(1) =


1

vx

ax
vx

 , θ(2) =


1

vx

ax
vx

 , θ(3) =


1

vx

ax
vx

 , θ(4) =


1

vx

ax
vx

 (3.66)

where the following extreme values are chosen to constitute the above vertices.

vx = 15kph, vx = 150kph, ax = −8.0m/s2, ax = 8.0m/s2 (3.67)

These values are selected based on the of normal operation range of the automotive active

safety systems. This polytopic space for the scheduling parameters 1
vx

and ax
vx

is visualized

by the shaded region in Fig. 3.6.

For the case of scheduling parameters with uncertain measurement error, the semidefinte

constraints in Eq. (3.41), (3.43), (3.52) and (3.53) depend on the parameter vector (θT , θT∆)
T .

It is assumed that the measurement error of the longitudinal velocity and acceleration can

be represented as the following multiplicative uncertain form.

∆vx = ϵ1vx, ∆ax = ϵ2ax (3.68)
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Figure 3.6: The polytopic space for the scheduling parameters 1
vx

and ax
vx
.

where the factors ϵ1 and ϵ2 are constrained in the intervals ϵ1 ≤ ϵ1 ≤ ϵ1, ϵ2 ≤ ϵ2 ≤ ϵ2. Then,

the measurement error of the first scheduling parameter θ∆,1 becomes

θ∆,1 =
1

vx
− 1

vx +∆vx
=

∆vx
vx(vx +∆vx)

=
ϵ1

1 + ϵ1
· 1

vx
(3.69)

Similarly, the second scheduling parameter θ∆,2 can be derived as

θ∆,2 =
ax
vx

− ax +∆ax
vx +∆vx

=
ax∆vx − vx∆ax
vx(vx +∆vx)

=
ϵ1 − ϵ2
1 + ϵ1

· ax
vx

(3.70)
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The two coefficients ϵ1
1+ϵ1

and ϵ1−ϵ2
1+ϵ1

act as the multiplicative uncertain coefficients for the two

scheduling parameters 1
vx

and ax
vx
. Their variation intervals are shown as

1

1 + 1
ϵ1

≤ ϵ1
1 + ϵ1

≤ 1

1 + 1
ϵ1

1− 1 + ϵ2
1 + ϵ1

≤ ϵ1 − ϵ2
1 + ϵ1

≤ 1− 1 + ϵ2
1 + ϵ1

(3.71)

Hence, the parameter vector (θT , θT∆)
T = ( 1

vx
, ax

vx
, 1

vx
− 1

vx+∆vx
, ax

vx
− ax+∆ax

vx+∆vx
)T can be

abstracted as the form of (x1, x1x2, x1x3, x1x2x4)
T with x1 = 1

vx
, x2 = ax, x3 = ϵ1

1+ϵ1
and

x4 = ϵ1−ϵ2
1+ϵ1

. Applying Lemma 10, the sixteen vertices of the polytopic spaces for the vector

(θT , θT∆)
T can be obtained.

 θ

θ∆


(1)

=



1

vx

ax
vx

1

vx
· 1

1 + 1
ϵ1

ax
vx

·
(
1− 1 + ϵ2

1 + ϵ1

)


,

 θ

θ∆


(2)

=



1

vx

ax
vx

1

vx
· 1

1 + 1
ϵ1

ax
vx

·
(
1− 1 + ϵ2

1 + ϵ1

)



 θ

θ∆


(3)

=



1

vx

ax
vx

1

vx
· 1

1 + 1
ϵ1

ax
vx

·
(
1− 1 + ϵ2

1 + ϵ1

)


,

 θ

θ∆


(4)

=



1

vx

ax
vx

1

vx
· 1

1 + 1
ϵ1

ax
vx

·
(
1− 1 + ϵ2

1 + ϵ1

)
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 θ

θ∆


(5)

=



1

vx

ax
vx

1

vx
· 1

1 + 1
ϵ1

ax
vx

·
(
1− 1 + ϵ2

1 + ϵ1

)


,

 θ

θ∆


(6)

=



1

vx

ax
vx

1

vx
· 1

1 + 1
ϵ1

ax
vx

·
(
1− 1 + ϵ2

1 + ϵ1

)



 θ

θ∆


(7)

=



1

vx

ax
vx

1

vx
· 1

1 + 1
ϵ1

ax
vx

·
(
1− 1 + ϵ2

1 + ϵ1

)


,

 θ

θ∆


(8)

=



1

vx

ax
vx

1

vx
· 1

1 + 1
ϵ1

ax
vx

·
(
1− 1 + ϵ2

1 + ϵ1

)



 θ

θ∆


(9)

=



1

vx

ax
vx

1

vx
· 1

1 + 1
ϵ1

ax
vx

·
(
1− 1 + ϵ2

1 + ϵ1

)



,

 θ

θ∆


(10)

=



1

vx

ax
vx

1

vx
· 1

1 + 1
ϵ1

ax
vx

·
(
1− 1 + ϵ2

1 + ϵ1

)



 θ

θ∆


(11)

=



1

vx

ax
vx

1

vx
· 1

1 + 1
ϵ1

ax
vx

·
(
1− 1 + ϵ2

1 + ϵ1

)


,

 θ

θ∆


(12)

=



1

vx

ax
vx

1

vx
· 1

1 + 1
ϵ1

ax
vx

·
(
1− 1 + ϵ2

1 + ϵ1

)
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 θ

θ∆


(13)

=



1

vx

ax
vx

1

vx
· 1

1 + 1
ϵ1

ax
vx

·
(
1− 1 + ϵ2

1 + ϵ1

)



,

 θ

θ∆


(14)

=



1

vx

ax
vx

1

vx
· 1

1 + 1
ϵ1

ax
vx

·
(
1− 1 + ϵ2

1 + ϵ1

)



 θ

θ∆


(15)

=



1

vx

ax
vx

1

vx
· 1

1 + 1
ϵ1

ax
vx

·
(
1− 1 + ϵ2

1 + ϵ1

)


,

 θ

θ∆


(16)

=



1

vx

ax
vx

1

vx
· 1

1 + 1
ϵ1

ax
vx

·
(
1− 1 + ϵ2

1 + ϵ1

)


(3.72)

where the following extreme values vx, vx, ax and ax are already defined in Eq. (3.67). The

variation interval for the multiplicative factors ϵ1 and ϵ2 are shown below.

ϵ1 = −0.1, ϵ1 = 0.1, ϵ2 = −0.2, ϵ2 = 0.2 (3.73)

General Plant Representation

Finally, the derivation of the general plant representation shown in Fig. 3.5 of the

bicycle model with uncertain scheduling parameters is presented. Generally, the procedure

that is presented in the brief introduction for linear fractional representation in previous

chapter will be followed. The affine parameter dependent state space model is shown below

again

ẋ = ((θm,1 + θ∆,1)A1 + (θm,2 + θ∆,2)A2)x+ (B0 + (θm,2 + θ∆,2)B2)u

y = Cx
(3.74)
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where θm,1, θm,2 denote the measured scheduling parameters and θ∆,1, θ∆,2 are the uncertain

measurement error for each parameter. The state space matrices A1, A2, B0, B2, C are

defined as

A1 =


−Cf

(
1

M
+

a2

Iz

)
Cr

(
ab

Iz
− 1

M

)

Cf

(
ab

Iz
− 1

M

)
−Cr

(
1

M
+

b2

Iz

)
 , A2 =


−1 0

0 −1



B0 =

 0 1 1

0 0 1

 , B2 =

 1 0 0

0 0 0

 , C =
(

1 −1

)

θ∆,1A1, θ∆,2A2 and θ∆,2B2 can be factorized as the following forms

θ∆,1A1 =


−
(

1

M
+

a2

Iz

) (
ab

Iz
− 1

M

)
(
ab

Iz
− 1

M

)
−
(

1

M
+

b2

Iz

)


︸ ︷︷ ︸
L1,1

 θ∆,1 0

0 θ∆,1


︸ ︷︷ ︸

θ∆,1I2

 Cf 0

0 Cr


︸ ︷︷ ︸

R1,1

θ∆,2A2 =

 1 0

0 1


︸ ︷︷ ︸

L2,1

 θ∆,2 0

0 θ∆,2


︸ ︷︷ ︸

θ∆,2I2

 −1 0

0 −1


︸ ︷︷ ︸

R2,1

θ∆,2B2 =

 1 0

0 1


︸ ︷︷ ︸

L2,1

 θ∆,2 0

0 θ∆,2


︸ ︷︷ ︸

θ∆,2I2

 1 0 0

0 0 0


︸ ︷︷ ︸

R2,2

where I2 denotes a 2 × 2 identity matrix. To conform with the procedure presented in the

last chapter, the factorization of the lumped state space matrices can be obtained as

 A1 0

0 0

 =

 L1,1

0

( R1,1 0

)
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 A2 B2

0 0

 =

 L2,1

0

( R2,1 R2,2

)

By applying Eq. (2.7), the bicycle model can be rewritten as

 ẋ

y

 =

 A(θm) B(θm)

C(θm) 0


 x

u

+

 L1,1 L2,1

0 0


 w1

w2


 z1

z2

 =

 R1,1 0

R2,1 R2,2


 x

u


(3.75)

where the nominal θm scheduled state space matrices A(θm), B(θm) and C(θm) are defined

as

A(θm) = θm,1A1 + θm,2A2, B(θm) = B0 + θm,2B2, C(θm) = C

To match the generalized plant model in Eq. (3.44), the matrices Bw, Cz and Dz are

Bw =
(

L1,1 L2,1

)
, Cz =

 R1,1

R2,1

 , Dz =

 0

R2,2



The vectors (w1 w2)
T and (z1 z2)

T are related by

 w1

w2

 =

 θ∆,1I2 0

0 θ∆,2I2


 z1

z2



3.3 Simulation Results

In this section, some simulation examples are presented to demonstrate the application

of the SDP based LPV observer design methodology by using CarSim data. In the simu-

lation test, a sedan is used to follow the trajectory of the standard ”Double Lane Change”

maneuver. A screen shot of the simulation can be seen in Fig. 3.7. Its longitudinal velocity

profile, which decreases from 78kph to 23kph gradually, is shown in Fig. 3.8. The basic
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Figure 3.7: The screen shot of the simulation.

Figure 3.8: Longitudinal velocity and acceleration profile in the simulation.
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vehicle inertial parameters and location of CG are shown below.

M = 800 (kg), Iz = 1152 (kg·m2)

a = 0.948 (m), b = 1.422 (m)

The cornering stiffness parameters are

Cf = 76500 (N/rad), Cr = 51000 (N/rad)

First, the convergent LPV observer gains obtained by solving the LMI feasibility problem

in Eq. 3.27 with perfect measurement of longitudinal velocity and acceleration is simulated.

L0 =

 0.0477

0.0477

 , L1 =

 −65.7731

−63.7411

 , L2 =

 −0.4363

−0.4363



The simulated estimation results are presented in Fig. 3.9. To illustrate the convergence of

the observer, it is initialized 1 second later than the maneuver at a different initial condition.

Fig. 3.9 shows that the two estimated slip angles converge to the true value.

Next, the measurement errors in the scheduling parameters are taken into consideration.

The optimal H2 and H∞ gain parameters can be derived by solving the LMI optimization

problems in Eq. (3.41) and (3.43).

• Optimal H2 gains for Luenberger observer

L0 =

 7250.9

6962.8

 , L1 =

 35776

34423

 , L2 =

 831.9374

773.2087
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Figure 3.9: The simulation results of gain scheduled observer in tire side angle estimation.

• Optimal H∞ gains for Luenberger observer

L0 =

 390.3628

376.0443

 , L1 =

 941.1064

908.2782

 , L2 =

 104.0730

100.1726



The unstructured H2 and H∞ optimal LPV observer state space matrices defined in Eq.

(3.48) can be derived by solving the LMI optimization problems in Eq. (3.52) and (3.52).

• Unstructured optimal H2 observer

Ao,0 =

 −2319.1 −2321.0

−2531.0 −2532.7

 , Ao,1 =

 −2982.7 −2818.1

−1432.1 −1581.4



Ao,2 =

 125.4695 126.4443

121.1414 120.1646

 , Bou,0 =

 0.3352 1 1

0.3364 0 −1
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Bou,1 =

 −1.5886 0 0

−1.4224 0 0

 , Bou,2 =

 0.9821 0 0

0.0147 0 0



Boy,0 =

 2320.3

2532.2

 , Boy,1 =

 2824.4

1432.6

 , Boy,2 =

 −126.4374

−121.1343


• Unstructured optimal H∞ observer

Ao,0 =

 −324.2065 −324.4028

−311.0927 −310.6798

 , Ao,1 =

 −360.3333 −202.7391

−194.5750 −352.6795



Ao,2 =

 −1.0852 −0.1374

−0.1474 −1.1605

 , Bou,0 =

 −0.9175 1 1

−0.8422 0 −1



Bou,1 =

 2.1202 0 0

2.0056 0 0

 , Bou,2 =

 1.2391 0 0

0.2549 0 0



Boy,0 =

 324.2891

310.8739

 , Boy,1 =

 206.7304

200.8320

 , Boy,2 =

 0.1406

0.1824


In the next simulation results, artificial errors are added in the longitudinal velocity and

acceleration signals. The simulation results in the two cases for the uncertain multiplicative

factors ϵ1 and ϵ2 are presented. In the 1st case, ϵ1 and ϵ2 are perturbed to −0.04 and

0.06 respectively. The simulation results from the gain scheduled Luenberger observer with

optimal H2 and H∞ gain parameters can be seen in Fig. 3.10 and 3.11 below. While the

simulation results from the unstructured LPV observer with optimal H2 and H∞ parameters

can be seen in Fig. 3.12 and 3.13.

In the 2nd case, the two uncertain multiplicative factors ϵ1 and ϵ2 are perturbed to

−0.10 and 0.15 respectively. The simulation results from the gain scheduled Luenberger
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Figure 3.10: The simulation results of the optimal H2 LPV Luenberger observer with ϵ1 =
−0.04, ϵ2 = 0.06.

Figure 3.11: The simulation results of the optimal H∞ LPV Luenberger observer with ϵ1 =
−0.04, ϵ2 = 0.06.
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Figure 3.12: The simulation results of the optimal H2 LPV unstructured observer with
ϵ1 = −0.04, ϵ2 = 0.06.

Figure 3.13: The simulation results of the optimal H∞ LPV unstructured observer with
ϵ1 = −0.04, ϵ2 = 0.06.
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observer with optimal H2 and H∞ gain parameters can be seen in Fig. 3.14 and 3.15 below.

While those from the unstructured LPV observer are shown in Fig. 3.16 and 3.17 below.

Figure 3.14: The simulation results of the optimal H2 LPV Luenberger observer with ϵ1 =
−0.10, ϵ2 = 0.15.

The simulation results show that the estimated tire slip angles from the LPV observer

converge quickly to those from the more complex CarSim model. However, the estimation

error become biased when the artificial measurement error is added in the longitudinal veloc-

ity and acceleration. Furthermore, the H2/H∞ optimized Luenberger observer show better

estimation results than the unstructured observers, when the uncertain multiplicative factors

ϵ1 and ϵ2 are constrained in an interval closed to zero. On the other hand, the unstructured

observers result in a smaller estimation error, in case that the factors ϵ1 and ϵ2 are perturbed

to their extreme values. Unsurprisingly, the state space model of the unstructured observer

is not restricted by the nominal model of the system. The semidefinite programming prob-

lems in Eq. 3.52 and 3.53 emphasize on optimizing the H2 and H∞ norms in the worst case.

Hence, the performance in nominal case has be be sacrificed.

76



Figure 3.15: The simulation results of the optimal H∞ LPV Luenberger observer with ϵ1 =
−0.10, ϵ2 = 0.15.

Figure 3.16: The simulation results of the optimal H2 LPV unstructured observer with
ϵ1 = −0.10, ϵ2 = 0.15.
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Figure 3.17: The simulation results of the optimal H∞ LPV unstructured observer with
ϵ1 = −0.10, ϵ2 = 0.15.

3.4 Conclusions

The linear parameter varying (LPV) modeling and observer design methodology for the

three DOF bicycle model were presented in this chapter. Both gain-scheduled Luenberger

observer and unstructured observer approaches were discussed and compared. The search of

convergent parameters resorts to LMIs based optimization problems. Besides the asymptotic

convergence, the robust design technique that aims at increasing the estimation accuracy in

the presence of measurement error of the scheduling parameters was also discussed. Both

structured and unstructured observer design methodologies were presented. Although the

unstructured observer can achieve a more optimal value for the cost function than the Lu-

enberger observer, the lack of physical interpretations makes this design methodology very

difficult to debug and impractical in real-world applications.
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Chapter 4

LPV Interval Observer Design with Uncertain cornering Stiffness

4.1 Introduction

In the last chapter, the gain-scheduled observer design methodology for the three DOF

bicycle model is discussed. Although the time-varying longitudinal velocity and acceleration

have been treated as scheduling parameters for updating the observer gains, the uncertain

tire cornering stiffness parameters still remain as a severe handicap in developing a high

performance observer. However, the accurate estimation of state variables is a fundamental

requirement in many safety critical systems, such as in autonomous driving, automotive

active safety systems and fault tolerant flight control systems. These challenging applications

necessitate a robust observer design methodology that explicitly takes the model uncertainty

into consideration.

The sliding mode observer is one such an approach that treats model uncertainty as

a disturbance signal preventing the observer error from converging to a pre-defined stable

sliding surface. Then, non-smooth functions with large amplitude are used to dominate the

uncertainties [30] [27]. However, practical constraints in real-time embedded systems, such

as slow sampling rate, degrade the effect of the non-smooth functions which will result in an

undesirable chattering phenomenon. Another popular method is to apply classical robust

control theory to observer design, such as robust H∞ observer which aims at attenuating

the L2 gain from the disturbance input to the observer error [35] [55]. On the other hand,

a parameter adaptation algorithm can be developed to cope with the parameter uncertainty

[33] [66] in the adaptive observer. However, this technique suffers an important disadvantage

that many real-world application systems cannot satisfy the strict assumptions required for

a successful solution to exist for the observer design problem.
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The interval observer has become a popular observer design method in the presence of

input uncertainty in the control community during the last decade [37]. Unlike the Kalman

filter, which treats the external disturbance as a stochastic signal with known statistical

property [13], the interval observer ignores any probability distribution of the unmeasured

disturbance input signals but assumes that they are always constrained in a known time-

invariant or time-varying interval. Instead of a single estimation curve for each state variable,

the interval observer computes the lower and upper bounds of all the admissible values of

the states in the presence of bounded input uncertainty. For safety critical systems, this

envelope provides an estimation of the worst case values. In existing literature, there are

two ways to achieve such an interval estimation. The first one is the so-called set membership

approach. In this method, the disturbance input vector is assumed to be constrained in a

convex set. The optimization algorithm together with the model of the system and available

measurement data, is used to compute another convex outer approximation, such as an

ellipsoid [26] [43] or zonotopes [60] [61], to cover all the admissible state vectors.

Another technique for interval observer design is the cooperative observer error ap-

proach, which requires that the observer error state matrix is not only a Hurwitz matrix but

also a Metzler matrix (i.e. all its off-diagonal elements are nonnegative for continuous-time

case). This property preserves the order of the state variables at any instant of time the

same with their initial conditions [42] [47] [44]. However, searching for a qualified observer

gain is not a trivial task. Hence, the existing methods to obtain an interval observer gain

in an analytical way become unsuitable for more complex high order systems and are diffi-

cult to be generalized to parameter varying systems [51]. To overcome this difficulty, some

methods that release the cooperative constraint for the observer error through a coordinate

transformation have been proposed [28] [62]. In spite of the elegant theoretical proof, these

coordinate transformation methods only consider the uncertainty in the input channel rather

than the model uncertainty, which puts a question mark on the applicability to systems with

large variational parameters.
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In this chapter, a systematic interval observer design method for both linear-time-

invariant (LTI) and linear-parameter-varying (LPV) systems with parametric uncertainty

by using the cooperative observer error approach will be presented. It will be shown that

the uncertain parameters can be treated as a disturbance signal for the observer error. Unlike

previous the methods discussed above, the well-developed semidefinite programming (SDP)

approach [58] [54] is proposed to search for the qualified observer gains, which result in a

robustly stable and cooperative observer error dynamical system. Then, the proposed de-

sign methodology will be applied to the development of the interval observer for a vehicle

state estimation problem with the cornering stiffness values as the uncertain parameters with

known variation ranges.

The remainder of this chapter is organized as follows. First, some background knowledge

is reviewed in Section 4.2. Next, the design of the interval observer for LTI systems with

parametric uncertainty is presented in Section 4.3. Then, this approach is extended to the

gain-scheduled interval observer development for the LPV systems in Section 4.4. Finally,

this design methodology is applied to a vehicle state estimation problem in Section 4.5.

Section 4.6 contains the final conclusions for this chapter.

4.2 Notation and Background

This section presents some theoretical background related to the interval observer design

from the literature. The symbol R represents the set of real numbers. Rm×n denotes the

set of m × n matrices whose elements all belong to R. For matrices X, Y ∈ Rm×n, X ≥ Y

or Y ≤ X indicates that each element in X is no smaller than its counterpart in Y . For

symmetric matrices A,B ∈ Rn×n, A ≻ B or B ≺ A means that A− B is a positive definite

matrix.
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4.2.1 Metzler Matrix

A matrix A ∈ Rn×n is called a Metzler matrix or a cooperative matrix if all its off-

diagonal elements are nonnegative [37] [68].

4.2.2 Positive Linear Systems

Suppose a matrix A ∈ Rn×n is Hurwitz and Metzler. The solutions to a pair of linear

systems

ẋ+ = Ax+ + w+

ẋ− = Ax− + w−
(4.1)

always satisfy the inequality 0 ≤ x−(t) ≤ x+(t), ∀ t ≥ 0 if the following conditions are

satisfied [68]:

0 ≤ x−(0) ≤ x+(0) and 0 ≤ w−(t) ≤ w+(t), ∀ t ≥ 0 (4.2)

4.2.3 Interval Observer for A LTI System with Uncertain Input

The interval observer is an application of the positive linear system theory to observer

design for disturbance affected or uncertain linear systems. Consider the following state

space model,

ẋ = Ax+Bu+ w, y = Cx (4.3)

where w is the unmeasured disturbance input that satisfies the element-wise interval condi-

tion w− ≤ w ≤ w+, ∀ t ≥ 0. The interval observer constitutes a pair of subsystems shown

below [37]

ẋ+ = Ax+ +Bu+ L(y − Cx+) + w+

ẋ− = Ax− +Bu+ L(y − Cx−) + w−
(4.4)

where the observer gain L is tuned to guarantee that A − LC is a Hurwitz and Metzler

matrix. Then, x−(t) and x+(t) are the lower and upper bounds of the state x as shown in
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Eq. (4.5) if the initial condition satisfies x−(0) ≤ x(0) ≤ x+(0).

x−(t) ≤ x(t) ≤ x+(t) ∀ t ≥ 0 (4.5)

4.2.4 Lyapunov Stability for The Positive Linear Systems

Similar to other linear systems, the stability analysis of the positive linear systems can

resort to searching for a candidate Lyapunov function.

Theorem 2 [68] The positive linear system in Eq. (4.1) is asymptotically stable if and only

if there exists a diagonal matrix P = diag(p11, . . . , pnn), such that

P ≻ 0 and ATP + PA ≺ 0 (4.6)

As will be shown later, restricting the Lyapunov matrix P to a diagonal form will significantly

facilitate the design of the interval observer.

4.3 Interval Observer Design for LTI Systems with Parametric Uncertainty

Observer design for the uncertain LTI system is a very challenging task that control

engineers face. As discussed in Section 4.2, the system must satisfy very strict conditions

to create an observer that is robust to the model uncertainty. If it is impossible to observe

the state trajectory accurately, it would be particularly useful to estimate an envelope that

covers all the possible state trajectories from the admissible uncertain dynamical systems. In

the application of process monitoring, this estimated interval indicates the worst case range

of the states. In the next section, it is shown that the parametric uncertainty is equivalent

to an input uncertainty as shown in Eq. (4.4) for the observer error dynamics.
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4.3.1 LTI Interval Observer Design

Consider the following linear system,

ẋ = A(ξ)x+B(ξ)u, y = Cx (4.7)

where x ∈ Rn, y ∈ Rm, A ∈ Rn×n, B ∈ Rn×l, C ∈ Rm×n and (A, C) is observable. ξ =

[ξ1, . . . , ξs]
T denotes the collections of time-invariant and time-varying uncertain parameters.

They are assumed to be in a polytopic set Ξ with ξ(j), j = 1, . . . , h as the vertices.

Unlike the traditional Luenberger Observer design method, which only requires the

observer error to be asymptotically stable, the state matrix A − LC for the observer error

should also be a Metzler matrix in the interval observer such that x̂−(t) and x̂+(t) will not

cross the true state x(t) even in the transient response. Next, the search for a qualified

interval observer gain through a LMI approach will be presented.

Lemma 11 Suppose P ∈ Rn×n is a diagonal positive definite matrix. The matrix R ∈ Rn×n

is a Metzler matrix if and only if PR is a Metzler matrix.

Proof: Since both P and P−1 are diagonal positive definite matrices, the sign of each element

in the matrix PR is always the same with that in the matrix R. Therefore, if either PR or

R is a Metzler matrix, the both are Metzler matrices.

The design of the interval observer for the parametric uncertain LTI system is summa-

rized in Theorem 3.

Theorem 3 For the parametric uncertain linear system in Eq. (4.7), the interval observer

is composed of two subsystems shown below.

˙̂x
+
= A(ξ0)x̂

+ +B(ξ0)u+ L(y − Cx̂+) + w+(x̂+, ξ, u)

˙̂x
−
= A(ξ0)x̂

− +B(ξ0)u+ L(y − Cx̂−) + w−(x̂−, ξ, u)
(4.8)

84



where L ∈ Rn×m is the observer gain. ξ0 is the nominal value of the uncertain parameter ξ,

ξ ∈ Ξ. w+(x̂+, ξ, u) and w−(x̂−, ξ, u) denote the following upper and lower limit functions in

the domain of operation.

w+(x̂+, ξ, u) ≥ [A(ξ)− A(ξ0)]x̂
+ + [B(ξ)−B(ξ0)]u

w−(x̂−, ξ, u) ≤ [A(ξ)− A(ξ0)]x̂
− + [B(ξ)−B(ξ0)]u

(4.9)

Suppose there exist two matrices P and Q that satisfy the three conditions listed below.

1. P ∈ Rn×n is a diagonal positive definite matrix;

2. The LMI condition shown in Eq. (4.10) is feasible.

AT (ξ)P + PA(ξ)− (CTQT +QC) ≺ 0, ∀ ξ ∈ Ξ (4.10)

where Q ∈ Rn×m;

3. PA(ξ)−QC is a Metzler matrix ∀ ξ ∈ Ξ;

Then, if the observer gains L are obtained as L = P−1Q, Eq. (4.8) constitutes an interval

observer for system in Eq. (4.7).

Proof: The observer error for x̂+ can be derived as

˙̂x
+ − ẋ

= [A(ξ0)− A(ξ)]x̂+ + A(ξ)(x̂+ − x)− LC(x̂+ − x)

+w+(x̂+, ξ, u)− [B(ξ)−B(ξ0)]u

= [A(ξ)− LC](x̂+ − x) + w+(x̂+, ξ, u)

−[A(ξ)− A(ξ0)]x̂
+ − [B(ξ)−B(ξ0)]u

(4.11)

Substituting PL for Q in the LMI in Eq. (4.10), it is easy to see that the feasibility of

this LMI guarantees that A(ξ) − LC is a Hurwitz matrix. While, Lemma 11 implies that

A(ξ)− LC is a Metzler matrix if and only if PA(ξ)−QC is a Metzler matrix ∀ ξ ∈ Ξ.
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Besides a copy of the nominal model and a linear correction term as in the Luenberger

Observer, an additional signal w+(x̂+, ξ, u) is introduced to subdue [A(ξ)−A(ξ0)]x̂
++[B(ξ)−

B(ξ0)]u. This term can be regarded as the unmeasured disturbance input resulting from the

mismatch between the nominal model and true process for the observer error, in the interval

observer. Therefore, the observer error x̂+−x in Eq. (4.11) is indeed a positive linear system

which implies that x̂+ constitutes the upper limit for the real state x.

Similarly, the positivity for the observer error x − x̂− can be proven, which is omitted

for brevity. In summary, x̂+(t) and x̂−(t) constitute the interval estimation for x(t), if the

initial condition satisfies x̂−(0) ≤ x(0) ≤ x̂+(0).

x̂−(t) ≤ x(t) ≤ x̂+(t), ∀ t ≥ 0 (4.12)

w+(x̂+, ξ, u) and w−(x̂−, ξ, u) are indeed the worst-case input uncertainty resulting

from the uncertain parameters. To realize the interval observer in Eq. (4.8), it is nec-

essary to estimate the element-wise upper and lower bounds of the deviation matrices

[A(ξ)−A(ξ0)]x̂
+ + [B(ξ)−B(ξ0)]u and [A(ξ)−A(ξ0)]x̂

− + [B(ξ)−B(ξ0)]u. If the matrices

A(ξ) and B(ξ) are nonlinear matrix functions of ξ, this problem can be solved by a con-

strained numerical optimization algorithm. However, if both matrices depend on ξ affinely,

the following result in Lemma 12 can be applied to estimate w+(x̂+, ξ, u) and w−(x̂−, ξ, u)

analytically.

Lemma 12 [28] Given a matrix T ∈ Rm×n, define T+ = max{0, T}, T− = T+ − T , with

max{·, ·} being an element-wise maximum operator. Let v ∈ Rn be a vector variable, v− ≤

v ≤ v+ for some v−, v+ ∈ Rn, then

T+v− − T−v+ ≤ Tv ≤ T+v+ − T−v− (4.13)
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For the affine parameter dependent matrices A(ξ), B(ξ) shown in Eq. (4.14),

A(ξ) = A0 + ξ1A1 + · · ·+ ξsAs

B(ξ) = B0 + ξ1B1 + · · ·+ ξsBs

(4.14)

[A(ξ) − A(ξ0)]x̂
+ + [B(ξ) − B(ξ0)]u can be written in the following linear transformation

form.

[A(ξ)− A(ξ0)]x̂
+ + [B(ξ)−B(ξ0)]u

=
(
A1x̂

+ +B1u . . . Asx̂
+ +Bsu

)
︸ ︷︷ ︸

T1

(
ξ − ξ0

)
︸ ︷︷ ︸

v

(4.15)

Similarly, [A(ξ)− A(ξ0)]x̂
− + [B(ξ)−B(ξ0)]u is shown as

[A(ξ)− A(ξ0)]x̂
− + [B(ξ)−B(ξ0)]u

=
(
A1x̂

− +B1u . . . Asx̂
− +Bsu

)
︸ ︷︷ ︸

T2

(
ξ − ξ0

)
︸ ︷︷ ︸

v

(4.16)

According to Lemma 12, w+(x̂+, ξ, u) and w−(x̂−, ξ, u) can be calculated as

w+(x̂+, ξ, u) = T+
1 v+ − T−

1 v−

w−(x̂−, ξ, u) = T+
2 v− − T−

2 v+
(4.17)

where the matrices T1, T2 and v are defined in Eq. (4.15) and (4.16). Note that T+
1 , T−

1 ,

T+
2 and T−

1 are time varying matrices dependent on the state estimate x̂+, x̂− and input u,

while v+ and v− are bounds on the parameters.

Another challenging task is to search for the observer gain L that results in a robustly

stable and cooperative observer error dynamics. As can be seen in Eq. (4.10), the robust

stabilization of the observer error is an infinite dimensional LMI problem. However, the

affine dependence of the state space matrices on ξ make it only necessary to guarantee the

semidefinite condition on all the vertices of the polytopic parameter space Ξ [35] [54] [11].
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In what follows, it will be proven that this guarantee is also true for the third condition that

requires the state matrix of the observer error is a Metzler matrix ∀ ξ ∈ Ξ.

Lemma 13 Suppose the matrix A(ξ) ∈ Rn×n is an affine matrix function of ξ ∈ Rs×1

shown in Eq. (4.14). The uncertain parameter vector ξ is always contained in a polytope

Ξ with vertices ξ(j), j = 1, . . . , h. Then, A(ξ) is a Metzler matrix ∀ ξ ∈ Ξ if and only if

A(ξ(j)),∀ j = 1, . . . , h is a Metzler matrix.

Proof: If: The affine dependence of A(ξ) on ξ implies that A(ξ) can be constructed as the

convex combination of A(ξ(j)),∀ j = 1, . . . , h.

A(ξ) =
h∑

j=1

θjA(ξ
(j)) (4.18)

where θ1 + · · · + θh = 1, 0 ≤ θj ≤ 1. The non negativity of θj guarantees that the non

negativity of all the off-diagonal elements of A(ξj) are preserved on those of A(ξ).

Only if: The necessity is quite straightforward. Suppose some A(ξ(j)) violates the

condition of a Metzler matrix. Then, A(ξ) cannot be a Metzler matrix ∀ ξ ∈ Ξ, which leads

to a contradiction.

4.4 Interval Observer Design for LPV Systems

In many real-world applications, the dynamical model of the process contains some

time-varying uncertain parameters that can be measured online, such as the vehicle speed in

automotive active safety systems. Hence, the controller and observer gains can be updated

accordingly to achieve robust stability and performance. This is the so-called gain-scheduling

design technique. The linear-parameter-varying (LPV) modeling and design methodology

is widely accepted as a robust way to develop a gain-scheduled controller and observer

[53] [46]. In this section, the interval observer design developed for uncertain LTI systems

will be extended to LPV systems which contain both measured and unmeasured uncertain

parameters.
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4.4.1 Gain-Scheduled Interval Observer

Consider the following LPV plant,

ẋ = A(η, ξ)x+B(η, ξ)u, y = Cx (4.19)

where ξ is the same unmeasured uncertain parameter vector as the LTI case, which is assumed

to be in a polytope Ξ. η = [η1, . . . , ηr]
T denotes the collections of measured time-varying

parameters, which is constrained in a polytope E with η(i), i = 1, . . . , g as the vertices.

The design of gain-scheduled interval observer is summarized in Theorem 4.

Theorem 4 For the parametric uncertain LPV system in Eq. (4.19), where both A(η, ξ)

and B(η, ξ) depend on η affinely, the gain-scheduled interval observer is composed of two

subsystems shown below

˙̂x
+

= A(η, ξ0)x̂
+ +B(η, ξ0)u+ w+(x̂+, η, ξ, u)

+L(η)(y − Cx̂+)

˙̂x
−

= A(η, ξ0)x̂
− +B(η, ξ0)u+ w−(x̂−, η, ξ, u)

+L(η)(y − Cx̂−)

(4.20)

where ξ0 is the nominal value of the uncertain parameter ξ, ξ ∈ Ξ. w+(x̂+, η, ξ, u) and

w−(x̂−, η, ξ, u) denote the following upper and lower limit functions in the domain of opera-

tion.

w+(x̂+, η, ξ, u)

≥ [A(η, ξ)− A(η, ξ0)]x̂
+ + [B(η, ξ)−B(η, ξ0)]u

w−(x̂−, η, ξ, u)

≤ [A(η, ξ)− A(η, ξ0)]x̂
− + [B(η, ξ)−B(η, ξ0)]u

(4.21)

The η-scheduled observer gain L(η) has an affine form shown below

L(η) = L0 + η1L1 + · · ·+ ηrLr (4.22)
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where Li ∈ Rn×m, i = 0, 1, . . . , r. Suppose there exist matrices P and Q0, . . . , Qr that satisfy

the three conditions listed below.

1. P ∈ Rn×n is a diagonal positive definite matrix;

2. The LMI conditions shown in Eq. (4.23) are feasible ∀ η ∈ E, ∀ ξ ∈ Ξ;

AT (η, ξ)P + PA(η, ξ)− [CTQT (η) +Q(η)C] ≺ 0 (4.23)

Q(η) is an affine matrix function of η.

Q(η) = Q1 + η1Q1 + · · ·+ ηrQr (4.24)

where Qi ∈ Rn×m, i = 0, 1, . . . , r.

3. PA(η, ξ)−Q(η)C is a Metzler matrix ∀ η ∈ E, ∀ ξ ∈ Ξ;

Then, the observer gains Li, i = 0, 1, . . . , r can be obtained as

Li = P−1Qi (4.25)

so as to ensure that Eq. (4.20) constitutes a gain scheduled interval observer for systems in

Eq. (4.19).

Proof: The state equation for the observer error e = x̂+ − x is shown as

˙̂x
+ − ẋ

= [A(η, ξ0)− A(η, ξ)]x̂+ + A(η, ξ)(x̂+ − x)

−L(η)C(x̂+ − x) + w+(x̂+, η, ξ, u)

−[B(η, ξ)−B(η, ξ0)]u

= [A(η, ξ)− L(η, )C](x̂+ − x) + w+(x̂+, η, ξ, u)

−[A(η, ξ)− A(η, ξ0)]x̂
+ − [B(η, ξ)−B(η, ξ0)]u

(4.26)
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Substituting PL(η) for Q(η) in the LMI in Eq. (4.23), it is easy to see that the feasibility

of this LMI guarantees the robust asymptotic convergence of the observer error state matrix

A(η, ξ) − L(η)C. While Lemma 11 proves that A(η, ξ) − L(η)C is a Metzler matrix if and

only if PA(η, ξ)−Q(η)C is a Metzler matrix ∀ η ∈ E, ∀ ξ ∈ Ξ. Moreover, the observer error

state equation in Eq. (4.26) shows that w+(x̂+, η, ξ, u)− [A(η, ξ)− A(η, ξ0)]x̂
+ − [B(η, ξ)−

B(η, ξ0)]u acts as a positive input signal for the observer error according to the definition of

w+(x̂+, η, ξ, u) in Eq. (4.21). Therefore, the observer error x̂− x in Eq. (4.26) is a positive

time-varying linear system, which implies that x̂+ is an upper limit for the true state x.

Similarly, the positivity of the observer error x − x̂− can be proven, which is omitted for

brevity.

The interval estimation result of a linear mapping stated in Lemma 12 can be used to

derive the upper and lower limit functions w+(x̂+, η, ξ, u), w−(x̂−, η, ξ, u) as shown in Eq.

(4.15) and (4.16), if A(η, ξ) and B(η, ξ) are affine matrix functions of ξ.

From Theorem 4, it can be seen that ensuring that PA(η, ξ)−Q(η)C is a Metzler matrix

and ensuring that the LMI in Eq. (4.23) is satisfied are more challenging than the LTI case

due to the presence of two sets of parameters η and ξ in the LMI condition and cooperative

constraint for the observer error. Fortunately, there still exists a finite dimensional relaxation

for this infinite dimensional problem, which is presented in Lemma 14.

Lemma 14 Suppose the matrix A(η, ξ) ∈ Rn×n is a bilinear matrix function of η ∈ Rr×1 and

ξ ∈ Rs×1, which are assumed to be contained in the polytopes E and Ξ with η(i), i = 1, . . . , g

and ξ(j), j = 1, . . . , h as the vertices for each one. Then, A(η, ξ) is a Hurwitz and Metzler

matrix ∀ η ∈ E, ∀ ξ ∈ Ξ if and only if there exists a matrix P satisfying the three conditions

listed below.

1. P ∈ Rn×n is a diagonal positive definite matrix;

2. The following LMI condition is feasible ∀ i = 1, . . . , g, ∀ j = 1, . . . , h;

P ≻ 0, AT (η(i), ξ(j))P + PA(η(i), ξ(j)) ≺ 0 (4.27)
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3. A(η(i), ξ(j)) is a Metzler matrix ∀ i = 1, . . . , g, ∀ j = 1, . . . , h;

Proof: If: A(η, ξ) depends on η and ξ bilinearly implies that it can be written in the

following convex combination form [54]

A(η, ξ) = λ1A(η
(1), ξ) + · · ·+ λgA(η

(g), ξ)

=
g∑

i=1

λiA(η
(i), ξ)

(4.28)

where λi ≥ 0, and λ1 + · · ·+ λg = 1. Next, A(η(i), ξ) has a similar convex combination form

A(η(i), ξ) = θi,1A(η
(i), ξ(1)) + · · ·+ θhA(η

(i), ξ(h))

=
h∑

j=1

θi,jA(η
(i), ξ(j))

(4.29)

where θi,j ≥ 0, and θi,1 + · · ·+ θi,h = 1. Substituting the result in Eq. (4.29) for A(η(i), ξ) in

Eq. (4.28), A(η, ξ) can be written as the following form.

A(η, ξ) =
g∑

i=1

h∑
j=1

λiθi,jA(η
(i), ξ(j)) (4.30)

Then, the middle matrix in the quadratic form of the derivative of the Lyapunov function

V = xTPx becomes

AT (η, ξ)P + PA(η, ξ)

=
g∑

i=1

h∑
j=1

λiθi,j[A
T (η(i), ξ(j))P + PA(η(i), ξ(j))]

(4.31)

The non negativity of λi and θi,j guarantees that A
T (η, ξ)P +PA(η, ξ) ≺ 0, ∀ η ∈ E, ∀ ξ ∈ Ξ

if the LMIs P ≻ 0 and AT (η(i), ξ(j))P + PA(η(i), ξ(j)) ≺ 0 are feasible ∀ i = 1, . . . , g, ∀ j =

1, . . . , h.
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Only if: The necessity is quite straightforward. Suppose some A(η(i), ξ(j)) violates the

LMIs condition in Eq. (4.27) or it is not a Metzler matrix. Then, A(η, ξ) cannot be a Metzler

matrix ∀ η ∈ E, ∀ ξ ∈ Ξ, which leads to a contradiction.

4.4.2 Gain-Scheduled Interval Observer with L2 Gain Minimization

Besides the asymptotic convergence of the upper and lower bounds of x̂+ and x̂−, the

width of the estimation interval x̂+ − x̂− is also expected to be as small as possible so that

the interval observer is more robust to the model uncertainty. To achieve this goal, the L2

gain from the disturbance resulting from model uncertainty to the width of the estimation

interval can be minimized.

Theorem 5 For the gain-scheduled interval observer in Eq. (4.20), the optimal L2 observer

design can be formulated as the following semidefinite programming (SDP) problem

min γ

subject to

P = diag(p11, . . . , pnn) ≻ 0,
AL(η, ξ)

TP + PAL(η, ξ) P I

P −γI 0

I 0 −γI

 ≺ 0,

PAL(η, ξ) is a Metzler matrix, ∀ η ∈ E, ∀ ξ ∈ Ξ;

(4.32)

where AL(η, ξ) = A(η, ξ) − L(η)C. Then the L2 gain from model uncertainty to estimation

width x̂+ − x̂− is no larger than γ.

√∫ ∞

0
(x̂+ − x̂−)T (x̂+ − x̂−)dt ≤ γ

√∫ ∞

0
wTwdt (4.33)

where w denotes the input from the model uncertainty.
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Proof: The dynamic model for the observer error can be simplified as

˙̂x
+ − ẋ = [A(η, ξ)− L(η)C](x̂+ − x) + w+

ẋ− ˙̂x
−
= [A(η, ξ)− L(η)C](x− x̂−) + w−

(4.34)

where w+, w− represent the disturbance resulting from the mismatch between the model

and true process. Adding these two state equations together, the estimation interval can be

obtained
˙̂x
+ − ˙̂x

−
= [A(η, ξ)− L(η)C](x̂+ − x̂−) + (w+ + w−)

y = x̂+ − x̂−
(4.35)

where the input signal is w++w− and the output y is equal to the state vector x̂+−x̂−. Then,

the SDP condition in Eq. (4.32) is just the application of bounded real lemma [58] [54] for

the state space model in Eq. (4.35) except that the Lyapunov matrix P is constrained to be

a diagonal form for positive linear systems. Moreover, it is also necessary to make AL(η, ξ) a

Metzler matrix such that the resulting observer is qualified for interval estimation. Since the

positive definite matrix P has a diagonal form, it is equivalent to the cooperative constraint

for the matrix PAL(η, ξ).

Remark 1 To solve the above SDP problem, anther matrix variable Q(η) defined in Eq.

(4.24) is still needed in order to transform it to a LMI problem. The observer gains can be

obtained by applying Eq. (4.25). If A(η, ξ) is a bilinear matrix function of η, ξ and L(η)

depends on η affinely as shown in Eq. (4.22), the infinite dimensional LMI can be relaxed

to a finite dimensional one on all the vertices of the polytopes E and Ξ according to Lemma

14.

4.5 Robust Slip Angle Estimation

In this section, a slip angle estimation problem will be used to illustrate the application

of the gain-scheduled interval observer design methodology. The side slip angle is a vital

signal that affects the stability of a vehicle under cornering. Unfortunately, no commercial
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vehicles are equipped with sensors which can directly measure this signal, which is both

due to cost concerns and technical challenges. This motivates the need for an efficient and

accurate algorithm for estimating slip angles.

4.5.1 3 DOF Bicycle Model

Figure 4.1: Bicycle Model

The state space form of the 3-DOF bicycle model that is shown in last chapter is still

used here to represent lateral vehicle dynamics. As before, the slip angles of the front and

rear wheels αf , αr are chosen as the state variables [34]. The matrices A(η, ξ), B(η, ξ) and

input vector u in the state equation are shown below.

A(η, ξ) =


−ax

vx
− Cf

vx

(
1
M

+ a2

Iz

)
Cr

vx

(
ab
Iz
− 1

M

)
Cf

vx

(
ab
Iz
− 1

M

)
−ax

vx
− Cr

vx

(
1
M

+ b2

Iz

)
 (4.36)

B(η, ξ) =

 ax
vx

1 1

0 0 1

 (4.37)

where ax is the longitudinal acceleration, which is assumed to be measured together with vx.

The control input vector u is

u =


δ

δ̇

r

 (4.38)
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where M, Iz, a, b are the mass, yaw inertia, the distance of front and rear wheels from the CG

of the vehicle. Cf , Cr are the cornering stiffness for the front and real tires. vx, ax are the

longitudinal velocity and acceleration of the CG. r, δ, δ̇ are the yaw rate, steering angle and

its derivative, which are treated as the measured input signals. Here, it is assumed that the

cornering stiffness Cf and Cr are the critical uncertain parameters that affect the performance

of the slip angle estimation algorithm. The uncertain parameter vector ξ together with the

measured time-varying parameter vector η can be seen in Eq. (4.39) below.

η =


1

vx

ax
vx

 , ξ =

 Cf

Cr

 (4.39)

It is obvious that the state matrix A(η, ξ) depends on η and ξ bilinearly. With the information

of the variation interval of vx and ax, such as vx ≤ vx ≤ vx, ax ≤ ax ≤ ax, the four vertices

of the polytopic parameter space E can be derived as.

η(1) =


1

vx

ax
vx

 , η(2) =


1

vx

ax
vx

 , η(3) =


1

vx

ax
vx

 , η(4) =


1

vx

ax
vx

 (4.40)

Similarly, the four vertices of the polytopic parameter space Ξ shown below result from

Cf ≤ Cf ≤ Cf , Cr ≤ Cr ≤ Cr.

ξ(1) =

 Cf

Cr

 , ξ(2) =

 Cf

Cr

 , ξ(3) =

 Cf

Cr

 , ξ(4) =

 Cf

Cr

 (4.41)

Besides the above state equations, there also exists a kinematic relation between slip

angles and the measured signals shown below.

δ − a+ b

vx
r = αf − αr (4.42)
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This kinematic model can regarded as the output equation, which can be abstracted as

y =
(

1 −1

) αf

αr

 (4.43)

4.5.2 LPV Interval Observer Design

The gain-scheduled interval observer in Eq. (4.20) contains a copy of the nominal model.

In this example, the nominal cornering stiffness are chosen as

Cf,0 = 76500(N/rad), Cr,0 = 51000(N/rad) (4.44)

Their variation range is assumed to be constrained in the following interval

60000(N/rad) ≤ Cf ≤ 90000(N/rad)

35000(N/rad) ≤ Cr ≤ 65000(N/rad)
(4.45)

Since the state space matrices A(η, ξ) and B(η, ξ) in Eq. (4.36) depends on Cf and Cr

affinely, Lemma 12 can be directly applied to estimate the upper and lower limit functions

w+(x̂+, η, ξ, u) and w−(x̂−, η, ξ, u).

Another important step is to search for the velocity-acceleration scheduled observer gain

parameters in Eq. (4.22). In this example, Theorem 5 is applied to achieve a minimal width

of the estimation interval x̂+− x̂−. Because A(η, ξ) in Eq. (4.36) is a bilinear matrix function

of η and ξ, it is sufficient and necessary to guarantee the LMI feasibility and cooperative

constraint for the observer error on all the vertices of the polytopes E and Ξ as shown in

Lemma 14. For the uncertain parameter ξ, its variation range shown in Eq. (4.45) can be

substituted in Eq. (4.41) to obtain the vertices of polytope Ξ. For the scheduling parameter

η defined in Eq. (4.39), all four vertices of the polytope E shown in Eq. (4.40) can be derived
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from the following physical constraints in the real applications.

15kph ≤ vx ≤ 150kph, −8.0m/s2 ≤ ax ≤ 8.0m/s2 (4.46)

Applying the SDP solver SeDuMi 1.3 with the toolbox YALMIP [9] as the interface, the

following observer gain is obtained.

L(η) =

 1.7127

1.3431

+ η1

 −58.5902

−42.9510

+ η2

 −0.5579

−0.4398

 (4.47)

4.5.3 Simulation Results

The gain-scheduled interval observer is validated by using the data from CarSim, a

commercial simulation software. In the simulation test, a sedan is simulated to follow the

trajectory of the standard ”Double Lane Change” maneuver. However, in this section the

two lanes have different cornering stiffness along the trajectory as shown in Fig. 4.2. The

variation of the cornering stiffness along the simulation time and the corresponding nonlinear

tire curves for the front and rear tires can be seen in Fig. 4.3 and 4.4 respectively.

Figure 4.2: Trajectory of double lane change maneuver

A nominal observer is utilized which is only based on the nominal model for the lane

with high cornering stiffness, for comparison with the interval observer. The simulation

results can be seen in Fig. 4.5 below. It is clear that the estimated slip angles of the nominal

observer start to deviate from true states at 1.5secs when the vehicle enters the lane with
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Figure 4.3: Cornering stiffness curves for the front and rear tires

Figure 4.4: Relationship between slip angles and lateral tire forces
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low cornering stiffness and then converge back at 4.5secs when the vehicle reenters the lane

with high cornering stiffness. However, the interval observer simulation result in Fig. 4.6

shows that the envelope from the interval observer can still cover true state trajectory in the

presence of uncertain cornering stiffness.

Figure 4.5: Simulation results of the nominal observer

4.6 Conclusions

In this chapter, an interval observer design methodology for LTI and LPV systems with

parametric uncertainty is presented. It has been shown that uncertain parameters can be

treated as a disturbance input for the observer error. Then, a simple analytical method to

estimate the variation interval of this input uncertainty is developed. The search for the

qualified observer gain, such that the observer error is robustly stable and cooperative, is

cast as a convex semidefinite programming problem. A simulation example for slip angle

estimation in the presence of uncertain cornering stiffness is used to illustrate the validity of

the theoretical results.
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Figure 4.6: Simulation results of the interval observer
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Chapter 5

Gain Scheduled Nonlinear Observer Design

5.1 Introduction

Although it has been shown that the uncertain linear cornering stiffness parameters

can be considered in the interval observer framework, the linear relationship between the

friction force and slip angle is still insufficient to model the vehicle dynamics in some extreme

maneuver, such as fishhook or other high dynamic evasive maneuver. In fact, the tire-road

friction is a very complex physical phenomenon, which is represented by various complicated

mathematical models, such as Magic Formula and Dugoff tire model [34], which makes the

design of the controller or estimator extremely challenging. In this chapter, a gain-scheduled

nonlinear observer design methodology will be developed and applied to the tire slip angle

estimation.

Observer designs for nonlinear dynamical systems has been a very active research field

since the 1980s due to its importance in both nonlinear feedback controller design and process

monitoring for complex systems. Many research results can be found in the literature. One

popular method has been proposed by Krener and Isidori (1983) [40], Krener and Respondek

(1985) [41] and Xiaohua Xia (1989) [67]. The core idea of the method is to find a nonlinear

coordinate transformation, which requires solving a set of partial differential equations, such

that all the nonlinearities are incorporated in the output injection terms. These terms are

restricted to be functions of the input u and output y only. Then, a nonlinear observer,

which contains a copy of the transformed state equation and a correction term, can be used

to perform an exact error linearization in order that the stability and convergence speed

of the observer error dynamics can be guaranteed by using very mature linear observer

design methods. However, the existence of such a coordinate transformation imposes a very
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strict condition on the vector field of the original system, which is difficult to satisfy in

many real-world applications. Moreover, it is also widely realized that this linearization

based method is vulnerable to model uncertainty, which severely limits its application in

real-world engineering problems.

To deal with model uncertainty, high-gain observers [8] [20] and sliding mode observers

[27] [30] have been developed. In these two methods, the uncertain nonlinear terms in the

vector field are treated as a source of disturbance signals that prevent the observer error

from becoming small or converging to a predefined stable sliding surface. High gains or

the non-smooth functions are designed to make the observer more robust to the uncertain-

ties. However, the size of the gains can be limited in real embedded systems due to finite

word length in micro computers as well as higher order model uncertainties. A slow sam-

pling rate also degrades the effect of the non-smooth function in the sliding mode observer

which will result in undesirable chattering phenomenon. These practical constraints limit

the application of these two types of observers.

The extended Luenberger nonlinear observer is a natural extension of the Luenberger

observer for linear systems. It contains a copy of the model of the nonlinear process and

a linear measurement correction term. The search of the convergent observer gains in an

analytical way for this observer has been extensively studied since the early 1970s, such as

F. E. Thau (1973) [1], S. Raghavan (1992) [2], R. Rajamani (1998) [4]. However, the results

reported in those papers are often applicable only to nonlinear systems with small Lipschitz

constants.

In the last two decades, semi-definite programming (SDP) has gained popularity in

the control systems community [58] [54]. There are also a vast amount of applications

of this numerical method to search for the convergent extended Luenberger observer gain.

Phanomchoeng and Rajamani (2010) [49] transformed the Lipschitz conditions to a quadratic

polynomial constraint and derived a sufficient stability condition in terms of LMIs by using

the S -Procedure Lemma. It is pointed out that the small Lipschitz constant problem has been
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significantly improved. A. Zemouche, M. Boutayeb and G. I. Bara [72] [70] [71] proposed

a method that incorporates the derivative bounds of the nonlinear functions to represent

the observer error model as a LPV system which the observer gain aims to asymptotically

stabilize. Phanomchoeng and Rajamani (2011) [34] developed a similar method that uses the

bounded Jacobian matrix of the nonlinear function to transform the observer error model to

a polytopic uncertain linear system, which is asymptotically stabilized by the observer gain.

Many other papers, such as A. Howel and K. Hedrick (2002) [36], M. Abbaszadeh and H.

J. Marquez (2006) [17], Y. Wang and D. M. Bevly (2012) [66] and so on, used the methods

more or less similar to these approaches.

Based on the structure of the extended Luenberger observer, M. Arcak and P. Kokotovic

(2001) [23], X. Fan and M. Arcak (2003) [32] proposed a two DOF observer structure. Besides

the linear measurement correction term on the observer state equation, another correction

term is added to the input of the nonlinear function. For a class of systems with monotonic

non-decreasing nonlinearities, the search of the two observer gains becomes a LMI problem.

S. Ibrir (2007) [14] extended Arcak’s two DOF observer structure to a discrete time version

and showed that the monotonic non-decreasing requirement can be relaxed by reshaping the

slope of the nonlinear functions. A. Zemouche and M. Boutayeb (2009) [69] showed that their

LPV approach in the extended Luenberger observer can also be applied to Arcak’s two DOF

observer structure. However, some conservatism exists in the derived LMI conditions in the

author’s opinion. A more general result is presented by B. Acikmese, M. Corless [19] which

uses incremental quadratic constraints to cover the algebraic conditions of the difference

between the state vectors of the plant model and the observer and the difference between

their corresponding nonlinear vector fields. Then, the convergence condition of the proposed

observer is derived from the S procedure. One innovation in [19] is that the use of a third

observer gain is proposed to cancel non convex terms in the semidefinite condition. But this

method also limits the tuning of this additional gain, which results in some conservatism.
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The construction of the incremental quadratic constraints for several types of nonlinearities

is also discussed in [19].

Besides the methods discussed above, the well-known extended Kalman filter (EKF)

and unscented Kalman filter (UKF) are also popular in literature [13]. Although there exist

many successful applications of these methods especially in the field of navigation [29], the

convergence of the observer error is generally only guaranteed locally [72]. For complex

nonlinear dynamical systems, the convergence and robustness to model uncertainty is far

from satisfactory.

The research result presented in this chapter will follow the direction in [34] [72] [69] [71]

and [19]. The convergence and performance analysis is studied in the framework of the Lure

system, where the algebraic condition on the input and output of the nonlinear memoryless

block in the feedback loop is covered by the multivariable sector conditions from the bounded

Jacobian matrices of the nonlinear functions. As will be shown, the convergence condition

for the extended Luenberger observer can be represented as a semidefinite programming

problem with much less LMI constraints than that in [72] [71] [34]. Moreover, the LMI

conditions for both convergence and L2 performance optimization of the two DOF observer

in [69] [19] are just the convex inner approximation of the more general quadratic matrix

inequalities. It will be shown that a much less conservative and simpler LMI conditions

can be derived for searching for the two convergent observer gains. Also, different from the

result in [19], the Differential Mean Value Theorem (DMVT) is applied to construct the

multiplier matrix for the incremental quadratic constraints in an analytical way rather than

treating the multiplier matrix as a decision variable. This further reduces the size of the

optimization problem without introducing any conservatism. The search of optimal observer

gains in terms of L2 performance is also discussd. Finally, this observer design methodology

is further applied to Lipschitz nonlinear systems with affine dependence on measured time-

varying parameters. It will be shown that Arcak’s two-DOF nonlinear observer can be

augmented to a gain-scheduling framework for parameter varying systems.
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The remainder of this chapter is organized as follows. The method that searches for

the convergent observer gains for the extended Luenberger observer and Arcak’s two-DOF

nonlinear observer is proposed in Section 5.2. Then, this method is augmented to the gain

scheduled observer design for a class of parameter dependent nonlinear systems in Section

5.3. The theoretical results are applied to two detailed simulation examples in Section 5.4.

Section 5.5 contains the final conclusions.

5.2 Observer Design for Nonlinear Time Invariant Systems

5.2.1 Problem Statement

Consider the nonlinear system represented by Eq. (5.1)

ẋ = Ax+Bff(x) + Ψ(y, u), y = Cx (5.1)

where x ∈ Rn, y ∈ Rl, A ∈ Rn×n, Bf ∈ Rn×m, C ∈ Rl×n and (A, C) is observable.

f(x) ∈ Rn → Rm is a vector of differentiable Lipschitz continuous nonlinear functions and

Ψ(y, u) is an output injection function. In this chapter, the following two types of nonlinear

observers will be discussed.

• Extended Luenberger Observer [71]:

˙̂x = Ax̂+Bff(x̂) + Ψ(y, u) + L1(y − Cx̂) (5.2)

where L1 is the observer gain;

• Arcak’s Two DOF Nonlinear Observer [23] [32]:

˙̂x = Ax̂+Bff [x̂+ L2(y − Cx̂)] + Ψ(y, u) + L1(y − Cx̂) (5.3)

where L1 and L2 are two observer gains;
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It is clear that both observers contain a copy of the model of the original system and a linear

correction term L1(y − Cx̂). Arcak’s two DOF observer framework provides another linear

correction term L2(y−Cx̂) which is embedded in the argument of the nonlinear function f(·).

The corresponding observer error (e = x − x̂) dynamical equations for these two observers

are shown below.

• Extended Luenberger Observer:

ė = (A− L1C)e+Bf [f(x)− f(x̂)] (5.4)

• Arcak’s Two DOF Nonlinear Observer:

ė = (A− L1C)e+Bf [f(x)− f(x̂+ L2(y − Cx̂))] (5.5)

From the Differential Mean Value Theorem (DMVT), it is known that the two difference

functions f(x) − f(x̂) and f(x) − f(x̂ + L2(y − Cx̂)) are equal to K(x − x̂) and K̄(x −

x̂) respectively. The proportional factors K and K are time-varying matrices but always

constrained in the closed sets defined by the lower and upper bounds of the Jacobian matrix

of f(x) in the domain of interest [72] [34]. Therefore, the observer error models in Eq. (5.4)

and (5.5) can be represented as the Lure system shown in Fig. 5.1 below.

Figure 5.1: Lure-System Representation of the Observer Error System
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Here, the two difference functions f(x)− f(x̂) and f(x)− f(x̂+ L2(y −Cx̂)) construct

the memoryless nonlinearities in the feedback loops, where the input is the observer error

e and the output is denoted as ϕ(t, e) that is proportional to e with a time-varying factor.

Next, development of the algorithm that searches for the two gains L1 and L2 to make the

observer error models in Eq. (5.4) and (5.5) asymptotically stable will be provided..

5.2.2 Sector Condition for e and ϕ(t, e)

Several conditions of the semi-algebraic set of e and ϕ(t, e) can be found in the liter-

ature. For the monotonic non-decreasing function f(x), Arcak and Kokotovic prove that

e and ϕ(t, e) satisfy the passivity condition [23]. For the Lipschitz continuous nonlinearity,

Phanomchoeng and Rajamani derived a sector condition based on the local Lipschitz con-

stant of f(x) [49]. In [19], Acikmese and Corless present a more general incremental quadratic

constraint as the semi-algebraic set of e and ϕ(t, e). In this section, a sector condition based

on bounded Jacobian matrices of the nonlinear function f(x) is presented.

Lemma 15 Consider the Lipschitz continuous function f(x) ∈ Rn → Rm. Suppose the two

matrices K1, K2 ∈ Rm×n are lower and upper bound Jacobian matrices of f(x) in the domain

of interest

K1(i, j) ≤
∂fi(x)

∂xj

≤ K2(i, j) (5.6)

where fi(x) is the ith element of the vector function f(x) and xj is the jth element of the

vector x. Then, e = x− x̂ and ϕ(t, e) = f(x)− f(x̂) satisfy the following sector condition.

[ϕ(t, e)−K1e]
T [ϕ(t, e)−K2e] ≤ 0 (5.7)

Proof: The Differential Mean Value Theorem (DMVT) gives us the following inequality.

K1(x− x̂) ≤ f(x)− f(x̂) ≤ K2(x− x̂) (5.8)
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Here, the symbol ≤ means the element-wise inequality for two matrices with the same

dimension. Eq. (5.8) is also equivalent to a pair of inequalities shown below.

f(x)− f(x̂)−K1(x− x̂) ≥ 0

f(x)− f(x̂)−K2(x− x̂) ≤ 0
(5.9)

Therefore, the sector condition in Eq. (5.7) is quite straightforward.

Remark 1 The conditions in Eq. (5.6) and (5.7) are rather general. For the monotonic

non-decreasing function f(x) in [23], K1, K2 can be chosen as

K1(i, j) = 0 and K2(i, j) = γi,j (5.10)

where γi,j is the local Lipschitz constants satisfying

∥fi(x)− fi(x̂)∥2 ≤ γi,j ∥xj − x̂j∥2

For another example, the local Lipschitz property discussed in [49] is just a special case of

Eq. (5.7) setting the elements of K1, K2 as the local Lipschitz constants

K1(i, j) = −γi,j and K2(i, j) = γi,j (5.11)

Note, a Lipschitz constant is just the maximal absolute value of the partial derivative of the

function f(x). This implies that the sector conditions in Eq. (5.6) and (5.7) represent a

smaller semi-algebraic set than that defined by the matrices K1, K2 in Eq. (5.11). Therefore,

the conservatism is reduced.
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The quadratic form of Eq. (5.7) is

 e

ϕ


T


KT
1 K2+KT

2 K1

2
−KT

1 +KT
2

2

−K1+K2

2
I


︸ ︷︷ ︸

M

 e

ϕ

 ≤ 0 (5.12)

Based on the result in Lemma 2, the derivation of the sector condition of e = x − x̂ and

ϕ(t, e) = f(x) − f(x̂ + L2(y − Cx)) for Arcak’s two DOF observer is shown as follows in

Lemma 16.

Lemma 16 Consider the Lipschitz continuous function f(x) ∈ Rn → Rm. Suppose e = x−x̂

and f(x) − f(x̂) satisfy the sector condition in Eq. (5.7) in the domain of interest. Then,

the semi-algebraic set of e and ϕ(t, e) = f(x)− f(x̂+L2(y−Cx)) is covered by the following

sector condition.

[ϕ(t, e)−K1(I + L2C)e]T [ϕ(t, e)−K2(I + L2C)e] ≤ 0 (5.13)

where I is an identity matrix with compatible dimension.

Proof: Suppose e is defined as

e = x− [x̂+ L2(y − Cx̂)] = (I − L2C)e (5.14)

Substituting (I − L2C)e for e in the sector condition for e and ϕ(t, e) in the form of Eq.

(5.7), the quadratic inequality in Eq. (5.13) can be derived

 e

ϕ


T  I − L2C 0

0 I


T

M

 I − L2C 0

0 I


 e

ϕ

 ≤ 0 (5.15)

where M is defined in Eq. (5.12).
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5.2.3 Sufficient Stability Condition for Lure System

Before discussing the search of the convergent observer gains, a brief review of the

stability condition is presented for the Lure system whose state space model is shown as

ẋ = Ax+Bw

z = Cx+Dw

w = ∆(z)

(5.16)

where ∆(·) is a nonlinear Lipschitz continuous time-varying function. The relationship of

its input and output signals z and w is covered by a homogeneous quadratic polynomial

inequality in the form of Eq. (5.17)

 z

w


T  Q S

ST R


 z

w

 ≤ 0 (5.17)

where Q, R are real symmetric matrices. The inequality of Eq. (5.17) can be used to

represent many important semi-algebraic sets, such as the sector condition and L2 gain of a

Lipschitz continuous function. Then, the following result in Theorem 6 shows the sufficient

conditions for the asymptotic stability of this Lure system.

Theorem 6 (B.Acikmese, M.Corless (2008)[18]) The feedback interconnected system

in Eq. (5.16), where the input-output relationship of the operator ∆(·) satisfies the homoge-

neous quadratic polynomial inequality in the form of Eq. (5.17), is asymptotically stable if

the following linear matrix inequalities (LMIs) are feasible.

P ≻ 0 ATP + PA PB

BTP 0

− (∗)T

 Q S

ST R


 C D

0 I

 ≺ 0
(5.18)

where ∗ can be deduced from symmetry.
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5.2.4 Search for The Observer Gains L1, L2

Similar to the stability analysis result in Theorem 2, the semidefinite programming

approach is used to search for the convergent observer gains L1, L2 in this chapter. The LMI

feasibility problem for the extended Luenberger observer is formulated in Lemma 17.

Lemma 17 Consider the nonlinear system in Eq. (5.1) with the matrices K1 and K2 being

the lower and upper bounds of the Jacobian matrix of the Lipschitz continuous nonlinear

function f(x) in the domain of interest. Applying the extended Luenberger observer in Eq.

(5.2), the observer error e = x− x̂ is asymptotically stable if there exist a matrix P , and an

observer gain L1 such that

P ≻ 0, (A− L1C)TP + P (A− L1C) PBf

BT
f P 0

−M ≺ 0
(5.19)

where M is defined in Eq. (5.12).

Proof: As discussed above, the observer error model in Eq. (5.4) can be represented as

a Lure system where the sector condition for the state difference x − x̂ and the difference

function f(x) − f(x̂) is shown in Eq. (5.12). The semidefinite constraints in Eq. (5.19)

can be derived from Theorem 2 by matching the state space matrices for the general Lure

system in Eq. (5.16) to the observer error model of Eq. (5.4).

Remark 2 Although Eq. (5.19) is a bilinear matrix inequality (BMI) constraint for the

decision variables P and L1, it can be transformed to an equivalent LMI constraint by using

a common trick which defines the new matrix variable Y as Y = PL1. If the resulting LMI

is feasible, the observer gain is L1 = P−1Y [58].
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Remark 3 Compared with the method discussed in [34][72][71], which transfers the observer

error model in Eq. (5.4) into a LPV framework, the LMI in Eq. (5.19) has a much lower

dimension. Therefore, the computation effort is significantly reduced.

For Arcak’s two DOF nonlinear observer, a similar matrix inequality condition can be derived

and shown in Lemma 18.

Lemma 18 Consider the system in Eq. (5.1) with the matrices K1 and K2 being the lower

and upper bounds of the Jacobian matrix of the Lipschitz continuous nonlinear function f(x)

in the domain of interest. Applying Arcak’s two DOF nonlinear observer in Eq. (5.3), the

observer error e = x− x̂ is asymptotically stable if there exist a matrix P , and two observer

gains L1, L2 such that

P ≻ 0, (A− L1C)TP + P (A− L1C) PBf

BT
f P 0



−

 I − L2C 0

0 I


T

M

 I − L2C 0

0 I

 ≺ 0

(5.20)

where M is defined in Eq. (5.12).

Proof: This proof is similar to that for Lemma 13. The only difference is that the input

and output of the nonlinear block in the feedback loop of the Lure system becomes the state

difference x− x̂ and the difference functions f(x)−f(x̂+L2(y−Cx̂)) whose sector condition

is shown in Eq. (5.15).

However, the matrix inequality condition in Eq. (5.20) depends on the observer gain

L2 quadratically, except the case in which either K1 or K2 is a zero matrix. This prohibits

the application of the efficient interior-point algorithm to search for the feasible decision

variables. Fortunately, it is shown in Theorem 7 that the search of the asymptotically
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convergent observer gains L1, L2 becomes a LMI problem by representing the nonlinear

state space model of the process in Eq. (5.1) as a slightly different but equivalent form.

Theorem 7 Consider the nonlinear system in Eq. (5.1) and the following two DOF observer

˙̂x = Ax̂+Bff [x̂+ L2(y − Cx̂)] + Ψ(y, u)

+(L1 −BfK1L2)(y − Cx̂)
(5.21)

where the matrices K1 and K2 are the lower and upper bounds of the Jacobian matrix of the

Lipschitz continuous nonlinear function f(x) in the domain of interest. The existence of a

matrix P and two observer gains L1, L2, such that the following semidefinite conditions in

Eq. (5.22) are feasible, implies the asymptotic stability of the observer error e = x− x̂.

P ≻ 0 A
T
P + PA PBf

BT
f P 0

− (∗)T M1

 I − L2C 0

0 I

 ≺ 0
(5.22)

where ∗ can be deduced from symmetry. The matrix A denotes A = A+ BfK1 − L1C. The

multiplier matrix M1 is

M1 =

 0 −KT
2 −KT

1

2

−K2−K1

2
I

 (5.23)

where 0 denotes a zero matrix with compatible dimension.

Proof: The nonlinear state space model in Eq. (5.1) can be rewritten as the following

equivalent form

ẋ = (A+BfK1)x+Bf [−K1x+ f(x)] + Ψ(y, u)

y = Cx
(5.24)

where the matrix K1 is the lower bound of the Jacobian matrix (∂f/∂x). The observer state

equation in Eq. (5.21) is just Arcak’s two DOF nonlinear observer for this equivalent state

114



space representation. The augmented nonlinear function f(x) is defined as

f(x) = −K1x+ f(x) (5.25)

The Jacobian matrix of f(x) becomes

(
∂f

∂x

)
= −K1 +

(
∂f

∂x

)
(5.26)

It is obvious that
(
∂f/∂x

)
satisfies the following element-wise inequality.

0m×n ≤
(
∂f

∂x

)
≤ K2 −K1

Therefore, the lower and upper bounds of
(
∂f/∂x

)
are

K1 = 0m×n, K2 = K2 −K1 (5.27)

After replacing K1, K2 in the matrix M and A − L1C in Eq. (5.20) with K1, K2 in Eq.

(5.27) and A, the semidefinite condition in Eq. (5.22) is obtained.

The matrix inequality condition in Eq. (5.22) depends on the observer gain L2 linearly.

By applying the variable change method discussed in Remark 2, the efficient interior-point

algorithm can be applied to solve this LMI feasibility problem.

Remark 4 The LMI condition stated in Theorem 1 in [69] for the design of two DOF

nonlinear observer is a conservative condition for the search of L1, L2 because the elements

of the vectors ϵ and ζ are not independent. The semidefinite condition for the matrix in the

quadratic form of the derivative of the Lyapunov function with vector
(
ϵT ζT

)T
will result

in conservatism. Also, the dimension of those LMIs in [69] is much higher than Eq. (5.22),

which requires more computation effort.
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Remark 5 Also different from the result in [19], it is proposed to use the differential mean

value theorem to construct the multiplier matrix for the incremental quadratic constraints in

an explicit way rather than treating the multiplier matrix as a decision variable. This signifi-

cantly reduces the size of the optimization problem in the case of a high-dimension nonlinear

function f(x). Furthermore, the approach in [19] may return a conservative multiplier for

an enlarged semi-algebraic set, which is always undesirable.

5.2.5 Nonlinear Optimal L2 Observer Design

Besides asymptotic convergence, it is also possible to design the observer to satisfy a

performance criterion, such as minimization of the L2 gain from an unmeasured disturbance

to the observer error. This is also called an H∞ observer design problem that has been

discussed in some previous papers [72] [69]. The remaining portion of this chapter will focus

on Arcak’s two DOF observer due to its greater generality than the extended Luenberger

observer.

Suppose the model of the nonlinear process in Eq. (5.1) is augmented as

ẋ = Ax+Bff(x) + Ψ(y, u) +Bww

y = Cx

yp = Cpx

(5.28)

where w is the unmeasured disturbance input. y is the measurement signal. yp denotes the

unmeasured signal needs to be estimated. If Arcak’s two DOF nonlinear observer in Eq.

(5.21) is used, the estimation error zp = yp − ŷp is

ė = Ae+Bf [f(x)− f(x̂+ L2(y − Cx̂))]

+Bww

zp = Cpe

(5.29)
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where the matrix A and function f(·) are defined in Theorem 3 and Eq. (5.25) respectively.

The observer gains should be designed to make the estimation error zp insensitive to the

disturbance w. The following result presents a semidefinite condition for the optimal L2

observer design for this problem.

Theorem 8 Consider the observer error dynamic model in Eq. (5.29) with the matrices K1

and K2 being the lower and upper bounds of the Jacobian matrix of the Lipschitz continuous

nonlinear function f(x) in the domain of interest. The optimal L2 observer design can be

formulated as the following semidefinite programming problem

min γ

subject to

P ≻ 0, τ > 0
A

T
P + PA+ CT

p Cp PBf PBw

BT
f P 0 0

BT
wP 0 −γ2I



−τ


I − L2C 0 0

0 I 0

0 0 0



T 
0 −KT

2 −KT
1

2
0

−K2−K1

2
I 0

0 0 0




I − L2C 0 0

0 I 0

0 0 0

 ≺ 0

(5.30)

where τ is a scalar S-Procedure multiplier. A is the same as that in Theorem 3.

Proof: Suppose V = eTPe is the storage function and ϕ(t, e) is defined as ϕ(t, e) = f(x)−

f(x̂ + L2(y − Cx̂)). The dissipativity inequality for L2 performance has the following form

[58] [54] [35] [64].

V̇ (e, ϕ, w)− (γ2wTw − zTp zp) < 0 (5.31)

where V̇ (e, ϕ, w) is the derivative of the storage function along the trajectory. γ is the upper

bound of the L2 gain from w to zp. As discussed above, e and ϕ(t, e) are constrained in
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a sector condition defined by the lower and upper bounded Jacobian matrices 0m×n and

K2−K1, such as ϕT [ϕ− (K2−K1)e] < 0. By applying S -Procedure, the robust dissipativity

condition shown below [54] can be derived

V̇ (e, ϕ, w)− (γ2wTw − zTp zp)− τϕT [ϕ− (K2 −K1)e] < 0 (5.32)

where τ is a positive scalar factor. The LMI condition in Eq. (5.30) is just the quadratic

form of this dissipativity inequality with e, ϕ and w as the free variables.

Remark 6 The semidefinite condition in Eq. (5.30) depends on the decision variables τ

and L2 bilinearly. Again, the change variable method that defines the new variable L2 as

L2 = τL2 to linearize this matrix inequality can be used. Once the resulting LMI condition

is feasible, the observer gain L2 can be derived as L2 = L2/τ .

One disadvantage of this LMI based observer design method is that the SDP solver

may return observer gains with a large norm [19], which is undesirable in most real-world

applications, where the range of the controller or observer gains are limited by finite word

length of the micro-controllers. But it is difficult to restrict the observer gains L1, L2 directly

because they are not decision variables in the LMI constraints. Although B. Acikmese and

M. Corless (2011) provide a remedy on this issue, it is based on the assumption that no

non-zero constant terms exist in the LMI constraints, which Eq. (5.30) does not satisfy. In

what follows, some additional LMI constraints that limit the norm of the two observer gains

based on some mild assumptions are presented.

Suppose ϵ1, ϵ2 are the maximum allowed norm for the two observer gains L1, L2. This

implies the inequalities shown below.

Y TP−2Y ≤ ϵ1I and τ−2L
T
2L2 ≤ ϵ2I (5.33)
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From Schur Complement, the equivalent SDP constraints can be obtained.

 ϵ1I Y T

Y P 2

 ≥ 0,

 ϵ2I L
T

2

L2 τ 2I

 ≥ 0 (5.34)

These additional matrix inequalities depend on the decision variables P and τ quadratically.

A LMI relaxation can be achieved by adding following mild constraints

P ≥ αI and τ ≥ β (5.35)

where 0 < α, β << 1 are small positive numbers assigned by the user. Then, the sufficient

conditions for Eq. (5.33) and (5.34) are the following LMIs that depend on the decision

variables Y and L2 linearly.

 ϵ1I Y T

Y α2I

 ≥ 0,

 ϵ2I L
T
2

L2 β2I

 ≥ 0 (5.36)

Because the calculation of L1, L2 needs the inverse of P and τ , the additional constraint in

Eq. (5.35) also improves the numerical reliability of the algorithm.

5.3 Observer Design for Parameter Varying Nonlinear (PVNL) Systems

In the previous section, the observer design for time invariant Lipschitz nonlinear sys-

tems has been discussed. However, the systems under control in real world applications

often have time varying components. In some cases, the change of the dynamics of the

controlled system is reflected in the continuous variation of some model parameters. If the

state space model is linear with measured time-varying or state dependent parameters being

virtually fixed, this type of system is called a linear-parameter-varying (LPV) system, which

has been extensively studied since the early 1990s [53] [46]. If the model contains additional

nonlinearities besides those hidden behind the time-varying parameters, it can be called a
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parameter varying nonlinear (PVNL) system. However, there is very little research results

on observers for these kinds of systems.

5.3.1 Convergent Gain-Scheduled Nonlinear Observer Design

In this section, the nonlinear observer design method is extended to parameter varying

nonlinear systems, whose state space model can be abstracted as

ẋ = A(λ)x+Bf (λ)f(x) + Ψ(y, u)

y = C(λ)x
(5.37)

where λ = (λ1, . . . , λp)
T with λi ≤ λi ≤ λi,∀ i = 1, . . . , p, is the collection of all the online

measured time-varying parameters. Here, the research focus is restricted to the case that

all the state space matrices A(λ), Bf (λ) and C(λ) depend on λ affinely. Then, Arcak’s two

DOF nonlinear observer, such as that shown in Eq. (5.21), can be extended to the following

gain scheduled nonlinear observer form.

˙̂x = A(λ)x̂+Bf (λ)f [x̂+ L2(λ)(y − C(λ)x̂)] + Ψ(y, u)

+[L1(λ)−Bf (λ)K1L2(λ)](y − C(λ)x̂)
(5.38)

The scheduled observer gains L1(λ) and L2(λ) are

L1(λ) = L1,0 + λ1L1,1 + · · ·+ λpL1,p

L2(λ) = L2,0 + λ1L2,1 + · · ·+ λpL2,p

(5.39)

where L1,i, L2,i, ∀ i = 0, 1, . . . , p are all the observer gains. The search for the convergent

observer gains can be represented as the following SDP problem shown in Theorem 9.

Theorem 9 Consider the nonlinear system in Eq. (5.37) and Arcak’s two DOF gain-

scheduled nonlinear observer in Eq. (5.38) (5.39). The Jacobian matrix of the Lipschitz
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continuous function f(x) is lower and upper bounded by the matrices K1 and K2 in the do-

main of interest. Then, the observer error e = x− x̂ is asymptotically stable if the following

matrix inequality conditions are feasible

P ≻ 0,

 A(λ)TP + PA(λ) PBf (λ)

Bf (λ)
TP 0



−

 I − L2(λ)C(λ) 0

0 I


T

M1

 I − L2(λ)C(λ) 0

0 I

 ≺ 0, ∀λ ∈ Λ

(5.40)

where Λ represents the polytopic space that contains the parameter vector λ. The multiplier

matrix M1 is the same as that defined in Eq. (5.23). The parameter dependent matrix A(λ)

denotes

A(λ) = A(λ) + Bf (λ)K1 − L1(λ)C(λ) (5.41)

Proof: The proof is similar to that for Theorem 3 except that all the state space matrices

are replaced with their corresponding parameter dependent ones shown in Eq. (5.37).

Remark 7 This result is based on a single quadratic Lyapunov function (SQLF) [7] as

V (e) = eTPe, P ≻ 0. It is also possible to choose a parameter dependent quadratic Lyapunov

function (PQLF) to reduce the conservatism. However, this choice will make the semidefinite

condition in Eq. (5.40) become a bilinear matrix inequality (BMI), which is a NP hard

problem in general.
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5.3.2 Gain-Scheduled Nonlinear Optimal L2 Observer Design

Similar to the time invariant case, the nonlinear parameter varying system in Eq. (5.37)

can be augmented as

ẋ = A(λ)x+Bf (λ)f(x) + Ψ(y, u) + Bw(λ)w

y = C(λ)x

yp = Cp(λ)x

(5.42)

By applying the dissipativity condition in Eq. (5.31) and (5.32), the gain scheduled non-

linear optimal L2 observer design problem can be reframed to the following semidefinite

programming problem presented in Theorem 10.

Theorem 10 Consider the nonlinear system in Eq. (5.42) and Arcak’s two DOF gain-

scheduled nonlinear observer in Eq. (5.38) (5.39). The Jacobian matrix of the Lipschitz

continuous function f(x) is lower and upper bounded by the matrices K1 and K2 in the

domain of interest. The optimal L2 observer design can be formulated as the following
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semidefinite programming problem

min γ

subject to

P ≻ 0, τ > 0
A(λ)TP + PA(λ) + CT

p (λ)Cp(λ) PBf (λ) PBw(λ)

Bf (λ)
TP 0 0

Bw(λ)
TP 0 −γ2I



−τ


I − L2(λ)C(λ) 0 0

0 I 0

0 0 0



T 
0 −KT

2 −KT
1

2
0

−K2−K1

2
I 0

0 0 0




I − L2(λ)C(λ) 0 0

0 I 0

0 0 0

 ≺ 0

∀λ ∈ Λ

(5.43)

where τ is a scalar S-Procedure multiplier. Λ and A are the same with those defined in

Theorem 9.

Proof: This proof is also similar to that for Theorem 8 except that all the state space

matrices are replaced with their corresponding parameter dependent ones shown in Eq.

(5.37).

5.3.3 Finite Dimensional Relaxation

The semidefinite conditions in Eq. (5.40) and (5.43) are indeed infinite dimensional

LMI constraints due to their continuous dependence on the parameter λ. To make them

numerically tractable, it is necessary to convert them to finite dimensional LMI constraints.

In what follows, the construction of such a finite dimensional relaxation of Eq. (5.40) and

(5.43) will be discussed in two cases.
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a) C, Cp are constant matrices.

In this case, the LMIs in Eq. (5.40) and (5.43) depend on the parameter λ affinely.

From the constraint λ ≤ λ ≤ λ, it is easy to see that the parameter space Λ is a polytopic

convex set with 2p vertices.

λ ∈ Co
{
Λk, k = 1, . . . , 2p

}
(5.44)

where Λk denotes the kth vertex of the polytope Λ, which is assumed to be known. Therefore,

it is only necessary to guarantee the semidefinite constraint on all the 2p vertices of Λ [54]

[46].

Lemma 19 Suppose F (λ) represents the parameter dependent matrix on the left side of the

semidefinite conditions in Eq. (5.40) or (5.43), where C and Cp are assumed to be constant

matrices. F (λ) ≺ 0,∀λ ∈ Λ is feasible if and only if the following LMIs are feasible.

F (Λk) ≺ 0, ∀ k = 1, . . . , 2p (5.45)

b) C(λ), Cp(λ) are affine functions of λ.

In this case, the LMI conditions in Eq. (5.40) and (5.43) depend on the parameter

λ quadratically. From the LPV literature, various relaxation methods, such as parameter

space griding [31], multi-convexity relaxation [22], and linear fractional representation (LFR)

[6] [10], can be applied here. The multi-convexity relaxation requires that the 2nd-order

derivative of the parameter dependent LMI along the edges of the polytopic parameter

space is positive semidefinite, which is a strong requirement in general. Therefore, some

conservatism in the relaxation is inevitable. Parameter space griding method approximates

the infinite dimensional LMI at a set of discrete points in the whole parameter space. The
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denser the grid, the larger the dimension of the LMIs, which should always be avoided. If the

grid is looser, it is possible to miss some critical points, which reduces the robustness of the

relaxation. The LFR method aims at representing the quadratically parameter dependent

LMI as a LFR form, where the parameter dependent block is usually a diagonal matrix.

Then, the full-block S -Procedure can be utilized to derive a finite dimensional relaxation.

Although, this method is powerful and easily to be extended to a high order parameter

dependent case, it is generally a hard task to get a LFR representation of the parameter

dependent LMI. Here, a more simple method to find a finite dimensional LMI relaxation for

the quadratical parameter dependent matrix inequality will be introduced.

Suppose F (λ) represents the parameter dependent matrix on the left side of the semidef-

inite conditions in Eq. (5.40) or (5.43), which is a quadratic matrix function of λ

F (λ) = F0 +
p∑

i=1

λiFi +
p∑

i=1

p∑
j=1

λiλjFij ≺ 0 (5.46)

where F0, Fi, Fij, i, j = 1, . . . , p are all symmetric matrices. Similar to the quadratic form

of a scalar quadratic polynomial, F (λ) can be represented as the following matrix quadratic

form.

F (λ) =



I

λ1I

...

λpI



T 

F0 0.5F1 · · · 0.5Fp

0.5F1 F11 · · · 0.5F1p

...
...

. . .
...

0.5Fp 0.5F1p · · · Fpp


︸ ︷︷ ︸

G



I

λ1I

...

λpI


(5.47)

For Eq. (5.40) or (5.43), the multiplier matrix G contains only decision variables P , L1, L2

and τ .
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To relax this parameter dependent semidefinite condition, it is desired to find a multiplier

matrix V that represents the algebraic constraint for the parameter λ shown below.

 I

λ⊗ I


T

V

 I

λ⊗ I

 ≺ 0 (5.48)

Then, the search of the multiplier matrix V becomes critical to the quality of the relaxation.

Next, two ways to construct such a qualified multiplier are discussed.

1) Unstructured Full Block Multiplier V1

In this method, the search of a multiplier matrix V1 satisfying the algebraic condition

in Eq. (5.48) resorts to the feasibility problem of a set of LMIs shown below [11] [19]

 I

Λk ⊗ I


T

V1

 I

Λk ⊗ I

 ≺ 0, ∀ k = 1, . . . , 2p (5.49)

where Λk denotes the kth vertex of the polytope Λ. Then, applying S -Procedure, the

following LMI that guarantees the negative definiteness of F (λ) in the whole parameter

space Λ [6] [11] can be obtained.

G− V1 ≺ 0 (5.50)

The LMIs in Eq. (5.49) and (5.50) constitute the finite dimensional relaxation of the

semidefinite condition in Eq. (5.46).

2) Structured Multiplier V2

Although the SDP solvers, such as SeDuMi1.3 or SDPT3, can be employed to find a

qualified multiplier efficiently, giving a clear physical interpretation to those elements in

V1 becomes a difficult and abstract task. Moreover, the solver may return a conservative

multiplier corresponding to an enlarged polytope, which is always undesirable. Next,

the derivation of the multiplier V2 in an analytical way, which avoids the unnecessary

conservatism at the cost of more decision variables, is shown.
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From the constraint λ ≤ λ ≤ λ, the matrix inequality for each λi has the following

form  I

λiI


T  λi λiI −λi+λi

2
I

−λi+λi

2
I I


︸ ︷︷ ︸

Ui

 I

λiI

 ≤ 0 (5.51)

where i = 1, . . . , p. I represents an identity matrix that has the same dimension

with that in Eq. (5.47). The multiplier Ui is a known matrix with clear physical

interpretations. Furthermore, similar to the S -Procedure for the scalar case where a

positive scaling factor (S -Procedure multiplier) preserves the positivity or negativity

of the quadratic polynomial inequality [58], a positive definite matrix scaling factor

can be added into each block in the multiplier Ui. This addition to the multiplier Ui

leads to the following general matrix inequality for each λi.

 I

λiI


T  λi λi Γi −λi+λi

2
Γi

−λi+λi

2
Γi Γi


︸ ︷︷ ︸

U i

 I

λiI

 ≤ 0 (5.52)

Here, Γi ≻ 0, i = 1, . . . , p is a full-block positive definite matrix with the same dimen-

sion as the identity matrix I in Eq. (5.51). It will be treated as a decision variable in

the subsequent LMIs in Eq. (5.56).

Based on Eq. (5.52), an augmented matrix inequality with a higher dimension as

shown in Eq. (5.53) that includes all the parameters λ1, . . . , λp can be obtained.



I

λ1I

...

I

λpI



T


U1

. . .

Up





I

λ1I

...

I

λpI


≤ 0 (5.53)
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To match the matrix vectors in Eq. (5.47), the following transformation matrix T can

be applied. 

I

λ1I

...

I

λpI


=



I 0 0 · · · 0

0 I 0 · · · 0

...

I 0 0 · · · 0

0 0 0 · · · I


︸ ︷︷ ︸

T



I

λ1I

...

λpI


(5.54)

Then, the multiplier matrix V2 can be derived as follows:

V2 = T T


U1

. . .

Up

T (5.55)

Similar to the unstructured multiplier case, the S -Procedure can be used to construct

the finite dimensional relaxation of the semidefinite condition in Eq. (5.46) as

G− V2 ≺ 0, Γ1, . . . ,Γp ≻ 0 (5.56)

In summary, two methods to build the multiplier matrix V in Eq. (5.48) and their cor-

responding finite dimensional relaxation of the parameter dependent LMI condition in Eq.

(5.40) and (5.43) have been discussed. The structured multiplier V2 has a clear physical

interpretation and fewer LMI conditions than the unstructured multiplier V1. But the LMIs

in Eq. (5.56) have much more decision variables than those in Eq. (5.49) and (5.50) due

to the additional full-block matrix scaling factors Γ1, . . . ,Γp whose size depend on the order

of the original nonlinear system in Eq. (5.37). Therefore, it is recommended to use the

structured multiplier V2 and LMIs in Eq. (5.56) in the case of lower order systems. For

128



a higher order system with a few scheduling parameters, it is more convenient to use the

unstructured multiplier V1 and LMIs in Eq. (5.49) and (5.50).

5.4 Simulation Examples

In this section, two observer design examples will be used to demonstrate the applica-

tions of the theoretical results discussed in this chapter.

5.4.1 Van der Pol Oscillator

First, the Van der Pol oscillator is used as an example for observer design for time

invariant nonlinear systems. Its ordinary differential equation model is shown below [8].

ÿ − µ(1− y2)ẏ + y = 0, µ = 1.0 (5.57)

By defining the state variables x1 and x2 as x1 = y, x2 = ẏ, its state space representation is

 ẋ1

ẋ2

 =

 0 1

−1 0


 x1

x2

+

 0

1

µ(1− x2
1)x2

y =
(

1 0

) x1

x2


(5.58)

where f(x) = (1− x2
1)x2 is the nonlinear memoryless function. Arcak’s two DOF nonlinear

observer of Eq. (5.3) has the following form.

 ˙̂x1

˙̂x2

 =

 0 1

−1 0


 x̂1

x̂2

+

 0

1

µf(x̂+ L2Ce)

+L1(y − Cx̂)

(5.59)

129



where e = x − x̂. The sector condition for e and ϕ(t, e) can be derived from the lower and

upper bounds of the Jacobian matrix (∂f(x)/∂x) in the operation domain.

(
∂f(x)

∂x

)
=
(

−2x1x2, 1− x2
1

)
(5.60)

Suppose (x1, x2) ∈ [−5, 5]× [−5, 5]. The matrices K1 and K2 in Eq. (5.6) are

K1 =
(

min(−2x1x2), min(1− x2
1)

)

=
(

−50, −24

)

K2 =
(

max(−2x1x2), max(1− x2
1)

)

=
(

50, 1

)

(5.61)

Finally, Theorem 3 can be applied to search for the convergent observer gains L1, L2.

This convex semidefinite programming problem can be solved by SDPT 3 with YALMIP as

the interface [9]. The L1, L2 gain results are shown below in Eq. (5.62).

L1 =
(

17.5846, 63.8993

)T

L2 =
(

0.3639, 0.6864

)T
(5.62)

To verify convergence, the observer is forced to start from a different initial condition than

the true process in the simulation. The results for the individual state observations are

shown in Fig. 5.2 below. The whole phase portrait in the state space can be seen in Fig.

5.3. It is clear that the observer states converge to the system states at a rather quick speed.
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Figure 5.2: Simulation Results for The State Observation

Figure 5.3: Simulation Results for The Phase Portrait
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5.4.2 Slip Angle Estimation

The second example is the vehicle tire slip angle estimation problem, which is a chal-

lenging task in automotive active safety system. Previous research results in this field are

based on one of the two assumptions shown below:

1. Linear tire model in which the tire-road friction force is proportional to the slip angle;

2. Nonlinear tire model with constant longitudinal velocity [34];

In this section, it will be shown that both the nonlinear tire model and variation of the longi-

tudinal velocity can be considered simultaneously by applying the gain-scheduled nonlinear

observer design methodology developed in this chapter.

Nonlinear Tire Model

Tire-road friction force is a critical external input source in various automotive active

safety systems, such as anti-lock braking systems (ABS), traction control (TC) and elec-

tronic stability control (ESC) [39]. However, tire-road friction is a very complex physical

phenomenon, which is represented by various complicated mathematical models, such as

Magic Formula, Dugoff tire model [16] and LuGre tire model [25]. These highly nonlinear

models make the design of the controller or observer a very challenging task.

In this example, the following nonlinear tire model for the lateral tire-road friction force

under the assumption of parabolic normal pressure distribution [34] is adopted.

Fy(α) =


µFz(3θα− 3θ2α2sgn(α) + θ3α3), if |α| ≤ 1

θ

µFzsgn(α) if |α| > 1
θ

(5.63)

with the definition of θ as

θ =
4acbck

3µFz

,
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where α is the slip angle of the wheel. µ and Fz represent the tire-road friction coefficient

and normal load of the wheel. ac is half-length of contact patch, bc is half-width of the

contact patch, and k is isotropic stiffness of tire elements per unit area of the belt surface.

1/θ represents the value of slip at which a saturation of lateral tire force is reached. Unlike

other highly cited tire models, such as the Magic formula, this polynomial representation of

the tire model makes it easy to estimate the lower and upper bounds of the Jacobian matrix

(∂fy/∂α). A typical curve of the nonlinear lateral tire-road friction model in Eq. (5.63) with

µ = 0.85, Fz = 6000N , θ = 4.5 is shown in Fig. 5.4 below.

Figure 5.4: A typical curve of the nonlinear tire model in Eq. (5.63)

Nonlinear Parameter Dependent Bicycle Model

Based on the tire model in Eq. (5.63), the standard state equations of the nonlinear

bicycle model can be derived as shown in Eq. (5.37), where the slip angles of the front and

rear wheels αf , αr are chosen as the state variables [34]. The affine parameter varying state

space matrices A(λ), Bf (λ), Bw(λ), the measured input function Φ(y, u) and the nonlinear
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state function f(αf , αr) are shown below

A(λ) =


− v̇x

vx
− c1f

vx

(
1
M

+ a2

Iz

)
c1r
vx

(
ab
Iz
− 1

M

)

c1f
vx

(
ab
Iz
− 1

M

)
− v̇x

vx
− c1r

vx

(
1
M

+ b2

Iz

)

 (5.64)

Bf (λ) =


− 1

vx

(
1
M

+ a2

Iz

)
1
vx

(
ab
Iz
− 1

M

)

1
vx

(
ab
Iz
− 1

M

)
− 1

vx

(
1
M

+ b2

Iz

)

 (5.65)

Bw(λ) =
1

vx


− 1

M
− a

Iz

1
M

− b
Iz

 (5.66)

Φ(y, u) =


v̇x
vx

1 1

0 0 1




δ

δ̇

r

 (5.67)

f(αf , αr) =


c2fα

2
fsgn(αf ) + c3fα

3
f

c2rα
2
rsgn(αr) + c3rα

3
r

 (5.68)

where M, Iz, a, b are the mass, yaw inertia, the length of front end and rear end to the CG

of the vehicle. ci,f , ci,r, i = 1, 2, 3 are the coefficients of the polynomial tire models in Eq.

(5.63) for the front and real tires. vx, v̇x are the longitudinal velocity and acceleration,

which are assumed to be the measured signals. r, δ, δ̇ are the yaw rate, steering angle and

its derivative, which are treated as the measured input signals. WF and WT denote those

unmeasured disturbance force and torque inputs, such as air drag or uncertain inertia forces.

The affine scheduling parameter λ is composed of two elements λ1 and λ2 which are defined

as

λ1 =
1

vx
, λ2 =

v̇x
vx

(5.69)
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The variation range of λ1, λ2, such as λ1 ≤ λ1 ≤ λ1, λ2 ≤ λ2 ≤ λ2, can be estimated from

the following physical constraints in the real applications based on desired dynamic range

for the observer to operate.

15kph ≤ vx ≤ 150kph, −8.0m/s2 ≤ v̇x ≤ 8.0m/s2 (5.70)

Besides the above state equation, the kinematic relation between slip angles and the measured

signals are shown in Eq. (5.71).

δ − a+ b

vx
r = αf − αr (5.71)

This kinematic model is regarded as the output equation, which can be abstracted as

y =
(

1 −1

) αf

αr

 (5.72)

Gain-Scheduled Nonlinear Observer

Here, the gain-scheduled observer in Eq. (5.38) is used to estimate the two slip angles

αf , αr. The search of the observer gains resorts to the semidefinite problem in Theorem 10

for ensuring optimal L2 performance, which aims at minimizing the effect of the unmeasured

disturbance inputs WF , WT on the observer error. The output equation in Eq. (5.72) shows

that the output matrix is constant, which implies that the LMI conditions in Eq. (5.40) and

(5.43) depends on the scheduling parameter λ affinely. Therefore, Lemma 19 can be applied

to derive the finite dimensional relaxation of the parameter dependent LMI conditions.
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By using the SDP solver SeDuMi 1.3, the following results are obtained for the observer

gains.

L1(λ) =

 9.6103

10.1651

+ λ1

 −72.1241

−84.5006

+ λ2

 −0.4527

−0.5227



L2(λ) =

 0.5307

0.4693

+ λ1

 0.5170

−0.5154

+ λ2

 −0.018

0.0187


(5.73)

where the scheduling parameters λ1 and λ2 are defined in Eq. (5.69). This gain-scheduled

observer requires that both the longitudinal velocity and acceleration are measured online,

which is available in today’s automotive active safety systems [39]. The velocity and accel-

eration scheduled observer gains can also be represented as a set of smooth lookup tables,

which are widely used in the automotive control systems [39]. The shape of these lookup

tables is shown in Fig. 5.5 below, from which it can seen that the observer gains are dom-

inated by the variation of the velocity especially in the low speed region. When the speed

is above 60kph, the gains approach their steady states. This flat region also explains why

previous research results with fixed observer gains can also give a good performance in the

speed range above 60kph [34]. The change of acceleration has a relative minor effect on the

scheduling of the gains at these speeds.

Simulation Result

The data from CarSim is used to verify the performance of the gain-scheduled nonlinear

observer. To excite the tire-road friction force into nonlinear region, a sedan is required

to follow the trajectory of the extreme ”Fishhook” maneuver in the simulation test. The

fishhook is an extreme maneuver to stress the vehicle dynamics to its limits. This type of

maneuver could also represent an extreme avoidance maneuver. Its longitudinal velocity

profile, which decreases from 78kph to 23kph gradually, is shown in Fig. 5.7.
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Figure 5.5: The lookup table for the longitudinal velocity and acceleration scheduled observer
gains.

Figure 5.6: The steering angle of fishhook.
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Figure 5.7: The longitudinal velocity and acceleration profile in the simulation.

To demonstrate the superiority of the nonlinear gain-scheduled observer, a LPV observer

discussed in chapter 3 that is based on the linear tire-road friction model in Eq. (3.13) is

also simulated. The simulation results are presented in Fig. 5.8. As in chapter 3, the two

observers start to work 1 second later than the maneuver and at a different initial condition.

Fig. 5.8 shows that the estimated slip angles from the gain-scheduled nonlinear observer

converge to the true states quickly. When the front and rear slip angles reach beyond 5.7deg

(0.1rad), the LPV observer cannot produce accurate estimation results. This observation is

consistent with the tire model in Fig. 5.4 which shows that the relationship between slip

angle and cornering force becomes nonlinear above 5.7deg (0.1rad).

5.5 Conclusions

In this chapter, a design framework that reframes the search of the optimal convergent

observer gains for both the Extended Luenberger Observer and Arcak’s two DOF nonlinear

observer as a convex semidefinite programming problem has been developed. It has been
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Figure 5.8: The simulation results of gain scheduled nonlinear observer and the LPV observer
in the fishhook maneuver.

shown that the observer error dynamics can be modeled as a Lure type system with multivari-

able sector conditions from the bounded Jacobian matrices. Furthermore, this methodology

is extended to design a gain scheduled observer for parameter varying nonlinear (PVNL)

systems for the first time. Different finite dimensional relaxation methods for the parameter

dependent LMIs are analyzed and compared. The simulation examples for both the time-

invariant and parameter-varying nonlinear systems support the validity of the theoretical

results.
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Chapter 6

Conclusions and Future Work

6.1 Concluding Remarks

In summary, the application of LMI based optimization methods to develop model based

vehicle state estimation algorithm has been developed in this dissertation. The three degree

of freedom (DOF) bicycle model for estimating the non-measurable tire slip is the application

example for the observers. However, all the observer design methodologies presented in this

dissertation are formalized in a systematic manner, which allow them to be easily applied to

other dynamical models besides the vehicle model.

First, the linear tire-road friction model was considered. The linear parameter varying

(LPV) observer design methodology was then applied with the longitudinal velocity and

acceleration treated as online measured time-varying scheduling parameters. Some robust

design techniques, such H2 and H∞ norm optimization, for the uncertainty in the measured

scheduling parameters were also proposed. Next, the gain-scheduled observer design method

was augmented to interval estimation where the observer gain parameters are tuned in such

a way that the observer error is a positive linear system. In this framework, the uncertain

cornering stiffness is modeled as a disturbance input that perturbs the observer error. Instead

of a single estimation trajectory for each state variable, the interval observer results in an

envelope that covers all the possible state trajectories when the cornering stiffness parameters

vary in the pre-specified interval. In real-world applications, this envelope provides valuable

information of worst-case bounds on the estimated values. Finally, a nonlinear observer

design technique is developed to cope with the nonlinearity in the tire-road friction model.

Similar to the LPV observer, the time invariant nonlinear observer was also augmented

to a parameter varying nonlinear (PVNL) observer such that both nonlinear tire model
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and time-varying longitudinal velocity and acceleration can be considered simultaneously.

A new relaxation approaches for the infinite dimensional LMIs were also proposed. In the

development of all these estimation algorithms, the search of convergent and optimal observer

parameters were cast as a convex semidefinite programming problem.

All of the presented vehicle state estimation algorithms are verified using the simulation

data from CarSim, a high-fidelity commerical simulation software package. The simulation

results verify that the robust LPV observer produces better estimation results in the pres-

ence of measurement error of longitudinal velocity and acceleration. The gain-scheduled

interval observer was shown to provide a robust estimation solution in the simulation of

varying cornering stiffness parameters. It was also shown that the real slip angles are always

constrained within the estimated envelope. In the simulation of aggressive maneuvers, such

as a fishhook, the nonlinearity in tire-road friction becomes notable. The nonlinear observer

showed superior performance over the linear observer in this case.

6.2 Future Work

6.2.1 Sensor Fusion with Camera, Radar and Lidar

In this dissertation, the vehicle state estimation algorithms are developed only based

on inertial measurements, such as velocity and acceleration. It is far from the goal of ad-

vanced driver assistance systems (ADAS), which are expected to automate/adapt/enhance

vehicle systems for safety and better driving. The latest ADAS technology can be based

upon vision/camera systems, radar/Lidar systems, Vehicle-to-Vehicle (V2V) or Vehicle-to-

Infrastructure systems. All of these state-of-the-art sensing systems provide an opportunity

to improve the estimation accuracy and robustness against the model uncertainty.

Besides access to the vehicle states, those advanced sensing systems may also provide

more precise measurements of the scheduling parameters, such as the longitudinal velocity

and acceleration in the bicycle model. This could further improve the estimation accuracy of
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the slip angle. Furthermore, the camera and radar can provide relative velocity with respect

to other vehicles or pedestrians, which is vital information for prediction of crashes.

6.2.2 Moving Horizon Estimation using Multi-Parametric Programming

A Moving Horizon Estimator (MHE) computes an estimate at the current instant by

solving an optimization problem based on information from a fixed-number of latest measure-

ments collected over a finite horizon [52]. In this problem, the cost function to be minimized

is traditionally described by the norm of the difference between real and predicted mea-

surements over the horizon, a norm of the process noise over the horizon and a norm of the

difference between an estimate at the beginning of the horizon and an a priori one. The main

advantages of the MHE are that nonlinear systems are handled without linearization and

constraints are directly incorporated during the optimization. However, the computation

time of the MHE can be very lengthy due to its large number of decision variables. One

remedy for this dilemma is to apply multi-parametric programming methods such that the

complex online computation can be circumvented [15].

Multi-parametric programming is a technique for solving an optimization problem,

where the objective is to minimize or maximize a performance criterion subject to a given

set of constraints in which some of the parameters vary between specified lower and upper

bounds. The main characteristic of multi-parametric programming are listed below [15].

• The variation of initial condition or process model parameters is modeled as the sym-

bolic varying parameters in the cost function and constraint conditions;

• Both the objective function and optimal decision variables are returned as functions

of the varying parameters which can be explicitly represented by lookup tables;

• The algorithm can also compute the regions in the parameter space where these func-

tions are valid;
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The motivation of using multi-parametric programming to address the vehicle state estima-

tion problems is that both nonlinear dynamical model and time-varying parameters can be

considered in a unified optimization framework [52]. Applying the multi-parametric pro-

gramming method, one can obtain the optimal solution as a complete map of all the initial

conditions and time-varying parameters. Hence, as the operating conditions vary, it is not

necessary to repeat the optimization process for the new set of conditions, since the optimal

solution is already available as a function of the operating conditions. This advantage of

multi-parametric programming greatly facilitates its implementation on the embedded sys-

tems with low software and hardware complexity [15]. Therefore, this methodology has the

potential to improve upon the estimation algorithm developed in this dissertation.
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