# Geochronology and structural geology of the Kjerringøy Peninsula, Nordland, Norway 

by<br>Jonathan Michael Prouty

A thesis submitted to the Graduate Faculty of
Auburn University in partial fulfillment of the requirements for the Degree of Master of Science

Auburn, Alabama

August 2, 2014

Keywords: structural geology, geochronology, tectonics, Scandinavian Caledonides

Copyright 2014 by Jonathan Michael Prouty

Approved by
Mark G. Steltenpohl, Chair, Department Chair and Alumni Professor of Geology Ashraf Uddin, Professor of Geology Haibo Zou, Associate Professor of Geology


#### Abstract

Field mapping, structural and petrographic analysis, ID-TIMS U-Pb geochronology, ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ thermochronology, and chemical dating of minerals were employed to decipher the geologic history of the Salten area of north-central Norway. The "Heggmovatn Dome" was examined where it is overlain by rocks of the Bodø Nappe. Geologic mapping indicates that the Landegode, Bratten, and Tårnvika megacrystic granites are one structurally continuous unit, likely a composite batholith comprising numerous plutons. An ID-TIMS U-Pb age determination of $\sim 950 \mathrm{Ma}$ for the Tårnvika pluton and $\sim 428$ Ma for the Fjærhesten granite is evidence that the "Heggmovatn Dome" is not a Baltic basement gneiss dome but rather is a Scandian thrust nappe that evolved during the Neoproterozoic Valhalla orogeny. This juxtaposition of Tonian and Ordovician-Silurian plutons gives a distinctive fingerprint unique to the Laurentian Caledonides of the North Atlantic, clearly linking the Heggmo Nappe to Laurentia. Geologic findings point to a pre-Scandian kyanite-grade metamorphic event with U-Pb ages of zircon $(\sim 460 \mathrm{Ma})$ and rutile $(\sim 460-470 \mathrm{Ma})$ and a chemical monazite age ( $\sim 445-475 \mathrm{Ma}$ ) supporting Taconian/Grampian deformation, likely along the Laurentian margin. Apart from regional folding and tonalitic and pegmatitic intrusions, evidence for Silurian-Devonian Scandian orogenesis is not abundant in the Heggmo


Nappe. The greenschist-facies, tops-down-to-the-west Fjær-Osvika\Steigtinden shear zone (FOSZ) down-dropped rocks of the Bodø Nappe upon rocks of the Heggmo Nappe. Devonian extension along the FOSZ helps to clarify the geometry and distribution of the extensional detachment system in its northernmost extent in Norway. Brittle Mesozoic to Tertiary normal faults trend northeast/southwest throughout the study area and record rifting that eventually led to continental separation in the Eocene.

## ACKNOWLEDGEMENTS

Dr. Mark Steltenpohl is thanked for his guidance and engagement during the completion of my thesis. I will be forever grateful for his influence on my development as a geologist.

Professor Arild Andresen (University of Oslo) also deserves more thanks than I can give him. His financial and logistical support while I was in the field in Kjerringøy and working in laboratories of the University of Oslo were critical to the success of this project. His friendship and wise counsel is greatly appreciated.

I am equally indebted to Professor Fernando Corfu (University of Oslo) for contributing his expertise and energies to this study and for his patient and extraordinary mentorship. I would also like to thank Gunborg Bye Fjeld (University of Oslo) for her clear instructions and continual assistance while I learned how to prepare samples for analysis using ID-TIMS.

Dr. Willis Hames played a crucial role in the completion of this project. He mentored me through producing the ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ analysis and helped greatly with my interpretation of the metamorphic conditions of some of the rocks found in the study area. Dr. Hames also introduced me to Dr. Bob Tracy (Virginia Polytechnic Institute and State University) to whom I owe a great many thanks. Dr. Tracy donated a great deal of
electron microprobe instrument time and enthusiastically discussed the results. Dr. Haibo Zou was also extremely helpful in teaching me some of the intricacies of monazite chemical dating.

I learned much through my many discussions with Dr. Lars Augland (Université du Québec à Montréal), both in the field and in the lab. I am happy to have benefited from his expertise and his friendship.

John Hawkins' companionship and assistance in the field is also much appreciated. I especially thank John for generously sharing his field notes and photos for the Tårnvika area.

I am very grateful to Dr. Mark Cooper (Sherwood Geoconsulting) and Dr. Michael Styles (British Geological Survey) for their unselfish assistance and discussion regarding the regional geology of the study area.

Many thanks are due to fellow grad students Bart Davis, Chris Howard (University of Tennessee), and Chris Hanratty (Colorado State University) for many lively discussions and much encouragement. I also thank Julia Spencer for her patience and support while I drafted this report.

Finally, I thank my family for their continual support in all things, not only in their prodding me to finish this thesis.

## TABLE OF CONTENTS

ABSTRACT ..... ii
ACKNOWLEDGEMENTS ..... iv
TABLE OF CONTENTS ..... vi
LIST OF TABLES .....
LIST OF FIGURES ..... xi
INTRODUCTION ..... 1
Geologic Setting ..... 5
LITHOLOGIES ..... 11
Heggmo Nappe ..... 13
Kjerringøy Paragneiss ..... 13
Kjerringøy Orthogneiss ..... 21
Rørstad Granite ..... 24
Bodø Nappe ..... 29
Hopsfjell Schist ..... 29
Fjærehesten Granite ..... 32
STRUCTURE AND METAMORPHISM ..... 34
$\mathrm{D}_{0}$ ..... 38
$\mathrm{D}_{1}$ ..... 40
$\mathrm{D}_{2}$ ..... 45
$\mathrm{D}_{3}$ ..... 51
$\mathrm{D}_{4}$ ..... 57
Pressure/Temperature Conditions ..... 59
Methodology ..... 59
Interpretation of P-T Results ..... 62
GEOCHRONOLOGY ..... 68
Chemical Dating ..... 70
U-Pb ID-TIMS ..... 76
Rørstad Granite (Sample LEA-10-1) ..... 76
Zircon ..... 76
Monazite ..... 81
Fjærehesten Granite (Sample LEA-10-2) ..... 85
Zircon ..... 85
Monazite ..... 86
Rutile ..... 88
Zircon ‘Skating Crystals’ in Muscovite ..... 90
Kjerringøy Paragneiss (Sample KJR-243) ..... 92
${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ Muscovite Dating ..... 97
DISCUSSION ..... 99
Heggmo Nappe ..... 99
Tectonic Provenance of the Heggmo Nappe ..... 100
Model A: Scandian Emplacement of the Heggmo Nappe ..... 103
Model B: A Taconian Nappe Stack Emplaced as a Single Unit Onto Baltica in the Scandian
Event ..... 104
Fjær-Osvika Shear Zone ..... 105
CONCLUSIONS ..... 109
REFERENCES CITED ..... 113
APPENDIX 1 - Station Locations ..... 133
APPENDIX 2 - Microprobe Data ..... 138
Hames1-AGrtTrav1 ..... 138
Hames1GrtTrav2. ..... 155
Hames1GrtTrav4 ..... 158
Hames1RutTrav2 ..... 160
Monazite Traverse 1 ..... 162
Monazite Traverse 2 ..... 162
Monazite Traverse 3 ..... 164
Monazite Traverse 2-1 ..... 165
Monazite Traverse 2-2 ..... 166
APPENDIX 3 - ID - TIMS data ..... 175
APPENDIX $4-{ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ ..... 176
APPENDIX 5 - Analytical Methods ..... 177
Isotope Dilution - Thermal Ionization Mass Spectrometry (ID-TIMS) ..... 177
Sample Preparation ..... 177
Picking Minerals ..... 178
Zircon Abrasion ..... 179
Chemical Abrasion ..... 180
Air Abrasion. ..... 180
Zircon Dissolution / Isotope Dilution ..... 181

## LIST OF TABLES

Table 1 - Correlation chart for tectonostratigraphic divisions for the study area provided by
previous workers. All lithologies are contained within the Uppermost Allochthon.......... 9
Table 2 - Petrographic modal analysis of samples selected for geochronological analysis and for pressure-temperature analysis. 12

Table 3 - Representative lithological unit, sample number, and easting and northing (UTM Zone 33N, WGS84) for samples on which geochronological analyses were performed. .69

Table 4 - Results of different forced-discordia models applied to LEA-10-1 zircons.................. 80

## LIST OF FIGURES

Figure 1 - Reference map for the present study area, contains all place names referenced in this report. The map is centered on the Bodø Kommune, Nordland, Norway. ....................... 2

Figure 2 - Evolution of the interpretation of the extent of the Heggmovatn Dome.
Figure 3 - Schematic cross section showing the major tectonostratigraphic units in the Scandinavian Caledonides at the end of the Scandian orogeny

Figure 4 - The "Heggmovatn Dome" (HD) as depicted in the NGU Bodø and Sulijelma map sheets. Pink shades are Baltic basement orthogneisses and yellow shades are paragneisses interpeted to represent primary sedimentary cover to the basement. (from Gustavson and Blystad, 1995; Gustavson, 1996).

Figure 5 - Kjerringøy paragneiss exposed near Fjær. Marble layer is highlighted between red dotted lines. Well-defined dark layer highlighted between dotted-dashed lines in image is one of the distinctive amphibolite layers that is invariably found near the marble. Orange notebook is $\sim 20 \mathrm{~cm}$ long. 15

Figure 6 - Photomicrograph (XPL) of Kjerringøy paragneiss sample LND-001. See text for description, Table 2 for modal analysis.

Figure 7 - Photomicrograph (XPL) of garnet biotite muscovite schist, oriented sample KJR-036. See text for description and Table 2 for modal analysis

Figure 8 - Photomicrograph (XPL) of radiation damage stopping at grain boundaries in Kjerringøy paragneiss, sample KJR-243.22

Figure 9 - Photomicrograph (XPL) of Kjerringøy orthogneiss sample KJR-243. See text for description, Table 2 for modal analysis.

Figure 10 - Photomicrograph of mylonitic Rørstad granite sample LEA-10-1 showing abundant bulging grain boundaries and plagioclase porphyroblasts mantled by quartz. See body for description and Table 2 for modal analysis (XPL). ......................................................... 26

Figure 11 - Rørstad granite on Landegode intruded by diorite, all of which are intruded by pegmatites. Matrix is Rørstad granite, red solid lines outline pegmatites. Facing west at

Fatvåg, Landegode, the author for scale. ....................................................................... 27
Figure 12 - Looking north at a diorite dike that has acted as a slip horizon within the Rørstad granite. Sense of shear indicates tops-up-to-southeast movment. Red lines show late pegmatites, black arrows indicate sense of shear. The Rørstad granite is undeformed and unfoliated. The dike is exposed in a valley east of Tonhellaren, Landegode.

Figure 13 - Rørstad granite near Tårnvika intruded by diorite (outlined in yellow), both of which are cut by a younger pegmatite (outlined in red). Axial planes of folded pegmatites are parallel to $\mathrm{S}_{1}$ gneissosity (blacked dashed lines). This reflects late stage $\mathrm{D}_{1}$ flattening. Diorite was likely hot and semi-viscous when pegmatites intruded.

Figure 14 - Looking north at sheath folds occurring near Fjær. See text for discussion............... 31
Figure 15 - Photomicrograph (XPL) of Fjærhesten granite sample LEA-10-2. Weak foliation inclined from bottom left to top right. See body for description, Table 2 for modal analysis

Figure 16 - Structural cross-sections showing major structures in the study area. See Plate 2 for plan view of section lines.

Figure 17 - Structural formline map of foliation in the Kjerringøy/Bodø area. Single tick marks indicate foliation in area dips between 0 and 30 degrees, double tick marks indicate foliations dipping from 30 to 60 degrees, triple tick marks indicates foliations dipping from 60 to 90 degrees. The lower third of the figure incorporates data from Zeltner (2001)

Figure 18 - Isoclinal $\mathrm{F}_{0 \mathrm{R}}$ fold in the Kjerringøy paragneiss that is truncated by the Valhallan Rørstad granite. Pencil for scale.

Figure 19 - Photomicrograph (XPL) of sample KJR-093. See text for discussion.
Figure 20 - Isoclinal $\mathrm{F}_{1}$ M-fold overturned to the west in Kjerringøy paragneiss near Låter (Fig. 1). Note extended and boudinaged amphibolite layer. GPS unit circled in red is $\sim 10 \mathrm{~cm}$ long. Picture provided by John Hawkins

Figure 21 - Lower hemisphere equal area projection stereograms of fault orientation data. Red arrows on basemap point towards dip direction. Basemap from Gustavson and Blystad (1995).

Figure 22 - A) $\mathrm{S}_{1}$ S-C plane pairs ( $\mathrm{n}=10$ ) measured in the Heggmo and Bodø Nappes. Black lines are C-planes, grey lines are $\mathrm{S}_{1}$ S-planes. Red arrows indicate 90 degree rotation in the Cplane from the S-C intersection line. Resulting line is the slip lineation of that S-C plane. B) Contoured version of A with great circles omitted. Circles along the blue great circle are slip lineations ( $\mathrm{n}=5$ ) in the Heggmo Nappe, as determined in A. The circle in the SW quadrant is a slip lineation in the Bodø Nappe. Arrows around symbols indicate sense of rotation. Contours represent modified Kamb contours with a contour interval of 1
standard deviation, $\pi$-axis trends $204^{\circ}$ and plunges $26^{\circ}$

Figure 23 - Structural subareas for which stereonets have been created (See Figure 1 for reference). A) Bratten, B) Mjelde, C) Valvikdalen, D) Sørfjorden, E) Fjær/Osvika shear zone hanging wall, and F) Tårnvika. 46

Figure 24 - Equal area, lower hemisphere stereographic plot of poles to $S_{1}$ gneissosity in the $A$ ) Bratten ( $\mathrm{n}=69$ ) and B) Tårnvika ( $\mathrm{n}=143$ ) areas, and a combined plot C) of both Bratten and Tårnvika ( $\mathrm{n}=212$ ). $\mathrm{F}_{2} \beta$-axis trend is $226^{\circ}$ and plunge is $8^{\circ}$. Data is from AgyeiDwarko (2010) and the current study.

Figure 25 - Equal-area lower-hemisphere plot of poles to $S_{1}$ gneissosity in A) Mjelde, B) Valkvikdalen, and C) Sørfjorden. Mjelde and Valkvikdalen plots indicate cylindrical folds plunging shallowly to the east. The Sørfjorden area shares a similar fold style but plunges to the west. Valvikdalen ( $n=29$ ), Sørfjorden ( $n=12$ ), Mjelde ( $n=26$ ).

Figure 26 - Large $\mathrm{F}_{2}$ fold in western limb of Steigtinden synform, west of Svartvatnet, showing sinistral tops-up-to-northwest motion. Labeled points in equal-area, lower-hemisphere stereonet correspond with poles to surfaces labeled with red letters in photograph ( $\mathrm{n}=4$ ). Blue star is beta axis. Facing NE, hammer (near B) for scale. 48

Figure 27 - Lower hemisphere stereographic plot of $L_{2}$ mineral lineations in the Heggmo Nappe, most commonly defined by elongate micas. Contours represent modified Kamb contours with a contour interval of one standard deviation ( $\mathrm{n}=86$ ) 50

Figure 28 - Outcrop of mylonitic gneiss of the $\mathrm{D}_{3}$ Fjær-Osvika shear zone. Light-colored layers and porphyroclasts are dominated by plagioclase and quartz, and darker layers have concentrations of muscovite, biotite, and garnet. Photo taken at KJR-094, near the antenna between Fjær and Brennhaugen, looking northeast. 52

Figure 29 - Three outcrops south of Fjær showing tops-down-to-west (left in photos) sinistral motion in the Kjerringøy paragneiss. A) Normal slip shear extending composite lenses. GPS unit for scale B) Sigmoidal porphyroclasts. Field book for scale. C) Normal slip shear zone extending felsic layer. Hammer for scale.

Figure 30 - Looking towards the south at a west-vergent $D_{3}$ fold near the FOSZ, exposed on the shore west of Osvika, within the Hopsfjell Schist in the Bodø Nappe. Note axial planar foliation and Brunton for scale. 54

Figure 31 - Equal-area lower-hemisphere plot of foliations and lineations measured on the Kjerringøy peninsula, emphasizing the transposition of older fabrics into $S_{3}$ folia near the FOSZ. Pink squares are poles to foliations $\left(n_{A}=59, n_{B}=60\right)$, red triangles are elongation lineations ( $\mathrm{n}_{\mathrm{A}}=13, \mathrm{n}_{\mathrm{B}}=18$ ), and the blue great circle is the approximate axial surface of the $F_{3}$ Kjerringøy synform. Foliation in $A$ and $B$ is contoured using a modified Kamb technique with a contour interval of one standard deviation A) All measurements found within one kilometer of the FOSZ, measured in both the Bodø and Kjerringøy Nappes, i.e. the hanging wall and the footwall. B) All measurements from within the Kjerringøy Nappe, farther than one kilometer from the FOSZ. Transposition related to the $\mathrm{D}_{3}$ FOSZ
is much less evident in rocks greater than one kilometer from the FOSZ.
Figure 32 - Normal faults visible in the mountains that form the southwest shore of the Kjerringøy peninsula, shown with solid red lines. Faults dip steeply to the northwest. Blue horizon is a distinctive marble layer offset by the normal faults. Faults are marked by hydrothermal alteration along fault plane. Elevations are indicated with thin red lines (3D model from http://kart.finn.no). 58

Figure 33 - Garnet end-member composition determined from Sample KJR-093. Pyrope (solid square) and almandine (solid diamond) are shown on the left y-axis, spessartine (outlined triangle) and grossular (outlined circle) are shown on the right y -axis, x axis is distance along traverse in microns.

Figure 34 - Relative intensity map of $\mathrm{Mn}, \mathrm{Mg}$, Fe , and Ca in garnet analyzed from sample KJR093. Darker colors represent higher concentrations of the element displayed in the image. Width of scale bar in lower right of each subset image is 150 microns. 63

Figure 35 - Derived image showing presence of ilmenite and rutile. Red indicates areas with abundant Ti and little Fe. Green indicates areas that are abundant in both Ti and Fe . The garnet traversed in the first traverse is outlined in black. 65

Figure 36 - P-T diagram showing temperature and pressure fields solved for using data obtained from sample KJR-09 (after Essene, 1989).

Figure 37 - Reference map showing geochronology sample locations in the study area: KJR-093, KJR-243, LEA-10-1, LEA-10-2. UTM coordinates are in Table 3.

Figure 38 - Relative intensity maps of U, Y, C, and Th in monazite \#1 analyzed from sample KJR-093. Darker colors represent higher concentrations of the element displayed in the image. Width of scale bar in lower right of each subset image is 50 microns.

Figure 39 - Relative intensity maps of Ca, Y, U, and Th in monazite \#2 analyzed from KJR-093. Darker colors represent higher concentrations of the element displayed in the image. Width of scale bar in lower right of each subset image is 25 microns............................. 72

Figure 40 - Location of EMPA traverses on monazite crystals. Shown on Y x-ray intensity maps. Data reported in Appendix 2.

Figure 41 - Isochrons determined from calculated Pb isotope concentrations in sample KJR-093.

Figure 42 - Backscatter electron image of a zircon grain interpreted to have a detrital core and rounded contact with concentrically zoned igneous overgrowth. Spectrum 1 is a spot analysis of the detrital zircon core. Spectrum 2 is a monazite inclusion within the igneous zircon overgrowth. 77

Figure 43 - Zircon crystals characteristic of sample LEA-10-1. Note frosty, transparent (low uranium) detrital cores mantled by dark brown metamic (high uranium) igneous
overgrowths. ..... 77
Figure 44 - U/Pb* Concordia diagram anchored at 0 Ma , from 3 zircons analyzed from sample79
Figure 45 - Binocular photograph showing monazite crystal diagnostic of those found in sampleLEA-10-1. Note yellow to brown color and subhedral morphology.82
Figure 46 - U/Pb* Concordia diagram of monazite analyses 307/22 and 307/28 from rock sample
LEA-10-1.83
Figure 47 - U/Pb* Concordia diagram of monazite analyses 307/39 and 30/40 from sample LEA-10-1.83
Figure 48 - U/Pb* Concordia diagrams for analyses from sample LEA-10-2: ..... 86

Figure 49 - ID-TIMS analysis of monazite grains from LEA-10-2 (311/103, 311/107, and $307 / 85$ ), yielding a Concordia age of $428.49 \pm 0.96 \mathrm{Ma}$.87

Figure $50-{ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ vs. ${ }^{207} \mathrm{~Pb} /{ }^{235} \mathrm{U}$ plot of three rutile crystals from sample LEA-10-2. Crystals do not represent a single family and are interpreted as representing distinct events.89

Figure 51 - U-Pb age concordia diagrams obtained for Scandian "skating crystals", zircon inclusions in muscovite, from the Durmålsvatnet Pluton. Sample LEA-10-2 (311/21 \& 311/113).

Figure 52 - Zircon crystals characterizing the two populations in sample KJR-243. Group A contains clear crystals and Group B contains large brown crystals.93

Figure 53 - SEM backscattered electron image of KJR-243 Group A zircon with high-uranium detrital cores mantled by igneous (anatectic) overgrowths. Histogram shows the mass distrubution in this zircon.

Figure 54 - U-Pb ages determined for Group A zircons from sample KJR-243. Group A zircons are discordant and do not define an isochron.

Figure 55 - SEM backscattered electron image of KJR-243 Group B zircon showing uniform growth and a lack of zoning. Lower mass is detected along fractures, presumably as a result of Pb having been leached along fracture surfaces. Histogram shows the mass distrubution in this zircon.

Figure 56 - U-Pb age concordia diagram for Group B zircons (307/1, 307/2, 311/16, 311/22) from sample KJR-243. Unusual discordance may indicate protactinium partitioning during decay (Parrish and Noble, 2003) or simple lead loss.96

Figure 57 - Weighted average of $431.49 \pm 0.86 \mathrm{Ma}$ for ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ages obtained for Group B
zircons (307/1, 307/2, 311/16, 311/22) from sample KJR-243. ..... 96

Figure 58 - Plateau at $\sim 390 \mathrm{Ma}$ (red dashed line) from muscovite separated from sample KJR093. Minimum age of $\sim 380 \mathrm{Ma}$ and maximum age of $\sim 405 \mathrm{Ma}$ (shaded red area)

Figure 59 - Annotated photograph taken from the summit of Steigtinden, looking north towards Kjerringøy. Italicized labels refer to geological features in the photo. For scale, Steigtindvatnet is roughly 1.6 km wide at the widest point in the photograph. Photo courtesy of John Pedersen, www.turbading.com.

Figure 60 - Schematic diagrams showing the evolution of the Heggmo Nappe from the Neoproterozoic to the Devonian. UMA = Uppermost Allochthon, UA = Upper Allochthon, MA = Middle Allochthon, Lower = Lower Allochton. 110

## INTRODUCTION

The Salten area of Norway, one-hundred kilometers north of the Arctic Circle, is a glacially-scoured region of deep fjords and steep mountains. Stretching from Skjerstadfjorden (Fig. 1) in the south to Sagfjorden 130 km to the north, the Salten interior is dominated by an antiformal structure long known to geologists as the Heggmovatn Dome (Fig. 2). Early workers (Rutland and Nicholson, 1965; Nicholson and Rutland, 1969; Nicholson, 1970; Wilson and Nicholson, 1973; Cooper, 1978; Wilson, 1981; Cooper and Bradshaw, 1980; Cooper 1985) focused on establishing regional lithologic correlations and characterizing the major structures and fabrics. These works resulted in a regional tectonic synthesis with the Heggmovatn Dome as an exposed portion of the Baltic basement (Fig. 2A) (Rutland and Nicholson, 1965). There has been little modern geological research since this early work was completed, despite being adjacent to the relatively well-studied areas of Ofoten and Lofoten to the north and central Norway to the south (Fig. 1). This hiatus in research has left a gap in our understanding of the evolution of this portion of the Norwegian Caledonides.

Early workers in the area suggested that the Heggmovatn Dome and other structures nearby were originally diapirs of buoyant material that fractionated from a Rapakivi-like crust during the 1800-1700 Ma Svecokarelian orogeny, one of the phases of the formation of Baltica (Cooper, 1978; Bogdanova et al., 2008). It was thought that during the Scandian orogeny these diapirs rose to what are now the highest structural levels still extant, rising through the denser material thrust above them (Cooper, 1985).

## Reference map for Bodø/Kjerringøy

study area, Nordland, Norway



This model of Baltican basement sourced diapirs was incorporated into the official Norsk geologisk undersøkelse (NGU, Geological Survey of Norway; Fig. 2B) Bodø and Sulitjelma map sheets (Gustavson, 1991; Gustavson and Blystad, 1995; Gustavson, 1996). Later work in the area focused on structures and began to incorporate modern geochronological analysis (Carter, 2000; Zeltner, 2001; Steltenpohl et al., 2009; AgyeiDwarko, 2010; Andresen et al., 2011; Augland et al., 2013). These new geochronological datasets have demonstrated that the long-held "Baltican basement" model for the gneisses in the Bodø region is untenable. In the 2008 NGU bedrock map of Norway (Fig. 2C) (Solli and Nordgulen, 2008) the rocks of the Heggmo area were considered to be exotic to Baltica, which the work of Agyei-Dwarko (2010), Andresen et al. (2011), and Augland et al. (2013) confirmed. The history of how the exotic Heggmovatn rocks came to be in northern Norway is as yet unknown.

In order to pull these disparate sets of structural and geochronological data into a coherent picture, the current author developed several objectives to guide the research presented in the current study. Objective 1: Targeted field mapping to help unify the structural work of Zeltner (2001) with the recent geochronological findings of AgyeiDwarko (2010). Objective 2: Further laboratory geochronological work to expand the pool of data that exists for the Salten region so that a more coherent regional interpretation can be attempted. To these aims, Electron Microprobe Analysis (EMPA) is used to characterize mineral compositions and to compute the pressure and temperature history of a kyanite, biotite, muscovite paragneiss. A monazite chemical age is determined for this lithology based on the data obtained via EMPA. Muscovite from this lithology is dated using ${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ isotopic dating methods to explore its mineral cooling
history. Isotope Dilution-Thermal Ionization Mass Spectrometry (ID-TIMS) provides high resolution ages from three separate lithologies in the study area: a paragneiss, an orthogneiss, and a granite. Petrographic and structural analysis on rocks in select areas establishes the structural and spatial relationships between the lithologies examined.

## Geologic Setting

The Appalachian-Caledonian mountain system is classically known for having amalgamated the supercontinent Pangaea through a series of middle-to-late Paleozoic collisions. In the northern parts of the orogen, the culminating Silurian continentcontinent collision is recorded on both the Laurentian (Acadian phase) and Baltican (Scandian phase) sides (Stephens and Gee, 1985).

In the Middle Ordovician the closure of the Iapetus Ocean was completed via westward-subduction beneath Laurentia (Stephens and Gee, 1985). As Baltica came into contact with Laurentia, Baltica’s leading edge was thrust imbricated, resulting in pieces of Baltic basement and the immediately overlying sedimentary cover rocks becoming tectonized and weakly foliated, creating the Parautochthon (Roberts and Gee, 1985). As the collision continued, parts of Baltica's passive margin were thrust on top of the Parautochton, creating a still extant group of thrust sheets collectively known as the Lower Allochthon (Fig. 3) (Roberts and Gee, 1985). The Middle Allochthon is similarly composed of rocks of Baltic affinity; however, the Middle Allochthon contains greenschist-facies and amphibolite-facies units (Fig. 3) (Roberts and Gee, 1985).


Figure 3 - Schematic cross section showing the major tectonostratigraphic units in the Scandinavian Caledonides at the end of the Scandian orogeny.

Structurally above the Middle Allochthon is the Upper Allochthon (Fig. 3), containing rocks and structures recording the subduction and destruction of Iapetan oceanic crust. The Upper Allochthon is composed of ophiolitic and arc material and associated sediments (Roberts, 2003). Final closure of Iapetus occurred and true continental collision commenced when the last portions of oceanic crust subducted, dragging down with it portions of Baltica's passive margin, initiating A-type subduction (Hodges et al., 1982a). During this presumably short-lived period, Laurentian continental crust overrode the subducting Baltican slab. The buoyant subducting Baltican crust eventually detached from the lithospheric mantle below, causing the continental lithosphere to rebound upwards (Hodges, 1982a; Andersen et al., 1991). Large swaths of Laurentian crust separated from Laurentia-proper at this time, faulted away on top of the ascending Baltican crust. This Laurentian-derived portion of the Norwegian Caledonides is known as the Uppermost Allochthon (Fig. 3) (Roberts and Gee, 1985; Roberts et al., 2007). The Uppermost Allochthon is the structurally highest unit in the Scandinavian Caledonides, composed of schists, psammites, conglomerates, dolomite, marbles, and various meta-mafic rocks, almost universally metamorphosed to amphibolite facies (Stephens and Gee, 1985). Unique to the Uppermost Allochthon are extensive

Caledonian-aged plutons and several faults interpreted as tops-up-to-northwest thrusts, suggested to be of Laurentian (Taconian/Grampian) origin (Barnes et al., 2007; Roberts et al., 2007). Emplacement of the Uppermost Allochthon represents the climactic contractional phase of the Caledonian orogeny in Scandinavia.

Shortly after the peak of Caledonian orogenesis the newly formed mountain chain began to rapidly uplift and collapse, driven by the gravitational instability created by the ascent of the Baltican crust (Andersen et al. 1991). Mass-wasting on an orogenic scale was accomplished through the development of a system of normal detachment faults, from southern Norway to the Narvik area (Fossen, 1992, 2010). Extension in the Heggmovatn area reportedly has occurred in two pulses; an orogen-parallel phase in the early Devonian and an orogen-orthogonal phase in the late Devonian and early Carboniferous (Steltenpohl et al., 2009). This timing is broadly coeval with extension in southern Norway (Andersen and Jamtveit, 1990; Walsh et al., 2007). Sediment shed during the collapse of the southern Norwegian Caledonides is preserved in Devonian basins in southwestern Norway and the British Isles, the famous Old Red Sandstone (Stephens and Gee, 1985; Fossen, 1992). No Devonian sediments are recognized farther to the north.

The present study area lies within the hinterland of the Scandian orogen, an area traditionally interpreted to consist of rocks of the Uppermost Allochthon thrust directly onto parautochthonous Baltican basement rock (Gee et al., 1985). The mountainous area to the east of the study area has historically been interpreted to consist of gneiss diapirs derived from the Baltic basement, exposed in a large tectonic window through the Uppermost Allochthon (Figs. 2, 4) (Rutland and Nicholson, 1965; Nicholson and

Rutland; 1969; Bennet, 1970; Wilson and Nicholson, 1973; Cooper, 1978; Cooper and Bradshaw, 1980; Thelander et al., 1980; Cooper, 1985; Gustavson and Blystad, 1995;

Gustavson, 1996; Steltenpohl et al., 2009).


Figure 4 - The "Heggmovatn Dome" (HD) as depicted in the NGU Bodø and Sulijelma map sheets. Pink shades are Baltic basement orthogneisses and yellow shades are paragneisses interpeted to represent primary sedimentary cover to the basement. (from Gustavson and Blystad, 1995; Gustavson, 1996).

The Uppermost Allochthon in this region comprises several nappes that have been variably interpreted (Table 1): the Bodø, the Beiarn (not found in the study area), and the Rödingsfjället Nappes (Gustavson, 1996; Zeltner, 2001; Agyei-Dwarko, 2010). The Bodø Nappe is a lithologically heterogeneous and weakly studied unit consisting of mica, kyanite- and staurolite-bearing schists, calcsilicate schists, amphibole-biotite-antigorite schist, and calcite marble (Gustavson, 1996). Zeltner (2001) divided the Bodø Nappe into three units: the structurally lowest calcsilicate schists; the amphibolite-bearing Hopsfjell

Table 1 - Correlation chart for tectonostratigraphic divisions for the study area provided by previous workers. All lithologies are contained within the Uppermost Allochthon.

| Nicholson and Rutland (1969) | Gustavson and Blystad (1995) | Zeltner (2001) | Agyei-Dwarko (2010) | This Study |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Caledonian granite | granitic pluton and dikes | NOT OBSERVED | Fjærehesten Granite | Bodø Nappe |
| Bodø Schist Group | mica schist and garnet mica schist, locally with staurolite | Hopsfjell schist | Dark-mica schist | Hopsfjell schist |  |
|  |  |  | garnetiferous schist |  |  |
|  |  |  | mica schist |  |  |
|  | Amphibole, biotite, antigorite schist |  | amphibole-biotite schist |  |  |
|  | Calcite marble | Ørntuva marble | NOT OBSERVED | NOT OBSERVED |  |
|  | Calcsilicate-bearing schist and mica schist, undifferentiated | calc-silicate schist | calcsilicate schist |  |  |
| Saura Group | Calcite marble with interlayered dolomite marble | Beiard Group | NOT OBSERVED | NOT OBSERVED | Rödingsfjället Nappe |
| Upper Vågen Schist Group | Mica schist | Skjøvne Group |  |  |  |
| Lower Vågen 'Sparagmite' Group | Meta arkose with layers of quartzite, feldspathic mica gneiss and calcite marble, locally migmatitic | Paragneiss | Paragneiss | Kjerringøy paragneiss | Heggmo Nappe |
| Heggmovatn Gneiss Group | Orthogneiss with layers of meta arkose and mica schist | Orthogneiss | Basement megacrystic Orthogneiss | Rørstad granite |  |
|  |  |  | Deformed orthogneiss | Kjerringøy orthogneiss |  |

Schist; and the Ørntuva marble (Table 1). Rutland and Nicholson (1965) considered the Vegdal Group to the south to be correlative to the Bodø Nappe. Gustavson and Gjelle (1991) describe the Vegdal Group as consisting of fine- to medium-grained banded mica schists with occasional staurolite and sillimanite. Cooper (1978) also interpreted the Vegdal Group as having been thrust above the Beiarn Nappe, based on Styles’ (1974) report of the Vegdal being a much lower grade of metamorphism than the rest of the Beiarn Nappe. Tørudbakken and Brattli (1985) identified a major discontinuity in the middle of the Vegdal Group and decided to reclassify it as the Kovdistind unit, thrust above the Habreså unit. Most recently, Augland et al. (2011) obtained an age of $434.06 \pm$ 0.54 Ma for the Høgtind granite, which is found in both the Kovdistind and the Habreså units.

The Rödingsfjället Nappe (Table 1) is found east of Bodø in the study area and is composed of the Skjøvne Group muscovite, quartz, biotite garnet schists and the overlying Beiard Group calcite marbles (Zeltner, 2001; Table 1). Rutland and Nicholson (1965) referred to these as the Saura Marble, which in the Valnesfjord area Cooper (1978) subdivided into the Saura Nappe and the Næverhaugen Marble Group, part of the Beiarn Nappe.

The Beiarn Nappe is interpreted to have been emplaced early in the sequence of events that ultimately formed the Norwegian Caledonides in the Salten region (Rutland and Nicholson, 1965). Cooper (1978) found the Beiarn Nappe in the Valnesfjord region to be a refolded fold nappe intruded by abundant granites that are nearly absent in adjacent rocks.

## LITHOLOGIES

This section details the lithological characteristics of the different rocks found in the study area. Units are described from structurally-lowest to structurally-highest. The order of observations within each unit description is from macro to micro, that is, regional descriptions followed by field characteristics followed by petrographic observations. Established formation names were used when known, and all mineral name abbreviations comply with the recommendations made by Siivola and Schmid (2007).

There are two major tectonostratigraphic units in the study area, the Heggmo Nappe and the Bodø Nappe (Plate 1). The structurally-lowest of the two is the Heggmo Nappe, which comprises three subunits: the Kjerringøy paragneiss, the Kjerringøy orthogneiss, and the Rørstad granite. Table 2 contains modal mineral abundances from select samples that are based on manual point counting and visual estimation. The Heggmo Nappe is separated from the overlying Bodø Nappe (Table 1) by the ductile tops-down-to-the-west Steigtinden/Fjær-Osvika shear zone. The Bodø Nappe is itself composed of two subunits: the Bodø schist and the Fjærehesten granite. All rocks in the study area are preserved in the Steigtinden synform. Zeltner (2001) reports the presence of the Rödingsfjället Nappe to the south, between the rocks of the Heggmo and Bodø Nappes, but no evidence was found indicating its presence in the study area.

Table 2 －Petrographic modal analysis of samples selected for geochronological analysis and for pressure－temperature analysis

| 드를 |  | 露 |  |  | Muscovite |  | 電 | 菏 |  |  | $$ |  | 券 |  | $\begin{aligned} & \text { EI } \\ & \text { OU, } \\ & \text { in } \end{aligned}$ | $\begin{aligned} & \text { 투ㅈㅜㅜ } \\ & \underset{\sim}{0} \end{aligned}$ | R <br> 0 <br> 0 <br> 0 <br> 0 <br> U |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { त्ज } \\ & \text { IN } \\ & \text { IU } \\ & \text { : } \\ & \text { in } \end{aligned}$ | Kjerringøy <br> Paragneiss | KJR－036 | $\begin{aligned} & \text { EMPA } \\ & { }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar} \end{aligned}$ | 40 | 30 |  | 10 | 15 |  |  | 2 |  |  | 1 | 1 | 1 |  | Visual estimate | 486443 | 7485926 |
|  | Kjerringøy <br> Paragneiss | KJR－243 | ID－TIMS | 20.8 |  | 62.7 | 16.2 | 0.2 |  |  |  |  | 0.1 |  |  |  | $\begin{aligned} & \text { Zrn } \\ & \text { Ttn } \end{aligned}$ | 1021 | 487057 | 7482762 |
|  | Kjerringøy <br> Paragneiss | KJR－093 | ID－TIMS | 54.8 | 14.5 | 0.8 |  | 5.7 | 7.6 | 16.7 |  |  |  |  |  |  | $\begin{gathered} \text { Mnz } \\ \text { Zrn } \\ \text { Ilm } \\ \text { Rt } \end{gathered}$ | 409 | 484326 | 7479327 |
| 菏 | Kjerringøy Orthogneiss | LND－000 | ID－TIMS | 33.8 | 8.7 | 28 | 26.3 |  |  | 2.1 |  | 0.1 |  |  |  | 1 |  | 492 | 467941 | 7474429 |
|  | Rørstad Granite | LEA－10－1 | ID－TIMS | 12.2 | 2.9 | 53.2 | 7 |  | 24.4 |  |  |  |  |  | 0.1 | 0.1 |  | 1210 | 505849 | 7493461 |
|  | Fjærehesten Granite | LEA－10－2 | ID－TIMS | 15.1 | 6.7 | 68.4 | 5.2 |  | 4.6 |  |  |  |  |  |  |  |  | 812 | 491908 | 7483866 |

## Heggmo Nappe

Kjerringøy Paragneiss

The Kjerringøy paragneiss (Plate 1) is the most regionally extensive unit found in the study area and has been mapped as far as 50 km north-northeast to Sagfjorden and 10 km east by east-southeast (Gustavson, 1996). This unit has previously been considered as equivalent to the Lower Vågen Group found in the Glomfjord area to the south in Rana (Nicholson and Rutland, 1969; Gustavson and Gjelle, 1991; Table 1). The Kjerringøy paragneiss is found in the study area on the island of Landegode, both the southern and northern shores of Mistfjorden, and also from Strandå north to Sørfolda.

Throughout the study area the Kjerringøy paragneiss is predominantly quartzofeldspathic but it does contain subordinate layers of amphibolite, marble, and kyanite garnet mica schists (Gustavson, 1991, 1996; Gustavson and Blystad, 1995). The diameter of garnet porphyroblasts tends to be uniform within individual layers of the subordinate garnetiferous schist, but diameters vary widely from layer to layer, ranging from sub-millimeter to several centimeters. Amphibolite and quartzite layers are commonly isoclinally folded or stretched into boudins defining horizons that approximate original bedding. Quartzofeldspathic layers are generally white in fresh surfaces but may be a rusty-brown color where stained. Pervasive limonite and goethite occur along late brittle faults.

The most accessible exposure of the paragneiss crops out between the ferry station at Misten and its contact with the overlying Bodø schist at Fjær (Fig. 1, Plate 1).

The portion of this traverse which parallels Mistfjorden is nearly perpendicular to the regional foliation and exposes nearly two kilometers of true tectonostratigraphic thickness, which is to say that if the foliation were horizontal the outcrop would be two kilometers high. The extent of structural repetition of layers within this unit is unknown but is probably widespread given the abundance of mesoscopic isoclinal folds. The structural level exposed at Misten is migmatitic and heavily intruded by pegmatites associated with the Fjærehesten granite a few hundred meters structurally above. Unique to this tectonostratigraphic level are ultramafic bodies not observed at other levels in the Heggmo Nappe.

Gray to light tan coarse-grained marble is found in layers of up to a meter thick and is characterized by a rillenkarren texture commonly found in karst areas. The marble is invariably found associated with < 0.1 m layers of amphibolite (Fig. 5). The most accessible exposure of marble is along the beach at Mjelde and along a hill called Futskardet directly southeast of the beach, just uphill from the highpoint of the beach access road. The unit also appears along the beach approximately 1.6 km northwest of the ferry station at Misten (Fig. 1). It is again exposed roughly 1 km to the southwest of the village of Fjær where it appears as a prominent white layer in the hill to the east of the road. This marble/amphibolite package was the only distinctive marker horizon observed within the Kjerringøy paragneiss.

Amphibolite (Fig. 5) observed within the Kjerringøy paragneiss is concentrated in the Tårnvika area (Plate 1), studied in detail by John Hawkins (personal communication, 2010). The amphibolite occurs as $<0.5 \mathrm{~m}$ thick layers parallel to the regional foliation. Amphibolite layers in the southern portion of the study area along Mistfjorden are similar


Figure 5 - Kjerringøy paragneiss exposed near Fjær. Marble layer is highlighted between red dotted lines. Well-defined dark layer highlighted between dotted-dashed lines in image is one of the distinctive amphibolite layers that are invariably found near the marble. Orange notebook is $\sim 20 \mathrm{~cm}$ long.
to those found farther to the north, but were not observed in as high a concentration as they occur to the north. The Kjerringøy paragneiss is well exposed in the northern part of the study area with nearly continuous roadcut exposures from Osvika to Tårnvika (Fig. 1, Plate 1). This area was not studied in detail by the present author but John Hawkins kindly supplied the author with data he collected (personal communication, 2010). These amphibolites are likely equivalent to the Tonian "pre-Caledonian intrusives" described by Agyei-Dwarko (2010; Table 1).

The southeastern portion of the study area on the western shore of Sørfjorden is characterized by a garnet, quartz, plagioclase, biotite migmatitic paragneiss. In places, the leucosomes are nearly equal in abundance to the melanosomes. This gneiss bears a striking resemblance to the gneisses at Misten and those found on the northern shore of Kjerringøy. This gneiss is cut by two generations of pegmatites. A quartz-rich family is characteristically isoclinally-folded with axial planes parallel to the regional foliation. Plagioclase-rich pegmatite veins are found throughout all lithologies observed in the study area, including the Kjerringøy paragneiss.

Kjerringøy gneiss exposed south of the study area near Heggmovatn has been described as consisting of a gray, medium-grained, locally migmatitic and kyanitebearing, garnetiferous biotite quartzofeldspathic schist (Zeltner, 2001). In the Vatnvatnet area the unit interfingers with quartzite and quartzofeldspathic schist (Zeltner, 2001). This interlayered character is also observed on the western side of the Steigtinden synform in the Valvikdalen area. The northeast/southwest trending ridges in this area are composed of quartzite and the streams have formed in the schistose units. Units in the Valvikdalen area are structurally above the marbles exposed at Mjelde.

Sample LND-001 (Fig. 6, Table 2) shows subgrain rotation, bulging recrystallization, and some deformation lamellae. The dominant deformation mechanism having operated in quartz is grain boundary migration. Mermekite is present. Kyanite, muscovite, biotite all show length preferred orientation, with tabular muscovite and blade-like kyanite defining the foliation in the rock. Mica minerals and quartz/feldspar are segregated into distinct layers defining gneissosity. Biotite and muscovite both contain radiation haloes around zircon.

Sample KJR-036 is a garnet biotite muscovite schist (Fig. 7, Table 2) belonging to the Bodø Group, collected in Kjerringoy. The hand sample from which the thin section was cut contained numerous euhedral garnet porphyroblasts, with some as large as $\sim 1 \mathrm{~cm}$ in diameter. In thin section, the most conspicuous feature in sample KJR-036 is a large euhedral to subhedral garnet porphyroblast with abundant quartz inclusions. The quartz inclusions trace out a pronounced sigmoidal shape, as determined by the orientation of the long axes of the quartz grains. The sigmoidal inclusion trails show a sinistral sense of rotation in the plane of the thin section (sample is not oriented) of approximately $40^{\circ}$. The radius of curvature of the rotated inclusion trails and the cross-sectional area and aspect ratio of the inclusions themselves are both more or less constant, suggesting that the garnet itself grew in a stable stress field where the rate of rotation did not vary appreciably.


Figure 6 - Photomicrograph (XPL) of Kjerringøy paragneiss sample LND-001. See text for description, Table 2 for modal analysis. $\mathrm{Qtz}=$ quartz, $\mathrm{Bt}=$ biotite, $\mathrm{Pl}=$ plagioclase, $\mathrm{Ky}=$ kyanite, $\mathrm{Ms}=$ muscovite.


Figure 7 - Photomicrograph (XPL) of garnet biotite muscovite schist, oriented sample KJR-036. See text for description and Table 2 for modal analysis. $\mathrm{Ms}=$ muscovite, $\mathrm{Pl}=$ plagioclase, $\mathrm{Gnt}=$ garnet, $\mathrm{Qtz}=$ quartz.

A nearly inclusion-free rim surrounding the prominent garnet porphyroblast in KJR-036 (Fig. 7) suggests that the last stage of garnet growth was significantly slower. The presence of abundant quartz in symmetrical pressure shadows suggests that there was enough time for excess silica to diffuse out of the growing garnet. The pressure shadows being symmetrical about the foliation plane further suggests that the stress field had changed from simple sinistral shear to one consisting of pure shear where flattening dominated. This is further supported by the symmetrical deflection of the muscovite/biotite defined foliation around the garnet.

Bulging recrystallization and grain boundary migration is abundant at contacts between quartz grains in sample KJR-036 (Fig. 7), as are triple-point contacts between grains. Undulose extinction is found throughout the sample but is never strongly expressed, likely as a result of dynamic recrystallization and subsequent realignment of the optical axes of the quartz grains. The majority of quartz grains do not show a lengthpreferred orientation and have an aspect ratio of approximately 1:1. Individual quartz grains provide further support for a late stage of subgrain rotation (SGR) accommodated recovery as they are grouped in linear arrays of grains parallel to the muscovite/biotite foliation.

Euhedral zircon inclusions within the matrix quartz in sample KJR-036 (Fig. 7) demonstrate a clear length-preferred orientation. The long axes are parallel to foliation away from the previously described garnet porphyroblast, but at $90^{\circ}$ to foliation within the strain shadows bounding it. This suggests the zircons were actively growing during the period of flattening that accompanied the last, slower period of garnet growth.

Sample KJR-036 (Fig. 7) contains record of early conditions of rapid garnet growth in simple shear conditions dominated by sinistral rotation, followed by a period of slower garnet growth in pure shear, dominated by flattening. This is all overprinted by a significant amount of static recovery, but little if any retrogression.

## Kjerringøy Orthogneiss

Occurring within the paragneiss throughout the study area is an orthogneiss that is commonly difficult to differentiate from the paragneiss itself. This unit extends approximately 30 km outside of the study to the northeast (Gustavson, 1996). Nicholson and Rutland (1969) included this orthogneiss in the Lower Vågen Group (Table 1). Gustavson and Blystad (1995) describe it as a granitic gneiss, coarse to medium grained, and locally porphyritic. The porphyritic portions of this unit are referred to as the Rørstad granite in this study (Table 1).

The orthogneiss crops out extensively on the western side of the island of Landegode (Fig. 1, Plate 1). The intrusive relationship of the orthogneiss relative to the paragneiss is well displayed in a quarry that is less than a quarter of a kilometer due south of the ferry dock on Landegode. The quarry highwall is primarily orthogneiss with paragneiss country rock exposed in several areas. Augland et al. (2013) determined an age of $946 \pm 5 \mathrm{Ma}$ for the orthogneiss in Landegode based on U-Pb dating of zircons.

The orthogneiss holds up the mountain of Øygårdsfjellet (Fig. 1), directly to the south of the small fishing village of Tårnvika (Hawkins, personal communication, 2010). Intrusive margins of the orthogneiss are concordant with the regional foliation of the paragneiss. Locally, in the cores of plutons, large randomly oriented feldspar
porphyroblasts (up to 5 cm long) preserve primary igneous textures, indicating that Caledonian strains are weak or perhaps absent.

Kjerringøy orthogneiss sample KJR-243 (Figs. 8 and 9) has a bimodal distribution in grain size with anorthoclase ( $0.8 \times 1 \mathrm{~cm}$ ) and biotite $(3 \times 3 \mathrm{~cm})$ phenocrysts set in a fine-grained matrix of biotite and plagioclase. Anorthoclase phenocrysts show "tweed" twinning, with two sets of pericline twins intersecting at approximately $36^{\circ}$ in the plane of the thin section slice. The biotite crystals in the smaller population of crystals commonly contain halos of radiation damage surrounding rutile and zircon crystals. The haloes generally are confined to single biotite crystals, not extending across crystal boundaries. This may suggest that there has been crystallographic control on radiation damage, or perhaps it is a result of the crystals having being juxtaposed next to each other after the radiation damage occurred.


Figure 8 - Photomicrograph (XPL) of radiation damage stopping at grain boundaries in Kjerringøy paragneiss, sample KJR-243. Qtz = quartz, Bt = biotite, Zrn = zircon, Pl = plagioclase.


Figure 9 - Photomicrograph (XPL) of Kjerringøy orthogneiss sample KJR-243. See text for description, Table 2 for modal analysis. $\mathrm{Qtz}=$ quartz, $\mathrm{Bt}=$ biotite, $\mathrm{Pl}=$ plagioclase, $\mathrm{Mc}=$ microcline.

## Rørstad Granite

The Rørstad granite (Cooper, 1980) underlies nearly $200 \mathrm{~km}^{2}$ of the area directly to the east and north of the present study area and was earlier mapped as a late Proterozoic porphyritic granite (Gustavson and Blystad, 1995; Gustavson, 1996). The granite has been little studied due to its remoteness but it appears to be more structurally complex to the north than it is to the south. The granite is reported to be overlain by thrusted equivalents to the Kjerringøy paragneiss where it is exposed north of Sørfolda (Gustavson, 1996). South of Sørfolda, Cooper (1978) reports no signs of tectonism along this contact a few kilometers east of Tårnvika, near Korsvika. Gustavson’s map (1996) has the Rørstad intrusively truncating the Kjerringøy paragneiss about 5 km to the south of Tårnvika, across Nevelsfjorden. The current author interprets that the Rørstad granite is a little deformed and porphyritic equivalent to the Kjerringøy orthogneiss.

The Rørstad Granite is texturally heterogeneous, with two distinct textures developed in different areas: zones with megacrystic plagioclase feldspar and zones without. Lath-shaped plagioclase feldspar megacrysts within the unit are concentrated in bands tens of meters thick that parallel the regional foliation. Foliation in and out of these bands is parallel to the regional foliation, except in the very centers of the megacrystic bands where crystals are randomly oriented. The textures do not appear to be mineralogically controlled, as the mineralogy and modal abundance was nowhere observed to vary significantly from that observed in hand-sample (see Table 2). It is plausible that the megacrystic zones were formed as the result of localized strain or fluid partitioning.

Sample LEA-10-1 (Fig. 10, Table 2) was collected in the center of a megacrystic band on the northern flank of Øygårdsfjellet (Fig. 1). In thin section, this sample contains quartz inclusions within the plagioclase megacrysts, in some areas as part of a mermykitic texture. Biotite and muscovite inclusions are also common. Small quartz subgrains less than 0.5 mm in diameter rim the phenocrysts along with small crystals of alkali feldspar. Biotite commonly contains radiation haloes surrounding zircon.

The microstructures found within sample LEA-10-1 are primarily plastic. The plagioclase megacrysts commonly contain Carlsbad twins that have undergone twin boundary migration, suggesting high-temperature shearing (Passchier and Trouw, 2005). Plagioclase megacrysts are commonly mantled by a corona of smaller plagioclase and quartz crystals. Subgrain rotation, grain boundary migration, and bulging recrystallization are common in quartz and also suggest high-temperature shearing. A pervasive S-C fracture plane array cuts across the entire thin section. Individual fractures are not contained within individual crystals. The S-C fractures have been recemented with quartz. The movement recorded by the S-C is unknown as sample LEA-10-1 is not oriented.

Diorite dikes (Figs. 11, 12, and 13) are seen to cut the Rørstad granite at Landegode, Bratten, and Tårnvika (Fig. 1). The diorite dikes have not been reported in the Kjerringøy paragneiss and orthogneiss in the study area, but Zeltner (2001) reports them occurring to the south. It is likely that the high degree of transposition has obscured original intrusive contacts. In all areas, the diorites are cut by deformed pegmatites containing megacrystic plagioclase (Figs. 11 and 13).


Figure 10 - Photomicrograph of mylonitic Rørstad granite sample LEA-10-1 showing abundant bulging grain boundaries and plagioclase porphyroblasts mantled by quartz. See body for description and Table 2 for modal analysis (XPL). $\mathrm{Bt}=$ biotite, $\mathrm{Pl}=$ plagioclase, Qtz = quartz, Ms = muscovite, $\mathrm{Mc}=$ microcline.


Figure 11 - Rørstad granite on Landegode intruded by diorite, all of which are intruded by pegmatites. Matrix is Rørstad granite, red solid lines outline pegmatites. Facing west at Fatvåg, Landegode, the author for scale.


Figure 12 - Looking north at a diorite dike that has acted as a slip horizon within the Rørstad granite. Sense of shear indicates tops-up-to-southeast movment. Red lines show late pegmatites, black arrows indicate sense of shear. The Rørstad granite is undeformed and unfoliated. The dike is exposed in a valley east of Tonhellaren, Landegode.


Figure 13 - Rørstad granite near Tårnvika intruded by diorite (outlined in yellow), both of which are cut by a younger pegmatite (outlined in red). Axial planes of folded pegmatites are parallel to $\mathrm{S}_{1}$ gneissosity (blacked dashed lines). This reflects late stage $\mathrm{D}_{1}$ flattening. Diorite was likely hot and semi-viscous when pegmatites intruded.

# Bodø Nappe 

Hopsfjell Schist

Nicholson and Rutland (1969) described the Bodø Group as occupying the core of the large northeast/southwest trending Steigtinden synform (Plate 2), between Bodø and Hopen (Fig. 1). The lithologies found around the town of Kjerringøy were correlated by Nicholson and Rutland (1969) with those that occur near Bodø. A tentative correlation with rocks found on South Arnøy and Sørvær was also put forth (Nicholson and Rutland, 1969).

Nicholson and Rutland (1969) described this unit as a garnetiferous quartzofeldspathic schist that grades into an impure marble. Zeltner (2001) dubbed the schist the Hopsfjell schist and the interlayered marble the Ørntuva marble (Table 1). Transposed bedding is characterized by thin greenish calcsilicate-rich layers interspersed within a pale blue-gray schist that is silver in fresh exposures. The unit weathers dark brown to black and is commonly stained with rust. The lithology that outcrops in the study area is most similar to an antigorite schist that outcrops between Vikan and Hopen (Gustavson and Blystad, 1995; Zeltner, 2001). Amphibole minerals are common, with hornblende and tremolite both occurring (Zeltner, 2001). Muscovite, biotite, antigorite, talc, quartz, plagioclase, calcite, and accessory amounts of epidote and sphene are found in this unit (Rutland and Nicholson, 1969; Zeltner, 2001).

Characteristic of the base of this of Hopsfjell schist is a hornblende garbenschiefer, with a particularly good exposure at the ferry at Festvåg. Gustavson and

Blystad (1995) and Zeltner (2001) both report a garbenscheifer in the hanging wall directly above the Steigtinden shear zone. Amphiboles are randomly oriented within the foliation plane. Epidote is found throughout the outcrop. Steffen et al. (2001) suggest that such fabrics develop in conditions of $525-575{ }^{\circ} \mathrm{C}$ at $30-40 \mathrm{~km}$ depth. This unit is heavily intruded by a two-mica granite that is found at Durmålsvatnet and in the area between Steigtindvatnet and Festvåg. This granite also forms the large hills Finnkonnakken and Stordalsfjellet, farther to the east of Festvåg.

The Hopsfjell schist is generally homogeneous at the outcrop scale but varies notably throughout the study area. In the core of the Kjerringøy synform (Plate 2), in the village of Kjerringøy, the calcsilicate is cut by meter-thick bands of highly altered rock. The altered zones are structurally-controlled, invariably associated with sheath folds with cores rich in quartz rimmed by a corona of epidote and amphibole (Fig. 14). The sheathfolds are a distinctive structure unique to the Bodø Nappe and are found throughout the Hopsfjell Schist. The sheathfolds are almost all highly strained, being particularly appressed and planar in the core of the Kjerringøy synform. There are also numerous quartz-rich, garnet-bearing intrusions found within the Hopsfjell schist near the core of the synform. These are seen to cut the schist in several areas and are foliated, suggesting that they either pre-date the regional metamorphism or intruded synchronously. The present author interprets the sheathfolds and the altered bands near the center of the synform are the result of syntectonic fluid flow. This alteration appears to have been restricted to the calc-silicates.


Figure 14 - Looking north at sheath folds occurring near Fjær. See text for discussion.

## Fjcrehesten Granite

Unfoliated intrusive rocks are found throughout the southern half of the study area, concentrated in the rocks that bound Mistfjorden. A two-mica granite found at the highest structural levels in the trough of the Steigtinden synform is particularly wellexposed at Durmålsvatnet north of Mistfjorden and at Steigtinden and Mjeldvassurda south of Mistfjorden (Cooper, 1980). It is also reported to appear on the ridge between Mjønesfjellet and Mjønestinden (Gustavson and Blystad, 1995).

The Fjærhesten granite outcrops as low rolling hills marked by white pavement outcrops where there is no vegetation. Outcrops are commonly intruded by late pegmatites. The granite is almost universally white in hand sample, but is also stained a rusty color where iron has leached out of the Kjerringøy paragneiss along the margins of the exposure at Durmålsvatnet. The white color is due to the abundance of plagioclase and quartz, with biotite, muscovite, and potassium feldspar making up a small portion of the rock by volume (see Table 2).

Quartz subgrains in sample LEA-10-2 (Fig. 15) show a slight length-preferred orientation and define a weak foliation that is not visible in hand sample. Feldspars, biotite, and muscovite are randomly oriented and do not show this length-preferred orientation. Biotite and muscovite are most commonly subhedral, of a similar size, and occur in similar concentrations. Quartz and plagioclase grains both contain inclusions and are anhedral, appearing to have been the last to crystalize from the initial melt. Sample LEA-10-2 does not show any fractured and offset grains.


Figure 15 - Photomicrograph (XPL) of Fjærhesten granite sample LEA-10-2. Weak foliation inclined from bottom left to top right. See body for description, Table 2 for modal analysis. $\mathrm{Mc}=$ microcline, $\mathrm{Qtz}=$ quartz, $\mathrm{Pl}=$ plagioclase, $\mathrm{Ms}=$ muscovite, $\mathrm{Mc}=$ microcline, $\mathrm{Bt}=$ biotite.

## STRUCTURE AND METAMORPHISM

The notation used in this chapter is that each distinct deformational phase is assigned a number, with the first phase being assigned the number 1 and later events being assigned higher numbers. Each deformational event is referred to as $D_{n}$, where the subscript n is the number denoting the deformational event. Specific types of structures associated with a given event will be similarly numbered but will have a separate letter denoting the structure: $\mathrm{S}_{\mathrm{n}}=$ planar structures; $\mathrm{L}_{\mathrm{n}}=$ linear structures; $\mathrm{F}_{\mathrm{n}}=$ folds; and $\mathrm{M}_{\mathrm{n}}=$ metamorphic events.

The tectonostratigraphy of the Bodø/Kjerringøy area (Fig. 1, Plate 1) is defined by three nappes. The structurally highest unit is the Bodø Nappe, followed by the intermediate Rödingsfjället Nappe, both of which lie above of the Heggmo Nappe. The Bodø Nappe is in contact with the Rödingsfjället Nappe in the area to the northeast of Bodø, separated from it by the tops-down-to-west Steigtinden shear zone (Zeltner, 2001). The Rödingsfjället Nappe has not been recognized in the present study area, the Bodø Nappe is instead found in direct contact with the Heggmo Nappe. The boundary between the Bodø Nappe and the Heggmo Nappe in the Kjerringøy area is the tops-down-to-west Fjær-Osvika shear zone (FOSZ) (Plate 2, Fig. 16). The Steigtinden shear zone and the FOSZ are erosionally separated by Mistfjorden (Fig. 1), but are interpreted by the present author to be the same structure.


Figure 16 - Structural cross-sections showing major structures in the study area. See Plate 2 for plan view of section lines.

The Rödingsfjället Nappe is separated from the Heggmo Nappe by the tops-up-toeast Vågfjellet fault, which is itself cut by the Steigtinden shear zone about 2 km south of Steigtindvatnet (Plate 2) (Zeltner, 2001). Cooper (1978) describes the eastern boundary of the "Heggmovatn Basement Gneiss Dome" as being overturned to the east, overlying the the Beiarn Nappe. It is not known precisely what becomes of the Heggmo Nappe south of Saltfjorden, as it is overlain by the Rödingsfjället and Beiarn Nappes. West of Landegode much of the structure is hidden beneath the sea.

Structural analysis using field mapping (Plate 1), construction of cross-sections (Fig. 16) and stereonets, analysis of satellite imagery, and analysis of a structural formline map (Fig. 17) clearly demonstrate the presence of four megascopic folds in the study area: the large Steigtinden synform, its antiformal conjugate the Heggmo antiform (Heggmovatn Dome), a large synform developed in the Bodø Nappe referred to as the Kjerringøy synform in this report, and a large synform near Tårnvika referred to as the Tårnvikfjellet synform in this report (Plates 1 and 2). The Heggmo antiform and the Steigtinden synform share a northwest-dipping limb that underlies a string of lakes and fjords (Vatnvatnet, Sørfjorden, Trolltindvatnet, and Nævelsfjorden; see Plate 1) and have a wavelength of roughly 7.5 km and an axial trend of roughly southwest/northeast. The Heggmo antiform corresponds to the Heggmovatn "Dome" of Rutland and Nicholson (1965) and lies east of the Steigtinden synform. The southwestern portion of the Steigtinden synform lies beneath Landegodefjorden and separates the gneisses on the island of Landegode from their equivalents on the mainland.


Figure 17 - Structural formline map of foliation in the Kjerringøy/Bodø area. Single tick marks indicate foliation in area dips between 0 and 30 degrees, double tick marks indicate foliations dipping from 30 to 60 degrees, triple tick marks indicates foliations dipping from 60 to 90 degrees. The lower third of the figure incorporates data from Zeltner (2001).

## $\mathbf{D}_{0}$

$\mathrm{D}_{0 S}$ refers to the depositional event that resulted in the metasedimentary protoliths in the study area; $\mathrm{S}_{0 \mathrm{~s}}$ refers to bedding in these units. The presence of marble, amphibolite, metapsammite, and schist as subordinate lithologies within the Kjerringøy paragneiss (Plate 1) is consistent with deposition of the protolith in a dynamic shallow marine environment. Agyei-Dwarko (2010) conducted U-Pb isotopic analysis on detrital zircons from a sample of metapsammite from the Kjerringøy paragneiss and obtained a multimodal spectrum with peaks at $\sim 1000 \mathrm{Ma}, \sim 1450 \mathrm{Ma}$, and $\sim 1650 \mathrm{Ma}$. Agyei-Dwarko (2010) interpreted the complete absence of Archean zircons as evidence for a nonBaltican source for the sediment and determined that the most likely source area was the Laurentian basement of East Greenland.

The lithological variability of the protolith, with abundant felsic and mafic minerals, is indicative of a dynamic sediment source. Cawood et al. (2010) have suggested the existence of a Proterozoic basin between Laurentia and Baltica, underlain by thinned continental crust and newly formed oceanic crust. This basin, which Cawood et al. (2010) have named the Asgård Sea, received detritus from the Grenville-Sveconorwegian-Sunsas orogen in two identifiable pulses. The first period of sedimentation lasted from 1030 to 980 Ma and was terminated by the Renlandian event (Cawood et al., 2010), named for the Rendalen area in Andrée Land in northeast Greenland. The Renlandian event is more widely referred to as the Valhalla orogeny outside of northeast Greenland (Cawood et al., 2010).

Evidence for Valhallan orogenesis, $\mathrm{D}_{0 \mathrm{v}}$, is present in the Kjerringøy paragneiss and orthogneiss of the study area. Early isoclinal folds, $\mathrm{F}_{0 \mathrm{v}}$, are truncated by the

Valhallan Rørstad granite (Fig. 18). $\mathrm{F}_{0 \mathrm{v}}$ isoclinal folds are overturned to the west and are commonly refolded by later generations of folds. The structural style $D_{0 v}$ is similar to that of the Krummedal sequence in the Hagar Bjerg thrust sheet in Andrée Land where it has been isoclinally folded, migmatized and intruded by both Tonian (950-920 Ma) and Siluro-Devonian (435-425 Ma) plutons (Kalsbeek et al., 2008; Leslie and Higgins, 2008). It is likely that the sediment of the Kjerringøy paragneiss was deposited in the Asgård Sea and then later involved in Valhallan deformation along the Laurentian margin of Rodinia.


Figure 18 - Isoclinal $\mathrm{F}_{0 \mathrm{R}}$ fold in the Kjerringøy paragneiss that is truncated by the Valhallan Rørstad granite. Pencil for scale.

## $D_{1}$

Schistosity and compositional banding defined by length-preferred micas, quartz, amphibole, and feldspar are found in both the Bodø and Heggmo Nappes (Plate 1) and are interpreted to have developed during the Taconian orogeny and referred to as $D_{1}$ in this report. Axial planes to both large- and small-scale isoclinal folds, with amplitudes ranging from several centimeters to tens of meters, are found throughout the study area and are parallel to schistosity and compositional banding, $\mathrm{S}_{1}$. A sample of Kjerringøy paragneiss collected near Mjelde contains $\mathrm{M}_{1}$ kyanite crystals that were partially consumed during the growth of later $\mathrm{M}_{2}$ garnet. $\mathrm{M}_{1}$ biotite and kyanite in the Kjerringøy paragneiss are also both overgrown by later garnet rims (Fig. 19). Biotite, quartz inclusions, and accessory minerals preserved within garnet cores are all considered $\mathrm{M}_{1}$ on the basis of similar mineralogy, grain size, and internal inclusion trails $\left(S_{i}\right)$ relative to exterior foliation $\left(\mathrm{S}_{\mathrm{e}} / \mathrm{S}_{2}\right)$. Biotite and kyanite growth during $\mathrm{D}_{1}$ deformation occurred under amphibolite-facies $\mathrm{D}_{1}$ pressures and temperatures. Agyei-Dwarko (2010) attributed formation of the schistosity and gneissosity in the Bratten area to $D_{1}$.

Folds that formed in the $D_{1}$ event are tight isoclines that are overturned to the west. Such $\mathrm{F}_{1}$ folds are most commonly found preserved in the Kjerringøy Paragneiss and have been heavily modified by later deformation, most commonly refolded and boudinaged (Fig. 20). $\mathrm{L}_{1}$ lineations were well preserved in the study area in the form of long-axes of plagioclase feldspar megacrysts in the Rørstad granite.


Figure 19 - Photomicrograph (XPL) of sample KJR-093. Qtz = quartz, Ms = muscovite, Gnt = garnet, Ky = kyanite, $\mathrm{Bt}=$ biotite. See text for discussion.


Figure 20 - Isoclinal $\mathrm{F}_{1}$ M-fold overturned to the west in Kjerringøy paragneiss near Låter (Fig. 1). Note extended and boudinaged amphibolite layer. GPS unit circled in red is $\sim 10$ cm long. Photo provided by John Hawkins

Measurements of $L_{1}$ were not conscientously collected, regrettably. Other elongate minerals such as muscovite and biotite were affected by later $\mathrm{D}_{2}$ deformation.

The Vågfjellet fault separating the Rödingsfjället Nappe from the underlying Heggmo Nappe (Zelter, 2001) parallels $S_{1}$ foliation and appears to have been emplaced during or prior to $\mathrm{D}_{1}$ (Fig. 21). The orientation of the Vågfjellet fault plane was determined via three point problem solutions at 35 locations at 255 m intervals along the trace of the fault (Gustavson and Blystad, 1995), with elevation data obtained from an elevation model of the area (de Ferranti, 2013).
$\mathrm{S}_{1}$ S-planes are preserved in S-C fabrics found in the Kjerringøy paragneiss in several locations in the Valvikdalen area. The fabrics are preserved as fracture arrays in quartz and in the phacoidal shape of strained feldspar porphyroblasts. Motion along these S-C fabrics could not be quantified as they have been deformed by later $\mathrm{D}_{2}$ deformation and are therefore presumed to be of latest $\mathrm{D}_{1}$ age (Figs. 21 and 22).


Figure 21 - Lower hemisphere equal area projection stereograms of fault orientation data. Red arrows on basemap point towards dip direction. Basemap from Gustavson and Blystad (1995).


Figure 22 - A) $\mathrm{S}_{1}$ S-C plane pairs ( $\mathrm{n}=10$ ) measured in the Heggmo and Bodø Nappes. Black lines are C-planes, grey lines are $\mathrm{S}_{1}$ S-planes. Red arrows indicate 90 degree rotation in the C-plane from the S-C intersection line. Resulting arrow tip (circle) is the slip lineation of that S-C plane. B) Contoured version of A with great circles omitted. Circles along the blue great circle are slip lineations ( $n=5$ ) in the Heggmo Nappe, as determined in A. The circle in the SW quadrant is a slip lineation in the Bodø Nappe. Arrows around symbols indicate sense of rotation. Contours represent modified Kamb contours with a contour interval of 1 standard deviation. Trend of the $\pi$-axis is $204^{\circ}$ and plunge is $26^{\circ}$.

## $\mathrm{D}_{2}$

The macroscopic, regional structure in the area is the result of Scandian deformation and is referred to as $D_{2}$ in this report. $D_{2}$ deformation folded $S_{1}$ foliation into a large synform/antiform pair that can be traced along strike for more than 40 km . Analysis of equal area, lower hemisphere stereoplots of poles to compositional banding from the orthogneisses and paragneisses found at Landegode, Bratten, Tårnvika, Mjelde, Valvikdalen, and Sørfjorden (Figs. 23, 24, and 25) show gently plunging, northeast-southwest- and east-west trending, open cylindrical map-scale folds. The style and geometry of a mesoscopic $\mathrm{F}_{2}$ fold (Fig. 26) exposed near Svartvatnet (Fig. 1) likely reflects that of the megascopic folds documented in the map and cross sections of the area (Plate 2, Fig. 16). The fold pair in Figure 26 has a wavelength of $\sim 1.5 \mathrm{~m}$ and amplitude or $\sim 1.5 \mathrm{~m}$. The style is tight, with relatively sharp hinges and it is overturned to the west indicating tops-up-to-the-northwest movement. Abundant exposures of outcrop scale $\mathrm{F}_{2}$ folds can be seen on the northern end of the Kjerringøy Peninsula along roadcuts near the village of Tårnvika (Hawkins, personal communication, 2010); the regional $\mathrm{F}_{2}$ Tårnvikfjellet synform is found in the same area (Plate 2). Throughout the study area $\mathrm{F}_{2}$ fold axes plunge moderately-to-steeply to either the northeast or southwest and the sense of vergence is generally tops-up-to-the-northwest.

Analysis of a lower hemisphere equal-area stereogram (Fig. 22) of the derived attitude data from S-C fabrics in the Valvikdalen area shows that the $S_{1} S$-planes are


Figure 23 - Structural subareas for which stereonets have been created (See Figure 1 for reference). A) Bratten, B) Mjelde, C) Valvikdalen, D) Sørfjorden, E) Fjær/Osvika shear zone hanging wall, and F) Tårnvika.


Figure 24 - Equal area, lower hemisphere stereographic plot of poles to $\mathrm{S}_{1}$ gneissosity in the A) Bratten ( $\mathrm{n}=69$ ) and B) Tårnvika ( $\mathrm{n}=143$ ) areas, and a combined plot C) of both Bratten and Tårnvika ( $n=212$ ). $\mathrm{F}_{2} \beta$-axis trend is $226^{\circ}$ and plunge is $8^{\circ}$. Data is from Agyei-Dwarko (2010) and the current study.


Figure 25 - Equal-area lower-hemisphere plot of poles to $\mathrm{S}_{1}$ gneissosity in A) Mjelde, B) Valkvikdalen, and C) Sørfjorden. Mjelde and Valkvikdalen plots indicate cylindrical folds plunging shallowly to the east. The Sørfjorden area shares a similar fold style but plunges to the west. Valvikdalen ( $\mathrm{n}=29$ ), Sørfjorden ( $\mathrm{n}=12$ ), Mjelde ( $\mathrm{n}=26$ ).


Figure 26 - Large $F_{2}$ fold in western limb of Steigtinden synform, west of Svartvatnet, showing sinistral tops-up-to-northwest motion. Labeled points in equal-area, lower-hemisphere stereonet correspond with poles to surfaces labeled with red letters in photograph ( $\mathrm{n}=4$ ). Blue star is beta axis. Facing NE, hammer (near B) for scale.
folded around a gently southwest-plunging axis, coaxial with $\mathrm{F}_{2}$ folds seen throughout the study area (Figs. 23 and 24). A single S-C fabric measured in the Bodø Nappe shows a slip-line solution that is similarly oriented to $\mathrm{F}_{2}$ folds, suggesting that in the Kjerringøy area the direction of transport within the Bodø Nappe was parallel to fold axes.
$\mathrm{M}_{2}$ quartz, muscovite, and biotite are found throughout the rocks in the study area. Orientation of $\mathrm{M}_{2}$ micas is strongly length-preferred, defining a pervasive $\mathrm{L}_{2}$ lineation coaxial with $\mathrm{F}_{2}$ fold axes (Fig. 27).

The tops-west directed tectonic transport recorded by $\mathrm{F}_{2}$ folds (e.g. Fig. 26) is opposite the tops-east thrusting expected along Caledonian thrusts (Gee, 1975; Hodges et al., 1982). Three possible explanations are that they are (1) rigidly transported and orphaned Taconic structures (Barnes et al., 2007; Roberts et al., 2007), (2) collapserelated structures that formed during Devonian extension (Rykkelid and Fossen, 1992; Klein et al., 1999; Steltenpohl et al., 2004, 2010; Fossen, 2010), or (3) they are simply parasitic folds that formed on overturned limbs of the regional Steigtinden synform. Following Occam's razor, the present author interprets the folds as being parasitic to the Steigtinden synform, which is the simplest explanation based on his observations.


Figure 27 - Lower hemisphere stereographic plot of $L_{2}$ mineral lineations in the Heggmo Nappe, most commonly defined by elongate micas. Contours represent modified Kamb contours with a contour interval of one standard deviation ( $\mathrm{n}=86$ ).

## $D_{3}$

Late-to-post-Scandian extension in the study area is referred to as $\mathrm{D}_{3}$ in this report and is most strongly expressed by the Fjær-Osvika shear zone (FOSZ) (Plate 2). The FOSZ is a retrograde sinistral tops-down-to-the-west normal-slip mylonitic shear zone roughly 150 m thick that juxtaposes the rocks of the Bodø Nappe against the rocks of the underlying Heggmo Nappe (Plate 1). The FOSZ outcrops only sparingly along its 20 km trace on the Kjerringøy peninsula but is nonetheless easily recognized in the field. The FOSZ is invariably found where the low-lying and swampy Bodø Nappe meets the mountain-forming Kjerringøy paragneiss.

Fabrics associated with the FOSZ (Figs. 28, 29, and 30) are most strongly developed in the quartzofeldspathic gneiss of the Kjerringøy paragneiss. The best exposure of the FOSZ is just to the south of Fjær along the the coast (Fig. 1). This area contains abundant kinematic indicators, most commonly sigmoidal quartz and feldspar, showing sinistral tops-down-to-west movement (Fig. 29). Zeltner determined that the FOSZ was active under greenschist-facies conditions (Zeltner, 2001).

Shear sense indicators associated with movement along the FOSZ are present throughout the Bodø Nappe (Fig. 29). The most common kinematic features are found in the Hopsfjell Schist and are mesoscopic $\mathrm{F}_{3}$ plastic flow folds (Fig. 30). These folds universally show tops-down-to-west motion and commonly have an $\mathrm{S}_{3}$ axial planar crenulation cleavage that dips towards the center of the Kjerringøy synform. These folds are broadly similar in style and orientation to the large west-plunging $\mathrm{F}_{3}$ Kjerringøy synform (Plate 2).


Figure 28 - Outcrop of mylonitic gneiss of the $\mathrm{D}_{3}$ Fjær-Osvika shear zone. Light-colored layers and porphyroclasts are dominated by plagioclase and quartz, and darker layers have concentrations of muscovite, biotite, and garnet. Photo taken at KJR-094, near the antenna between Fjær and Brennhaugen, looking northeast.


Figure 29 - Three outcrops south of Fjær showing tops-down-to-west (left in photos) sinistral motion in the Kjerringøy paragneiss. A) Normal slip shear extending composite lenses. GPS unit for scale B) Sigmoidal porphyroclasts. Field book for scale. C) Normal slip shear zone extending felsic layer. Hammer for scale.


Figure 30 - Looking towards the south at a west-vergent $D_{3}$ fold near the FOSZ, exposed on the shore west of Osvika, within the Hopsfjell Schist in the Bodø Nappe. Note axial planar foliation and Brunton for scale.

Kinematic indicators showing motion along the FOSZ are also evident in the Kjerringøy paragneiss near Fjær and Osvika. These are most commonly normal-slip extensional shears of compositional banding that show sinistral tops-down-to-west motion (Figs. 29A, 29B, and 30). Sheared boudins are also present, showing the same sense of shear (Fig 29 C).

The orientation of $S_{3}$ mylonitic foliation (Fig. 28) in the FOSZ and hanging wall of the Bodø Nappe defines a tight synform referred to as the $\mathrm{F}_{3}$ Kjerringøy synform. This synform plunges moderately to the northwest ( $33^{\circ} @ 319^{\circ}$ ) and shows tops-down-to-thenorthwest normal-slip movement. Analysis of the regional formline map (Fig. 17) shows that $S_{1}$ foliation in the Heggmo Nappe is deflected into parallelism as one approaches the FOSZ (Fig. 31). This $\mathrm{D}_{3}$ transposition of $\mathrm{D}_{1}$ fabrics occurs throughout the Bodø Nappe
and locally in the Heggmo Nappe where it is within one kilometer of the FOSZ. Outcrop scale $\mathrm{D}_{3}$ structures (e.g. Figure 29) are most strongly expressed along the FOSZ and in the core of the $\mathrm{F}_{3}$ Kjerringøy synform near the village of Kjerringøy. $\mathrm{F}_{3}$ sheath folds that plunge obliquely relative to the Kjerringøy synform are particularly distinctive and only found within the Bodø Nappe. Elongation lineations observed as stretched muscovite show that muscovite outside of the Bodø Nappe does not share the same orientation as that found within the nappe. The long-axes of muscovite within the Bodø Nappe therefore define an $\mathrm{L}_{3}$ lineation.


Figure 31 - Equal-area lower-hemisphere plot of foliations and lineations measured on the Kjerringøy peninsula, emphasizing the transposition of older fabrics into $\mathrm{S}_{3}$ folia near the FOSZ. Pink squares are poles to foliations ( $\mathrm{n}_{\mathrm{A}}=59, \mathrm{n}_{\mathrm{B}}=60$ ), red triangles are elongation lineations ( $\mathrm{n}_{\mathrm{A}}=13, \mathrm{n}_{\mathrm{B}}=18$ ), and the blue great circle is the approximate axial surface of the $F_{3}$ Kjerringøy synform. Foliation in A and B is contoured using a modified Kamb technique with a contour interval of one standard deviation A) All measurements
found within one kilometer of the FOSZ, measured in both the Bodø and Kjerringøy Nappes, i.e. the hanging wall and the footwall. B) All measurements from within the Kjerringøy Nappe, farther than one kilometer from the FOSZ. Transposition related to the $\mathrm{D}_{3}$ FOSZ is much less evident in rocks greater than one kilometer from the FOSZ.
$\mathrm{D}_{3}$ deformation may extend farther to the east where Rutland and Nicholson (1965) describe a synform overturned to the north that extends across Nevelsfjorden and Skjunkford (Fig. 1, Plate 2). The current authors’ correlation of the Kjerringøy synform with the Stiegtinden synform becomes difficult to support if Rutland and Nicholsons’ (1965) Sjunkfjord structure is indeed the true continuation of the Kjerringøy synform. The Sjunkfjord synform east of Nevelsfjorden is not well-represented on the structural formline map of the area (Fig. 17). The Kjerringøy synform does lack a clearly defined nose, which may be the result of interference between the north-south trending Steigtinden synform and the east-west trending Skunkfjorden synform. Neither of these areas was studied by the current author, so the exact nature of the relationship between the Sjunkfjord and Steigtinden synforms is unknown.

Zeltner (2001) used ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ stepwise-heating analyses on a variety of phases to attempt constraining the timing of movement along the FOSZ in the Steigtinden area. Near Steigtinden, the FOSZ is a greenchist-facies shear zone that cuts across Scandian fabrics. Movement appears to have stopped by $\sim 394 \mathrm{Ma}$, at which point undeformed muscovite in the FOSZ cooled through its closure temperature. The present author's ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ muscovite cooling age of $392.0 \pm 1.9 \mathrm{Ma}$ from a sample (KJR-093, see below) collected from a pegmatite near Mjelde supports Zeltner’s (2001) observation. Steltenpohl et al. (2011) reported that this timing is broadly similar to that determined for extensional deformation that was pervasive throughout the North Atlantic Caledonides.

## $\mathrm{D}_{4}$

$\mathrm{D}_{4}$ brittle normal faults in the study area were most readily recognized using satellite imagery and were then confirmed by spot checking on the ground (Plates 1 and 2). These faults are tens of kilometers long and mostly parallel the Vestfjord. Outcropscale normal faults are particularly prevalent at the northern end of the study area near Tårnvika (Fig. 1). Relatively deep and linear valleys appear to be normal fault canyons. Normal faults in Sørfjorden trend northward into Trolltindvatnet and on to Nevelsfjorden (Fig. 1, Plate 2). Exposures of the normal faults reveal they are marked by iron-oxide staining and sulfide mineralization. Calcite is often concentrated near faults, similar to the nearby Svartvass fault, described by Zeltner (2001) as a late brittle fault associated with the opening of the Vestfjord basin.

Displacement along normal faults in the study area has nowhere been observed to be greater than a few tens of meters. Zeltner (2001) reports $\sim 17 \mathrm{~m}$ displacement along the Svartvass fault. Analysis of high-resolution 3D models of the Misten area (Fig. 32) show normal displacement of nearly a kilometer distributed across several steeply dipping $\mathrm{D}_{4}$ normal faults that are separated from each other by less than a kilometer on average.

All tectonostratigraphic units in the study area are cut by the steeply dipping $\mathrm{D}_{4}$ brittle normal faults. These faults parallel a family of Mesozoic to Tertiary normal faults observed in Vestfjord, Lofoten, and further west in the Norwegian Sea associated with the opening of the Atlantic Ocean (Steltenpohl et al., 2004, 2011; Eig and Bergh, 2010).


Figure 32 - Normal faults visible in the mountains that form the southwest shore of the Kjerringøy peninsula, shown with solid red lines. Faults dip steeply to the northwest. Blue horizon is a distinctive marble layer offset by the normal faults. Faults are marked by hydrothermal alteration along fault plane. Elevations are indicated with thin red lines (3D model from http://kart.finn.no).

## Pressure/Temperature Conditions

Pressure-temperature estimates were determined from a garnet-muscovite-kyanite schist (sample KJR-093) collected near Buholmen (Fig. 1), north of Bodø, from within Kjerringøy paragneiss. The unit had previously been interpreted as being part of the cover sequence to the Baltic basement (Gustavson and Blystad, 1995).

## Methodology

A commercially-prepared polished thin section created from sample KJR-093 was analyzed using a CAMECA SX50 electron microprobe (EMPA). All analyses were obtained by Dr. Robert Tracy, Director of the Electron Beam Laboratories in the Geosciences Department at Virginia Tech. The areal variation in the concentration of Ca, $\mathrm{Fe}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Al}, \mathrm{Ce}, \mathrm{K}$, and Ti was qualitatively determined using an energy-dispersive spectrometer. More precise compositions of $\mathrm{SiO}_{2}, \mathrm{TiO}_{2}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{FeO}, \mathrm{MnO}, \mathrm{MgO}, \mathrm{CaO}$, $\mathrm{Na}_{2} \mathrm{O}$, and $\mathrm{K}_{2} \mathrm{O}$ along four separate traverses were determined using a wavelengthdispersive spectrometer. Analytical results are presented in Appendix 2.

The microprobe chemical analyses were used to obtain average mineral formulas for the minerals present in the polished section. Formulas were obtained using the method outlined in Appendix 1 of Deer et al. (1996). The cation proportions thus obtained then served as the basis for quantitatively determining the pressure and temperature conditions under which the minerals could have formed.

The concentration of elements within a given mineral phase is often sensitive to the pressure and temperature regime within which that mineral crystallizes. For wellstudied mineral systems, determining the concentration (cations per mineral unit) of certain cations allows one to then solve for the possible pressures and temperatures that the mineral system could have equilibrated under. Certain coexisting mineral systems are well-known as geothermometers or geobarometers (Spear, 1993). It is customary to use specific systems to solve for either pressure or temperature. A geothermometer would be a system that indicates equilibrium over a narrow range of temperatures while the pressure may vary greatly, while a geobarometer would indicate a system at equilibrium over a narrow range of pressures but a wide range of temperatures. At least one geobarometer and one geothermometer must therefore be used simultaneously to reasonably constrain both temperature and pressure.

In this study the garnet-biotite (GARB) geothermometer was used (Waters, 2004). This geothermometer relies on the temperature-sensitive exchange of Fe and Mg between garnet and biotite. The overall $\mathrm{Fe}-\mathrm{Mg}$ exchange reaction is as follows:
$\mathrm{KMg}_{3}\left(\mathrm{AlSi}_{3}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}($ phlogopite $)+\mathrm{Fe}_{3} \mathrm{Al}_{2}\left(\mathrm{SiO}_{4}\right)_{3}($ almandine $)=\mathrm{KFe}_{3}\left(\mathrm{AlSi}_{3}\right) \mathrm{O}_{10}(\mathrm{OH})_{2}$ (annite) $+\mathrm{Mg}_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}$ (pyrope) (Ferry and Spear, 1978). The Fe-Mg exchange relationship has been experimentally determined and related to pressure and temperature by the following equation: 6266-2.35T $+0.029(\mathrm{P}-1)+3 T \ln K_{D}=0$ (Waters, 2004), where T is the temperature in degrees Kelvin, P is the pressure in bars, and $K_{D}=\frac{F e_{\text {bio }} / M g_{b i o}}{F e_{g n t} / M g_{g n t}}$ is the thermodynamic distribution coefficient for the reaction with $\mathrm{Fe}_{\text {bio }}$, $\mathrm{Mg}_{\text {bio }}, \mathrm{Fe}_{\mathrm{gnt}}$, and $\mathrm{Mg}_{g n t}$ all in formula moles (Spear, 1993). In general, $\mathrm{K}_{\mathrm{D}}$ will be larger for higher grades of metamorphism.

The geobarometer used in this study is known as the GRAIL geobarometer $\left(\right.$ Garnet + Rutile $=\mathbf{A l}_{2} \mathrm{SiO}_{5}+\mathbf{I L}$ menite + Quartz $)$ and is rooted in the following reaction: $\mathrm{Fe}_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}$ (almandine) $+3 \mathrm{TiO}_{2}($ rutile $)=3 \mathrm{FeTiO}_{3}($ ilmenite $)+\mathrm{Al}_{2} \mathrm{SiO}_{5}+2 \mathrm{SiO}_{2}$ (Bohlen et al., 1983). To use the GRAIL geobarometer, one must first determine the equilibrium constant, $K=\frac{a_{I l}^{3} a_{K y} a_{Q t z}^{2}}{a_{A l m} a_{R u}^{3}}$, where $a_{I l m}^{3}$ is the percent ilmenite, $a_{K y}$ is the percent kyanite, $a_{Q t z}^{2}$ is the percent quartz, $a_{A l m}$ is the percent almandine, and $a_{R u}^{3}$ is the percent rutile (all percents determined using formula mole concentration) (Bohlen et al., 1983). The value K is then used in the expression $\Delta P \cong \frac{-R T \ln K}{2.303 \Delta V}$ to determine pressure and temperature conditions. Analysis of this relationship has shown that the GRAIL system is particularly insensitive to variations in temperature, making it an excellent geobarometer (Bohlen et al., 1983). It is customary with the GRAIL system to plot the measured K on a graph showing pressure, temperature, and various isopleths of $\log _{10} \mathrm{~K}$ (Bohlen et al., 1983; Essene, 1989). Such graphs are calculated from solving for K using data obtained from various internally consistent thermodynamic datasets (see references in Bohlen, et al., 1983). If it is desirable, the amounts of kyanite and quartz can be left out and $K$ can be approximated as $K=\frac{a_{I l}^{3}}{a_{A l m}}$ (Essene, 1989). Throughout this study, Essene's simplification is used.

## Interpretation of $P-T$ Results

The first garnet EMPA traverse consisted mostly of a single crystal with inclusions of quartz, calcium-rich inclusions that are likely apatite (phosphate composition was not measured), and ilmenite. The garnet was in contact with two large crystals: a biotite crystal and a quartz crystal. The average composition of the biotite was $\left[\mathrm{K}_{0.804} \mathrm{Na}_{0.042}\right]\left[\mathrm{Fe}_{1.209} \mathrm{Mg}_{1.222} \mathrm{Al}_{0.405} \mathrm{Ti}_{0.113} \mathrm{Mn}_{0.001}\right]\left[\mathrm{Al}_{2.1244} \mathrm{Si}_{2.722}\right] \mathrm{O}_{10}$ and the average composition of the garnet was $\left[\mathrm{Fe}_{2.136} \mathrm{Mg}_{0.503} \mathrm{Ca}_{0.161} \mathrm{Mn}_{0.075} \mathrm{~K}_{0.004} \mathrm{Na}_{0.003}\right]\left[\mathrm{Al}_{2.100} \mathrm{Si}_{2.984}\right] \mathrm{O}_{12}$. Garnet composition is summarized in Figures 33 and 34.


Figure 33 - Garnet end-member composition determined from Sample KJR-093. Pyrope (solid square) and almandine (solid diamond) are shown on the left y-axis, spessartine (outlined triangle) and grossular (outlined circle) are shown on the right $y$-axis, $x$ axis is distance along traverse in microns.


Figure 34 - Relative intensity map of $\mathrm{Mn}, \mathrm{Mg}$, Fe , and Ca in garnet analyzed from sample KJR-093. Darker colors represent higher concentrations of the element displayed in the image. Width of scale bar in lower right of each subset image is 150 microns.

From within this traverse a thermodynamic distribution coefficient $K_{D}=0.215$ for the GARB geothermometer was determined using the mean formula molar concentration of Fe and Mg from biotite and garnet. Using the median values yielded a $\mathrm{K}_{\mathrm{D}}=0.217$. The first traverse also included a small ilmenite inclusion, possibly usable in the GRAIL geobarometer. This inclusion yielded a mean $\mathrm{K}=0.125$ and a median $\mathrm{K}=0.126$.

The second traverse was conducted on a separate biotite/garnet pair, the average compositions of which are
$\left[\mathrm{K}_{1.216} \mathrm{Na}_{0.057}\right]\left[\mathrm{Mg}_{2.764} \mathrm{Fe}^{2+}{ }_{1.440} \mathrm{Mn}_{0.004}\right]\left[\mathrm{Fe}^{3+}{ }_{1.084} \mathrm{Al}_{0.783} \mathrm{Ti}_{0.132}\right]\left[\mathrm{Si}_{5.256} \mathrm{Al}_{2.744}\right] \mathrm{O}_{10}$ and $\left[\mathrm{Fe}_{2.310} \mathrm{Mg}_{0.515} \mathrm{Ca}_{0.152} \mathrm{Mn}_{0.048} \mathrm{Na}_{0.001}\right]\left[\mathrm{Al}_{2.000} \mathrm{Ti}_{0.005} \mathrm{Si}_{2.981}\right] \mathrm{O}_{12}$, respectively. GARB K values for mean and median Fe and Mg in this traverse were $\mathrm{K}_{\mathrm{D}}=0.205$ and $\mathrm{K}_{\mathrm{D}}=0.209$, respectively.

The third traverse consisted almost entirely of muscovite $\left[\mathrm{K}_{1.489} \mathrm{Na}_{0.261}\right]\left[\mathrm{Al}_{3.639} \mathrm{Fe}_{0.184} \mathrm{Mg}_{0.180} \mathrm{Mn}_{0.001}\right]\left[\mathrm{Si}_{6.482} \mathrm{Al}_{1.818}\right] \mathrm{O}_{20}$ with a minor amount of quartz.

The fourth traverse analyzed a single rutile crystal, $\left[\mathrm{Ti}_{0.989} \mathrm{Fe}_{0.040}\right] \mathrm{O}_{2}$, flanked on either side by ilmenite, $\left[\mathrm{Fe}_{1.019} \mathrm{Mg}_{0.007} \mathrm{Mn}_{0.004}\right] \mathrm{Ti}_{0.983} \mathrm{O}_{3}$. Mean and median equilibrium constants of $K=0.125$ and $K=0.127$ were obtained, respectively.

The appropriate use of geothermometers and geobarometers is dependent on the equilibrium of the mineral systems in question. If the phases involved in the GRAIL or GARB reactions are not at equilibrium, the P-T data obtained using the system is useless. One must carefully evaluate petrographically whether equilibrium is a reasonable
assumption to make about the assemblage in question. In the case of sample KJR-093, several criteria were used to determine whether equilibrium was a reasonable assumption:

1. Large, euhedral crystals are evident in thin section and in microprobe x-ray maps.
2. Grain boundaries are sharp. There is some pitting and retrograde modification and development of a minor amount of chlorite.
3. The almandine portion of the garnet in the first traverse is largest along the boundary with biotite. The biotite is enriched in phlogopite along this same boundary. This suggests that Fe was leaving the biotite and entering the garnet while Mg was leaving the garnet and entering the biotite. While this does not necessarily imply perfect equilibrium, it does suggest that there has not been much retrogressive requilibration recorded along the traverse.
4. Ti has remained concentrated in abundant ilmenite and rutile both as inclusions in the garnet and as crystals in the matrix (Fig. 35). One would expect the titanium to diffuse back into other phases such as biotite or garnet under extensive cooling and retrogression.

Figure 35 - Derived image showing presence of ilmenite and rutile. Red indicates areas with abundant Ti and little Fe. Green indicates areas that are abundant in both Ti and Fe . The garnet traversed in the first traverse is outlined in black.

5. There is slight Fe enrichment around an ilmenite inclusion within the garnet in the first traverse (Figs. 33 and 35, Appendix 2). This could indicate that the ilmenite grew and took in Fe from its environs. This would not be expected during retrogression or in equilibrium.

Overall, there appears to be plenty of evidence suggesting that equilibrium is not an unreasonable assumption. There is also evidence to suggest that the assemblage may represent prograde metamorphism. The temperature and pressure fields suggested by GARB and GRAIL, respectively, can be seen in Figure 36. The minimum and maximum temperatures suggested are $649{ }^{\circ} \mathrm{C}$ and $672{ }^{\circ} \mathrm{C}$, respectively. No attempt was made to quantify error, which may have been introduced from imperfections in the thermobarometers used, from uncertainty in the chemical analyses, or from uncertainty in composition-activity relationships. The range of possible pressure and temperatures reflects derivation using all possible $K_{D}$ values.

The minimum and maximum pressures suggested are 9.5 kbar and 10.1 kbar, respectively. The range in pressures reflects the graphical imprecision involved in plotting the GRAIL K value on the diagram. A small amount of interpolation was involved in picking the correct line where K was constant. The range plotted is almost certain to contain the correct constant K line, however. It is evident in this analysis that the Kjerringøy paragneiss underwent upper amphibolite facies, kyanite-zone metamorphism, with a pressure of 9.5-10.1 kbar and a temperature of $648^{\circ}-672^{\circ} \mathrm{C}$.


Figure 36 - P-T diagram showing temperature and pressure fields solved for using data obtained from sample KJR-09 (after Essene, 1989).

## GEOCHRONOLOGY

Three samples collected from the Kjerringøy Peninsula, LEA-10-1, LEA-10-2, and KJR-243 (Fig. 37, Table 3), were analyzed using the Isotope Dilution-Thermal Ionization Mass Spectrometry (ID-TIMS) technique. The samples were prepared and analyzed in the ID-TIMS U-Pb laboratory at the University of Oslo under the guidance of Professor Fernando Corfu.

A fourth sample collected from near Mjelde, KJR-093 (Fig. 37, Table 3), was analyzed for U-Pb non-isotopic chemical age dating using an electron microprobe at the Electron Beam Laboratories in the Geosciences Department at Virginia Tech. This analysis was kindly arranged by Dr. Willis Hames, Auburn University, and Dr. Robert Tracy, Director of the Electron Beam Laboratories at Virginia Tech. In addition to the electron microprobe analysis, a single muscovite grain from sample KJR-093 was analyzed for ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ by Dr. Willis Hames at the Auburn Noble Isotope Mass Analysis Laboratory.

Decay constants used are those given in Steiger and Jäger (1977) and radiogenic ages and graphical analysis of geochronological data was done using Isoplot/Ex (Ludwig, 2009). Sample collection, preparation, analysis, and interpretation are detailed in the following text.

Table 3 - Representative lithological unit, sample number, and easting and northing (UTM Zone 33N, WGS84) for samples on which geochronological analyses were performed.

| Lithological Unit | Sample | Easting | Northing |
| :---: | :---: | :---: | :---: |
| Rørstad Granite | LEA-10-1 | 505849 | 7493460 |
| Fjærehesten Granite | LEA-10-2 | 491908 | 7483866 |
| Kjerringøy Paragneiss | KJR-243 | 487130 | 7482772 |
| Kjerringøy Paragneiss | KJR-093 | 484326 | 7479326 |



Figure 37 - Reference map showing geochronology sample locations in the study area: KJR-093, KJR-243, LEA-10-1, LEA-10-2. UTM coordinates are in Table 3.

## Chemical Dating

Chemical dating of monazite was performed on the same sample of garnet kyanite muscovite schist from the Kjerringøy Paragneiss that was used for geothermobarometry, sample KJR-093. A commercially-prepared polished thin section created from the hand sample was analyzed using a CAMECA SX50 electron microprobe. Preliminary fullsection x -ray intensity maps of twelve elements were generated ( $\mathrm{Mg}, \mathrm{Ca}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Na}, \mathrm{Al}$, $\mathrm{K}, \mathrm{Ti}, \mathrm{Si}, \mathrm{P}, \mathrm{K}, \mathrm{Ce}$ ), with the map of Ce being used to identify and locate monazite crystals (bottom of Appendix 2).

Two monazite crystals were selected for quantitative analysis. X-ray intensity maps of the two crystals analyzed have distinct compositional domains (Figs. 38 and 39). Two types of domains are evident: a zone defined by high Th and low $\mathrm{U}, \mathrm{Pb}$, and Y , and a zone defined by low Th and high $\mathrm{U}, \mathrm{Pb}$, and Y . Three high-magnification traverses were run across one crystal and two across the other, with the traverses designed to characterize the two domains (Fig. 40). During the traverses $\mathrm{Th}, \mathrm{U}, \mathrm{Pb}$, and Y were simultaneously measured on the instrument's four wavelength-dispersive spectrometers. Analysis was performed as prescribed by Montel et al. (1996) and Williams et al. (1999). Overestimation of Pb due to $\mathrm{Y} \mathrm{L} \gamma$ peak interference with the Pb M $\alpha$ peak was corrected for (Williams et al., 2007). Data and full-section x-ray intesnsity maps are reported in Appendix 2.


Figure 38 - Relative intensity maps of uranium, yttrium, calcium, and thorium in monazite \#1 analyzed from sample KJR-093. Darker colors represent higher concentrations of the element displayed in the image. Width of scale bar in lower right of each subset image is 50 microns.


Figure 39 - Relative intensity maps of calcium, yttrium, uranium, and thorium in monazite \#2 analyzed from KJR-093. Darker colors represent higher concentrations of the element displayed in the image. Width of scale bar in lower right of each subset image is 25 microns.


Figure 40 - Location of EMPA traverses on monazite crystals. Shown on Y x-ray intensity maps. Data reported in Appendix 2.

As only $\mathrm{U}, \mathrm{Pb}$, and Th concentrations were quantitatively determined, the amount of ${ }^{238} \mathrm{U},{ }^{235} \mathrm{U},{ }^{206} \mathrm{~Pb}$, and ${ }^{207} \mathrm{~Pb}$ was determined by solving for age in the following equation at all measured points $\left(\mathrm{Pb}, \mathrm{Th}, \mathrm{U}=\right.$ elemental concentration; $\lambda^{232}, \lambda^{235}, \lambda^{238}=$ decay constants of ${ }^{232} \mathrm{Th},{ }^{235} \mathrm{U}$, and ${ }^{238} \mathrm{U} ; \tau=$ age of the measured parent/daughter pair in years):

$$
P b=\frac{T h}{232}\left(e^{\lambda^{232} \tau}-1\right) 208+\frac{U}{238.04}(0.9928)\left(e^{\lambda^{238} \tau}-1\right) 206+\frac{U}{238.04}(0.0072)\left(e^{\lambda^{235} \tau}-1\right) 207
$$

(from Montel et al., 1996). IsoplotEx (Ludwig, 2009) was used to perform Gaussian deconvolution on the array of determined ages, yielding "unmixed" ages for the population. IsoplotEx yielded three peaks, a peak at $426.7 \pm 3.8 \mathrm{Ma}$, a peak at $469.2 \pm$ 2.3 Ma , and a peak $511.1 \pm 3.6 \mathrm{Ma}$ ( $2 \sigma$ errors, relative misfit $=0.504$ ). These ages are
similar to others reported here (see below) and are interpreted to be geologically significant.

The results of the Gaussian deconvolution were confirmed by using a simple isochron analysis using the basic method described by Nicolaysen (1961). This technique was performed on the isotope concentrations found using Montel et al.'s (1996) model. The present author generalized Nicolaysen's method slightly (Fig. 41) in that the concentration of the parent isotope (i.e. ${ }^{238} \mathrm{U},{ }^{235} \mathrm{U},{ }^{232} \mathrm{Th}$ ) was plotted on the x -axis and the concentration of the daughter isotope (i.e. ${ }^{206} \mathrm{~Pb},{ }^{207} \mathrm{~Pb},{ }^{208} \mathrm{~Pb}$ ) was plotted on the y axis, as opposed to plotting the normalized radiogenic/stable isotope ratios (i.e. ${ }^{87} \mathrm{Rb} /{ }^{86} \mathrm{Sr}$ and ${ }^{87} \mathrm{Sr} /{ }^{86} \mathrm{Sr}$ ) on these axes, respectively. The utility of this scatter plot (Fig. 41) is that points that are related to each other by being the same age will fall along a linear array, called an isochron. The relationship between an isochron line and age is illustrated by the following equation, where $\tau=$ age, $\alpha=$ the angle of the isochron relative to the abscissa, and $\lambda=$ the decay constant of the parent isotope: $\tau=\ln (1+\tan (\alpha)) / \lambda$ (Nicolaysen, 1961). Isoplot’s "robust regression" lines (Ludwig, 2009) were fit through each scatterplot and were used to determine $\alpha$ for each isochron. Isoplot's method of robust regression is based on Rock and Duffy's (1986) technique for fitting a line to a scatter plot which makes no assumptions regarding the distribution of the residuals of the population being measured. As the distribution of the data reported here is unknown, the author felt a robust regression was more appropriate to use than a regression using the method of least squares, which requires that the residuals of the data are normally distributed (Ludwig, 2009).


Figure 41 - Isochrons determined from calculated Pb isotope concentrations in sample KJR-093.

## U-Pb ID-TIMS

Rørstad Granite (Sample LEA-10-1)

Sample LEA-10-1 was collected from an unfoliated exposure of the Rørstad granite southeast of the village of Tårnvika (Fig. 37, Table 3). Zircon and monazite were separated from the sample and analyzed.

## Zircon

The dominant population of zircons in sample LEA-10-1 consists of prismatic light-brown, uranium-enriched (Speer, 1980; Corfu et al., 2003) metamict overgrowths mantling clear cores (see Appendix 3). Crystals generally appear inclusion free using a binocular microscope, but back-scattered electron (BSE) images document monazite inclusions concentrated in concentric growth bands (Fig. 42). Such inclusions, enriched in rare earth elements, may be useful for future geochemical characterization.

Core/overgrowth boundaries are uneven and rounded. Cores are rounded and have a frosted appearance when viewed under a binocular microscope (Fig. 43), evidence of a detrital origin. Detrital zircon cores have a distinctly different color than the overgrowth as a result of different concentrations of uranium. Squeezing the zircon crystal with tweezers often causes the core to cleanly separate from the overgrowth along the relatively weak interface between the two.


Figure 42 - Backscatter electron image of a zircon grain interpreted to have a detrital core and rounded contact with concentrically zoned igneous overgrowth. Spectrum 1 is a spot analysis of the detrital zircon core. Spectrum 2 is a monazite inclusion within the igneous zircon overgrowth.


Figure 43 - Zircon crystals characteristic of sample LEA-10-1. Note frosty, transparent (low uranium) detrital cores mantled by dark brown metamic (high uranium) igneous overgrowths.

Most zircons from sample LEA-10-1 have an elongation ratio (length:width) between 2 and 3. The population has well-developed (110) prisms nearly always capped by well-developed (011) and (121) pyramids. Some crystals are bipyramidal with a (121) pyramid capping the (011) pyramid. This style of growth is considered an "S5" zircon in Pupin's classification system, a morphotype characteristic of calc-alkaline to alkalic granites (Pupin, 1980; Speer, 1980).

Three zircons with conspicuous overgrowths on detrital cores were selected for analysis using ID-TIMS. The overgrowths were separated from the cores by gently squeezing the original grains using tweezers. The overgrowths were then mechanically abraded (see Appendix 5). The overgrowths ranged from 1.5\% to 2.8\% discordant and had common-lead concentrations from below the detection limit to 86 ppm. Uranium concentration ranged from 773 to 969 ppm (See Appendix 3). The ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ age determined for sample LEA-10-1 was $950.6+5.2 /-5.3 \mathrm{Ma}$ ( $95 \%$ confidence, average of 3 analyses, weighted by $2 \sigma$ absolute error), a Neoproterozoic (Tonian) age, with some discordance between the ${ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ and ${ }^{207} \mathrm{~Pb} /{ }^{235} \mathrm{~Pb}$ ages as a result of Pb loss.

The Pb loss evident in the analyses of zircons from sample LEA-10-1 warrants further examination since Pb loss events recorded in the $\mathrm{U}-\mathrm{Pb}$ system are often geologically significant (Wetherill, 1956, 1963). When plotted on a Concordia diagram (Fig. 44), the analyses form a tight grouping just below the line of concordia. It is difficult to determine a meaningful discordia through this grouping as the data fall around a point, not on a line. The absence of a discordia clearly precludes the determination of the upper and lower concordia/discordia intercepts, which are taken to represent the crystallization age and the age of the Pb-loss event, respectively (Dickin, 2005). In the
absence of a discordia defined by $\mathrm{U} / \mathrm{Pb}$ data, a forced-discordia was constrained to intersect the measured grouping and ages of known times when a Pb -loss event could have occurred for the sample. Possible Pb-loss events were chosen based on geochronological evidence collected in this study, as well as those that are reported in the literature; $\mathrm{U} / \mathrm{Pb}^{*}$ ages determined from other zircons and monazites; an ${ }^{40} \mathrm{Ar}-{ }^{39} \mathrm{Ar}$ muscovite cooling age; and monazite chemical ages (sample KJR-093). Present-day Pbloss was also considered. The Pb-loss model results are reported in Table 4 and discussed below.


Figure $44-\mathrm{U} / \mathrm{Pb} *$ Concordia diagram anchored at 0 Ma , from 3 zircons analyzed from sample LEA-10-1.

Table 4 - Results of different forced-discordia models applied to LEA-10-1 zircons.

| Model | Age of Pb- <br> loss |  | Basis for <br> modeled Pb-loss |  | Derived Closure <br> Temperature Age | ${ }^{207} \mathrm{~Pb} /^{206} \mathrm{~Pb}$ <br> Discrepacy | MSWD |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| "Grampian" | 470 | $\pm 15$ | KJR-093 <br> monazite <br> chemical age | 961.5 | $\pm 3.7$ | $\sim 11 \mathrm{Ma}$ | 0.35 |
| Scandian | 431.49 | $\pm$ <br> 0.86 | KJR-243 <br> ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ID- <br> TIMS | 959.9 | $\pm 3.4$ | $\sim 10 \mathrm{Ma}$ | 0.36 |
| Devonian <br> Decompression | 392.0 | $\pm 1.4$ | $\mathrm{KJR-093}$ <br> ${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ | 958.4 | $\pm 8.3$ | $\sim 7 \mathrm{Ma}$ | 0.37 |
| Present-date $\mathrm{Pb}-$ <br> loss | 0 |  | Pb loss occurring <br> at the present <br> time. | 950.6 | $\pm 5.2$ | 0 | 0.44 |

The model that yielded the best results was that the only significant Pb -loss event that sample LEA-10-1 has undergone can be attributed to present-day weathering. The mean square weighted deviation (MSWD) for this model is closest to 1 of all of the models and suggests that the data represent an isochron as per Wendt and Carl (1991), as opposed to an errorchron.

The lack of whole rock chemistry data for the LEA-10-1 host rock or for the zircon crystals themselves makes it difficult to assign specific geological significance to the determined age, but some inferences can be made in this regard. As previously noted, zircon crystal morphology implies that the Rørstad magma was calcalkaline to alkaline. The presence of abundant oligoclase (optically determined to be $\mathrm{An}_{15}-\mathrm{An}_{30}$ ) suggests that the melt was more alkaline than calcalkaline. Watson (1979) demonstrated that zircon crystallization from alkaline melt varies significantly with the relative concentration of $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Na}_{2} \mathrm{O}$, and $\mathrm{K}_{2} \mathrm{O}$. Zircon becomes saturated and crystallization begins at low concentrations ( $<100 \mathrm{ppm}$ ) in peraluminous melts. Saturation levels in peralkaline melts can be much higher than in peraluminous melts, with dissolved Zr reaching as high as 39,000 ppm. However, the presence of dissolved $\mathrm{Fe}_{2} \mathrm{O}_{3}$ significantly reduces the
solubility of zircon in peralkaline melts (Watson, 1979). The relative abundance of biotite in the Tårnvika pluton suggests that $\mathrm{Fe}_{2} \mathrm{O}_{3}$ may have been a significant component in the melt, and thus inhibited high concentrations of Zr . Any CaO in the melt would have similarly inhibited Zr saturation, but again, CaO does not seem to have been a significant component, as plagioclase appears to be relatively albitic and no other major calcium phases were identified. Zircon overgrowths would have begun forming shortly after intrusion of the melt simply because the presence of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ would have inhibited high concentration of dissolved Zr were the melt peralkaline or in the event the melt was peraluminous, saturation levels would have been low regardless. Early formed zircon implies that the 950 Ma age reflects emplacement of the Rørstad granite.

## Monazite

Sample LEA-10-1 also had abundant monazite, four of which were selected for analysis using ID-TIMS. The monazite crystals selected were all light yellow and subhedral to subrounded (e.g. Fig. 45). The long dimensions of monazite grains were $1 / 10 \mathrm{~mm}$ to $1 / 8 \mathrm{~mm}$, with aspect ratios ranging from $\sim 1$ to $\sim 2$. The monazite grains ranged from $-8.8 \%$ to $0.9 \%$ discordant and had common lead concentrations that ranged from 0.74 ppm to 14.60 ppm . Uranium concentration ranged from 4,528 ppm to 9,525 ppm (Appendix 3)


Figure 45 - Binocular photograph showing monazite crystal diagnostic of those found in sample LEA-10-1. Note yellow to brown color and subhedral morphology.

Two of the analyzed grains (307/22 and 307/28, Fig. 46), yielded similar ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ages of $929.1 \pm$ 1.5 Ma and $935.3 \pm 2.0 \mathrm{Ma}$, indicating a thermal event slightly younger than that recorded in the zircons from the same sample. The weighted mean of these two ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ages is $931 \pm 38 \mathrm{Ma}$ (Fig. 46), which agrees within error with the zircon age of $950.6+5.2 /-5.3$ obtained from this sample. The two remaining monazite analyses were from a rim and core (analyses $307 / 39$ and 307/40, Figure 47) from a single crystal that broke during microscopic selection of minerals for analyses. This single crystal recorded ages that are older than all other ages determined in this study, with the core yielding a ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ age of $987.7 \pm 2.4 \mathrm{Ma}$ and the rim yielding a ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ age of $918.7 \pm 2.5 \mathrm{Ma}$ (see Appendix 3).


Figure 46 - U/Pb* Concordia diagram of monazite analyses 307/22 and 307/28 from rock sample LEA-10-1.


Figure 47 - U/Pb* Concordia diagram of monazite analyses 307/39 and 30/40 from sample LEA-10-1.

Interpreting monazite ages is often not straight forward, as individual grains may contain many compositional domains commonly interpreted to reflect episodic growth during distinct tectonothermal events (Williams, 2007). While the destructive nature of ID-TIMS precludes documenting compositional variation in the grains analyzed, the high-precision characterization of both the ${ }^{238} \mathrm{U}^{206} \mathrm{~Pb}$ and ${ }^{235} \mathrm{U}^{207} \mathrm{~Pb}$ decay series allows indirect examination of the complexity of the grain analyzed (Parrish, 1990). A large degree of discordance indicates the measurement of U and Pb from an admixture of compositional domains. The integrity of individual age determinations from LEA-10-1 monazites, therefore, suggest a more complicated thermal history than the zircon ages alone would suggest. The combined monazite and zircon ages for sample LEA-10-1 point to a series of thermal events at times not previously documented in rocks of northern Norway.

## Fjærehesten Granite (Sample LEA-10-2)

Sample LEA-10-2 was collected from the Fjærhesten granite exposed at Durmålsvatnet (Fig. 37, Table 3) and contains zircon, rutile, and monazite, phases with potentially useful $\mathrm{U}-\mathrm{Pb}^{*}$ retention. A second population of small zircon inclusions within muscovite, called skating crystals (Frondel, 1990), was also measured, albeit in a nontraditional manner which is described in Appendix I. The variety of U-Pb phases makes sample LEA-10-2 especially important for understanding the temperature/time history of the Fjærehesten granite.

## Zircon

The population of zircons analyzed from sample LEA-10-2 was characterized by clear, euhedral prismatic crystals with elongation ratios from 3 to 6 . The crystals were all difficult to work with, breaking easily during mineral picking. As a result, grains in this population tended to be fragments, with complete crystals being comparatively rare. Zircons in the population are bipyramidal with well-developed $\{121\}$ faces and subordinate $\{011\}$ faces. All crystals are dominated by a strongly developed $\{010\}$ prism. The zircons are most similar to the "S2" morphotype in Pupin’s (1980) scheme, indicative of an aluminous monzogranite. Low uranium content (120-253 ppm) resulted in a lack of microscopically obvious radiation damage, despite relatively high discordance (from 3.6\% to 11.2\%). Common lead was low, ranging from 0.5 to 1.7 picograms. Analyzing the two most concordant zircons (307/9 and 311/18) (Fig. 48A) along with the zircon-in-muscovite inclusions (311/21 \& 311/113) (Fig. 48B) yielded a concordia age $428.4 \pm 1.2$ Ma with a MSWD of 6.0 (Fig. 48B).


Figure 48 - U/Pb* Concordia diagrams for analyses from sample LEA-10-2:
A) Most concordant zircon grains from sample LEA-10-2 (307/9 and 311/18), records emplacement age of the Fjærehesten Granite at $428.4 \pm 1.2 \mathrm{Ma}$.
B) All concordant zircons, including zircon skating crystal inclusions in muscovite.

## Monazite

Three monazite crystals from sample LEA-10-2 were analyzed using ID-TIMS. The monazite crystals selected were all light yellow and subhedral to subrounded. The long dimensions of the grains were $1 / 10 \mathrm{~mm}$ to $1 / 8 \mathrm{~mm}$, with aspect ratios ranging from $\sim 1$ to $\sim 2$, morphologically similar to the crystals found in sample LEA-10-1. Isotopic analysis of monazite grains in LEA-10-2 ranged from $-0.1 \%$ to $4.3 \%$ discordant and had common lead concentrations that ranged from 0.63 ppm to 0.83 ppm . Uranium concentration ranged from 629 ppm to 997 ppm (Appendix 3). The three analyzed grains (311/103, 311/107, and 307/85), together yield a concordia age of 428.49+/- 0.96 Ma
$($ MSWD $=0.22)($ Fig. 49). The small uncertainty of this set of monazite crystal analyses is in agreement with the zircon grains analyzed from this sample.


Figure 49 - ID-TIMS analysis of monazite grains from LEA-10-2 (311/103, 311/107, and $307 / 85)$, yielding a Concordia age of $428.49 \pm 0.96 \mathrm{Ma}$.

## Rutile

Three rutile crystals were selected from LEA-10-2, all of which were morphologically similar euhedral to subhedral crystals with a dark brown to gray color. Uranium concentration was low, from 6 to 35 ppm. Radiogenic Pb ranged from 1-5 ppm, with total common Pb measured ranging from 2.8 to 5.5 pg . There was a significant range in the ages determined from the measurements. The ${ }^{238} \mathrm{U} /{ }^{206} \mathrm{~Pb}$ ages determined for the three crystals were all precise with uncertainties $<5.3 \mathrm{Ma}$, but they do not define a single age population that agree within uncertainty.

The ages reported, $469.8 \pm 5.3,458.4 \pm 2.9 \mathrm{Ma}$, and $434.6 \pm 3.8$ (Fig. 50) all correspond with ages for tectonothermal events that are known or are suspected to have affected the rocks in the region (Barnes et al., 2007). The $\sim 470 \mathrm{Ma}$ age is broadly similar to a monazite chemical age described below, as is the $\sim 458$ Ma rutile age determined from sample LEA-10-2. The lack of agreement between the two older rutile ages makes confidently interpreting this age difficult. The younger $\sim 434$ Ma rutile age likely represents a rutile that grew during Scandian metamorphism. The $\sim 470$ age may record Grampian/Taconic metamorphism that has been documented in the rocks of the Helgeland Nappe Complex and $\sim 458$ Ma age may record a period of magmatism that is also recorded in the Helgeland Nappe Complex (Barnes et al., 2007).


Figure $50-{ }^{206} \mathrm{~Pb} /{ }^{238} \mathrm{U}$ vs. ${ }^{207} \mathrm{~Pb} /{ }^{235} \mathrm{U}$ plot of three rutile crystals from sample LEA-10-2. Crystals do not represent a single family and are interpreted as representing distinct events.

## Zircon 'Skating Crystals' in Muscovite

A conspicuous component present in the heavy mineral separates was a family of translucent muscovite with abundant euhedral zircon inclusions, referred to as skating crystals (Frondel, 1940), with elongation ratios $<6: 1$. Several muscovite crystals containing zircon skating crystals and also several pure muscovite crystals were dissolved, as if they were zircon. The pure muscovite and zircon-bearing muscovite crystals were similar in form and size apart from the zircon inclusions. Common Pb was measured in the pure muscovite portion and used to correct the Pb measured in the zircon-bearing portion. Any excess common Pb measured in the inclusion-bearing portion was assumed to be a result of the zircon inclusions. The skating crystals yielded an age of $429.4 \pm 4.6 \mathrm{Ma}$ (Fig. 51). This age places a maximum age constraint on the initiation of muscovite crystallization in the sample.


Figure 51 - U-Pb age concordia diagrams obtained for Scandian "skating crystals", zircon inclusions in muscovite, from the Durmålsvatnet Pluton. Sample LEA-10-2 (311/21 \& 311/113).

## Kjerringøy Paragneiss (Sample KJR-243)

Sample KJR-243 was collected from a pavement outcrop of migmatitic biotite gneiss 2 km west of the ferry at Misten (Fig. 37, Table 3). Zircons from the sample were easily separated into two families based on morphology, referred to as groups A and B (Fig. 52). Group A consisted of clear, euhedral to subhedral prismatic crystals with elongation ratios ranging from 2 to 8 and sporadic inclusions visible when viewed under a binocular microscope. Detrital cores are visible in SEM images (Fig. 53). Uranium content ranged from 88 to $1,800 \mathrm{ppm}$. Zircons in group A tend to be highly discordant, ranging from $9.8 \%$ to $17.3 \%$ discordant. Group A zircons belonged to the "S2" morphotype, indicating growth in an aluminous monzogranite (Pupin, 1980).

Although group A zircons are morphologically similar, they do not yield consistent ages. The ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ages determined range from $482.7 \pm 4.0 \mathrm{Ma}$ to $768.5 \pm$ 11.9 Ma (Fig. 54). It is difficult to envision these as detrital grains inherited from the sedimentary protolith, as they show no sign of weathering, maintaining their euhedral form. It is probable that this group is complexly zoned in a way that was not readily identifiable under a binocular microscope. SEM backscattered electron images (e.g. Fig. 53) of zircon from this group do show complex zoning. The concordia diagrams for these samples and the spread of ages all suggest that the Group A zircons record more than one metamorphic event.


Figure 52 - Zircon crystals characterizing the two populations in sample KJR-243. Group A contains clear crystals and Group B contains large brown crystals.


Figure 53 - SEM backscattered electron image of KJR-243 Group A zircon with high-uranium detrital cores mantled by igneous (anatectic) overgrowths. Histogram shows the mass distrubution in this zircon.


Figure 54 - U-Pb ages determined for Group A zircons from sample KJR-243. Group A zircons are discordant and do not define an isochron.

Corfu (2004) reported a similarly broad range of ages from a population of selfsimilar zircon and rutile from the Leknes Group that he suggested might represent a Sveconorwegian phase of metamorphism at $\sim 1,000 \mathrm{Ma}$ followed by two separate Palaeozoic phases at $\sim 470$ and $\sim 460$. Corfu (2004) stated that this thermal history is most simply explained by invoking the existence of an exotic Lofoten terrane juxtaposed via a Caledonian fault against the Baltican rocks of the Hinnøy-West Troms domain. Now that similar ages relations are documented for rocks in the current study area, perhaps future studies will document that these are geologically significant thermal events, and possibly that the Leknes Group correlate to the Uppermost Allochthon.

Group B zircons are clearly igneous in origin, belonging to Pupin’s "S5" morphotype (1980). These zircons lack distinguishable cores (Fig. 55) and the generally euhedral grains have elongation ratios of 2-4, although complete crystals are comparatively rare. Group B zircons are uranium rich, with concentrations ranging from 2,722 to $20,268 \mathrm{ppm}$. While Group B zircons are highly concordant, with from $1.5 \%$ to 1.7\% discordance, they do show anomalously low lead for the amount of uranium measured (Fig. 56). This may indicate protactinium partitioning during decay (Parrish and Noble, 2003) or simply lead loss due to damage to the crystal lattice. As such, a weighted average of ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ages of $431.49 \pm 0.86 \mathrm{Ma}$ is used as the most reliable age for this group (Fig. 57), as it is unaffected by disturbance of the $\mathrm{U} / \mathrm{Pb}$ system.


Figure 55 - SEM backscattered electron image of KJR-243 Group B zircon showing uniform growth and a lack of zoning. Lower mass is detected along fractures, presumably as a result of Pb having been leached along fracture surfaces. Histogram shows the mass distrubution in this zircon.


Figure 56 - U-Pb age concordia diagram for Group B zircons (307/1, 307/2, 311/16, 311/22) from sample KJR-243. Unusual discordance may indicate protactinium partitioning during decay (Parrish and Noble, 2003) or simple lead loss.


Figure 57 - Weighted average of $431.49 \pm 0.86 \mathrm{Ma}$ for ${ }^{207} \mathrm{~Pb} /{ }^{206} \mathrm{~Pb}$ ages obtained for Group B zircons (307/1, 307/2, 311/16, 311/22) from sample KJR-243.

## ${ }^{40} \mathbf{A r} /{ }^{39} \mathrm{Ar}$ Muscovite Dating

A single muscovite grain from garnet-muscovite-kyanite schist from the Kjerringøy paragneiss (sample KJR-093) was analyzed at the Auburn Noble Isotope Mass Analysis Laboratory using methods described by Steltenpohl et al. (2011). The crystal formed during $\mathrm{D}_{3}$ mylonitization, belonging to a population of muscovite that share well-developed faces with garnet rims. ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ incremental heating ages were determined for this single crystal. Results are shown in Appendix 4. The data define a scattered, disturbed spectrum with a plateau (Fig. 58). There is no obvious architecture to the spectrum, though most adjacent steps with overlapping ages fall between 390 and 387 Ma; i.e., the data do not define a curve, convex or concave. The sample has a weighted mean age of $392.0 \pm 1.9 \mathrm{Ma}(\mathrm{MSWD}=22, \mathrm{n}=27$ steps $)$.

For comparison, Steltenpohl et al. (2009) reported three ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ muscovite cooling ages from the footwall of the Steigtinden shear zone in the Vatnvatnet area (Fig. 1), within the Heggmo Nappe. These ages ranged from $\sim 410$ Ma to $\sim 385$ Ma and were interpreted by Steltenpohl et al. (2009) to indicate the timing of extensional movement along the Steigtinden shear zone. While the source of the scatter in the data reported herein is not understood, the roughly weighted mean age of 390 Ma is interpreted to record broadly coherent cooling of rocks through the $350{ }^{\circ} \mathrm{C}$ isotherm (Hames and Bowring, 1994), which is comparable to regional trends following the Scandian event (Coker et al., 1995).


Figure 58 - Plateau at ~390 Ma (red dashed line) from muscovite separated from sample KJR-093. Minimum age of $\sim 380 \mathrm{Ma}$ and maximum age of $\sim 405 \mathrm{Ma}$ (shaded red area).

## DISCUSSION

## Heggmo Nappe

Agyei-Dwarko (2010) argued that the Rørstad granite and Kjerringoy paragneiss (Table 1, Plate 1) exposed at Bratten (Fig. 1) are overturned and are in thrust contact structurally above the Bodø Nappe. This study does not support the presence of a thrust fault in this position. Gustavson (1991) places the mica schist/calcsilicate contact several hundred meters to the east, where the present author believes the true boundary between the Heggmo and Bodø Nappes can be found. The current author interprets that AgyeiDwarko’s "Bodø Group" is in fact Kjerringøy paragneiss and that the contact with the "cover sequence" is actually an intrusive contact between the Rørstad granite and the Kjerringøy paragneiss that has been mylonitized. Similar tectonized intrusive contacts are abundant along the margins of the Tårnvika pluton.

It is also difficult to reconcile the Kjerringøy paragneiss and Rørstad granite being thrust above the Bodø Nappe as the Bodø Nappe appears to have been emplaced by the FOSZ, an extensional structure that otherwise shows no evidence of contractional strains. If the mylonite exposed at Bratten is a late thrust, then why is there no other evidence of this late compression? If the Heggmo Nappe/Bodø Nappe boundary is east of Bratten, as the present author contends, then the pressure/temperature conditions of 8.1 kbar and 750 ${ }^{\circ} \mathrm{C}$ as estimated by Agyei-Dwarko (2010) would in actuality be estimates for the Kjerringøy paragneiss. Agyei-Dwarko’s geothermobarometric analyses yielded a lower pressure ( $8.1 \mathrm{kbar}<9.5 \mathrm{kbar}$ ) and higher temperature ( $750{ }^{\circ} \mathrm{C}>672{ }^{\circ} \mathrm{C}$ ) than the
estimates derived by the present author (Fig. 36). This may reflect thermal imprint at lower pressures related to the intrusion of the Rørstad granite near where AgyeiDwarko's sample was collected.

The present author interprets the Bratten gneisses to be part of the sheared and appressed limb shared between the Heggmovatn antiform and the Landegodefjorden synform (Plate 1, Plate 2). The following interpretation provides a simpler explanation for the observations made in the field area and is in keeping with the deformational history observed in the rocks.

## Tectonic Provenance of the Heggmo Nappe

Early Neoproterozoic (Tonian) intrusions within the Heggmo Nappe make it distinct from all other allochthons in the Caledonides of Norway. The Landegode, Bratten, and Tårnvika megacrystic granites all have broadly similar ages of $946 \pm 5 \mathrm{Ma}$ (Augland et al., 2013), $924.8 \pm 7.4 \mathrm{Ma}$ (Agyei-Dwarko, 2010), and $950.6 \pm 5.3 \mathrm{Ma}$ (this study), respectively. The Tonian ages reported in this study are similar to those reported throughout the North Atlantic region and held to represent a single event, the Valhalla orogeny (Cawood et al., 2010). This North Atlantic record of tectonothermal activity is commonly associated with a later phase of Ordovician-Silurian plutonism or metamorphism. Strachan et al. (1995) report U/Pb SHRIMP ages for what they consider to be a Grenvillian metamorphic event occurring at $955 \pm 13$ Ma recorded in northeast Greenland. Strachen et al. (1995) also report later metamorphic growth of zircon at $445 \pm$

10 Ma . Watt et al. (2000) report a U/Pb SHRIMP determination on the emplacement age of $938 \pm 13$ Ma for an undeformed granite in the Stauning Alper and Nathorst Land regions in northeast Greenland. Anatexis at $420 \pm 8$ Ma was found in rocks of the same area. Kalsbeek et al. (2000) have documented high-grade metamorphism at 950-920 Ma in rocks in Andréeland, East Greenland, intruded by plutons ranging from 436 to 430 Ma . Tonian\Ordovician-Silurian fingerprints are also reported in Svalbard’s Northwestern Terrane, where ~958 Ma orthogneisses are cut by an undeformed granite with an age of $420.2 \pm 3.4$ Ma (Pettersson et al., 2009). Metamorphism at 938-925 Ma also affected rocks of the Shetland Islands, which are overprinted by Caledonian metamorphosm (Cutts et al., 2009).

All of the metasediments intruded by the North Atlantic Tonian intrusives belong to the Krummedal Group of northeast Greenland, or its equivalents (Strachen et al., 1995; Kalsbeek et al., 2000; Watt et al., 2000; Cutts et al., 2009; Pettersson et al., 2009; AgyeiDwarko, 2010). A thorough discussion of the similarities between the rocks found in the Heggmo Nappe and the Krummedal Group is reported by Agyei-Dwarko (2010). The 956-945 Ma age for the Rørstad granite (Fig. 44), the $428.5 \pm$ 1.2 Ma emplacement age for the Durmålsvatnet pluton (Fig. 48A), and the Krummedal Group-equivalent hostlithology reported in this study firmly associates the rocks of the study area with those reported throughout the conjugate hinterland regions of the North Atlantic Caledonides.

It is important to note that the two nearest exposures of undeniably Baltic basement have a very different thermochronological history than that of the Heggmo Nappe. The central Nordland basement windows, $\sim 70 \mathrm{~km}$ to the southwest (Figure 1 inset and Fig. 4), were determined by Skår (2002) to have emplacement ages ranging from

1800 to 1795 Ma , which is diagnostic for Sveccofennian basement that fingerprints much of Baltica. The Sommerset window, only 22 km due east from Tårnvika (Fig. 4), exposes a heterogeneous and coarse-grained granite with an age of $\sim 1720 \mathrm{Ma}$ (Romer et al., 1991). Neither of these exposures contain Caledonian intrusions, which is a typical signal of the Baltic basement. The longstanding interpretation of the Heggmo Nappe granites and orthogneisses as representing Baltic basement (Rutland and Nicholson, 1965; Nicholson and Rutland; 1969; Bennet, 1970; Wilson and Nicholson, 1973; Cooper and Bradshaw, 1980; Thelander et al., 1980; Cooper, 1985; Gustavson and Blystad, 1995; Gustavson, 1996) is untenable in light of the new geochronology that documents vastly contrasting intrusive histories.

It is also now well-established that some rocks in the Uppermost Allochton have a significant pre-Scandian history of deformation and plutonism that overlaps in time with the Taconic event in eastern North America (Roberts, 2002; Barnes et al., 2007). This study reports $\mathrm{U} / \mathrm{Pb}$ rutile ages that range from 475 to 456 Ma for the Durmålsvatnet pluton (Fig. 50) and a monazite chemical age of $469.2 \pm 2.3$ Ma for the Kjerringøy paragneiss, in agreement with Augland et al.'s (2013) report of migmatization in the rocks of Landegode/Bratten (Fig. 1) at ~459 Ma. Farther south, Barnes et al. (2007) report migmitization of the Horta nappe in Helgeland (Fig. 1) after ~478 Ma, followed by periodic magmatic activity lasting into the Silurian. These pre-Scandian relics are taken as evidence for Grampian/Taconian activity traditionally associated with the northern Appalachians, Scotland, and the Caledonides of northeast Greenland (Roberts et al., 2007, Leslie et al., 2008). The current author interprets the Heggmo Nappe to have been migmatized during the Grampian orogeny on the Laurentian margin of Iapetus.

## Model A: Scandian Emplacement of the Heggmo Nappe

The discovery of Grampian/Taconian deformation in the rocks of the Heggmo Nappe begs the question as to how exactly it was emplaced structurally below the Rödingsfjället Nappe in the established tectonostratigraphy for the area (Cooper, 1978; Zeltner, 2001; Agyei-Dwarko, 2010). The traditional "Scandian nappe stacking" model (Roberts and Gee, 1985) does not adequately explain the relationship between these two nappes because it requires eastward emplacement of allochthons onto Baltica along tops-up-to-east, west-dipping thrust faults. Evidence for such structures has not been observed in the study area. Indeed, the earliest-formed structures observed in the study area are generally overturned to the west, at odds with traditional Scandian thrust-and-fold vergence. The Vågfjellet and Løding faults to the south of the study area have previously been interpreted as tops-up-to-east, west-dipping thrust faults (Gustavson and Blystad, 1995; Zeltner, 2001) on which the Rödingsfjället Nappe was emplaced onto the Scandian nappe stack. Despite this interpretation, the current author was unable to find reports in the literature or evidence in the field to support these faults as being thrust faults.

Analysis of the Vågfjellet and Løding faults via three-point problem determination of the orientation along the fault (Fig. 21) shows that the planes of both faults dip to the east, not to the west. Earlier interpretations of these faults as westdipping and tops-up-to-the-east thrust faults was heavily influenced by the traditional model of Roberts and Gee (1985) that requires the existence of such faults on which the Scandian allocthons were emplaced onto Baltica. There is no doubt that such allochthonemplacing faults exist in the region, but they are not found in the study area and must,
therefore, surface farther to the east. In short, the observed east-dipping, west-vergent geometry of structures in the study area is difficult to reconcile with their being the result of solely east-vergent Scandian nappe tectonics.

## Model B: A Taconian Nappe Stack Emplaced as a Single Unit Onto Baltica in the Scandian Event

Given the pre-Scandian tectonothermal and intrusive history and the structural geometry that has been shown to exist in the rocks of the Heggmo Nappe, it stands to reason that at least some, if not at all, of the structures observed in the field area are preScandian in origin. Precedent for such pre-Scandian structures in the Uppermost Allochthon was set by Barnes et al. (2007), who documented east-dipping, tops-to-west faults and pre-Scandian metamorphism and magmatism in the Helgeland Nappe Complex to the south of the study area. Presuming that the structural style documented in the Helgeland area (see inset on Figure 1) extends north into the study area, a simpler explanation for the observed topographic traces of the Vågfjellet and Løding faults (Fig. 21) is that they are in fact tops-up-to-west, east-dipping imbricated thrust faults above which the the Heggmo Nappe was emplaced from the east. Presumably this was the result of an event equivalent to the accretion of the Taconic Arc during the Grampian orogeny in east Greenland (Leslie et al., 2008). This exotic-to-Baltica terrane was then deformed as a single unit when it was emplaced onto the rocks of the Upper Allochthon in the Scandian orogeny.

The current author interprets the Heggmo Nappe to have been migmatized during the Taconic/Grampian event on the Laurentian margin of Iapetus, and later thrustemplaced eastwards onto Baltica during the Scandian orogeny. Subsequent east-west compression caused it to be folded into the $\mathrm{F}_{2}$ Heggmovatn antiform and Steigtinden synform. The composite allochthon later was orphaned onto Baltica when the North Atlantic basin began to form in the Eocene.

## Fjær-Osvika Shear Zone

Structures recording late- to post-Scandian orogenic collapse have been identified throughout the Norwegian Caledonides (Fossen, 1992, 2010; Fossen and Rykkelid, 1993), with studies generally focused on specific areas: Loften and northern Norway (Steltenpohl and Bartley, 1993; Coker et al., 1995; Northrup, 1996; Klein et al., 1999; Zeltner, 2001; Steltenpohl et al., 2004, 2009, 2011; Mager, 2005), central Norway (Braathen et al., 2002; Osmundsen et al., 2003), and southern Norway (Andersen and Jamtveit, 1990; Walsh et al., 2007). Prior work has shown broad agreement in the timing of extension (Devonian), but a wide range in the structural setting in which the extensional detachments occurred. In southwestern Norway, eclogite facies Baltic basement rocks in the footwall are juxtaposed against unmetamorphosed Devonian sediments in the hanging wall (Andersen and Jamtveit, 1990). The northernmost detachment faults in the Lofoten region involve amphibolite-facies rocks in both the hanging wall and the footwall and no Devonian sediments are preserved (Steltenpohl et al., 2011). The shear zones between the upper and lower plates also are much thinner in
north Norway (hundreds of meters) than in southern Norway (thousands of meters) (Osmundsen et al., 2003; Steltenpohl et al., 2011; this study)

North of the study area Steltenpohl et al. (2011) have described the Eidsfjord shear zone, a low-angle, mylonitic, tops-west normal detachment fault that places migmatitic gneiss and anorthosite in the hanging wall against mangerite in the foot wall.
${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ age determinations show it was deforming/recrystallizing at $403.6 \pm 1.1 \mathrm{Ma}$. The authors interpret this to be Norway's northernmost expression of the Early Devonian detachment system.

The Fjær/Osvika shear zone is geometrically similar to the Eidsfjord shear zone (Steltenpohl et al., 2011). Both the FOSZ and the Eidsfjord detachment are corrugated, or scoop-shaped faults that dip toward the Caledonian hinterland and exhibit normal tops-down-to-the-northwest movement. Both shear zones have mylonitic boundaries a few hundred meters thick and are cut by brittle, high-angle Mesozoic to Tertiary normal faults.

There are some significant differences between the Eidsfjord detachment and the FOSZ, however. The Eidsfjord detachment fault is closer to the boundary between continental and oceanic crust than any of the other Devonian normal faults in Norway (Steltenpohl, 2011), occurring roughly 60 km to the east of the boundary found offshore. The FOSZ is at least 200 km from this boundary, separated from it by the highly extended Vestfjord basin and the Lofoten terrane (Steltenpohl et al., 2004). The Eidsfjord detachment contains an abundance of consipicuous pseudotachylite veins, which are not seen in the FOSZ.

Regional correlations of the Bodø Nappe imply that the FOSZ detachment system in this part of Norway is signicantly larger than previously thought. Workers have suggested the rocks of the Bodø Nappe (Rutland and Nicholson, 1965; Cooper, 1978) are correlative with those of the Govdistind unit, which Tørudbakken and Brattli (1985) refer to as the Kovstind unit while others call it the Vegdal Group (Hollingworth et al., 1960; Rutland and Nicholson, 1965; Cooper, 1978). Tørudbakken and Brattli (1985) describe the Govdistind unit as a large synformal body with a high-strain zone as its lower boundary and that it cuts discordantly downward through the underlying units from south to north. Gustavson and Gjelle (1991) placed the Kovstind at the top of the Beiarn Nappe.

Relations mapped in the field and extended using aerial photographs (e.g., Fig. 59) and satellite imagery suggest that the Caledonian Fjærhesten granite in the area forms large sills that mimic the shape of the Steigtinden-Kjerringøy synform (Plate 2). The granite may have functioned as a competent buttress unit providing a slip horizon for the observed extensional motion. It is noted that nowhere is the Fjærhesten granite observed to cut the Fjær-Osvika/Steigtinden shear zone, but it is commonly juxtaposed against it.

The observed hinterland plunging synformal hanging wall of the FOSZ, the mylonitic boundary, the late timing of deformation as determined through ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ geochronology, and the similarity to well-studied structures in the area suggest that the Fjær/Osvika shear zone is a late-Scandian low-angle normal fault.


Figure 59 - Annotated photograph taken from the summit of Steigtinden, looking north towards Kjerringøy. Italicized labels refer to geological features in the photo. For scale, Steigtindvatnet is roughly 1.6 km wide at the widest point in the photograph. Photo courtesy of John Pedersen, www.turbading.com.

## CONCLUSIONS

The oldest rock unit in the Heggmo Nappe is the Kjerringøy paragneiss, the protolith of which was likely deposited in the Mesoproterozoic Asgård Sea along the extended passive margin of northeastern Laurentia (Fig. 60A). The depositional setting in this basin varied spatially through time, with the accumulation of limestones, sandstones, mudrocks, and volcanics. This basin received abundant detrital material from the Grenville orogen to the south and a minor amount of Archaean material from the Laurentian shield to the west. Maximum and minimum ages of detrital zircons deposited in the basin and the cross-cutting Rørstad granite indicate that deposition was active in the period from ~1050 Ma to ~950 Ma (Fig. 60B).

The Kjerringøy paragneiss was intruded by the Rørstad granite at 950-930 Ma contemporaneous with $\mathrm{F}_{0 \mathrm{v}}$ isoclinal folding (Fig. 60B). This magmatism and deformation appears to have been the result of a change in the rotation of Baltica relative to the Laurentian shield during the breakup of Rodinia, known as the Valhalla orogeny. The Valhalla orogeny was accompanied by late intrusion of dioritic dikes and felsic aplites and appears to have happened in pulses, with a phase of metamorphism occurring around 920 Ma .

Following the Valhalla orogeny, the Laurentian and Baltican cratons began to separate, creating a series of extensional basins that paralleled the Valhallan orogenic welt. Subsidence in the rocks of the study area had begun by 900 Ma , by which time


Figure 60 - Schematic diagrams showing the evolution of the Heggmo Nappe from the Neoproterozoic to the Devonian. UMA = Uppermost Allochthon, UA = Upper Allochthon, MA = Middle Allochthon, LA = Lower Allochton.
deposition of the Eleonore Bay Supergroup had begun, directly on the rocks of the Krummedal sequence (Fig. 60C) (Sønderholm et al., 2008).

The Heggmo Nappe was metamorphosed around 470 Ma during the Taconian/Grampian orogeny, reaching kyanite-grade conditions of amphibolite facies metamorphism (Fig. 60D). Some structural levels in the Kjerringøy paragneiss were migmitized at this time. This event may have involved the collision with Laurentia of a volcanic arc formed above a subduction zone dipping away from Laurentia. The prominent $S_{1}$ gneissosity and schistosity found throughout the study area developed at this time, along with tight-to-isoclinal $\mathrm{F}_{1}$ folds. The Rödingsfjället Nappe was emplaced via the Vågfjellet fault at this time. Late Taconian/Grampian deformation produced $\mathrm{S}_{1}$ Splanes.

The Kjerringøy paragneiss and orthogneiss were part of the overriding Laurentian plate during the Scandian orogeny (Fig. 60E) and were intruded by the $\sim 430 \mathrm{Ma}$ Fjærhesten granite. There does not appear to have been a great deal of mineral growth associated with this event beyond that associated with crystallization of the Fjærhesten granite and the recrystallization of muscovite, which resulted in $L_{2}$ length-preferred muscovite lineation and the $S_{2}$ foliation. Deformation associated with this event is most strongly expressed as regional, open-cylindrical $\mathrm{F}_{2}$ folds that plunge to the southwest in the study area, particularly the Steigtinden and Tårnvikfjellet synforms. Outcrop scale F2 folds are commonly overturned to the west, likely as a result of their formation on the Laurentian side of the Scandian orogeny.

It is unclear exactly when in the Devonian that extensional collapse of the orogenic welt began in the rocks of study area (Fig. 60F). Extension along the FOSZ
continued, however, some 30-40 Ma after intrusion of the Fjærhesten granite. It is likely that the Fjærhesten granite acted as a competent buttress unit provding a slip horizon for the tops-down-to-the-west normal movement. This unfoliated intrusion mimics the trend of the $S_{3}$ mylonitic shear zone in places which is folded into the $F_{3}$ Kjerringøy synform. $\mathrm{A}^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar} \mathrm{M}_{2}$ muscovite cooling age shows that the FOSZ likely had been active prior to $\sim 390 \mathrm{Ma} . \mathrm{D}_{3}$ deformation is characterized by $\mathrm{F}_{3}$ sheath folding, plastic flow folding, and mylonitization. Outcrop scale $D_{3}$ deformation is almost exclusively found within the Bodø Nappe, with the Heggmo Nappe showing $D_{3}$-effects only proximal to the FOSZ.

The youngest structures seen in the study area are part of a regional set of Mesozoic to Tertiary $\mathrm{F}_{4}$ brittle normal faults associated with the breakup and dispersal of Pangaea and the opening of the North Atlantic. This $\mathrm{D}_{4}$ deformation is expressed as low displacement (<100 m) southwest/northeast-trending subvertical faults, commonly with veining and hydrothermal alteration along the fault planes. $\mathrm{D}_{4}$ deformation cuts all older structures and is found in both the Heggmo and Bodo Nappes. The precise age of this deformation in the study area is unknown.

## REFERENCES CITED

Agyei-Dwarko, N.Y., 2010, Basement - cover relationships in the Bodø area, The "basement" rocks in the Heggmovatn and Bodø areas: a Fennoscandian, Laurentian or suspect terrane? [M. Sc. thesis]: University of Oslo, 155 p.

Andersen, T.B., and Jamtveit, B., 1990, Uplift of deep crust during orogenic extensional collapse: A model based on field studies in the Sogn-Sunnfjord Region of western Norway: Tectonics, v. 9, p. 1097-1111.

Andersen, T.B., Jamtveit, B., Dewey, J.F., and Swensson, E., 1991, Subduction and eduction of continental crust: major mechanisms during continent-continent collision and orogenic extensional collapse, a model based on the south Norwegian Caledonides: Terra Nova, v. 3, p. 303-310.

Andresen, A., Augland, L.E., and Agyei-Dwarko, N., 2011, The LandegodeHeggmovatn "basement terranes"- fragments of the Laurentian Grenville Orogen in the Scandinavian Caledonides?: Geophysical Research Abstracts, v. 13, EGU2011.

Andresen, A., and Tull, J.F., 1983, The age of the Lødingen granite and its possible regional significance: Norsk Geologisk Tidsskrift, v. 63, p. 269-276.

Asklund, B., 1955, Norges geologi och fjällkedjeproblemen: Stockholm. Geol. För. Förh. v. 77 p. 185-203.

Augland, L.E., Andresen, A., Corfu, F., Agyei-Dwarko, N.W., Larionov, A.N., 2013, The Bratten-Landegode gneiss complex: a fragment of Laurentian continental crust in the Uppermost Allochthon of the Scandinavian Caledonides, in Corfu, F., Gasser, D., and Chew, D.M., eds., New Perspectives on the Caledonides of Scandinavia and Related Areas, Geological Society, London, Special Publication 390, p. unknown.

Barnes, C.G., Frost, C.D., Yoshinobu, A.S., McArthur, K., Barnes, M.A., Allen, C.M., Nordgulen, Ø., and Prestvik, T., 2007, Timing of sedimentation, metamorphism, and plutonism in the Helgeland Nappe Complex, north-central Norwegian Caledonides: Geosphere, v. 3, p. 683-703.

Bennet, J.D., 1970, The structural geology of the Saura region, Nordland: Norges Geologiske Undersøkelse, n. 264, p. 1-86.

Bingen, B., Nordgulen, Ø., and Viola, G., 2008, A four-phase model for the Sveconorwegian orogeny, SW Scandinavia: Norwegian Journal of Geology, v. 88, p. 43-72.

Bogdanova, S.V., Bingen, B., Gorbatschev, R., Kheraskova, T.N., Kozlov, V.I., Puchkov, V.N., and Volozh, Y.A, 2008, The East European Craton (Baltica) before and during the assembly of Rodinia: Precambrian Research, v. 160, p. 23-45.

Bohlen, S.R., Wall, V.J., Boettcher, A.L., 1983, Experimental investigations and geological applications of equilibria in the system $\mathrm{FeO}-\mathrm{TiO}_{2}-\mathrm{Al}_{2} \mathrm{O}_{3}-\mathrm{SiO}_{2}-\mathrm{H}_{2} \mathrm{O}$ : American Mineralogist, v. 68, p. 1049-1058.

Braathen, A., Osmundsen, P.T., Nordgulen, O., Roberts, D., and Meyer, G. B., 2002, Orogen-parallel extension of the Caledonides in northern Central Norway: an overview: Norsk Geologisk Tidsskrift, v. 82, n. 4, p. 225-242.

Carter, B.T., 2000, Geological investigations in Steigen-Engeløya, north-central Norway $\left(68^{\circ} \mathrm{N}\right)$ and their significance for tectionic evolution [M.Sc. thesis]: Auburn University, 135 p.

Cawood, P.A., Nemchin, A.A., Smith, M., and Loewy, S., 2003, Source of the Dalradian Supergroup constrained by U-Pb dating of detrital zircon and complications for the East Laurentian margin: Geological Society [London] Journal, v. 160, p. 231246.

Cawood, P.A., Nemchin, A.A., Strachan, R., Prave, T., and Krabbendam, M., 2007, Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia: Journal of the Geological Society, London, v. 164, p. 257-275.

Cawood, P.A., Strachan, R., Cutts, K., Kinny, P.D., Hand, M., and Pisarevsky, S., 2010, Neoproterozoic orogeny along the margin of Rodinia: Valhalla orogen, North Atlantic: Geology, v. 38, p. 99-102.

Claesson, S., 1980, Pre-Silurian orogenic deformation in the north-central Scandinavian Caledonides: Geologiska Föreningens I Stockholm Förhandlingar, v. 101 [for 1979], p. 353-356.

Coker, J.E., Steltenpohl, M.G., Andresen, A., and Kunk, M.J., 1995, $\mathrm{An}{ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ thermochronology of the Ofoten-Troms region: Implications for terrane amalgamation and extensional collapse of the northern Scandinavian Caledonides: Tectonics, v. 14, p. 435-447.

Cooper, M.A., 1978, The geology and geochemistry of the Sørfold area, N. Norway [Ph.D. thesis]: Bristol, University of Bristol, 331 p.

Cooper, M.A., 1980, Geological Map of Kjerringöy: Norges Geologiske Undersøkelse, scale 1:50 000, 1 sheet.

Cooper, M.A, 1985, Deformation patterns and their evolution in the Caledonides of the Sørfolda area, north Norway, in Gee, D.G., and Sturt, B.A., eds., The Caledonide Orogen - Scandinavia and Related Areas: John Wiley \& Sons, p. 543-551.

Cooper, M.A., and Bradshaw, R., 1980, The significance of basement gneiss domes in the tectonic evolution of the Salta Region, Norway: Journal of the Geological Society, London, v. 137, p. 231-240.

Corfu, F., 2004, U-Pb Age, Setting and Tectonic Significance of the Anorthosite-Mangerite-Charnockite-Granite Suite, Lofoten-Vesterålen, Norway: Journal of Petrology, v. 45, p. 1799-1819.

Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P., 2003, Atlas of zircon textures, in Hanchar, J.M. and Hoskin, P.W.O., eds., Reviews in Mineralogy and Geochemistry, Volume 53, Zircon: Washington, D.C., Mineralogical Society of America, p. 468-500.

Cutts, K.A., Hand, M., Kelsey, D.E., Wade, B., Strachan, R.A., Clark, C., and Netting, A., 2009, Evidence for 930 Ma metamorphism in the Shetland Islands, Scottish Caledonides: implications for Neoproterozoic tectonics in the Laurentia-Baltica sector of Rodinia: Journal of the Geological Society, London, v. 166, p, 10331047.

Davis, D.W., Blackburn, C.E., and Krogh, T.E., 1982, Zircon U-Pb ages from the Wabigoon-Manitou Lakes region, Wabigoon Subprovince, northwest Ontario: Canadian Journal of Earth Sciences, v. 19, p. 254-266.
de Ferranti, J., 2013, Viewfinder Panoramas - Digital Elevation Data:
http://www.viewfinderpanoramas.org/dem3.html (accessed November 2, 2012).

Deer, W.A., Howie, R.A., and Zussman, J., 1996, An Introduction to the Rock-Forming Minerals (2nd Edition): Essex, Pearson Education Limited, 696 p.

Dewey, J.F., Strachan, R.A., 2003, Changing-Silurian-Devonian relative plate motion in the Caledonides: sinistral transpression to sinistral transtension: Journal of the Geological Society, London, v. 160, p. 219-229.

Dickin, A.P., 2005, Radiogenic Isotope Geology: Cambridge, Cambridge University Press, 492 p.

Dodson, M.H., 1973, Closure temperature in cooling geochronological and petrological systems: Contributions to Mineralogy and Petrology, v. 40, p. 259-274.

Eig, K., and Bergh, S.G., 2010, Late Cretaceous-Cenozoic fracturing in Lofoten, North Norway: Tectonic significance, fracture mechanisms and controlling factors: Tectonophysics, v. 499, p. 190-205.

Essene, E.J., 1989, The current status of thermobarometry in metamorphic rocks, in Daly, J.S., Cliff, R.A. and Yardley, B.W.D., eds., Evolution of Metamorphic Belts: Geological Society Special Publication, No. 43, p. 1-44.

Ewing, R.C., Meldrum, A., Wang, L., Weber, W.J., and Corrales, L.R., 2003, Radiation Effects in Zircon, in Hanchar, J.M. and Hoskin, P.W.O., eds., Reviews in Mineralogy \& Geochemistry, Volume 53, Zircon: Washington, D.C., Mineralogical Society of America, p. 387-425.

Ferry, J.M., Spear, F.S., 1978, Experimental calibration of the partitioning of Fe and Mg between biotite and garnet: Contributions to Mineralogy and Petrology, v. 66, p. 113-117.

Fossen, H., 1992, The role of extensional tectonics in the Caledonides of south Norway: Journal of Structural Geology, v. 14, n. 8/9, p. 1033-1046.

Fossen, H., 2010, Extensional tectonics in the North Atlantic Caledonides: a regional view, in Law, R.D., Butler R.W.H., Holdsworth, R.E., Krabbendam, M., and Strachan, R.A., eds., Continental Tectonics and Mountain Building: The Legacy of Peach and Horne: Geological Society, London, Special Publication 335, p. 767-793.

Frondel, C., 1940, Oriented inclusions of staurolite, zircon and garnet in muscovite. Skating crystals and their significance: American Mineralogist, v. 25, p. 69-87.

Gaál, G., and Gorbatschev, R., 1987, An outline of the Precambrian evolution of the Baltic Shield: Precambrian Research, v. 35, p. 15-52.

Gee, D.G., 1975, A tectonic model for the central part of the Scandinavian Caledonides: American Journal of Science, v. 275-A, p. 468-515.

Gee, D.G., 2005, Scandinavian Caledonides (with Greenland), in Selley, R.C., Cocks, L.R.M. and Plimer, I.R., eds., Encyclopedia of Geology, Elsevier, Amsterdam, p. 64-74.

Gee, D.G., Kumpulainen, R., Roberts, D., Stephens, M.B., Thon, A., and Zachrisson, E., 1985, Scandinavian Caledonides Tectonostratigraphic Map, in Gee, D.G., and Sturt, B.A., eds., The Caledonide Orogen - Scandinavia and Related Areas: John Wiley \& Sons, scale 1:2 000 000, 1 sheet.

Gerstenberger, H., and Haase, G., 1997, Technical Note: A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations: Chemical Geology, v. 136, p. 309-312.

Gorbatschev, R., 1985, Precambrian basement of the Scandinavian Caledonides, in Gee, D.G., and Sturt, B.A., eds., The Caledonide Orogen - Scandinavia and Related Areas: John Wiley \& Sons, p. 197-212.

Graversen, O., Marker, M., Søvegjarto, U., 1981, Precambrian and Caledonian nappe tectonics in the Central Scandinavian Caledonides, Nordland, Norway: Terra Cognita, v. 1, n. 48 (abstract).

Gustavson, M., 1991, Geologisk kart over Norge, berggrunnskart BODØ 2029 IV: Norges geologiske undersøkelse, scale 1:50 000, 1 sheet.

Gustavson, M., 1996, Geologisk kart over Norge, berggrunnskart SULITJELMA: Norges geologiske undersøkelse, scale 1:250 000, 1 sheet.

Gustavson, M., and Blystad, P., 1995, Geologisk kart over Norge, berggrunnskart BODØ: Norges geologiske undersøkelse, scale 1:250 000, 1 sheet.

Gustavson, M., and Gjelle, S.T., 1991, Geologisk kart over Norge, berggrunnskart MO I RANA: Norges geologiske undersøkelse, scale 1:250 000, 1 sheet.

Hames, W.E. and Andresen, A., 1996, Timing of Paleozoic orogeny and extension in the continental shelf of north-central Norway as indicated by laser ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ muscovite dating: Geology, v. 24, no. 11, p. 1005-1008.

Hames, W.E., and Bowring, S.A., 1994, An empirical study of the argon diffusion geometry in muscovite: Earth and Planetary Science Letters, v. 124, p. 161-169.

Hames, W.E., Renne, P.R., and Ruppel, C., 2000, New evidence for geologically instantaneous emplacement of earliest Jurassic Central Atlantic magmatic province basalts on the North American Margin: Geology, v. 28, p. 859-862.

Henriksen, N., and Higgins, A.K., 2008, Geological research and mapping in the Caledonian orogen of East Greenland, $82^{\circ} \mathrm{N}-70^{\circ} \mathrm{N}$ : Geological Society of America Memoir 202, p. 1-27.

Hodges, K.V., 1982a, Tectonic Stratigraphy and Structural Evolution of the EfjordSitasjaure Area, Northern Scandinavian Caledonides [Ph.D. thesis]: Cambridge, Massachusetts Institute of Technology, 58 p.

Hodges, K.V., 1982b, The use of discordant apparent mineral ages in determining closure temperatures and cooling rates in geological environments [Ph.D. thesis]: Cambridge, Massachusetts Institute of Technology, 58 p.

Hodges, K.V., Bartley, J.M., and Burchfiel, B.C., 1982, Structural evolution of an A-type subduction zone, Lofoten-Rombak area, northern Scandinavian Caledonides: Tectonics, v. 1, n. 441, p. 441-462.

Hollingworth, S.E., Wells, M.K., and Bradshaw, R., 1960, Geology and structure of the Glomfjord Region, northern Norway: International Geological Congress, v. 21, p. 33-42.

Hoskin, P.W.O. and Schaltegger, U., 2003, The Composition of Zircon and Igneous and Metamorphic Petrogenesis, in Hanchar, J.M. and Hoskin, P.W.O., eds., Reviews in Mineralogy \& Geochemistry, Volume 53, Zircon: Washington, D.C., Mineralogical Society of America, p. 468-500.

Jaffey, A.H., Flynn, K.F., Glendenin, L.E., Bentley, W.C., and Essling, A.M., 1971, Precision measurement of halflives and specific activities of ${ }^{235} \mathrm{U}$ and ${ }^{238} \mathrm{U}$ : Physical Reviews, Section C, Nuclear Physics, v. 4, p. 1889-1906.

Kalsbeek, F., Thrane, K., Higgins, A.K., Jepsen, H.F., Leslie, A.G., Nutman, A.P., and Frei, R., 2008, Polyorogenic history of the East Greenland Caledonides: Geological Society of America Memoir 202, p. 55-72.

Kalsbeek F., Thrane, K., Nutman, A.P., and Jepsen, H.F., 2000, Late Mesoproterozoic to early Neoproterozoic history of the East Greenland Caledonides: evidence for Grenvillian orogenesis?: Journal of the Geological Society, London, v. 157, p. 1215-1225.

Kautsky, G., 1953, Der geologische Bau des Sulitjelma-Salojauregegietes in den nordskandinavischen Kaledoniden: Sveriges geologiska undersökning Serie C, v. 528, p. 1-228.

Keppler, H., and Wyllie, P.J., 1990, Role of fluids in transport and fractionation of uranium and thorium in magmatic processes: Nature, v. 348, p. 531-533.

Klein, A., Steltenpohl, M.G., Hames, W.E., Andresen, A., 1999, Ductile and brittle extension in the southern Lofoten archipelago, north Norway: implications for differences in tectonic style along an ancient collisional margin: American Journal of Science, v. 299, p. 69-89.

Korja, A., Lahtinen, A., and Nironen, M., 2006, The Svecofennian orogen: a collage of microcontinents and island arcs: Geological Society, London, Memoirs, v. 32, p. 561-578.

Krogh, T.E., 1973, A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations: Geochimica et Cosmochimica Acta, v. 37, p. 485-494.

Krogh, T.E., 1982a, Improved accuracy of U-Pb zircon dating by selection of more concordant fractions using a high gradient magnetic separation technique: Geochimica et Cosmochimica Acta, v. 46, p. 631-635.

Krogh, T.E., 1982b, Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique: Geochimica et Cosmochimica Acta, v. 46, p. 637-649.

Leslie, A.G., and Higgins, A.K., 2008, Foreland-propagating Caledonian thrust systems in East Greenland: Geological Society of America Memoir 202, p. 169-199.

Leslie, A.G., and Nutman, A.P., 2003, Evidence for Neoproterozoic orogenesis and early high temperature Scandian deformation events in the southern East Greenland Caledonides: Geological Magazine, v. 140, p. 309-333.

Leslie, A.G., Smith, M., and Soper, N.J., 2008, Laurentian margin evolution and the Caledonian orogeny - A template for Scotland and East Greenland: Geological Society of America Memoir 202, p. 307-343.

Lindh, A., and Persson, P.-O, 1990, Proterozoic Granitoid Rocks of the Baltic Shield Trends of Development, in Gower, C.F., Rivers, T., and Ryan, A.B., eds., MidProterozoic Laurentia-Baltica: Geological Association of Canada, Special Paper 38, p. 23-40.

Ludwig, K.R., 2009, Isoplot/Ex Version 3.71.09.05.23nx. A Geochronological Toolkit for Microsoft Excel: Berkley Geochronology Center Special Publication, n. 4.

Mager, S.M., 2005, The late- to post-Caledonian extensional history of northwest Hinnøy, north Norway [M. Sc. thesis]: Auburn University, 88 p.

Mattinson, J.M., 2005, Zircon U-Pb chemical abrasion ("CA-TIMS") method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages: Chemical Geology, v. 220, p. 47-66.

Montel, J.M., Foret, S., Veschambre, M., Nicollet, C., and Provost, A., 1996, Electron microprobe dating of monazite: Chemical Geology, v. 131, p. 37-53.

Neuendorf, K.K.E, Mehl, Jr., J.P., and Jackson, J.A., editors, 2005, Glossary of Geology: Alexandria, Virginia, American Geological Institute, 779 p.

Nicholson, R., 1970, The tectonic pattern of the Bodø-Sulitjelma area, a review. in Proceedings, The caledonian geology of Northern Norway, January 10th-12 ${ }^{\text {th }}$ 1970: Cardiff, University College, v. 269, p. 74-76.

Nicholson, R., and Rutland, R.W.R., 1969, A Section across the Norwegian Caledonides; Bodø to Sulitjelma: Norges Geologiske Undersøkelse, n. 260, p. 1-86.

Nicolaysen, L.O., 1961, Graphic interpretation of discordant age measurements on metamorphic rocks: Annals New York Academy of Science, v. 91, p. 198-206.

Northrup, C.J., 1996, Structural expressions and tectonic implications of general noncoaxial flow in the midcrust of a collisional orogen: The northern Scandinavian Caledonides: Tectonics, v. 15, n. 2, p. 490-505.

Osmundsen, P.T., Braathen, A., Nordgulen, Ø., Roberts, D., Meyer, G.B., and Eide, E., 2003, The Devonian Nesna shear zone and adjacent gneiss-cored culminations,

North-Central Norwegian Caledonides: Journal of the Geological Society, London, v. 150, p. 137-150.

Parrish, R.R, 1990, U-Pb dating of monazite and its application to geological problems: Canadian Journal of Earth Sciences, v. 27, p. 1431-1450.

Parrish, R.R. and Noble, S.R., 2003, Zircon U-Th-Pb Geochronology by Isotope Dilution - Thermal Ionization Mass Spectrometry (ID-TIMS) , in Hanchar, J.M. and Hoskin, P.W.O., eds., Reviews in Mineralogy \& Geochemistry, Volume 53, Zircon: Washington, D.C., Mineralogical Society of America, p. 183-213.

Passchier, C.W., and Trouw, R.A.J., 2005, Microtectonics, Berlin, Springer, 366 p.

Pettersson, C.H., Tebenkov, A.M., Larionov, A.N., Andresen, A., and Pease, V., 2009, Timing of migmitization and granite genesis in the Northwestern Terrane of Svalbard, Norway: implications for regional correlations in the Arctic Caledonides: Journal of the Geological Society, London, v. 166, p. 147-158.

Pupin, J.P., 1980, Zircon and Granite Petrology: Contributions to Mineralogy and Petrology, v. 73, p. 207-220.

Ramberg, H., 1980, Diapirism and gravity collapse in the Scandinavian Caledonides: Journal of the Geological Society, London, v. 137, p. 261-270.

Renne, P.R., Swisher, C.C., Deino, A.L., 1998, Intercalibration of standards, absolute ages and uncertainties in ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ dating: Chemical Geology (Isotope Geoscience Section), v. 145, p. 117-152.

Roberts, D., 1988, Timing of Silurian to middle Devonian deformation in the Caledonides of Scandinavia, Svalbard and E Greenland, in Harris, A.L., Fettes, D.J., eds., The Caledonian-Appalachian Orogen: Geological Society Special Publication No. 38, p. 429-435.

Roberts, D., 2003, The Scandinavian Caledonides: event chronology, palaeogeographic settings and likely modern analogues: Tectonophysics, v. 365, p. 283-299.

Roberts, D., and Gee, D.G., 1985, An introduction to the structure of the Scandinavian Caledonides, in Gee, D.G., and Sturt, B.A., eds., The Caledonide orogen Scandinavia and related areas: Chichester, England, Wiley \& Sons, p. 553-569.

Roberts, D., Nordgulen, Ø., and Melezhik, V., 2007, The Uppermost Allochthon in the Scandinavian Caledonides: From a Laurentian ancestry through Taconian orogeny to Scandian crustal growth on Baltica, in Hatcher, R.D. Jr., Carlson, M.P., McBride, J.H., and Martínez Catalán, J.R., eds., 4-D Framework of Continental Crust: Geological Society of America Memoir 200, p. 357-377.

Rock, N.M.S., and Duffy, T.R., 1986, REGRES: A FORTRAN-77 program to calculate nonparametric and "structural" parametric solutions to bivariate regression equations: Computers and Geoscience, v. 12, n. 6, p. 807-818.

Romer, R.L., Kjøsnes, B., Korneliussen, A., Lindahl, I., Skyseth, T., Stendal, M., and Sundvoll, B., 1992, The Archaean-Proterozoic boundary beneath the Caledonides of northern Norway and Sweden: U-Pb, Rb-Sr, and $\varepsilon N d$ data from the RombakTysfjord area: Norges geologiske undersøkelse, Rapport 91.225, 67 pp.

Rutland, R.W.R., and Nicholson, R., 1965, Tectonics of the Caledonides of part of Nordland, Norway: Quarterly Journal of the Geological Society London, v. 121, p. 73-109.

Rykkelid, E., and Fossen, H., 1992, Composite fabrics in mid-crustal gneisses: observations from the Øygarden Complex, West Norway Caledonides: Journal of Structural Geology, v. 14, n. 1, p. 1-9.

Siivola, J., and Schmid, R., 2007, A systematic nomenclature for metamorphic rocks: 12. List of mineral abbreviations. Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. Recommendations, web version of 01.02.2007.

Silvennoinen, A., Gustavson, M., Perttunen, V., Siedlecka, A., Sjöstrand, T., Stephens, M.B., and Zachrisson, E., 1987, Geologic Map, Northern Fennoscandia: Geological Surveys of Finland, Norway, and Sweden, scale 1:1 000 000, 1 sheet.

Skår, Ø., 2002, U-Pb geochronology and geochemistry of early Proterozoic rocks of the tectonic basement windows in central Nordland, Caledonides of north-central Norway: Precambrian Research, v. 116, p. 265-283.

Solli, A., and Nordgulen, Ø., 2008, Bedrock map of Norway and the Caledonides in Sweden and Finland: Geological Survey of Norway, scale 1:2,000,000, 1 sheet.

Spear, F.S., 1993, Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths, 799 p., Mineralogical Society of America, Washington, D. C.

Speer, J.A., 1980, Zircon, in Ribbe, P.H., ed., Reviews in Mineralogy, Volume 5, Orthosilicates: Washington, D.C., Mineralogical Society of America, p. 67-112.

Stacey, J.S., and Kramers, J.D., 1975, Approximation of terrestrial lead isotope evolution by a two-stage model: Earth and Planetary Science Letters, v. 34, p. 207-226.

Steffen, K., Selverstone, J., and Brearley, A., 2001, Episodic weakening and strengthening during synmetamorphic deformation in a deep crustal shear zone in the Alps, in Holdsworth, R.E., Strachan, R.A., MagLoughlin, J.F., Knipe, R.J., eds., The Nature and Tectonic Significance of Fault Zone Weakening: Geological Society Special Publication, n. 186, p. 141-156.

Steiger, R.H., and Jäger, E., 1977, Subcommision on geochronology: Convention on the use of decay constants in geo- and cosmochronology: Earth and Planetary Science Letters, v. 36, p. 359-362.

Steltenpohl, M.G., and Bartley, J.M., Postcollisional extension of the Caledonide orogen in Scandinavia: Structural expressions and tectonic significance: Comment and Reply: Geology, v. 12, p. 123-140.

Steltenpohl, M.G., Ball, J.B., Moecher, D.P., and Andresen, A., 2010, The Eidsfjord Detachment: an Early Devonian, Paleoseismogenic Low-angle Normal Detachment Fault Exposed in Lofoten-Vesterålen, North Norway. In: Norges Geologisk Forening (Geological Society of Norway), Nordic Geologic Winter Meeting, Abstracts and Proceedings, v. 1, p. 186-189.

Steltenpohl, M.G., Carter, B.T., Andresen, A., and Zeltner, D.L., 2009, ${ }^{40} \mathrm{Ar}{ }^{39} \mathrm{Ar}$ Thermochronology of Late- and Postorogenic Extension in the Caledonides of North-Central Norway: The Journal of Geology, v. 117, p.399-414.

Steltenpohl, M.G., Hames, W.E., and Andresen, A., 2004, The Silurian to Permian history of a metamorphic core complex in Lofoten, northern Scandinavian Caledonides: Tectonics, v. 23, 1-23.

Steltenpohl, M.G., Hames, W., Andresen, A., and Markl, G., 2003, New Caledonian eclogite province in Norway and potential Laurentian (Taconic) and Baltic links: Geology, v. 31, p. 985-988.

Steltenpohl, M.G., Moecher, D., Andresen, A., Ball, J., Mager, S., and Hames, W.E., 2011, The Eidsfjord shear zone, Lofoten-Vesterålen, north Norway: An Early Devonian, paleoseismogenic low-angle normal fault: Journal of Structural Geology, v. 33, n. 5, p. 1023-1043.

Stephens, M.B., and Gee, D.G., 1985: A tectonic model for the evolution of the eugeoclinal terranes in the central Scandinavian Caledonides, in Gee, D.G., and Sturt, B.A., eds., The Caledonide Orogen - Scandinavia and Related Areas: John Wiley \& Sons, p. 953-978.

Stephens, M.B., Gustavson, M., Ramberg, I.B., and Zachrisson, 1985, The Caledonides of central-north Scandinavia - a tectonostratigraphic overview, in Gee, D.G., and Sturt, B.A., eds., The Caledonide Orogen - Scandinavia and Related Areas: John Wiley \& Sons, p. 135-162.

Stephens, M.B., Kullerud, K., Claesson, S., 1993, Early Caledonian tectonothermal evolution in outboard terranes, central Scandinavian Caledonides: new constraints from U-Pb zircon dates: Journal of the Geological Society, London, v. 150, p. 5156.

Strachan, R.A., Nutman, A.P., and Friderichsen, J.D., 1995, SHRIMP U-Pb geochronology and metamorphic history of the Smallefjord sequence, NE Greenland Caledonides: Journal of the Geological Society, London, v. 152, p. 779-784.

Styles, M.T., 1974, The Structure, Metamorphism, and Igneous Petrology of the Beiarn Area, Nordland, Northern Norway [Ph.D. thesis]: Manchester, University of Manchester, 131 p.

Sønderholm, M., Frederiksen, K.S., Smith, M.P., and Tirsgaard, H., 2008, Neoproterozoic sedimentary basins with glacigenic deposits of the East Greenland Caledonides: Geological Society of America Memoir 202, p. 99-136.

Thelander, T., Bakker, E., and Nicholson, R., 1980, Basement-cover relationships in the Nasafjället Window, central Swedish Caledonides: Geologiska Föreningens I Stockholm Förhandlingar, v. 102, p. 569-580.

Tørudbakken, B.O, and Brattli, B., 1985, Ages of metamorphic and deformational events in the Beiarn Nappe Complex, Nordland, Norway: Norges Geologiske Undersøkelse Bulletin, v. 399, p. 27-39.

Walsh, E.O., Hacker, B.R., Gans, P.B., Grove, M., and Gehrels, G., Protolith ages and exhumation histories of (ultra)high-pressure rocks across the Western Gneiss

Region, Norway. Geological Society of America Bulletin, v. 110, n. 3-4, p. 289301.

Waters, D.J., 2004, Practical Aspects of Mineral Thermobarometry: http://www.earth.ox.ac.uk/~davewa/pt/pt04.html, accessed 4 March, 2011.

Watson, E.B., 1979, Zircon saturation in felsic liquids: Experimental results and applications to trace element geochemistry: Contributions to Mineralogy and Petrology, v. 70, p. 407-419.

Watt, G.R., Kinny, P.D., and Friderichsen, J.D., 2000, U-Pb geochronology of Neoproterozoic and Caledonian tectonothermal events in the East Greenland Caledonides: Journal of the Geological Society, London, v. 157, p. 1030-1048.

Wendt, I., and Carl, C., 1991, The statistical distribution of the mean squared weighted deviation: Chemical Geology (Isotope Geoscience Section), v. 86, p. 275-285.

Wetherill, G.W., 1956, Discordant Uranium Ages, I: Transactions, American Geophysical Union, v. 37, n. 3, p. 320-326.

Wetherill, G.W., 1963, Discordant Uranium-Lead Ages: 2. Discordant ages resulting from diffusion of Lead and Uranium: Journal of Geophysical Research, v. 68, n. 10, p. 2957-2965.

Williams, M.L., Jercinovic, M.J., and Hetherington, C.J., 2007, Microprobe Monazite Geochronology: Understanding Geologic Processes by Integrating Composition and Chronology: Annual Reviews of Earth and Planetary Sciences, v. 35, p. 137175.

Williams, M.L., Jercinovic, M.J., and Terry, M.P., 1999, Age mapping and dating of monazite on the electron microprobe: Deconvoluting multistage tectonic histories: Geology, v. 27, n. 11, p. 1023-1026.

Wilson, M.R., 1981, Geochronological results from Sulitjelma, Norway: Terra Cognita, v. 1, n. 160 (abstract).

Wilson, M.R., and Nicholson, R., 1973, The structural setting and geochronology of basal granitic gneisses in the gneisses in the Caledonides of part of Nordland, Norway: Journal of the Geological Society, London, v. 129, p. 365-386.

Zeltner, D.L., 2001, Geological investigations in east Bodø, north-central Norway [M.Sc. thesis]: Auburn University, 101 p.

Zheng, Y.F., 1989, Influences of the nature of the initial Rb-Sr system on isochron validity: Chemical Geology, v. 80, p. 1-16.

## APPENDIX 1 －Station

## Locations

Table printed in OCR font so that data can easily be scanned and processed with optical character recognition software．Coordinates provided are UTM 33N WGS84（EPSG 32633）．

| Station | Easting（X） | Northing（Y） |
| :---: | :---: | :---: |
| LEA－10－1 | 505847 | 7493461 |
| LEA－1ロ－2 | 491908 | 748386 |
| LND－00］ | 467941 | 7474429 |
| LND－0．1 | 467941 | 7474429 |
| LND－002 | 468167 | 7474404 |
| LND－0．3 | 468381 | 7474539 |
| LND－004 | 468362 | 7474728 |
| LND－005 | 468431 | 7474804 |
| LND－ロロb | 468544 | 7474897 |
| LND－0．7 | 468511 | 7474820 |
| LND－0．8 | 468497 | 7474767 |
| LND－009 | 468384 | 7474447 |
| LND－ロ1］ | 467922 | 7473606 |
| LND－01］ | 467879 | 7473472 |
| LND－ロ1」 | 468374 | 7473841 |
| LND－013 | 468865 | 7474007 |
| LND－014 | 468657 | 7473933 |
| LND－015 | 468938 | 7474017 |
| LND－ロ16 | 469392 | 7474283 |
| LND－01？ | 469662 | 7474539 |
| LND－018 | 470678 | 7474856 |
| LND－ロ19 | 471833 | 7474878 |
| LND－ロ20 | 472597 | 7475175 |
| LND－ロこ1 | 473065 | 7475397 |
| KJR－001 | 487928 | 7487656 |
| KJR－002 | 488150 | 7487707 |
| KJR－003 | 488197 | 7487640 |
| KJR－004 | 488587 | 7487676 |
| KJR－005 | 488768 | 7487688 |
| KJR－006 | 489074 | 7487523 |
| KJR－00？ | 489352 | 7487273 |
| KJR－008 | 489747 | 7486751 |
| KJR－009 | 490201 | 748ち682 |
| KJR－01］ | 490419 | 7486711 |
| KJR－011 | 490924 | 7487145 |
| KJR－ロlı | 490883 | 7487289 |
| KJR－013 | 470282 | 7487317 |
| KJR－014 | 490248 | 7487321 |


| Station | Easting（X） | Northing（Y） |
| :---: | :---: | :---: |
| KJR－015 | 490240 | 7487352 |
| KJR－ロlb | 470178 | 7487380 |
| KJR－ロl？ | 490026 | 7487558 |
| KJR－ロ18 | 489747 | 7487784 |
| KJR－ロ17 | 490009 | 7488163 |
| KJR－020 | 487819 | 7487219 |
| KJR－ロ2l | 48769 | 7487065 |
| KJR－ロ22 | 487529 | 7486874 |
| KJR－023 | 487476 | 7486839 |
| KJR－024 | 487353 | 7486752 |
| KJR－025 | 487331 | 7486733 |
| KJR－ロ2b | 487287 | 7486709 |
| KJR－ロ2？ | 487219 | 7486560 |
| KJR－ロ28 | 487212 | 7486541 |
| KJR－ロ29 | 48711］ | 7486372 |
| KJR－030 | 487033 | 7486351 |
| KJR－03l | 486914 | 7486270 |
| KJR－032 | 48ちアロ2 | 7486279 |
| KJR－033 | 486648 | 7486ここ9 |
| KJR－034 | 486534 | 7486182 |
| KJR－035 | 486471 | 7485984 |
| KJR－03b | 486443 | 7485926 |
| KJR－03？ | 486508 | 7485905 |
| KJR－038 | 48レ619 | 7485749 |
| KJR－039 | 486675 | 7485697 |
| KJR－040 | 487055 | 7485568 |
| KJR－041 | 487269 | 7485627 |
| KJR－042 | 487392 | 7485457 |
| KJR－043 | 487498 | 7486068 |
| KJR－044 | 487485 | 7486188 |
| KJR－045 | 487425 | 7486415 |
| KJR－ロ46 | 487631 | 7486989 |
| KJR－047 | 488047 | 7487487 |
| KJR－048 | 486831 | 7486118 |
| KJR－047 | 486383 | 7485879 |
| KJR－050 | 486347 | 7485880 |
| KJR－051 | $48\llcorner 273$ | 7485810 |
| KJR－052 | 486187 | 7485786 |
| KJR－053 | 486136 | 7485777 |
| KJR－054 | 486ロ86 | 7485730 |
| KJR－055 | 486017 | 7485661 |
| KJR－05b | 485983 | 7485600 |
| KJR－05？ | 485933 | 7485534 |
| KJR－058 | 485916 | 7485471 |
| KJR－059 | 485910 | 7485372 |
| KJR－ロ60 | 485837 | 7485337 |
| KJR－0bl | 485729 | 7485248 |
| KJR－ロb2 | 48566 ？ | 748512b |
| KJR－063 | 485592 | 7485065 |
| KJR－064 | 485511 | 7485008 |
| KJR－0b5 | 485470 | 7484795 |


| Station | Easting（X） | Northing（Y） |
| :---: | :---: | :---: |
| KJR－ロレ6 | 485422 | 7484935 |
| KJR－ロ6？ | 485377 | 7484871 |
| KJR－068 | 485373 | 7484820 |
| KJR－ロレ9 | 48526 | 7484788 |
| KJR－ロ70 | 485166 | 7484713 |
| KJR－ロ7］ | 485031 | 7484579 |
| KJR－ロ72 | 487044 | 7486685 |
| KJR－ロ73 | 486916 | 7486671 |
| KJR－074 | 486846 | 7486759 |
| KJR－075 | 486568 | 7486723 |
| KJR－ロ76 | 486512 | 7486770 |
| KJR－ロ7？ | 487035 | 7486891 |
| KJR－ロ78 | 487078 | 7487007 |
| KJR－ロア9 | 483981 | 7477342 |
| KJR－080 | 484047 | 7477392 |
| KJR－081 | 484202 | 7477568 |
| KJR－ロ82 | 484219 | 74776ロ4 |
| KJR－083 | 484256 | 7478122 |
| KJR－084 | 484159 | 7478262 |
| KJR－085 | 484116 | 7478359 |
| KJR－08b | 484252 | 7478349 |
| KJR－ロ8？ | 484314 | 7478409 |
| KJR－ロ88 | 484352 | 7478497 |
| KJR－ロ89 | 484373 | 7478633 |
| KJR－090 | 484402 | 7478778 |
| KJR－091 | 484445 | 7479046 |
| KJR－ロ92 | 484414 | 7479231 |
| KJR－093 | 484326 | 7479327 |
| KJR－094 | 484289 | 7479505 |
| KJR－095 | 484330 | 7479ロロロ |
| KJR－ロ96 | 484246 | 7479634 |
| KJR－ロ9？ | 484287 | 7479731 |
| KJR－098 | 484365 | 7479872 |
| KJR－ロ99 | 484314 | 747976 |
| KJR－100 | 484351 | 7480044 |
| KJR－101 | 484706 | 7474907 |
| KJR－102 | 484772 | 7474975 |
| KJR－103 | 484832 | 7474978 |
| KJR－104 | 484947 | 7474785 |
| KJR－105 | 485015 | 7475135 |
| KJR－106 | 485017 | 7475222 |
| KJR－107 | 485192 | 7475355 |
| KJR－108 | 485357 | 7475421 |
| KJR－109 | 485474 | 7475465 |
| KJR－11］ | 485454 | 7475594 |
| KJR－111 | 485545 | 7475723 |
| KJR－11」 | 485644 | 7475774 |
| KJR－113 | 485700 | 7476010 |
| KJR－114 | 485797 | 7476089 |
| KJR－115 | 485775 | 7476096 |
| KJR－11．6 | 485672 | 747ロ1ロ2 |
| KJR－11？ | 485685 | 7476295 |
| KJR－11閏 | 485653 | 7476458 |
| KJR－119 | 485547 | 7476541 |
| KJR－120 | 485421 | 7476592 |


| Station | Easting（X） | Northing（Y） |
| :---: | :---: | :---: |
| KJR－12］ | 483720 | 7473919 |
| KJR－1コ2 | 484356 | 7475070 |
| KJR－123 | 484400 | 7475110 |
| KJR－124 | 484530 | 7475154 |
| KJR－125 | 484635 | 7475297 |
| KJR－12b | 484768 | 7475406 |
| KJR－127 | 485090 | 7475719 |
| KJR－128 | 485204 | 7475798 |
| KJR－129 | 484645 | 7476145 |
| KJR－130 | 484606 | 7476ここ2 |
| KJR－131 | 484335 | 7476681 |
| KJR－132 | 484325 | 7476759 |
| KJR－133 | 484274 | 7476828 |
| KJR－134 | 484327 | 7476879 |
| KJR－135 | 484394 | 7476908 |
| KJR－136 | 484440 | 7476862 |
| KJR－137 | 484565 | 7477033 |
| KJR－138 | 484546 | 7477174 |
| KJR－139 | 484613 | 7477191 |
| KJR－140 | 484643 | 7477225 |
| KJR－141 | 485174 | 7484455 |
| KJR－142 | 485266 | 7484423 |
| KJR－143 | 485384 | 7484335 |
| KJR－144 | 485531 | 7484443 |
| KJR－145 | 485640 | 7484270 |
| KJR－146 | 485765 | 7484220 |
| KJR－147 | 485825 | 7484136 |
| KJR－148 | 485856 | 7484076 |
| KJR－149 | 485963 | 7483940 |
| KJR－150 | 486103 | 7483865 |
| KJR－151 | 486314 | 7483525 |
| KJR－152 | 486461 | 7483365 |
| KJR－153 | 486476 | 74832こ1 |
| KJR－154 | 486545 | 7483203 |
| KJR－155 | 486589 | 7483147 |
| KJR－156 | 486625 | 7483312 |
| KJR－15？ | 486670 | 7483007 |
| KJR－158 | 486941 | 7482809 |
| KJR－159 | 486939 | 7482787 |
| KJR－160 | 487020 | 7482704 |
| KJR－161 | 487083 | 7482667 |
| KJR－1b2 | 487162 | 7482ち36 |
| KJR－163 | 489687 | 7480249 |
| KJR－164 | 489582 | 7480181 |
| KJR－165 | 489679 | 7480084 |
| KJR－166 | 489727 | 7479782 |
| KJR－16？ | 489892 | 7479968 |
| KJR－16日 | 490127 | 7478971 |
| KJR－169 | 490101 | 7478881 |
| KJR－170 | 490088 | 7478794 |
| KJR－17］ | 490063 | 7478829 |
| KJR－172 | 489753 | 7478671 |
| KJR－173 | 489719 | 7478539 |
| KJR－174 | 489642 | 7478446 |
| KJR－175 | 489565 | 7478414 |


| Station | Easting（X） | Northing（Y） |
| :---: | :---: | :---: |
| KJR－176 | 489184 | 7478418 |
| KJR－17？ | 48896 | 7478379 |
| KJR－178 | 488872 | 7478371 |
| KJR－179 | 488855 | 7478312 |
| KJR－180 | 488830 | 7477936 |
| KJR－181 | 488959 | 7477935 |
| KJR－182 | 488407 | 7477537 |
| KJR－183 | 488168 | 7477575 |
| KJR－184 | 487938 | 7477486 |
| KJR－185 | 487554 | 7477230 |
| KJR－186 | 487384 | 7477220 |
| KJR－18？ | 486869 | 7476859 |
| KJR－188 | 48635b | 7476526 |
| KJR－189 | 487303 | 7486977 |
| KJR－190 | 487407 | 7487147 |
| KJR－191 | 487429 | 7487455 |
| KJR－192 | 487404 | 7487532 |
| KJR－193 | 487742 | 7487518 |
| KJR－194 | 487879 | 748752b |
| KJR－195 | 488156 | 7487791 |
| KJR－196 | 488167 | 7487821 |
| KJR－197 | 488212 | 7487883 |
| KJR－198 | 488229 | 7487901 |
| KJR－199 | 488282 | 7487947 |
| KJR－200 | 488404 | 7488037 |
| KJR－201 | 488520 | 7488107 |
| KJR－202 | 488700 | 7488132 |
| KJR－203 | 488758 | 7488368 |
| KJR－204 | 489054 | 7488368 |
| KJR－205 | 489146 | 7488331 |
| KJR－206 | 489234 | 7488381 |
| KJR－207 | 488075 | 7482bこl |
| KJR－208 | 488965 | 7485456 |
| KJR－209 | 489245 | 7485015 |
| KJR－2lロ | 489447 | 7484637 |
| KJR－21］ | 489640 | 7484208 |
| KJR－2l」 | 490170 | 7483778 |
| KJR－2l3 | 491625 | 7483829 |
| KJR－214 | 491727 | 7483816 |
| KJR－215 | 491835 | 7483856 |
| KJR－2lı | 491719 | 7484121 |
| KJR－2l？ | 491750 | 7484232 |
| KJR－21品 | 492084 | 7484332 |
| KJR－219 | 492636 | 7484705 |
| KJR－220 | 493434 | 7484747 |
| KJR－2こ1 | 493392 | 7484942 |
| KJR－2こ2 | 494759 | 7493453 |
| KJR－223 | 494882 | 7493445 |
| KJR－224 | 494705 | 7493326 |
| KJR－225 | 494569 | 7493064 |
| KJR－22b | 494340 | 7492747 |
| KJR－2こ？ | 494084 | 7492929 |
| KJR－22』 | 473936 | 7492910 |
| KJR－229 | 493546 | 74927b1 |
| KJR－230 | 493541 | 7492576 |


| Station | Easting（X） | Northing（Y） |
| :---: | :---: | :---: |
| KJR－231 | 493327 | 7492323 |
| KJR－232 | 493172 | 7492143 |
| KJR－233 | 49 ¢87 | 7492015 |
| KJR－234 | 493098 | 7491872 |
| KJR－235 | 473129 | 7471717 |
| KJR－236 | 493686 | 7491700 |
| KJR－237 | 493323 | 7491499 |
| KJR－238 | 492976 | 7491595 |
| KJR－239 | 492805 | 7491633 |
| KJR－240 | 492722 | 7491633 |
| KJR－241 | 492482 | 7491531 |
| KJR－242 | 488808 | 7477884 |
| KJR－243 | 487057 | 7482アロ2 |
| KJR－244 | 491245 | 7490000 |
| KJR－245 | 471265 | 7489859 |
| KJR－246 | 491877 | 7488951 |
| KJR－24 7 | 491844 | 7488738 |
| KJR－248 | 491848 | 7488542 |
| KJR－249 | 491704 | 7488080 |
| KJR－250 | 491743 | 7487765 |
| KJR－251 | 491773 | 7487465 |
| KJR－252 | 491793 | 7487173 |
| KJR－253 | 492123 | 7487104 |
| KJR－254 | 472295 | 7486964 |
| KJR－255 | 492334 | 7486883 |
| KJR－25b | 492441 | 7486800 |
| KJR－25？ | 492527 | 7486785 |
| KJR－258 | 492765 | 7486801 |
| KJR－259 | 493059 | 7486807 |
| KJR－2b0 | 493773 | 7486681 |
| KJR－2bl | 494018 | 7486565 |
| KJR－2b2 | 49436 ？ | 7486527 |
| KJR－2b3 | 494578 | 7486492 |
| KJR－264 | 474615 | 7486497 |
| KJR－265 | 494936 | 7486442 |
| KJR－2b6 | 475141 | 7486396 |
| KJR－2b？ | 496749 | 7486278 |
| KJR－2b ${ }^{\text {a }}$ | 497283 | 7486382 |
| KJR－269 | 489345 | 7488470 |
| KJR－270 | 489436 | 7488714 |
| KJR－27］ | 489544 | 7488785 |
| KJR－272 | 489279 | 7488828 |
| KJR－273 | 489657 | 7488934 |
| KJR－274 | 489669 | 7489083 |
| KJR－275 | 489611 | 7489292 |
| KJR－276 | 489863 | 7489328 |
| KJR－27？ | 490006 | 7489565 |
| KJR－278 | 490104 | 7489656 |
| KJR－279 | 490185 | 7489733 |
| KJR－280 | 490323 | 7489770 |
| KJR－281 | 490529 | 7489921 |
| KJR－282 | 490777 | 7490026 |
| KJR－283 | 491041 | 7490174 |
| KJR－284 | 491724 | 7490388 |
| KJR－285 | 491583 | 7490649 |


| Station | Easting（X） | Northing（Y） |
| :---: | :---: | :---: |
| KJR－28b | 491707 | 7490796 |
| KJR－28？ | 491710 | 7490917 |
| KJR－288 | 492458 | 7491077 |
| KJR－289 | 493149 | 747ロコアロ |
| KJR－290 | 473115 | 7476435 |
| KJR－291 | 472987 | 74765b2 |
| KJR－292 | 4928」2 | 7476719 |
| KJR－293 | 492648 | 7476743 |
| KJR－294 | 472545 | 7476972 |
| KJR－295 | 492383 | 7477045 |
| KJR－296 | 492213 | 7477114 |
| KJR－29？ | 492036 | 747705b |
| KJR－298 | 471702 | 7476976 |
| KJR－ご9 | 471694 | 7476979 |
| KJR－300 | 471535 | 7477091 |
| KJR－301 | 491312 | 7477136 |
| KJR－302 | 490098 | 747708？ |
| TVK－ロ1 | 505017 | 7494030 |
| TVK－ロ2 | 505063 | 7494047 |
| TVK－04 | 505175 | 7494074 |
| TVK－05 | 505358 | 7494043 |
| TVK－ロb | 505357 | 7494072 |
| TVK－ロ7 | 505348 | 7494748 |
| TVK－ロ8 | 505443 | 7474780 |
| TVK－ロ9 | 505418 | 7474512 |
| TVK－1． | 505538 | 7494503 |
| TVK－11 | 505618 | 7494411 |
| TVK－12 | 505759 | 7494434 |
| TVK－13 | 505801 | 7474398 |
| TVK－14 | 506031 | 7494268 |
| TVK－1，5 | 506154 | 7494404 |
| TVK－16 | 506268 | 7494444 |
| TVK－17 | 506354 | 7494400 |
| TVK－18 | 506413 | 7494240 |
| TVK－17 | 506421 | 7494117 |
| TVK－20 | 506416 | 7493972 |
| TVK－2l | 506411 | 7493954 |
| TVK－22 | 506429 | 7493916 |
| TVK－23 | 506381 | 7493820 |
| TVK－24 | 506238 | 7493712 |
| TVK－25 | 506005 | 7493662 |
| TVK－2b | 505987 | 7493651 |
| TVK－27 | 505893 | 7473595 |
| TVK－28 | 505773 | 7493623 |
| TVK－2ף | 505647 | 7493576 |
| TVK－30 | 505574 | 7493623 |
| TVK－31 | 505561 | 7493681 |
| TVK－32 | 505500 | 7493759 |
| TVK－33 | 505473 | 7493850 |
| TVK－34 | 505463 | 7493909 |
| TVK－35 | 505421 | 7494082 |
| TVK－3b | 505364 | 7474207 |
| TVK－37 | 504986 | 7495009 |
| TVK－38 | 504973 | 7494839 |
| TVK－39 | 505069 | 7474721 |


| Station | Easting（X） | Northing（Y） |
| :---: | :---: | :---: |
| TVK－40 | 505179 | 7494782 |
| TVK－41 | 506310 | 7493843 |
| TVK－42 | 50632b | 7493615 |
| TVK－43 | 506353 | 7493506 |
| TVK－44 | 50b350 | 7493483 |
| TVK－45 | 50635？ | 7473444 |
| TVK－4b | 506376 | 7493390 |
| TVK－47 | 506373 | 7493342 |
| TVK－48 | 506343 | 7493155 |
| TVK－49 | 506313 | 7493111 |
| TVK－50 | 506353 | 7492953 |
| TVK－51 | 506148 | 7494180 |
| TVK－52 | 50ヶここも | 7492958 |
| TVK－53 | 50レ212 | 7492816 |
| TVK－54 | 506138 | 7492720 |
| TVK－55 | 506431 | 7492773 |
| TVK－5b | 506240 | 7492583 |
| TVK－57 | 505972 | 7492537 |
| TVK－58 | 505724 | 7492152 |
| TVK－59 | 505595 | 7492078 |
| TVK－b | 505439 | 7492164 |
| TVK－bl | 505231 | 7492038 |
| TVK－b2 | 505127 | 7492011 |
| TVK－63 | 505037 | 7491756 |
| TVK－64 | 504773 | 7471888 |
| TVK－65 | 504449 | 7491875 |
| TVK－b6 | 504357 | 7491910 |
| TVK－6？ | 504213 | 7491871 |
| TVK－68 | 503928 | 7491788 |
| TVK－b9 | 503929 | 7491791 |
| TVK－70 | 503988 | 7492190 |
| TVK－71 | 503795 | 7492こロ8 |
| TVK－72 | 504042 | 7492325 |
| TVK－73 | 504085 | 7492519 |
| TVK－74 | 504136 | 7492742 |
| TVK－75 | 504169 | 7492893 |
| TVK－76 | 504173 | 7493012 |
| TVK－77 | 504320 | 7493470 |
| TVK－78 | 504174 | 7493409 |
| TVK－79 | 504169 | 7493237 |
| TVK－80 | 5041111 | 7493197 |
| TVK－81 | 504020 | 7493118 |
| TVK－82 | 503974 | 7492985 |
| TVK－83 | 503938 | 7492928 |
| TVK－84 | 504016 | 7492813 |
| TVK－85 | 504272 | 7492749 |
| TVK－8b | 504258 | 7492818 |
| TVK－87 | 504327 | 7492902 |
| TVK－88 | 504336 | 7493112 |
| TVK－89 | 504430 | 7493195 |
| TVK－70 | 504384 | 7493229 |
| TVK－71 | 504359 | 7473351 |
| TVK－92 | 504773 | 7493788 |
| TVK－93 | 503919 | 7496871 |
| TVK－94 | 505765 | 7493505 |


| Station | Easting（X） | Northing（Y） |
| :---: | :---: | :---: |
| TVK－95 | 505064 | 7495339 |
| TVK－9b | 505108 | 7495459 |
| TVK－97 | 505090 | 7495658 |
| TVK－98 | 505045 | 7495800 |
| TVK－79 | 504845 | 7496035 |
| TVK－100 | 504781 | 7496120 |
| TVK－1ロ1 | 504768 | 747b158 |
| TVK－1ロ2 | 504720 | 749ロここ2 |
| TVK－1．3 | 504668 | 7496337 |
| TVK－113 | 503644 | 7497054 |
| TVK－114 | 503616 | 7497046 |
| TVK－115 | 503489 | 7497138 |
| TVK－116 | 503418 | 7497181 |
| TVK－118 | 503270 | 7497284 |
| TVK－119 | 503178 | 7477355 |
| TVK－l2l | 502931 | 7497468 |
| TVK－』コ2 | 502882 | 7497486 |
| TVK－1．3 | 502784 | 7497511 |
| TVK－1．24 | 502605 | 7497516 |
| TVK－125 | 50256？ | 7497503 |
| TVK－」2b | 502175 | 7477386 |
| TVK－」2？ | 502047 | 7497301 |
| TVK－128 | 501780 | 7497324 |
| TVK－」29 | 501688 | 7477318 |
| TVK－130 | 501448 | 7497258 |
| TVK－131 | 501389 | 7497237 |
| TVK－132A | 501292 | 7497196 |
| TVK－132B | 501005 | 7497095 |
| TVK－133 | 500952 | 7497038 |
| TVK－1．34 | 500827 | 7496953 |
| TVK－135 | 500750 | 7496928 |
| TVK－136 | 500616 | 7496893 |
| TVK－13？ | 500456 | 7476850 |
| TVK－138 | 500359 | 7496818 |
| TVK－140 | 499216 | 7496282 |
| TVK－142 | 501228 | 7476964 |
| TVK－143 | 501279 | 7496924 |
| TVK－144 | 501346 | 7496823 |
| TVK－145 | 50125？ | 7476672 |
| TVK－145A | 500897 | 7496959 |
| TVK－146 | 503117 | 7497376 |
| TVK－147 | 479015 | 7476185 |
| TVK－148 | 498798 | 7496064 |
| TVK－150 | 498618 | 7495965 |
| TVK－151 | 498381 | 7495846 |
| TVK－152 | 498051 | 7495767 |
| TVK－153 | 497922 | 7495749 |
| TVK－154 | 497665 | 7495631 |
| TVK－155 | 497347 | 7495487 |
| TVK－15b | 497092 | 7475353 |
| TVK－15？ | 496813 | 7475212 |
| TVK－158 | 496697 | 7494941 |
| TVK－159 | 496574 | 7494928 |
| TVK－160 | 496485 | 7494751 |
| TVK－1bl | 495482 | 7474180 |


| Station | Easting（X） | Northing（Y） |
| :---: | :---: | :---: |
| TVK－162 | 495553 | 7494320 |
| TVK－163 | 495637 | 7494512 |
| TVK－164 | 495781 | 7494520 |
| TVK－165 | 495954 | 7494664 |
| TVK－166 | 496133 | 7494778 |
| TVK－167 | 496345 | 7474903 |

## APPENDIX 2 －Microprobe Data

Obtained using a CAMECA SX50 electron microprobe（EMP）at the Electron Beam Laboratories in the Geosciences
Department at Virginia Tech．

Analysis timestamp：Mon Feb14 13：45：372011
notes：miscellaneous based on 12 Oxygens

## Hames1－AGrtTrav1

|  | $\mathrm{SiO}{ }_{2}$ | Ti0z | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | Mno | Fe0 | Na 2 O | K20 | Total | x | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃1 | 36．883 | 2.562 | 18．776 | 10.72 | $\square$ | $\square$ | 18．47b | 0．274 | 8.598 | 76．509 | －1」2926 | 7214 |
| \＃ट | 36．658 | 2.503 | 18．596 | 10.924 | $\square$ | 0．006 | 18．276 | 0.301 | 8.589 | 75．873 | －1コワ17 | 7212 |
| \＃3 | 36．817 | 2.547 | 18．593 | 10．801 | 0．01 | 0．031 | 18．413 | 0．291 | 8.635 | 76．14 | －1」ワ12 | 7210 |
| \＃ 4 | 36．515 | 2．551 | 17．971 | 10.355 | 0.015 | $\square$ | 18．087 | 0．281 | 8.404 | 74．181 | －1．2906 | 7208 |
| \＃ 5 | 37．589 | 2．521 | 19．419 | 11．366 | $\square$ | 0.002 | 17．767 | ロ．27b | 8.475 | 97．655 | －12897 | 7206 |
| \＃b | 35.55 | 2．428 | 17．543 | 10．124 | 0.007 | $\square$ | 17．798 | 0．289 | 8.475 | 72.214 | －12892 | 7205 |
| \＃ 7 | 36．471 | 2.378 | 18．466 | 10．659 | $\square$ | $\square$ | 18．005 | 0.308 | 8.547 | 74.874 | －12885 | 7203 |
| \＃8 | 36．645 | 2.474 | 18．781 | 10.825 | $\square$ | $\square$ | 18．363 | 0．286 | 8.552 | 75.746 | －12879 | 7201 |
| \＃${ }^{\text {¢ }}$ | 36.587 | 2．431 | 18．777 | 10.906 | $\square$ | $\square$ | 18．01 | 0.275 | 8.68 | 75．686 | －12872 | 7179 |
| \＃1］ | 36．729 | 2．06 | 19.093 | 11．051 | $\square$ | $\square$ | 17．764 | 0．2b？ | 8．446 | 75．41 | －12865 | 7177 |
| \＃1］ | 36．893 | 1．79 | 19．108 | 11．021 | $\square$ | 0.015 | 17.48 | 0．291 | 8.506 | 75．104 | －12858 | 7195 |
| \＃12 | 37．023 | 1.752 | 17．1 | 11．062 | $\square$ | 0.044 | 17．71 | 0．28？ | 8.54 | 75．718 | －12852 | 7193 |
| \＃13 | 36．739 | 1.923 | 19．372 | 11．038 | 0．00？ | $\square$ | 17．862 | 0．29？ | 8.466 | 75.704 | －12845 | 7171 |
| \＃14 | 36．479 | 1．b | 21．402 | 14．062 | $\square$ | $\square$ | 149．905 | 0．37b | 7.908 | 231．752 | －12838 | 7170 |
| \＃15 | 36．972 | 1．817 | 19．098 | 11.063 | $\square$ | 0.037 | 17．751 | 0．326 | 8.54 | 95．806 | －12831 | 7188 |
| \＃16 | 37．05b | 1.843 | 19.055 | 11．066 | $\square$ | $\square$ | 17．654 | 0．315 | 8.602 | 75．591 | －12825 | 7186 |


|  | $\mathrm{SiO}{ }_{2}$ | Ti0z | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | Mno | Feo | $\mathrm{Na} \mathrm{L}^{0}$ | K C O | Total | x | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃17 | 37．081 | 1．854 | 17．14 | 11．225 | $\square$ | 0.04 | 17．771 | 0.306 | 8．614 | 76．031 | －12818 | 7184 |
| \＃18 | 37．142 | 1．88 | 17．245 | 11．076 | $\square$ | $\square$ | 17．7b | 0．288 | 8.645 | 76．036 | －1281］ | 7182 |
| \＃17 | 36．804 | 1．792 | 17.007 | 11．243 | $\square$ | $\square$ | 17．75b | 0．31 | 8.604 | 75．718 | －12804 | 7180 |
| \＃20 | 36．898 | 2．018 | 17.004 | 11．023 | $\square$ | 0.015 | 17．648 | 0．281 | 8.488 | 95．375 | －12278 | 7178 |
| \＃こ】 | 36．923 | 1．758 | 17.034 | 11．207 | $\square$ | $\square$ | 17．65b | 0．263 | 8.605 | 75．646 | －12771 | 7176 |
| \＃こ2 | 37．298 | 1．861 | 18．714 | 11．098 | $\square$ | $\square$ | 17．451 | 0．27？ | 8．572 | 95．471 | －12784 | 7175 |
| \＃23 | 36．797 | 2．019 | 17．2b6 | 11．086 | $\square$ | $\square$ | 17．783 | 0.264 | 8.569 | 75．786 | －12277 | 7173 |
| \＃24 | 36．932 | 2．012 | 17．07？ | 11．138 | $\square$ | 0．00b | 17．691 | 0．32 | 8.77 | 75．746 | －1227］ | 7171 |
| \＃25 | 36．782 | 1．883 | 18．712 | 11．217？ | $\square$ | $\square$ | 17．69 | 0.277 | 8.573 | 75.534 | －12764 | 7169 |
| \＃ご | 36．872 | 2.044 | 18.977 | 11．165 | $\square$ | 0.033 | 17．612 | 0.308 | 8.647 | 75．658 | －1275？ | 716？ |
| \＃こ？ | 36．84 | 2.054 | 17．011 | 111．137 | $\square$ | 0.019 | 18．001 | 0．278 | 8.343 | 75．703 | －12750 | 7165 |
| \＃28 | 36．877 | 2．ロ22 | 18．846 | 11．15 | $\square$ | $\square$ | 17．67？ | 0．291 | 8．51］ | 75．376 | －122744 | 7163 |
| \＃27 | 36．67b | 2.06 | 18．76？ | 11．216 | $\square$ | 0.006 | 17．807 | 0.324 | 8.47 | 75．546 | －122737 | 7161 |
| \＃ 30 | 36．064 | 1．945 | 18．518 | 11．032 | $\square$ | 0．002 | 17．612 | 0．297 | 8.353 | 93．825 | －12230 | 7160 |
| \＃31 | 36．891 | 1．962 | 18．878 | 11．189 | $\square$ | 0．029 | 17．849 | ロ．2b | 8．57 | 75.634 | －12273 | 7158 |
| \＃32 | 36．741 | 2.044 | 18．831 | 11．009 | 0.004 | 0.004 | 17．868 | ロ．28 | 8．55b | 75.537 | －12717 | 7156 |
| \＃33 | 35．712 | 1．971 | 18．143 | 10．5b | $\square$ | $\square$ | 18．092 | 0.277 | 8.494 | 73.447 | －12710 | 7154 |
| \＃ 34 | 36．702 | 1．8．75 | 17．014 | 11． 314 | 0．01 | 0.037 | 17．621 | 0．268 | 8.45 | 75．291 | －12203 | 7152 |
| \＃35 | 36．883 | 1．786 | 18．935 | 11．229 | $\square$ | $\square$ | 17．67 | 0．281 | 8.533 | 75．517 | －12696 | 7150 |
| \＃ 36 | 35．729 | 1．926 | 18．466 | 10．845 | 0.039 | $\square$ | 17．571 | 0.294 | 8.333 | 73.403 | －12690 | 7148 |
| \＃3？ | 37.005 | 1．928 | 18．634 | 11．039 | $\square$ | 0．02？ | 17．448 | 0.304 | 8．54b | 74．731 | －12683 | 7146 |
| \＃38 | 36．691 | 1．87？ | 17．023 | 11．17？ | $\square$ | $\square$ | 17.78 | 0．286 | 8.442 | 75．276 | －－26？ 6 | 7145 |
| \＃37 | 36．724 | 1．929 | 18．977 | 11． 354 | 0.015 | 0.004 | 17．504 | 0．311 | 8.495 | 75．313 | －－2669 | 7143 |
| \＃40 | 36．793 | 1．82b | 17．121 | 11．302 | $\square$ | 0.033 | 17．845 | 0.273 | 8.437 | 75．63 | －122663 | 7141 |
| \＃ 41 | 37.3 | 1．85 | 17．331 | 11.324 | $\square$ | 0．006 | 17．616 | 0．295 | 8.429 | 76．151 | －12656 | 7139 |
| \＃42 | 36．797 | 1．918 | 17.243 | 11．406 | $\square$ | $\square$ | 17．617 | 0.3 | 8.505 | 75．788 | －12649 | 7137 |
| \＃43 | 37.203 | 1．885 | 17.204 | 11．116 | 0.009 | 0.035 | 18．008 | 0．268 | 8.409 | 76．181 | －12642 | 7135 |
| \＃44 | 36．279 | 1.739 | 18．055 | 10．292 | 0.01 | 0.069 | 17．736 | 0.257 | 8.337 | 72.774 | －122636 | 7133 |
| \＃45 | 23．719 | 0．031 | 14.545 | 1．245 | 1．521 | 0．832 | 27.84 | $\square$ | 0.057 | 69.79 | －12629 | 7131 |
| \＃46 | 37.648 | $\square$ | 21.493 | 3.207 | 1.845 | 0.588 | 36．433 | 0．021 | 0.008 | 101．243 | －122522 | 7129 |
| \＃4？ | 37.664 | 0.003 | 21．747 | 3.546 | 1.784 | 0．836 | 36．597 | 0．013 | 0．006 | 102．198 | －126l5 | 7128 |


|  | $\mathrm{SiO}{ }_{2}$ | $\mathrm{Ti} 0_{2}$ | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | MnO | FeO | Na 2 O | K 2 O | Total | x | $y$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃48 | 37．613 | 0．001 | 21．845 | 3．7ロ2 | 1．798 | 0.73 | 36．018 | $\square$ | $\square$ | 101．76？ | －12609 | 7126 |
| \＃47 | 37．66 | 0.018 | 21．712 | 3.777 | 1．77 | 0.69 | 36．273 | 0.02 | $\square$ | 102．14 | －126ロ2 | 7124 |
| \＃50 | 37.48 | 0.004 | 21．647 | 4.079 | 1．837 | 0．651 | 36．106 | 0.004 | $\square$ | 101．81 | －12595 | 7122 |
| \＃51 | 37．768 | 0.035 | 21．844 | 4.137 | 1．836 | 0.59 | 35．26 | 0.007 | $\square$ | 101．481 | －12588 | 7120 |
| \＃52 | 37.87 | 0.009 | 21．754 | 4.288 | 1．843 | 0.658 | 35．416 | 0．01？ | $\square$ | 102．055 | －12582 | 7118 |
| \＃53 | 37．789 | $\square$ | 21．7 | 4.272 | 1．911 | 0．651 | 35．358 | $\square$ | $\square$ | 102．101 | －12575 | 7116 |
| \＃ 54 | 37．751 | $\square$ | 21．789 | 4.37 | 1．916 | 0.507 | 35．552 | $\square$ | $\square$ | 102．08？ | －12568 | 7114 |
| \＃55 | 38．109 | 0．023 | 21．796 | 4.443 | 1．846 | 0.59 | 35．79 | 0.004 | 0.004 | 102．605 | －12561 | 7113 |
| \＃5b | 37.68 | 0.031 | 21．754 | 4.444 | 1.904 | 0．b | 35．314 | 0.002 | $\square$ | 101．929 | －12555 | 7111 |
| \＃5？ | 37．852 | 0.005 | 21．915 | 4.529 | 1．76？ | 0.509 | 35．381 | 0.013 | $\square$ | 101．971 | －12548 | 7109 |
| \＃58 | 37．813 | $\square$ | 22．124 | 4.455 | 1．796 | 0.491 | 34．606 | 0．016 | $\square$ | 101．301 | －12541 | 7107 |
| \＃59 | 37.735 | 0.012 | 21．972 | 4.485 | 1．841 | 0．6］ | 35．22b | 0.002 | $\square$ | 101．883 | －12534 | 7105 |
| \＃bロ | 37．824 | $\square$ | 22．017 | 4．517 | 1．7ロ2 | 0.653 | 34．661 | 0.018 | $\square$ | 101．454 | －1252？ | 7103 |
| \＃bl | 37．958 | $\square$ | 21．933 | 4.552 | 1．961 | 0.647 | 34.843 | 0.03 | 0.004 | 101．928 | －12521 | 7101 |
| \＃ち2 | 37.605 | $\square$ | 22．003 | 4.537 | 1．847 | 0．63？ | 34.684 | 0．02？ | 0.003 | 101． 345 | －12514 | 7097 |
| \＃b3 | 37．769 | 0.007 | 22．074 | 4.653 | 1．748 | 0．546 | 34.834 | 0.005 | $\square$ | 101．836 | －1，2507 | 7098 |
| \＃64 | 37．817 | 0．02］ | 21．866 | 4．62b | 1.748 | 0.706 | 34.828 | 0.032 | $\square$ | 101． 844 | －12500 | 7096 |
| \＃b5 | 37．79 | 0．001 | 22．039 | 4.632 | 1．85 | 0．629 | 34.73 | 0.004 | $\square$ | 101．875 | －12494 | 7094 |
| \＃ちb | 37.884 | $\square$ | 22．168 | 4.604 | 1．913 | 0.635 | 34.306 | $\square$ | 0.006 | 101．516 | －1248？ | 7092 |
| \＃b？ | 37．752 | 0．012 | 22．011 | 4.63 | 1．866 | 0.706 | 34．45b | 0．02b | $\square$ | 101．659 | －12480 | 7090 |
| \＃b8 | 37．787 | 0.015 | 22．248 | 4.513 | 1．759 | ロ．b62 | 34．021 | 0．016 | 0.007 | 101．428 | －12473 | 7088 |
| \＃Ь9 | 37．515 | 0．041 | 22．046 | 4.708 | 1．83 | 0．657 | 34．716 | 0.007 | $\square$ | 101．52 | －1，246？ | 7086 |
| \＃70 | 37．86l | 0.052 | 22．07 | 4.72 | 1．863 | 0．8b6 | 34．222 | 0.023 | $\square$ | 101．6？ | －12460 | 7084 |
| \＃71 | 37.754 | $\square$ | 22．178 | 4.753 | 1．906 | 0.743 | 34．336 | 0.02 | $\square$ | 101．71 | －12453 | 7083 |
| \＃72 | 37.895 | 0.003 | 22．269 | 4.702 | 1．755 | 0．82 | 33．755 | 0．013 | $\square$ | 101．612 | －1，2446 | 7081 |
| \＃73 | 38.014 | $\square$ | 22．241 | 4.693 | 1．884 | 0.737 | 34．155 | 0．021 | $\square$ | 101． 745 | －1，2440 | 7079 |
| \＃74 | 37.739 | 0.039 | 22．148 | 4.716 | 1．747 | 0．86 | 34．215 | 0.007 | 0.002 | 101．475 | －1，2433 | 7077 |
| \＃75 | 37．606 | 0 | 22．15 | 4.785 | 1．816 | 0.864 | 34．221 | 0.007 | $\square$ | 101．447 | －12426 | 7075 |
| \＃76 | 37.605 | $\square$ | 22．05b | 4.82 | 1．697 | 0．801 | 34.489 | $\square$ | $\square$ | 101．468 | －1，2417 | 7073 |
| \＃77 | 37．671 | 0.005 | 22．296 | 4．881 | 1．702 | 0.805 | 34．221 | $\square$ | $\square$ | 101．581 | －1，2413 | 7071 |
| \＃78 | 37．836 | $\square$ | 22．183 | 4．776 | 1．713 | 0．869 | 33．771 | 0.027 | $\square$ | 101．175 | －12406 | 7069 |


|  | $\mathrm{SiO}{ }_{2}$ | $\mathrm{Ti} 0_{2}$ | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | MnO | FeO | Na 2 O | K 2 O | Total | x | $y$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃7 | 37．75 | －ロ2b | 22．162 | 4．831 | 1．745 | 0．82 | 34．182 | $\square$ | $\square$ | 101．716 | －1，2397 | 7068 |
| \＃80 | 37．794 | 0.009 | 22．183 | 4.808 | 1．726 | 0.718 | 34．361 | $\square$ | 0.002 | 101．801 | －1上コロ2 | 7066 |
| \＃81 | 38．296 | $\square$ | 22．057 | 4.68 | 1．916 | 0.868 | 34.39 | 0.002 | $\square$ | 102．209 | －12386 | 7064 |
| \＃82 | 38．276 | $\square$ | 22．061 | 4.726 | 1．877 | 0.735 | 33．791 | 0.005 | $\square$ | 101．871 | －1上377 | 7062 |
| \＃83 | 37．718 | $\square$ | 22．205 | 4.781 | 1．86？ | 0.886 | 34．513 | 0．011 | 0．002 | 102．183 | －1コ372 | 7060 |
| \＃84 | 38.407 | 0．011 | 22．089 | 4.802 | 1．88 | 0.746 | 33.794 | 0.005 | $\square$ | 102．134 | －12365 | 7058 |
| \＃85 | 37.925 | 0.014 | 22．178 | 4.703 | 1．85b | 0．86b | 34.323 | $\square$ | $\square$ | 101．865 | －12359 | 7056 |
| \＃86 | 38．082 | 0.005 | 22．148 | 4.727 | 1．816 | 0.701 | 33．767 | 0．001 | $\square$ | 101．447 | －12352 | 7054 |
| \＃8？ | 38．148 | $\square$ | 22．106 | 4.725 | 1．81 | 0.972 | 34.042 | $\square$ | 0．002 | 101．825 | －12345 | 7052 |
| \＃88 | 38.055 | 0.017 | 22．043 | 4．81 | 1．785 | 0.976 | 33.783 | $\square$ | $\square$ | 101．671 | －12338 | 7051 |
| \＃89 | 38．216 | $\square$ | 22．152 | 4.743 | 1.753 | 1．08 | 34．361 | $\square$ | $\square$ | 102．505 | －1，2332 | 7049 |
| \＃ 90 | 37.973 | 0.032 | 22．143 | 4.846 | 1．701 | 0.979 | 34.093 | 0.008 | 0．001 | 101．776 | －12325 | 7047 |
| \＃ 71 | 37．628 | 0.031 | 22．255 | 4.772 | 1．686 | 0．731 | 33.8 | 0.016 | 0．007 | 101．146 | －12318 | 7045 |
| \＃ 92 | 38.085 | 0.007 | 22．286 | 4.868 | 1．659 | 0.748 | 33.708 | 0.037 | $\square$ | 101．598 | －12311 | 7043 |
| \＃73 | 38．17 | 0.002 | 22．089 | 4.774 | 1.65 | 1．007 | 34.353 | $\square$ | $\square$ | 102．065 | －12305 | 7041 |
| \＃74 | 37.748 | 0.02 | 22．214 | 4．81 | 1．686 | 1．119 | 33.787 | $\square$ | $\square$ | 101．784 | －1」298 | 7039 |
| \＃ 95 | 37．976 | $\square$ | 22．295 | 4.893 | 1．66l | 1．178 | 34.083 | 0.015 | $\square$ | 102．101 | －1．2291 | 7037 |
| \＃${ }^{\text {96 }}$ | 37．961 | 0.016 | 22．132 | 4．831 | 1．678 | 1．089 | 33．796 | $\square$ | $\square$ | 101．703 | －1，2284 | 7036 |
| \＃7？ | 38.397 | $\square$ | 22．319 | 4.793 | 1．655 | 1.094 | 33.778 | 0．016 | 0．02b | 102．08 | －1コ278 | 7034 |
| \＃${ }^{\text {8 }}$ | 38.064 | 0．001 | 22．154 | 4.816 | 1．684 | 0.978 | 33.744 | 0．01 | $\square$ | 101．651 | －1，2271 | 7032 |
| \＃प7 | 38．066 | $\square$ | 22．088 | 4.767 | 1．802 | 1．1111 | 33．781 | 0．02b | 0.025 | 101．8女6 | －1，2264 | 7030 |
| \＃100 | 37.798 | $\square$ | 22．08 | 4.805 | 1．766 | 1．081 | 33.747 | 0．016 | 0.005 | 101． 7 | －1，225？ | 7028 |
| \＃101 | 37.89 | 0．016 | 22．192 | 4.778 | 1.703 | 1．251 | 33．751 | 0.002 | $\square$ | 101．603 | －1，2251 | 7026 |
| \＃］02 | 38．391 | 0．002 | 22．221 | 4.878 | 1．689 | 1．187 | 33.889 | 0．012 | 0.007 | 102．278 | －1，2244 | 7024 |
| \＃103 | 38．19 | $\square$ | 22．178 | 4.85 | 1．718 | 1．111 | 34．146 | $\square$ | $\square$ | 102．223 | －1，223？ | 7022 |
| \＃104 | 38．236 | 0．006 | 22．216 | 4.784 | 1．745 | 1．1．2b | 33．736 | 0．021 | 0．002 | 102．072 | －1，2230 | 7021 |
| \＃105 | 38．069 | $\square$ | 22．254 | 4.724 | 1.75 | 1．146 | 33.755 | 0．041 | 0．001 | 101． 74 | －1上224 | 7017 |
| \＃106 | 38．172 | $\square$ | 22．057 | 4.791 | 1.714 | 1．257 | 33.547 | 0.004 | 0.014 | 101．558 | －1コ2l？ | 7017 |
| \＃107 | 38．047 | 0.004 | 22．444 | 4．817 | 1．764 | 1．142 | 33.53 | 0．002 | － | 101．75 | －1，2210 | 7015 |
| \＃108 | 38.295 | $\square$ | 22．729 | 4.894 | 1．785 | 1．088 | 33.705 | 0．017 | $\square$ | 102．715 | －1，2203 | 7013 |
| \＃109 | 38．176 | 0.013 | 22．192 | 4.743 | 1．742 | 1．102 | 33.682 | 0.02 | $\square$ | 101．69 | －1」17？ | 7011 |


|  | SiO | $\mathrm{Ti} 0_{2}$ | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | MnO | Feo | Na 2 O | $\mathrm{K} \mathrm{C}^{0}$ | Total | x | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃11． | 38．172 | $\square$ | 22．153 | 4.763 | 1．864 | 1．1446 | 33．5？ | 0．01？ | 0．01b | 101．701 | －12190 | 7007 |
| \＃11］ | 38．335 | 0．038 | 22．234 | 4.713 | 1．875 | 1．269 | 34．113 | $\square$ | $\square$ | 102．577 | －12183 | 7007 |
| \＃112 | 40．061 | ロ．026 | 23．001 | 4.744 | 1．885 | 1．259 | 34．011 | $\square$ | 0.005 | 105．192 | －12176 | 7006 |
| \＃113 | 33．923 | $\square$ | 20.347 | 4.105 | 1．748 | 1．195 | 33.855 | 0.003 | 0．011 | 75．387 | －12170 | 7004 |
| \＃114 | 38．33 | $\square$ | 22．22 | 4.782 | 1.915 | 1．185 | 33.445 | 0.008 | 0．016 | 101．901 | －12163 | 7002 |
| \＃115 | 38．291 | 0．006 | 22．175 | 4.754 | 1．946 | 1．298 | 33．751 | 0.013 | $\square$ | 102．234 | －12155 | 7000 |
| \＃116 | 39．313 | $\square$ | 23．13 | 5．122 | 1.987 | 1．32？ | 33．415 | $\square$ | $\square$ | 104．294 | －12149 | 6978 |
| \＃117 | 35．16？ | 0.019 | 21．708 | 4.691 | 1．882 | 1．252 | 33.837 | 0.009 | 0．01 | 78．775 | －12142 | 6976 |
| \＃118 | 33．713 | $\square$ | 21．715 | 4.566 | 1.97 | 1．298 | 33.478 | $\square$ | 0．002 | 7ロ・762 | －12136 | 6974 |
| \＃119 | 34．279 | $\square$ | 21．673 | 4.667 | 1．897 | 1．175 | 33.457 | 0.006 | $\square$ | 97．156 | －12129 | 6992 |
| \＃120 | 37．488 | 0.016 | 21．83b | 4.654 | 1.925 | 1．253 | 33．387 | 0.008 | $\square$ | 100．56？ | －12122 | 6970 |
| \＃12］ | 37．312 | 0.003 | 22．516 | 4.75 | 2.054 | 1．258 | 33.075 | 0.007 | $\square$ | 100．975 | －12115 | 6989 |
| \＃122 | 35．846 | $\square$ | 21．14 | 4.41 | 1．951 | 1．192 | 32．568 | 0.013 | $\square$ | 97．12 | －12109 | 6987 |
| \＃123 | 35．297 | $\square$ | 21．718 | 4.482 | 1．936 | 1．205 | 31．892 | 0.016 | 0.015 | 76．561 | －12102 | 6985 |
| \＃124 | 25.359 | $\square$ | 18．27 | 3.529 | 1．822 | 1.035 | 24．755 | 0.084 | 0．031 | 74.885 | －12095 | 6983 |
| \＃125 | 0．622 | 0.032 | ロ．0レ6 | $\square$ | 48.646 | 0.017 | 0.539 | ロ．0レ6 | 0．011 | 49.797 | －12088 | 6981 |
| \＃126 | 0.05 | $\square$ | 0.002 | $\square$ | 51.964 | 0.024 | 0.403 | $0.06 ?$ | $\square$ | 52．51 | －12082 | 6979 |
| \＃127 | 0.037 | 0.001 | $\square$ | $\square$ | 51．89 | 0.049 | 0.377 | 0.074 | $\square$ | 52.448 | －12075 | 6977 |
| \＃128 | 0.05 | $\square$ | $\square$ | $\square$ | 52．076 | 0.028 | 0.377 | 0.058 | $\square$ | 52．589 | －12068 | 6975 |
| \＃129 | 0.114 | $\square$ | 0.023 | $\square$ | 51．89 | 0.079 | 0.476 | 0.039 | $\square$ | 52．b21 | －12061 | 6974 |
| \＃130 | 0.063 | 0.005 | 0.009 | $\square$ | 51．555 | 0.006 | 0.454 | 0.073 | $\square$ | 52．165 | －12055 | 6972 |
| \＃131 | 0．147 | 0.003 | 0.039 | $\square$ | 52．162 | 0．051 | 0．629 | 0．051 | $\square$ | 53.082 | －12048 | 6970 |
| \＃132 | 32．613 | 0．027 | 20.492 | 4．451 | 1．719 | 1.047 | 32．861 | 0.034 | 0.002 | 73.248 | －12041 | 6968 |
| \＃133 | 33．721 | ロ．066 | 21．061 | 4.321 | 1．835 | 1．201 | 33.023 | 0.038 | 0．01 | 75．276 | －12034 | டワロ6 |
| \＃134 | 37．861 | 0.047 | 22.074 | 4.562 | 2.055 | 1．381 | 33.465 | 0.002 | $\square$ | 101．447 | －12028 | 6964 |
| \＃135 | 37．936 | 0．1111 | 21．758 | 4.625 | 1．956 | 1.424 | 33．336 | ロ．02？ | 0.013 | 101．386 | －12021 | ロ962 |
| \＃136 | 37．772 | 0.15 | 22．05b | 4.497 | 2．021 | 1.303 | 32．751 | $\square$ | 0.002 | 100.752 | －12014 | 6960 |
| \＃137 | 38．145 | 0.164 | 21．754 | 4.328 | 1.793 | 1.395 | 33.443 | 0.02 | $\square$ | 101．442 | －12007 | 6959 |
| \＃138 | 37．87 | 0.053 | 21．749 | 4.723 | 1．9111 | 1．429 | 33．651 | 0．022 | 0．006 | 101．614 | －12001 | 6957 |
| \＃139 | 38．068 | 0.024 | 22．021 | 4.77 | 1．931 | 1．314 | 33．812 | 0.019 | $\square$ | 101．759 | －11794 | 6955 |
| \＃140 | 38．117 | ロ．012 | 22．035 | 4.676 | 1．958 | 1．311 | 33.443 | ロ．022 | $\square$ | 101．574 | －1178？ | 6953 |


|  | $\mathrm{SiO}{ }_{2}$ | $\mathrm{Ti} 0_{2}$ | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | Mno | Fe0 | Na 2 O | K 2 O | Total | x | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃141 | 38．13 | 0.003 | 22．039 | 4.678 | 1.924 | 1．38？ | 33.748 | 0.007 | 0．016 | 101．934 | －117980 | 6951 |
| \＃142 | 38．37 | $\square$ | 22．109 | 4.653 | 1．791 | 1.388 | 33.547 | 0.016 | 0．00b | 102．082 | －11974 | 6947 |
| \＃143 | 38．462 | 0．006 | 21．804 | 4．636 | 1.782 | 1.359 | 33.403 | 0．006 | 0．016 | 101．6？4 | －1176？ | 6947 |
| \＃144 | 37．818 | 0．011 | 21．857 | 4.603 | 1．901 | 1.32 | 33．52b | 0.005 | $\square$ | 101．041 | －11960 | 6945 |
| \＃145 | 38．175 | 0.016 | 21．784 | 4.724 | 2．018 | 1.387 | 33.83 | 0 | 0.005 | 102．139 | －11753 | 6944 |
| \＃146 | 38．098 | $\square$ | 21．748 | 4.767 | 1．75b | 1.323 | 33.445 | 0.017 | 0.002 | 101．558 | －11747 | 6942 |
| \＃147 | 38．309 | $\square$ | 21．975 | 4.592 | 1.732 | $\square$ | 33.887 | $\square$ | 0．002 | 100．697 | －11940 | 6940 |
| \＃148 | 38．521 | $\square$ | 21．767 | 4.673 | 1．732 | 1.408 | 33．563 | 0．002 | 0.005 | 102．071 | －119733 | 6938 |
| \＃147 | 84．081 | ロ．023 | 7.337 | 0.756 | 0.467 | 0．27？ | 6.643 | 0 | 0．011 | 79.795 | －11926 | 6936 |
| \＃150 | 78．486 | $\square$ | 0．022 | 0.007 | 0．017 | 0．061 | 0.755 | 0 | $\square$ | 77．348 | －11920 | 6934 |
| \＃151 | 79.402 | $\square$ | 0.038 | $\square$ | 0.003 | 0．011 | 0.664 | 0.007 | $\square$ | 100．12？ | －11713 | 6932 |
| \＃152 | 77.347 | $\square$ | 0.014 | 0.005 | 0．021 | $\square$ | 0.688 | 0．021 | $\square$ | 100．096 | －119706 | 6930 |
| \＃153 | 79．422 | $\square$ | 0.013 | $\square$ | $\square$ | 0.033 | 0．61 | 0 | $\square$ | 100．078 | －118979 | 6929 |
| \＃154 | 79．567 | $\square$ | 0.014 | 0．001 | $\square$ | 0.067 | 0.614 | 0.003 | $\square$ | 100．266 | －111893 | 6927 |
| \＃155 | 77．479 | $\square$ | 0．029 | $\square$ | 0．016 | 0.02 | 0.63 | 0．001 | 0．01 | 100． 205 | －11886 | 6925 |
| \＃156 | 77.504 | 0.003 | 0.008 | 0．001 | 0.014 | 0.041 | 0.635 | 0．012 | $\square$ | 100．218 | －11879 | 6923 |
| \＃15？ | 79．481 | $\square$ | 0．021 | $\square$ | 0．01 | 0.035 | 0.647 | 0 | $\square$ | 100．176 | －11872 | 6921 |
| \＃158 | 79．472 | $\square$ | $\square$ | $\square$ | 0．018 | $\square$ | 0.693 | 0.007 | 0.001 | 100．191 | －11886 | 6919 |
| \＃159 | 97．823 | $\square$ | 0．016 | 0.004 | $\square$ | $\square$ | 0.759 | $\square$ | $\square$ | 100．602 | －11859 | 6917 |
| \＃160 | 84.252 | $\square$ | 3．81 | 0．726 | 0.488 | 0.302 | 7.69 | 0．01 | 0.003 | 97．281 | －1185 | 6915 |
| \＃16l | 39．528 | 0.018 | 23.474 | 5．175 | 1．931 | 1.447 | 33.475 | 0.02 | 0.016 | 105．084 | －11845 | 6913 |
|  | 34．802 | 0.003 | 21 | 4.417 | 2.012 | 1.404 | 33．3ь6 | 0 | 0.005 | 97．011 | －11839 | 6912 |
| \＃163 | 35.045 | $\square$ | 21.447 | 4.56 ？ | 2.003 | 1．412 | 33．801 | $\square$ | $\square$ | 78．27？ | －11832 | 6910 |
| \＃164 | 36．75b | 0．012 | 21．232 | 4.547 | 1．968 | 1．502 | 33．55b | 0 | 0 | 79．575 | －11825 | 6908 |
| \＃165 | 37．987 | 0.014 | 21．605 | 4.57 | 1．912 | 1．451 | 33．717 | 0.005 | 0.005 | 101．266 | －llal8 | 6906 |
| \＃1 66 | 37.89 | ロ．022 | 21．735 | 4．518 | 1．901 | 1.384 | 33．829 | 0 | 0.003 | 101．282 | －11812 | 6904 |
| \＃16？ | 38．052 | $\square$ | 21．851 | 4.59 | 1．96？ | 1.43 | 33．381 | $\square$ | $\square$ | 101．271 | －11805 | 6902 |
| \＃168 | 37．718 | 0．021 | 22．009 | 4.691 | 1．987 | 1．377 | 33．683 | 0．02？ | 0.008 | 101．721 | －11778 | 6900 |
| \＃1吅 | 38．144 | 0.004 | 21．933 | 4．71 | 1.9 | 1.309 | 34．259 | $\square$ | $\square$ | 102．259 | －117711 | 6898 |
| \＃170 | 37．762 | $\square$ | 22．171 | 4.655 | 1．717 | 1.397 | 33.609 | 0 | $\square$ | 101．513 | －11785 | 6897 |
| \＃171 | 79．228 | 0.023 | 0．028 | $\square$ | 0.005 | $\square$ | 0．769 | $\square$ | 0．011 | 100.064 | －11778 | 6895 |


|  | $\mathrm{SiO}{ }_{2}$ | $\mathrm{Ti} 0_{2}$ | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | Mno | Feo | $\mathrm{Na}_{2} \mathrm{O}$ | K 20 | Total | x | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃172 | 97．14 | 0．013 | 0．031 | 0.009 | 0．002 | 0.017 | 0．647 | $\square$ | 0.008 | 97．86？ | －117771 | 6893 |
| \＃173 | 79.094 | 0．016 | 0.006 | 0．023 | 0．006 | 0.03 | 0.517 | 0 | $\square$ | 79.694 | $-11784$ | 6891 |
| \＃174 | 79．174 | $\square$ | 0．001 | 0．002 | 0.015 | 0.017 | 0.467 | $\square$ | $\square$ | 79．696 | －11757 | 6889 |
| \＃175 | 78．773 | $\square$ | 0 | $\square$ | 0 | 0．022 | 0．371 | 0 | $\square$ | 97．166 | －11751 | 6887 |
| \＃176 | 97．48 | $\square$ | 0.147 | $\square$ | 0.001 | 0.02 | 0.448 | 0.06 | 0．011 | 100．16？ | －11724 | 6885 |
| \＃177 | 79.447 | 0.004 | 0.016 | 0.007 | 0．007 | 0 | 0．436 | 0 | $\square$ | 79．721 | －11737 | 6883 |
| \＃178 | 79．008 | 0．001 | $\square$ | $\square$ | $\square$ | 0.02 | 0.427 | 0.003 | $\square$ | 77．459 | －11730 | 6882 |
| \＃177 | 78．756 | $\square$ | 0.014 | $\square$ | 0 | 0.024 | 0．514 | 0．002 | 0.015 | 79．525 | －11724 | 6880 |
| \＃1，80 | 97．175 | $\square$ | 0.018 | 0．007 | $\square$ | 0.004 | 0．5b | 0 | 0.003 | 97．787 | －11717 | 6878 |
| \＃181 | 76．817 | $\square$ | 6.937 | 1.479 | 0.736 | 0.472 | 12．779 | 0.009 | 0．002 | 79．231 | －11710 | 6876 |
| \＃］82 | 38．287 | $\square$ | 21．924 | 4．721 | 2．008 | 1.344 | 33.289 | 0.025 | 0.004 | 101．602 | －11703 | 6874 |
| \＃1，83 | 38．51 | 0．02b | 22．031 | 4.6 | 1．868 | 1.424 | 33．804 | $\square$ | 0.008 | 102．271 | －11697 | 6872 |
| \＃1，84 | 38．216 | 0.023 | 21．793 | 4.687 | 1.907 | 1.437 | 33.305 | $\square$ | 0.005 | 101．575 | －111690 | 6870 |
| \＃1，85 | 38.254 | $\square$ | 22．057 | 4.668 | 1.963 | 1.436 | 33.582 | 0．011 | 0.002 | 101．973 | －11683 | 68b8 |
| \＃］如 | 38.093 | 0．021 | 22．071 | 4.67 | 1.743 | 1.434 | 33.462 | 0.023 | 0.015 | 101．732 | －111676 | b8b？ |
| \＃187 | 37．886 | 0.037 | 21．886 | 4.598 | 1.935 | 1.452 | 33．562 | 0．016 | 0．012 | 101．384 | －116？ | 6865 |
| \＃1，88 | 38．144 | 0.016 | 21．758 | 4.7 | 1．86？ | 1.325 | 33.508 | ロ．029 | 0.004 | 101．551 | －11的3 | 6863 |
| \＃1名 | 38.314 | $\square$ | 21．925 | 4.637 | 1．972 | 1.42 | 33．396 | 0.013 | 0.004 | 101．681 | －111656 | 68bl |
| \＃］70 | 59.714 | $\square$ | 14．492 | 3.094 | 1．297 | 0.939 | 23.502 | 0.004 | $\square$ | 103.042 | －111649 | 6859 |
| \＃171 | 78．784 | $\square$ | 0．031 | 0．013 | $\square$ | 0.059 | 0．815 | $\square$ | 0.002 | 79.704 | －11643 | 6857 |
| \＃172 | 79．236 | 0.018 | 0.004 | $\square$ | 0.013 | 0.067 | 0.767 | 0.006 | $\square$ | 100．1111 | －111636 | 6855 |
| \＃173 | 97.425 | 0.009 | 0.016 | $\square$ | 0.005 | 0.059 | 0.633 | $\square$ | 0．01 | 78．157 | －111629 | 6853 |
| \＃174 | 97．023 | 0.002 | 0．01 | $\square$ | 0.013 | $\square$ | 0.693 | $\square$ | 0．001 | 97．742 | －111622 | 6852 |
| \＃195 | 78．781 | $\square$ | 0.019 | $\square$ | 0．001 | 0.039 | 0．6b | $\square$ | $\square$ | 79.5 | －11616 | 6850 |
| \＃176 | 79．417 | 0.002 | $\square$ | $\square$ | 0.005 | 0.035 | 0．62b | $\square$ | 0.008 | 100．095 | －111609 | 6848 |
| \＃197 | 97．537 | 0.03 | 0.008 | 0.009 | 0.004 | 0.007 | 0．825 | $\square$ | 0．006 | 100．426 | －111602 | 6846 |
| \＃］．98 | 97．078 | $\square$ | 0.359 | 0.047 | ロ．028 | 0．05b |  | 0.005 | 0．011 | 78．713 | －111595 | 6844 |
| \＃179 | 38．129 | $\square$ | 21．742 | 4.594 | 1．968 | 1.394 | 33.205 | ロ．ロ22 | 0.002 | 101．25b | －11589 | 6842 |
| \＃200 | 38．133 | 0.002 | 22．07 | 4.697 | 1.748 | 1.583 | 33.748 | 0.008 | $\square$ | 102．189 | －11582 | 6840 |
| \＃201 | 38．1 | 0．031 | 21．971 | 4.648 | 1．748 | 1．527 | 33.363 | 0．008 | $\square$ | 101．596 | －11575 | 6838 |
| \＃202 | 38．132 | 0．007 | 22．042 | 4.669 | 2．001 | 1．371 | 33．835 | 0．01 | 0.003 | 102．07 | －11568 | 6836 |


|  | $\mathrm{SiO}{ }_{2}$ | Ti0z | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | MnO | Fe0 | Na 20 | $\mathrm{K} \mathrm{C}^{0}$ | Total | $\times$ | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃203 | 38．166 | 0．028 | 22.03 | 4.698 | 1.964 | 1．414 | 33.57 | 0．02b | 0．008 | 101．904 | －11．562 | 6835 |
| \＃204 | 38．206 | 0.024 | 21．977 | 4.662 | 1．789 | 1．38 | 33．111 | $\square$ | 0.004 | 101． 353 | －11555 | 6833 |
| \＃205 | 38．35 | 0．01 | 21．796 | 4.579 | 1．869 | 1.379 | 32.594 | 0 | $\square$ | 100．777 | －11548 | 6831 |
| \＃206 | 70.748 | $\square$ | 3.493 | 0．751 | 0．396 | 0．266 | 7.094 | $\square$ | $\square$ | 102．948 | －11541 | 6829 |
| \＃207 | 55．45b | 0．01 | 17.063 | 3.574 | 1．477 | 1．08 | 2b．215 | $\square$ | $\square$ | 104．875 | －11．535 | b827 |
| \＃208 | 38．248 | $\square$ | 22．147 | 4.679 | 1．755 | 1.443 | 33．431 | 0.014 | $\square$ | 101．917 | －11．528 | b825 |
| \＃209 | 37．769 | 0.015 | 21．81］ | 4.688 | 1.924 | 1．41．5 | 33.073 | $\square$ | $\square$ | 100．895 | －11．521 | 6823 |
| \＃210 | 38．354 | 0.033 | 22．007 | 4.673 | 1.973 | 1．378 | 33．417 | 0．008 | $\square$ | 101．845 | $-1.1514$ | 6821 |
| \＃211 | 38．426 | 0．016 | 21．856 | 4.77 | 2.039 | 1.5 | 33．319 | 0．011 | $\square$ | 101．937 | －11508 | b820 |
| \＃こりこ | 38．21］ | $\square$ | 21．757 | 4.751 | 1.715 | 1.357 | 33.774 | 0．012 | 0．011 | 101．988 | －11501 | 6818 |
| \＃213 | 38．36 | $\square$ | 22．141 | 4.56 | 1．769 | 1.494 | 33．296 | 0.024 | $\square$ | 101．85 | －111474 | b8lb |
| \＃214 | 79.47 | 0．031 | 0．068 | $\square$ | 0.009 | 0.05 | 0．72 | $\square$ | 0．013 | 100．361 | $-11487$ | 6814 |
| \＃215 | 97．132 | $\square$ | 0.018 | 0.004 | 0．001 | 0.052 | 0.562 | 0 | 0.001 | 77.77 | －11481 | 6812 |
| \＃216 | 97．732 | 0．001 | 0.018 | 0.008 | 0.018 | 0.037 | 0.589 | 0．012 | 0．001 | 100．416 | －11474 | 6810 |
| \＃217 | 79．633 | 0.012 | 0.015 | 0.003 | 0．01b | 0.015 | 0.674 | $\square$ | 0.013 | 100．381 | $-11467$ | b808 |
| \＃218 | 38．274 | $\square$ | 22．185 | 4.675 | 1.934 | 1.392 | 33．771 | $\square$ | ロ．002 | 102.233 | －11460 | 6806 |
| \＃217 | 38．791 | $\square$ | 22．039 | 4.663 | 1．907 | 1.483 | 33．528 | 0 | $\square$ | 102．411 | －11454 | 6805 |
| \＃220 | 38．237 | 0.008 | 22．ロ2 | 4．613 | 1.747 | 1．51，5 | 33.744 | 0.016 | 0．00？ | 102．107 | －1144？ | 6803 |
| \＃22l | 38．138 | 0.004 | 22．074 | 4．626 | 1．79 | 1.494 | 33.702 | 0 | 0.002 | 102．23 | －11440 | 6801 |
| \＃ここ2 | 38．06 | 0．031 | 22．18 | 4.706 | 1．962 | 1．575 | 33.793 | 0.008 | $\square$ | 102．315 | －11433 | 6797 |
| \＃223 | 38．371 | ロ．02b | 22．21？ | 4.732 | 1．912 | 1．386 | 33.646 | 0．02？ | 0．011 | 102．328 | －1142？ | 6797 |
| \＃224 | 38．248 | $\square$ | 22．089 | 4.653 | 1．962 | 1.42 | 33.844 | 0．017 | 0.003 | 102．236 | －11420 | 6795 |
| \＃225 | 38．069 | 0.004 | 22．097 | 4.713 | 1.769 | 1．428 | 33.442 | 0．021 | $\square$ | 101.743 | $-1.1413$ | 6793 |
| \＃22b | 37．156 | 0.015 | 21．78 | 4.646 | 1．926 | 1．388 | 33．451 | 0．022 | 0.016 | 102.4 | －71406 | 6791 |
| \＃ここ？ | 78．387 | 0．006 | 0．561 | 0．107 | 0．065 | ロ．026 | 1．134 | 0.018 | $\square$ | 100． 304 | －11400 | 6790 |
| \＃228 | 78．655 | $\square$ | 0.038 | $\square$ | 0.039 | $\square$ | 0.672 | 0.032 | 0．017 | 79.453 | －11393 | 6788 |
| \＃229 | 75.548 | 0.012 | 0.047 | 0．062 | 0.342 | 0.007 | 0．581 | 0.092 | 0.03 | 76．721 | －11386 | 6786 |
| \＃230 | 74.325 | $\square$ | 0.042 | 0.105 | 0.513 | $\square$ | 0.485 | 0．295 | 0.133 | 75．898 | －11379 | 6784 |
| \＃23l | 77.545 | $\square$ | 0.024 | ロ．026 | 0.143 | $\square$ | 0.487 | 0．155 | 0．105 | 78．485 | －11372 | 6782 |
| \＃232 | 78．636 | $\square$ | 0.014 | 0．013 | 0．021 | 0.022 | 0.378 | 0.057 | 0.013 | 79．174 | －11366 | 6780 |
| \＃233 | 78．862 | 0．021 | 0.009 | 0．002 | 0.03 | 0.033 | 0.365 | 0.032 | 0.02 | 77.374 | －11359 | 6778 |


|  | $\mathrm{SiO}{ }_{2}$ | $\mathrm{Ti} 0_{2}$ | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | Mno | Feo | $\mathrm{Na} \mathrm{L}^{0}$ | K C O | Total | x | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃234 | 79．037 | $\square$ | ロ．007 | 0．002 | 0．022 | 0.017 | 0.309 | 0.018 | 0．015 | 79．429 | －113352 | 677b |
| \＃235 | 78．024 | 0.009 | 0．01］ | 0．007 | 0.014 | 0.013 | ロ．32b | 0.03 | 0.029 | 78．463 | －11345 | 6775 |
| \＃236 | 97．617 | 0.004 | 0．011 | 0.013 | 0．065 | 0.017 | 0.353 | 0.089 | 0.037 | 78．206 | －11339 | 6773 |
| \＃23？ | 96．837 | $\square$ | 0.585 | 0．108 | 0．096 | 0．076 | 0.707 | 0．07 | 0.044 | 78．523 | －11332 | 677］ |
| \＃238 | 77.695 | $\square$ | 0.178 | 0.034 | 0.047 | 0.03 | 0．55b | 0．122 | 0．071 | 78．733 | －113325 | 6769 |
| \＃239 | 79．308 | $\square$ | 0．016 | 0．012 | 0.045 | $\square$ | 0．413 | 0.054 | 0．031 | 79．879 | －11318 | 6ア6？ |
| \＃240 | 77.794 | 0.013 | $\square$ | $\square$ | 0.015 | 0.046 | 0.388 | 0.047 | 0.02 | 78．525 | －11312 | －765 |
| \＃241 | 78．516 | $\square$ | 0．01b | 0．01 | 0.035 | 0．015 | 0.398 | 0．023 | 0．01？ | 79.03 | －11305 | 6ア63 |
| \＃242 | 79．027 | 0.014 | 0.02 | 0.004 | 0．02b | 0.059 | 0．421 | 0.04 | 0.009 | 77．เ2 | －112298 | 6761 |
| \＃243 | 79．1153 | $\square$ | 0.003 | 0.003 | 0.028 | 0.017 | 0.374 | 0.017 | 0．021 | 79．616 | －111291 | 6759 |
| \＃244 | 79．136 | 0.005 | 0.003 | 0．01 | 0.034 | 0．02b | 0.423 | 0.058 | 0.038 | 79.733 | －112885 | 6758 |
| \＃245 | 78．474 | 0.004 | 0.004 | 0．015 | 0．041 | 0.03 | 0．46？ | 0．06？ | 0.023 | 79.145 | －11278 | 675b |
| \＃246 | 78．777 | 0．008 | 0.014 | 0．01 | 0．063 | $\square$ | 0.637 | 0.041 | 0．022 | 79．572 | －11227 | 6754 |
| \＃247 | 88．65？ | 0.005 | 4.24 | 0.874 | 0.55 | 0.334 | 5.297 | 0.034 | 0.007 | 100．002 | －112264 | 6752 |
| \＃248 | 38．377 | 0．022 | 21．74 | 4.679 | 1.776 | 1.422 | 33.483 | 0.045 | 0.013 | 101．977 | －11258 | 6750 |
| \＃249 | 38．074 | $\square$ | 22.003 | 4．611 | 1．97？ | 1．406 | 33.423 | 0.03 | 0．012 | 101．536 | －11251 | 6748 |
| \＃250 | 38.083 | $\square$ | 21．486 | 4.581 | 2．07 | 1.336 | 32．806 | 0．15？ | 0.033 | 100．552 | －112244 | 6746 |
| \＃251 | 37．01 | 0.004 | 21．527 | 4．51 | 2．181 | 1．321 | 31．758 | 0.208 | 0．05b | 78．575 | －11237 | 6744 |
| \＃252 | 37．296 | ロ．022 | 21．581 | 4.619 | 2．102 | 1．391 | 32．13 | ロ．122 | 0.025 | 79．288 | －11231 | 6743 |
| \＃253 | 38．538 | $\square$ | 22．063 | 4.691 | 2．012 | 1．406 | 33．822 | －．00？ | $\square$ | 102.539 | －11222 | 6741 |
| \＃254 | 38．332 | 0．025 | 22．013 | 4.646 | 2．002 | 1．388 | 33.492 | 0.003 | $\square$ | 101．901 | －112l？ | 6739 |
| \＃255 | 38．25？ | $\square$ | 22．118 | 4.729 | 1．976 | 1.483 | 33．321 | 0.005 | $\square$ | 101.909 | －11210 | 6737 |
| \＃25b | 38．186 | $\square$ | 21．893 | 4.638 | 2.034 | 1.497 | 33．352 | 0．016 | 0.008 | 101．62b | －11204 | 6735 |
| \＃25？ | 38．42b | 0.001 | 21．987 | 4.669 | 1.955 | 1．527 | 33．753 | 0.016 | 0.006 | 102.54 | －11197 | 6733 |
| \＃258 | 38．445 | $\square$ | 22．106 | 4.693 | 1.984 | 1．47 | 34．211 | $\square$ | $\square$ | 102．909 | －11170 | 6731 |
| \＃259 | 38．382 | 0.023 | 22．055 | 4.674 | 2．022 | 1.472 | 33.823 | $\square$ | 0.002 | 102.453 | $-11183$ | 6729 |
| \＃260 | 38．25？ | 0．051 | 22．165 | 4.675 | 2.007 | 1．472 | 33．73 | $\square$ | 0.002 | 102.559 | －1117？ | 6728 |
| \＃2bl | 38．494 | $\square$ | 22．076 | 4.635 | 2.063 | 1．417 | 33.364 | $\square$ | 0.003 | 102．052 | －11170 | 672b |
| \＃2b2 | 38.54 | 0 | 22．05？ | 4.73 | 1.936 | 1.37 | 33．351 | 0．01 | $\square$ | 101．974 | －111163 | 6724 |
| \＃263 | 38．047 | $\square$ | 22．055 | 4.637 | 2.006 | 1.437 | 34.304 | 0.016 | $\square$ | 102．502 | －11156 | 6722 |
| \＃264 | 38．124 | $\square$ | 22．179 | 4．741 | 2.004 | 1．51．5 | 34.483 | 0．031 | 0.008 | 103．085 | －11150 | 6720 |


|  | $\mathrm{SiO}{ }_{2}$ | $\mathrm{Ti} 0_{2}$ | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | Mno | Fe0 | $\mathrm{Na} \mathrm{L}^{0}$ | $\mathrm{K} \mathrm{C}^{0}$ | Total | x | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃2b5 | 38．137 | $\square$ | 22．114 | 4.663 | 1.947 | 1．418 | 33.545 | 0．028 | 0．00b | 101．858 | $-11143$ | 6718 |
| \＃266 | 38．045 | $\square$ | 21．71 | 4.68 | 1.984 | 1．462 | 33．779 | $\square$ | 0．001 | 101．861 | －11136 | 6716 |
| \＃2b？ | 37．765 | －．1ロ | 21．423 | 4.545 | 1.939 | 1.353 | 33．125 | 0．031 | 0.009 | 100．35b | －11127 | 6714 |
| \＃268 | 64.264 | $\square$ | 8．54 | 2．141 | 1.03 | 0．717 | 19．791 | 0．103 | 0.04 | 96．62b | －111123 | 6713 |
| \＃269 | 38．084 | $\square$ | 21．477 | 4.368 | 1.768 | 1.464 | 33.348 | $\square$ | $\square$ | 100．709 | －11116 | 6711 |
| \＃270 | 37.735 | $\square$ | 22.605 | 4.718 | 1.947 | 1.378 | 33．471 | 0.03 | 0．016 | 101．7 | －11109 | 6709 |
| \＃27］ | 38．232 | 0.003 | 22．012 | 4.564 | 1.906 | 1．298 | 33．851 | $\square$ | 0．01 | 101．876 | $-11102$ | 6707 |
| \＃こアコ | 38．219 | 0．01］ | 22．16 | 4.684 | 1.759 | 1.405 | 33.974 | $\square$ | $\square$ | 102．412 | －11．096 | 6705 |
| \＃273 | 38．554 | 0．012 | 22．036 | 4.708 | 1.952 | 1．419 | 34.353 | 0.004 | 0．012 | 103.05 | －11089 | 6703 |
| \＃274 | 37．687 | 0．007 | 22．751 | 4.713 | 1．85 | 1.483 | 33.438 | 0．016 | 0.019 | 102．364 | －11082 | 6701 |
| \＃275 | 34.83 | $\square$ | 20．874 | 4.316 | 1.985 | 1．366 | 33.023 | 0.015 | $\square$ | 76．409 | －111075 | ட697 |
| \＃2ア6 | 38．563 | $\square$ | 22．ロ2 | 4.416 | 1．97？ | 1.554 | 34.345 | $\square$ | 0．00b | 102．881 | －11．069 | 6697 |
| \＃277 | 38．144 | 0．001 | 21．844 | 4.244 | 2.044 | 1.542 | 34.255 | 0.009 | 0.004 | 102．087 | －11062 | ட๐96 |
| \＃278 | 38．284 | 0．016 | 22．072 | 4．051 | 1.971 | 1．381 | 34.77 | $\square$ | 0．006 | 102．571 | －11055 | 6694 |
| \＃こ77 | 39．42b | 0.015 | 21．502 | 3.922 | 1.959 | 1．514 | 33.35 | 0.027 | 0.03 | 101． 745 | －111048 | เ692 |
| \＃280 | 92．557 | $\square$ | 0．715 | 0．117 | 0.09 | 0.037 | 2.408 | 0.002 | $\square$ | 75．726 | －111042 | 6690 |
| \＃281 | 79．435 | 0.013 | 0.014 | 0.012 | 0．006 | $\square$ | 0.573 | $\square$ | $\square$ | 100.053 | －111035 | ம688 |
| \＃282 | 97．809 | 0．015 | 0.014 | 0.005 | 0.003 | $\square$ | 0.587 | 0．001 | $\square$ | 100.434 | －11028 | 6686 |
| \＃283 | 79．625 | ロ．002 | 0.009 | $\square$ | 0.035 | $\square$ | 0．521 | 0．006 | 0.004 | 100．202 | －11021 | 6684 |
| \＃284 | 79．817 | 0．021 | $\square$ | $\square$ | 0.024 | 0.072 | 0.44 | $\square$ | $\square$ | 100．374 | －11014 | 6682 |
| \＃285 | 79．773 | 0 | 0.005 | $\square$ | $\square$ | 0.037 | 0.444 | $\square$ | 0.018 | 100．27？ | －11．008 | 668］ |
| \＃286 | 100．094 | $\square$ | $\square$ | 0．00？ | 0．001 | 0．022 | 0．46？ | $\square$ | $\square$ | 100．591 | －11．001 | 6679 |
| \＃28？ | 100．163 | 0.074 | 0．013 | $\square$ | $\square$ | 0.024 | 0.425 | $\square$ | $\square$ | 100.697 | －1．0974 | 667？ |
| \＃288 | 79．636 | 0.013 | 0．01 | $\square$ | $\square$ | 0.015 | 0．519 | 0.004 | 0.004 | 100．201 | －10987 | 6675 |
| \＃289 | 79．701 | 0．02 | 0.043 | $\square$ | 0．011 | $\square$ | 0.488 | 0．01 | 0.004 | 100．27？ | －10981 | 6673 |
| \＃こワ0 | 79．337 | 0.005 | 0．429 | 0.014 | $\square$ | 0.046 | 0．711 | 0．012 | 0.068 | 100．622 | －10974 | 667l |
| \＃291 | 36．962 | $\square$ | 21．353 | 3.173 | 1.975 | 1．517 | 34．871 | 0．012 | $\square$ | 79.903 | －1096？ | レடเา |
| \＃こワ2 | 38．194 | 0.013 | 22．072 | 3．928 | 2.04 | 1.563 | 34．571 | 0.008 | 0.008 | 102．397 | －10960 | 6ь6？ |
| \＃293 | 38．3 | $\square$ | 22．242 | 4.175 | 2．008 | 1．529 | 34.692 | 0.003 | 0.015 | 102．764 | －10954 | டமட |
| \＃274 | 38．364 | 0.005 | 21．864 | 4.234 | 1.973 | 1.372 | 34．164 | $\square$ | 0.015 | 101．971 | －10947 | 6664 |
| \＃295 | 38．444 | 0．01］ | 22．002 | 4.322 | 2.044 | 1．391 | 34.027 | $\square$ | $\square$ | 102．241 | －10940 | ロ๐62 |


|  | $\mathrm{SiO}{ }_{2}$ | Ti0z | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | Mno | FeO | Na 2 O | K ${ }_{2} 0$ | Total | x | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃こワ6 | 38．248 | 0．015 | 22．003 | 4.327 | 2.078 | 1．42？ | 34.085 | $\square$ | － | 102．185 | －10933 | ட66ロ |
| \＃297 | 38．33b | 0.003 | 22.04 | 4.514 | 2.04 | 1.364 | 34.238 | 0.016 | 0．011 | 102．562 | －1092？ | 6658 |
| \＃こワ8 | 38．362 | 0.025 | 21．712 | 4.517 | 2.004 | 1.468 | 34.004 | 0.017 | 0．001 | 102．314 | －10920 | bا5b |
| \＃こワ7 | 37．525 | $\square$ | 22．273 | 4．511 | 1．978 | 1.494 | 33．59b | 0.014 | 0．012 | 101．403 | －10913 | b654 |
| \＃300 | 36．76 | $\square$ | 20.874 | 4.2 | 1．971 | 1．441 | 33．137 | 0.007 | $\square$ | 78.59 | －10906 | 6652 |
| \＃301 | 38．196 | 0．027 | 22.053 | 4.312 | 2．021 | 1．5122 | 33.704 | 0.002 | 0.004 | 102．031 | －10900 | b651 |
| \＃302 | 38．375 | 0.014 | 21．797 | 4.384 | 2.044 | 1.437 | 34．31 | $\square$ | $\square$ | 102．583 | －10893 | 6647 |
| \＃303 | 38．087 | 0．03b | 21．788 | 4.313 | 2.093 | 1．467 | 34.147 | 0．031 | $\square$ | 101．7b2 | －10886 | 5647 |
| \＃304 | 38．66 | 0．046 | 21．876 | 4.211 | 2.018 | 1.447 | 34.67 | $\square$ | 0 | 102.73 | －10879 | 6645 |
| \＃305 | 38．181 | 0．031 | 22．057 | 4．31 | 2.059 | 1.467 | 34.477 | 0.002 | $\square$ | 102．586 | －10873 | 6643 |
| \＃306 | 38．25？ | 0．08b | 22.014 | 4.212 | 2．027 | 1.423 | 34．27b | $\square$ | 0.003 | 102．32 | －10866 | 6641 |
| \＃307 | 38．443 | 0．168 | 22．047 | 4.182 | 2．054 | 1．507 | 34.54 | $\square$ | $\square$ | 102．743 | －10859 | 6639 |
| \＃308 | 38．412 | 0．316 | 21．743 | 4.074 | 2．032 | 1.32 | 33.782 | 0.016 | 0 | 101．895 | －10852 | 6637 |
| \＃309 | 38.4 | 0.438 | 21．467 | 4.001 | 11.977 | 1．421 | 34．051 | 0．011 | $\square$ | 101．786 | －10846 | டь36 |
| \＃310 | 100．329 | 0.138 | 0.265 | 0．041 | 0.044 | 0．061 | 0．461 | $\square$ | 0．002 | 101．341 | －10839 | 6634 |
| \＃31． | 100．183 | 0.092 | 0.044 | 0.001 | $\square$ | 0.007 | 0.347 | $\square$ | 0.006 | 100．682 | －10832 | 6632 |
| \＃312 | 79.789 | 0.085 | 0．01 | $\square$ | 0．011 | 0．026 | 0．322 | 0.008 | $\square$ | 100．451 | －10825 | 6630 |
| \＃ 313 | 79．819 | 0.063 | 0．021 | $\square$ | $\square$ | 0.044 | 0.353 | 0.008 | 0.002 | 100．31 | －10819 | เ๐2в |
| \＃314 | 78．27 | 0.049 | 0.109 | 0.027 | $\square$ | 0.024 | 0.452 | $\square$ | 0．01 | 78．743 | －10812 | டь2b |
| \＃31．5 | 44.655 | 0．051 | 21．364 | 4.347 | 1．728 | 1．189 | 28．873 | $\square$ | $\square$ | 102．209 | －10805 | bا24 |
| \＃316 | 19．749 | 0.052 | 11．823 | 2．161 | 1．115 | 0.579 | 35.003 | 0．16？ | 0.149 | 70.798 | －10798 | เь2ᄅ |
| \＃317 | 111．931 | 0．046 | 10．23 | 1.905 | 1．522 | 0．872 | 20.379 | 0.133 | ロ．1．27 | 47．165 | －10792 | Ь620 |
| \＃ 318 | 38．147 | 0．023 | 22.047 | 4.462 | 1.758 | 1.375 | 34．05？ | 0.017 | 0．008 | 102．098 | －10785 | 6619 |
| \＃319 | 38．869 | $\square$ | 22．146 | 4.648 | 2．001 | 1.524 | 33．617 | $\square$ | $\square$ | 102．805 | －10778 | bاl？ |
| \＃320 | 74．062 | $\square$ | 2．b | 0.534 | ロ．272 | 0．17 | 4．289 | 0.004 | 0．01 | 101．7bl | －10771 | b6lı |
| \＃321 | 100．011 | 0.018 | 0．015 | $\square$ | ロ．01 | 0.035 | 0．801 | $\square$ | 0.007 | 100．897 | －10765 | b6l3 |
| \＃322 | 79.764 | $\square$ | 0．08？ | 0.007 | 0.007 | 0．091 | 0.716 | 0.004 | 0．021 | 100．901 | －10758 | 661］ |
| \＃323 | 38．614 | $\square$ | 22．055 | 4.595 | 2．082 | 1．412 | 33.755 | 0.016 | $\square$ | 102．529 | －10751 | 6609 |
| \＃324 | 38．374 | $\square$ | 21．872 | 4.759 | 2．01？ | 1.458 | 33.923 | 0．01？ | $\square$ | 102．42 | －10744 | 6607 |
| \＃325 | 38．34 | 0．01 | 22．117 | 4.685 | 2．016 | 1.363 | 33．8b | $\square$ | $\square$ | 102．391 | －10738 | b605 |
| \＃326 | 38.43 | $\square$ | 22．087 | 4.716 | 2.093 | 1.383 | 34．175 | 0.005 | 0 | 102．889 | －10731 | b604 |


|  | $\mathrm{SiO}{ }_{2}$ | $\mathrm{Ti} 0_{2}$ | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | Mno | Feo | Na 20 | $\mathrm{K} \mathrm{C}^{0}$ | Total | x | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃327 | 38．68 | 0．00b | 22．051 | 4.656 | 2．155 | 1．297 | 33．715 | 0.015 | 0．00b | 102．581 | －10724 | เロロ2 |
| \＃328 | 38.4 | 0．006 | 22．145 | 4.715 | 2.094 | 1.475 | 33.702 | 0.013 | 0．01 | 102．76 | －1071？ | b60 |
| \＃329 | 41．671 | 0．027 | 20．53b | 4.373 | 1．882 | 1.408 | 32．551 | $\square$ | 0．01 | 102．458 | －1071］ | 6598 |
| \＃330 | 38．42b | 0．007 | 22．262 | 4.732 | 2．086 | 1．361 | 34．186 | 0.023 | $\square$ | 103.083 | －10704 | 659b |
| \＃331 | 38．585 | 0.004 | 22．102 | 4.721 | 2．138 | 1．389 | 34．063 | 0．001 | $\square$ | 103.003 | －10697 | 6594 |
| \＃332 | 38．35 | $\square$ | 22．01 | 4.692 | 2．155 | 1．356 | 34．314 | 0．036 | 0．002 | 102．915 | －10690 | 6592 |
| \＃333 | 38．504 | 0.035 | 22．077 | 4.694 | 2．08 | 1.308 | 34．176 | $\square$ | $\square$ | 102．894 | －10684 | 6590 |
| \＃334 | 38．395 | $\square$ | 21．76 | 4.779 | 2．065 | 1．284 | 34．096 | $\square$ | $\square$ | 102．579 | －106？ | 6589 |
| \＃335 | 38．048 | 0．012 | 21．77b | 4.696 | 2.093 | 1．301 | 34．2b6 | $\square$ | 0.016 | 102．208 | －10670 | 6587 |
| \＃336 | 38.447 | 0．016 | 21．717 | 4.691 | 2．102 | 1.357 | 33.843 | $\square$ | $\square$ | 102．373 | －10663 | 6585 |
| \＃337 | 38．643 | $\square$ | 21．936 | 4.786 | 2．085 | 1．471 | 34.035 | 0.024 | 0.004 | 102．784 | －1065？ | 6583 |
| \＃338 | 38．228 | $\square$ | 22．16？ | 4.833 | 1．978 | 1．281 | 34.537 | $\square$ | 0．012 | 103．05b | －10650 | 6581 |
| \＃339 | 78．235 | 0.004 | 0.69 | ロ．123 | 0.064 | 0.039 | 1．461 | 0．01 | 0．005 | 100．631 | －10643 | 6579 |
| \＃340 | 100．046 | $\square$ | ロ．02b | $\square$ | －0．02 | 0.085 | 0.77 | $\square$ | $\square$ | 101．153 | －10636 | 657？ |
| \＃341 | 71.627 | 0．011 | 2.003 | 0.386 | 0.253 | 0.224 | 4.296 | 0．001 | 0.007 | 78．808 | －10629 | 6575 |
| \＃342 | 39．2ь6 | 0.032 | 22.655 | 4.785 | 2．028 | 1．315 | 34．185 | 0.009 | 0.008 | 104．283 | －10623 | 6574 |
| \＃343 | 31．431 | 0.057 | 13．787 | 0.565 | 0.439 | 0．239 | 3.423 | 0.14 | 0.085 | 50．166 | －10616 | 6572 |
| \＃344 | 40．226 | 0．021 | 1.545 | 0．086 | 0.468 | 0.007 | 1.459 | 0.039 | 0.114 | 43.76 ？ | －10609 | 6570 |
| \＃345 | 79．784 | 0．006 | ロ．027 | 0．012 | 0．015 | 0.004 | 0．531 | $\square$ | 0.005 | 100．384 | －10602 | 6568 |
| \＃346 | 100．021 | －．002 | 0．01？ | $\square$ | $\square$ | $\square$ | 0.492 | $\square$ | $\square$ | 100.532 | －10596 | 65b6 |
| \＃347 | 100．064 | 0 | 0．015 | 0.009 | 0．011 | $\square$ | 0．411 | $\square$ | 0.003 | 100．513 | －10589 | 6564 |
| \＃348 | 100．265 | ロ．02？ | ロ．02b | $\square$ | $\square$ | 0．011 | 0.432 | $\square$ | 0．001 | 100．762 | －10582 | 65b2 |
| \＃349 | 79．631 | $\square$ | 0．009 | $\square$ | 0.018 | 0.007 | 0.392 | 0.018 | $\square$ | 100．075 | －10575 | 6560 |
| \＃350 | 100．103 | 0.016 | ロ．023 | $\square$ | 0．011 | 0.057 | 0.461 | $\square$ | $\square$ | 100．6？1 | －10569 | 6559 |
| \＃351 | 100．447 | $\square$ | 0．009 | $\square$ | 0．012 | $\square$ | 0.47 | $\square$ | $\square$ | 100．76 | －10562 | 6557 |
| \＃352 | 79.254 | 0.012 | 0．001 | $\square$ | 0.003 | 0.03 | 0.5 | 0．001 | $\square$ | 79．801 | －10555 | 6555 |
| \＃353 | 100．301 | 0．00b | 0．032 | $\square$ | 0．013 | 0．022 | 0．60b | $\square$ | 0．001 | 100．981 | －10548 | 6553 |
| \＃354 | 38．835 | 0.006 | 22．097 | 4.652 | 2.088 | 1.355 | 33．791 | 0.009 | $\square$ | 103.035 | －10542 | 6551 |
| \＃355 | 38．554 | 0 | 21．718 | 4.677 | 2．159 | 1．411 | 34.442 | 0.008 | $\square$ | 103．169 | －10535 | 6549 |
| \＃356 | 38．472 | $\square$ | 22．061 | 4．671 | 2．168 | 1．386 | 34．59 | 0.002 | 0.006 | 103．35b | －10528 | 6547 |
| \＃35？ | 38．6bl | $\square$ | 22．027 | 4.643 | 2．128 | 1．428 | 33．813 | 0．015 | $\square$ | 102．715 | －10521 | 6545 |


|  | $\mathrm{SiO}{ }_{2}$ | Ti02 | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | MnO | FeO | Na 20 | K C O | Total | $\times$ | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \#358 | 38.875 | 0.02b | 22.111 | 4.79 | 2.094 | 1.185 | 34.154 | 0.008 | $\square$ | 103.243 | -10515 | 6543 |
| \#359 | 38.374 | 0.032 | 22.32b | 4.75 | 2.ロ72 | 1.32 | 34.454 | $\square$ | 0.014 | 103.342 | -10508 | 6542 |
| \#360 | 38.344 | 0.054 | 22.26? | 4.646 | 2.097 | 1.406 | 33.742 | 0.005 | $\square$ | 102.7bl | -10501 | 6540 |
| \#361 | 38.522 | 0.03b | 22.059 | 4.706 | 2.178 | 1.396 | 34.102 | $\square$ | 0.006 | 103.025 | -10474 | 6538 |
| \#362 | 38.313 | 0.072 | 22.13 | 4.57 | 2.145 | 1.294 | 34.205 | $\square$ | $\square$ | 102.729 | -10488 | 6536 |
| \#363 | 38.303 | 0.232 | 22.01] | 4.245 | 2.122 | 1.42 | 34.71 | 0.03 | $\square$ | 103.273 | -10481 | 6534 |
| \#364 | 38.091 | 0.58 | 22.146 | 3.41 | 2.123 | 1.553 | 35.672 | $\square$ | 0.002 | 103.577 | -10474 | 6532 |
| \#365 | 0.07] | 51.468 | $\square$ | 0.142 | ロ.009 | 0.293 | 48.303 | 0.004 | 0.01 | 100.3 | -1046? | 6530 |
| \# З66 | 0.093 | 50.793 | 0.073 | 0.12b | 0.037 | 0.291 | 48.343 | $\square$ | 0.002 | 77.758 | -10461 | 6528 |
| \#36? | 38.05b | 0.753 | 21.812 | 3.35 | 2.143 | 1.537 | 35.566 | $\square$ | $\square$ | 103.219 | -10454 | 6527 |
| \# 368 | 38.363 | 0.275 | 22.104 | 4.259 | 2.284 | 1.303 | 34.794 | $\square$ | 0.009 | 103.611 | -10447 | 6525 |
| \#369 | 38.765 | - .12] | 22.033 | 4.59 | 2.356 | 1.279 | 33.979 | 0.006 | 0.001 | 103.13 | -10440 | 6523 |
| \#370 | 38.306 | 0.089 | 22.048 | 4.64 | 2.328 | 1.266 | 34.457 | 0.009 | 0.006 | 103.149 | -10434 | 6521 |
| \#371 | 38.497 | 0.029 | 21.758 | 4.633 | 2.337 | 1.297 | 34.162 | 0.022 | 0.003 | 102.74 | -10427 | 6517 |
| \#372 | 38.465 | 0.012 | 21.788 | 4.668 | 2.293 | 1.239 | 34.476 | 0.027 | 0.011 | 103.197 | -10420 | 6517 |
| \#373 | 38.432 | 0.00? | 22.175 | 4.707 | 2.372 | 1.319 | 33.975 | 0.033 | $\square$ | 103.04 | -10413 | 6515 |
| \#374 | 38.673 | 0.01 | 22.1111 | 4.584 | 2.322 | 1.265 | 34.001 | 0.013 | $\square$ | 102.979 | -10407 | 6513 |
| \#375 | 38.344 | 0.041 | 22.153 | 4.682 | 2.535 | 1.248 | 33.738 | 0.03 | 0.005 | 102.976 | -10400 | 6512 |
| \#376 | 38.737 | 0.036 | 22.082 | 4.577 | 2.419 | 1.297 | 34.126 | 0.016 | 0.01 | 103.3 | -10393 | 6510 |
| \#37? | 38.466 | 0.028 | 22.069 | 4.622 | 2.475 | 1.301 | 34.105 | $\square$ | $\square$ | 103.066 | -10386 | 6508 |
| \#378 | 38.729 | $\square$ | 22.139 | 4.685 | 2.315 | 1.264 | 34.553 | 0.025 | $\square$ | 103.71 | -10380 | 6506 |
| \#379 | 38.701 | $\square$ | 22.33 | 4.623 | 2.26 | 1.214 | 34.048 | 0.016 | $\square$ | 103.192 | -10373 | 6504 |
| \#380 | 22.337 | 0.002 | 24.2 | 5.7122 | 0.053 | 0.218 | 34.714 | 0.023 | 0.024 | 87.483 | -10366 | 6502 |
| \#381 | 53.762 | 0.015 | 0.401 | 2.581 | 0.716 | 1.472 | 24.257 | 0.005 | $\square$ | 83.409 | -10359 | 6500 |
| \#382 | 72.344 | 0.009 | 1.648 | 0.291 | 0.205 | 0.141 | 3.341 | $\square$ | 0.015 | 97.794 | -10353 | 6498 |
| \#383 | 38.545 | 0.02 | 22.158 | 4.65? | 2.34 | 1.252 | 33.786 | $\square$ | $\square$ | 102.958 | -10346 | 6497 |
| \#384 | 38.475 | 0.002 | 22.06? | 4.616 | 2.369 | 1.392 | 34.79 | 0.005 | $\square$ | 103.716 | -10339 | 6475 |
| \#385 | 38.738 | 0.013 | 22.149 | 4.65? | 2.276 | 1.279 | 34.05 | 0.009 | 0.005 | 103.176 | -10332 | 6493 |
| \#386 | 38.692 | 0.022 | 21.706 | 4.471 | 2.349 | 1.298 | 34.39 | $\square$ | $\square$ | 103.128 | -10326 | 6471 |
| \#387 | 38.704 | 0.017 | 21.781 | 4.635 | 2.25? | 1.327 | 34.173 | 0.018 | 0.007 | 103.139 | -10319 | 6489 |
| \#388 | 38.816 | $\square$ | 21.747 | 4.634 | 2.28 | 1.213 | 34.265 | $\square$ | $\square$ | 102.955 | -10312 | 6487 |


|  | $\mathrm{SiO}{ }_{2}$ | $\mathrm{Ti} 0_{2}$ | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | MnO | Fe0 | Na 20 | K C O | Total | $\times$ | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃389 | 38．598 | 0.034 | 21．788 | 4.662 | 2．361 | 1.358 | 33.897 | 0.03 | $\square$ | 102．928 | －10305 | 6485 |
| \＃390 | 38．589 | 0．023 | 22．07 | 4.563 | 2.389 | 1．239 | 34．389 | $\square$ | 0．001 | 103．263 | －1ロ297 | 6483 |
| \＃371 | 38．632 | 0．01 | 21．835 | 4．671 | 2.402 | 1．27 | 34．328 | $\square$ | $\square$ | 103．148 | －10292 | 6482 |
| \＃392 | 38．41 | 0．025 | 21.924 | 4.594 | 2．413 | 1.334 | 34.403 | 0．007 | 0.006 | 103．116 | －10285 | 6480 |
| \＃393 | 38．543 | $\square$ | 21．885 | 4.516 | 2．386 | 1．22b | 33．738 | 0.009 | 0．011 | 102． 314 | －10278 | 6478 |
| \＃394 | 38．674 | 0．01？ | 22．032 | 4.718 | 2.387 | 1．1911 | 34．352 | 0.035 | 0.003 | 103.409 | －1ロ272 | 6476 |
| \＃395 | 38．241 | 0.023 | 22．025 | 4.633 | 2．341 | 1．231 | 34．263 | 0.009 | 0.013 | 102．779 | －102b5 | 6474 |
| \＃ 3 ¢ | 38．513 | ロ．ロ2？ | 21．783 | 4．63b | 2．27？ | 1．274 | 34.033 | 0．012 | 0.003 | 102．778 | －10258 | 6472 |
| \＃397 | 38．367 | 0.025 | 21．794 | 4．63b | 2．283 | 1．2b5 | 34．623 | 0.02 | 0.002 | 103．215 | －10251 | 6470 |
| \＃378 | 38．425 | 0.017 | 21．747 | 4.596 | 2．27b | 1．14 | 34．201 | $\square$ | 0．01 | 102．614 | －10244 | 6468 |
| \＃379 | 38．777 | $\square$ | 21．797 | 4.583 | －1．27 | 1．231 | 34.648 | 0.02 | 0.008 | 101．411 | －10238 | 6466 |
| \＃400 | 38．63b | 0．00b | 21．935 | 4.594 | 2．318 | 1.303 | 34．074 | $\square$ | $\square$ | 102．866 | －1ロ231 | 6465 |
| \＃401 | 38．724 | 0.017 | 21．828 | 4.638 | 2.383 | 1－27 | 34.224 | 0.036 | $\square$ | 103．12 | －10224 | 6463 |
| \＃402 | 38．25b | －0．0．6 | 21．753 | 4.663 | 2．281 | 1．201 | 34．391 | 0.025 | 0.004 | 102．8 | －1ロ21？ | 6461 |
| \＃403 | 38．635 | 0.005 | 21．848 | 4.604 | 2.375 | 1．239 | 34．458 | $\square$ | $\square$ | 103．184 | －10211 | 6459 |
| \＃404 | 38．804 | 0．001 | 22．024 | 4．65b | 2.324 | 1．146 | 34．647 | $\square$ | $\square$ | 103．602 | －10204 | 6457 |
| \＃405 | 38．882 | $\square$ | 22．013 | 4.538 | 2．361 | 1．27 | 34.09 | $\square$ | $\square$ | 103．154 | －10177 | 6455 |
| \＃406 | 38．558 | $\square$ | 21．709 | 4.697 | 2.364 | 1.14 | 34．233 | 0．00？ | $\square$ | 102．71 | －10190 | 6453 |
| \＃40？ | 38．634 | 0．007 | 21．923 | 4.578 | 2.345 | 1．235 | 34．297 | $\square$ | $\square$ | 103．019 | －10184 | 6451 |
| \＃408 | 38．597 | 0．01b | 21．88 | 4.627 | 2．286 | 1.255 | 34．63b | $\square$ | $\square$ | 103.297 | －1017？ | 6450 |
| \＃409 | 38．552 | 0．02？ | 22 | 4.558 | 2.464 | 1．201 | 34．117 | $\square$ | $\square$ | 102．719 | －10170 | 6448 |
| \＃ 410 | 38．548 | 0.004 | 22 | 4.602 | 2.395 | 1.298 | 34．173 | $\square$ | $\square$ | 103.02 | －10163 | 6446 |
| \＃411 | 38．681 | ロ．026 | 22．131 | 4.565 | 2.478 | 1．188 | 34．01］ | 0.007 | 0．011 | 103．118 | －1015？ | 6444 |
| \＃412 | 38．654 | 0．022 | 22．101 | 4.565 | 2.489 | 1．252 | 34.466 | 0.001 | $\square$ | 103.55 | －10150 | 6442 |
| \＃413 | 38．605 | 0.004 | 22．053 | 4.452 | 2.598 | 1．131 | 34.008 | $\square$ | $\square$ | 102．851 | －10143 | 6440 |
| \＃414 | 38．692 | 0.02 | 22．032 | 4.436 | 2.463 | 1．155 | 34．124 | 0.02 | 0．011 | 102．953 | －10136 | 6438 |
| \＃ 415 | 32.413 | 0.009 | 1．243 | 0．2b？ | 0．289 | 0．225 | 6.778 | $\square$ | 0．065 | 41.289 | －10130 | 6436 |
| \＃416 | 38．52b | $\square$ | 21．936 | 4.478 | 2.469 | 1．237 | 34．481 | 0.016 | 0.003 | 103．166 | －10123 | 6435 |
| \＃417 | 38.45 | 0．001 | 21．897 | 4.609 | 2.473 | 1．233 | 34.343 | 0．006 | $\square$ | 103．012 | －10116 | 6433 |
| \＃418 | 38．468 | 0.02 | 22．089 | 4.566 | 2.497 | 1.203 | 34．393 | 0.023 | 0.008 | 103．26？ | －10109 | 6431 |
| \＃417 | 38．769 | 0.009 | 22．114 | 4.535 | 2.437 | 1．063 | 34.485 | 0．002 | 0.035 | 103.449 | －10103 | 6429 |


|  | $\mathrm{SiO}{ }_{2}$ | $\mathrm{Ti} 0_{2}$ | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | MnO | FeO | Na 20 | $\mathrm{K} \mathrm{C}^{0}$ | Total | $\times$ | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \# 420 | 38.285 | 0.009 | 22.003 | 4.57 | 2.492 | 1.17 ? | 34.543 | 0.007 | 0.013 | 103.092 | -10096 | 6427 |
| \# 421 | 38.718 | 0.041 | 22.145 | 4.547 | 2.483 | 1.133 | 33.711 | 0.001 | $\square$ | 102.779 | -10089 | 6425 |
| \#422 | 38.547 | $\square$ | 21.789 | 4.724 | 2.35b | 1.102 | 34.477 | $\square$ | $\square$ | 103.179 | -10082 | 6423 |
| \#423 | 38.51 | ロ.ロ27 | 22.189 | 4.572 | 2.373 | 1.163 | 34.254 | $\square$ | $\square$ | 103.088 | -10076 | 6421 |
| \# 424 | 38.806 | 0.027 | 22.122 | 4.56 | 2.457 | 1.068 | 34.382 | $\square$ | $\square$ | 103.422 | -10069 | 6420 |
| \#425 | 38.645 | 0.032 | 21.746 | 4.641 | 2.316 | 1.275 | 33.791 | 0.019 | 0.003 | 102.868 | -10062 | 6418 |
| \# 426 | 38.472 | 0.009 | 22.235 | 4.664 | 2.307 | 1.23 | 34.068 | 0.003 | 0.007 | 102.795 | -10055 | 6416 |
| \#42? | 38.502 | 0.032 | 21.766 | 4.547 | 2.351 | 1.213 | 34.054 | 0.012 | $\square$ | 102.679 | -10049 | 6414 |
| \#428 | 38.669 | 0.001 | 22.011 | 4.679 | 2.416 | 1. 205 | 34.313 | 0.013 | 0.003 | 103.31 | -10042 | 6412 |
| \#429 | 38.218 | 0.031 | 22.008 | 4.585 | 2.437 | 1.152 | 34.278 | $\square$ | $\square$ | 102.709 | -10035 | 6410 |
| \#430 | 38.65 | 0.013 | 22.077 | 4.6bl | 2.296 | 1.098 | 34.25 | 0.019 | 0.003 | 103.06? | -10028 | 6408 |
| \#431 | 38.464 | 0.032 | 22.053 | 4.615 | 2.249 | 1.117? | 34.755 | 0.009 | $\square$ | 103.274 | -10022 | 6406 |
| \#432 | 38.397 | 0.017 | 22.061 | 4.604 | 2.39 | 1.222 | 34.159 | $\square$ | $\square$ | 102.852 | -10015 | 6404 |
| \#433 | 38.492 | 0.00? | 21.876 | 4.436 | 2.353 | 1.174 | 34.62b | $\square$ | 0.014 | 102.978 | -10008 | 6403 |
| \#434 | 38.523 | 0.004 | 22.084 | 4.243 | 2.237 | 1.171 | 35.174 | 0.002 | 0.017 | 103.477 | -10001 | 6401 |
| \#435 | 38.278 | 0.015 | 22.066 | 4.4 | 2.319 | 1.054 | 34.715 | 0.006 | $\square$ | 103.073 | -9795 | 6397 |
| \#436 | 34.281 | 0.008 | 20.003 | 3.74 | 3.184 | 0.783 | 26.61] | 0.034 | 0.017 | 89.061 | -9788 | 6397 |
| \#437 | 38.711 | 0.01? | 22.163 | 4.65b | 2.275 | 1.173 | 33.789 | 0.003 | $\square$ | 102.953 | -9781 | 6395 |
| \#438 | 38.476 | 0.003 | 22.117 | 4.547 | 2.237 | 1.051 | 34.673 | 0.003 | 0.003 | 103.132 | -9974 | 6393 |
| \#439 | 38.524 | 0.016 | 22.102 | 4.602 | 2.138 | 1.097 | 34.779 | 0.005 | 0.014 | 103.279 | -9768 | 6391 |
| \#440 | 38.372 | 0.013 | 22.181 | 4.637 | 2.031 | 1.152 | 34.544 | $\square$ | $\square$ | 102.73 | -97bl | 6389 |
| \#441 | 38.723 | 0.038 | 22.048 | 4.676 | 1.98? | 1.194 | 34.865 | 0.013 | $\square$ | 103.544 | -9754 | 6388 |
| \#442 | 38.467 | $\square$ | 22.059 | 4.741 | 2.06? | 1.171 | 35.127 | 0.011 | 0.015 | 103.658 | -974 | 6386 |
| \#443 | 38.009 | 0.008 | 21.605 | 4.471 | 2.142 | 1.065 | 33.78 | 0.027 | $\square$ | 101.327 | -9741 | 6384 |
| \#444 | 38.4 | -.022 | 22.144 | 4.686 | 2.015 | 1.076 | 35.141 | 0.018 | 0.007 | 103.509 | -9734 | 6382 |
| \#445 | 38.635 | 0.008 | 22.01 | 4.688 | 2.146 | 11.079 | 34.686 | 0.016 | $\square$ | 103.268 | -9927 | 6380 |
| \#446 | 38.505 | 0.009 | 22.089 | 4.607 | 2.017 | 1.01 | 34.507 | 0.005 | $\square$ | 102.751 | -9720 | 6378 |
| \#447 | 38.373 | 0.007 | 22.002 | 4.65 | 1.889 | 1.178 | 34.705 | 0.007 | $\square$ | 102.811 | -9714 | ¢37b |
| \#448 | 38.61 | 0.017 | 22.178 | 4.809 | 1.974 | 1.16 | 34.632 | 0.009 | 0.007 | 103.416 | -9707 | 6374 |
| \#447 | 38.488 | $\square$ | 22.001 | 4.677 | 1.74 | 0.79 | 34.619 | 0.015 | 0.012 | 102.742 | -9900 | 6373 |
| \#450 | 38.85? | 0.007 | 22.223 | 4.68 | 1.951 | 1.05? | 34.548 | 0.011 | $\square$ | 103.334 | -9893 | 637] |


|  | $\mathrm{SiO}{ }_{2}$ | $\mathrm{Ti} 0_{2}$ | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | MnO | FeO | Na 2 O | K 2 O | Total | x | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃451 | 38．351 | 0．016 | 21．976 | 4.58 | 2．041 | 1．004 | 34．446 | 0.009 | $\square$ | 102．443 | －9887 | 6369 |
| \＃452 | 38．55 | 0.009 | 22．023 | 4．63b | 2.037 | 1．01 | 34.775 | 0 | $\square$ | 103.04 | －9880 | Ь36？ |
| \＃453 | 38．717 | 0.003 | 22．081 | 4.668 | 1．752 | 1．025 | 34.252 | $\square$ | $\square$ | 102．？ | －7873 | ட365 |
| \＃ 454 | 38.275 | 0.002 | 22．032 | 4.708 | 1．912 | 1．022 | 34.877 | $\square$ | $\square$ | 102．848 | －9866 | Ь363 |
| \＃455 | 38．285 | $\square$ | 22．011 | 4.655 | 1.947 | 1．012 | 34.744 | 0.009 | 0.018 | 102．881 | －7859 | 6361 |
| \＃ 456 | 38.374 | $\square$ | 22．212 | 4.698 | 1．838 | 1.05 | 34.84 | 0.005 | $\square$ | 103.037 | －9853 | 6359 |
| \＃45？ | 38．391 | 0.03 | 22．115 | 4.687 | 1．846 | 1．042 | 34.698 | 0.005 | $\square$ | 102．814 | －9846 | 6358 |
| \＃458 | 38．212 | 0.033 | 22．281 | 4.628 | 1．745 | 1．048 | 34.773 | $\square$ | 0．021 | 102．741 | －9839 | 635b |
| \＃459 | 38．17 | 0.009 | 22．148 | 4.642 | 1．728 | 0.734 | 35．159 | 0.013 | 0．002 | 102．825 | －9832 | 6354 |
| \＃ 460 | 38.287 | $\square$ | 22．097 | 4．b27 | 1．692 | 0.971 | 34.904 | 0.013 | $\square$ | 102．613 | －9826 | b352 |
| \＃461 | 38．431 | $\square$ | 22．ロ72 | 4.669 | 1．701 | 0.704 | 35．328 | 0 | 0．012 | 103．117 | －9817 | 6350 |
| \＃462 | 38．321 | $\square$ | 22．164 | 4．712 | 1.744 | 0.747 | 34.809 | $\square$ | 0.003 | 102． 7 | －9812 | 6348 |
| \＃463 | 38．578 | $\square$ | 22.03 | 4.662 | 1．671 | 0.758 | 35．417 | 0.039 | $\square$ | $103 \cdot 355$ | －9805 | 6346 |
| \＃464 | 38.602 | $\square$ | 21．797 | 4.583 | 1．757 | 0.847 | 35．541 | 0.023 | $\square$ | 103.352 | －9797 | 6344 |
| \＃465 | 38．662 | $\square$ | 22．222 | 4.598 | 1．736 | 0．82？ | 35.533 | 0．012 | $\square$ | 103．59 | －9792 | 6343 |
| \＃466 | 38．414 | 0.025 | 22．129 | 4.5 | 1．806 | 0.847 | 35．171 | $\square$ | $\square$ | 102．912 | －9785 | 6341 |
| \＃46？ | 38．829 | 0.018 | 22．115 | 4.329 | 1．797 | 0.843 | 35.85 | $\square$ | $\square$ | 103．781 | －9778 | 6339 |
| \＃468 | 38．571 | 0.032 | 22．255 | 4.375 | 1．874 | 0.815 | 35.647 | 0.024 | $\square$ | 103.593 | －9772 | b337 |
| \＃467 | 38.542 | 0.014 | 22．049 | 4.22 | 1．817 | 0.746 | 35.923 | 0.014 | 0.007 | 103.334 | －9765 | b335 |
| \＃470 | 38.343 | 0.017 | 22．125 | 3．781 | 1．748 | 0．828 | 36．255 | 0．012 | 0．01？ | 103．528 | －9758 | 6333 |
| \＃ 471 | 38．359 | 0.019 | 22．29b | 3．81 | 1．8ち2 | 0.84 | 36．67b | $\square$ | $\square$ | 103．862 | －9751 | 6331 |
| \＃472 | 38．715 | $\square$ | 22．077 | 3．822 | 1．815 | 0.842 | 36．486 | 0.003 | 0.004 | 103．764 | －9745 | เ329 |
| \＃473 | 38．766 | $\square$ | 21.844 | 3．596 | 1．76？ | 0．822 | 35.674 | 0.038 | 0.004 | 102．711 | －9738 | b32？ |
| \＃474 | 32．187 | $\square$ | 17.89 | 3.254 | 1．771 | 0.874 | 36．901 | $\square$ | $\square$ | 94．877 | －9731 | b32b |
| \＃475 | 38．223 | $\square$ | 21．895 | 3．566 | 1．83 | 0.806 | 36．977 | $\square$ | $\square$ | 103．297 | －9724 | 6324 |
| \＃ 476 | 38．821 | 0．001 | 22．784 | 3.939 | 1．71 | 0．71 | 31．413 | 0.204 | 0．052 | 77．834 | －9718 | เ322 |
| \＃477 | 21．548 | 0.006 | 14．1．27 | 1.773 | 1．652 | 0.526 | 23.002 | 0.382 | 0.254 | 63．29 | －9711 | 6320 |
| \＃478 | 37.754 | 0.027 | 21．752 | 3.53 | 1.843 | 0.722 | 36．497 | 0.006 | $\square$ | 102．531 | －9704 | 6318 |
| \＃479 | 38.075 | 0.013 | 22．111 | 3.435 | 1．891 | 0.788 | 36．711 | 0.003 | 0．001 | 103．228 | －9697 | 631． |
| \＃480 | 38．266 | ロ．029 | 21．868 | 3.304 | 1．819 | 0.746 | 37．163 | $\square$ | 0．002 | 103．197 | －9691 | 6314 |
| \＃481 | 36．272 | 0.032 | 19．901 | 2.668 | 1．719 | 0．712 | 35．687 | 0.002 | $\square$ | 76．793 | －9684 | 6312 |


|  | $\mathrm{SiO}{ }_{2}$ | TiOz | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | Mno | Fe0 | Na 20 | K 2 O | Total | $\times$ | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃482 | 2．017 | 0．041 | 1.72 | 0.403 | 0.483 | 0．089 | 5．7bl | 0.016 | 0.039 | 10．769 | －9677 | 631］ |
| \＃483 | 37．931 | 0．012 | 21．968 | 2．866 | 1．798 | 0．92b | 37.4 | $\square$ | 0.014 | 102．915 | －9670 | 6309 |
| \＃484 | 37.477 | $\square$ | 22．073 | 2.388 | 1．7b | 1．12 | 37．86？ | 0．006 | 0.023 | 102.72 | －9b64 | 6307 |
| \＃485 | 27．422 | 0．531 | 12．32 | 5．102 | 0．497 | 0.235 | 21．148 | 0.103 | 3.868 | 71．22b | －965？ | 6305 |
| \＃486 | 36．06 | 0.025 | 59.095 | 0.149 | 0.007 | $\square$ | 1.915 | 0.015 | 0.074 | 77.34 | －9650 | 6303 |
| \＃487 | 38．135 | 0.005 | b2．541 | 0．01 | $\square$ | $\square$ | 0.754 | 0.008 | 0．006 | 101．659 | －9643 | 6301 |
| \＃488 | 38．057 | 0.013 | 62．491 | 0．001 | $\square$ | 0.039 | 0．817 | $\square$ | $\square$ | 101．418 | －9b37 | เ279 |
| \＃489 | 38．114 | $\square$ | 62．603 | 0．015 | 0.034 | $\square$ | 0.884 | 0.005 | $\square$ | 101．655 | －9630 | 6297 |
| \＃490 | 38．37b | 0.002 | 63．168 | 0.004 | $\square$ | $\square$ | 0．864 | 0.004 | 0.003 | 102．421 | －9b23 | ь296 |
| \＃471 | 38．165 | $\square$ | 63．023 | 0.017 | 0 | 0.004 | 0.913 | $\square$ | 0.001 | 102．125 | －9616 | 6274 |
| \＃492 | 38．243 | $\square$ | 63．092 | 0.013 | $\square$ | $\square$ | 0．841 | 0.003 | $\square$ | 102．192 | －9bl0 | b292 |
| \＃493 | 38．35？ | $\square$ | 63．246 | 0.007 | 0．012 | $\square$ | 0.774 | $\square$ | 0.006 | 102．424 | －9603 | 6290 |
| \＃474 | 38．537 | 0.009 | 63.339 | 0．002 | 0．027 | $\square$ | 0.747 | $\square$ | $\square$ | 102．661 | －9596 | ь288 |
| \＃475 | 38．803 | ロ．021 | 63.483 | 0．01 | $\square$ | $\square$ | 0．806 | $\square$ | 0．016 | 103．139 | －9587 | 6286 |
| \＃47b | 46．369 | ロ．02b | 38．259 | 0.47 | 0．022 | 0.009 | 1.784 | 0.475 | 3．164 | 70．578 | －9583 | 6284 |
| \＃497 | 47．133 | ロ．ロ2？ | 38．801 | 0.253 | 0.009 | $\square$ | 0．727 | 0.378 | 2．77 | 70．1 | －957b | 6282 |
| \＃478 | 46．741 | 0.016 | 36．778 | 0.532 | $\square$ | 0.037 | 1.604 | 0.872 | 5.754 | 72.734 | －95b9 | 6281 |
| \＃497 | 91．25 | 0.007 | 2．863 | 0.154 | 0．01 | $\square$ | 1．0b？ | 0．］ | 0．823 | 76．276 | －95b2 | 6279 |
| \＃500 | 79．707 | 0．008 | 0.038 | $\square$ | 0.013 | 0.004 | 0．123 | 0．001 | 0.008 | 79.702 | －955b | b277 |
| \＃501 | 79.89 | 0.009 | $\square$ | 0.006 | $\square$ | 0.013 | 0.104 | $\square$ | 0.014 | 100．036 | －9547 | b275 |
| \＃502 | 79．662 | $\square$ | 0.015 | 0.009 | $\square$ | 0.037 | 0．01 | 0.004 | 0.003 | 79.74 | －9542 | b273 |
| \＃503 | 79.887 | 0．012 | 0．011 | 0.007 | $\square$ | 0.046 | $\square$ | 0．012 | $\square$ | 97．977 | －9535 | 627］ |
| \＃504 | 100．088 | $\square$ | 0．006 | 0．002 | 0.014 | 0.002 | 0.046 | $\square$ | 0.003 | 100．161 | －9529 | ь2b9 |
| \＃505 | 79.842 | 0.007 | 0．02l | $\square$ | 0.004 | $\square$ | 0.023 | 0.006 | 0.018 | 79．921 | －9522 | ¢26？ |
| \＃506 | 100．28 | 0.017 | $\square$ | 0．006 | 0.005 | $\square$ | 0.025 | $\square$ | 0.005 | 100． 34 | －9515 | в2ь6 |
| \＃507 | 100．177 | $\square$ | 0.006 | $\square$ | $\square$ | $\square$ | 0．012 | $\square$ | $\square$ | 100．175 | －9508 | 6264 |
| \＃508 | 79．831 | 0.014 | 0.004 | $\square$ | 0．006 | $\square$ | $\square$ | 0.003 | 0.003 | 79．861 | －9502 | ь2b2 |
| \＃509 | 78．173 | 0.018 | $\square$ | $\square$ | $\square$ | 0.017 | $\square$ | 0．001 | 0.004 | 78．213 | －9495 | b2bロ |
| \＃510 | 100．133 | $\square$ | 0.004 | $\square$ | $\square$ | 0.017 | 0.073 | 0.015 | $\square$ | 100．242 | －9488 | 6258 |

## Hames1GrtTrav2

|  | SiOz | Ti0z | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | MgO | CaO | MnO | Fe0 | $\mathrm{Na} \mathrm{a}^{0}$ | $\mathrm{K}_{2} \mathrm{O}$ | Total | x | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \#1 | 38.679 | 0 | 22.06 | 4.673 | 1.658 | 0.76 | 35.78 | 0 | 0.018 | 103.828 | -10964 | 4971 |
| \#2 | 38.688 | 0 | 21.781 | 4.62 | 1.761 | 0.791 | 35.215 | 0 | 0.002 | 103.058 | -10959 | 4969 |
| \#3 | 38.727 | 0.008 | 21.973 | 4.586 | 1.846 | 0.78 | 35.671 | 0 | 0 | 103.591 | -10954 | 4967 |
| \# 4 | 38.653 | 0.001 | 22.027 | 4.613 | 1.7bl | 0.79 | 35.644 | 0.002 | 0 | 103.471 | -10949 | 4965 |
| \#5 | 38.682 | 0.003 | 22.102 | 4.617 | 1.82b | 0.855 | 35.738 | 0.005 | 0 | 103.828 | -10944 | 4963 |
| \#b | 38.631 | 0.009 | 21.689 | 4.514 | 1.766 | 0.794 | 35.413 | 0.004 | 0.006 | 102.826 | -10939 | 4961 |
| \# | 38.437 | 0.008 | 21.882 | 4.547 | 1.836 | 0.794 | 35.849 | $\square$ | 0 | 103.353 | -10935 | 4959 |
| \#8 | 38.779 | 0 | 22.035 | 4.528 | 1.766 | 0.697 | 36.028 | 0.017 | 0 | 103.85 | -10930 | 4957 |
| \# 9 | 38.682 | 0.04 | 22.074 | 4.629 | 1.791 | 0.801 | 35.355 | 0.011 | 0 | 103.383 | -10925 | 4955 |
| \#10 | 38.831 | 0.007 | 22.016 | 4.538 | 1.801 | 0.815 | 35.432 | 0.011 | 0 | 103.451 | -10920 | 4953 |
| \#11 | 38.732 | 0.019 | 22.092 | 4.628 | 1.762 | 0.732 | 35.785 | 0.011 | 0.011 | 103.772 | -10915 | 4951 |
| \#12 | 38.408 | 0.014 | 21.973 | 4.606 | 1.815 | 0.772 | 35.913 | 0.003 | 0 | 103.524 | -10910 | 4949 |
| \#13 | 38.655 | 0 | 21.774 | 4.597 | 1.813 | 0.697 | 35.768 | 0.012 | 0 | 103.318 | -10905 | 4947 |
| \#14 | 38.625 | 0.035 | 22.058 | 4.598 | 1.904 | 0.669 | 35.795 | 0.003 | 0 | 103.687 | -10900 | 4945 |
| \#15 | 38.602 | 0.033 | 22.024 | 4.653 | 1.936 | 0.787 | 35.27b | 0.025 | 0.001 | 103.337 | -10895 | 4943 |
| \#16 | 38.806 | 0 | 22.183 | 4.552 | 1.85 | 0.712 | 35.932 | 0.022 | 0.011 | 104.068 | -10890 | 4941 |
| \#17 | 38.802 | 0.006 | 22.128 | 4.603 | 1.825 | 0.752 | 35.87b | 0.007 | 0.019 | 104.018 | -10885 | 4939 |
| \#18 | 38.897 | 0 | 22.274 | 4.667 | 1.885 | 0.62l | 35.79b | 0 | 0 | 104.142 | -10881 | 4937 |
| \#19 | 38.923 | 0.01 | 22.17 | 4.674 | 1.946 | 0.758 | 35.943 | 0.004 | 0 | 104.428 | -10876 | 4935 |
| \#20 | 39.029 | 0.024 | 22 | 4.616 | 1.931 | 0.703 | 36.145 | 0.011 | 0.004 | 104.463 | -10871 | 4933 |
| \#21 | 38.858 | 0.003 | 22.159 | 4.516 | 1.926 | 0.712 | 35.675 | 0.017 | 0.002 | 103.868 | -10866 | 4931 |
| \#22 | 38.614 | 2.071 | 22.103 | 4.377 | 1.872 | 0.664 | 35.898 | 0.008 | 0.002 | 105.609 | -10861 | 4929 |
| \#23 | 38.652 | 0 | 22.134 | 4.135 | 1.949 | 0.622 | 36.501 | 0.002 | 0.005 | 104 | -1085 | 4927 |
| \#24 | 38.775 | 0.033 | 22.045 | 3.837 | 1.942 | 0.705 | 36.6๐9 | 0.031 | 0.004 | 104.041 | -10851 | 4924 |
| \#25 | 38.496 | 0.005 | 22.127 | 3.283 | 1.907 | 0.774 | 37.307 | 0.019 | 0 | 103.718 | -10846 | 4922 |
| \#26 | 15.008 | 0.087 | 9.147 | 2.719 | 0.436 | 0.367 | 12.378 | 0.027 | 0.335 | 40.506 | -10841 | 4920 |
| \#27 | 29.447 | 0.748 | 21.551 | 14.575 | 0.012 | 0 | 21.351 | 0.072 | 2.872 | 70.628 | -10836 | 4918 |


|  | $\mathrm{SiO}_{2}$ | Ti0 ${ }^{\text {l }}$ | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | MnO | Fe0 | Na 20 | $\mathrm{K}_{2} \mathrm{O}$ | Total | $\times$ | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \#28 | 33.917 | 1.191 | 20.303 | 12.884 | 0.008 | 0.054 | 20.062 | 0.17 | 5.964 | 94.553 | -10831 | 4916 |
| \#29 | 27.823 | 0.385 | 22.589 | 15.268 | 0.029 | 0.078 | 23.187 | 0.041 | 1.55? | 70.957 | -1082? | 4914 |
| \#30 | 26.137 | 0.093 | 23.803 | 16.344 | 0.001 | 0.043 | 23.892 | 0.007 | 0.13 | 70.45 | -10822 | 4912 |
| \#31 | 28.058 | 0.403 | 22.794 | 15.609 | 0.014 | 0.006 | 22.613 | 0.046 | 1.534 | 91.077 | -1081? | 4910 |
| \#32 | 31.179 | 0.898 | 21.336 | 14.179 | 0 | 0 | 21.408 | 0.125 | 4.097 | 93.222 | -10812 | 4908 |
| \#33 | 26.472 | 0.151 | 23.53 | 16.264 | 0.01 | 0.037 | 23.087 | 0.022 | 0.419 | 89.972 | -10807 | 4906 |
| \#34 | 29.28 | 0.559 | 21.952 | 15.178 | 0.011 | 0.049 | 22.086 | 0.093 | 2.603 | 71.811 | -10802 | 4904 |
| \#35 | 26.958 | 0.082 | 23.614 | 17.273 | 0.016 | 0.002 | 23.266 | 0 | 0.026 | 91.237 | -10797 | 4902 |
| \#36 | 27.018 | 0.332 | 21.5? | 15.046 | 0.017 | 0.037 | 22.464 | 0.045 | 1.186 | 87.715 | -10792 | 4900 |
| \#37 | 25.879 | 0.113 | 23.126 | 16 | 0 | 0.053 | 23.961 | 0.025 | 0.149 | 89.306 | -1078? | 4898 |
| \#38 | 28.4 | 0.507 | 22.218 | 15.243 | 0.012 | 0.033 | 22.431 | 0.061 | 2.01 | 90.915 | -10782 | 4896 |
| \#39 | 30.2bl | 0.688 | 21.445 | 14.336 | 0.012 | 0.004 | 21.978 | 0.091 | 3.26l | 92.076 | -10777 | 4894 |
| \#40 | 31.559 | 0.873 | 21.115 | 13.946 | 0 | 0.089 | 21.243 | 0.146 | 4.225 | 93.196 | -10773 | 4892 |
| \#41 | 30.547 | 0.758 | 21.547 | 14.378 | 0 | 0.052 | 21.963 | 0.121 | 3.451 | 92.817 | -10768 | 4890 |
| \#42 | 35.217 | 1.472 | 19.653 | 12.454 | 0 | 0 | 19.562 | 0.268 | 6.949 | 95.575 | -10763 | 4888 |
| \#43 | 34.05 | 1.26l | 20.085 | 13.018 | 0 | 0 | 20.013 | 0.161 | 5.977 | 74.565 | -10758 | 4886 |
| \#44 | 35.038 | 1.363 | 19.71 | 12.538 | 0 | 0.006 | 19.78 | 0.214 | 6. 92 | 75.769 | -10753 | 4884 |
| \#45 | 35.258 | 1.378 | 19.925 | 12.684 | 0 | 0.037 | 19.414 | 0.231 | 6.741 | 95.668 | -10748 | 4882 |
| \#46 | 34.254 | 1.269 | 20.109 | 12.76? | 0 | 0.023 | 20.032 | 0.197 | b.258 | 95.111 | -10743 | 4880 |
| \#4? | 33.278 | 1.152 | 20.573 | 13.333 | 0 | 0.031 | 19.862 | 0.163 | 5.647 | 74.039 | -10738 | 4878 |
| \#48 | 36.103 | 1.513 | 19.428 | 12.095 | 0 | $\square$ | 19.355 | 0.246 | 7.484 | 96.224 | -10733 | 4876 |
| \#47 | 36.927 | 1.625 | 18.901 | 11.377 | 0 | 0.015 | 18.755 | 0.268 | 8.562 | 76.43 | -10728 | 4874 |
| \#50 | 37.312 | 1.655 | 19.336 | 11.335 | 0 | 0.037 | 17.805 | 0.268 | 8.274 | 76.022 | -10723 | 4872 |
| \#51 | 36.822 | 1.687 | 19.59 | 11.507 | 0 | 0 | 18.63l | 0.306 | 8.2b2 | 96.807 | -10718 | 4870 |
| \#52 | 37.08 | 1.687 | 19.6 | 11.559 | 0 | 0.025 | 19.039 | 0.266 | 8.522 | 77.778 | -10714 | 4868 |
| \#53 | 37.233 | 1.627 | 19.4 | 11.525 | 0 | 0.004 | 18.518 | 0.25 | 8.265 | 96.822 | -10709 | 4856 |
| \#54 | 36.229 | 1.702 | 18.707 | 11.142 | 0 | 0 | 19.424 | 0.25b | 8.374 | 95.834 | -10704 | 4864 |
| \#55 | 37.529 | 1.607 | 19.444 | 11.529 | 0 | 0.008 | 18.815 | 0.28 | 8.493 | 97.705 | -10699 | 4862 |
| \#56 | 37.449 | 1.511 | 19.637 | 11.552 | 0 | 0.002 | 19.276 | 0.314 | 8.579 | 78.32 | -10694 | 4860 |
| \#5? | 37.25? | 1.706 | 18.925 | 11.061 | 0 | 0.017 | 19.276 | 0.207 | 7.018 | 75.46? | -10689 | 4858 |
| \#58 | 22.328 | 0.898 | 11.398 | 6.419 | 0.089 | 0.021 | 13.279 | 0.153 | 4.838 | 59.423 | -10684 | 4856 |


|  | SiOz | Ti0 ${ }^{\text {a }}$ | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | MgO | CaO | MnO | Fe0 | Na 20 | $\mathrm{K}_{2} 0$ | Total | $\times$ | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \#59 | 35.914 | 1.154 | 18.96? | 11.6女2 | 0 | 0 | 19.392 | 0.153 | b. 324 | 93.566 | -10679 | 4854 |
| \#b0 | 61.014 | 0.593 | 10.277 | b.193 | 0.018 | 0 | 11.208 | 0.104 | 3.757 | 93.164 | -10674 | 4852 |
| \#bl | 36.891 | 1.286 | 19.41 | 11.441 | 0 | 0 | 18.028 | 0.281 | 8.525 | 95.862 | -10669 | 4850 |
| \#b2 | 36.115 | 1.207 | 19.803 | 11.275 | 0.002 | 0.008 | 19.116 | 0.269 | 8.336 | 96.131 | -10664 | 4848 |
| \# 3 | 36.228 | 1.316 | 19.316 | 11.207 | 0 | 0.002 | 19.339 | 0.262 | 8.592 | 76.2b2 | -10660 | 4846 |
| \#b4 | 34.531 | 1.145 | 19.395 | 11.409 | 0 | 0.039 | 20.588 | 0.221 | 7.096 | 74.424 | -10655 | 4844 |
| \#b5 | 36.862 | 1.322 | 19.121 | 11.215 | $\square$ | $\square$ | 18.803 | 0.278 | 8.308 | 75.909 | -10650 | 4842 |
| \#b | 36.947 | 1.323 | 18.801 | 11.679 | 0 | 0 | 19.023 | 0.232 | 8.643 | 96.648 | -10645 | 4840 |
| \#b? | 36.713 | 1.326 | 18.819 | 11.513 | 0 | 0.004 | 19.195 | 0.209 | 8.558 | 96.537 | -10640 | 4838 |
| \#b8 | 37.034 | 1.34] | 18.64 | 11.271 | 0 | 0.019 | 19.297 | 0.217 | 8.756 | 96.57? | -10635 | 4835 |
| \#ち9 | 37.001 | 1.342 | 18.69 | 11.528 | 0 | 0 | 19.421 | 0.247 | 8.305 | 96.534 | -10630 | 4833 |
| \#70 | 37.169 | 1.302 | 18.85 | 11.587 | 0 | 0.021 | 19.511 | 0.255 | 8.098 | 76.793 | -10625 | 4831 |
| \#7] | 36.847 | 1.363 | 19.202 | 11.492 | 0 | 0.004 | 19.05 | 0.26l | 8.32 | 96.541 | -10620 | 4829 |
| \#72 | 36.897 | 1.308 | 19.018 | 11.521 | 0 | 0.002 | 19.278 | 0.27] | 8.561 | 96.85b | -10615 | 4827 |
| \#73 | 36.263 | 1.421 | 19.021 | 11.769 | 0 | 0.004 | 20.209 | 0.202 | 7.777 | 96.เ66 | -10610 | 4825 |
| \#74 | 36.183 | 1.413 | 18.843 | 11.475 | $\square$ | 0.019 | 20.568 | 0.247 | 7.703 | 76.651 | -10606 | 4823 |
| \#75 | 37.227 | 1.416 | 18.831 | 11.084 | 0 | 0.012 | 19.67b | 0.255 | 8.174 | 7b.675 | -10601 | 4821 |
| \#76 | 35.279 | 1.326 | 18.831 | 11.444 | 0 | 0.021 | 20.301 | 0.185 | 7.374 | 94.761 | -10596 | 4819 |
| \#7? | 37.037 | 1.424 | 19.086 | 11.585 | 0 | - | 19.318 | 0.274 | 8.174 | 96.898 | -10591 | 4817 |
| \#78 | 37.112 | 1.475 | 19.029 | 11.512 | 0 | 0.019 | 19.304 | 0.258 | 8.79 | 77.497 | -10586 | 4815 |
| \#79 | 36.893 | 1.397 | 19.032 | 11.558 | 0 | 0.01 | 19.219 | 0.238 | 8.615 | 96.962 | -10581 | 4813 |
| \#80 | 37.083 | 1.463 | 19.054 | 11.579 | 0 | 0.012 | 19.318 | 0.249 | 8.492 | 77.25 | -1057b | 4811 |
| \#81 | 34.572 | 1.36l | 19.482 | 12.47 | 0.004 | 0.021 | 20.311 | 0.204 | 6.46l | 94.886 | -10571 | 4809 |
| \#82 | 33.414 | 1.194 | 20.255 | 13.105 | 0 | 0.017 | 20.882 | 0.14 | 5.309 | 94.316 | -10566 | 4807 |
| \#83 | 35.288 | 1.393 | 18.643 | 11.382 | 0.002 | 0.05 | 19.371 | 0.202 | 7.229 | 93.56 | -10561 | 4805 |
| \#84 | 36.08 | 1.495 | 18.964 | 11.334 | 0 | 0.027 | 20.22 | 0.217 | 7.796 | 96.133 | -1055b | 4803 |
| \#85 | 37.232 | 1.52 | 19.013 | 11.451 | 0 | 0.025 | 19.564 | 0.273 | 8.225 | 97.303 | -10552 | 4801 |
| \#86 | 39.736 | 1.57 | 18.441 | 9.39 | 0 | 0.013 | 16.243 | 0.218 | 7.677 | 93.288 | -10547 | 4799 |
| \#87 | 37.552 | 1.547 | 19.609 | 11.533 | 0 | 0.031 | 17.765 | 0.29 | 8.761 | 77.288 | -10542 | 4797 |
| \#88 | 37.37 | 1.382 | 19.668 | 11.463 | 0 | 0.04 | 17.548 | 0.269 | 8.48 ? | 96.227 | -10537 | 4795 |
| \#89 | 37.533 | 1.504 | 19.746 | 11.642 | 0 | 0.052 | 17.851 | 0.268 | 8.679 | 97.275 | -10532 | 4793 |


|  | SiO | TiO2 | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | MnO | Feo | $\mathrm{Na} \mathrm{a}^{0}$ | K 20 | Total | x | y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃ 0 | 37．65？ | 1．47？ | 19．446 | 11．573 | $\square$ | $\square$ | 17．769 | ロ．27 | 8.485 | 96．897 | －1052？ | 4791 |

## Hames1GrtTrav4

|  | SiO | TiO2 | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | Mno | FeO | $\mathrm{Na}_{2} \mathrm{O}$ | $\mathrm{K}_{2} \mathrm{O}$ | Total | X | $Y$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃1 | 47．421 | 0．829 | 35．741 | 0．824 | $\square$ | $\square$ | 1.306 | 1．17？ | 9．114 | 96．405 | －11787 | 8310 |
| \＃ | 46.977 | 0．76 | 36 | 0.847 | $\square$ | $\square$ | 1．351 | 1．139 | 8．751 | 76.045 | －11987 | 8302 |
| \＃3 | 46．897 | 1．02？ | 35.548 | 0.89 | 0．006 | 0．026 | 1．515 | 1．047 | 8．5b | 75．518 | －11786 | 8274 |
| \＃ 4 | 45.894 | 1.039 | 33.352 | 0.735 | $\square$ | 0．017 | 1．66 | 0.785 | 8.74 | 92．622 | －11786 | 8286 |
| \＃ 5 | 46．807 | 0.972 | 35．63 | 0.878 | $\square$ | 0．011 | 1.457 | 1.043 | 7．069 | 75．867 | －11785 | 827？ |
| \＃ | 47.047 | 1．074 | 35.37 | 0．961 | $\square$ | 0．002 | 1.801 | 1.02 | ๆ．ロ27 | 96．302 | －11785 | 8269 |
| \＃ 7 | 42．741 | 1．037 | 33．291 | 0．791 | 0．001 | $\square$ | 1.492 | 1．01 | 8．13 | 88.693 | －11784 | 82bl |
| \＃ 8 | 47．602 | 1．042 | 35．764 | 0．829 | 0．01 | $\square$ | 1．411 | 1．117 | 8．51b | 76．491 | －11784 | 8253 |
| \＃ 9 | 47.49 | 1．02？ | 35．761 | 0.759 | 0.005 | $\square$ | 1.354 | 1．184 | 8.648 | 76．228 | －11783 | 8245 |
| \＃1］ | 46．787 | 0．728 | 36．066 | 0．712 | $\square$ | 0.043 | 1．272 | 1．194 | B．717 | 75．717 | －11783 | 8237 |
| \＃1］ | 47.42 | 0.77 | 35．641 | 0.859 | $\square$ | 0.015 | 1．431 | 1．081 | 8.846 | 96．283 | －11782 | 8228 |
| \＃12 | 47.559 | 0.976 | 35．884 | 0.897 | $\square$ | $\square$ | 1.48 | 1．123 | 9．118 | 97．057 | －11982 | 8220 |
| \＃13 | 47．384 | 1．183 | 35．081 | 0.753 | $\square$ | 0.013 | 1．507 | 1．02l | 8．931 | 76．073 | －11781 | 8212 |
| \＃14 | 46.755 | 0.908 | 35．808 | 0．808 | $\square$ | 0.004 | 1．46 | 1．111 | 8.902 | 75．756 | －11781 | 8204 |
| \＃15 | 47．097 | 1.03 | 35.433 | 0．832 | $\square$ | 0．002 | 1．466 | 1．0ロ6 | 8.716 | 75．842 | －11780 | 8176 |
| \＃16 | 47.68 | 1．183 | 35．515 | 0.852 | $\square$ | 0.017 | 1.333 | 1．064 | 8．792 | 76．438 | －11980 | 8188 |
| \＃1？ | 46．771 | 1．282 | 34．778 | 1．008 | $\square$ | 0.013 | 1．719 | 0.733 | 8.747 | 75．451 | －11979 | 8180 |
| \＃18 | 47．288 | 1． 25 | 34．81 | 0.797 | 0．008 | 0.024 | 1．842 | 0.933 | 8.886 | 76．04 | －11979 | 8171 |
| \＃17 | 46.715 | 1．31 | 34.52 | 0．796 | $\square$ | $\square$ | 1.842 | 1．002 | 8.718 | 75.503 | －11978 | 8163 |
| \＃20 | 47．062 | 1．239 | 34．778 | 0.748 | $\square$ | 0．011 | 1．646 | 1 | 8.64 | 75.344 | －11978 | 8155 |
| \＃2l | 47．202 | 1．2こ1 | 34.875 | 0．7bl | $\square$ | 0.015 | 1．764 | 0.972 | 8．922 | 75．732 | －11977 | 8147 |
| \＃こ2 | 47．077 | 1.339 | 35．108 | 0．769 | $\square$ | $\square$ | 1．723 | 0.977 | 8.764 | 76．177 | －1197？ | 8137 |
| \＃23 | 46．902 | 1．202 | 35.003 | 0．926 | $\square$ | 0．071 | 1．517 | 0.986 | 8．951 | 75．558 | －11976 | 8131 |
| \＃24 | 46.843 | 1．121 | 34．753 | 0.914 | $\square$ | 0．011 | 1.635 | 1．015 | 8.918 | 75.41 | －11976 | 8122 |
| \＃25 | 47.038 | 1．251 | 34．767 | 1．036 | $\square$ | $\square$ | 1.835 | 0．971 | 8．931 | 76．027 | －11975 | 8114 |
| \＃こ6 | 47.05 | 1．178 | 35．389 | 0．888 | $\square$ | 0.047 | 11.535 | 1．011 | 8．962 | 96．062 | －11975 | 8106 |


|  | $\mathrm{SiO}{ }_{2}$ | $\mathrm{Ti} \mathrm{O}_{2}$ | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | MnO | Fe0 | Na 2 O | K 20 | Total | X | Y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃こ？ | 47．1116 | 1．274 | 35．162 | 0.974 | $\square$ | $\square$ | 1．515 | 0．96？ | 8．987 | 75．795 | －111974 | 8098 |
| \＃28 | 47.205 | 1．242 | 35．027 | 0.97 | $\square$ | $\square$ | 1．721 | 0．978 | 9.028 | 76．171 | －119774 | 8090 |
| \＃29 | 46．768 | 1．258 | 34．788 | 0.936 | 0．008 | 0.024 | 1.547 | 0.937 | 8．971 | 75．437 | －11973 | 8082 |
| \＃30 | 47．725 | 1．282 | 34．798 | 0．941 | $\square$ | 0．019 | 1．81？ | 0．96 | 9．114 | 76．55b | －11973 | 8074 |
| \＃31 | 46.695 | 1．252 | 34．821 | 0.768 | $\square$ | $\square$ | 1．713 | 0.757 | 9.046 | 75.452 | －11972 | 8065 |
| \＃32 | 47.407 | 1.347 | 34．75b | 1．001 | $\square$ | $\square$ | 1．609 | 0.917 | 8.92 | 76．157 | －11972 | 8057 |
| \＃33 | 46.648 | 1．231 | 34.82 | 0.793 | 0．008 | $\square$ | 1． 854 | 0.757 | 8.93 | 75．441 | －11971 | 8047 |
| \＃34 | 47．155 | 1．293 | 34．763 | 0.788 | $\square$ | $\square$ | 1．596 | 0.939 | 8.972 | 95．92b | －1197l | 8041 |
| \＃35 | 46.707 | 1．282 | 34．842 | 0.777 | $\square$ | $\square$ | 1．795 | 0．741 | 9.013 | 75．777 | －11970 | 8033 |
| \＃ 36 | 46.789 | 1．194 | 34．412 | 0.795 | $\square$ | $\square$ | 1．791 | 0.758 | 8.84 | 74．979 | －11970 | 8025 |
| \＃37 | 46.697 | 1．251 | 34．731 | 0.973 | $\square$ | $\square$ | 1．603 | 0.795 | 8．901 | 75．151 | －11969 | 8017 |
| \＃38 | 46.798 | 1．264 | 34．846 | 0．78 | $\square$ | 0.004 | 1．721 | 0．976 | 8．778 | 75．787 | －11969 | 8008 |
| \＃37 | 46．539 | 1.244 | 34．797 | 0．7bl | $\square$ | $\square$ | 1.774 | 1．006 | 8．789 | 75．512 | －11968 | 8000 |
| \＃40 | 46．005 | 1．219 | 35．627 | 0.932 | 0.006 | $\square$ | 1．815 | 1.033 | 8.809 | 75.446 | －11968 | 7972 |
| \＃ 41 | 47.042 | 1．197 | 34．776 | 0.747 | $\square$ | 0.075 | 1．796 | 0.794 | 9.038 | 76．067 | －11967 | 7784 |
| \＃42 | 46．317 | 1．2こ2 | 35．221 | 0.764 | 0.002 | 0.006 | 1．741 | 0．979 | 8．971 | 95．423 | －1196？ | 7976 |
| \＃43 | 46．858 | 1．1479 | 34.333 | 0.72 | $\square$ | $\square$ | 1．787 | 0.715 | 8．935 | 74.897 | －11966 | 7968 |
| \＃44 | 46.895 | 1．213 | 35.02 | 0.95 | $\square$ | $\square$ | 1．729 | 1.035 | 8．741 | 75.583 | －11966 | 7959 |
| \＃ 45 | 46．571 | 1．22 | 35．1．23 | 0.934 | $\square$ | $\square$ |  | 0.972 | 8．835 | 75．441 | －1．1765 | 7751 |
| \＃46 | 46．88 | 1．172 | 34．782 | 0.857 | $\square$ | $\square$ | 1．613 | ロ．792 | 8.784 | 75．28 | －11965 | 7743 |
| \＃47 | 46．826 | 1．178 | 35.33 | 0.844 | $\square$ | 0.034 | 1．717 | 1．011 | 8．808 | 75.748 | －11764 | 7935 |
| \＃48 | 46．817 | 1．101 | 35.204 | 0.936 | $\square$ | $\square$ | 1．79 | 1．041 | 8.978 | 75．887 | －11964 | 7927 |
| \＃47 | 46．881 | 1．015 | 35.35 | 0．931 | $\square$ | $\square$ | 1.772 | 0.978 | 8．643 | 75.59 | －11756 | 7717 |
| \＃50 | 47．047 | 0.702 | 35．277 | 0．851 | $\square$ | 0．011 | 1．715 | 0.74 | 8.884 | 75．629 | －11963 | 7911 |
| \＃51 | 77．282 | 0．012 | 2．368 | 0.047 | $\square$ | $\square$ | 0．22 | 0．05b | 0.484 | 100．469 | －11762 | 7902 |
| \＃52 | 47．052 | 0．679 | 35.397 | 0．71 | $\square$ | $\square$ | 1．811 | 1.058 | 9．01 | 75．717 | －11962 | 7894 |
| \＃53 | 47．756 | 0.64 | 35．109 | 0．721 | $\square$ | $\square$ | 1．844 | 1．015 | 8．953 | 76．238 | －1176l | 7886 |
| \＃ 54 | 46．355 | 0.634 | 35．2bl | 0.712 | 0.024 | $\square$ | 2．24b | 1．022 | 8．75？ | 75．2111 | －1196l | 7878 |
| \＃55 | 35.444 | 0．428 | 2b | 0．63 | $\square$ | 0．006 | 1．285 | 0．719 | 6.374 | 70．886 | －11960 | 7870 |
| \＃5b | 47．241 | 0.552 | 35．71 | 0.716 | $\square$ | 0.052 | 1．879 | 1．1 | 8．966 | 96．616 | －11976 | 7862 |
| \＃5？ | 47．231 | 0．492 | 35.648 | 0.885 | 0．006 | 0．009 | 1．746 | 1．097 | 8．841 | 75．957 | －11．1959 | 7853 |


|  | $\mathrm{SiO}{ }_{2}$ | Ti03 | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | Mno | FeO | $\mathrm{Na}_{2} \mathrm{O}$ | $\mathrm{K} \mathrm{C}^{0}$ | Total | X | $Y$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃58 | 47.044 | 0.487 | 35．741 | 0.837 | $\square$ | $\square$ | 1．869 | 1．178 | 8．66？ | 96．023 | －11959 | 7845 |
| \＃59 | 47.063 | 0．516 | 36．232 | 0.815 | 0.015 | 0.032 | 1．724 | 1．173 | 8.834 | 76．404 | －11958 | 7837 |
| \＃ちロ | 46.032 | 0．391 | 34．633 | 0.864 | $\square$ | 0.054 | 1．859 | 1．071 | 8.284 | 93．188 | －11958 | 7829 |

Hames1RutTrav2

|  | $\mathrm{SiO}{ }_{2}$ | TiOz | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | Mno | Feo | Na 2 O | $\mathrm{K}_{2} \mathrm{O}$ | Total | X | Y |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃1 | 0.094 | 51．522 | $\square$ | 0．191 | 0.004 | 0．288 | 48.362 | $\square$ | 0．017 | 100．478 | －118821 | 15004 |
| \＃ट | 0.05 | 51．451 | 0．001 | 0．185 | $\square$ | 0．152 | 48．823 | 0．002 | 0.018 | 100．682 | －11816 | 15005 |
| \＃3 | 0．05b | 51．302 | $\square$ | 0.205 | 0.002 | 0．196 | 48.355 | $\square$ | 0.023 | 100．139 | －11812 | 15006 |
| \＃ 4 | 0．021 | 51．566 | 0.013 | 0.194 | 0.005 | 0．2b3 | 48．306 | $\square$ | 0.015 | 100．383 | －11807 | 1500？ |
| \＃ 5 | 0．031 | 83.202 | 0.014 | 0.052 | 0．001 | 0.057 | 13．061 | $\square$ | 0．008 | 76．426 | －11802 | 15009 |
| \＃b | ロ．02b | 76．885 | 0．051 | $\square$ | 0.005 | 0.017 | 1．087 | 0．02b | $\square$ | 78．097 | －11797 | 15010 |
| \＃ 7 | 0.042 | 95．727 | 0.042 | $\square$ | $\square$ | 0．029 | 0．921 | 0．016 | 0．001 | 76．778 | －11793 | 15011 |
| \＃8 | 0.024 | 77．137 | 0．02l | $\square$ | 0．002 | 0．002 | 0.814 | $\square$ | $\square$ | 78 | －11788 | 15012 |
| \＃ 9 | 0.015 | 97．646 | 0.026 | $\square$ | 0.004 | 0.017 | 0．82b | 0.007 | $\square$ | 78．541 | －11783 | 15013 |
| \＃10 | $\square$ | 77．092 | 0.034 | 0．006 | $\square$ | $\square$ | 0.877 | 0.017 | 0.007 | 98．033 | －11778 | 15014 |
| \＃11 | 0.003 | 97．256 | 0．02？ | 0.005 | $\square$ | 0.014 | 0．87］ | 0．021 | $\square$ | 78．197 | －11774 | 15015 |
| \＃12 | 0.018 | 77.597 | 0．076 | 0.003 | 0.018 | 0．027 | 0.797 | 0.005 | 0 | 98．543 | －117ロワ | 15017 |
| \＃13 | 0．018 | 96．616 | 0.023 | 0．011 | 0．001 | $\square$ | 0．863 | 0.03 | $\square$ | 97．562 | －117864 | 15018 |
| \＃14 | 0．006 | 75.35 | 0．022 | 0．01 | $\square$ | $\square$ | 0.974 | 0．002 | 0．011 | 76．375 | －11760 | 15017 |
| \＃15 | 0.017 | 76．168 | 0.048 | $\square$ | 0．012 | $\square$ | 0.853 | $\square$ | $\square$ | 97．1 | －11755 | 15020 |
| \＃16 | 0.009 | 7b．2b5 | 0.005 | $\square$ | 0．01 | 0.043 | 0.7 | 0.017 | 0．01 | 97．259 | －11750 | 15021 |
| \＃17 | 0．041 | 76．152 | 0.024 | $\square$ | 0．008 | $\square$ | 0．71 | $\square$ | 0．001 | 97．136 | －117745 | 15022 |
| \＃18 | 0.042 | 76．871 | 0.045 | 0.005 | 0．021 | $\square$ | 0．871 | 0.009 | $\square$ | 97.864 | －117414 | 15023 |
| \＃17 | 0.009 | 77．225 | 0.037 | $\square$ | 0.014 | $\square$ | 0.898 | 0．001 | 0.004 | 78．188 | －11736 | 15024 |
| \＃20 | 0.03 | 97．173 | 0.059 | $\square$ | 0．016 | $\square$ | 0.885 | $\square$ | 0.002 | 78．165 | －11731 | 15026 |
| \＃21 | 0.054 | 77．214 | 0.038 | $\square$ | 0．002 | 0.017 | 0.744 | 0.006 | 0．01 | 78.085 | －11727 | 1502？ |
| \＃ここ | －．07］ | 76．84 | 0.025 | $\square$ | 0．01 | 0.014 | 0．921 | $\square$ | 0.013 | 97.894 | －11722 | 15028 |
| \＃こ3 | 0.033 | 76.164 | 0.027 | $\square$ | 0．01？ | $\square$ | 1.083 | $\square$ | 0.003 | 97.327 | －11717 | 15029 |
| \＃24 | 0.024 | 89.686 | 0．06？ | 0．01 | 0．01 | $\square$ | 4．861 | 0.003 | 0 | 74．661 | －llfle | 15030 |


|  | $\mathrm{SiO}{ }_{2}$ | $\mathrm{TiO}{ }_{2}$ | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | Mgo | CaO | MnO | FeO | Na 2 O | K 2 O | Total | X | $Y$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \＃25 | $\square$ | 52.047 | $\square$ | 0．21 | $\square$ | 0．214 | 48.042 | 0．016 | 0.003 | 100．532 | －117308 | 15031 |
| \＃2b | 0．041 | 52．216 | $\square$ | 0.17 | $\square$ | 0．21b | 47.87 | 0.009 | 0.023 | 100．565 | －117703 | 15032 |
| \＃こ？ | 0.038 | 51．683 | 0.017 | 0．21］ | 0.024 | 0．202 | 47．776 | $\square$ | 0．015 | 79．788 | －11698 | 15034 |
| \＃28 | 0．012 | 51．889 | $\square$ | 0．202 | 0.005 | 0．176 | 48.213 | 0.013 | 0.02 | 100.55 | －111693 | 15035 |
| \＃こワ | 0．065 | 51．672 | $\square$ | 0.174 | $\square$ | 0．177 | 48．063 | $\square$ | ロ．012 | 100．183 | －11689 | 15036 |
| \＃30 | 0．16？ | 51． 043 | 0.014 | 0．186 | $\square$ | 0.189 | 47.435 | 0．011 | 0．06 | 97．105 | －111684 | 1503？ |

## Monazite Traverse 1

| Anal \＃ | Th | U | Pb | $Y$ | X | $Y$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Trav l－l | 36059 | 4472 | 105？ | 8923 | －18779 | 22851 |
| Trav l－2 | 32997 | 3400 | 841 | 13596 | －18780 | 22848 |
| Trav l－3 | 37729 | 2338 | 758 | 10681 | －18780 | 22844 |
| Trav l－4 | 37338 | 2282 | 1001 | 10383 | －18781 | 22841 |
| Trav l－5 | 34422 | 2835 | 726 | 12522 | －18782 | 22838 |
| Trav l－b | 24153 | 5376 | 1080 | 17386 | －18782 | 22835 |
| Trav l－7 | 22882 | 5057 | 844 | 16513 | －18783 | 22831 |
| Trav l－8 | 33689 | 3271 | 881 | 7445 | －18784 | 228こ』 |
| Trav l－q | 32129 | 3137 | 807 | 664b | －18785 | 22825 |
| Trav l－la | 37042 | 2450 | 746 | 111036 | －18785 | 228こ2 |
| Trav l－ll | 36532 | 2335 | 904 | 10961 | －18786 | 22818 |
| Trav lu－le | 35697 | 2251 | 726 | 10758 | －18787 | 22815 |
| Trav l－l3 | 35455 | こ258 | 897 | 10678 | －1878？ | 228l2 |
| Trav l－14 | 35193 | 2447 | 836 | 11070 | －18788 | こ2808 |
| Trav l－lı | 35483 | 26ロ0 | 858 | 11258 | －18789 | 22805 |
| Trav l－lb | 35582 | 2660 | 755 | リ1629 | －18789 | こ2802 |
| Trav l－l？ | 35112 | 2776 | 1042 | 12182 | －18790 | ここアワ7 |
| Trav l－lig | 16674 | 5927 | 790 | 18020 | －18791 | 22795 |
| Trav l－19 | 22418 | 845？ | 1205 | 21523 | －18791 | ここアワ2 |
| Trav l－20 | 22864 | 8346 | 11117 | 226ロ8 | －18792 | 22789 |
| Trav l－2l | 22393 | 806？ | 1048 | 2こ123 | －18793 | 22785 |
| Trav l－22 | 23318 | 75b5 | 1130 | 20235 | －18793 | 22782 |
| Trav l－23 | 27blb | 8336 | 1275 | 18723 | －18794 | ここ779 |
| Trav l－24 | 23774 | 7977 | 1105 | 19338 | －18795 | ここア76 |
| Trav l－25 | 14027 | 4669 | 714 | 16607 | －18796 | 22772 |
| Trav l－2b | 24843 | 6093 | 1017 | 17935 | －18796 | ここア69 |
| Trav l－2？ | 352b？ | 277b | 1020 | 12233 | －18797 | 2こ7Ь6 |
| Trav l－28 | 37180 | 2795 | 973 | 12240 | －18798 | 22763 |
| Trav l－29 | 31061 | 4377 | 888 | 11561 | －18798 | 22759 |

## Monazite Traverse 2

| Anal \＃ | Th | U | Pb | $Y$ | X | $Y$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Trav 2－l | 30ア2b | 4008 | 759 | 1，5101 | －18864 | 22772 |
| Trav 2－2 | 27295 | 4031 | 737 | 14854 | －18861 | 22773 |
| Trav 2－3 | 25483 | 3921 | 815 | 14538 | －18858 | 22773 |
| Trav 2－4 | 24923 | 3832 | 877 | 14502 | －18855 | 22774 |
| Trav 2－5 | 17805 | 2981 | 648 | 131．50 | －18852 | 22775 |
| Trav 2－b | 15561 | 3005 | bロ8 | 13815 | －18847 | 22776 |
| Trav 2－？ | 17300 | 4903 | 827 | 16152 | －18846 | 22776 |
| Trav 2－8 | 18927 | 4926 | 769 | 1，5506 | －18843 | 22777 |
| Trav 2－9 | 17896 | 4734 | 817 | 14766 | －18840 | 22778 |
| Trav $2-10$ | 177ロ6 | 4683 | 762 | 115094 | －18837 | 22779 |
| Trav 2－ll | 17315 | 4939 | 755 | 15265 | －18834 | 22779 |


| Anal \＃ | Th | U | Pb | Y | X | $Y$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Trav 2－le | 17808 | 4763 | 758 | 115504 | －18831 | 22780 |
| Trav 2－13 | 17188 | 51111 | 898 | 115864 | －18828 | 22781 |
| Trav 2－14 | 16202 | 4884 | 785 | 16203 | －18825 | 22781 |
| Trav 2－15 | 13965 | 4761 | 643 | 16668 | －18822 | ここ782 |
| Trav 2－lb | 13923 | 4558 | 701 | 16541 | －18817 | 22783 |
| Trav 2－l？ | 14312 | 4310 | 683 | 16208 | －18816 | 22784 |
| Trav 2－18 | 18128 | 5877 | 976 | 17989 | －18813 | 22784 |
| Trav 2－19 | 21724 | 7580 | 1062 | 23314 | －18810 | 22785 |
| Trav 2－20 | 21442 | b208 | 767 | 18545 | －18806 | ここア8ь |
| Trav 2－2l | 22430 | 6590 | 10b2 | 19055 | －18803 | 22787 |
| Trav 2－2ᄅ | 19732 | b3ll | 747 | 」ロアコ9 | －18800 | 22787 |
| Trav 2－23 | 17842 | bl50 | 854 | 18918 | －18797 | 22788 |
| Trav 2－24 | 20481 | 7356 | 1108 | 21509 | －18774 | 22789 |
| Trav 2－25 | 24258 | 7143 | 1281 | 23130 | －18771 | ここ790 |
| Trav 2－2b | 23395 | 7474 | 1266 | 22197 | －18788 | 22790 |
| Trav 2－2？ | 20940 | 8200 | 1106 | 20642 | －18785 | 2こア71 |
| Trav 2－28 | 21220 | 7934 | 1036 | 20431 | －18782 | ここ7ワ2 |
| Trav 2－2ף | 2こ102 | 8068 | 1125 | 20824 | －18779 | ここ7ワ2 |
| Trav 2－30 | 23747 | 7803 | 1177 | 204b？ | －18776 | 22793 |
| Trav 2－3l | 25687 | 7422 | 11117 | 20176 | －18773 | 22794 |
| Trav 2－32 | 25389 | 6594 | 1082 | 17218 | －18770 | ここ775 |
| Trav 2－33 | 31076 | 3784 | 770 | 35521 | －1876？ | 22795 |
| Trav 2－34 | 32370 | 3422 | 743 | 14902 | －18764 | ここアワ6 |
| Trav 2－35 | 33152 | 3404 | 747 | 14794 | －18761 | 22797 |
| Trav 2－3b | 36933 | 3276 | 1.037 | 14011 | －18758 | ここ7ワ8 |
| Trav 2－37 | 34842 | 4027 | 898 | 10413 | －18755 | ここ778 |

## Monazite Traverse 3

| Anal \＃ | Th | U | Pb | Y | X | $Y$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Trav 3－1 | 36452 | 3183 | 1018 | 12bl 5 | －18828 | 2こ82こ |
| Trav 3－2 | 36527 | 3107 | 11023 | 12452 | －78825 | 22820 |
| Trav 3－3 | 37038 | 3021 | 1042 | 12619 | －18823 | 22818 |
| Trav 3－4 | 37364 | 3051 | ワレ6 | 12708 | －18820 | 228l？ |
| Trav 3－5 | 36743 | 31111 | 980 | 12583 | $-18818$ | 22815 |
| Trav 3－b | 3697？ | 27เ2 | 748 | 12536 | －78815 | 22813 |
| Trav 3－7 | 3726？ | 2715 | 1071 | 12291 | －18813 | 22811 |
| Trav 3－8 | 36143 | 2724 | 972 | 111488 | －18810 | 22809 |
| Trav 3－9 | 36519 | 2701 | 1010 | 11563 | －18888 | こ2808 |
| Trav 3－10 | 31937 | 28Ьこ | 802 | 12695 | －18805 | こ28ロ6 |
| Trav 3－1］ | 34147 | 2b3l | 916 | 12351 | －18803 | 22804 |
| Trav 3－12 | 37211 | 2320 | 958 | 111345 | －18800 | 22802 |
| Trav 3－13 | 37928 | 2389 | 736 | 1146？ | －18797 | 22800 |
| Trav 3－14 | 36935 | 2556 | 766 | 11715 | －18795 | 2こ797 |
| Trav 3－15 | 28445 | 3493 | 837 | 14281 | －18792 | 22797 |
| Trav 3－1b | 14295 | 4813 | 753 | 168女6 | －18790 | 22795 |
| Trav 3－17？ | 17114 | 6197 | 96？ | 18760 | －18787 | 22793 |
| Trav 3－18 | 21198 | 7774 | 1079 | 20782 | －18785 | 2ว792 |
| Trav 3－17 | 23566 | 7823 | 11717 | 21332 | －18782 | ここ7ワ0 |
| Trav 3－20 | 23617 | 7543 | 1088 | 20933 | －18780 | 22788 |
| Trav 3－2l | 27077 | 6575 | 11180 | 19613 | －18777 | 2こ786 |
| Trav 3－22 | 33844 | 3862 | 1066 | 14638 | －18775 | 22784 |
| Trav 3－23 | 38063 | 2692 | 977 | 11842 | －18772 | 22783 |
| Trav 3－24 | 37716 | 3120 | 1014 | 12090 | －18770 | 22781 |

## Monazite Traverse 2－1

| Anal \＃ | Th | U | Pb | $Y$ | X | $Y$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Trav 2－】－l | 23416 | 1980 | 517 | 1682 | －3671 | 13931 |
| Trav 2－】－2 | 36834 | 3759 | 1020 | 8312 | －3668 | 13931 |
| Trav 2－1－3 | 37586 | 5288 | 11180 | 18430 | －3665 | 13931 |
| Trav 2－1－4 | 38066 | 5155 | 1173 | 17697 | －36女2 | 13931 |
| Trav 2－1－5 | 35984 | 4609 | 11126 | 16334 | －3658 | 13731 |
| Trav 2－1－b | 33693 | 4076 | 11102 | 14791 | －3655 | 13731 |
| Trav 2－1－7 | 38505 | 4220 | 11126 | 14242 | －3652 | 13931 |
| Trav 2－］－8 | 38306 | 4150 | 11129 | 14207 | －3649 | 13931 |
| Trav 2－］－9 | 40223 | 4201 | 1094 | 14281 | －3646 | 13931 |
| Trav 2－l－la | 40698 | 4405 | 11183 | 14658 | －3643 | 13931 |
| Trav 2－l－ll | 41313 | 4829 | 1281 | 15806 | －3640 | 13931 |
| Trav 2－l－lı | 41884 | 5371 | 1344 | 17137 | －3637 | 13931 |
| Trav 2－1－13 | 44832 | 5923 | 17359 | 18664 | －3633 | 13931 |
| Trav 2－1－14 | 43293 | 5358 | 1368 | 17622 | －3630 | 13931 |
| Trav 2－1－15 | 33474 | 3579 | 976 | 14615 | －362？ | 13931 |

## Monazite Traverse 2-2

| Anal \# | Th | U | Pb | $Y$ | X | $Y$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Trav 2-2-1 | 41.961 | 4094 | 122b | 15897 | -3648 | 13959 |
| Trav 2-2-2 | 42872 | 4639 | 1270 | 17375 | -3648 | 13956 |
| Trav 2-2-3 | 38783 | 4841 | 1210 | 17441 | -3648 | 13753 |
| Trav 2-2-4 | 31644 | 364b | 713 | 14972 | -3648 | 13749 |
| Trav 2-2-5 | 36706 | 4093 | 1015 | 15026 | -3648 | 13746 |
| Trav 2-2-b | 45323 | 4603 | 1270 | 15139 | -3648 | 13743 |
| Trav 2-2-7 | 46460 | 4536 | 1298 | 14711 | -3648 | 13940 |
| Trav 2-2-8 | 43215 | 4250 | 1276 | 14419 | -3648 | 13937 |
| Trav 2-2-9 | 33634 | 3703 | 1036 | 13946 | -3648 | 13933 |
| Trav 2-2-l0 | 42040 | 4391 | 1173 | 14691 | -3648 | 13930 |
| Trav 2-2-ll | 34095 | 3791 | 897 | 13774 | -3648 | 1392? |
| Trav 2-2-l2 | 30793 | 3444 | 953 | 13630 | -3648 | 13924 |
| Trav 2-2-l3 | 27218 | 2996 | 802 | 13232 | -3648 | 13921 |
| Trav 2-2-14 | 34124 | 2591 | 778 | 12572 | -3648 | 13918 |
| Trav 2-2-15 | 40260 | 2708 | 1047 | 12070 | -3648 | 13914 |
| Trav $2-2-16$ | 37632 | 2846 | 1034 | 11771 | -3648 | 13911 |
| Trav 2-2-1? | 34437 | 2592 | 906 | 9022 | -3648 | 13908 |

Full thin-section x-ray intensity maps. Color bar applies to all images:

Low concentration
$\square$ High Concentration


Ca


Mn


Fe


Na



K


Ti



K


Ce



APPENDIX 3 －ID－TIMS data

| Fraction Analysed | Properties | Weight | Pbt | $u$ | Th／U | Th | Pbc | Pbcom | 206／204 | 207／235 | ${ }^{\text {® }}$ | 206／238 | ${ }^{\text {®\％}}$ | rho | 207／206 | ${ }^{\text {® }}$ | 206／238 | ${ }^{\text {20 }}$ | 207／235 | ${ }^{20}$ | 207／206 | ${ }^{\text {®\％}}$ | Discordance |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | «นg】 | 【ppm』 | 【ppm』 |  | 【ppm』 | 【ppm』 | ［pg】 |  |  | ［abs】 |  | ［abs】 |  |  | 【abs】 |  | ［abs】 |  | «abs』 |  | ［abs】 | «» |
| KJR－243 307／2 | Z B 【1］ | 1 | 688 | 11114 | 0.01 | 57 | 0.00 | 1.4 | 34184 | 0.5215 | 0.0015 | 0.06817 | 0.00017 | 0.96 | 0.05548 | 0.00005 | 425.1 | 1.0 | 42 b .1 | 1.0 | 431.8 | 1.8 | 1.6 |
| KJR－243 307／1 | Z B ［1］ | 4 | 1249 | 20186 | 0.00 | 63 | 0.00 | 2.0 | 172687 | 0.521 .5 | 0.0016 | 0．06816 | 0．00018 | 0.97 | 0.05547 | 0.00004 | 425.1 | 1.1 | 42.2 | 1.0 | 432.1 | 1.7 | 1.7 |
| KJR－243 311／16 | Z B P ¢1］ | 12 | 168 | 2722 | 0.01 | 19 | 0.10 | 3.2 | 43264 | 0.5201 | 0.0015 | 0.06800 | 0.00016 | 0.95 | 0.05547 | 0.00006 | 424.1 | 0.9 | 425.2 | 1.0 | 431.1 | 2.3 | 1.7 |
| KJR－243 3 11／2e | Z B P［1］ | 2 | 1254 | 20268 | 0.00 | 85 | 1.14 | 4.3 | 40261 | 0.5206 | 0.0014 | 0.06808 | 0.00016 | 0.97 | 0.05546 | 0.00004 | 424.6 | 1.0 | 425.6 | 0.9 | 431.0 | 1.5 | 1.5 |
| KJR－243 307／3 | Z P ¢1］ | 1 | 117 | 1823 | 0.04 | ${ }^{6} 4$ | 0.00 | 0.7 | 10800 | 0.5489 | 0.0260 | 0.07012 | 0.00331 | 1.00 | 0.05677 | 0.00010 | 436.9 | 19.9 | 444.3 | 16.9 | 482.7 | 4.0 | 9.8 |
| KJR－243 311／15 | Z P［1］ | ${ }^{1}$ | 78 | 939 | 0.17 | 1．56 | 0.00 | 1.1 | 4868 | 0.7317 | 0.0022 | 0.08734 | 0.00019 | 0.79 | 0.06076 | 0.00012 | 539.8 | 1.1 | 557.5 | 1.3 | 630.7 | 4.1 | 15.0 |
| KJR－243 3ll／14 | Z P［1］ | 2 | ${ }^{9}$ | 88 | 0.16 | 14 | 0.00 | 1.2 | 1017 | 0.9353 | 0.0063 | 0.10465 | 0.00026 | 0.58 | 0.06482 | 0.00037 | 641.6 | 1.5 | 670.4 | 3.3 | 768.5 | 1.1 .9 | 17.3 |
| KJR－243 311／13 | Z P［1］ | 1 | 74 | 921 | 0.14 | 125 | 0.22 | 2.2 | 2214 | 0.7066 | 0.0028 | 0.08491 | 0.00019 | 0.68 | 0.06035 | 0．00018 | 525.4 | 1.1 | 542.7 | 1.7 | 616.3 | 6.4 | 15.4 |
| LEA 10－1 307／4 | Z AA TIP［1］ | 1 | 229 | 969 | 0.07 | 70 | 86.86 | 88.7 | 125 | 1.5289 | 0.0368 | 0.15602 | 0.00120 | 0.32 | 0.07107 | 0.00162 | 934.6 | 6.7 | 942.1 | 14.7 | 959.5 | 45.9 | 2.8 |
| LEA 10－1 307／？ | 2 TIP［1］ | 1 | 143 | 990 | 0.02 | 17 | 0.00 | 0.9 | 10686 | 1．5241 | 0.0046 | 0.15627 | 0.00039 | 0.88 | 0.07073 | 0.00010 | 936.0 | 2.1 | 940．1 | 1.9 | 949.7 | 2.9 | 1.5 |
| LEA 10－1 311／23 | Z AA TIP［1］ | 1 | 112 | 773 | 0.03 | 27 | 0.00 | 1.6 | 4871 | 1.52 tb | 0.0044 | 0.15639 | 0.00035 | 0.86 | 0.07080 | 0.00010 | 936．7 | 1.9 | 941.1 | 1．8 | 951.5 | 3.0 | 1.7 |
| LEA 10－1 307／22 | M0 【1］ | 1 | 2170 | 7138 | 3.75 | 26735 | 1．81 | 3.9 | 181．20 | 1.5133 | 0.0038 | 0.1 .5673 | 0.00034 | 0.96 | 0.07002 | 0.00005 | 938.6 | 1.9 | 935.8 | 1.5 | 929．1 | 1.5 | －1．1 |
| LEA 10－1 307／28 | M0 【1］ | 1 | 1071 | 4528 | 2.25 | 10192 | 1.37 | 3.4 | 13007 | 1.4983 | 0.0042 | 0.15472 | 0.00037 | 0.94 | 0.07024 | 0.00007 | 927.4 | 2.1 | 929.7 | 1.7 | 935.3 | 2.0 | 0.9 |
| LEA 10－1 307／40 | MO CORE［1］ | 1 | 1794 | 4695 | 4.44 | 20861 | 0.74 | 2.8 | ${ }^{191.34}$ | 1.7899 | 0.0088 | 0.18014 | 0.00081 | 0.97 | 0.07205 | 0.00008 | 1067．7 | 4.4 | 1041.8 | 3.2 | 987.7 | 2.4 | $-8.8$ |
| LEA 10－1 307／39 | M0 TIP［1］ | 1 | 2924 | 9525 | 3.54 | 33733 | 14.60 | 17.0 | 5721 | 1.5608 | 0.0048 | 0.16248 | 0.00039 | 0.93 | 0.06967 | 0.00008 | 970.5 | 2.2 | 954.8 | 1.9 | 918.7 | 2.5 | －b．l |
| LEA 10－5 307／8 | R P［1］ | 1 | 3 | 35 | 0.25 | 9 | 0.75 | 2.8 | 78 | 0.6104 | 0.0471 | 0.07371 | 0.00049 | 0.65 | 0.06005 | 0.00438 | 458.4 | 2.9 | 483.8 | 29.3 | 605.8 | 1.50 .4 | 25.2 |
| LEA 10－2 311／20 | R［5］ | ${ }^{1}$ | 5 | ${ }^{11}$ | 4.68 | 100 | 1.70 | 3.7 | 45 | 0.6211 | 0.0822 | 0.07560 | 0.00087 | 0.53 | 0.05958 | 0.00755 | 469.8 | 5.3 | 490.5 | 50.3 | 588.5 | 253.4 | 20.9 |
| LEA 10－2 31．1／19 | R IN［4］ | 8 | 1 | $\square$ | 6.05 | 34 | 0.43 | 5.5 | 54 | 0.5433 | 0.0519 | 0.06974 | 0.00062 | 0.45 | 0.05650 | 0.00519 | 434.6 | 3.8 | 440.6 | 33.6 | 472.0 | 1.91 .2 | 8.2 |
| $\text { LEA } 10-2$ | Mo［1］ | 1 | 235 | 629 | 16.93 | 10645 | 0.63 | 2.6 | 1042 | 0.5282 | 0.0088 | 0.06859 | 0.00098 | 0.86 | 0.05585 | 0.00048 | 427.7 | 5.9 | 430.6 | 5.8 | 446.3 | 18.9 | 4.3 |
|  | M0 【1】 | 1 | 316 | 977 | 1.3 .24 | 13206 | 0.55 | 2.6 | 1 l 96 | 0.5248 | 0.0022 | 0.06872 | 0.00014 | 0.63 | 0.05539 | 0.00018 | 428.4 | 0.9 | 428.4 | 1.4 | 428.1 | 7.2 | －0．1 |
| LEA 10－2 307／85 | Mo 【1】 | 1 | 314 | 859 | 15.51 | 1.3324 | 0.83 | 2.8 | 1334 | 0.5320 | 0.0031 | 0.06951 | 0.00024 | 0.70 | 0.05552 | 0.00023 | 433.2 | 1.4 | 433.2 | 2.0 | 433.0 | 9.2 | 0.0 |
| LEA 10－2 307／7 | Z P［1］ | 1 | 19 | 253 | 0.65 | 165 | 0.00 | 0.7 | 1677 | 0.5302 | 0.0048 | 0.06890 | 0.00034 | 0.63 | 0.05581 | 0.00040 | 429.5 | 2.0 | 432.0 | 3.2 | 445.0 | 15.7 | 3.6 |
| LEA 10－2 311／18 | Z P＂SUSPECT＂【1】 | 1 | ${ }^{11}$ | 150 | 0.56 | 85 | 0.00 | 1.7 | 395 | 0.5319 | 0.0108 | 0.06867 | 0.00026 | 0.49 | 0．05618 | 0.00105 | 428.1 | 1.6 | 433.1 | 7.1 | 459.4 | 41.0 | 7.0 |
| LEA 10－2 311／17？ | 2 TIP［1］ | 3 | ${ }^{\text {B }}$ | 120 | 0.11 | 14 | 0.00 | 0.5 | 3039 | 0.5787 | 0.0024 | 0.07303 | 0．00018 | 0.74 | 0.05747 | 0.00016 | 454.4 | 1.1 | 463.7 | 1.6 | 509.8 | 6.3 | 11.2 |
| LEA 10－2 311／21 311／l13 | MU IN：Z［7］ | ${ }^{116}$ | 4 | 4 | 0.16 | 1 | 4.07 | 469.9 | 23 | 0.5157 | 0.11168 | 0.06884 | 0.00086 | 0.51 | 0.05433 | 0.01197 | 429.2 | 5.2 | 422.3 | 75.4 | 384.9 | 431.0 | －11．9 |
| LEA 1ロ－2 3ll／lll 311／l1．5 | MU【『】 | ${ }^{78}$ | 4 | 0 | 2.58 | 0 | 4.12 | 323.6 | 18 | 2.6033 | 22.5056 | 0.23217 | 0.20129 | － 4.46 | 0.08133 | 0．63501 | 1.345 .9 | 973.0 | 1301．6 | 1.522 .8 | 1229.3 | 1000.0 | －10．5 |

## APPENDIX $4-{ }^{40} \mathbf{A r} /{ }^{39} \mathrm{Ar}$

Sample: KJR-093 (referred to as JZP-001 by Auburn Noble Isotope Mass Analysis Laboratory)
Date of Analysis: 7/5/2011
J value: $0.016135 \pm 0.000082$

| P | t | 40 V |  |  | 39 V |  |  | 38 v |  |  | 37 V |  |  | 36 V |  |  | $\begin{array}{\|l\|} \hline \text { Moles 4DAr* } \\ \hline 5.34 \mathrm{E}-1 \mathrm{t} \\ \hline \end{array}$ | $\begin{array}{\|r\|} \hline \% \text { Rad } \\ \hline 20.81 \% \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline R \\ \hline 4.7756 \\ \hline \end{array}$ | $132.785$ | Age (Ma) | 154.934 | $\begin{array}{r} \%-s d \\ \hline 41.3 \% \% \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.6 | 10 | 0.07622 | + | 0.00055 | 0.00332 | + | 0.00006 | 0.00019 | + | 0.00003 | 0.00081 | + | 0.00030 | 0.000204 | + | 0.000021 |  |  |  |  |  |  |  |
| 1.6 | 10 | 2.95394 | + | 0.002ь6 | 0.19239 | + | 0.00037 | 0.00237 | + | 0.00006 | -0.00018 | + | 0.00013 | 0.000165 | + | 0.000027 | 2.07E-14 | ч8.35\% | 15.1013 | 390.290 | + | 2.368 | 0.35\% |
| 1.6 | 10 | 8.34148 | + | 0.00422 | 0.53207 | + | 0.00061 | 0.00651 |  | 0.00008 | -0.00007 | + | 0.00016 | 0.000146 | + | 0.000043 | 5.84E-14 | 99.48\% | 15.5965 | 401.763 | + | 0.792 | 0.20\% |
| L.6 | 10 | 5.14720 | + | 0.00292 | 0.33989 | + | 0.00073 | 0.00411 | + | 0.00005 | 0.00027 | + | 0.00015 | 0.000185 | + | 0.000042 | 3.60E-14 | 98.94\% | 14.9829 | 387.538 | + | 2.285 | 0.33\% |
| 1.6 | 10 | 3.28431 | + | 0.003ь6 | 0.21 .554 | + | 0.00047 | 0.00263 | + | 0.00006 | -0.00009 | + | 0.00013 | 0.000180 | + | 0.000044 | 2.30E-14 | ¢8.38\% | 14.9905 | 387.714 | + | 1.824 | 0.47\% |
| 1.6 | 10 | 5.52541 | + | 0.00339 | 0.36869 | + | 0.00090 | 0.00459 | + | 0.00007 | -0.00016 | + | 0.00017 | 0.000221 | + | 0.000042 | 3.87E-14 | 98.82\% | 14.8095 | 383.498 | + | 1.312 | 0.34\% |
| 1.6 | 10 | 0.00098 | + | 0.00017 | 0.0000 | + | 0.00009 | -0.00001 | + | 0.00004 | -0.00011 | + | 0.00019 | 0.000064 | + | 0.000041 | b.83E-18 | -1.831.63\% | 4031.6706 | 7544.205 | + | \#\#\#\#\# | 2098.68\% |
| 1.6 | 10 | 8.25830 | + | 0.00528 | 0.51 L 86 | + | 0.00100 | 0.00623 | + | 0.00007 | -0.00009 | + | 0.00019 | 0.000562 | + | 0.000023 | 5.78E-14 | 97.99\% | 15.6565 | 403.149 | + | 0.908 | 0.23\% |
| 1.6 | 0 | 0.001 .12 | + | 0.00026 | 0.00142 | + | 0.00007 | -0.00003 | + | 0.00004 | -0.0002b |  | 0.00008 | 0.000041 | + | 0.000033 | 7.82E-18 | -988.25\% | -7.7736 | -239.513 | + | -211.852 | 88.45\% |
| 1.6 | 10 | 0.79298 | + | 0.00160 | 0.05089 | + | 0.00031 | 0.0006 | + | 0.00004 | -0.00007 | + | 0.00012 | 0.000053 | + | 0.000027 | 5.55E-15 | 98.04\% | 15.2760 | 394.348 | + | 4.836 | 1.23\% |
| 1.6 | 10 | 0.00081 | + | 0.00024 | 0.00060 | + | 0.00007 | -0.00005 |  | 0.00004 | 0.00010 | + | 0.00017 | 0.000007 | + | 0.000019 | 5.68E-18 | -1.59.14\% | -2.1355 | -62.693 | + | -267.709 | 427.02\% |
| 1.6 | 10 | 8.81889 | + | 0.00498 | 0.58194 | + | 0.00065 | 0.00718 | + | 0.00008 | -0.00002 | + | 0.00020 | 0.000113 | + | 0.000025 | b.18E-14 | 97.62\% | 15.0970 | 390.191 | + | 0.594 | 0.15\% |
| 1.6 | 10 | 0.04131 | + | 0.00033 | 0.05747 | + | 0.00033 | 0.00065 |  | 0.00004 | -0.00031 |  | 0.00008 | -0.000009 | + | 0.000019 | 2.89E-1b | 106.73\% | 0.7182 | 20.605 | + | 2.830 | 13.74\% |
| 1.6 | 10 | 0.30408 | + | 0.00043 | 0.01837 | + | 0.00013 | 0.00020 | + | 0.00004 | -0.00009 | + | 0.00022 | 0.000021 | + | 0.000041 | 2.135-1.5 | 97.94\% | 16.2138 | 415.962 | + | 16.987 | 4.08\% |
| 1.6 | 10 | 0.22542 | + | 0.00045 | 0.21828 | + | 0.00087 | 0.002ь | + | 0.00007 | 0.00060 | + | 0.00016 | 0.000162 | + | 0.000018 | 1.58E-1.5 | 78.79\% | 0.8126 | 23.296 | + | 0.704 | 3.02\% |
| 0 | 0 | 2.50153 | + | 0.00226 | 0.15836 | + | 0.00063 | 0.00192 | + | 0.00005 | 0.00006 | + | 0.00015 | 0.0001 .82 | + | 0.000025 | 1.75E-14 | 97.85\% | 15.4564 | 398.52b | + | 2.071 | 0.52\% |
| 1.6 | 0 | 5.02363 | + | 0.00888 | 0.33176 | + | 0.00094 | 0.00416 | + | 0.00005 | 0.00020 | + | 0.00011 | 0.000141 | + | 0.000020 | 3.52E-14 | 97.17\% | 15.0173 | з88. э38 | + | 1.388 | 0.36\% |
| 1.6 | 10 | 5.02397 | + | 0.00888 | 0.33180 | + | 0.00094 | 0.00409 | + | 0.00004 | 0.00021 | + | 0.00011 | 0.0001914 | + | 0.000030 | 3.52E-14 | 98.88\% | 14.9719 | 387.282 | + | 1.478 | 0.38\% |
| 1.6 | 10 | 11.39151 | + | 0.00656 | 0.72854 | + | 0.00044 | 0.00904 | + | 0.00014 | 0.00103 | + | 0.00016 | 0.000826 | + | 0.000031 | 7.98E-14 | 97.85\% | 15.3010 | 394.927 | + | 0.466 | 0.12\% |
| 1.6 | 10 | 11.04448 | + | 0.00606 | 0.72590 | + | 0.00132 | 0.00939 | + | 0.00019 | 0.00196 | + | 0.00012 | 0.00046? | + | 0.000028 | 7.73E-14 | 98.75\% | 15.0251 | 388.519 | + | 0.803 | $0.21 \%$ |
| 1.6 | 10 | 4.83533 | + | 0.00411 | 0.31878 | + | 0.00065 | 0.00396 | + | 0.00007 | 0.00010 | + | 0.00014 | 0.000034 | + | 0.000020 | 3.39E-14 | 99.79\% | 15.1364 | 391.106 | + | 0.993 | 0.25\% |
| 1.6 | 10 | 14.83854 | + | 0.00556 | 0.98086 | + | 0.00128 | 0.01216 | + | 0.00007 | 0.00475 | + | 0.0001 b | 0.000239 | + | 0.000030 | 1.04E-13 | 99.52\% | 15.0562 | 389.244 | + | 0.581 | 0.15\% |
| 1.6 | 10 | 2.54828 | + | 0.00204 | 0.16787 | + | 0.00046 | 0.00210 | + | 0.00005 | -0.00010 | + | 0.00013 | 0.000140 | + | 0.000019 | 1.78E-14 | 97.91\% | 14.8621 | 384.725 | + | 1.410 | 0.37\% |
| 1.6 | 10 | 0.00224 | + | 0.00021 | 0.00058 | + | 0.00005 | 0.00003 | + | 0.00004 | 0.00013 | + | 0.00017 | 0.000033 | + | 0.000024 | 1.57E-17 | -338.65\% | -13.1212 | -424.927 | + | -405.505 | 95.43\% |
| 1.6 | 10 | 1.2225b | + | 0.00179 | 0.08117 | + | 0.00049 | 0.00096 | + | 0.00006 | 0.00015 | + | 0.00018 | -0.000001 | + | 0.000025 | 8.56E-15 | 100.02\% | 15.0612 | 389. 360 | + | 3.351 | 0.86\% |
| 1.6 | 10 | 0.00051 | + | 0.00020 | 0.00054 | + | 0.00006 | -0.00002 | + | 0.00002 | -0.0002b | + | 0.00012 | 0.000020 | + | +0.000018 | 3.55E-18 | -1043.17\% | -9.7838 | -306.995 | + | -305.188 | 99.41\% |
| 1.6 | 10 | 6.34078 | + | 0.00297 | 0.411678 | + | 0.00056 | 0.00502 | + | 0.00005 | 0.00005 | + | 0.00020 | 0.0001 .34 | + | 0.000025 | 4.44E-14 | 99.38\% | 15.1192 | 390.708 | + | 0.727 | 0.19\% |
| 1.6 | 10 | 0.01463 | + | 0.00028 | 0.02046 | + | 0.00012 | 0.00025 | + | 0.00004 | 0.00002 | + | 0.00021 | 0.000017 | + | 0.000020 | 1.02E-16 | 65.56\% | 0.4688 | 13.476 | + | 8.466 | 62.82\% |
| 1.6 | 10 | 5.72176 | + | 0.00485 | 0.37848 | + | 0.00091 | 0.00453 | + | 0.00006 | -0.00032 | + | 0.00014 | 0.000062 | + | 0.000024 | 4.04E-14 | 99.68\% | 15.2013 | 392.615 | + | 1.118 | 0.28\% |
| 1.6 | 10 | 7.74523 | + | $0.0025 ?$ | 0.51684 | + | 0.00112 | 0.00620 | + | 0.00005 | 0.00001 | + | 0.00012 | 0.000069 | + | 0.00002 | 5.42E-14 | 99.74\% | 14.9463 | 386.685 | + | 0.917 | 0.24\% |
| 1.6 | 10 | 2.56543 | + | 0.00138 | 0.16504 | + | 0.00057 | 0.00204 | + | 0.00005 | 0.00009 | + | 0.00015 | 0.000284 | + | 0.000027 | 1.80E-14 | 96.72\% | 15.0352 | 388.755 | + | 1.895 | 0.47\% |
| 1.6 | 10 | 9.5024b | + | 0.00408 | 0.62131 | + | 0.00124 | 0.00776 | + | 0.00010 | 0.00048 | + | 0.00017 | 0.000145 | + | 0.000025 | 6.65E-14 | 99.55\% | 15.2253 | 393.172 | + | 0.862 | 0.22\% |

## APPENDIX 5 - Analytical Methods

## Isotope Dilution - Thermal Ionization Mass Spectrometry (ID-TIMS)

## Sample Preparation

Throughout the entire analysis process (collection, preparation, and measurement) an emphasis was placed on avoiding any contamination by foreign mineral grains. To mitigate contamination that could have occurred during collection and transport, samples as collected in the field were first scrubbed using dish detergent and a stiff-bristled brush and then rinsed under a faucet, removing superficial debris and weathered fragments of the sample itself. Samples larger than fist-sized ( $\geq 300 \mathrm{~cm}^{3}$ ) were cut into smaller pieces. Each sample was placed in an ultrasonic bath for 10 minutes to remove more tenacious superficial debris and biological material. The sample was then given one more rinse under a faucet and then rinsed in alcohol to quickly remove excess water. The cleaned sample was then dried in a clean oven on low heat ( $<40^{\circ} \mathrm{C}$ ) for 45 minutes. Low heat and long duration were used in order to avoid potential alteration of minerals in the event future ${ }^{40} \mathrm{Ar} /{ }^{39} \mathrm{Ar}$ geochronology is attempted on muscovite separated from the sample. The dried sample was then sealed inside a new plastic bag to prevent contamination in the event further sample preparation was delayed.

Before a jaw crusher was used for gross disaggregation, all work surfaces that were to come into contact with a given sampler were first thoroughly cleaned to avoid contamination by mineral grains embedded in the crusher itself. All surfaces were first ground using a rotary wirebrush attached to an electric drill, followed by more precise hand-grinding using a finer brush, focusing on areas the rotary brush could not reach. Where possible, parts were first removed from the jaw crusher to facilitate cleaning. The resultant polished surfaces were finally cleaned using
alcohol. Ear-, eye-, and skin-protection were used throughout this process, as well as a dust/debris-collection system.

Upon post-cleaning reassembly of the jaw crusher in preparation for sample disaggregation, a new sample bag was placed between the crusher plates and the jaw crusher proper (the plate fasteners penetrated the bag itself), in order to minimize the risk of grains contaminating the jaw crusher with respect to future samples. In the event that the samplecollection bag was damaged in the process of collecting the disaggregated sample, a second bag was placed around the primary bag from beneath. These bags were both then placed on a support in order to reduce the stress placed on the bags, particularly the primary bag fastened to the jaw crusher. The jaw-crusher was then activated and the sample fed in. The disaggregated sample was then collected in the sample bag. Samples were then further crushed in a grain mill.

Crushed samples were further hydraulically-separated using a Wilfley table. The minerals that were heavy enough to survive the Wilfley table where then dried and magnetically separated. Gross separation was first conducted by letting the sample free-fall past a magnet. Free fall survivors were then separated further by immersion in a flask of methylene iodide. Minerals denser than the methylene iodide were then subjected to iterative separation in a Frantz magnetic separator. Separates were passed down a vibrating, inclined track and through an increasingly strong magnetic field. The end product of this chain of separations is a few thousand grains in which heavy minerals with relatively low magnetic susceptibility (e.g. rutile, sphene, monazite, and zircon) are concentrated.

## Picking Minerals

The heaviest, least magnetic group of separates is likely to be the most concentrated in zircon. This group is placed in a plastic tray and submerged in alcohol. Manual mineral separation is then conducted using a binocular microscope and a pair of tweezers. Grains are first
grouped by mineralogy and then sorted into morphologically defined subgroups within a given group of minerals. Examples of these subgroups might be clear prismatic zircons with no obvious cores separated into one subgroup while another subgroup might consist of grains with dark uranium-rich rims mantling clear uranium-poor detrital cores. The purpose of identifying subgroups is to ultimately partition the minerals found into groups defined by their petrogenesis. Subgroups are further sorted to find the most pristine representative samples for analysis.

## Zircon Abrasion

As a rule, zircon crystals as found in nature are almost universally discordant, with discordance increasing with age. The atomic structure of zircon is regularly disrupted as a result of $\alpha$-decay events occurring within the thorium and uranium decay chains, with individual $\alpha$ decay events producing as many as 2000 permanent atomic displacements in the zircon crystal lattice (Ewing et al., 2003). The cumulative effect of this radiation damage are discontinuities through which elements with weak affinities to the zircon lattice, such as radiogenic lead, can be mobilized and ultimately leached from the zircon crystal. The effects of radiation damage are most profound away from the interior of the crystal, as the damage is more likely to intersect the crystal surface and cause cracking and pitting. The damaged and irregular zircon surface is much more susceptible to chemical alteration, with open-system behavior evidenced by marked reductions in density, elastic modulus, and hardness (Ewing et al., 2003).

To mitigate the precision-ruining effects of measuring the domain of discordant radiation-damaged outer portions of a zircon, it is common to physically (Krogh, 1982) or chemically (Mattinson, 2005) abrade zircons to remove the outermost layer so that the only material that is measured is zircon that has never behaved as an open-system, i.e. zircon that hasn't suffered from lead loss.

## Chemical Abrasion

Chemical abrasion was used to selectively remove discordant domains from specific zircons prior to analysis. Chemical abrasion involves high-temperature annealing of individual zircon crystals, followed by partial dissolution of the crystal (Mattinson, 2005). Annealing consisted of heating the individual grains at $950^{\circ} \mathrm{C}$ for 48 hours. Portions of the zircon crystal that have not received catastrophic radiation damage will see a decrease in solubility as a result of annealing (Mattinson, 2005). Metamict portions of the zircon will not anneal, despite the time spent in high temperature conditions. Subsequent partial dissolution in HF preferentially removed the highly soluble and discordant (i.e. metamict) domains while leaving annealed portions of the crystal untouched (Mattinson, 2005). Partial dissolution involved immersion in HF for $<24$ hours, at $300^{\circ} \mathrm{C}$.

## Air Abrasion

Extremely metamict zircon crystals are unsuitable for chemical abrasion and must be physically abraded in an air abrasion chamber. Chemical abrasion is not helpful as pervasive radiation damage precludes successful annealing, making partial dissolution in HF untenable, as the crystal remains highly soluble and subject to premature total dissolution.

The metamict zircons were placed inside a small brass container, along with a few milligrams of powdered pyrite. A compressed air ( $<50 \mathrm{psi}$ ) inlet in the center of the chamber causes the pyrite and zircon to continually tumble around in the chamber, gradually removing through mechanical means the concentrated metamict domains on the surface of the zircon crystals. Pressure does not build up in the chamber as there are numerous filtered outlets. The pyrite is present to aid in polishing the zircons and to serve as a cushion to reduce the chance of breaking the zircons into pieces too small to be easily manipulated during processing. After several hours of air abrasion in the chamber, the zircon/pyrite mixture is removed from the chamber and placed in a bath of weak $\mathrm{HNO}_{3}$ where the pyrite is preferentially dissolved, leaving
only zircon grains, ready for further preparation. This process is described in detail by Krogh (1982b) and also by Davis et al. (1982).

## Zircon Dissolution / Isotope Dilution

To ensure the zircon grains were completely free of extraneous Pb , they were all thoroughly washed before being dissolved. First they were rinsed in a bath of $\mathrm{HNO}_{3}$ for 20-30 minutes, after which the acid was removed using a pipette and the zircons were rinsed in deionized water. The water was removed and then the samples were rinsed in acetone. After a second acetone rinse, the samples were dried on a hotplate for 60 seconds. The cleaned zircon grains were then weighed, after which the samples were placed in Teflon bombs and then spiked with a known amount of tracer consisting of a mixture of ${ }^{205} \mathrm{~Pb}$ and ${ }^{235} \mathrm{U}$. After the samples were spiked, a drop of HF was added. The bombs were then sealed and placed in an oven for 3 days at $189^{\circ} \mathrm{C}$, in order to dissolve the zircon grains (Krogh, 1973).

After the Teflon bombs were removed from the oven and had cooled sufficiently, the samples were opened and placed on a hotplate for four hours to allow the remaining HF to evaporate. Ten drops of HCl were then added to the samples which were then recapped and put back on the hotplate for a few hours. After cooling, the samples (which now are more-or-less entirely dissolved in the 10 drops of HCl ) were transferred from the bombs into ion-exchange columns. The samples were then rinsed several times within the ion exchange columns using dilute HCl . This process effectively removes chemical species other than U and Pb from the solution. The rinsing solution is collected in case additional analysis is desired. The remaining solution containing only U and Pb was rinsed out of the ion exchange columns using first a rinse of strong HCl (to remove the Pb ) and then two rinses of de-ionized water (to remove the U ). The Pb and U were collected separately and placed back in cleaned bombs along with a drop of ion emitter (primarily $\mathrm{H}_{3} \mathrm{PO}_{4}$ ) and placed on a hot plate. The water and HCl evaporated at this point,
leaving the Pb and U dissolved in the drop of $\mathrm{H}_{3} \mathrm{PO}_{4}$. Sample loading and analysis was performed on a Finnigan MAT 263 mass spectrometer, the procedure used was as described by Gerstenberger and Haase (1997).

