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Thesis Abstract

Particle Swarm Optimization Applied to the Design of a Nonlinear

Control

David J. Broderick

Master of Science, May 11, 2006
(B.S., University of Hartford, 2003)

77 Typed Pages

Directed by John Y. Hung

A method of searching for a tuning of an input to state linearizing controller is

presented. The problem of finding the appropriate weights of the control law’s terms

is treated as an optimization problem. Given the highly nonlinear surfaces that are

likely to be searched, particle swarm optimization is applied. The MEMS parallel plate

actuator is used to explore the effectiveness of this technique. The resulting tuning of

the controller is then compared to that of the analytically designed solution.
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Chapter 1

Introduction

Particle Swarm Optimization (PSO) has become a widely used optimization tech-

nique given the simplicity of its implementation and the quality of its results. However,

the application of PSO in the field of controls has been mostly limited to the tuning of

linear controllers.

1.1 Past Applications of Particle Swarm Optimization to Linear Control

PSO is useful in the adjustment of continuous parameters which makes it an attrac-

tive means for tuning a PID controller. Liu et al.[1] examine the problem of optimization

of a PID and compare the results to that of traditional tuning methods such as Ziegler-

Nichols. Gaing[2] applies this approach to PID tuning in the control of a linearized

model of an automatic voltage regulator. The additional step is taken to examine how

the tuning process performs compared to that of a PID controller tuned with a genetic

algorithm (GA). It is found that the PSO tuning out performs that of the GA tuning

with regard to the number of iterations taken to reach an acceptable result. In [3], Hu

et al. examine a different application of this technique by applying it to a servo control

problem. Again, the results are compared to that of a GA based tuning method with

similar results.

In [4], Zheng et al. further the algorithm’s purpose by developing a robust PID

controller based on PSO. While this is a novel application of PSO in the area of controls,
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it depends on the linear control paradigm and suffers from the inherent difficulties of

linear techniques.

1.2 Particle Swarm Optimization for Nonlinear Control

The aim of the work presented here is to extend the application of PSO to the tuning

of nonlinear controllers. To demonstrate this on one type of nonlinear control, an input

to state linear controller is used, under the assumption that the general structure of the

control law is known. The law takes the form of a weighted sum of individual terms.

The tuning process accounts for uncertainty in the model parameters and can be later

extended to encompass controllers whose structure is not well known.

The concept presented is then applied to the MEMS Parallel Plate Actuator. (PPA)

The actuator depends on electrostatic force to attract the two plates together. The

natural relaxation of the actuator is used to return the moving plate to its nominal

position. The analytically designed input to state linearizing control is then compared

to that of a PSO designed control.
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Chapter 2

Particle Swarm Optimization

Kennedy and Eberhart developed a novel optimization technique in 1995 [5] that

proved adept at efficiently locating an optimal solution on nonlinear surfaces. Particle

Swarm Optimization (PSO), as originally proposed, is a population-based algorithm

whose concept is rooted in the modeling of social information sharing. While it is a

novel approach to optimization PSO does share some similarities to genetic algorithms

and programming in concept and behavior. The original intent was to study the nature

of information sharing in flocks of birds, schools of fish, or groups of people where the

collaborative intelligence of the group was used to benefit each individual.

2.1 Original Implementation

PSO is an iterative process which in each iteration evaluates the solutions rep-

resented by the particle locations and adjusts the particles’ velocities based on prior

knowledge. The memory capabilities of the swarm take the form of a global best solu-

tion and personal best solutions. The global best solution represents the most favorably

evaluated particle location by any particle in the population. This global memory gives

the swarm its social intelligence and allows information sharing among particles.

In addition to the social component of the swarm’s memory, each individual particle

in the population maintains a personal best solution. This personal best solution repre-

sents the most favorably evaluated location that the particle has visited. Including this

memory in the algorithm aids in avoiding premature convergence on a local optimum.
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The first step in each iteration is the evaluation of each solution. The means of

evaluation is specific to each problem and effects not only the ability of the swarm to

search effectively but also the optimum solution that the swarm will converge on. After

evaluation of each particle is completed current scores are compared against the personal

best solutions and retained in memory if they have proven to offer a better solution. Each

of these personal best scores is then compared against the global score to determine if a

new global best has been found.

The core concept of the PSO algorithm is the calculation of particle velocity which

takes place after the evaluations of current solutions, or locations, is completed. Equation

2.1 shows how the velocity of each particle is determined based on three terms. The

nomenclature used for the velocity equations is found in Table 2.1. The first term

represents the inertia of a particle. Part of the current iteration’s velocity is dependent

on the previous velocity of the particle. This term, in the original implementation of

PSO, allows a particle to develop momentum which will often carry it through local

optima before decelerating when a global optima is found. It is this ability which makes

PSO well suited to highly nonlinear surfaces with many local optima. This term has

been appropriately named the inertial term.

vt = vt−1︸︷︷︸
inertia

+ wcγ1(bpij − pij)︸ ︷︷ ︸
cognitive term

+ wsγ2(bgi − pij)︸ ︷︷ ︸
social term

(2.1)

The next term, the cognitive term, represents the particle’s tendency to rely on its

own past experiences when chosing a direction to search. The particle’s current location

and the location of its personal best solution are used to determine the direction and

the magnitude of this component of the velocity calculation. The cognitive term is also

4



Table 2.1: Nomenclature used for PSO velocity and metrics

Variable Description

vt Velocity of a particle for a given iteration, t

pij Location of a single particle, j, on a

single dimension, i

bpij Personal best location for a given

dimension and particle, pij

bgi Global best location on a given dimension, i

γ Uniformly Random number from 0 to 1

ζ Random number with Gaussian distribution

σt Standard deviation of the swarm at iteration t

p̄i Mean value of the swarm on dimension i

weighted by a uniformly random number inclusively between zero and two. The range

of the random factor of the term allows for a particle to overfly or underfly the best

solution and therefore searching additional locations for better solutions.

The third, and final, term represents the collective tendency of the swarm to share

the global best solution and use this social knowledge in deciding a direction to search.

Its structure is similar to that of the cognitive term with the exception of the global best

solution’s location replacing the personal best solution location. The same random factor

is used for similar reasons. The social term, as it has been named, pulls the particles

toward the current global optima allowing for the swarm to converge to a single location.

The last two terms are weighted by uniformly distributed random numbers, γ1 and γ2,

which range from 0 to 1 and are typically then scaled by weights wc and ws set to 2.
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2.2 Gaussian Particle Swarm

A strong emphasis is placed on tuning the swarm’s weights when discussing the

algorithms performance on a particular surface. Krohling has addressed this issue [6] by

altering the velocity equation to appear as in equation 2.2.

vt = vt−1︸︷︷︸
inertia

+ |ζ1| (bpij − pij)︸ ︷︷ ︸
cognitive term

+ |ζ2| (bgi − pij)︸ ︷︷ ︸
social term

(2.2)

The original implementation weights each term with a uniformly random number

between 0 and the weight, which is typically 2. Kennedy and Eberhart designed the

original algorithm in such a way that a particle’s location would have an equal opportu-

nity of overshooting the current best solution as it would to search the space between it

and the best solution.

Using Gaussian PSO, the weights of the social and cognitive terms are replaced with

random numbers with a gaussian distribution, ζ1 and ζ2. To ensure that a particle is

always moving toward the best solution the absolute value of the distribution is taken

so that the random weight is always positive. After this change, a particle is more likely

to search the space between its current location and the best location. It is less likely to

overshoot the best location by twice the distance but it is still possible. Finally, using

this distribution allows for a particle to ocassionally make a large jump in location. It

is this last ability that gives this implementation of the algorithm its greater ability to

escape local optima and therefore speed convergence to the global optimum. Krohling

also observed that the standard deviation of the gaussian distribution was greater that

that of the uniform distribution allowing for greater variability in the random factors of

the terms.
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Krohling is left to experimentally prove that his approach provides superior perfor-

mance than Kennedy and Eberhart’s original implementation. This was accomplished

using a number of test functions and a static tuning of the original algorithm as a

benchmark with both terms weighted by 2. Further manual tuning may result in better

performance from the original algorithm but removing the need for tuning in the first

place and offering better general performance without the need for many test runs makes

the gaussian algorithm attractive.

2.3 Nature of Population-based Algorithms

Since PSO is classified as a population based optimization algorithm it is necessary

to examine the similarities and differences between it and Genetics Algorithms (GAs),

the more pervasive of this type of algorithm.

Both PSO and GAs operate to find a better solutions as they iterate, GAs through

generations and PSO through locations of particles. However, with both algorithms

there is no guarantee that after a given set of conditions are met that a global optimum

has been located. Therefore, the solution determined by the techniques is not said to be

optimal but rather near-optimal.

John Holland, who first developed GAs, introduced the Schema Theorem. This

statement is often used not as proof but rather an explanation of the nature of GA

solutions.

”Short schema with better than average cost occur exponentially more fre-

quently in the next generation. Schema with costs worse than average occur

less frequently in the next generation.”
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A schema is used here to designate a genetic representation of a solution much like a

particle’s location represents a solution. This approach leads to the optimization of

relative scores and not absolute scores. In other words, the near-optimal value found by

both algorithms can also be termed a relative optimal value that may or may not be

the absolute optimal value. If the region being searched is not well known there is no

method of determining the relationship between the two values.

Both algorithms suffer from the need for extensive simulation in order to evaluate

candidate solutions. PSO and GAs must balance the need for efficient computation of a

solution and the need to obtain a richer evaluation though more intensive simulation. If

the applications of the algorithms are not time sensitive this is not as critical an issue.

If the algorithms are to be used in a time sensitive application more attention must be

payed to computational efficiency at the risk of not always finding an optimal solution.

2.4 Swarm Metrics

Simple surfaces of two dimensions or fewer allow for easy visualization during the

search process. Surfaces of greater dimensionality do not allow easy visualization and

therefore require a set of metrics to be defined to offer insight into the status of the swarm

during simulation. The measurements used in this study, as defined below, are the global

best solution, standard deviation, and distance moved by the global best solution. All of

these values are observed over time as the swarm is allowed to iterate through its search

process.
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2.4.1 Global Best Solution

The global best solution is not only a key value in calculating the velocity of each

particle, but serves well as a means of observing the progression of the search. On a

simple surface such as the cornfield example used in [5] the global best solution will

converge on the global optimum quickly and smoothly. On more complex, nonlinear

surfaces the global best solution can get caught in local optima over several iterations

before breaking out to continue the search for the global optimum.

2.4.2 Standard Deviation in �m

The strength of PSO is found in the spatial diversity of the individual particles. As

such, a numerical measurement was sought to determine how spread out the swarm is

during any given iteration. The field of statistics offers standard deviation as a means to

quantify the distribution of sampled data. While this application of standard deviation

does not measure the spread of sampled data, it does act as an effective indicator of

spatial diversity.

Examining the classic representation of standard deviation, which operates in �1,

as shown in equation 2.3, it is necessary to adapt the concept to the problem at hand.

Calculating standard deviation requires the use of the mean value. In �1 this is a simple

average, the summation of the values divided by the number of values. In �m, the mean

value is the summation of the m x 1 vectors representing the particle locations divided

by the population of the swarm, n. This calculation is detailed in equation 2.4.

σ =

√√√√ 1
n

n∑
j=1

(pj − p̄)2 (2.3)
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p̄ =
1
n

n∑
j=1

pj (2.4)

Variance is defined as the square of the distance from a single particle to the mean

value. Using the representation of particle and the mean value as shown in equation 2.5

the distance of the jth particle to the mean is found using equation 2.6. In general terms,

the standard deviation is the square root of the average variance. Squaring equation 2.6

results in the variance in �m which replaces the variance in the one dimensional standard

deviation formula. The resulting expression for standard deviation in m dimensions is

equation 2.7.

pj =




p1j

p2j

...

pmj




p̄ =




p̄1

p̄2

...

p̄m




(2.5)

||pij − p̄i|| =

√√√√ m∑
i=1

(pij − p̄i)2 (2.6)

σ =

√√√√ 1
n

n∑
j=1

m∑
i=1

(pij − p̄i)2 (2.7)

Quantifying the spread of the swarm is only useful if an understanding of what the

value indicates is developed. The initial value of the standard deviation of the swarm

is dictated by the range of uniformly random values used during instantiation of the

particle locations. It is possible for the value to rise beyond this initial point during

early iterations however it will approach zero as the swarm converges on an optimum.
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When the standard deviation reaches zero all particles have occupied the same location

in �m. This condition is indicative of a complete loss of spatial diversity. Without

the ability to compare more than one point on the surface the swarm is ineffective in

searching for a more optimal solution.

2.4.3 Distance Moved by Global Best Solution

If the surface being searched is not smooth, spikes in the standard deviation will be

observed when the swarm settles into a local optimum temporarily and then breaks out.

These sudden rises can also be caused by the random factor in each term providing a

large jump in a particles location unrelated to its proximity to its personal best location

and the global best location.

A useful tool in discerning the cause of a rise in standard deviation is the distance

moved by the global best location from one iteration to the next. If a rise in standard

deviation is caused by a move in the global best value the plot of distance will show a

large move preceding the rise in standard deviation. These phenomena do not coincide

in time perfectly since the swarm will take time to accelerate toward the new global best

value.

In the case that the increased standard deviation is cause by the random factor

no move by the global best value is observed prior to the spike. While the standard

deviation is useful in understanding how the swarm is behaving, the distance plot is

useful in understanding the cause behind that behavior. The expression for this metric

is shown in equation 2.8 where i and t indicate the dimension and iteration respectively.

11



||git − git−1|| =

√√√√ m∑
i=1

(git − git−1)2 (2.8)

2.5 Typical Behavior of Metrics on a Well-behaved Surface

These metrics are not limited to problems of higher dimensions. Observing the

behavior of them on a simple surface will benefit understanding the nature of a higher

dimensioned surface using the same methods of measure. The two dimensional evaluation

function chosen for this purpose is equation 2.9 and is plotted in figure 2.1. For this

example the swarm is tasked with finding a maximum value which is known to be located

at the origin and have a value of 4. The population of the swarm was 10 and each particle

was initialized within ±100 on each axis.

f(x, y) =
[
1 +

cos(x)
1 + .001x2

] [
1 +

cos(y)
1 + .001y2

]
(2.9)

The progression of the global best value is shown in figure 2.2. The plot shows that

while the swarm does initially get caught in a few local maxima, it ultimately finds the

global maximum of 4 at the origin. The low population size of the swarm contributed

to the length of time that the global best solution spent in the local maxima. A larger

swarm performs better on this surface but does not provide a useful demonstration.

Examining the standard deviation of the swarm, as shown in figure 2.3, shows the

spread of the swarm as it searches the surface. The plot shows the swarm initially

spreading out in the first 50 iterations. Through the rest of the simulation the standard

deviation decreases greatly from its maximum value and approaches zero. If the swarm

were allowed to search indefinitely the standard deviation would reach zero, a trend

12



Figure 2.1: Test surface used for metrics demonstration

which is apparent in this figure. The small variation in this value from one iteration to

the next can be caused by different factors which leads to the inclusion of the last metric.

The distance moved by the global best solution allows for examination of why the

swarm is behaving as it does at various points during the search. Comparing the distance

plot with the standard deviation plot shows that the early increase in standard deviation,

before the hundredth iteration, can be primarily attributed to the movement of the global

best solution. This cause and effect is also seen near the 350th iteration. The global best

plot shows that it is near this iteration that the global optimum is discovered. It is also

at this time that a small move is made by the global best solution and a corresponding

rise in standard deviation can be observed in the appropriate plot.

The other cause of rising standard deviation is the normal random factors in each

term causes a large jump of individual particles. This phenomena can be observed around

13



Figure 2.2: Global best value of swarm on test surface

the 225th iteration. The global best plot shows that no progression in optimal value is

made at this time and the distance plot shows that there is no movement of the solution

on the surface. However, examining the standard deviation plot at this point in time

shows a small rise in standard deviation.

These metrics and an understanding of how they relate to the surface being searched

offer a method of evaluating swarm performance over problems of varying dimensions.
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Figure 2.3: Standard deviation of swarm on test surface

Figure 2.4: Distance moved by global best solution on test surface
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Chapter 3

Application to Nonlinear Control

PSO’s history of being applied to linear controls and, more specifically, PID control

has been previously detailed in section 1.1. Applications of PSO to nonlinear controls

have not been explored to the same extent and warrants examination. As a first step in

this examination, input to state linearization was chosen as a nonlinear method to which

PSO could be applied.

A system with well known dynamics and whose linearizing control is easily derived

is considered. This system was chosen to test PSO’s ability to search a nonlinear surface

in an effort to linearize the plant’s dynamics. The parallel plate actuator serves this

purpose well and allows for the solution developed by the swarm to be compared to a

known value that has been classically designed.

3.1 Plant Model

The states of the second order model are described in equation 3.1 where the co-

efficients c1 through c3 are calculated as in equation 3.2. The variables used in both

equations are described in table 3.1. The states, z1 and z2, represent the position and

velocity of the moving plate respectively.

ż1 = z2

ż2 = c1z1 + c2z2 + c3(h + z1)−2v2 (3.1)

16
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Figure 3.1: Parallel Plate Actuator

Symbol Description Value Units
ε permeability 8.854 × 10−12 F/m
m mass of moving plate 1.21025 × 10−4 kg
K stiffness constant 3.4 × 103 N/m
B damping constant
A area of moving plate 10−4 m2

x displacement of moving plate(plant output) m
h nominal gap between plates 10−5 m
v actuator voltage(plant input) V

Table 3.1: Parallel Plate Actuator Nomenclature
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c1 = −K

m
c2 = −B

m
c3 = − εA

2m
(3.2)

3.2 Review of MEMS Actuator Control Methods

Control of the PPA itself has proven to be a difficult problem in and of itself.

Summarized here are previous attempts to provide a control method for the system.

Many detail methods of avoiding the nonlinearities inherent in the plant. Only recently

have nonlinear methods been explored for controlling the plant.

The force of electrostatic origin is a nonlinear function of input voltage and actuator

displacement. A well known problem is the so-called ‘pull-in’ or ‘snap in’ effect, where the

nonlinear electrostatic force avalanches over the linear spring force, causing the parallel

plates to snap together. In the open loop case, the snap in effect limits the useful

displacement to one-third of the nominal gap between the plates.

Several methods exist for controlling electrostatic MEMS actuators. A simple, open

loop method of increasing the controllable range of motion of a PPA, as described by Bao

[7], is to design the actuator to have a rest distance that is three times the required range

of motion. In this way, the actuator never leaves the open loop stable operating range.

A second but equivalent technique to realize this effect is to put an appropriately sized

capacitor in series with the actuator, which makes the capacitor-actuator combination

appear electrically as an actuator with a rest gap three times larger than it actually has.

A drawback of these techniques is the requirement of a much larger input voltage.

Chen et al. [8] employ a modest linear gain schedule to improve motion in a MEMS

optical switch application. Lu and Fedder propose a two-degree-of-freedom control struc-

ture, in which a linear compensator and linear prefilter are employed [9]. These methods
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have the advantage of being simple to design and implement, but do not capture all

of the effects of the actuator nonlinearity. Actuator nonlinearity can lead to significant

performance problems, including chaotic oscillations [10].

The extreme nonlinearity of the electrostatic actuator can be partially addressed by

the physical layout and design of the actuator. For example, Rosa et al. [11] describe

an external, tapered electrode to compensate for the nonlinear relationships between

force, voltage, and gap distance. Chiou and Lin [12] use multiple electrodes to cover the

operating range by several smaller motions.

Novel control approaches include the use of charge control (Seeger and Boser [13]).

Using charge control, the extreme nonlinearity of force with respect to voltage and gap

distance is largely avoided. A charge amplifier is required, however, and the approach

does have some sensitivity to parasitic capacitance. Seeger and Boser have extended the

application of the charge amplifier to a feedback configuration that produces the effect

of negative capacitance [14], which also improves dynamic stability.

Chu and Pister [15] simulate a nonlinear control law that employs a square-root

characteristic to compensate for the nonlinear relationship of force vs (voltage, distance).

That control is straightforward to derive from the 2nd-order mechanical dynamics model

and can be expressed in analytical form, but implementation was not easy to perform

or test with the technologies of the early 1990s.

More recently, Maithripala et al. simulate a nonlinear control law with a nonlinear

state estimator [16]. The state estimator is proposed as a means to circumvent the full

state feedback requirement.

In general, nonlinear control design by the above methods can be mathematically

tedious, or even intractable.
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3.3 Analytical Solution

The model in equation 3.1 was selected to provide a problem with a known solution

so that result could be verified. This model can be examined and the control law v can

be designed to cancel the nonlinearities in ż2. The designed v is shown in equation 3.3.

Expanding v results in equation 3.4 which allows the coefficients to be parameterized

and the control law to be rewritten as in equation 3.5.

v =

[
(h + z1)2

c3
(−c2z2 − c1z1 + r)

] 1
2

(3.3)

v =

[
−c1h

2

c3
z1 +

−2c1h

c3
z2
1 +

−c1

c3
z3
1

+
−c2h

2

c3
z2 +

−2c2h

c3
z1z2 +

−c2

c3
z2
1z2

+
h2

c3
r +

2h
c3

z1r +
1
c3

z2
1r+

] 1
2

(3.4)

v =
[
p1jz1 + p2jz

2
1 + p3jz

3
1

+p4jz2 + p5jz1z2 + p6jz
2
1z2

+p7jr + p8jz1r + p9jz
2
1r+

]1
2 (3.5)

Substituting equation 3.3 into equation 3.1 results in the closed-loop dynamics de-

scribed in equation 3.6. The resultant system has two poles located at the origin indi-

cating that it is only marginally stable.
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ż1 = z2

ż2 = r (3.6)

While the control law described in equations 3.3 through 3.5 would offer linear

dynamics for the closed loop system it would not provide a stable system. Two methods

present themselves to further stabilize the system. Pole placement can be performed

using linear techniques and an additional outer loop would be added to the system. The

alternative is to alter the control law in a manner which will place the poles directly.

3.4 Selection of Desired Dynamics

The desired dynamics of the system were chosen to be simple yet still offer expo-

nentially stable characteristics. A system with characteristic equation s2 + 2s + 1 has

two poles at s = −1 therefore meeting both criteria. However, further investigation is

necessary to determine whether the system can be reasonably expected to behave in such

a manner.

The first method to be examined is the addition of an outer loop using linear tech-

niques to place the poles in the left half-plane. The closed-loop dynamics described in

equation 3.6 results in a system that has the transfer function 1/s2. The root locus

of this system shows the two poles at the origin move to infinity along the imaginary

axis as increasing negative feedback is applied. This inidcates that, without further

compensation, the system can not meet the chosen desired dynamics.
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The second method would be to redesign the control law in equation 3.3 to cause

the closed-loop system to meet the desired dynamics. With the current control the

state-space representation of the closed-loop system appears as in equation 3.7. The

eigenvalues, λ, of the system matrix reveal that the two poles are located at the origin.

Redesigning this control may allow for the system to behave as desired.

ż =


 0 1

0 0


 z +


 0

1


 r (3.7)

The desired dynamics call for the two poles of the system to be located at -1.

Equation 3.8 describes the calculation of the eigenvalues of a standard 2x2 matrix of the

form in equation 3.9. It is important to note that the open-loop dynamics only allow

the input to affect ż2 directly. Therefore, a11 and a12 can not be altered from 0 and 1

respectively. Using the two desired pole locations and the two equations in equation 3.8

created by the ± a system is formed that can be solved simultaneously.

λ =
1
2

[
(a11 + a22) ±

√
4a12a21 + (a11 − a22)2

]

=
1
2

[
(0 + a22) ±

√
4(1)a21 + (0 − a22)2

]

=
1
2

[
a22 ±

√
4a21 + a2

22

]
(3.8)


 a11 a12

a21 a22


 (3.9)
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In this case, the resulting system matrix is seen in equation 3.10 where a21 and a22

are -1 and -2 respectively. These calculations form the constraints placed on the selection

of the desired dynamics if an outer-loop is not employed. The system of equations formed

regarding the eigenvalues of the system matrix must be consistent in order for the closed-

loop system to behave as desired. It is not necessary for it to produce a unique solution

since any solution that will place the poles appropriately is acceptable.

ż =


 0 1

−1 −2


 z +


 0

1


 r (3.10)

The control law in equation 3.3 needs to be altered to accommodate the desired

dynamics in this case. By adding two terms to the expression, as seen in equation 3.11,

the closed-loop system matrix will match the desired form. Expanding this redesigned

expression results in equation 3.12. Once again, the coefficients can be parameterized as

in equation 3.5 since only they have changed and not the form of the terms.

v =


(h + z1)2

c3


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3.5 Implementation Issues

PSO has been implemented and tested frequently on academic problems as well as

simple linear control problems. Applying this technique to the design problem posed by

the PPA provides its own challenges that are not uncommon to implementing PSO in a

practical manner. The choices made surrounding these issues can have consequences on

the success, performance, and implications on the significance of the results.

The first of these issues is choosing a meaningful representation of the candidate

solutions that the swarm will be able to operate on. While the swarm is capable of

searching a surface with discontinuities in some cases it is desirable to limit the frequency

of this type of feature. Furthermore, it is necessary for the choice of representations to

meet the closure principle. That is, it must provide a search space in which every possible

location is a valid, meaningful solution that can then be evaluated.

The swarm’s ability to adjust a large number of parameters must be used in relation

to the problem at hand. Examining the analytical solution previously discussed offers a

useful representation of the solutions. In particular, equation 3.12, and its parameterized

representation in equation 3.5, can be employed to translate a particle’s location on a

nine-dimensional surface into a possible tuning of the linearizing control defined as v.

It is also useful, although not entirely necessary, to have a general idea of the neigh-

borhood in which the optimal solution exists. The particles are uniformly distributed

over an initial range which should be targeted toward this neighborhood. This is not to

say that if the swarm is initialized in a different area that it will not be able to find the

optimum. PSO’s performance in this instance depends on other factors including the
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nature of the surface being searched. Initializing the swarm outside the optimum’s neigh-

borhood will lower the percentage of successful runs in which the optimum is located

accurately without getting stuck in a local optimum.

3.6 Evaluation of Solutions

The means used to evaluate each particle location plays a large role in the ability

of the swarm to optimize effectively. In an effort to quantify how closely a controller’s

response matches that of a desired dynamic a model reference approach was taken.

Figure 3.2 shows the SIMULINK model used in running the evaluation method. The

top branch of the diagram is the expression for the desired dynamics described in previous

sections. The bottom branch is the controller and plant model which is used to simulate

a particular tuning of the controller according to a particle’s location on the surface.

The time period the system simulation is performed over plays a role in determining

how likely the system is to converge on the true parameters and how computationally

efficient it is. If the simulation is too short the swarm will not have enough information

to properly score each candidate solution. In this instance multiple solutions can provide

the same evaluation score. While this will not be evident in the swarm metrics it has

consequences when examining the systems response over a longer time or to a different

reference signal.

If the simulation time is too long the algorithm will be inefficient and time-consuming.

The swarm runs the evaluation method for each particle and for each iteration. Any time

wasted in evaluating a solution is multiplied over the entire run of the swarm. There-

fore, it is important to chose a simulation time that provides a meaningful amount of

information without being redundant.
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Figure 3.2: Model reference system used in evaluating candidate solutions.

This particular problem poses a unique difficulty. Examination of the analytical

solution reveals that the control is ill-defined over the range of operation. The root that

encloses the expression causes the controller to produce imaginary results whenever the

operand of the function is a negative value. This effectively limits the validity of certain

control tunings and even has implications on the validity of the analytically designed

control law.

Approaching this problem from a practical perspective any implementation of the

controller must be able to handle a tuning of the controller that is capable of producing

negative values under the square-root. The SIMULINK controller as seen in figure 3.3

is implemented to limit the values under the root to positive values through the use of

the saturation block.
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Figure 3.3: Model of linearizing controller using particle location as input.

Figure 3.4: Model of the parallel plate actuator used in simulation.
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Chapter 4

Resultant Tuning and Performance

Having implemented and tested both the analytically designed control and the con-

trol provided by the swarm, the results are presented here.

4.1 Response Comparison

The purpose of choosing the PPA for evaluation of this technique was to compare

the analytically designed control to the expression discovered by the swarm. Figure 4.1

shows the response of the plant with the designed controller in comparison to the same

model in Figure 4.2. Visual inspection reveals that while the responses are similar, the

analytically designed response matches the model more closely.

To quantify this difference the ISE of each response is examined. The PSO designed

response yields an ISE of 1.1002e-017 while the analytically designed response yields an

ISE of 4.2049e-017. Both responses closely match that of the model’s. However, it is

notable that the PSO designed control performs better than the analytically designed

control.

It must also be noted that the analytical solution does not provide a perfect result.

Ideally the ISE of the tuning would equal zero. In both cases, that of the PSO controller

and the designed controller, the plant response does not track the model response per-

fectly. For the analytical control, this can be attributed to the discontinuity introduced

by the root function. The PSO control successfully compensates for this difficulty.

28



0 5 10 15 20 25 30 35 40
−20

−15

−10

−5

0

5
x 10

−9

Time (s)

O
ut

pu
t

Response Comparison

Model
Plant

Figure 4.1: Response of system with analytically designed control.
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Figure 4.2: Best tuning of the controller found by swarm.
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4.2 Behavior of Metrics

The swarm iterated through 300 iterations in 9 dimensions using the model reference

evaluation method. In figure 4.3 it is seen that the global best value converged to a point

near its final value within the first 50 iterations. While minimal improvement is seen

beyond this point in the simulation it is useful to examine the behavior of the other

metrics over a longer period of time.

In examining the standard deviation of the swarm over time it is seen that the

expected behavior is present. The overall trend, apparent in figure 4.4, of the value

approaches zero as time increases. Small perturbations are still present and are more

frequent than in the test surface used earlier. This behavior is consistent with the swarm

performing a global search early in the simulation and then converging toward an optimal

value and performing a local search later in the simulation.

Using the distance plot in conjunction with the standard deviation shows that the

initial 50 iterations affected the spread of the swarm. Later spikes in standard deviation

can be attributed to the probabilistic factors in the velocity equations causing acceler-

ation in the swarm. Small adjustments in the global best value are seen after the 50th

iteration. In a similar manner as the standard deviation plot this indicates the swarm

is searching a larger area with less resolution early in the simulation only to congregate

in one smaller area and provide a greater resolution making only small changes to the

optimal location.

The behavior of these metrics speak to the highly nonlinear nature of the surface

as a more well behaved surface would allow for faster convergence of all of the particles
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Figure 4.3: Global best value of swarm while tuning linearizing control.

on a single value. In this situation PSO offers greater probability of converging on the

global optimum than traditional optimization techniques.

4.3 Parameter Convergence

Given that the designed parameters are known the optimal particle location on the

surface is also known. The performance of the swarm can be evaluated using the designed

parameters as a benchmark. If a comparison of these values against those found by the

swarm shows that the global best solution lies on the designed values than it can be said

that the swarm has found the global optimum. If they do not, the global optimum has

not been successfully found.
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Figure 4.4: Standard deviation of swarm while tuning linearizing control.
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Figure 4.5: Distance moved by global best solution while tuning linearizing control.
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Parameter Analytical Sine
p1j -2.7338 -3.1994
p2j -7.4068 -7.1316
p3j 5.2417 4.0201
p4j -0.0741 0.3250
p5j -0.0027 1.7561
p6j 0.0052 -5.6807
p7j -7.4068 -34.7615
p8j -2.7338 -7.1671
p9j 5.2417 -0.2572

Table 4.1: Parameter comparison

The results for the application of PSO to the PPA are shown in Table 4.1 where the

parameters are listed as they appear in equation 3.5. It is seen that the swarm failed

to converge on the parameters as designed through analytical methods. This does no

negate any success the swarm had in matching the response of the plant/controller to

that of the model. Rather, it speaks to the nature of the surface and indicates that it

is, in fact, nonlinear and rife with local optima. This serves to bolster the argument

for PSO as opposed to traditional optimization techniques. While PSO did not find the

known solution it did find a solution with a similar, albeit larger, fitness score. Both

solutions offer a dynamic response that closely match that of the model’s.

4.4 Model Limitations

The reference signal used to excite the model system must be chosen with considera-

tion to the nature of the plant being controlled. The PPA plant represents the deflection

of the moving plate from a nominal position as the variable to control. A control value

does not exist that can repel the plates from each other, only attract them together.
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Taking this into consideration leads to the conclusion that the system can only relax at

it’s natural rate caused by the open loop dynamics of the system.

This realization limits the desired response in two ways. The first requires that the

desired dynamics and the reference signal do not call for the moving plate to travel above

its nominal position, h. The second requires that any movement of the moving plate in

the positive direction occur at a rate which the open loop system can accommodate.

Figure 4.6 shows the result of an attempt to tune the swarm to an inappropriate

reference signal. This example removes the offset value in the input to cause the desired

system response to enter the positive region. Examining the best tuning the swarm

was able to find illustrates the limitations of this model and displays PSO’s ability to

find a reasonable response despite unreasonable expectations. It also demonstrates that

while PSO is a powerful tool for tuning the controller it does not replace the designer’s

knowledge and understanding of the system.
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Figure 4.6: Best tuning of the controller with an inappropriate reference signal.
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Chapter 5

Conclusions and Future Work

5.1 The Good

The use of PSO as a means for tuning an input to state linearizing controller has

proved itself as a viable method. While the results did not meet those of the analytical

method, it was the intention of this work to show that the technique could be used to

achieve acceptable results. Further investigation should examine the role of the reference

signal used to excite the model and plant for evaluation. A richer signal may provide

better results and a more suitable response.

5.2 The Bad

The control used in this example makes the assumption that the parameters appear

linearly in the control. In examining the case in which the control is nonlinear by

parameters it was found that the continuous implementation of PSO was not suitable.

As the swarm adjusted the parameters that appeared as exponents, any fractional value

in the parameter appeared as a root function in the candidate solution. This effectively

limited the control to positive values and caused the majority of solutions to be invalid.

In this case, the requirement to meet the closure principle was not met and the swarm

could not effectively search.

It may be possible to use the discrete implementation of PSO also developed by

Kennedy and Eberhart to overcome this difficulty. A discrete representation of the
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solution would segment the parameters in different manners depending on where they

appear in the control.

5.3 The Ugly

While this technique of tuning the control law is immediately useful, further study

should be directed in an effort to determine the structure of the control law in addition

to the tuning. The combination of these two capabilities would prove invaluable.

Using PSO to perform this search may prove difficult. In both the continuous

and discrete implementations of PSO the surface being searched must be predominantly

continuous. In varying a control structure from one function to the next the surface

would not meet this requirement. John Koza’s work in Genetic Programming offers a

more readily available solution to this task.

Overall, this technique of applying PSO to a nonlinear control problem shows

promise. Setting up the design engine proved simple while still yielding acceptable

results.
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Appendix A

Code Listing used in Simulations

A.1 Plotting Code for Swarm Test Surface

test mesh.m was used to prepare figure 2.1.

clear all
close all
clc

[x,y]=meshgrid(-200:1:200,-200:1:200);
out=(1+(cos(x)./(1+.001.*(x).^2))).*(1+(cos(y)./(1+.001.*(y).^2)));
mesh(x,y,out);

A.2 Implementation of Gaussian Particle Swarm for Testing

param ISLGPSO.m was used to generate figures 2.2, 2.3, and 2.4.

%Evaluation of Swarm Parameters

%Initialization
clear all
close all
clc
warning off all
randn(’state’,[143;06084]);
rand(’state’,9121914);

%SETUP VARIABLES
max_ite=500; %maximum number of iterations
init_range=200; %initial location range
m=2; %dimensions
n=10; %population
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inertial_weight=0; %velocity weights

t=1; %iteration counter
location(1:m,1:n,1:max_ite)=0; %location of particles
velocity(1:m,1:n,1:max_ite)=0; %velocity of particles
pbest_loc(1:m,1:n,1:max_ite)=0; %best location of individual particle
pbest_val(1,1:n,1:max_ite)=0; %best value of individual particle
gbest_loc(1:m,1,1:max_ite)=0; %best location of entire swarm
gbest_val(1,1,1:max_ite)=0; %best value of entire swarm

%inititalize population
location(:,:,t)=init_range*rand(m,n)-(init_range/2);
stddev(t)=psosd(location(:,:,t))
dist(1)=0;
pbest_loc(1:m,1:n,t)=location(1:m,1:n,t);
for x=1:n

particle=location(:,x,t)’;
pbest_val(1,x,t)=PSO_eval(location(:,x,t));

end
[v,i]=max(pbest_val(1,:,t))
gbest_val(1,1,t)=v;
gbest_loc(:,1,t)=pbest_loc(:,i,t);

%Fly Swarm
for t=2:max_ite

velocity(:,:,t-1)=inertial_weight.*velocity(:,:,t-1)
_+(abs(randn(m,n)).*(pbest_loc(:,:,t-1)-location(:,:,t-1)))
_+(abs(randn(m,n)).*(repmat(gbest_loc(:,:,t-1),[1 n])
_-location(:,:,t-1)));

location(:,:,t)=location(:,:,t-1)+velocity(:,:,t-1);
stddev(t)=psosd(location(:,:,t));
gbest_val(1,1,t)=gbest_val(1,1,t-1);
gbest_loc(:,1,t)=gbest_loc(:,1,t-1);
for x=1:n

particle=location(:,x,t)’;
v=PSO_eval(location(:,x,t));
if (v<pbest_val(1,x,t-1))

pbest_val(1,x,t)=v;
pbest_loc(:,x,t)=location(:,x,t);

else
pbest_val(1,x,t)=pbest_val(1,x,t-1);
pbest_loc(:,x,t)=pbest_loc(:,x,t-1);
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end
if (v>gbest_val(1,1,t))

gbest_val(1,1,t)=v;
gbest_loc(:,1,t)=location(:,x,t);
[t stddev(t)]
v

end
end
dist(t)=(sum((gbest_loc(:,1,t)-gbest_loc(:,1,t-1)).^2)).^.5;

end

figure(1);
subplot(2,2,1);
plot(shiftdim(gbest_val));
title(’Global Best Value’);
xlabel(’Iteration’);
ylabel(’Score’);

subplot(2,2,2);
plot(stddev);
title(’Standard Deviation’);
xlabel(’Iteration’);
ylabel(’Standard Deviation’);

subplot(2,2,3);
plot(dist);
title(’Distance Moved by GBest’);
xlabel(’Iteration’);
ylabel(’Distance’);

A.3 Evaluation Function for Swarm Testing

PSO eval.m was used to implement the evaluation function shown in figure 2.1.

function out=PSO_eval(pos)
out=(1+(cos(pos(1))/(1+.001*(pos(1))^2)))
_*(1+(cos(pos(2))/(1+.001*(pos(2))^2)));

44



A.4 Implementation of Gaussian Particle Swarm for Parallel Plate Actuator

PPA ISLGPSO.m was used to generate figures 2.2, 2.3, and 2.4.

%Input to State Linearization by Particle Swarm Optimization

%Initialization
clear all
close all
clc
warning off all
randn(’state’,[9141940;6131916]);
rand(’state’,1121921);

%SETUP MODEL PARAMETERS
K=3.4;
mass=.121025;
B=0.01;
e0=8.854;
A=10^-4;
h=10^-5;
c1=-K/mass;
c2=-B/mass;
c3=(-e0*A)/(2*mass);

design_particle=[((10^8*h^2)/c3) ((10^7*h^2*(-c1-1))/c3)
_((10^8*h^2*(-c2-2))/c3) ((h*(-c1-1))/c3) (h/c3)
_((h*(-c2-2))/c3) ((-c1-1)/(1000*c3)) (1/(c3*100)) ((-c2-2)/(c3*100))];

%SETUP VARIABLES
max_ite=150; %maximum number of iterations
init_range=10; %initial location range
m=9; %dimensions
n=50; %population
inertial_weight=2; %velocity weights

t=1; %iteration counter
location(1:m,1:n,1:max_ite)=0; %location of particles
velocity(1:m,1:n,1:max_ite)=0; %velocity of particles
pbest_loc(1:m,1:n,1:max_ite)=0; %best location of individual particle
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pbest_val(1,1:n,1:max_ite)=0; %best value of individual particle
gbest_loc(1:m,1,1:max_ite)=0; %best location of entire swarm
gbest_val(1,1,1:max_ite)=0; %best value of entire swarm

%inititalize population
location(:,:,t)=init_range*rand(m,n)-(init_range/2);
stddev(t)=psosd(location(:,:,t))
dist(1)=0;
pbest_loc(1:m,1:n,t)=location(1:m,1:n,t);
for x=1:n

particle=location(:,x,t)’;
pbest_val(1,x,t)=PSO_eval(location(:,x,t));

end
[v,i]=min(pbest_val(1,:,t))
gbest_val(1,1,t)=v;
gbest_loc(:,1,t)=pbest_loc(:,i,t);

%Fly Swarm
for t=2:max_ite

velocity(:,:,t-1)=inertial_weight.*velocity(:,:,t-1)
_+(abs(randn(m,n)).*(pbest_loc(:,:,t-1)-location(:,:,t-1)))
_+(abs(randn(m,n)).*(repmat(gbest_loc(:,:,t-1),[1 n])
_-location(:,:,t-1)));
location(:,:,t)=location(:,:,t-1)+velocity(:,:,t-1);
stddev(t)=psosd(location(:,:,t));
gbest_val(1,1,t)=gbest_val(1,1,t-1);
gbest_loc(:,1,t)=gbest_loc(:,1,t-1);
for x=1:n

particle=location(:,x,t)’;
v=PSO_eval(location(:,x,t));
if (v<pbest_val(1,x,t-1))

pbest_val(1,x,t)=v;
pbest_loc(:,x,t)=location(:,x,t);

else
pbest_val(1,x,t)=pbest_val(1,x,t-1);
pbest_loc(:,x,t)=pbest_loc(:,x,t-1);

end
if (v<gbest_val(1,1,t))

gbest_val(1,1,t)=v;
gbest_loc(:,1,t)=location(:,x,t);
[t stddev(t)]
v
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end
end
dist(t)=(sum((gbest_loc(:,1,t)-gbest_loc(:,1,t-1)).^2)).^.5;

end

figure(1);
subplot(2,2,1);
plot(shiftdim(gbest_val));
title(’Global Best Value’);
xlabel(’Iteration’);
ylabel(’Score’);

%ADDED FOR MODEL MATCHING
particle=gbest_loc(:,:,max_ite)’
try

sim(’PSO_test2’);
end
subplot(2,2,2);
plot(tout,shiftdim(model),’--b’)
hold on
plot(tout,plant,’.-r’);
xlabel(’Time (s)’);
ylabel(’Output’);
title(’Response Comparison’);
legend(’Model’,’Plant’,4);

subplot(2,2,3);
plot(stddev);
title(’Standard Deviation’);
xlabel(’Iteration’);
ylabel(’Standard Deviation’);

subplot(2,2,4);
plot(dist);
title(’Distance Moved by GBest’);
xlabel(’Iteration’);
ylabel(’Distance’);
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A.5 Evaluation function used for Parallel Plate Actuator Problem

PSO eval.m was used to implement the evaluation function.

function out=PSO_eval(pos)
try

sim(’PSO_test2’);
catch

er=3e49;
end
out=sum(er.*er);

A.6 Model reference SIMULINK model file

PSO eval.mdl was used to implement the model reference structure for evaluation

of solutions.

Model {
Name "pso_test2"
Version 5.0
SaveDefaultBlockParams on
SampleTimeColors off
LibraryLinkDisplay "none"
WideLines off
ShowLineDimensions off
ShowPortDataTypes off
ShowLoopsOnError on
IgnoreBidirectionalLines off
ShowStorageClass off
ExecutionOrder off
RecordCoverage off
CovPath "/"
CovSaveName "covdata"
CovMetricSettings "dw"
CovNameIncrementing off
CovHtmlReporting on
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covSaveCumulativeToWorkspaceVar on
CovSaveSingleToWorkspaceVar on
CovCumulativeVarName "covCumulativeData"
CovCumulativeReport off
DataTypeOverride "UseLocalSettings"
MinMaxOverflowLogging "UseLocalSettings"
MinMaxOverflowArchiveMode "Overwrite"
BlockNameDataTip off
BlockParametersDataTip off
BlockDescriptionStringDataTip off
ToolBar on
StatusBar on
BrowserShowLibraryLinks off
BrowserLookUnderMasks off
Created "Thu Oct 20 00:27:01 2005"
UpdateHistory "UpdateHistoryNever"
ModifiedByFormat "%<Auto>"
LastModifiedBy "Administrator"
ModifiedDateFormat "%<Auto>"
LastModifiedDate "Fri Dec 09 19:54:57 2005"
ModelVersionFormat "1.%<AutoIncrement:422>"
ConfigurationManager "None"
SimParamPage "Solver"
LinearizationMsg "none"
Profile off
ParamWorkspaceSource "MATLABWorkspace"
AccelSystemTargetFile "accel.tlc"
AccelTemplateMakefile "accel_default_tmf"
AccelMakeCommand "make_rtw"
TryForcingSFcnDF off
ExtModeMexFile "ext_comm"
ExtModeBatchMode off
ExtModeTrigType "manual"
ExtModeTrigMode "normal"
ExtModeTrigPort "1"
ExtModeTrigElement "any"
ExtModeTrigDuration 1000
ExtModeTrigHoldOff 0
ExtModeTrigDelay 0
ExtModeTrigDirection "rising"
ExtModeTrigLevel 0
ExtModeArchiveMode "off"
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ExtModeAutoIncOneShot off
ExtModeIncDirWhenArm off
ExtModeAddSuffixToVar off
ExtModeWriteAllDataToWs off
ExtModeArmWhenConnect on
ExtModeSkipDownloadWhenConnect off
ExtModeLogAll on
ExtModeAutoUpdateStatusClock on
BufferReuse on
RTWExpressionDepthLimit 5
SimulationMode "normal"
Solver "ode5"
SolverMode "Auto"
StartTime "0.0"
StopTime "40"
MaxOrder 5
MaxStep "auto"
MinStep "auto"
MaxNumMinSteps "-1"
InitialStep "auto"
FixedStep "auto"
RelTol "1e-3"
AbsTol "auto"
OutputOption "RefineOutputTimes"
OutputTimes "[]"
Refine "1"
LoadExternalInput off
ExternalInput "[t, u]"
LoadInitialState off
InitialState "xInitial"
SaveTime on
TimeSaveName "tout"
SaveState off
StateSaveName "xout"
SaveOutput on
OutputSaveName "yout"
SaveFinalState off
FinalStateName "xFinal"
SaveFormat "Array"
Decimation "1"
LimitDataPoints on
MaxDataPoints "1000"
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SignalLoggingName "sigsOut"
ConsistencyChecking "none"
ArrayBoundsChecking "none"
AlgebraicLoopMsg "none"
BlockPriorityViolationMsg "warning"
MinStepSizeMsg "warning"
InheritedTsInSrcMsg "warning"
DiscreteInheritContinuousMsg "warning"
MultiTaskRateTransMsg "error"
SingleTaskRateTransMsg "none"
CheckForMatrixSingularity "none"
IntegerOverflowMsg "warning"
Int32ToFloatConvMsg "warning"
ParameterDowncastMsg "error"
ParameterOverflowMsg "error"
ParameterPrecisionLossMsg "warning"
UnderSpecifiedDataTypeMsg "none"
UnnecessaryDatatypeConvMsg "none"
VectorMatrixConversionMsg "none"
InvalidFcnCallConnMsg "error"
SignalLabelMismatchMsg "none"
UnconnectedInputMsg "warning"
UnconnectedOutputMsg "warning"
UnconnectedLineMsg "warning"
SfunCompatibilityCheckMsg "none"
RTWInlineParameters off
BlockReductionOpt on
BooleanDataType on
ConditionallyExecuteInputs on
ParameterPooling on
OptimizeBlockIOStorage on
ZeroCross on
AssertionControl "UseLocalSettings"
ProdHWDeviceType "ASIC/FPGA"
ProdHWWordLengths "8,16,32,32"
RTWSystemTargetFile "grt.tlc"
RTWTemplateMakefile "grt_default_tmf"
RTWMakeCommand "make_rtw"
RTWGenerateCodeOnly off
RTWRetainRTWFile off
TLCProfiler off
TLCDebug off
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TLCCoverage off
TLCAssertion off
BlockDefaults {

Orientation "right"
ForegroundColor "black"
BackgroundColor "white"
DropShadow off
NamePlacement "normal"
FontName "Helvetica"
FontSize 10
FontWeight "normal"
FontAngle "normal"
ShowName on

}
BlockParameterDefaults {

Block {
BlockType Constant
Value "1"
VectorParams1D on
ShowAdditionalParam off
OutDataTypeMode "Inherit from ’Constant value’"
OutDataType "sfix(16)"
ConRadixGroup "Use specified scaling"
OutScaling "2^0"

}
Block {
BlockType Fcn
Expr "sin(u[1])"

}
Block {
BlockType Inport
Port "1"
PortDimensions "-1"
SampleTime "-1"
ShowAdditionalParam off
LatchInput off
DataType "auto"
OutDataType "sfix(16)"
OutScaling "2^0"
SignalType "auto"
SamplingMode "auto"
Interpolate on

52



}
Block {
BlockType Integrator
ExternalReset "none"
InitialConditionSource "internal"
InitialCondition "0"
LimitOutput off
UpperSaturationLimit "inf"
LowerSaturationLimit "-inf"
ShowSaturationPort off
ShowStatePort off
AbsoluteTolerance "auto"
ZeroCross on

}
Block {
BlockType Math
Operator "exp"
OutputSignalType "auto"

}
Block {
BlockType Mux
Inputs "4"
DisplayOption "none"

}
Block {
BlockType Outport
Port "1"
OutputWhenDisabled "held"
InitialOutput "[]"

}
Block {
BlockType Saturate
UpperLimit "0.5"
LowerLimit "-0.5"
LinearizeAsGain on
ZeroCross on

}
Block {
BlockType Scope
Floating off
ModelBased off
TickLabels "OneTimeTick"
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ZoomMode "on"
Grid "on"
TimeRange "auto"
YMin "-5"
YMax "5"
SaveToWorkspace off
SaveName "ScopeData"
LimitDataPoints on
MaxDataPoints "5000"
Decimation "1"
SampleInput off
SampleTime "0"

}
Block {
BlockType Sin
SineType "Time based"
Amplitude "1"
Bias "0"
Frequency "1"
Phase "0"
Samples "10"
Offset "0"
SampleTime "-1"
VectorParams1D on

}
Block {
BlockType SubSystem
ShowPortLabels on
Permissions "ReadWrite"
RTWSystemCode "Auto"
RTWFcnNameOpts "Auto"
RTWFileNameOpts "Auto"
SimViewingDevice off
DataTypeOverride "UseLocalSettings"
MinMaxOverflowLogging "UseLocalSettings"

}
Block {
BlockType Sum
IconShape "rectangular"
Inputs "++"
ShowAdditionalParam off
InputSameDT on
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OutDataTypeMode "Same as first input"
OutDataType "sfix(16)"
OutScaling "2^0"
LockScale off
RndMeth "Floor"
SaturateOnIntegerOverflow on

}
Block {
BlockType ToWorkspace
VariableName "simulink_output"
MaxDataPoints "1000"
Decimation "1"
SampleTime "0"

}
Block {
BlockType TransferFcn
Numerator "[1]"
Denominator "[1 2 1]"
AbsoluteTolerance "auto"
Realization "auto"

}
}
AnnotationDefaults {

HorizontalAlignment "center"
VerticalAlignment "middle"
ForegroundColor "black"
BackgroundColor "white"
DropShadow off
FontName "Helvetica"
FontSize 10
FontWeight "normal"
FontAngle "normal"

}
LineDefaults {

FontName "Helvetica"
FontSize 9
FontWeight "normal"
FontAngle "normal"

}
System {

Name "pso_test2"
Location [2, 74, 1022, 699]
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Open on
ModelBrowserVisibility off
ModelBrowserWidth 212
ScreenColor "white"
PaperOrientation "rotated"
PaperPositionMode "auto"
PaperType "usletter"
PaperUnits "inches"
ZoomFactor "125"
ReportName "simulink-default.rpt"
Block {
BlockType ToWorkspace
Name " "
Position [645, 110, 705, 140]
VariableName "model"
MaxDataPoints "inf"
SampleTime "-1"
SaveFormat "Array"

}
Block {
BlockType SubSystem
Name "Control"
Ports [3, 1]
Position [310, 194, 410, 236]
TreatAsAtomicUnit off
System {

Name "Control"
Location [189, 74, 1199, 689]
Open off
ModelBrowserVisibility off
ModelBrowserWidth 200
ScreenColor "white"
PaperOrientation "landscape"
PaperPositionMode "auto"
PaperType "usletter"
PaperUnits "inches"
ZoomFactor "100"
Block {
BlockType Inport
Name "r"
Position [25, 53, 55, 67]

}
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Block {
BlockType Inport
Name "PSO"
Position [25, 83, 55, 97]
Port "2"

}
Block {
BlockType Inport
Name "x_bar"
Position [25, 23, 55, 37]
Port "3"

}
Block {
BlockType Fcn
Name "ISL"
Position [195, 42, 235, 78]
Expr "((.00000001*u[4]*u[3])+(.0000001*u[5]*u[1])"

"+(.00000001*u[6]*u[2])+(u[7]*u[1]^2)
_+(u[8]*u[1]*u[3])+(u[9]*u[1]*u[2])+(1000*"
"u[10]*u[1]^3)+(100*u[11]*u[3]*u[1]^2)+(100*u[12]*u[2]*u[1]^2))"
}
Block {
BlockType Math
Name "Math\nFunction"
Ports [1, 1]
Position [365, 45, 395, 75]
NamePlacement "alternate"
Operator "sqrt"

}
Block {
BlockType Mux
Name "Mux"
Ports [3, 1]
Position [140, 41, 145, 79]
ShowName off
Inputs "3"
DisplayOption "bar"

}
Block {
BlockType Saturate
Name "Saturation"
Position [305, 45, 335, 75]
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UpperLimit "1e99"
LowerLimit "0"

}
Block {
BlockType Scope
Name "after sat"
Ports [1]
Position [390, 114, 420, 146]
Location [6, 54, 1020, 659]
Open off
NumInputPorts "1"
List {

ListType AxesTitles
axes1 "%<SignalLabel>"

}
List {

ListType SelectedSignals
axes1 ""

}
YMin "-1"
YMax "1"
SaveName "ScopeData6"
DataFormat "StructureWithTime"

}
Block {
BlockType Scope
Name "before sat"
Ports [1]
Position [295, 114, 325, 146]
Location [5, 53, 1029, 771]
Open off
NumInputPorts "1"
List {

ListType AxesTitles
axes1 "%<SignalLabel>"

}
List {

ListType SelectedSignals
axes1 ""

}
YMin "-1"
YMax "1"
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SaveName "ScopeData5"
DataFormat "StructureWithTime"

}
Block {
BlockType Outport
Name "v"
Position [430, 53, 460, 67]

}
Line {
SrcBlock "x_bar"
SrcPort 1
Points [30, 0; 0, 20]
DstBlock "Mux"
DstPort 1

}
Line {
SrcBlock "r"
SrcPort 1
DstBlock "Mux"
DstPort 2

}
Line {
SrcBlock "PSO"
SrcPort 1
Points [30, 0; 0, -20]
DstBlock "Mux"
DstPort 3

}
Line {
SrcBlock "Mux"
SrcPort 1
DstBlock "ISL"
DstPort 1

}
Line {
SrcBlock "Math\nFunction"
SrcPort 1
DstBlock "v"
DstPort 1

}
Line {
SrcBlock "Saturation"
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SrcPort 1
Points [5, 0]
Branch {

DstBlock "Math\nFunction"
DstPort 1

}
Branch {

Points [0, 70]
DstBlock "after sat"
DstPort 1

}
}
Line {
SrcBlock "ISL"
SrcPort 1
Points [40, 0]
Branch {

DstBlock "Saturation"
DstPort 1

}
Branch {

DstBlock "before sat"
DstPort 1

}
}

}
}
Block {
BlockType Sin
Name "Input"
Position [245, 130, 275, 160]
SineType "Time based"
Amplitude ".00000001"
Bias "-.00000001"
SampleTime "0"

}
Block {
BlockType Constant
Name "Particle\nLocation"
Position [245, 200, 275, 230]
Value "particle"

}
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Block {
BlockType SubSystem
Name "Plant"
Ports [1, 2]
Position [435, 194, 535, 236]
TreatAsAtomicUnit off
System {

Name "Plant"
Location [2, 74, 1022, 700]
Open off
ModelBrowserVisibility off
ModelBrowserWidth 200
ScreenColor "white"
PaperOrientation "landscape"
PaperPositionMode "auto"
PaperType "usletter"
PaperUnits "inches"
ZoomFactor "100"
Block {
BlockType Inport
Name "v"
Position [255, 255, 285, 265]
Orientation "up"

}
Block {
BlockType Fcn
Name "Fcn"
Position [160, 200, 220, 230]
Orientation "left"
NamePlacement "alternate"
Expr "(c1*u[1])+(c2*u[2])+((c3*u[3]^2)/((h+u[1])^"

"2))"
}
Block {
BlockType Mux
Name "Mux"
Ports [2, 1]
Position [305, 126, 310, 164]
ShowName off
Inputs "2"
DisplayOption "bar"

}
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Block {
BlockType Mux
Name "Mux1"
Ports [3, 1]
Position [250, 194, 255, 236]
Orientation "left"
NamePlacement "alternate"
ShowName off
Inputs "3"
DisplayOption "bar"

}
Block {
BlockType Integrator
Name "z1_dot z1"
Ports [1, 1]
Position [245, 65, 275, 95]

}
Block {
BlockType Integrator
Name "z2_dot z2"
Ports [1, 1]
Position [160, 64, 190, 96]

}
Block {
BlockType Outport
Name "out"
Position [365, 73, 395, 87]

}
Block {
BlockType Outport
Name "x_bar"
Position [365, 138, 395, 152]
Port "2"

}
Line {
SrcBlock "z2_dot z2"
SrcPort 1
Points [20, 0]
Branch {

DstBlock "z1_dot z1"
DstPort 1

}
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Branch {
Points [0, 75; 70, 0]
Branch {
DstBlock "Mux"
DstPort 2

}
Branch {
Points [0, 60]
DstBlock "Mux1"
DstPort 2

}
}

}
Line {
SrcBlock "Mux"
SrcPort 1
DstBlock "x_bar"
DstPort 1

}
Line {
SrcBlock "Fcn"
SrcPort 1
Points [-20, 0; 0, -135]
DstBlock "z2_dot z2"
DstPort 1

}
Line {
SrcBlock "z1_dot z1"
SrcPort 1
Points [15, 0]
Branch {

DstBlock "out"
DstPort 1

}
Branch {

Points [-5, 0; 0, 55]
Branch {
DstBlock "Mux"
DstPort 1

}
Branch {
Points [0, 65]
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DstBlock "Mux1"
DstPort 1

}
}

}
Line {
SrcBlock "Mux1"
SrcPort 1
DstBlock "Fcn"
DstPort 1

}
Line {
SrcBlock "v"
SrcPort 1
DstBlock "Mux1"
DstPort 3

}
Annotation {
Position [324, 121]

}
}

}
Block {
BlockType TransferFcn
Name "Reference Model"
Position [365, 126, 470, 164]

}
Block {
BlockType Sum
Name "Sum"
Ports [2, 1]
Position [595, 135, 615, 155]
ShowName off
IconShape "round"
Inputs "|+-"
InputSameDT off
OutDataTypeMode "Inherit via internal rule"

}
Block {
BlockType ToWorkspace
Name "error out"
Position [645, 170, 705, 200]
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VariableName "er"
MaxDataPoints "inf"
SampleTime "-1"
SaveFormat "Array"

}
Block {
BlockType ToWorkspace
Name "plant out"
Position [645, 230, 705, 260]
VariableName "plant"
MaxDataPoints "inf"
SampleTime "-1"
SaveFormat "Array"

}
Line {
SrcBlock "Reference Model"
SrcPort 1
Points [75, 0]
Branch {

DstBlock "Sum"
DstPort 1

}
Branch {

Points [0, -20]
DstBlock " "
DstPort 1

}
}
Line {
SrcBlock "Plant"
SrcPort 1
Points [65, 0]
Branch {

Points [0, 40]
DstBlock "plant out"
DstPort 1

}
Branch {

DstBlock "Sum"
DstPort 2

}
}
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Line {
SrcBlock "Sum"
SrcPort 1
Points [0, 40]
DstBlock "error out"
DstPort 1

}
Line {
SrcBlock "Plant"
SrcPort 2
Points [10, 0; 0, 30; -255, 0]
DstBlock "Control"
DstPort 3

}
Line {
SrcBlock "Particle\nLocation"
SrcPort 1
DstBlock "Control"
DstPort 2

}
Line {
SrcBlock "Control"
SrcPort 1
DstBlock "Plant"
DstPort 1

}
Line {
SrcBlock "Input"
SrcPort 1
Points [0, 0; 5, 0]
Branch {

Points [0, 55]
DstBlock "Control"
DstPort 1

}
Branch {

DstBlock "Reference Model"
DstPort 1

}
}
Annotation {
Name "model out"
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Position [671, 152]
}

}
}

A.7 Standard Deviation Function

psosd.m was used to calculate the standard deviation of the swarm for each iteration.

function out=psosd(in)
dims=size(in);
%out=((1/(dims(1)))
_*(sum(sum((in-repmat((sum(in’)/dims(1))’,1,dims(2))).^2))))^.5;
cog=sum(in’)/dims(2);
dist=(sum((in-repmat(cog’,1,dims(2))).^2)).^.5;
out=((1/dims(2))*sum(dist.^2)).^.5;
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