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Abstract

Model Order Reduction (MOR) is a wide area, and it has many techniques. In this the-

sis, we focus on Krylov subspaces method and Proper Orthogonal Decomposition (POD). We

show some details about these two methods. A MATLAB code is written for Nonsymmetric

Band Lanczos algorithm (Bai Z. (2003)). Also by using triangle elements, a MATLAB code

for a numerical example about Surface area is demonstrated.
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Chapter 1

Introduction

Model order reduction (MOR) has several definitions which depend on the context.

Shortly, the reduced-order modeling problem is to find a mathematical model of a system

which has much lower dimension than the original model. By simulating this reduced small

system, we can see the main characteristics of the original system, so in numerous areas MOR

is an indispensable tool. Modeling, simulation, analysis of integrated circuit components,

control theory and image processing are some of the areas which MOR is used frequently. We

can see the meaning of model order reduction in the following example. Suppose a system

of equations is given

d

dt
x(t) = Ax(t) + bu(t) (1.1)

y(t) = cTx(t) (1.2)

This system is a linear single input-single output system with specified input u(t) and

output y(t), but we can generalize it to the vector input-vector output system. Here x(t) is

an N -dimensional vector, A is an N by N matrix and b and c are N -dimensional vectors.

Generally, if it is not denoted specifically, the initial value of x(t) is zero, and the dimension

of N is between 105 and 109. The idea behind MOR is to find another system

d

dt
x̃(t) = Ãx̃(t) + b̃u(t) (1.3)

ỹ(t) = c̃T x̃(t) (1.4)
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where x̃(t) has the dimension n, Ã is n by n matrix b̃ and c̃ are n-dimensional vector

and n << N . This example is a linear system, but in engineering people usually have to

deal with nonlinear systems. Firstly, by linearizing the system and then performing model

order reduction we can find reduced models for nonlinear systems.

Now there are many reduction techniques which are used in simulation, modeling and

integrated circuit components’ analysis. In the eighties and nineties of the last century, some

fundamental methods were published. The most known MOR methods are Krylov subspaces,

Pàde-via-Lanczos method, Proper Orthogonal Decomposition (POD) and PRIMA. In this

thesis, we focus on Krylov subspaces method and Proper Orthogonal Decomposition.
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Chapter 2

Dynamical Systems

Differential equations are used in many mathematical models of scientific systems which

use time as the independent variable. Economics, biology, physics and engineering are some

of the fields in which the systems arise. Generally, we can use a system of differential

equations

dx

dt
= f(x) (2.1)

to generate a dynamical system. In this chapter, we show time-invariant linear dynamical

systems, Krylov Subspaces and then Pàde and Pàde-type approximants as a technique for

reduced-order model. When we use model order reduction, we must consider and keep some

important characteristic features of the system. Since passivity and stability are the most

important concepts for the systems and process, we also discuss them.

2.1 First-Order Time-Invariant Linear Dynamical System and Transfer Func-

tions

Firstly, we can define state space as the m-dimentional space whose coordinate axes are

x1, x2, ..., xm. Now, let consider m-input q-output first order time-invariant linear dynamical

system. We can give the system

EN
d

dt
x(t) = ANx(t) +BNu(t) (2.2)

y(t) = CT
Nx(t) +DNu(t) (2.3)
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with initial conditions x(0) = x(0) as a form with state-space description. These matrices

EN , AN ∈ RNxN , BN ∈ RNxm, CN ∈ RNxq and DN ∈ Rqxm are given. Sequently, these vectors

x(t) ∈ RN , u(t) ∈ Rm and y(t) ∈ Rq denotes vector of state variables, vector of input and

vector of output where N is the state-space dimension.Also, m and q are the inputs and

outputs numbers. If the matrix EN is nonsingular we say the system is regular. If not it is

a descriptor system or singular. If the system is regular it can be re-arranged and then it

can be written as

d

dt
x(t) = (E−1N AN)x(t) + (E−1N BN)u(t) (2.4)

y(t) = CT
Nx(t) +DNu(t) (2.5)

Generally, descriptor systems arise in the modeling, simulation and analysis of integrated

circuit components, especially in circuit interconnect and packaging as linear dynamical

system. For this reason, in this thesis we usually use EN ∈ RNxN as a singular matrix.

Now, let assume that AN , EN ∈ RNxN be matrices such that the matrix pencil AN − sEN

is regular, i.e., it is singular only for finitely many values of s ∈ C. If we apply the Laplace

transform to the system (2.2) and (2.3) we find these algebraic equations:

sENX(s)− ENx(0) = ANX(s) +BNU(s)

Y (s) = CT
NX(s) +DNU(s)

where s ∈ C. Let assume that x(0) = 0. Then we obtain

sENX(s) = ANX(s) +BNU(s)

Y (s) = CT
NX(s) +DNU(s)

By applying the Laplace transform instead of time domain variables x(t), u(t), and y(t) we

find the frequency-domain variables X(s), U(s), and Y (s). Then, if we do the following
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calculations

sENX(s)− ANX(s) = BNU(s)

(sEN − AN)X(s) = BNU(s)

X(s) = (sEN − AN)−1BNU(s)

Y (s) = CT
N(sEN − AN)−1BNU(s) +DNU(s)

Y (s) = (CT
N(sEN − AN)−1BN +DN)U(s)

we obtain the function G(s) := CT
N(sEN −AN)−1BN +DN where G : C 7→ (C∪∞)qxm. The

function is called transfer function of the system (2.2) and (2.3).

2.2 Model Order Reduction

The main task at model order reduction is to reduce the dimension of the state space

vector by considering some important characters such as passivity and stability. Let the

following system be a reduced-order model of the system (2.2) and (2.3).

Ẽn
d

dt
x̃(t) = Ãnx̃(t) + B̃nu(t) (2.6)

y(t) = C̃T
n x̃(t) + D̃nu(t) (2.7)

where Ãn, Ẽn ∈ Rnxn, B̃n ∈ Rnxm, C̃n ∈ Rnxq, D̃n ∈ Rqxm, and n << N . Our goal is to

find x̃(t) which has much smaller dimension than N . To obtain a good approximation of the

original input-output system, the following conditions should be satisfied:

• Preservation stability, passivity and the other characteristics of original system

• Obtaining a small approximation error

• Computationally efficient reduction procedure.
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2.3 Pàde and Pàde-type Approximation

Pàde and Pàde-type approximation have an important role to define reduced-order

models by using the transfer functions.

Let s0∈C be any point which is not a pole of the transfer function G(s). Since s0 is not

a pole of G, the Taylor expansion can be used to redefine the transfer function G(s) as

G(s) =
∞∑
j=0

Hj(s− s0)j (2.8)

Here G(s) is redefined about s0, and the coefficients Hj∈Cqxm, j = 0, 1, ... are called the

moments of G.

If the Taylor expansions of the transfer functions G(s) and G̃(s) have many common

leading terms then the reduced-order model (2.6) and (2.7) is called n-th Pàde model at the

expansion point s0, i.e.

G(s) = G̃(s) +O((s− s0))p(n) (2.9)

where p(n) is as large as possible.

By generating p(n) moments H0, H1, ..., Hp(n)−1 we can compute G̃(s), and then we can

obtain Pàde models, but obtaining them directly from the moments is ill-conditioned. For

this reason, Krylov-subspace techniques are preferred to obtain Pàde models. To use these

techniques, instead of the matrices AN and EN we use a single matrix KN , and we rearrange

the transfer function G(s) := CT
N(sEN − AN)−1BN +DN . Now let

AN − s0EN = M1M2, where M1M2∈CNxN

Here, although AN−s0EN can be large it is sparse, so the LU factorization of AN−s0EN

is feasible. For a detailed discussion we refer the reader to BAI, DEVILDE AND FREUND

[2003].

Now we can rewrite the transfer function as follows:

G(s) := CT
N(sEN − AN)−1BN +DN
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= CT
N(sEN − s0EN + s0EN − AN)−1BN +DN

= CT
N((s− s0)EN + s0EN − AN)−1BN +DN

= −CT
N(AN − s0EN − (s− s0)EN)−1BN +DN

= −CT
N(M1M2 − (s− s0)EN)−1BN +DN

= −CT
N(M1(I − (s− s0)M−1

1 ENM
−1
2 )M2)

−1BN +DN

= −CT
NM

−1
2 (I − (s− s0)M−1

1 ENM
−1
2 )−1M−1

1 BN +DN

= −LTN(I − (s− s0)KN)−1RN +DN (2.10)

where KN := M−1
1 ENM

−1
2 ∈ CNxN , RN := M−1

1 BN ∈ CNxm and LN := M−T
2 CN ∈ CNxq. By

(2.8) we can apply Krylov-subspace techniques to the single matrix KN , and also by using

RN and LN we can generate blocks of right and left starting vectors.

To obtain good approximations in frequency domain, Pàde modes are efficient, but

usually they are insufficient to preserve the important properties of linear dynamical systems

such as passivity and stability.

2.4 Krylov Subspaces

2.4.1 Block Krylov Subspaces

As we mentioned in the previous section, to use the Krylov subspace techniques, we

need to rewrite the original system (2.2) and (2.3) by replacing the matrices AN and EN by

a single matrix KN . To obtain new system, let s0∈ C be any point such that s0 is not a pole

of the transfer function G(s) and the matrix AN − s0EN is nonsingular. Then the original

system can be written as follows:

KN
dx

dt
= (I + s0KN)x(t) +RNu(t) (2.11)
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y(t) = LTNx(t) +DNu(t) (2.12)

and the transfer function G(s) can be written in the following form by expanding it about

s0.

G(s) = DN −
∞∑
j=0

LTNK
j
NRN(s− s0)j (2.13)

Since we can define the Pàde and Pàde-type reduced order models by using the leading

coefficients of G(s) about s0, we can obtain the following expansion:

−LTNK
j
NRN = −LTNK

j
NK

−i
N K

i
NRN = −((Kj−i

N )TLN)T (Ki
NRN), i = 0, 1, ... and j =

0, 1, ...

Here we obtain the block of the left and right block Krylov matrices:

[LN KT
NLN (KT

N)2LN ... (KT
N)iLN ...] (2.14)

[RN KNRN K2
NRN ... Ki

NRN ...] (2.15)

Although (2.14) and (2.15) contain the all required information, to obtain Pàde and Pàde-

type reduced order models, it is not a good approximation to just compute the blocks Ki
NRN

and (KT
N)iLN and generating (2.13). For this reason, we need to apply some other Krylov-

subspace methods to obtain numerically better basis vectors.

Let’s look at (2.14) and (2.15) to generate feasible Krylov-subspaces. Each block

(KT
N)iLN has q column vectors of length N . Now if we scan the column vectors from left to

the right, and if we delete the columns which are linearly independent on its left columns we

generate a new deflated left Krylov subspace:

[LN1 KT
NLN2 (KT

N)2LN3 ... (KT
N)jmax−1LNkmax ...] (2.16)

Let n
(lN )
max be the number of columns of (2.16). Here Kn(KT

N , LN) is defined as the n-th left

Krylov subspace where 1 ≤ n ≤ n
(lN )
max.
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Applying same steps we obtain a deflated right Krylov subspace:

[RN1 KNRN2 K2
NRN3 ... Kjmax−1

N RNmax ...] (2.17)

Let n
(rN )
max be the number of columns of (2.17), and Kn(KN , RN) be defined as the n-th right

Krylov subspace where 1 ≤ n ≤ n
(rN )
max .

For more detailed discussion we refer the reader to BAI, DEWILDE, FREUND [2003],

FREUND [2000b] AND ALIAGA ET AL [2000].

2.5 MOR with Lanczos and Lanczos-type Methods

In this section, our goal is to construct appropriate basis vectors for the right and left

Krylov subspaces Kn(KN , RN) and Kn(KT
N , LN) to obtain reduced models. We use Lanczos

and Lanczos-type methods to generate these basis vectors.

By Pàde via Lanczos (PVL) algorithm in FELDMANN AND FREUND [1994,1995],

we can obtain bi-orthogonal basis vectors for the left and right Krylov subspaces which

induce single vectors. This is a special case because these left and right Krylov subspaces

are obtained from single-input single output linear dynamical systems.

The underlying block Krylov subspace called the nonsymmetric band lanczos algorithm

(FREUND [2000a], BAI, DEWILDE, FREUND [2003]). For general m-input q-output time-

invariant linear dynamical systems, we can construct two sets of bi-orthogonal right and left

Lanczos vectors

v1, v2, ..., vn and w1, w2, ..., wn (2.18)

These vectors span the n-th right and left Krylov subspaces and satisfy the following property

wTi vj =


0, if i = j

δi, if i6=j
for all i, j = 1, 2, ..., n (2.19)
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The nonsymmetric band Lanczos algorithm produces the matrices T
(pr)
n , ρ

(pr)
n , η

(pr)
n and ∆n

as output. Here ∆n = diag(δ1, δ2, ..., δn) and δi’s are from (2.19).

The matrices T
(pr)
n , ρ

(pr)
n , η

(pr)
n and ∆n are used to generate a reduced-order model of

the original linear dynamical system (2.2) and (2.3) as follows

T (pr)
n

d

dt
x̃(t) = (s0T

(pr)
n − I)x̃(t) + ρ(pr)n u(t) (2.20)

y(t) = (η(pr)n )T∆nx̃(t) +Dnu(t) (2.21)

2.6 Nonsymmetric band Lanczos Algorithm

INPUT: A matrix KN ∈ CNxN ;

A block of m right starting vectors RN = [r1r2...rm] ∈ CNxm;

A block of q left starting vectors LN = [l1l2...lq] ∈ CNxq;

OUTPUT: The nxn Lanczos matrix T
(pr)
n , and the matrices ρ

(pr)
n , η

(pr)
n , and ∆n.

0) For k=1,2,...,m, set ṽk = rk.

For k=1,2,...,q, set w̃k = lk.

Set mc = m, qc = q, and Iv = Iw = φ

For n = 1, 2, ..., until converge or mc = 0 or qc = 0 or δn = 0 do:

1) (If necessary, deflate ṽn.)

Compute ||ṽn||2.

Decide if ṽn should be deflated. If yes, do the following :

a) Set ṽdefln−mc = ṽn and store this vector Iv = Iv∪{n−mc}.

b) Set mc = mc − 1. If mc = 0, set n = n− 1 and stop.

c) For k = n, n+ 1, ..., n+mc − 1, ṽk = ṽk+1.

d) Repeat all of Step 1).

2) (If necessary, deflate w̃n.)

Compute ||w̃n||2.
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Decide if w̃n should be deflated. If yes, do the following :

a) Set w̃defln−qc = w̃n and store this vector Iw = Iw∪{n− qc}.

b) Set qc = qc − 1. If qc = 0, set n = n− 1 and stop.

c) For k = n, n+ 1, ..., n+ qc − 1, w̃k = w̃k+1.

d) Repeat all of Step 2).

3) (Normalize ṽn and w̃n to obtain vnband wn.)

Set

tn,n−mc = ||ṽn||2, t̃n,n−qc = ||w̃n||2,

vn =
ṽn

tn,n−mc
, and wn =

w̃n

t̃n,n−qc

4) (Compute δn and check for possible breakdown.)

Set δn = wTn vn. If δn = 0, set n = n− 1 and stop.

5) (Orthogonalize the right candidate vectors against wn.)

For k = n+ 1, n+ 2, ..., n+mc − 1, set

tn,k−mc =
wTn ṽk
δn

and ṽk = ṽk − vntn,k−mc .

6) (Orthogonalize the left candidate vectors against vn.)

For k = n+ 1, n+ 2, ..., n+ qc − 1, set

t̃n,k−qc =
w̃Tk vn
δn

and w̃k = w̃k − wnt̃n,k−qc .

7) (Advance the right block Krylov subspace to get ṽn+mc .)

a) Set ṽn+mc = KNvn.

b) For k∈Iw (in ascending order), set

σ̃ = (w̃deflk )Tvn, t̃n,k =
σ̃

δn
,

and, if k > 0, set

11



tk,n =
σ̃

δk
and ṽn+mc = ṽn+mc − vktk,n.

c) Set kv = max{1, n− qc}.

d) For k = kv, kv + 1, ..., n− 1, set

tk,n = t̃n,k
δn
δk

and ṽn+mc = ṽn+mc − vktk,n.

e) Set

tn,n =
wTn ṽn+mc

δn
and ṽn+mc = ṽn+mc − vntn,n.

8) (Advance the left block Krylov subspace to get w̃n+qc .)

a) Set w̃n+qc = KT
Nwn.

b) For k∈Iv (in ascending order), set

σ = wTn ṽ
defl
k , tn,k =

σ

δn
,

and, if k > 0, set

t̃k,n =
σ

δk
and w̃n+qc = w̃n+qc − wk t̃k,n.

c) Set kw = max{1, n−mc}.

d) For k = kw, kw + 1, ..., n− 1, set

t̃k,n = tn,k
δn
δk

and w̃n+qc = w̃n+qc − wk t̃k,n.

e) Set

t̃n,n = tn,n and w̃n+qc = w̃n+qc − wnt̃n,n.

12



9) Set

T (pr)
n = [ti,k]i,k=1,2,...,n,

ρ(pr)n = [ti,k−m]i=1,2,...,n;k=1,2,...,kρ where kρ = m+min{0, n−mc},

η(pr)n = [t̃i,k−q]i=1,2,...,n;k=1,2,...,kη where kη = q +min{0, n− qc},

∆n = diag(δ1, δ2, ..., δn).

10) Check if n is large enough. If yes, stop.

2.7 Nonsymmetric Band Lanczos Method- MATLAB Code

function [Tn, Rn, Pn, Dn] = Lanczos(K, R, L, con)

[N,m]=size(R);

[N,q]=size(L);

dtol=10∧(−5);

Iw=[ ];

Iv=[ ];

T=zeros(con,con+m);

Td=zeros(con,con+q);

vs=zeros(N,con+m);

ws=zeros(N,con+q);

vsd=zeros(N,con+m);

wsd=zeros(N,con+q);

v=zeros(N,con);

w=zeros(N,con);

del=zeros(1,con);

for k=1:m

13



vs(:,k)=R(:,k);

end

for k=1:q

ws(:,k)=L(:,k);

end

mc=m;

qc=q;

for n=1:con

while norm(vs(:,n))<=dtol

vsd(:,n)=vs(:,n);

Iv=union(Iv,n-mc);

mc=mc-1;

if mc==0

n=n-1;

break

end

for k=n:n+mc-1

vs(:,k)=vs(:,k+1);

end

end

while norm(ws(:,n))<=dtol

wsd(:,n)=ws(:,n);

Iw=union(Iw,n-qc);

qc=qc-1;

if qc==0

n=n-1;

break

14



end

for k=n:n+qc-1

ws(:,k)=ws(:,k+1);

end

end

T(n,n)=norm(vs(:,n));

Td(n,n)=norm(ws(:,n));

v(:,n)=vs(:,n)/norm(vs(:,n));

w(:,n)=ws(:,n)/norm(ws(:,n));

del(1,n)=dot(v(:,n),w(:,n));

if del(1,n)==0

n=n-1;

break

end

for k=n+1:n+mc-1

T(n,k)=(dot(w(:,n),vs(:,k)))/del(1,n);

vs(:,k)=vs(:,k)-v(:,n)*(dot(w(:,n),vs(:,k)))/del(1,n);

end

for k=n+1:n+qc-1

Td(n,k)=(dot(ws(:,k),v(:,n)))/del(1,n);

ws(:,k)=ws(:,k)-w(:,n)*(dot(ws(:,k),v(:,n)))/del(1,n);

end

vs(:,n+mc)=K*v(:,n);

[m1,m2]=size(Iw);

for i=1:m2

Td(n,Iw(i)+q)=(dot(v(:,n),wsd(:,Iw(i)+q)))/del(1,n);

if Iw(i)>0

15



T(Iw(i)+m,n)=(dot(v(:,n),wsd(:,Iw(i)+q)))/del(1,Iw(i));

vs(:,n+mc)=vs(:,n+mc)-v(:,Iw(i))*T(Iw(i)+m,n);

end

end

kv=max(1,n-qc);

if n>1

for k=kv:n-1

T(k,n+m)=Td(n,k+q)*(del(1,n)/del(1,k));

vs(:,n+mc)=vs(:,n+mc)-v(:,k)*T(k,n+m);

end

end

T(n,n+m)=(dot(w(:,n),vs(:,n+mc)))/del(1,n);

vs(:,n+mc)=vs(:,n+mc)-v(:,n)*T(n,n+m);

ws(:,n+qc)=transpose(K)*w(:,n);

[n1,n2]=size(Iv);

for i=1:n2

T(n,Iv(i)+m)=(dot(vsd(:,Iv(i)+m),w(:,n)))/del(1,n);

if Iv(i)>0

Td(Iv(i)+q,n)=(dot(vsd(:,Iv(i)+m),w(:,n)))/del(1,Iv(i));

ws(:,n+qc)=ws(:,n+qc)-w(:,Iv(i))*Td(Iv(i)+q,n);

end

end

kw=max(1,n-mc);

if n>1

for k=kw:n-1

Td(k,n+q)=T(n,k+m)*(del(1,n)/del(1,k));

ws(:,n+qc)=ws(:,n+qc)-w(:,k)*Td(k,n+q);
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end

end

Td(n,n+q)=T(n,n+m);

ws(:,n+qc)=ws(:,n+qc)-w(:,n)*Td(n,n+q);

for i=1:n

for k=1:n

Tn(i,k)=T(i,k+m);

end

end

kp=m+min(0,n-mc);

for i=1:n

for k=1:kp

Pn(i,k)=T(i,k);

end

end

kr=q+min(0,n-qc);

for i=1:n

for k=1:kr

Rn(i,k)=Td(i,k);

end

end

for i=1:n

for k=1:n

if i==k

Dn(i,k)=del(1,i);

else

Dn(i,k)=0;
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end

end

end

end
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Chapter 3

Model Reduction Using Proper Orthogonal Decomposition

3.1 Proper Orthogonal Decomposition

POD is an efficient and a powerful model order reduction method. The main objective

in proper orthogonal decomposition is to extract low dimensional basis functions from an

ensemble of experimental or detailed simulation data of high dimensional systems. POD

provides efficient tools to derive surrogate models for high-dimensional dynamical systems

and for many partial differential equations when it is used with Galerkin projection. The

reason is that when the dynamical system and PDEs are projected onto a subspace of the

original phase space, in combination with Galerkin projection the subspace inherits special

characteristics of overall solutions. Although POD is applied to nonlinear problems it requires

only standard matrix calculations, and this is a big advantage for us.

(Lumley 1967) introduced POD as an objective of coherent structures. This method is

also known as Karhunen-Loeve decomposition, and it was used to study turbulence phenom-

ena within the area of Computational Fluid Dynamics. Also, accurate results were obtained

in pattern recognition and signal analysis. Especially, during the last decades it has been

used in optimal control of PDEs.

3.2 POD Basis

Let V be a finite (or infinite) dimensional vector space. If we consider a dynamical

system which consists of partial differential equations the phase space of an ordinary differ-

ential system which we find after a spatial discretization is resembled by V . Although we

can choose V as an infinite vector space we will use finite dimensions and set V = Rn. To
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begin with we need a set of sampled data W = {w1(t), w2(t), ..., wM(t)} where wj(t)∈Rn

(j = 1, ...,M) are trajectories and t∈[0, T ]. Here, our goal is to find a d-dimensional sub-

space Vd ⊂ V by an orthogonal projection Pd : V 7→ Vd of fixed rank d which minimizes this

equation

‖W − PdW‖2 :=
M∑
j=1

ˆ T

0

‖wj(t)− Pdwj(t)‖2dt (3.1)

In order to find Pd, let’s define a matrix C∈Rnxn. This is the correlation matrix, and the

solution of (3.1) depends on C.

C =
M∑
j=1

ˆ T

0

wj(t)w
∗
j (t)dt (3.2)

Here, C is a symmetric positive semi-definite matrix. Its eigenvalues are real and nonnegative

ordered, i.e. µ1 ≥ µ2 ≥ ... ≥ µn ≥ 0.

Let υj be the corresponding eigenvectors given by

Cυj = µjυj j = 1, 2, ...n (3.3)

The eigenvectors can be chosen as an orthonormal basis because of structure of C.

Applying POD we obtain the optimal subspace Vd = span{υ1, ..., υd} which are called

POD modes. The following theorem is efficient to find Pdwi(t). For details we refer the

reader to SANJAY LALL, PETR KRYSL, JERROLD E. MARSDEN [2003] and RENNE

PINNAU [2008].

Theorem 1 : Let the optimal orthogonal projection Pd : V 7→ Vd be given by

Pd =
d∑
j=1

υjυ
∗
j with PdP∗d = I (3.4)
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Each wi(t)∈V can be shown as

wi(t) =
n∑
j=1

υ∗jwi(t)υj (3.5)

Then the equation holds

Pdwi(t) =
d∑
j=1

υjυ
∗
j (

n∑
k=1

υ∗kwi(t)υk) =
d∑
j=1

υ∗jwi(t)υj (3.6)

because υ∗jυi = δij

3.3 Finding the Optimal Dimension

In order to get an optimal approximation of our data set, we have to select the dimension

d of the subspace Vd carefully. Theorem 1 can help us to find d because using it we obtain the

overall least-square error which is related with the eigenvalues of C. These eigenvalues can

guide us to get d because large eigenvalues give us the main characteristics of a dynamical

system. Small ones do not make important changes on the system. For this reason, to find

the smallest optimal d we can say that the ratio

R(I) =

d∑
i=1

µi

n∑
i=1

µi

where µ1 ≥ µ2 ≥ ... ≥ µn ≥ 0 (3.7)

must be near to one. Especially in fluid dynamics and heat transfer, the eigenvalues usually

decrease exponentially. Therefore, we can obtain low-order approximate models easily.

3.4 Snapshots

There are many methods for deriving low order models of dynamical systems and partial

differential equations. POD is one of the most efficient methods, and snapshots take part as
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an important concept in it. We can think POD as a Galerkin approximation in the spatial

variable which is constructed from the trajectories of the dynamical system at prespecified

time instances. These trajectories build snapshots, and they may not be appropriate as a

basis due to the possibility of linear dependancy. For this reason, an eigenvalue decompo-

sition (EVD) or a singular value decomposition (SVD) is carried out to obtain POD basis.

Let the snapshots wi = w(ti)∈Rn be given at the certain time instants t1, t2, ..., tM∈[0, T ].

Now, we can build a new correlation matrix C which is shown as

C =
M∑
j=1

wj(t)w
∗
j (t)dt (3.8)

We should consider the possibility that the snapshots may be linearly dependent. Also, we

do not want to get more than n linearly independent vectors, so we should be careful when

we choose them. Let W = (w(t1), w(t2), ..., w(tM))∈RnxM be a matrix which consists of the

dynamical system in its columns and shows the trajectories in its rows. By this matrix,

the sum (3.8) can be shown as C = WW ∗∈Rnxn where M << n. Finding the eigenvalues

of C is computationally expensive, hence, the ’method of snapshots’ is designed. Since the

eigenvalues are same, C = W ∗W∈RMxM is used instead of WW ∗. Solving the eigenvalue

problem (3.9) is easier than before.

W ∗Wuj = µjuj j = 1, 2, ...,M uj∈RM (3.9)

Now, we can take the eigenvectors {u1, u2, ..., uM} as an orthonormal basis, and we can find

the POD modes as

υj =
1
√
µj
Wuj j = 1, 2, ...,M (3.10)
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3.5 POD and Singular Value Decomposition

Singular value decomposition (SVD) is a popular technique to obtain dominant charac-

teristics and coherent structures from data. While eigenvalue decomposition is defined only

for square matrices, SVD can be used for rectangular matrices. There is a strong connection

between POD and SVD for non-square matrices. Now, we compute the SVD of the matrix

W∈RnxM with rank r. From standard SVD we get these real numbers σ1≥ ... ≥σr > 0 and

unitary matrices U∈Rnxn and V ∈RMxM such that W = USV ∗ where S =

Sd 0

0 0

 ∈RnxM

and Sd = diag(σ1, ... , σr) ∈Rrxr. The σ′s are called the singular values of W (and also of

W ∗). They are unique. Here, the number of singular values equals the rank of W .

We call ui∈Rn the left singular vectors and vi∈RM the right singular vectors where

U = (u1, u2, ..., un) and V = (v1, v2, ..., vM)

Moreover, for 1≤i≤r

Wvi = σiui (3.11)

W ∗ui = σivi (3.12)

If we multiply both sides of (3.11) and (3.12) respectively by W ∗ and W we find that

W ∗Wvi = σiW
∗ui = σiσivi = σ2

i vi

WW ∗ui = σiWvi = σiσiui = σ2
i ui

ui and vi are the eigenvectors of WW ∗ and W ∗W with eigenvalue µi = σ2
i i=1,2,...,r

Now, we can write the problem of approximating the snapshot vectors wi. Let w1, w2, ..., wM∈Rn

be given, and set Ṽ = span{w1, w2, ..., wM}⊂Rn. Our problem is to find p≤dimV or-

thonormal vectors {ψi}pi=1 which minimize
M∑
j=1

‖wj −
p∑
i=1

(w∗jψi)ψi‖2 with Euclidean norm

‖w‖ =
√
w∗w.
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Here the constrained optimization problem is to find min
M∑
j=1

‖wj−
p∑
i=1

(w∗jψi)ψi‖2 subject

to ψ∗iψj =


1, if i = j

0, if i 6=j
For the optimality, we have some conditions. Let L(ψ1, ψ2, ..., ψp, µ11, µ22, ..., µpp) =

M∑
j=1

‖wj −
p∑
i=1

(w∗jψi)ψi‖2 +
p∑

i,j=1

µij(ψ
∗
iψj − δij) where δij =


1, if i = j

0, if i6=j
The conditions are

∂L

∂ψi
= 0 ∈ Rn for i = 1, ..., p (3.13)

and

∂L

∂µij
= 0 ∈ R for i, j = 1, ..., p (3.14)

From (3.13) we obtain that
M∑
j=1

wj(w
∗
jψi) = µiiψi and µij = 0 for i6=j

From (3.14) we obtain that ψ∗iψj = δij

If we set µi = µii and W = [w1, w2, ..., wM ] ∈ RnxM we obtain WW ∗ψi = µiψi for

i = 1, ..., p as a necessary for our problem. Here we can see that for i = 1, ..., p ≤ r = dimṼ

the approximation of the columns W = (w1, w2, ..., wn) by the first r singular vectors ψi = ui

is optimal in the least square sense among all rank r approximations to wi.

The error formula for the POD basis rank p :
M∑
j=1

‖wj −
p∑
i=1

(w∗jψi)ψi‖2 =
r∑

i=p+1

λi .

The following example can show us how to use SVD to approximate a surface. Also

POD is used to see the mod shapes in the contex of POD.

clear all

x=linspace(-1,1,20);

t=linspace(-2,2,40);

[X,T]=meshgrid(x,t);

Tri=delaunay(X,T);
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z = exp(X − 1).∗sin(T − .4)/2 + 2∗exp(−abs(X.∧2− (T − 0.3))) +X;

subplot(3,2,1);

trisurf(Tri, X, T, z)

axis([-1.5, 2, -1, 3, -1, 2.5])

xlabel(’x’), ylabel(’t’), zlabel(’z’)

title(’Original surface’)

[u, d, v] = svd(z);

for i=1:3

j=3*i-2;

z1=u(:,1:j)*d(1:j,1:j)*v(:,1:j)’;

subplot(3,2,i+1)

Tri1=delaunay(X,T);

trisurf(Tri1,X,T,z1), axis([-1.5,2,-1,3,-1,2.5])

xlabel(’x’), ylabel(’t’), zlabel(’z’)

title([’Rank’, num2str(j), ’approximation’])

end

subplot(3,2,5)

d=diag(d); semilogy(d,’c*’)

xlabel(’number’), ylabel(’singular values of z’)

subplot(3,2,6)

v=v(:,1:3);

k=v’*z’;

plot(t,k(1,:),’-bo’,t,k(2,:),’:’,t,k(3,:),’-.’)

xlabel(’t’), ylabel(’modes’)

title (’The modal affects’)

legend(’1’,’2’,’3’)
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Figure 3.1Approximation of Surface Example
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Kàrmàn Institut for Fluid Dynamics.

[15] Rathinam M., Petzold L. R. [2003] “A new look at proper orthogonal decomposition.”,
SIAM J. Numer. Anal., 1893-1925.

[16] Sanjay Lall, Petr Krysl, and Jerrold E. Marsden. [2003] “Structure-preserving model
reduction for mechanical systems.” Phys. D, 184(1-4):304-318.

[17] Freund R. W. [2004] “Krylov subspaces associated with higher-order linear dynami-
cal systems.”, Technical report, Department of Mathematics, University of California,
Davis, California.

[18] Reis, T., Stykel, T., [2007] “Stability analysis and model order reduction of coupled
systems.”, Mathematical and Computer Modeling of Dynamic Systems 13 (5), 413-436.

[19] Pinnau, R. [2008] “Model Reduction Via Proper Orthogonal Decomposition”, Model
Order Reduction: Theory, Research Aspects and Applications, Springer, 94-109.

[20] Schilders W. [2008] “Introduction To Model Order Reduction”, Model Order Reduction:
Theory, Research Aspects and Applications, Springer, 3-32.

[21] Vorst H. [2008] “Linear Systems, Eigenvalues, and Projection”, Model Order Reduction:
Theory, Research Aspects and Applications, Springer, 33-45.

[22] Freund R. W. [2008] “Structure-Preserving Model Order Reduction of RCL Cir-
cuit Equations”, Model Order Reduction: Theory, Research Aspects and Applications,
Springer, 49-73.

[23] Luchtenburg, D. M., Noack B. R. and Schlegel M. [2009] “An Introduction To The
POD Galerkin Method for Fluid Flows With Analytical Examples and MATLAB Source
Codes”, Berlin Institute of Technology MB1, Muller-Breslau-Strabe 11, D-10623, Berlin.

[24] Li X., Chen X., Hu B. X. and Navon I. M [2013] “Model Reduction of A Coupled
Numerical Model Using Proper Orthogonal Decomposition” Journal of Hydrology 507,
pp. 227-240.

28


