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The problem of image restoration has been extensively studied for its practical impor-

tance as well as its theoretical interest. Restoration problem arises in almost every branch

of engineering and applied physics. The goal of image restoration is to recover the original

scene from the degraded observations. It seeks to model the degradations, blur and noise,

and apply an inverse procedure to obtain an approximation of the original scene.

Due to the fact that image restoration requires a huge amount of computation and

storage, techniques and algorithms that can improve the speed or quality are desirable. A

great variety of fast restoration methods have been proposed. The most well known fast

restoration algorithms involve the use of fast Fourier transforms (FFT’s) to implement shift-

invariant deblurring. However, in the face of unknown boundaries, shift-variant smoothing,

and other conditions, FFT’s cannot be used in a straightforward manner in the inversion

process.

A group of efficient image restoration algorithms for circulant or near-circulant systems

are proposed in this dissertation that overcome some of these limitations in the direct
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application of fast transforms. We assume that the system is a circulant or near-circulant

system so that the convolution property of the FFT can be used.

The regularization of the least-squares criterion is an effective approach in image

restoration to reduce noise amplification. To avoid the smoothing of edges, edge-preserving

regularization using a Gaussian Markov random field (GMRF) model is often used to al-

low realistic edge modeling and provide stable maximum a posteriori (MAP) solutions.

However, this approach is computationally demanding because the introduction of a non-

Gaussian image prior makes the restoration problem shift-variant. In this case, a direct

solution using FFT’s is not possible even when the blurring is shift-invariant.

We consider a class of edge-preserving GMRF functions that are convex and have non-

quadratic regions that impose less smoothing on edges. We propose a decomposition-enabled

edge-preserving image restoration (DEEPIR) algorithm for maximizing the likelihood func-

tion. By decomposing the problem into two sub-problems with one shift-invariant and the

other shift-variant, our algorithm exploits the sparsity of edges to define an FFT-based

iteration that requires few iterations and is guaranteed to converge to the MAP estimate.

The assumption of a circulant system does not always hold under certain circum-

stances. Many problems in signal and image processing require the solution of systems with

a Toeplitz-block-Toeplitz (TBT) structure in which both the Toeplitz blocks and the block

structure are banded. Some fast algorithms make use of the persymmetry (symmetry about

the main antidiagonal) of the Toeplitz blocks, while the “bandedness” remains unexplored.

Other algorithms exploit block bands but not banded blocks (or vice versa).
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We present a fast algorithm that exploits both the bandedness of the blocks and the

block-bandedness of the block Toeplitz structure by extending the system to a circulant-

block-circulant (CBC) system and solve for the original image by solving a larger system.

Since a Toeplitz-block-Toeplitz system has a near-circulant structure, the computation in-

volved in the extending and solving is comparatively small. Other published algorithms for

TBT matrices typically involves O(M5) operations or O(6M3) operations with ‘bandlimited

assumption’. This method requires O(k2M3) operations for an M2 ×M2 Toeplitz-block-

Toeplitz matrix with bandwidth k without any assumptions about the system.

The edge-preserving regularization method proposed for edge preserving also has ap-

plications in deblocking JPEG images where the block discrete cosine transform and quan-

tization cause contouring and blocky artifacts in the compressed image. By integrating

regularization into decompression of a compressed JPEG image, this algorithm significantly

reduces blocky effects in the image.

The proposed edge-preserving regularization scheme can be applied to reduce ringing

artifacts on edges and smooth block boundaries in JPEG images. When the image restora-

tion system is a TBT system instead of a CBC system, we can still make use of the FFT

by extending and displacing the system to achieve a fast solution. In general, the pro-

posed techniques in this dissertation improve the quality of restored images and improve

the computational performance.
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Chapter 1

Introduction and Background

1.1 Digital Image Processing

1.1.1 Digital Versus Analog

A digital image is an array of real or complex numbers represented by a finite number

of bits [1]. Normally, the term “digital image processing” refers to processing of a two-

dimensional picture by a digital computer. Although an image by nature is usually an analog

quantity, there are some compelling reasons why digital image processing is preferable to

optical methods [2].

• Increasingly, the natural form in which an image is formed and acquired is not analog

but discrete. Digital imaging devices like digital cameras and camcorders have a CCD

image sensor array that converts light into electrons and transport the charges to

an analog-to-digital converter where the volume of charge is measured and converted

to binary form. With the development of such devices, higher-resolution images are

available so that the image quality is close enough to analog ones.

• There has been and will be a continuing increase in the price/performance capa-

bilities of digital hardware. Computers with great computing power can perform

image processing operations in seconds. Increasing sophistication in digital image

input/output systems has resulted in eliminating what used to be a major source of

errors in digital image processing [2]. Modern scanners, digital cameras and displays

are not only accurate and reliable but also inexpensive.
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• Image processing algorithms have also developed vastly during the last three decades.

Fast transform and fast convolution algorithms have led to several orders of magnitude

improvement in the computation time.

Digital image processing has a broad spectrum of applications, such as remote sensing

via satellites, medical imaging, radar, sonar, and acoustic image processing. Image trans-

mission and storage is also made easy with digital methods. In fact, there is almost no

area of technical endeavor that is not impacted in some way by digital image processing.

In nuclear medicine, the patient is injected with a radioactive isotope that emits gamma

rays as it decays. Images are recorded from the emissions and used to locate sites of bone

pathology, such as infections or tumors. Multi-spectral imaging is widely used in monitoring

environmental conditions such as vegetation, maximum water penetration and soil moisture

[3].

1.1.2 Digital Image Processing System

An image processing system consists of a sequence of steps. First, the object is observed

and recorded on an imaging system. A typical example of an imaging system is the human

eye. An image forms upon the human retina by the iris-lens portion of the eye, then the

image is sent to the brain through the neural system. In a digital system, the image is

sampled and quantized so that it can be stored in a digital medium. Then the digital

image, normally a two-dimensional array is processed by computer with certain algorithms

and sent to display or recording devices such as printers (Fig. 1.1).

In general, any two-dimensional function that bears information can be considered an

image [1]. An image can represent luminance of an object, temperature profile of a region,
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Figure 1.1: Digital image processing system

the absorption characteristics of the body tissue or the radar cross section of a target.

An image can also be a color image or a monochrome image. Monochrome images are

often described using gray levels. Color images have more than one representation; the

most commonly used include the RGB model, CMYK model and YCbCr model. Another

classical method of image representation is by an orthogonal series expansion, such as the

Fourier series.

According to Nyquist’s sampling theorem, when sampling a band-limited signal, the

sampling frequency must be greater than twice the input signal bandwidth in order to be

able to reconstruct the original perfectly from the sampled version. In reality, an image usu-

ally is not strictly band-limited. However, by ignoring (or filtering out) the high-frequency

components and sampling at a comparatively large sampling rate, the sample image can

be close enough to the original version. After the image is sampled, it is quantized so that

it has a finite number of gray levels that can be stored in a computer. Quantization and

sampling may introduce non-invertible errors and noise to the image and should be part of

the image model in the processing algorithm.

After an image is digitized, it is then processed according to certain image processing

requirements. For example, image enhancement techniques could be applied to improve
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the contrast or brightness of the image or highlight certain features of interest in it. If

the image is blurry because of some optical distortion, it should be restored. With the

dramatic booming of the internet, more and more information is transmitted online. To

save bandwidth and improve the speed, most pictures and graphs are compressed images

such as JPEG and GIF images. These images are converted from basic RGB data by all

kinds of compression toolkits using compression algorithms such as the Discrete Cosine

Transform, Huffman coding or LZW compression.

The output of an image processing system can be sent to a display device such as a

computer monitor or some recording devices like printers or plotters.

1.1.3 Image Processing Methods

Digital image processing is a general concept referring to a group of different operations

on an image. Mathematically, any operation on a two-dimensional matrix is meaningful in

some way. But for an image, there are a few special operations besides image restoration

that help extract useful information from the array.

Image enhancement is among the simplest and most appealing areas of digital image

processing [3]. Typical image enhancement includes contrast manipulation, histogram mod-

ification, noise cleaning, edge sharpening and color enhancement. Most acquired images are

not in ideal condition; for example, an image might be too dark to tell any details. To

accentuate certain features in the image for future analysis, brightness or contrast can be

improved by amplitude rescaling of each pixel, or the image histogram can be stretched to

separate different gray levels (Fig 1.2). In many image processing systems, image enhance-

ment is used as the pre-processing step.
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Figure 1.2: Contrast stretching

Image reconstruction is closely related to image restoration. It differs from image

restoration in that image reconstruction operates on a set of image projections and not on

a full image. Image reconstruction shares the same objective with restoration—recovering

the original image—and ends up solving the same mathematical problem, which is finding

a solution to a set of linear or nonlinear equations [4].

Geometric transformation is another common image processing operation, in which

an image is spatially translated, scaled, rotated or nonlinearly warped. Image translation,

scaling and rotation are all linear operations on the coordinates while image warping is a

nonlinear mapping of coordinates. It can also be viewed as a spatial distortion or rubber-

sheet stretching. Geometric transformations have found uses in medical imaging, computer

vision, and computer graphics.

Image analysis refers to the extraction of measurements, data or information from an

image by automatic or semi-automatic methods. It is distinguished from other types of im-

age processing, such as enhancement, restoration, in that the ultimate product of an image

5



analysis system is usually numerical output rather than a picture [5]. Edge detection is a

commonly used image analysis operation. Discontinuities in an image amplitude attribute

such as luminance are fundamentally important primitive characteristics of an image be-

cause they often provide an indication of the physical extent of objects in the image. In edge

detection, an edge model is established first, then a certain algorithm is applied to match

the edge model with the original image, thus finding the edges. First or second derivatives

are often used in edge detection.

Image compression is concerned with minimizing the number of bits required to rep-

resent an image. In broadcast television, remote sensing, teleconferencing and computer

communications, fast transmission and small storage are of significant practical and com-

mercial interest. Data compression exploits data redundancy to represent the information

with less data. In an image, certain correlations exist among pixels. Similarly, inter-frame

redundancy exists among frames of a video. Additionally, a lower image fidelity criterion

requires less data and can still present enough information since human eyes are relatively

tolerant when measuring image quality. With the development of fast algorithms, more and

more applications of image compression are available. For example, almost all images on

the internet are compressed images such as JPEG or GIF images.

Other image analysis such as texture definition, image segmentation and registration

are also widely used in separating text or different patterns, evaluating image feature and

pattern recognition.
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1.2 Image Restoration

1.2.1 Image Formation

Any image acquired by optical or electronic means is likely to be degraded by the sensing

environment. Sensor noise, blur due to camera misfocus, relative object-camera motion or

random atmospheric turbulence contribute to the degradation. A degraded image is often

a blurry image. The output of an image restoration system is called a restored image. The

effectiveness of image restoration depends on the extent and the accuracy of the knowledge

of the degradation process as well as on the filter design criterion [1].

As in image enhancement, the ultimate goal of image restoration is to improve an im-

age in some sense. The major difference between enhancement and restoration lies in the

judgement of the result. Image enhancement is largely a subjective process in that it ma-

nipulates the luminance or colors of the image to make certain features available to human

eyes. On the other hand, image restoration recovers an image using a priori knowledge

about the degradation and the result is evaluated using objective criteria like mean square

error. Image restoration problems can be quantified precisely, whereas enhancement criteria

are difficult to represent mathematically [1].

g(x, y)

Image formation system

Object
f(ξ, η)

Image

Figure 1.3: Image formation system
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Since image restoration is the inverse procedure of image formation, it is necessary to

understand the process of forming an image to better understand the process of restoring

one.

An image formation system is where the object is mapped onto the image plane and

an image is formed. Either the object is illuminated by a source of radiant energy or itself

is a source of radiant energy. No matter what kind of imaging system is used, digital or

optical, the image g(x, y) (Fig. 1.3) on the image plane is a projection of object f(ξ, η). It

should be noted that images are representations of objects that are indirectly sensed and

that various forms of radiant energy transport are the mechanisms by which the sensing is

carried out [2]. So there are a few general principles for image formation:

• Neighborhood Processes. The point (x0, y0) on the image plane comes not only from

(ξ0, η0), but also all other points in the object plane. That is, all points on the object

plane may have an effect on any point on the image plane. It is also reasonable to

expect that as the distance from the object (ξ0, η0) to other points in the object plane

increases, the effect on point (x0, y0) decreases. In other words, the image formation

process is a neighborhood process [2].

• Nonnegativity. An image is formed by the transport of radiant energy. Radiant energy

is nonnegative. The smallest possible amount of radiant energy is zero. i.e.,

f(ξ, η) ≥ 0

g(x, y) ≥ 0

for any ξ, η, x and y.
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• Superposition. radiant energy is superposable. Consider two points in the object

plane (ξ0, η0) and (ξ1, η1). They both emit radiant energy and form image (x0, y0)

and (x1, y1) respectively on the image plane. The result on the image plane is the

superposition of energy distribution corresponding to all x and y’s in the object plane.

Accordingly, if we consider a single point source in the object f(ξ, η), the function

that describes the transformation of energy from object plane to image plane should be as

follows:

g(x, y) = h(x, y, ξ, η, f(ξ, η))

If the above image formation system is linear,

h(x, y, ξ, η, f(ξ, η)) = h(x, y, ξ, η)f(ξ, η)

By superposition, the image g(x, y) on the image plane is formed from contributions of all

object points in the object plane.

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
h(x, y, ξ, η, f(ξ, η)dξdη

For the linear case,

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
h(x, y, ξ, η)f(ξ, η)dξdη

where function h(x, y, ξ, η) is the point-spread function (PSF). Generally, a point-spread

function varies with the position in both image and object plane since it is a function

of (x, y) and (ξ, η). Nevertheless, some imaging systems act uniformly across image and

object planes. Such an image formation system is said to have a shift-invariant point-spread
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function. The function h(·) is a function only of the difference in variables in the coordinate

systems [2].

g(x, y) =
∫ ∞

−∞
h(x− ξ, y − η, f(ξ, η))dξdη

For the linear case,

g(x, y) =
∫ ∞

−∞

∫ ∞

−∞
h(x− ξ, y − η)f(ξ, η)dξdη (1.1)

= h(x, y) ∗ f(x, y)

where ∗ represents linear convolution.

For a digital imaging system, the image is sampled and quantized during the process

of energy transformation. Now the acquired image is a 2D matrix with positive values. A

shift-invariant and linear digital imaging process can be described in (1.2)

g(m,n) =
∑

k,l

h(m− k, n− l)f(k, l) (1.2)

1.2.2 Ill-Conditioned Nature of Restoration

In (1.2), the output of a linear shift-invariant system g(x, y) is the convolution of the

point-spread function and the original image f(ξ, η). In the presence of additive noise, the

expression of the linear degradation model becomes

g(x, y) = h(x, y) ∗ f(x, y) + n(x, y) (1.3)
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The values of the noise term n(x, y) are random, and the statistics are assumed to be

independent of position. We can express (1.3) in the frequency domain

G(u, v) = H(u, v)F (u, v) + N(u, v) (1.4)

The convolution in (1.3) now becomes multiplication according to the property of

the Fourier transform. Equations (1.3) and (1.4) are the spatial-domain and frequency-

domain representation of a linear shift-invariant noisy imaging system. The advantage of a

frequency-domain representation is the use of an FFT algorithm.

Although real imaging systems may not be linear and shift-invariant, most of them

can be approximated by such processes in order to make use of the extensive tools of linear

system theory. In fact, nonlinear and shift-variant models introduce difficulties that often

have no known solution or are very difficult to solve computationally, even though they are

more general and accurate.

In most image restoration systems, noise is assumed to be independent of spatial coor-

dinates and uncorrelated with respect to the image itself. There are exceptions like X-ray

and nuclear-medicine imaging. In this dissertation, we restrict our discussion to the case of

independent and uncorrelated noise.

A great variety of methods have been proposed for image restoration problems during

the last 30 years. But without common benchmarks or points of reference, it is impossible to

pick the optimal method. Even if a few benchmarks have been established, it is still difficult

to provide a unified view of image restoration. This is partly due to the ill-conditioned

nature of image restoration problems.
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In the imaging model above, the image g is a transformation from the original function

f . Suppose there is no noise in this system, then

g(x, y) = h(x, y) ∗ f(x, y) (1.5)

= H[f(x, y)]

Given the blurred image g and knowledge of the transformation H, the problem seems

to be to find the inverse transformation H−1 such that

H−1[g(x, y)] = f(x, y) (1.6)

Then the existence and uniqueness of the inverse transform H−1 are important in finding

f(x, y). If H−1 does not exist, there is no mathematical basis for asserting that f(x, y)

can be exactly recovered from g(x, y); it is then called a singular problem. Finally, if there

is a unique H−1, it might be ill-conditioned. That is, a trivial perturbation in g(x, y) can

produce nontrivial perturbations in f(x, y).

H−1[g(x, y) + ε] = f(x, y) + δ

where δ À ε; δ is not arbitrarily small and is not negligible. In other words, an ill-

conditioned problem is one in which inherent data perturbations can result in undesirable

effects in the solution by inverse transformation [2].

In actual calculation, small perturbations like computer round-off errors can present

undesirable effects in the solution by inverse transformation. Besides the ill-conditioned

12



nature of image restoration problem, the existence of noise makes it impossible to find the

exact solution f . In conclusion, image restoration is an ill-conditioned problem at best and

a singular problem at worst [2].

1.2.3 Image Restoration Filters

Because of the ill-conditioned nature of image restoration problems, the seemingly

feasible inverse filter will give an unstable solution. Let G(u, v) be the frequency domain

representation of the blurred image, H(u, v) be the point-spread function and F (u, v) be

the original image. By (1.4),

G(u, v) = H(u, v)F (u, v) + N(u, v).

The inverse filter will produce an estimate

F̂ (u, v) =
G(u, v)
H(u, v)

(1.7)

= F (u, v) +
N(u, v)
H(u, v)

Notice the second term N(u,v)
H(u,v) is actually unknown since the noise is a random function.

Furthermore, if the degradation H(u, v) has zero or very small values, the ratio N(u,v)
H(u,v) could

easily dominate the estimate F (u, v). In fact, this is frequently the case. Figure 1.4 shows

the restoration using inverse filter.

To handle noise and avoid the zero or small-value problem, Hellstrom [6] proposed the

application of the Wiener filter in image processing in 1967. The Wiener filter is founded on

considering images and noise as mutually uncorrelated random processes, and the objective

13



is to find an estimate f̂ of the uncorrupted image f such that the mean square error between

them is minimized [3].

f̂ = arg min
f̂

E{ete} (1.8)

= arg min
f̂

E{(f − f̂)t(f − f̂)}

where e = f − f̂ . Let f and g be column-ordered original and degraded images and H be

the corresponding matrix for the blur h, then the blurred image

g = Hf + n

and the estimate

f̂ = Lg,

where L is the matrix solution that restores f from g. The mean square error is as follows:

E{ete} = E{tr[eet]} (1.9)

= E{tr[(f − Lg)(f − Lg)t]}

= E{tr[(f − L(Hf + n))(f − L(Hf + n))t]}

= E{tr[ff t − L(Hff t + nf t)− (ff tHt + fnt)Lt

+L(Hff tHt + nf tHt + nnt)Lt]}
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Since the trace is a linear operation, it interchanges with the expectation operator E and

E{fnt} = E{nf t} = 0,

E{ete} = Tr[Rf − 2LHRf + L(HRfHt +Rn)Lt], (1.10)

where Rf = E{ff t} and Rn = E{nnt}. Taking derivative of (1.10) with respect to L and

setting it to 0, we have

L = RfHt(HRfHt +Rn)−1. (1.11)

Thus the estimate

f̂ = Lg (1.12)

= RfHt(HRfHt +Rn)−1g

In frequency domain, the solution can be expressed as

F (ω1, ω2) =
H∗(ω1, ω2)SfG(ω1, ω2)
|H(ω1, ω2)|2Sf + Sn

, (1.13)

where Sf and Sn are the power spectral densities of the original image f and the noise n.

Figure 1.5 shows the Lena image restored with a Wiener filter. The Wiener filter

minimizes the mean square error between the estimate and the original, so it is also called

the minimum mean square error filter. Notice in (1.13), when there is no noise, i.e., Sn = 0,

it becomes the inverse filter.

The Wiener estimate has desirable properties, since it controls ill-conditioning in a

fashion that is explicitly determined by the signal-to-noise ratio as a function of spatial
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frequency in the term Sn/Sf . Although there has been much success in applying the Wiener

filter to images from a variety of real-world problems, the results of Wiener estimation do

not appear as good visually as those produced by other criteria in low signal-to-noise ratio

(SNR) cases [2]. The following factors contribute to this shortcoming,

• The Wiener filter is based on linear assumptions, and there are nonlinearities in image

recording and in the human visual system.

• Mean squared error is not the criterion that the human visual system naturally em-

ploys. Wiener restoration in low SNR cases appears too smooth; the human eye is

not often willing to accept more visual noise in exchange for the additional image

structure lost in the process [2].

• The Wiener estimate assumes stationary random process models, which is probably

insufficient to describe the meaningful structure adequately in images of interest, and

uses only the covariance information of the stationary model in the estimate [2].

In general, the Wiener filter is only optimal in an average sense since it minimizes a

statistical criterion. It might not be the optimal solution for a specific image. In the mean

time, it presents another difficulty in addition to the problem of having to know something

about the degradation H: the power spectra of the original image and noise must be known.

On the other hand, the inverse filter can be derived from another approach. The

objective function W (f) = ‖g −Hf‖2 aims at minimizing the difference between the noisy

blurred image and the degraded image without noise. W (f) reaches its minimum value of

0 when g = Hf , i.e., there is no noise. Take derivative of W (f) with respect to f and set
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it to 0. The minimizer of W (f) is

f̂ = H−1g,

which is exactly the same as inverse filter. As mentioned earlier, the inverse filter does not

deal with the noise because it assumes there is zero noise. In order for the filter to have

more effect than simple inversion, a constraint is developed so that there is more control

over the restoration process.

First, the cost function W (f) = ‖g−Hf̂‖2 ≤ ε2 subject to ‖Lf̂‖2 ≤ E2 where ε and E

are some fixed values and the control variables in the filter. L is a high-pass filter so that

it imposes a smoothness condition on the restored image. After the Lagrangian multiplier

α is applied, the overall objective function becomes

φ(f̂) = ‖g −Hf̂‖2 + α‖Lf̂‖2

where α = ( ε
E )2. By minimizing the objective function, we minimize the data error but

bias solution away from “rough” restored image. This is called the constrained least-squares

filter. It is in the class of Wiener filters but has much more applications than general Wiener

filter because of the control variable α.

1.2.4 Regularized Restoration

As described in previous discussion, noisy, blurred images are often represented in the

following algebraic model:

g = Hf + n,
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where the linear degradation H is known and n is random noise uncorrelated with f . f and

g are column-ordered versions of the original and the blurred images. Image restoration is

an ill-conditioned problem and sometimes even a singular problem. Therefore, the exact

original image f cannot be computed from the blurred image g. Instead, restoration algo-

rithms focus on achieving an estimate f̂ that is as close as possible to the original image

[4].

Among all sorts of restoration algorithms, the constrained least-squares filter not only

avoids rough results but also gives us more control over the restoration procedure. The

objective function for the constrained least-squares filter is as follows:

φ(f̂) = ‖g −Hf̂‖2 + α‖Lf̂‖2 (1.14)

To find the minimizer f̂ to (1.14), we take a derivative with respect to f and set it to

0.

∂φ

∂f
= −2Htg + 2HtHf + 2αLtLf = 0,

thus

f̂ = (HtH + αLtL)−1Htg (1.15)

or in the frequency domain

F̂ =
H∗G

‖H‖2 + α‖L‖2
. (1.16)

There are a few interesting facts about regularized restoration.
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• When αLtL = RnR−1
f , where Rn and Rf are the autocorrelation matrices of the

noise and the original image, the regularization filter is actually a Wiener filter (see

equation 1.13).

• To gain more control over the restoration and avoid ringing effects, “norms in a

weighted Hilbert space” can be used to adapt the restoration process to local proper-

ties of the image [7]. In other words,

F̂ = (HtRH + αLtSL)−1HtRg (1.17)

where R and S are diagonal matrices containing weight coefficients with prior infor-

mation about the original image.
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(a) Original image (b) Noisy blurred image

(c) Restored image using inverse filter

Figure 1.4: Inverse filter
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Figure 1.5: Wiener filter
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Chapter 2

Huber-Markov Edge-Preserving Regularization

2.1 Edge-Preserving Regularization

As discussed in previous chapters, by using regularization, a numerically good esti-

mation to the original image can be obtained. However, many restored images are liable

to incur the phenomenon of ringing (over- and undershoots, super-blacks and whites) [7].

The ringing effects occur on boundaries of the image and in the vicinity of steep intensity

transitions such as edges. In linear shift-invariant restoration filters, the ringing effects are

caused generally by the poor match between the stationary assumed image model and the

actual image data, because shift-invariant regularization penalizes high frequencies at the

same level across the image. Fig 2.1 shows the ringing effect in the cameraman image.

The ringing effects near the boundaries of the image result from the intensity jumps at

the boundaries, which introduce leakage frequencies. When an FFT is used for fast compu-

tation, it assumes that signals are periodic. Because of the sudden change on boundaries,

the image spectrum is broadened, the leakage frequencies get amplified, thus introducing

the ringing phenomenon. Several methods have been proposed to reduce this kind of ringing

artifacts [8, 9].

On the other hand, ringing effects near edges are dependent on the local structures

within the image. To reduce this kind of ringing artifact, different penalties should be

applied. In (1.14), the minimization process penalizes the square of local pixel differences,

which will generate an estimate f̂ either excessively noisy or generally blurred. This is

because the squared difference of pixel values is so high on edges that the penalties are too
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(a) (b)

Figure 2.1: Ringing effect
(a) blurred cameraman image (b) restored image with ringing effects

high. One way to avoid it is to reduce the penalties at edge locations. In a shift-invariant

regularization, the cost function (1.14) is quadratic everywhere in the image. Normally the

squared pixel difference, or the value of ‖Lf‖2 in (1.14) is relatively high in the vicinity

of edges but much smaller in smooth areas. In order to put less penalties on edges but

a normal amount of penalty elsewhere, a non-quadratic cost function is often proposed in

edge-preserving regularization algorithms.

In (1.14), the first term ‖g − Hf̂‖2 is the data-matching term, where the difference

between the noisy image and the noiseless blurred image is minimized. The second term

‖Lf‖2 is the constraint that minimizes the roughness of the solution. It is largely dependent

on the local properties of the image. To apply different constraints or penalties, we can use
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a more general cost function instead of (1.14)

φ̂(f̂) = ‖g −Hf̂‖2 + ρ(Lf̂) (2.1)

In (1.14),

ρ(Lf̂) = ‖Lf̂‖2,

which is too high a penalty near edges. A smaller penalty can be applied to edge locations

if ρ(x) has smaller values for large x. That is, the function is no longer quadratic outside

of a certain region but may be, for example, a small constant or a linear function. In

figure 2.2(a) and (b), ρ(x) is flat or straight lines for large x values. There can be a lot

of different shapes for the penalty as long as they have smaller values than the quadratic

function [10]. Notice that when x is small enough, which is the case for smooth regions in

an image, the quadratic penalty is ok.

Most edge-preserving regularization algorithms exploit the shift-variant property of

penalty functions although different kinds of non-quadratic or half-quadratic cost functions

may be used.

2.2 Restoration Models

Shift-invariant image restoration algorithms often introduce ringing effects near sharp

intensity transitions. To reduce the ringing effects, one can make use of deterministic

a priori knowledge about the original image or locally regulate the severity of the noise

magnification and the ringing phenomenon depending on the edge information in the image

[7]. Many papers also have described edge-preserving methods for image reconstruction and

24



ρ(x)

x

(a) Flat ρ(·)
ρ(x)

x

(b) Linear ρ(·)

Figure 2.2: Non-quadratic ρ(·)

image restoration based on the Bayesian formalism with non-Gaussian priors [11, 12, 13].

Most of these methods incorporate the edge information as a constraint in the optimization

problem.

Typical regularization approaches, including the constrained least-squares (CLS) and

the Tikhonov-Miller formulations, utilize quadratic functionals and compensate for the ill-

posedness of the restoration problem by applying prior information such as smoothness into

the restoration process [14, 15]. Quadratic functions are attractive because they enable the
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analytic derivation of the corresponding estimators and provide cost-efficient implementa-

tion. Robust estimation, however, induces nonquadratic objective functions that can be

utilized in the representation of the prior signal statistics [16]. The existence of sharp edges

manifests uncertainty regarding the distribution of the signal [17, 18]. To capture the de-

tailed structure around sharp edges, most robust functions employed in these formulations

induce limits and/or structural parameters that must be selected appropriately. Such func-

tions have been motivated in stochastic maximum a posteriori (MAP) formulations under

Markov random fields with nonquadratic Gibbs distributions [19, 20].

A MAP technique maximizes the conditional probability of a restored image given a

certain blurred image. For MAP estimation, the image estimate x̂ is given by

x̂ = arg max
x

L(x|y)

where L(x|y) is the log-likelihood function. This function can be computed by using Bayes’

formula, with [21]

L(x|y) = log Pr(x|y) (2.2)

= log Pr(y|x) + log Pr(x)− log Pr(y).

Since the term log Pr(y) is independent of x, it can be eliminated from the optimization in

(2.3). Then the MAP estimate of the image becomes

x̂ = arg max
x
{log Pr(y|x) + log Pr(x)} (2.3)

= arg min
x
{− log Pr(y|x)− log Pr(x)}
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For a noisy system (y = Ax + n,where n 6= 0), the conditional density Pr(y|x) is related to

the noise density by

P (y|x) = Pr(n)‖n=y−Ax

Thus, for cases with i.i.d. Gaussian noise, the conditional density has the Gaussian form

Pr(y|x) =
1

(2πσ2)
MN

2

exp

(
−‖y −Ax‖2

2σ2

)

where σ2 is the variance of the density, M and N denote the dimensions of the image, and

‖.‖ is the Euclidean norm.

2.3 Huber-Markov Random Field Model

For the second term Pr(x) in (2.3), a Gaussian Markov random field (GMRF) model

is commonly chosen as the prior image model. This density has the form

Pr(x) =
1

(2π)
MN

2 |C| 12
exp

{
−1

2
xtC−1x

}

where C is the covariance matrix. By decomposing C−1 into a sum of products, the above

can be written as:

Pr(x) =
1

(2π)
MN

2 |C| 12
exp

{
−1

2

∑

c∈C
xtdcd

t
cx

}

where dc is a coefficient vector for clique c and is determined by a priori assumptions about

the image.

While the GMRF prior has many analytical advantages, it generally results in estimates

x̂ which are either excessively noisy or generally blurred. This is because the squared
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difference of pixel values applies too high a penalty to edges that often occur in images [17].

Besides Gaussian Markov Random Field models, non-Gaussian MRF’s are also interesting

because they can potentially model both the edges and smooth regions of images. Early

approaches often used an additional unobserved random field called a line process that

determines the location of edges [22, 23]. Many non-Gaussian MRF methods have focused

on MRF’s with a simpler Gibbs distribution of the general form

log g(x) = −
∑

{s,r}∈C

bsrρ(λ|xs − xr|) + constant

where λ is a scaling parameter, and ρ is a monotone increasing but not convex function

[24, 25, 20, 26]. However, analysis on non-Gaussian MRFs shows unstable behavior of the

MAP estimate under the nonconvex prior [24]. Not only does the solution often depend

substantially on the method used to perform the minimization, it often puts the same

penalties on any edges. (see Fig 2.2 (a)) [17]. Consequently, the MAP estimate may

abruptly change as the magnitude of an edge increases, which may lead to an unnatural

quality in the reconstruction.

Recently, convex functions have also been considered for ρ(·) [19, 20, 27]. Green [20]

employed a function of the form

ρ(∆) = 2T 2 log cosh(
∆
T

)

which produces useful Bayesian estimates of emission tomograms. This potential function

is approximately quadratic for small ∆, and linear for large values. Lange [26] derived

several other strictly convex potential functions in a study of convergence of the expectation
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maximization algorithm. Stevenson and Delp studied the use of an alternative convex energy

function for the problem of surface reconstruction [19]. They chose the Huber function first

introduced in robust statistics [28].

An MRF image model with Gibbs density function has the form [21]

Pr(x) =
1
Z

exp

(
− 1

λ

∑

c∈C

Vc(x)

)
(2.4)

where Z is a normalizing constant, λ is the “temperature” parameter of the density, Vc is

some function of a local group of points c called cliques, and C denotes the set of all cliques

throughout the image [21, 22].

Let us denote the criterion to be minimized (the negative log-likelihood) as Mλ[x, T ].

If the original image is corrupted with i.i.d. Gaussian noise, the functional for the noisy

image will be:

Mλ[x, T ] =
‖y −Ax‖2

2σ2
+

1
λ

∑

c∈C
Vc(x)

The selection of
∑

c∈C Vc(x) is the key factor to the quality of the estimate. To make

the problem well-posed, we only consider convex functions. A convex surface also has an

obtainable global minimum, which makes the minimization job easier. Otherwise, local

minima will be present, and the function must be minimized through a computationally

expensive technique such as simulated annealing [21, 22].

The image prior in (2.4) can be rewritten as

Pr(x) =
1
Z

exp

{
− 1

λ

∑

c∈C
ρ(dt

cx)

}

where ρ(·) is some function satisfying the following properties:

29



• Convexity:

∀α, x, y ∈ R,

ρ[αx + (1− α)y] ≤ αρ(x) + (1− α)ρ(y),

• Symmetry:

∀x ∈ R,

ρ(x) = ρ(−x),

• Allows regions of discontinuities: for |x| large,

ρ(x) < x2

The convexity property of ρ(·) insures that the sum of clique functions in the expo-

nential argument remains convex. The smoothness measure dt
cx has a small magnitude in

smooth regions and a large magnitude in discontinuous regions. Edges in an image are thus

penalized to a lesser extent by a cost function ρ(dt
cx) that increases less rapidly than the

quadratic cost (dt
cx)2 [21, 29].

Following the discontinuity-preserving stabilizing functionals in Tikhonov regulariza-

tion, Stevenson and Delp used the Huber-Markov Random Field, where ρ(·) is defined as

ρT (x) =





x2, |x| ≤ T

T 2 + 2T (|x| − T ), |x| > T

(2.5)
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Huber function

−T T
x

Figure 2.3: Huber function

The Huber function is convex and nonquadratic [28] (see Figure 2.3). The methodology here

can be applied to any penalty function that is quadratic in a non-edge region around the

origin. However, we restrict the development to the Huber function to keep the discussion

specific.

By observing the definition above, we can see that below the threshold in ρT (dt
cx) the

quadratic penalty applies. If the value is greater than the threshold, a linearly varying cost

is used, and the discontinuities of the original image are not penalized as severely as with

a quadratic. This characteristic provides an edge-preserving regularization effect.

We consider an approximately rotationally symmetric operator within a 3 × 3 grid.

Now the exponential kernel of the Huber-Markov random field (HMRF) image model is

Ω[x, T ] =
∑

c∈C
Vc(x) =

∑

k

∑

l

3∑

m=0

ρT (dt
k,l,mx)
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Finite-difference approximations to second-order derivatives are used to define the image

roughness measure at pixel xk,l, which are given as

dt
k,l,0x = xk,l+1 − 2xk,l + xk,l−1

dt
k,l,1x = 1

2(xk−1,l+1 − 2xk,l + xk+1,l−1)

dt
k,l,2x = xk−1,l − 2xk,l + xk+1,l

dt
k,l,3x = 1

2(xk−1,l−1 − 2xk,l + xk+1,l+1)

These four discrete directional derivatives approximate a rotationally invariant operator

such that approximately the same image is produced by the restoration regardless of image

orientation [21].

d3

d0

d1d2
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2.4 Majorization

By using the MAP estimation and the Huber-Markov random field image model, we

have the functional to minimize:

Mλ[x, T ] = Ω[x, T ] +
λ

2σ2
‖y −Ax‖2 (2.6)

=
∑

c∈C
Vc(x) +

λ

2σ2
‖y −Ax‖2

=
∑

k

∑

l

3∑

m=0

ρT (dt
k,l,mx) +

λ

2σ2
‖y −Ax‖2

where ρ(dt
k,l,mx) = (dt

k,l,mx)tdt
k,l,mx for non-edge pixels (|dt

k,l,mx| ≤ T ) and ρ(dt
k,l,mx) =

T 2 + 2T (|dt
k,l,mx| − T ) for edges (|dt

k,l,mx| > T ).

As previously mentioned, the HMRF is a convex but non-Gaussian MRF; i.e., it is

nonquadratic and convex. The HMRF will pose a nonquadratic cost function that is not

easy to minimize compared to the one based on the GMRF. To simplify the minimization

process and guarantee convergence, one can use a quadratic surrogate function with the

same minimizer x̂ that is easy to minimize. Thus we can minimize (2.7) by minimizing the

surrogate function.

The use of surrogate functions is common in solving minimization problems. Many

variations have been proposed, among them is “majorization” proposed by Stoica and Selén

[30].

A function g(θ) is said to majorize the function f(θ) at θi if

f(θi) = g(θi)

f(θ) ≤ g(θ) for all θ
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and θi is called the majorizing point.

To minimize (2.7), we define a series of functionals N i
λ[x, T ] such that

N i
λ[xi, T ] = Mλ[xi, T ]

N i
λ[x, T ] ≥ Mλ[x, T ] for all x (2.7)

Assuming that the minimization of N i
λ[x, T ] at each i with respect to θ is easier than

the minimization of Mλ[x, T ], we can minimize N i
λ[x, T ] directly and quickly converge to

the solution of Mλ[x, T ]. This iterative algorithm is called majorization [30].

Let xi denote the minimum of N i
λ(x, T ). This point is then used as the majorizing

point of the next function N i+1
λ (x, T ), of which xi+1 is the minimum. This procedure is

repeated until the minimum of N j
λ(x, T ) at a certain j is close enough to

arg min
x

Mλ[xi, T ].

This technique satisfies the descent property

Mλ(xi+1, T ) ≤ Mλ(xi, T ),

since

N i+1
λ (xi+1, T ) ≤ N i+1

λ (xi, T ).

Thus

Mλ(xi+1, T ) ≤ N i+1
λ (xi+1, T )
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≤ N i+1
λ (xi, T )

= Mλ(xi, T ).

Mλ(xi+1, T ) = Mλ(xi, T ) only when

N i+1
λ (xi+1, T ) = N i+1

λ (xi, T ) (2.8)

and

Mλ(xi+1, T ) = N i+1
λ (xi+1, T ) (2.9)

i.e., when xi is already the minimum of Mλ[xi, T ] ( 2.8 ) and the majorizing function is

Mλ[xi, T ] itself (2.9). In other words, as long as we have not reached the global minimum

arg min
x

Mλ[xi, T ],

then

Mλ(xi+1, T ) < Mλ(xi, T ).

Convergence of this algorithm is guaranteed.

To form the majorizing functional N i
λ[x, T ] in this application, we need a quadratic

function that has the same minimum. One practical choice N i
λ(·) for ρ(·) is defined as

follows:

N i
λ(x) =





x2 |xi| ≤ T

T
|xi|x

2 + T |xi| − T 2 |xi| > T

(2.10)
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where xi is the majorizing point of function N i
λ(·) at the ith iteration. The majorizing

function is shown in Figure 2.4.

N i
λ(x, T )

$x$

-T T-x x

ρ

Figure 2.4: Majorizing function

Note that N i
λ(x) is quadratic everywhere, with a constant smoothing penalty where

|x| ≤ T (non-edge regions) and a penalty that varies with xi elsewhere (edge regions).

Let Dm denote the convolution operator corresponding to
∑

k,l

dt
k,l,mx. Consider the

definition of N i(.). Since a constant term in the objective functional has no effect on the

solution, T |xi| − T 2 can be ignored, which leaves the modified N i
λ[x, T ] (denoted as Ñ) as:

Ñ i
λ[x, T ] (2.11)

=
∑

k

∑
l

∑3
m=0 ρ(dt

k,l,mx) + λ
2σ2 ‖y −Ax‖2

=
∑3

m=0(Dmx)T Γ0
mDmx + λ

2σ2 ‖y −Ax‖2
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where Γ0
m are diagonal matrices whose elements are the quadratic scale factors in (2.10)

(either 1 or T
|xi|).

2.5 HMRF Edge-Preserving Regularization

Since the cost function (2.11) has the exact same structure as the constrained mini-

mization method known as Tikhonov regularization, the minimum of Ñ i
λ[x, T ] is given below

[31]:

x̂ = (AT A + α
3∑

i=0

DT
i ΓiDi)−1AT y. (2.12)

This system cannot be solved efficiently even though A and Di represent shift-invariant

operations because of the presence of the Γi. Suppose instead that we have a matrix

B = (AT A + α
3∑

i=0

DT
i Di)−1. (2.13)

B can be inverted via FFTs because it is shift-invariant. If we can rewrite the inverse in

(2.12) in terms of B, we can invert it efficiently.

The Sherman-Morrison matrix inversion is given by:

(X + WY Z)−1 = X−1 −X−1W (Y −1 + ZX−1W )ZX−1, (2.14)

Applying this formula to (2.12),

(AT A + α
∑3

i=0 DT
i ΓiDi)−1 (2.15)

= (B−1 − α
∑3

i=0 DT
i (I − Γi)Di)−1

= (B−1 − α
∑3

i=0 dT
i di)−1
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= (B−1 − αdT d)−1

= B + αBdT [I − dBdT ]−1dB

In the above expressions,

d =




d0

d1

d2

d3




where d0, d1, d2, and d3 are matrices formed from the rows of D0, D1, D2, and D3 corre-

sponding to the diagonal elements of Γ0, Γ1, Γ2, and Γ3 that are not equal to 1. From this,

it follows that:

x̂ = (B + αBdT [I − dBd]−1dB)AT y (2.16)

= x̂α + BdT ω

where

x̂α = BAT y (2.17)

and

ω = α[I − α dBdT ]−1dx̂α (2.18)

Thus the estimate x̂ is computed in two steps. The first step, expressed by (2.17) is

a shift-invariant restoration. It generates a basic solution with all the artifacts associated

with the ringing effect. Then the basic solution is corrected by a second term, which is

obtained through a shift-variant method involving values corresponding to edges only in
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the image. Generally, a shift-variant method is computationally expensive. But in most

cases, if the two-dimensional image has N2 pixels, the number of edge pixels in an image is

O(N). This makes the shift-variant component a much lower-dimensional problem. Thus,

the computation is reduced significantly [32].

By formulating the solution for the estimate x̂ as (2.16), the fixed-point iteration is

assumed. Notice the choice of rows in the Di’s depends on x̂. In other words, the matrix d

is a function of x̂. The iteration process can be described as follows:

1. Given an initial x̂, use HMRF as the prior image model and find out Γi and then d

using Huber function.

2. Compute the next x̂ using (2.16).

3. Plug in the new x̂ to find out the new d and repeat the second step.

By majorizing the original HMRF model, the minimization has become a quadratic

problem for each iteration. But it is nonquadratic overall, since the majorizing function

varies with the result of each iteration. Similar ideas such as the half-quadratic method

have been proposed [33, 34]. Half-quadratic regularization formulates the cost function

dependent on an auxiliary variable. Like our method, when the auxiliary variable is fixed,

it becomes a constrained least squares problem with quadratic regularization even though

it is not quadratic overall [33]. In our method, the auxiliary variables are related to a map

of edges in the image. Different smoothing penalties are put in the cost function according

to the map. For each fixed edge map, the problem becomes a quadratic one. With varying

edge maps, the overall criterion is not quadratic.

39



With majorization, we set up a new minimization criterion which converges to the so-

lution of the original criterion. The new minimizing technique using the Sherman-Morrison

matrix inversion lemma is applied to improve the computational performance of the al-

gorithm. Then we can apply the two-step algorithm including both shift-invariant and

shift-variant methods to minimize the Huber criterion. In the next section, we compare

our method to conjugate gradients, which is well established as an efficient minimiza-

tion method. Since this algorithm is based on decomposing the blurred image into two

components and applying shift-invariant and shift-variant restorations, we refer to it as

decomposition-based edge-preserving image restoration (DEEPIR).

2.6 Experiment

In this section, the performance of DEEPIR is examined by simulation. Experiments

were conducted using 128-by-128 images with different shapes and letters as shown in Fig-

ure 2.5. The original image was blurred with a 5×5 averaging blur, a 9×1 motion blur and

a 7×7 Gaussian blur with standard deviation 1 and 30 dB Gaussian noise. All computation

was done on a workstation with an AMD Opteron 280 processor.

The blurred images, corresponding shift-invariant restoration, and restoration with

DEEPIR are shown in Figure 2.6.

We observe that the new algorithm considerably reduces the ringing effects on edges.

The mean square error (MSE) between the original and the restored image is now less than

40% of that of shift-invariant restoration, as shown in Tables 2.4 and 2.2.

This new algorithm not only has better edges but is also efficient. Experiments on the

above images show a reduced computation time compared to conjugate gradients (CG), as
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(a) different shapes

(b) letters

Figure 2.5: Original images

shown in Fig 2.7. Fig 2.7 shows how the criterion decreases vs. time in CG and DEEPIR.

Each circle on the DEEPIR curve denotes one iteration. Each diamond on the CG curve

denotes 40 iterations. We can see that each iteration in the DEEPIR takes longer than con-

jugate gradients, but the criterion goes down faster. This indicates that DEEPIR requires

more computation at each iteration, but it needs fewer iterations than CG to reach the

same level of precision. For conjugate gradients, the curve is smooth since each iteration

takes much less time than DEEPIR. Table 2.3 gives specific computing times for each image

and PSF.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2.6: Restored images
(a) original image blurred with 5 × 5 averaging blur and 40dB Gaussian noise (b) shift-invariant
restoration for averaging blur (c) restoration by DEEPIR for averaging blur (d) original image
blurred with 9 × 1 motion blur and 40dB Gaussian noise (e) shift-invariant restoration for motion
blur (f) restoration by DEEPIR for motion blur (g) original image blurred with 7× 7 Gaussian blur
with standard deviation 1 and 40dB Gaussian noise (h) shift-invariant restoration for Gaussian blur
(i) restoration by DEEPIR for Gaussian blur.
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Table 2.1: MSE of shape Image

Blur
MSE of shift-
invariant
restoration

MSE of DEEPIR

Gaussian 55 6.26
Motion 86 9.33
Average 165.56 58.87

Table 2.2: MSE of letter Image

Blur
MSE of shift-
invariant
restoration

MSE of DEEPIR

Gaussian 83.66 11.69
Motion 103.77 18.64
Average 140.93 55.89

Figure 2.8 is another example showing the restoration of a picture of Samford Hall at

Auburn University. The original 256×256 image was blurred with a 5×5 averaging blur and

40 dB Gaussian noise. The Huber threshold T is 25 and α = 0.05. The blurred image, the

shift-invariant restoration, and restoration with DEEPIR are shown in Figure 2.8 (b)(c)(d).

Table 2.4 compares MSE and computing time among shift-invariant restoration, CG and

DEEPIR.

2.7 Block-Based Implementation

The computational complexity of DEEPIR grows with the cube of the number of edges,

and the memory usage grows with the square of the number of edges. Consequently, the

computation or memory requirements may be prohibitive for large images. In DEEPIR,

only a system whose size corresponds to the number of edge pixels must be solved. The
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Figure 2.7: Experiment on ’shape’

fewer the edge pixels, the faster the system solution. Therefore, we introduce a modification

to DEEPIR by partitioning the system into sub-systems. Instead of solving one big system,

now we solve a group of smaller systems. To do this, we divide the image into k2 equal-

size blocks where k denotes the number of blocks we have in each coordinate, i.e., k = 1

represents the non-block method; k = 2 means we have 4 blocks, 2 on each side of the

image; k = 4 represents 16 blocks and so on [35]. Then we group the unknown edge values

according to their block membership.

We apply a modified block Gauss-Seidel (BGS) approach to limit the growth in com-

putational resources and speed up the algorithm. Further improvement in computing time

is possible with a block approximation method proposed later in this section. Generally,

block iterative methods require more computation per iteration, but this is offset by a fast
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(a) (b)

(c) (d)

Figure 2.8: Samford hall
(a) original Samford hall image (b) blurred image (c) shift-invariant restoration (d) DEEPIR restora-
tion
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Table 2.3: Computation Time
Blur Letters (s) Different shapes (s)

DEEPIR CG DEEPIR CG
Gaussian 12.17 24.5 4.81 8.89
Motion 8.23 22.7 4.15 8.33
Average 6.44 21.3 3.71 8.16

Table 2.4: Mean Square Error and Time
MSE Time (s)

Shift-invariant 791.7 8.9
CG 308.1 301.3

DEEPIR 308.1 196.2

rate of convergence [36]. The most well-established block iterative methods include block

Gauss-Seidel and block Jacobi.

Let Q = I−αdBdT , and b = αdx̂α. To solve Qω = b for ω, the system Q is partitioned

into k × k sub-systems such that each group of edge variables in ω corresponds to one

partition of Q. 


Q11 Q12 . . . Q1k

Q21 Q22 . . . Q2k

...
...

. . .
...

Qk1 Qk2 . . . Qkk




.

Then it is split as follows:

Q = D − (L + U), (2.19)
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where

D =




D11 0 . . . 0

0 D22 . . . 0
...

...
. . .

...

0 0 . . . Dkk




,

and

L =




0 0 . . . 0

L21 0 . . . 0
...

...
. . .

...

Lk1 Lk2 . . . 0




,

U =




0 U12 . . . U1k

0 0 . . . U2k

...
...

. . .
...

0 0 . . . 0




.

The Gauss-Seidel iterative procedure is given by

Dωr+1 = Lωr+1 + Uωr + b. (2.20)

In block Gauss-Seidel, only the Dii matrices need to be inverted at each iteration, since

L is strictly block-lower triangular. With this partitioning, the Dii matrices are equivalent

to a system that would arise if only the ith image block contained edges. To make the

algorithm efficient, a few relaxations of (2.20) are applied to get ω for a fixed Q. Then the
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matrix Q is updated according to the edge locations in the current estimate of the image.

This constitutes a single iteration of DEEPIR in this context.

The cameraman image was blurred with a 7× 7 circular averaging blur with radius 3

pixels. Gaussian noise was added to a level of 40 dB SNR. We applied three relaxations of

(2.20) for each iteration. The regularization parameter was chosen to be α = 0.05. Since the

goal of this work is primarily to demonstrate the computational efficiency of the algorithm,

no attempt was made to optimize the regularization parameter α.

Table 2.5 shows significant improvement on computation time. Theoretically, the larger

the block size, the fewer the iterations needed to achieve convergence [36]. On the other

hand, the larger the block size, the more computation needed for each block and therefore

the slower the convergence. As shown in Table 2.5, it is the most efficient when k = 2 for

the cameraman image.

Table 2.5: Time and MSE for BGS
k Time (s) MSE
1 316.6 897
2 138.0 897
4 208.5 897
8 287.3 897

2.7.1 Block-based Approximation

The modified block Gauss-Seidel has proved to improve the performance of DEEPIR.

However, there is still more room for speed enhancement when a small sacrifice is made in

image quality. We divide the edge image into several blocks and apply the edge-preserving

regularization to each block independently. That is, we treat the whole image as having
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edges only in a particular block and apply DEEPIR to get a correction image that is edge-

preserving only in the particular block; we repeat this procedure for every part of the image.

Then we extract the solution in each block to put together a full correction image. The

correction image is added to the shift-invariant restoration to get an edge-preserving result.

Due to the smaller number of edge pixels in each block, all the block systems can be solved

independently much more efficiently than the full system at once. Thus we can reduce the

computation to a larger extent in general and also deal with large images.

The computation in inverting an M ×M matrix is O(M3). Suppose the edge image

is decomposed into k2 blocks, where k is the number of blocks in each coordinate. If

we assume edges are evenly distributed in each block, the computation needed to invert

matrices associated with these blocks is k2O((M
k2 )3) = 1

k4 O(M3). Theoretically, the bigger

k is, the faster the inversion is; therefore, the more efficient DEEPIR is. Certain limitations

on k are necessary to ensure acceptable quality, as discussed in the next section.

To avoid errors on the boundary of each small block, we use overlapping blocks. That

is, we apply the edge-preserving regularization to a larger part of the image, then crop the

central part and use it as the result. In Figure 2.9, edges inside the dashed square are used

while the shaded part is saved as the result.

It needs to be noted that the approximation method is related to block Gauss-Seidel in

that in the non-overlapping case, it leaves out L and U in (2.19) and treats Q as its block

diagonal D. By ignoring L and U , the blocks are considered uncoupled. This is motivated

by the fact that edge values in different blocks are very loosely correlated. It does not give

us the exact solution but an efficient one as long as the tradeoff in image quality is still

tolerable.
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Figure 2.9: Overlapping blocks

2.7.2 Experiment on Block-based Approximation

To test the approximation method, we applied the same blur and noise to the cam-

eraman image as in block Gauss-Seidel. The image shown in Figure 2.10(c) was restored

using a standard circular deconvolution algorithm with 2-D FFT’s. Figure 2.10(d)(e)(f)

show images restored using the block-based algorithm with four 128× 128, sixteen 64× 64

and sixty-four 32× 32 blocks, respectively.

In Table 2.6, it is shown that with more blocks in the image, the mean square error

increases while the computation time decreases. But when we continue to reduce the size of

each block, the gains in speed decrease. This happens because there is a fixed overhead for

restoring each block regardless of size. Using bigger blocks produces better image quality

but with more computation since a bigger edge matrix must be inverted.

2.7.3 Discussion about Block-based Approximation

In the above experiments, we used overlapping blocks with an overlapping margin of

4. In image restoration, each restored pixel value in the image affects the restored values

of pixels within a certain neighborhood. Similarly, the existence of an edge pixel has a
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Table 2.6: Time and MSE for Block-Based Approx.
k Time (s) MSE

Conjugate Gradients 315.8 896
2 102.4 937
4 81.6 982
8 70.9 990

larger impact on the restored image in a neighborhood near the edge pixel. When the size

of the affected neighborhood is small enough, the error caused by decomposing the image

into blocks is also small. In the block-based method, we only consider one block of edges

at a time; i.e., we are ignoring the effect of other edge pixels on this particular edge block.

When there is more overlapping among the blocks, more edge pixels that could possibly

affect the restored image nearby are included, thereby reducing error.

Under certain circumstances, preconditioning can make the CG algorithm more com-

petitive [37]. However, the application of a preconditioner requires some further design

choices and computational complexity. Furthermore, our method itself can be used as a

preconditioner in a CG algorithm by using the block-based method as an approximate solver

within an iterative framework. Define the matrix M by the block-based approximation such

that the exact solution

x = (AT A + α
3∑

i=0

DT
i ΓiDi)−1AT y.

is replaced by an approximate solution

x = MAT y, (2.21)
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where M is the block-based approximation of (AT A + α
∑3

i=0 DT
i ΓiDi)−1. Since M is easy

to calculate and includes information about edges, it could help reduce computational time

in CG.

Let l be the number of blocks in the block-based restoration, r be the number of

iterations. Assuming the number of edges is proportional to n, the computation for an

n × n image is proportional to 21rn2 log2 n + 2r
l n3. Increasing the number of blocks will

reduce the computation significantly since it is mainly proportional to n3r
l . For l = 1, i.e.,

the non-block restoration, the computation is proportional to 21rn2 log2 n + 2rn3. When

the number of blocks changes from 4 to 16 for a 256 × 256 image, the computation drops

by almost one third from 19.3× 106 to 13.1× 106 multiplications.

2.7.4 Analysis of Overlapping

Our experiments show that in the block-based approximation the restored image is not

as faithful to the original image as the non-block method. The MSE gets worse as the size of

the blocks is decreased. In other words, we see the effect of different levels of approximation

with different block sizes. Meanwhile, the overlapping margin also affects the error because

it determines the actual block size used in calculation. Using a higher overlapping margin

reduces error while increasing computation. In order to study the effect of the overlapping

margin, we consider a simplified case to examine the effect that one edge pixel has on its

neighbors. A simple model function with only one edge pixel is used. The edge-preserving

restoration now becomes

x̂α,S = x̂α + αBlTi [I − αliBlTi ]−1lix̂α (2.22)
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where li is a row vector from D corresponding to a particular edge location i. The difference

between the image without any edges and the image with one edge pixel is

E = x̂α,S − x̂α = αBlTi [I − αliBlTi ]−1lix̂α. (2.23)

Since [I − αliBlTi ] is a scalar,

E =
α

1− αliBlTi
BlTi lix̂α (2.24)

Since li is a row vector and x̂α is the column-ordered image, lix̂α is a scale factor. Now the

difference becomes:

E = KBlTi (2.25)

where K = α
1−αliBlTi

lix̂α is a scale factor. Notice E is an image showing the difference be-

tween the shift-invariant restoration and the edge-preserving restoration. In this particular

case, we only care about the distribution of the image instead of the actual pixel values

because the purpose of this analysis is to find out how one single edge pixel will affect its

neighborhood as a function of distance from the edge pixel. The scalar factor K will vary in

different parts of the image and will tend to be higher where i is any index corresponding

to pixels near an edge. However, the values die out only a few pixels away from the edge

pixel, so the effect of this edge is still negligible. In this case, a small overlapping margin

will not introduce much error.

The distribution of E only depends on distance from the edge pixel. Since li is a row

vector from a BCCB (block circulant with circulant blocks) matrix, a different edge location
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gives an li with the same elements circularly shifted. Thus, the distribution around the edge

pixel will be the same around every location.

To illustrate the E image, we calculated a normalized version of E. Figure 2.11 shows

the absolute value of the normalized image E. The spreading pattern in Figure 2.11 seems

to be confined to a very small neighborhood around the edge location and dies out very fast

as it goes away from the center. According to Figure 2.11, the effect between two pixels

that are 6 pixels apart is close to zero. Thus a very small overlap can be used to avoid

unnecessary computation without neglecting the most important neighbor pixels.
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(a) original image (b) blurred image

(c) shift-invariant restoration (d) DEEPIR with k = 2

(e) DEEPIR with k = 4 (f) DEEPIR with k = 8

Figure 2.10: Block-based restoration of ‘cameraman’ image
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Figure 2.11: Normalized E image
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Chapter 3

Fast Algorithm for Solving Block Banded Toeplitz Systems with Banded

Toeplitz Blocks

3.1 Introduction

In many image restoration problems, linear and shift-invariant systems are assumed

such that the blurring procedure can be expressed as

g(x, y) = h(x, y) ∗ f(x, y) + n(x, y) (3.1)

where ∗ stands for linear convolution and n(x, y) is the additive noise that is independent

of the signal. Rewrite the above system in matrix form, it becomes

g = Hf + n (3.2)

where g, f and n are the column-ordered version of the blurred image, the original image

and noise of size n2× 1 for an n×n image. To represent the convolution operation, matrix

H has block-Toeplitz-with-Toeplitz-block (BTTB) structure.

Many problems arising in signal and image processing are in fact characterized by

matrices with a block-Toeplitz-with-Toeplitz-block (BTTB) structure in which both the

Toeplitz blocks and the block structure are banded. This is due to the fact that most point

spread functions (PSF) h have finite extent and are much smaller than the image. When the

image formation equations are written with the original and blurred images ordered as single
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vectors, either row- or column-wise, the matrix that describes the blurring operation has a

banded block-Toeplitz structure with banded Toeplitz blocks [2]. Also, in some non-banded

cases, the matrix may be approximated by such a banded structure.

On the other hand, most image restoration algorithms assume circulant systems to

simplify the computation by making use of FFT’s while a Toeplitz system should be used

instead according to the definition of the point spread function. For example, the discus-

sion about edge-preserving restoration methods in the previous chapter assumes a block-

circulant-with-circulant-block (BCCB) system. Thus artifacts on image boundaries (not

edges) are ignored. This is often the case because FFTs significantly improves computa-

tional performance with a small price in image quality. For most images, information on

boundaries is not as important as that in the center of the image.

Although the BCCB assumption is used in many algorithms, it is not the exact repre-

sentation of the original system and can pose problems when there is important information

along the image boundaries. Fast algorithms that help solve Toeplitz systems have been

proposed since the late 1960’s and are still being studied by many not only for their appli-

cations in image processing but also general purposes in solving linear systems.

It is well known that the solution of a general Toeplitz system can be found efficiently

using the Levinson algorithm or the Schur algorithm [38, 39]. These algorithms require

O(N2) operations for an N × N matrix or O(N log2 N) if a superfast algorithm is used

[40, 41]. (Superfast algorithms are generally only competitive for very large N due to a

large scale factor.) Efficient algorithms that exploit the band structure of a banded Toeplitz

matrix using the Schur algorithm require O(kN) operations for a bandwidth of k. More
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efficient methods have also been developed that require O(N log k + k2 log N
k ) operations

[42].

The case of block-Toeplitz matrices with Toeplitz blocks is much more problematic.

Algorithms that exploit the block-Toeplitz structure usually destroy the Toeplitz structure

of the blocks in the process, and vice versa. Thus, general solvers for block-Toeplitz-with-

Toeplitz-block (BTTB) systems require O(M5) operations for M2 × M2 matrices with

M ×M blocks [38, 43, 44]. The banded Toeplitz outer (inner) structure can be exploited

in a Schur algorithm to yield an operation count of O(kM4). However, this does not fully

exploit the inner (outer) banded Toeplitz structure. Since multiplication of a BTTB matrix

by a vector can be performed in O(M2 log M) operations [45], iterative algorithms can be

used. However, iterative algorithms can take thousands of iterations to converge and are

not always parallelizable [46]. Furthermore, iterative algorithms must repeat the bulk of the

computation for each new input even if the system is the same. A fast algorithm exploiting

the doubly Toeplitz structure with O(6M3) flops has been proposed in [46], but it requires

the assumption that the PSF is bandlimited.

In this chapter, we discuss a new algorithm that not only makes use of the BTTB

structure, but also exploits the bandedness of the system. By exploiting a form of the

generalized Schur algorithm in [38, 47], this algorithm only requires O(k2M3) operations

without any further assumption about the BTTB system.
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3.2 Solution Formulation

We consider a matrix T to be a square block-Toeplitz matrix of order M and block

bandwidth k if

T{M2×M2} =




t0 t−1 · · · t1−k 0 · · ·

t1 t0 t−1 · · · t1−k · · ·
...

. . . . . . . . . . . . · · ·

tk−1 tk−2 · · · t0 t−1 · · ·

0 tk−1 tk−2 · · · . . . · · ·
...

...
. . . . . . · · · t0




(3.3)

where each block entry ti, i = 1 − k, 2 − k, . . . , 0, . . . , k − 1 is an M ×M Toeplitz matrix

with bandwidth k. No symmetry is assumed in (3.3), i.e., ti = t−i, i = 1, . . . , k − 1 is not

necessary. The algorithm is easily generalized to the case where the block size is not equal

to the number of blocks and where the bandwidth in each block is not equal to the block

bandwidth. We consider the simpler case for simplicity of presentation. We desire to find

x such that

y = Tx (3.4)

Here the noise factor is also ignored for the purpose of simplifying the description. By

focusing on the structure of the blurring operation T , we are able to show the mechanism

of the algorithm in an effective fashion. The impact of noise can always be added later on.

Define Tc as the matrix T extended so that the structure of Tc is block-circulant with

circulant blocks (BCCB) having dimensions of (at least) (M + k − 1)2 × (M + k − 1)2.
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Tc =




c0 · · · c1−k 0 · · · 0 | ck−1 · · · c1

c1 c0 · · · c1−k 0 · · · | 0 ck−1 · · ·
...

...
. . .

...
. . . . . . | · · · . . .

...

ck−1 ck−2 · · · c0 · · · c1−k | 0 · · · 0

0 ck−1 ck−2 · · · c0 · · · | c1−k 0 · · ·
...

. . . . . . . . .
...

. . . | · · · . . . · · ·

0 · · · 0 ck−1 ck−2 · · · | c0 · · · c1−k

−− −− −− −− −− −− −− −− −− −−

c1−k 0 · · · 0 ck−1 ck−2 | · · · c0 · · ·
...

. . . . . .
...

. . . . . . | . . . · · · · · ·

c−1 · · · c1−k 0 · · · 0 | ck−1 ck−2 · · ·




(3.5)

Each block entry ci, i = 1− k, 2− k, . . . , 0, . . . , k − 1 is an (M + k − 1)× (M + k − 1)

circulant matrix expanded from corresponding Toeplitz matrix ti in the same fashion.

Then define unitary permutation P , i.e., PP T = P T P = I, such that in T̃c = PTcP
T

the blocks augmenting the inner Toeplitz structure and the circulant blocks augmenting

the outer structure are in the upper left corner [48]. Details of this permutation are shown

in the experiment section. Following the procedure in [46], we can rewrite (3.4) as a 2-D

circular convolution operation




z

y


 = T̃c




0

x


 (3.6)

=




C D

B T







0

x
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The vector z is an unknown extension of y. If z were known, the right-hand side could be

calculated directly using a 2-D FFT-based deconvolution operation.

From (3.6) we can write




0

x


 = T̃−1

c




z

y




=




Y W

V U







z

y


 (3.7)

Then we must solve

−Wy = Y z (3.8)

for z to find the solution to the original problem.

3.3 Generalized Displacement Rank

A BCCB system will remain block-circulant with circulant blocks after inversion [49],

so

T̃−1
c = (PTcP

T )−1 (3.9)

= PT−1
c P T

where T−1
c is a BCCB system with the same block structure as Tc and T̃−1

c is the permuted

version of T−1
c with the same block structure as T̃c.

The matrix Y in (3.8) is a (k − 1)(2M + k − 1) × (k − 1)(2M + k − 1) matrix with a

special structure; that is, Y is permuted so that the blocks augmenting the inner Toeplitz
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structure to a circulant structure are permuted to the lower right corner of Y , while the

circulant blocks augmenting the outer block structure are left in the upper left corner. This

matrix has a near BTTB structure. It is not block Toeplitz but has Toeplitz blocks where

the blocks are not equal in size. Furthermore, the matrix contains some structure that is

not immediately obvious from inspection. This structure is best revealed using the concept

of generalized displacement rank [38].

3.3.1 Definition and properties

Let Z be a strictly lower triangular matrix and A be an N × N matrix. Then the

matrix

∆Z(A) = A− ZAZT (3.10)

is the positive displacement of A with respect to the displacement operator Z and ∆ZT (A)

is the negative displacement. Then

α+(A) = rank∆Z(A) (3.11)

is the positive displacement rank of A and

α−(A) = rank ∆ZT (A) (3.12)

is the negative displacement rank of A.

One can show [50] that

α+(A) = α−(A−1) (3.13)
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and

α−(A) = α+(A−1) (3.14)

Furthermore, we can represent A as

A =
α+(A)∑

i=1

L(xi)U(yT
i ) (3.15)

where L(xi) (U(yT
i )) denotes a lower (upper) triangular Toeplitz matrix whose first column

(row) is xi (yT
i ). Likewise,

A =
α−(A)∑

i=1

U(x̃T
i )L(ỹi) (3.16)

where x̃ = [xN · · ·x1]T . Thus, a matrix with displacement rank α can be fully represented

by vectors xi, yi, i = 1, . . . , α. Furthermore, procedures exist for computing the LU (UL) de-

composition of a matrix with positive (negative) displacement rank α in O(αN2) operations

[38]. Procedures also exist for converting from representation (3.15) for A to representation

(3.16) for A−1 in O(αN2) operations.

3.3.2 Choice of Z

The key to solving (3.8) as efficiently as possible is to represent Y in terms of (3.15) for

an appropriate choice of displacement operator Z. Define Zc as an (M+k−1)2×(M+k−1)2

matrix with (M + k− 1)× (M + k− 1) identity matrices on the first block subdiagonal and
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zeros elsewhere.

Zc =




0 0 0 · · · 0

I 0 0 · · · 0

0 I 0 0 · · ·
...

. . . . . . . . . · · ·

0 · · · 0 I 0




(3.17)

where I is an (M + k − 1) × (M + k − 1) identity matrix. It should be noted that Zc is a

block shift matrix [38]; i.e., for any matrix X, ZcX shifts rows of X down by the size of the

block, which is M + k − 1 in this case. XZT
c shifts columns of X to the left by the size of

the block.

Then define Z as

Z = PZcP
T (3.18)

Theorem 1 For Z defined above,

α+(Y ) ≤ 2(M + k − 1)

Proof: Using Z defined above and knowledge of T̃c,

∆Z(T̃c) = T̃c − ZT̃cZ
T (3.19)

= PTcP
T − PZcP

T PTcP
T PZT

c P T

= PTcP
T − PZcTcZ

T
c P T

= PTcP
T − P




0 0

0 Tc(1, 1)


 P T
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= P




Tc0 Tc2

Tc1 0


 P T

= P∆Z(Tc)P T .

Let N1 = (M + k− 1)(M + k− 2), N2 = M + k− 1. ZcTcZ
T
c shifts Tc to the left and down

by N2. Since Tc is a block-circulant matrix, Tc(1, 1) is an N1×N1 principle submatrix of Tc

obtained by deleting the first block row and the first block column of Tc. Then Tc0{N2×N2},

Tc2{N2×N1} and Tc1{N1×N2} are the upper left, upper and left part of Tc, respectively. Since

T̃−1
c has the same block structure as T̃c, ∆Z(T̃−1

c ) has the same structure as ∆Z(T̃c) in

(3.19). Following (3.9), ∆Z(T−1
c ) can also be expressed as


 Tcol{N×N2}

| Trow{N2×N1}

| 0


 (3.20)

where N = N1 +N2. Let li, i = 1, . . . , N2 be the columns in Tcol{N×N2} and ri, i = 1, . . . , N2

be 1 × N row vectors such that ri = [0 r′i] where r′i is the ith row in Trow{N2×N1}. It is

easy to verify that

∆Z(T−1
c ) =

N2∑

i=1

lie
T
i + eiri (3.21)

where ei, i = 1, . . . , N2 is the ith column of an N × N identity matrix. Properties of the

rank of a matrix show [51]

rank(A + B) ≤ rank(A) + rank(B),
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so

rank(∆Z(T−1
c )) ≤

N2∑

i=1

rank(lieT
i ) + rank(eiri) (3.22)

≤ 2N2

= 2(M + k − 1)

Then we have α+(T̃−1
c ) ≤ 2(M + k− 1) since elementary operations do not change the

rank of a matrix. If we let

Z =




Za Zb

Zc Zd


 (3.23)

and

∆Z(T̃−1
c ) =




∆y ∆w

∆v ∆u


 (3.24)

then because Z is lower triangular,

∆Z(T̃−1
c ) =




∆y ∆w

∆v ∆u


 (3.25)

=




Y W

V U


−




Za Zb

Zc Zd







Y W

V U







ZT
a ZT

c

ZT
b ZT

d


 .

If we define N3 = (k − 1)(2M + k − 1),

∆y{N3×N3} = Y − ZaY ZT
a − ZbV ZT

a − ZaWZT
b − ZbUZT

b (3.26)

= Y − ZaY ZT
a = ∆Za(Y )
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since Zb = 0.

Following (3.20) and (3.19), ∆Za(Y ) has a structure similar to ∆Z(T̃−1
c ):

∆Za(Y ) =




∆y0{N2×N2} ∆y2{N2×N4}

∆y1{N4×N2} 0


 (3.27)

where N4 = N3−N2. ∆y0, ∆y1and ∆y2 are the left and upper part of Y . Similar to (3.22),

we can show that rank(∆Za(Y )) ≤ 2(M + k − 1) as long as N3 ≥ 2(M + k − 1), i.e., the

dimension of Y ≥ 2(M + k − 1).

3.4 Modified System Solution

For a square block-Toeplitz matrix with square blocks, a few fast triangular factor-

ization algorithms exist such as the Bareiss algorithm [52], the Levinson algorithm [39]

and the Schur algorithm [53]. These approaches require matrix permutation and inversion,

which makes them restricted to certain block structures. The generalized Schur algorithm

described in [38] avoids those problems by treating block-Toeplitz matrices in the same

way as scalar Toeplitz matrices. Since matrix Y is not a square block-Toeplitz matrix with

square blocks, we use a modified version of the generalized Schur algorithm with the defined

Z to obtain Y = LU [38]. Then (3.8) can be solved by forward- and back-substitution.

Let (R,S) be a generator of Y . That is,

∆Za(Y ) = RST (3.28)

Then an LU factorization of Y can be obtained using the following procedure [38]:
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for j = 1 : (k − 1)(2M + k − 1),

1. [pvt, R, S] = MakeProper(R, S), make (R,S) a proper generator to obtain the pvtth

column of R rpvt and the pvtth column of S spvt.

2. Set the jth column of L to rpvt and the jth row of U to sT
pvt.

3. Replace rpvt with Zarpvt and spvt with ZT
a spvt.

A generator is proper with respect to Step j above if all the elements in R are zero on and

above row j except for a particular element rji and all the elements in S are zero on and

above row j except for the element sji in the corresponding location in S. The MakeProper

procedure is described below:

1. rT = first non-zero row of R; sT = first non-zero row of S.

2. [pvt, FIRST,NEXT] = FindOrdering(r, s).

3. For each k ∈ FIRST then for each k ∈ NEXT except k = pvt: determine matrix

C(k|pvt) and R = RC(k|pvt), S = SC−T
(k|pvt).

4. return pvt R S.

The procedure FindOrdering divides the indices i, i = 1, . . . , 2(M + k − 1) for each row

into two groups: FIRST and NEXT so that real spinors exist [38]. Since rank(∆Z(Y ) ≤

2(M + k − 1), the procedure is valid for indices i = 1, . . . , 2(M + k − 1). A complete set of

i can also be used; i.e., i = 1, . . . , (k − 1)(2M + k − 1). But the smallest possible number

should be used for the efficiency of the algorithm. The reader is referred to [38] for details

on FindOrdering. The generalized Schur algorithm requires 2(M + k − 1)(k − 1)2(2M +

k − 1)2 operations while the forward- and back-substitution requires O(k2M2) operations.
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Assuming M À k, the overall computation is O(k2M3). Storage of O(k2M2) is needed to

store the LU decomposition result.

To use this algorithm, an initial generator (R, S) must be available. For the Z defined

above, ∆Za(Y ) has the form in (3.27).

By inspection, the following (R,S) is an appropriate initial generator.

R =




∆y0{N2×N2} IN2×N4

∆y1{N4×N2} 0N4×N4


 (3.29)

and

ST =




IN2×N2 0N2×N4

−−−−−−

0{N4×N2}
| ∆y2{N2×N4}

| 0(N4−N2)×N4




(3.30)

It is straightforward to show that ∆Za(Y ) = RST . To obtain the system solution, we solve

−Wy = LUz using forward- and back-substitution and then use a circular deconvolution

operation with [zT yT ]T as input to obtain [0T xT ]T . Notice that −Wy can be obtained with

circular deconvolution from

T̃−1
c




0

y


 =




Y W

V U







0

y


 =




Wy

Uy


 (3.31)
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3.5 Experiments

This fast algorithm applies to any square BTTB system. In this section, we show

a small numerical example solving an arbitrary BTTB system and a realistic example in

regularized image restoration.

3.5.1 Numerical Example

Once a BTTB system is expanded to a BCCB system, it can be solved with FFT’s.

However, to acquire the BCCB system, we have to solve for a smaller system using the

generalized Schur algorithm described in the previous section. This fast algorithm exploits

the bandedness of the BTTB system and turns the problem of solving an M2×M2 system

into one that only involves a (k − 1)(2M + k − 1)× (k − 1)(2M + k − 1) matrix.

The mechanism of expanding and representing a BTTB matrix in FFT’s is described

in the following example. Consider a 16× 16 BTTB system

T =




t0 t1 t2 0

t3 t0 t1 t2

t4 t3 t0 t1

0 t4 t3 t0




(3.32)

where

t0 =




1 2 3 0

4 1 2 3

5 4 1 2

0 5 4 1




, (3.33)
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t1 =




6 7 8 0

9 6 7 8

10 9 6 7

0 10 9 6




, (3.34)

...

and

t4 =




21 22 23 0

24 21 22 23

25 24 21 22

0 25 24 21




. (3.35)

In this case, M = 4, k = 3. T can be expanded to a BCCB system

Tc =




c0 c1 c2 0 c4 c3

c3 c0 c1 c2 0 c4

c4 c3 c0 c1 c2 0

0 c4 c3 c0 c1 c2

c2 0 c4 c3 c0 c1

c1 c2 0 c4 c3 c0




(3.36)

where each block ci, i = 0, 1, . . . , 4 is expanded from ti in the same fashion. For example,

c0 =




1 2 3 0 5 4

4 1 2 3 0 5

5 4 1 2 3 0

0 5 4 1 2 3

3 0 5 4 1 2

2 3 0 5 4 1




. (3.37)
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Now the problem becomes 


z

y


 = PTcP

T




0

x




According to the properties of FFT’s,

Tcx̃ = column ordered version of (tc ⊗ x̃I) (3.38)

where tc is the convolution kernel corresponding to Tc, in other words, the PSF that Tc

stands for. x̃ and x̃I are the column-ordered version and the image form of the expanded

original, respectively; ⊗ stands for circular convolution. By inspection, we have

tc =




1 16 21 0 11 6

4 19 24 0 14 9

5 20 25 0 15 10

0 0 0 0 0 0

3 18 23 0 13 8

2 17 22 0 12 7




(3.39)

Since a BCCB matrix can be diagonalized by 2-D FFT, we obtain the convolution kernel

of T−1
c without directly inverting Tc:

t−1
c = 10−3 ×




−.991 −6.02 4.78 −3.70 10.80 .002

−.222 −3.39 −1.77 −3.09 5.66 4.03

.503 −2.68 −3.59 −3.31 4.28 5.19

−.827 17.24 −4.85 15.84 −30.83 −8.74

1.26 −4.41 2.40 −4.97 8.25 1.44

.535 −5.12 4.22 −4.75 9.63 .284




(3.40)
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Notice t−1
c is not the inverse of tc considered as a matrix. Following (3.27), we have

∆Za(Y ) =




∆y0 ∆y2

∆y1 0




where

∆y0{6×6} = 10−3 ×




−.991 .535 1.26 −.827 .503 −.222

−.222 −.991 .535 1.26 −.827 .503

.503 −.222 −.991 .535 1.26 −.827

−.827 .503 −.222 −.991 .535 1.26

1.26 −.827 .503 −.222 −.991 .535

.535 1.26 −.827 .503 −.222 −.991




,

∆y1{14×6} = 10−3 ×




−6.02 −5.12 −4.41 17.24 −2.68 −3.39

−3.39 −6.02 −5.12 −4.41 17.24 −2.68

−2.68 −3.39 −6.02 −5.12 −4.41 17.24

17.24 −2.68 −3.39 −6.02 −5.12 −4.41

−4.41 17.24 −2.68 −3.39 −6.02 −5.12

−5.12 −4.41 17.24 −2.68 −3.39 −6.02

4.78 4.22 2.40 −4.85 −3.59 −1.77

−1.77 4.78 4.22 2.40 −4.85 −3.59

−3.70 −4.75 −4.97 15.84 −3.31 −3.09

−3.09 −3.70 −4.75 −4.97 15.84 −3.31

10.80 5.66 4.28 −30.83 8.25 9.63

9.63 10.80 5.66 4.28 −30.83 8.25

.002 4.03 5.19 −8.74 1.44 .284

.284 .002 4.03 5.19 −8.74 1.44




.
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and

∆T
y2{6×14} = 10−3 ×




.002 4.03 5.19 −8.74 1.44 .284

.284 .002 4.03 5.19 −8.74 1.44

1.44 .284 .002 4.03 5.19 −8.74

−8.74 1.44 .284 .002 4.03 5.19

5.19 −8.74 1.44 .284 .002 4.03

4.03 5.19 −8.74 1.44 .284 .002

10.80 5.66 4.28 −30.83 8.25 9.63

9.63 10.80 5.66 4.28 −30.83 8.25

−3.70 −3.09 −3.31 15.84 −4.97 −4.75

−4.75 −3.70 −3.09 −3.31 15.84 −4.97

4.78 −1.77 −3.59 −4.85 2.40 4.22

4.22 4.78 −1.77 −3.59 −4.85 2.40

−6.02 −3.39 −2.68 17.24 −4.41 −5.12

−5.12 −6.02 −3.39 −2.68 17.24 −4.41




The size of ∆Za(Y ) is (k − 1)(2M + k − 1)× (k − 1)(2M + k − 1) = 20× 20.

Then the initial generator (R, S) is

R20×20 =




∆y0{6×6} I6×14

∆y1{14×6} 014×14


 (3.41)

and

ST
20×20 =




I6×6 06×14

014×6

∆y2{6×14}

08×14




(3.42)

where

I6×14 =
[

I6×6 06×8

]
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It is straightforward to verify that ∆Za(Y ) = RST . Applying the generalized Schur algo-

rithm, we have the LU decomposition of Y .

LUz = −Wy

With forward- and back substitution, we can solve for z. Then we plug z in (3.6), and x

can be solved with FFT’s.

3.5.2 Regularized Image Restoration

A blurred image is often modeled as:

y = Hx + n, (3.43)

where H is a BTTB system representing the blurring when linear convolution is assumed,

i.e., H is taller than wide and the pixels outside x are considered all zeros. x and y are orig-

inal and blurred images; n is noise. Regularization is applied to reduce noise amplification.

Using a simple shift-invariant penalty for the regularization, the solution is expressed as:

x̂ = (HT H + αLT L)−1HT y, (3.44)

where L is a BTTB matrix representing 3 × 3 Laplacian smoothing, HT H and LT L are

Hermitian BTTB systems, so T = HT H + αLT L is also a Hermitian BTTB system. The

regularization parameter α is chosen to be 0.001.

We considered the case of a 256 × 256 image with finite support blurred by a 5 × 5

uniform PSF. 40 dB Gaussian noise is added. Thus M = 256 and the one-sided bandwidth

76



of both the inner and outer structures is k = 5. Using the procedure described in the

previous section and forward- and back-substitution, we obtain the restored image shown

in Fig 3.1. Because we assumed a shift-invariant penalty in regularization, there will be

ringing effects along edges in the image. The restored x̂ is the exact solution to (3.44).

The computation required to compute the solution with the algorithm described is 151

seconds on a workstation with an AMD Opteron 280 processor. By comparison, a circular

deconvolution with approximate solutions requires 0.19 seconds. The solution using a simple

banded generalized Schur decomposition is not available due to memory limitation. We

applied the algorithm to images with different sizes, and the computation time is shown in

Table 3.1. The new fast algorithm requires O(k2M3) flops while the general solver needs

Table 3.1: Computation Time
Image size General solver(s) Fast algorithm(s)
32× 32 1.3 0.35
64× 64 36.4 2.8

128× 128 1210 22.9
256× 256 N/A 151.1

O(M5). The bigger the image is, the faster the new algorithm is compared to the general

solver. Although this example shows great improvement in solving a symmetric BTTB

system, it should be noted that our method applies to non-symmetric BTTB systems as

well. Applications of BTTB matrices in signal and image processing problems are not

limited to regularized image restoration. Other problems such as correlation matrices in

autoregressive models also have BTTB structure [54, 55].
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(a) (b)

(c)

Figure 3.1: Restoration of Jupiter image
(a) original jupiter image (b) blurred image (c) restored image
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3.6 Summary and Discussion

This new algorithm extends a banded M2 ×M2 BTTB system with bandwidth k to a

(M + k − 1)2 × (M + k − 1)2 BCCB system and solves it with circular deconvolution. In

order to obtain the BCCB system, a smaller system −Wy = Y z needs to be solved. The

generalized Schur algorithm is used to get an LU decomposition for Y , and then forward-

and back-substitution are used to solve for z.

The overall algorithm is dominated by the cost to compute the LU decomposition of

Y for an overall operation requirement of O(k2M3). Thus, both the block-band structure

and the banded block structure are exploited in the algorithm count compared to the full

structure operation count of O(M5).

The matrix extension is also proposed in [46], although the augmented part z is esti-

mated with an assumption that the original PSF is bandlimited. Superfast algorithms that

requires O(8M2 log2 M2) flops exploit the block Toeplitz structures but are only efficient

for huge systems with M ≥ 256 [40, 41]. Compared to [46], [40] and [41], the new algorithm

is applicable to arbitrary square BTTB systems without any assumption about the original

PSF or the size of the system. Notice in the BTTB system, the block size does not need

to equal the number of blocks. For a matrix with M × M blocks of size p × p, the LU

decomposition will need 2(p + k − 1)(k − 1)2(M + p + k − 1)2 operations. Compared to

2(M + k − 1)(k − 1)2(2M + k − 1)2 in Section 4, it can be faster if p ≤ M .

This algorithm works best when k is small, i.e., the Toeplitz structure has a small

bandwidth. As k → M , the efficiency approaches the non-banded algorithm efficiency of

O(M5).
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Chapter 4

Deblocking of JPEG-compressed Images

4.1 JPEG Compression

4.1.1 Introduction

JPEG is a commonly used standard method of compression for photographic images

[56]. The name JPEG stands for Joint Photographic Experts Group, the name of the

committee which created the standard. The group was organized in 1986, issuing a standard

in 1992 which was approved in 1994 as ISO 10918-1. JPEG provides for lossy compression

of images (although there are variations on the standard baseline JPEG that are lossless).

The file format that employs this compression is commonly also called JPEG; the most

common file extension for this format is .jpg, though .jpeg, .jpe, .jfif and .jif are also used

[57].

JPEG compression has certain characteristics that distinguish it from other compres-

sion mechanisms:

• JPEG is designed for compressing either full-color or gray-scale images of natural,

real-world scenes. It works well on photographs, naturalistic artwork, and similar

material but not so well on lettering, simple cartoons, or line drawings, unlike Graphics

Interchange Format (GIF).

• JPEG is “lossy”, meaning that the decompressed image is not quite the same as the

original. (There are lossless image compression algorithms such as GIF, but JPEG

achieves much greater compression than is possible with lossless methods.) JPEG
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is designed to exploit known limitations of the human eye, notably the fact that

small color changes are perceived less accurately than small changes in brightness.

Thus, JPEG is intended for compressing images that will be looked at by humans. If

analyzed by machine, the small errors introduced by JPEG may seem a big problem,

even if they are invisible to the eye.

• A useful property of JPEG is that the degree of lossiness can be varied by adjusting

a compression parameter called the quality factor. This means that the image maker

can trade off file size against output image quality. You can make extremely small files

if you don’t mind poor quality; this is useful for applications such as indexing image

archives. Conversely, if you are not happy with the output quality at the default

compression setting, you can improve the quality until you are satisfied, and accept

lesser compression.

• Another important aspect of JPEG is that decoders can trade off decoding speed

against image quality, by using fast but inaccurate approximations to the required

calculations. Some viewers obtain remarkable speedups in this way. (Encoders can

also trade accuracy for speed, but there is usually less reason to make such a sacrifice

when writing a file.)

Although JPEG is a lossy compression, it actually loses far less information than other

compression methods such as GIF in the case of a real-world scene. As long as the image is

not repeatedly compressed and decompressed, there is very little difference visible to human

eyes, given a reasonable quality factor [58]. As mentioned above, a low quality factor can

result in poor image quality (Fig 4.1).
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Now there is an improved JPEG standard, JPEG2000, that uses state-of-the-art com-

pression techniques based on wavelet technologies. Its architecture should lend itself to a

wide range of uses from portable digital cameras through to advanced pre-press, medical

imaging and other key sectors. JPEG2000 was created by the Joint Photographic Experts

Group committee with the intention of superseding their original discrete cosine transform-

based JPEG standard. Common filename extensions include .jp2 and .j2c [57, 59].

JPEG 2000 can operate at higher compression ratios without generating the character-

istic blocky and blurry artifacts of the original DCT-based JPEG standard. It also allows

more sophisticated progressive downloads. Part of JPEG2000 has been published as an ISO

standard, ISO/IEC 15444-1:2000. As of 2006, JPEG2000 is not widely supported in web

browsers, and hence is not generally used on the World Wide Web [57].

4.1.2 JPEG Algorithm

The JPEG algorithm performs its compression in four steps (Fig 4.2):

1. The JPEG algorithms first cuts up an image in separate blocks of 8x8 pixels. Since the

format is based on luminance/chrominance perception, it does not analyze RGB or

CMYK color values but instead converts image data to a luminance/chrominance color

space, such as YUV. This allows for separate compression of these two factors. Since

luminance is more important than chrominance for our visual system, the algorithm

retains more of the luminance in the compressed file.

2. The next step in the compression process is to apply a Discrete Cosine Transform

(DCT) for the entire block. DCT replaces actual color data for each pixel for values

that are relative to the average of the entire matrix that is being analyzed. This
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operation does not compress the file, it simply replaces 8x8 pixel values by an 8x8

matrix of DCT coefficients.

3. Once the data is in DCT domain, the actual compression can start. First, the com-

pression software looks at the JPEG image quality the user requested and calculates

two tables of quantization constants, one for luminance and one for chrominance.

Once these tables have been constructed, the constants from the two tables are used

to quantize the DCT coefficients. Each DCT coefficient is then divided by its corre-

sponding constant in the quantization table and rounded off to the nearest integer.

The result of quantizing the DCT coefficients is that smaller, unimportant coeffi-

cients will be replaced by zeros and larger coefficients will lose precision. It is this

rounding-off that causes loss in image quality.

4. The resulting data are a list of streamlined DCT coefficients. The last step in the

process is to compress these coefficients using either a Huffman or arithmetic encoding

scheme. Usually Huffman encoding is used. This is a second (lossless) compression

that is applied. Now the compressed data includes the Huffman code for the DCT

coefficients, the quantization table and the Huffman table.

The decompression works as the inverse procedure of the compression. First, the

Huffman code is decoded according to the Huffman table. Then the same quantization

table is used to dequantize the DCT coefficients. Notice at this stage, some information

is already lost in the rounding-off during compression. The so-called “dequantization” is

simply a rough restoration of the DCT coefficients to the original values. An inverse block

DCT is then applied to the coefficients to obtain the image data (Fig 4.3).
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Among the steps of generating a JPEG-compressed image, the DCT is where the energy

is packed into low-frequency coefficients; quantization is where part of the information is

lost and the “compression” happens; Huffman coding works efficiently in this case only if

quantization gets rid of some “unimportant” coefficients. In the sections that follow, we

will explain how the DCT and quantization work. Readers interested in entropy coding are

referred to [59, 60] for details.

4.2 Discrete Cosine Transform

4.2.1 1-D DCT

The rapid growth of digital imaging applications, including desktop publishing, multi-

media, teleconferencing, and high-definition television (HDTV) has increased the need for

effective and standardized image compression techniques. Among the emerging standards

are JPEG, for compression of still images [61]; MPEG, for compression of motion video;

and ITU H.26x for compression of video telephony and teleconferencing. All three of these

standards employ a basic technique known as the discrete cosine transform (DCT) [62].

The discrete cosine transform of a list of real numbers c(n), n = 0, ..., N − 1, is the list

of length N given by:

C(k) = α(k)
N−1∑

n=0

c(n) cos
π(2n + 1)k

2N
, 0 ≤ k ≤ N − 1 (4.1)

where

α(0) =
√

1
N

, α(k) =
√

2
N

for 1 ≤ k ≤ N − 1.
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Each element of the transformed list C(k) is the inner product of the input list c(n) and

a basis vector. The factors α(k) are chosen so that the basis vectors are orthogonal and

normalized. The eight basis vectors for n = 8 are shown in Fig 4.4.

The inverse transformation is given by

c(n) =
N−1∑

k=0

α(k)C(k) cos
π(2n + 1)k

2N
, 0 ≤ n ≤ N − 1 (4.2)

where

α(0) =
√

1
N

, α(k) =
√

2
N

for 1 ≤ k ≤ N − 1.

The DCT is real and orthogonal, that is, for DCT matrix C in C(k) = Cc(n), C−1 = CT .

Notice that the DCT is closely related to the discrete Fourier transform (DFT) although

not the real part of the unitary DFT. In fact, it is possible to compute the DCT via the

DFT by symmetrically extending the original sequence [1]. The DCT is often used in signal

and image processing, especially for lossy data compression, because it has a strong energy

compaction property: most of the signal information tends to be concentrated in a few

low-frequency components of the DCT, approaching the Karhunen-Loeve transform (which

is optimal in the decorrelation sense) for signals based on certain limits of Markov processes

[63].

There are eight standard DCT variants, of which four are common. The definition

given above is also called the type-II DCT, which is the one used in image compression.

The 1-D DCT is useful in processing one-dimensional signals such as speech waveforms.

For analysis of 2-D signals such as images, we need a 2-D version of the DCT, which is

explained in detail in the next subsection.
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4.2.2 2-D DCT

In JPEG compression, the 2-D block DCT is used for the transformation. The original

image is divided into 8 × 8 blocks and a DCT is applied to each block. The 2-D DCT is

defined as:

C(k, l) = α(k)α(l)
N−1∑

m=0

N−1∑

n=0

c(m,n) cos
[
(2m + 1)kπ

2N

]
cos

[
(2n + 1)lπ

2N

]
(4.3)

where

α(0) =
√

1
N

, α(k) =
√

2
N

for 1 ≤ k ≤ N − 1.

The discrete cosine basis function for N = 8 is shown in Fig 4.5.

For an m × n matrix, the 2-D DCT is computed in a simple way: The 1-D DCT is

applied to each row and then to each column of the result. Since the 2-D DCT can be

computed by applying 1-D transforms separately to the rows and columns, the 2-D DCT is

separable in the two dimensions, like the 2-D DFT [62].

To compute a block DCT (BDCT), we do not actually have to divide the image into

blocks. Since the 2-D DCT is separable, we can partition each row into sequences of length

8, apply the DCT to them, rejoin the resulting lists, and then transpose the whole image

and repeat the process. Separability is in fact one of the numerous advantages of the DCT

over the Karhunen-Loeve transformation (KLT), since this makes the implementation of

the DCT highly efficient.
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4.3 Quantization

Quantization is the procedure where the DCT coefficients are divided by a specially

designed table of numbers and then rounded so that some of the coefficients turn out to be

zeros. The entropy coding following quantization can then make use of the redundancy of

information [60].

There are various ways to design a quantization table. Correspondingly, different sorts

of quantization algorithms exist. Among these quantization algorithms, scalar quantization

quantizes DCT samples individually while vector quantization joins all samples. A simple

example of scalar quantization is a function that maps each element in a subset of the

real line to a particular value in that subset (Fig 4.6). Other quantization algorithms

include Lloyd-Max scalar quantizer [64, 65], generalized Lloyd algorithm [66], Trellis coded

quantization [67], etc.

In our discussion about quantization in this work, we assume that the simple scalar

quantization (Fig 4.6) is used to simplify the presentation. For the quantization table, the

standard table for luminance (4.4) is used in experiments.
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Q =




16 11 10 16 24 40 51 51

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 13 16 24 40 57 69 56

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99




(4.4)

Notice in (4.4), the quantization coefficient increases roughly from the upper left corner

to the lower right corner. It can be shown [68] that the DCT approximately diagonalizes

the covariance matrix of a first-order Gauss-Markov random process. In fact, one of the

properties of any wide-sense stationary (WSS) random process is that the Fourier coefficients

are uncorrelated. That is, as N in (4.3) becomes very large, the DFT, the DCT and other

related frequency transforms all diagonalize the source covariance matrix [69]. Thus, these

transforms are asymptotically equivalent to the KLT for WSS sources, up to a reordering

of the coefficients [59].

One suitable data-independent ordering for the DCT coefficients is the “zig-zag” scan

shown in Fig 4.7. This order is based on the observation that the power density spectra of

most images tends to decrease rapidly with increasing spatial frequency; it is employed by

the JPEG image compression standard and most video compression standards. Although

most images are not well modeled as WSS random processes, the DCT has been found to

be a robust approximation to the KLT for natural image sources [59].
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4.4 Deblocking JPEG Images

4.4.1 Blocking Effect

It has been shown that the DCT is an asymptotic approximation to the optimal

Karhunen-Loeve transform when the statistical properties of the image can be described

by a first-order Markov model. Furthermore, it has been demonstrated that most images

encountered in visual communication applications are modeled extremely well by first-order

Markov models [1]. Because the DCT can be computed very efficiently using fast algorithms

similar in nature to the well-known fast Fourier transform (FFT), it has been recommended

by both the Joint Photography Experts Group (JPEG) and the Motion Pictures Experts

Group (MPEG) for compression of still and sequences of motion images, respectively [70].

Although JPEG-compressed images are good approximations to the uncompressed im-

ages, most JPEG images have the problem of visible block boundaries due to coarse quan-

tization of the coefficients [71]. This problem becomes especially serious when the DC or

near-DC coefficients are coarsely quantized. Therefore, more bits are usually required for

the DC or near DC coefficients than for other coefficients. An example of the blocking effect

in the Lena image is shown in Fig 4.8.

To cope with the blockiness problem without increasing the bit rate, a variety of post-

processing approaches have been proposed:

1. Low-pass filtering on boundary pixels [72, 73, 74, 75].

2. Postprocessing algorithms based on estimation theory, for example Stevenson [76]

proposed a postprocessing algorithm based on the maximum a posteriori probability

89



approach. Yang et al. [77] proposed a postprocessing algorithm based on noise estima-

tion. The algorithm estimates the quantization noise causing blocking artifacts, and

subtracts the estimated noise from the quantized images. There are other approaches

based on the wavelet representation. Xiong et al. [78] proposed a wavelet-based post-

processing algorithm, which employs an edge classifier using the overcomplete wavelet

representations. Choi and Kim [79] proposed a postprocessing algorithm in the sub-

band domain. They employed a minimum mean square error filter to remove the

blocking artifacts located at the block boundaries of subbands. Nosratinia [80] pro-

posed a postprocessing algorithm based on the reapplication of JPEG compression.

The postprocessed image is obtained by averaging the images, which are obtained

from the reapplication of the JPEG compression with various shifts. This algorithm

is known to provide an excellent result among the current postprocessing algorithms.

However, the computational complexity is high due to multiple reapplication of the

JPEG compression.

3. Iterative algorithms, which are based on projection onto convex sets (POCS) or the

constrained least squares, have also been proposed. Youla and Webb [81] introduced

the theory of POCS to restore images. To postprocess the DCT-based encoded images,

Zakhor [82] employed the quantization constraint set (QCS) as a convex constraint set

and the lowpass filter that is used by Reeve and Lim [72]. The algorithm consists of

the iteration of lowpass filtering and projecting onto QCS. As pointed out by Reeves

and Eddins [83], the iterative algorithm is based on the theory of constrained least

squares. Based on the POCS theory, Yang et al. [84] introduced a projection operator

onto the smoothness constraint set, which smooths the blocking artifacts instead of
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using the linear lowpass filter. Park and Kim [85], on the other hand, proposed a

narrow QCS (NQCS) to improve the performance of the QCS-based postprocessing

algorithms. They also extended the notion of NQCS to the vector-quantized signals by

introducing hypercubes. At high bit rates, employing NQCS in a POCS-based post-

processing algorithm can preserve details and edges from undesirable blurring without

any sophisticated, edge-oriented classifiers and empirically determined thresholds [86].

4. Non-iterative algorithms have several advantages over iterative algorithms. In order

to secure the convergence of an iterative algorithm, the operators should meet several

requirements. For example, the operators should be projectors if the iteration is based

on the POCS theory. In non-iterative algorithms, on the other hand, the operators can

be more flexible. Liew and Yan [87] proposed a simple, non-iterative, wavelet-based

deblocking algorithm. The algorithm exploits the fact that block discontinuities are

constrained by the DC quantization interval of the quantization table, as well as the

behavior of the wavelet modulus maxima evolution across scales for singular image

structures, to derive appropriate threshold maps at different wavelet scales.

Postprocessing algorithms do not modify the compression system itself and can thus be

directly applicable to commercial products, such as the JPEG and MPEG compression

systems [86]. Since the blocking effect is primarily due to the inability of the DCT to exploit

inter-block correlations, most of the above approaches exploit correlations of intensity values

in neighboring blocks.

91



4.4.2 Deblocking with Regularization

Mathematical Model

In this section, we propose a new algorithm that is involved in the decompression

process. This method makes use of the regularized restoration describe in Chapter 2 and

is closely related to the lowpass filtering in [72, 73, 74, 75] but differs in that it is not a

postprocessing algorithm.

In a regularized restoration, the objective is to minimize the cost function

φ(f̂) = ‖g −Hf̂‖2 + α‖Lf̂‖2 (4.5)

where L is a high-pass filter that imposes a smoothness condition on the restored image, α

is the Lagrangian multiplier. If we model the JPEG compression as a degradation of the

image, we should be able to describe the degradation process as

y = HQDx (4.6)

where y is the compressed data, H, Q and D are the Huffman coding, quantization and

BDCT, respectively. To simplify the problem, we can remove the Huffman coding since it

is a lossless procedure.

y = QDx (4.7)

where y is the data before entropy coding, Q and D are the quantization and BDCT.

Furthermore, the distortion introduced by coarse quantization is not linear in reality and can

be modeled as noise. Normally, if uniform quantization is assumed, the noise is correlated
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with the data. However, if the bit-rate allocated is high enough we may assume that the

noise and input are uncorrelated with each other [88]. This assumption does not hold for low

bit-rates but it is commonly used for the analysis of the quantization error as the problem

becomes extremely complicated otherwise and we often find that the results carry on to the

low bit-rate case as well [89]. Using this assumption we simplify the degradation process

into

y = Dx + n (4.8)

Now we have the mathematical equivalent of a standard deblurring problem where we are

given the blurred image y and the blurring matrix D. The objective is to find the original

image x. We assume that the noise n is uncorrelated with the signal thus can be added to

the model. As described in (4.5), the estimate x̂ should be the minimizer of the function

φ(x̂) = ‖y −Dx̂‖2 + α‖Lx̂‖2. (4.9)

For this specific case of decompressing a JPEG image, L would be a high-pass filter not

only affects natural edges in the image, but also block boundaries for each 8×8 block. Since

the block boundaries and the natural edges are not correlated, we can separate the penalty

term into two lowpass filters LD for natural edges and Le for block boundaries. Now the

cost function becomes:

φ(x̂) = ‖y −Dx̂‖2 + α‖LDx̂‖2 + β‖Lex̂‖2 (4.10)
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where β is another Lagrangian multiplier as the smoothing control over the block bound-

aries. Taking derivative of φ(x̂) with respect to x and setting it to 0, we have

x̂ = (DtD + αLt
DLD + βLt

eLe)−1Dty (4.11)

Following the technique in Chapter 2, we can apply the Sherman-Morrison matrix inversion

lemma and then divide the solution into two parts: one with the diagonalizable matrix so

that we can easily invert it in the transform domain; the other that has to be inverted

directly but easily since it is small. Notice that Le works on all the block boundaries inside

the image (dash lines in Fig 4.9). To avoid the overcomplicated Le matrix, we divide it up

into two matrix that deal with vertical and horizontal block boundaries separately (dash

lines in Fig 4.10 and Fig 4.11).

Now Le becomes Lve and Lhe, where Lve is the smoothing matrix on vertical boundaries

and Lhe is the smoothing matrix on horizontal boundaries. Considering the fact that Lve

has little effect on horizontal boundaries and Lhe has little effect on vertical boundaries, the

correlation between them can be ignored. The cost function becomes

φ(x̂) = ‖y −Dx̂‖2
S + α‖LDx̂‖2 + β‖Lvex̂‖2 + β‖Lhex̂‖2 (4.12)

where S is a diagonal weighting matrix. Taking the derivative with respect to x and setting

it to 0, we have

x̂ = (DtSD + αDtLDD + β(Lt
veLve + Lt

heLhe))−1DtSy (4.13)
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where LD is the diagonal matrix representing smoothing operation in the cosine domain.

LD = DtLDD, (4.14)

so

Lt
DLD = DtLDD. (4.15)

To apply the Sherman-Morrison matrix inversion lemma, we define

A = (S + αLD). (4.16)

Plugging (4.16) in (4.13), we have

x̂ = (DtAD + β(Lt
veLve + Lt

heLhe))−1DtSy (4.17)

So far we have been trying to separate the vertical and horizontal smoothing Lve and Lhe,

but in (4.17) they are still together. To simplify the computation, we consider the following

equation: since DCT is orthogonal, i.e.,

DtD = DDt = I, (4.18)

(DtA1/2D + βLt
veLveD

tA−1/2D)(DtA1/2D + βDtA−1/2DLt
heLhe) (4.19)

= DtAD + β(Lt
veLve + Lt

heLhe) + β2Lt
veLveD

tA−1DLt
heLhe

95



Considering the fact that β2 is very small and Lve and Lhe are almost uncorrelated, the last

term β2Lt
veLveD

tA−1DLt
heLhe is relatively insignificant. Then (4.19) can be rewritten as

(DtA1/2D + βLt
veLveD

tA−1/2D)(DtA1/2D + βDtA−1/2DLt
heLhe) (4.20)

≈ DtAD + β(Lt
veLve + Lt

heLhe).

Then (4.17) can be rewrite as

x̂ (4.21)

= ((DtA1/2D + βLt
veLveD

tA−1/2D)(DtA1/2D + βDtA−1/2DLt
heLhe))−1DtSy

= (DtA1/2D + βDtA−1/2DLt
heLhe)−1(DtA1/2D + βLt

veLveD
tA−1/2D)−1DtSy

In (4.21), Lve and Lhe can be implemented separately. Applying the Sherman-Morrison

matrix inversion lemma to the first inversion (DtA1/2D + βDtA−1/2DLt
heLhe)−1 in (4.21),

(DtA1/2D + βDtA−1/2DLt
heLhe)−1 (4.22)

= DtA−1/2D − βDtA−1/2DDtA−1/2DLt
he(I + βLheD

tA−1/2DDtA−1/2DLt
he)

−1LheD
tA−1/2D

= DtA−1/2D − βDtA−1DLt
he(I + βLheD

tA−1DLt
he)

−1LheD
tA−1/2D.

Since I + βLheD
tA−1DLt

he is a smaller matrix than A, the inversion is relatively fast.

Similarly, we have

(DtA1/2D + βLt
veLveD

tA−1/2D)−1 (4.23)

= DtA−1/2D − βDtA−1/2DLt
ve(I + βLveD

tA−1/2DDtA−1/2DLt
ve)

−1LveD
tA−1/2DDtA−1/2D
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= DtA−1/2D − βDtA−1/2DLt
ve(I + βLveD

tA−1DLt
ve)

−1LveD
tA−1D.

The techniques of computing the above expressions are described in Chapter 2.

Experiment

In this section, experiments were conducted using 64-by-64 and 128-by-128 sub-images

from the Lena image. The 64-by-64 example is shown in Figure 4.12. All computation was

done on a workstation with an AMD Opteron 280 processor. The computation time for a

64-by-64 image is 26 seconds. By applying the block Gauss-Seidel to the matrices, it can be

implemented in 18 seconds. The mean square errors of the compressed JPEG images and

the deblocked images are shown in Table 4.1.

Table 4.1: Deblocking JPEG image
size Time (s) MSE of original MSE of deblocked
64 18 62 58
128 119 231 201

Notice that in Table 4.1, the difference in MSE between the original JPEG image and

the deblocked image is not as considerable as that in a regular deblurring problem. One

of the reasons is that deblocking blurs along block boundaries, thus degrading the image

to some extent. By paying the price of a little blurrier image, the visual quality has been

improved since the blocking effect is reduced. The trade-off between blurry image and

blocky image can be controlled by choosing different Lagrangian multiplier β.
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4.5 Summary

In this chapter, we developed a new iterative deblocking algorithm for JPEG-compressed

images that is designed as part of the decompression process. It makes use of the shift-

variant regularization method to blur between boundaries thus get rid of blocking effect.

Compared to other deblocking algorithms based on blurring [72, 73, 74, 75], it is not a

postprocessing method.

By applying the Sherman-Morrison matrix inversion lemma and block Gauss-Seidel,

this algorithm is promising in computation time. Although it is an iterative method, its

convergence can be proved in the same fashion as in Chapter 2. The result also shows a

smoother image with less blocking effects.
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(a)Original Lena

(b)JPEG-compressed Lena with low quality factor (Q=25)

Figure 4.1: JPEG-compressed image
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Figure 4.2: JPEG encoder
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Figure 4.3: JPEG decoder
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Figure 4.4: The eight basis vectors for the discrete cosine transform of length eight
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Figure 4.5: Discrete cosine basis functions for N = 8
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Figure 4.6: Scalar quantization
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Figure 4.7: Zigzag scan
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(a) Original Lena image

(b) Blocking effect in Lena image

Figure 4.8: Blocking effect
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Figure 4.9: Block boundaries

Figure 4.10: Vertical boundaries

Figure 4.11: Horizontal boundaries
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(a) JPEG-compressed Lena image

(b) Lena’s hat with blocking effect

(c) Lena’s hat with reduced blocking effect

Figure 4.12: Deblocking Lena image
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Chapter 5

Conclusion and Discussion

Image restoration is a computationally intensive image processing task. Many im-

age processing situations involve solving inverse problems for either block-Toeplitz-with-

Toeplitz-block (BTTB) or block-circulant-with-circulant-block (BCCB) systems. In this

work, efficient schemes for solving BCCB system using FFTs are proposed. Since a BTTB

system can be extended to BCCB, it is a near-circulant system and can be solved using a

similar technique. Efficient algorithms for solving BCCB and BTTB systems are proposed

in this work to reduce ringing artifacts in the restored image and reduce computation time.

The same techniques are also applied to JPEG images to reduce the blocking effect.

5.1 Edge-Preserving Regularization

In Chapter 2, we proposed a method DEEPIR. MAP estimation, a Gauss-Markov ran-

dom field, and the Huber function are used as the optimization criterion in this context.

Then the optimization criterion is modified with a majorization technique to achieve a

more efficient algorithm. Finally, the majorized criterion is minimized by a fast implemen-

tation where the restoration is decomposed into a sum of two independent restorations:

one yields an image that comes directly from an FFT restoration; the other involves a set

of unknowns whose number equals the number of weights in the matrix that deviate from

1 (weights associated with edges). By summing the two, the ringing artifacts from FFTs

are canceled. Because the second restoration has a significantly reduced set of unknowns,

it can be calculated very efficiently even though no circular convolution structure exists.
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Since we do not have the original image to derive edge information, an iterative method

is used. Although fixed point iterations often do not converge, this algorithm with the

Huber function converges monotonically to the minimizer. DEEPIR compares favorably to

conjugate gradients in computational time. It can be improved considerably by dividing

the system into blocks using a modified block Gauss-Seidel procedure. A block-based ap-

proximation technique is also proposed to yield an approximation of the direct solution at

a much reduced computational cost.

5.2 Fast Algorithm for Solving Block Banded Toeplitz Systems with Banded

Toeplitz Blocks

In Chapter 3, we developed a new algorithm that extends a banded M2 ×M2 BTTB

system with bandwidth k to a (M + k − 1)2 × (M + k − 1)2 BCCB system and solves

it with circular deconvolution. In order to obtain the BCCB system, a smaller system

−Wy = Y z needs to be solved. The generalized Schur algorithm is used to get an LU

decomposition for Y , and then forward- and back-substitution are used to solve for z.

The overall algorithm is dominated by the cost to compute the LU decomposition of Y

for an overall operation requirement of O(k2M3). Thus, both the block-band structure

and the banded block structure are exploited in the algorithm count compared to the full

structure operation count of O(M5). The new algorithm is applicable to arbitrary square

BTTB systems without any assumption about the original PSF or the size of the system.

Notice in the BTTB system, the block size does not need to equal the number of blocks. This

algorithm works best when k is small, i.e., the Toeplitz structure has a small bandwidth. As

k approaches M , the efficiency approaches the non-banded algorithm efficiency of O(M5).
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5.3 Deblocking of JPEG-compressed Images

In Chapter 4, we applied a scheme similar to that in Chapter 2 for deblocking JPEG-

compressed images. The method applies the Sherman-Morrison matrix inversion lemma and

block the Gauss-Seidel method to reduce computation. It is different from postprocessing

algorithms since it is involved in the decompression process but similar to some postprocess-

ing methods that are based on blurring.

The deblocked image looks smoother and the computation time is promising.

5.4 Future Work

1. The efficient algorithm DEEPIR in Chapter 2 leads to several issues and opportunities.

First, we have flexibility in defining the threshold for the regularization weights by

adjusting the value of T . The fewer edge weights we allow, the faster the restoration

will be. A small T will give a sharp restoration while it can be noisy if any variation

in gray level is mistaken as an edge; a large T reduces the number of edges and thus

reduces computation but results in blurry edges. Second, the block-based method

can be used as a preconditioner in CG since it is considered an approximation to the

original edge-preserving regularization. Finally, we have shown that a similar approach

can address the fact that real-world blurring does not conform to circular convolution

but rather linear convolution followed by windowing. This approach can easily be

incorporated into the algorithm described above. Thus, this approach provides an

efficient method for shift-variant regularization.

2. The deblocking method in Chapter 4 reduces the blocking effect by blurring between

blocks. Since we made an approximation in (4.20), the deblocked image might not
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be the exact reconstruction from the compressed data, which introduces some error.

The control over the smoothness (or blockiness) is in the Lagrangian multiplier β.

The computation time can be further reduced with a block implementation describe

in Chapter 2.
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