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Modern wireless communications ask for high data rate, high transmission perfor-

mance and low complexity. High data rate induces frequency-selective channels because

of the relatively shorter symbol duration than the delay spread. Wireless links intro-

duce fading which degrades performance and requires diversity techniques to combat.

Orthogonal Frequency Division Multiplexing (OFDM) is an effective method to deal

with frequency-selective channels since it facilitates low complexity equalization and

decoding. To eliminate the effects of the channel nulls and fading, linear precoded

OFDM is introduced to enable multipath diversity and the maximum likelihood decoder

is used to collect the diversity. But, the low complexity provided by OFDM is sacri-

ficed. Multi-antenna techniques are shown to be able to boost the data rate and also

collect space diversity to combat fading. The V-BLAST (Vertical Bell Labs Layered

Space-Time) scheme enables higher data rate than single-antenna setup does, but it

also requires higher decoding complexity. As a combination, multi-input multi-output

(MIMO-) OFDM has been widely studied to boost the transmit-rate and performance
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in terms of diversity. For MIMO-OFDM systems, many designs successfully exploit the

joint space-multipath diversity when maximum likelihood (ML) detector is adopted at

the receiver, which is well known for high complexity. To reduce the decoding complexity,

linear equalizers are favored in practical systems, but they usually induce performance

degradation. In this thesis, we first quantify the diversity of conventional linear equaliz-

ers for linear precoded OFDM, V-BLAST and MIMO-OFDM designs. Then, we propose

lattice reduction (LR-) aided equalizers to improve the performance, and show that LR-

aided linear equalizers achieve the same diversity order as that collected by ML detectors

for (MIMO-) OFDM systems and V-BLAST systems. Simulation results corroborate the

theoretical findings.
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Chapter 1

INTRODUCTION

Modern development of wireless communications requires reliable high-data-rate

services. To increase data rate, we can decrease the symbol period, but this will intro-

duce frequency-selectivity (and hence time-dispersive) channels. Orthogonal frequency

division multiplexing (OFDM) is known as an effective method to deal with frequency-

selective channels since it facilitates low-comlexity equalization and decoding [22]. How-

ever, the original uncoded OFDM design neither guarantees symbol recovery, nor collects

the multipath diversity to combat fading. Several techniques were proposed to collect the

multipath diversity provided by the channel. One way to recover the symbol detectabil-

ity for single antenna OFDM systems, is linear complex-field coded (LCFC-) OFDM

(a.k.a. linear precoded OFDM) presented in [11, 22] to collect the multipath diversity

but at the cost of increased decoding complexity.

Another way to achieve high-data-rate is to adopt multi-antenna at the transmitter

and receiver. Space-time multiplexing of multi-antenna transmissions over multi-input

multi-output (MIMO) channels has well documented merits in combating fading, and

further enhancing data rates. The V-BLAST (Vertical Bell Labs Layered Space-Time)

architecture presented in [4, 25] is a well-known method for achieving high spectral

efficiencies over a rich-scattered environment. Since high data rate is achieved through

multiple transmit- and receive-antennas, and high order signal constellation is usually

used, the high decoding complexity at the receiver for collecting the diversity provided

by the channels becomes the bottle-neck of the development of multi-antenna systems.
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Frequency-selective MIMO fading channels provide space-multipath diversity to

combat fading. Thus, MIMO-OFDM becomes a strong candidate for next generation

wireless multi-antenna communications. Numerous space-time (ST) coding schemes have

been developed for MIMO-OFDM systems to collect space-multipath diversity (e.g., [11]

and [13]). Since all of them used maximum likelihood (ML) detection or near-ML schemes

such as sphere-decoding (SD) method, the decoding complexity is high especially when a

large number of transmit-antennas and/or high signal constellations are employed. Thus,

it is obvious that, no matter in single antenna LCFC-OFDM systems, V-BLAST systems

or in MIMO-OFDM systems, how to reduce the decoding complexity while exploiting

the diversity order is the problem we would like to study.

The first straightforward thought to solve this problem is to use linear equalizers

such as zero-forcing (ZF) and minimum mean square error (MMSE) equalizers. It is

well-known that linear detection methods have much lower complexity than ML and

SD methods but introducing an inferior performance. Interestingly, it has been shown

that even linear equalizers guarantee maximum multipath diversity for certain precoded

OFDM systems [21] (e.g., the system in [22]). However, the decoding complexity of linear

equalizers in [21] depends on the number of subcarriers which usually is large. Grouped

LCFC-OFDM design has been proposed in [11] to reduce the decoding complexity by

performing smaller size of ML. The major difference for the LCF coder design of [22,

21] and the one in [11] is that LCF coder in [11] depends on the lattice structure of

the transmitted symbols. Therefore, to differentiate these two, we call the grouped

LCFC-OFDM scheme as linear lattice-based precoded (LLP)-OFDM. In general, the

performance of linear equalization has not been studied for LLP-OFDM, V-BLAST and

MIMO-OFDM systems in the literature. In this thesis, we analyze the performance
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of the linear equalizers for LLP-OFDM systems and extend the results to V-BLAST

systems and MIMO-OFDM systems.

Recently LR technique has been used to improve the performance of linear equaliz-

ers over MIMO systems (e.g., [8] and [24]). A class of real LR-aided linear equalizers was

presented in [26, 27], to transform the system model into an equivalent one with better

conditioned channel matrix while maintaining the low complexity. It is shown that LR

technique can help to collect the maximum diversity order while does not increase the

complexity much. Therefore, in this thesis, we develop complex LR-aided linear equal-

izers to decode LLP-OFDM systems and analyze the performance in terms of diversity.

The results can also be extended to V-BLAST and MIMO-OFDM designs to show the

diversity order explicitly.

This thesis is organized as follows. In Chapter 2, we study the performance of

LLP-OFDM systems: first, the system model of LLP-OFDM is presented; then the

performance of LLP-OFDM systems with three kinds of low-complexity equalizers (ZF,

MMSE and decision-feedback equalizer (DFE)) is analyzed separately; LR-aided linear

detection methods for LLP-OFDM systems are developed and analyzed. We show that

LR-aided linear equalizers exploit multipath diversity. The simulation results will cor-

roborate our theoretical claims. Chapter 3 and Chapter 4 will follow similar structure

while Chapter 3 studies the V-BLAST systems and Chapter 4 copes with MIMO-OFDM

systems, where two kinds of multi-antenna OFDM designs are analyzed as examples. The

last chapter presents concluding remarks and future research directions.

Notation: Upper (lower) bold face letters will be used for matrices (column vectors).

Superscript H denotes Hermitian, ∗ conjugate, and T transpose. We will reserve ⊗ for

the Kronecker product, d·e for integer ceiling, and E[·] for expectation; diag[x] will stand

3



for a diagonal matrix with x on its main diagonal. IN will denote the N × N identity

matrix. Z is the integer set and C stands for the complex field. Z[
√
−1] denotes the

Gaussian integer ring whose elements have the form Z +
√
−1Z.
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Chapter 2

PERFORMANCE ANALYSIS OF LLP-OFDM SYSTEMS

In this chapter, we consider single-antenna LLP-OFDM systems. First, the system

model of grouped LLP-OFDM is introduced. With this model, the performance of

linear equalizers is studied. Then, we develop the complex LR-aided linear equalizers for

LLP-OFDM systems and analyze the performance to show it can collect the multi-path

diversity.

2.1 System Model of LLP-OFDM

For high-rate transmissions, when the maximum delay spread (τd) of the channel

exceeds the symbol period (Ts), inter-symbol interference (ISI) cannot be ignored and

the channel exhibits frequency-selectivity. Suppose the channel is random, with finite

impulse response, consisting of L + 1 taps, where L is defined as bτd/Tsc. Channel taps

are denoted as a vector h = [h0, h1, . . . , hL]T and modelled as complex Gaussian random

variables. Here, the conventional uncoded OFDM system we consider includes cyclic

prefix (CP) insertion and inverse FFT (IFFT) operations at the transmitter, and CP

removal and FFT operations at the receiver. It has been shown that plain OFDM enables

symbol-by-symbol low complexity decoding. However, as stated in [3] and [22], the

performance of uncoded OFDM suffers from loss of diversity. LLP-OFDM [11, 12, 22] has

been proposed to combat frequency-selective fading by collecting the multipath diversity

provided by the channel.
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In order to exploit the multipath diversity in OFDM, the LCFC-OFDM designs

first linearly encode the ith information block s(i) = [s(iN), . . . , s(iN + N − 1)]T ∈

Z[
√
−1]N×1 (N is much greater than L, but less than the normalized channel coherence

time) by a time-invariant matrix Γ ∈ CN×N ; and then multiplexes the coded symbols

u(i) = Γs(i) ∈ CN×1 using conventional OFDM. Collecting the ith received OFDM

block after CP removal and FFT operations as: y(i) = [y(iN), . . . , y(iN + N − 1)]T , the

input-output (I/O) relationship of the overall system model can be expressed as:

y(i) = DHu(i) + w(i) = DHΓs(i) + w(i), (2.1)

where DH = diag [H(0),H(1), . . . ,H(N − 1)], with H(n) =
∑L

l=0 hle
−j2πln/N . w(i) is

the ith white complex Gaussian noise vector observed at the receiver with zero mean

and covariance matrix σ2
wIN . Since we consider block-by-block decoding, for notational

simplicity, we will drop our OFDM block index i from now on.

There are several ways to design Γ to achieve maximum diversity without any chan-

nel knowledge at the transmitter. One way is to design Γ as a tall Vandermonde matrix

with properly chosen generators [22]. For this case, though the bandwidth efficiency is

sacrificed, it has been proved that even linear equalizers (ZF and MMSE) can also achieve

the full diversity [21]. But since the complexity of linear equalizers in [21, 22] depends on

the block size N with a order of O(N3), when N is large, even linear equalizers require

high decoding complexity.

Another way to design the LCF encoder uses algebraic number theory and grouping

method [11]. Suppose the N subcarriers are split into Ng groups and each group has

size K. To achieve the maximum coding gain, we select the gth group as [11] and [12]:

6



sg = [s(g), s(g + Ng), . . . , s(g + (K − 1)Ng)]T , with s(n) denoting the nth symbol in s.

The K equi-spaced symbols are precoded (or linear block coded) by a K × K unitary

matrix Θ, and the precoded symbol ug = Θsg is mapped into K equi-spaced carriers. It

is readily seen that analogous to (2.1), the I/O relationship for the gth group becomes:

yg = DH,gΘsg + wg = Hequsg + wg, (2.2)

where Hequ := DH,gΘ is the equivalent channel matrix with DH,g = diag[H(g),H(g +

Ng), . . . ,H(g + (K − 1)Ng)], and wg is the corresponding noise of the gth group. We

observe that the I/O relationship of the gth group in (2.2) has the same form as (2.1).

Thus, ML or SD method can be used to collect full multipath diversity. As proposed in

[12, 11], the maximum achievable multipath diversity order is Gd = min(K,Rh), where

Rh denotes the rank of the channel coefficients correlation matrix E(hhH).

Compared with the ungrouped version in [22], grouped LLP-OFDM has lower com-

plexity since each group only has K < N symbols. However, ML or near-ML decoder is

required to collect multipath diversity. One natural question now is what if one wants

to further reduce the complexity and just uses linear equalizer to (2.2) and what the

diversity is in this case. In the next section, we analyze the performance of the linear

equalizers for LLP-OFDM systems and answer this question. For brevity, we will drop

the group index g in (2.2).

2.2 Linear Equalization For LLP-OFDM

Linear equalizers are favored in practical systems because they have the lowest

complexity among all kinds of detection methods. However, at the same time, linear

7



equalizers are “blamed” because they usually have inferior and unpredicted performance

(e.g., unknown diversity order). In the literature, the performance in terms of diversity

with optimal decoders (e.g., ML) has been well-documented (see e.g., [18, 12]). However,

the performance of linear equalizers is not well studied. Recently, it has been shown

that even linear equalizers can collect the multipath diversity for LLP-OFDM with tall

Vandermonde LCF encoders [21], while it is unclear on the performance of LLP-OFDM

with linear equalizers. In this section, we study the performance of LLP-OFDM systems

with ZF equalizer, MMSE equalizer and decision-feedback equalizer (DFE). We will keep

our proofs general so that they can be applied to other linear systems.

2.2.1 ZF Equalizer for LLP-OFDM

Suppose that the receiver has perfect channel knowledge. Based on the model in

(2.2), the output of ZF equalizer is given as:

x = (Hequ)−1y = s + (Hequ)−1w = s + n, (2.3)

where n := H−1
equw is the noise after equalization. The channel matrix Hequ = DHΘ

has full rank with probability one (wp1) because Θ is a unitary matrix and the diagonal

matrix DH has full rank wp1. Note that the noise vector n is no longer white and its

covariance matrix depends on the equalization matrix H−1
equ. The next step is to map

the output to signal constellation:

ŝi = Q (xi) = arg
s∈S

min |xi − s|, (2.4)

where xi denotes the ith element of x and Q(·) means the quantization of the symbol.

8



Starting from (2.3), we now analyze the diversity collected by ZF equalizer. Suppose

that the ith transmitted symbol is si, and at the receiver it is erroneously decoded as

s̃i 6= si. The error probability is given as:

P (si → s̃i|Hequ) = P (|xi − s̃i|2 < |xi − si|2 | Hequ),

where ni is the ith element of n. If we define ei = si − s̃i, then the error probability can

be further simplified as:

P (si → s̃i | Hequ) = P (|ei + ni|2 < |ni|2 | Hequ)

= P

(
−ein

∗
i − e∗i ni

2
>

|ei|2

2

∣∣∣∣ Hequ

)
. (2.5)

Though as we stated, the ZF equalized noise vector n is no longer white, it is not difficult

to verify that for each channel realization, n is still complex Gaussian distributed with

zero mean and covariance matrix

E[nnH] = σ2
w(HH

equHequ)−1 = σ2
wC, (2.6)

where C := (HH
equHequ)−1. Define a random variable vi = (−ein

∗
i − e∗i ni)/2. Given the

error symbol ei, vi is real Gaussian distributed with zero mean and variance |ei|2E[|ni|2]/2 =

|ei|2σ2
wCii/2, where Cii is the (i, i)th element of C in (2.6). Thus, the error probability

in (2.5) can be re-written as:

P (si → s̃i | Hequ) = Q

(√
|ei|2

2σ2
wCii

)
. (2.7)

9



Based on (2.7), the diversity order collected by the ZF equalizer is established in

the following:

Proposition 1 Given the model in (2.2), if the channel taps are complex Gaussian

distributed with zero mean, then the ZF equalizer in (2.3) exists wp1 and collects diversity

order 1 over LLP-OFDM systems with frequency-selective channels.

Proof: According to the design in [11] or [12], there exists at least one unitary matrix Θ

that enables maximum diversity for any block size K and constellations that belong to

Gaussian integer ring. The diagonal matrix DH has full rank wp1. Thus, both of them

are invertible wp1. This shows the ZF equalizer exists wp1.

Because Θ is unitary and recalling the Vandermonde structure of Θ, we notice that

the elements of Θ have amplitude 1/
√

K. Thus, matrix C in (2.6) can be written as

C = (HH
equHequ)−1 = (ΘHDH

HDHΘ)−1 = ΘHD−1
H (DH

H)−1Θ,

and the (i, i)th entry of C, Cii becomes

Cii = θH
i D−1

H (DH
H)−1θi =

1
K

K−1∑
k=0

1
|H(k)|2

(2.8)

where θi is the ith column of the LCF encoder Θ. Based on (2.8), we can bound Cii as :

1
K|H(c)|2

≤ Cii ≤
1

min
0≤k≤K−1

|H(k)|2
(2.9)

where c is any integer, c ∈ [0,K − 1]. The left inequality holds because Cii is the

summation of K nonnegative numbers and is surely larger than or equal to any one of

10



them. The right inequality holds because 1
|H(k)|2 ≤ 1

min
0≤i≤K−1

|H(i)|2 for any 0 ≤ k ≤ K − 1.

According to (2.7), the post-processing signal-to-noise ratio (SNR) of ZF equalizer is

γ = |ei|2
2σ2

wCii
. Plugging the inequality (2.9) into (2.7), we will have:

K|ei|2|H(c)|2

2σ2
w

≥ γ =
|ei|2

2σ2
wCii

≥
|ei|2 min

0≤k≤K−1
|H(k)|2

2σ2
w

. (2.10)

Thus, the outage probability [23] can be bounded as:

P

(
|H(c)|2 ≤ 2σ2

wγth

K|ei|2

)
≤ P (γ < γth) ≤ P

(
min

0≤k≤K−1
|H(k)|2 ≤ 2σ2

wγth

|ei|2

)
. (2.11)

Next, to show the diversity order collected by ZF equalizer, we need the following

lemma:

Lemma 1 Given N random variables X1, X2, . . . , XN (either dependent or indepen-

dent), they are all central Chi-square distributed with degrees of freedom 2M . Let Xmin

denote the minimum of them, and then we have P (xmin < ε) ≤ cuεM , where cu is a

constant depending on N and M .

The proof is given in Appendix A. Since |H(k)|2 is exponentially distributed (or Chi-

square distributed with degrees of freedom 2), according to Lemma 1, we can obtain:

P

(
min

0≤k≤K−1
|H(k)|2 ≤ 2σ2

wγth

|ei|2

)
≤ cuγth

(
|ei|2

2σ2
w

)−1

So the performance upper-bound in (2.11) shows diversity one. Since H(c) is complex

Gaussian distributed, |H(c)|2 is Chi-square distributed with degrees of freedom 2. Then,
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we can obtain that:

P

(
|H(c)|2 ≤ 2σ2

wγth

K|ei|2

)
= exp

(
− σ2

wγth

K|ei|2

)
,

which shows that the performance lower-bound also has diversity one (see also [23] for

similar argument).

So the diversity order of the outage probability is just 1. According to [23], the

diversity of outage probability is the same as that of average error probability. Thus,

the diversity collected by the ZF equalizer for LLP-OFDM system is just 1. ¥

Interestingly, different from the claim in [21], Proposition 1 shows that if we use

ZF linear equalizer for LLP-OFDM systems, the diversity order for the performance is

only 1. This is because of the different structures of the precoders in [11, 22]. For LLP-

OFDM, although the ZF equalizer has low complexity, it cannot collect any multipath

diversity.

2.2.2 MMSE Equalizer for LLP-OFDM

Another often used linear equalizer is minimum mean square error (MMSE) equal-

izer. Based on the model in (2.2), the linear MMSE equalizer for LLP-OFDM systems

is given as:

x = (HH
equHequ + σ2

wIK)−1HH
equy. (2.12)
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It is easy to verify that the MSE of the symbols after MMSE equalization is

E[‖s − ŝ‖2] = σ2
w

(
HH

equHequ + σ2
wIK

)−1
. (2.13)

Defining C =
(
HH

equHequ + σ2
wIK

)−1 and plugging in the fact that Hequ = DHΘ into

C, we have the (i, i)th entry of C

Cii = θH
i (DH

HDH + σ2
wIK)−1θi =

1
K

K∑
k=1

1
|H(k)|2 + σ2

w

. (2.14)

The approximate BER after MMSE equalization is [16]:

Pe ≈
∑
m

αmQ

(
βm

√
1

σ2
wCii

− 1

)
, (2.15)

where αm and βm depend on the symbol constellation. Based on (2.14), we find that

the SNR for the error probability is bounded by:

min
0≤k≤K−1

|H(k)|2

σ2
w

≤ 1
σ2

wCii
− 1 ≤ K

σ2
w

(|H(c)|2 + σ2
w). (2.16)

Similar to the ZF equalizer case, based on (2.16), the diversity order collected by

the MMSE equalizer is established in the following:

Proposition 2 Given the model in (2.2), if the channel taps are complex Gaussian dis-

tributed with zero mean, then the MMSE equalizer in (2.12) for the LLP-OFDM system

collects diversity order 1.
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2.2.3 DFE Equalizer for LLP-OFDM

Generalized decision feedback equalizer (GDFE) is proposed and compared with the

Nulling-Cancelling (NC) equalization ([6]) in [5]. It is shown that the operation of GDFE

is equivalent to the NC processing. There are two types of GDFE: ZF-GDFE and MMSE-

GDFE. Here, we consider the performance of ZF-GDFE while it is straightforward to

see the performance of MMSE-GDFE following the similar analysis. For ZF-GDFE (or

ZF-NC), the output of the forward equalizer is:

x = QHy, (2.17)

where QR is the QR-decomposition of Hequ with unitary matrix Q and upper triangular

matrix R. Then the decision process becomes

for n = 0 : K − 1

ŝK−n = Q ((xK−n −
∑p

i=1 RK−n,K−n+iŝK−n+i)/RK−n,K−n)

end

where Rp,q is the (p, q)th entry of R and xi is the ith entry of x. According to [5], the

diversity of LLP-OFDM systems with ZF-GDFE equalizer is determined by the lowest

degrees of freedom of |Rk,k|2, k ∈ [1,K], where R is the QR decomposition of DHΘ

and Rk,k is the (k, k)th entry of R. Considering the QR decomposition process, RK,K

offers the lowest degrees of freedom. Because C = (HH
equHequ)−1 = (RHR)−1, it can

be verified that |RK,K |2 = C−1
KK satisfies:

min
0≤k≤K−1

|H(k)|2 ≤ |RKK |2 ≤ K|H(c)|2. (2.18)
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Thus, following the analysis for ZF equalizer, we can see that the maximum diversity

order that ZF-GDFE can collect is just 1. Similarly, the diversity of the LLP-OFDM

systems with MMSE-GDFE is also 1. Proof is omitted here.

Remark 1 From our analysis, we notice that for LLP-OFDM systems, the linear equal-

izers cannot exploit any multipath diversity, though they have much lower decoding

complexity compared with ML or SD methods. Furthermore, the performance of ZF

equalizer is the worst among these three linear equalizers while MMSE-GDFE equalizer

has the best performance of them.

2.3 LR-aided Linear Equalization For LLP-OFDM

As we know, for linear systems, if Hequ in (2.2) is diagonal, ZF equalizer has the

same performance as ML decoder (e.g., for plan OFDM case). However, in general Hequ

is not diagonal, and thus ZF equalizer has inferior performance (e.g., in Section III we

have shown that ZF equalizer cannot collect multipath diversity). This motivates us to

find a way to make Hequ close to a diagonal matrix.

If the symbols s are drawn from Gaussian integer ring (QAM, PAM constellations),

then Hequs belongs to a lattice generated by the columns of Hequ. Thus, to estimate the

information symbols is equivalent to searching for the closet point in the lattice [1]. The

motivation to use lattice reduction (LR) technique in equalization is to make the decision

region of the linear equalizers more like that of ML detector by finding a more orthogonal

basis for the lattice, thus increase the performance. Recently, Lenstra-Lenstra-Lovász

(LLL) algorithm has been adopted for LR-aided linear equalizers to find more orthogonal

basis for communication MIMO channels, because it guarantees polynomial complexity
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to find a set of bases within a factor of the shortest vectors (see e.g., [8, 24, 27]). The

LLL reduction was first posted in [10]. The LR-aided linear equalizers were first applied

to MIMO systems (see e.g., [8, 24, 27]). However, the methods in [24, 26, 27] are based

on real lattice reduction methods, which increase the decoding complexity by splitting

the complex channels into real and imaginary parts. [8] uses complex lattice reduction

method, but only for two-transmit-antenna case. In [14], it is mentioned that complex

LLL algorithm can be extended to any number of transmit-antennas. Unfortunately,

detailed complex LLL algorithm is not provided in [14]. In general, these existing re-

sults show that LR performed on the channel matrix can improve the linear detectors’

performance while does not increase the complexity much.

2.3.1 LR-aided Linear Equalization

We first extend the LLL algorithm to complex field for any number of transmit-

antenna. Our proposed complex LLL algorithm can be found in Appendix B, where

we use the conventional Matlab notation (e.g., R(k, k) denotes the (k, k)th element of

matrix R). Compared with the real LLL algorithm in [27], the major difference of the

complex LLL algorithm exists at Steps (8) and (16) in Table 1. Later by simulations,

we show that the complex LLL algorithm enables lower computational complexity than

the real LLL algorithm without sacrificing any performance.

Given the system model in (2.2), we adopt CLLL algorithm to reduce the lattice

basis of Hequ and obtain H̃ = HequT , where T is a unimodular matrix which means all

the entries of T and T−1 are Gaussian integers and the determinant of T is ±1 or ±j.

Then, we apply the LR-aided ZF equalizer H̃
−1

instead of H−1
equ, and the output can be
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S1: Map the information bits to symbols s whose constellation belongs to Gaussian
integer ring;

S2: Obtain (2.2) after LLP-OFDM transceiver operations;
S3: Perform the Complex LLL algorithm to reduce the lattice basis of the equivalent

channel matrix: [H̃, T ] = CLLL(Hequ);
S4: Rewrite the system as y = HequT (T−1s) + w = H̃z + w;
S5: Apply the ZF equalization based on the new system to obtain ẑ = Q(H̃

−1
y);

S6: Use ẑ and T to recover the original information: ŝ = Q(T ẑ).

Table 2.1: Lattice-Reduction Aided ZF Equalization

written as [c.f. (2.2)]:

x = T−1s + H̃
−1

w = z + n. (2.19)

Since all the entries of T−1 and the signal constellation belong to Gaussian integer ring,

the entries of z are also Gaussian integers. One can estimate z from x by quantization.

After obtaining z, one can recover s by using T and mapping to the appropriate constel-

lation. We summarize the main steps of LR-aided ZF equalizer for LLP-OFDM systems

in Table .

Note that the equivalent channel matrix Hequ can be other communication channels

(e.g. MIMO channel matrix later in Chapter 3, MIMO-OFDM matrices in Chapter 4).

To perform the LR-aided MMSE equalizer, we cannot just apply the conventional MMSE

equalizer to the new system in Step S4, because the average power of z is not easy to

determine. In [27], it shows that LR-aided MMSE equalizer agrees to the LR-aided ZF

equalizer with respect to an extended system. Compared with the conventional linear

equalizers, LR-aided linear equalizers increase the complexity only in the CLLL reduction

step, we will compare the complexity over different systems by simulations.
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Remark 2 Here, we notice that in Step S5, the quantization of H̃
−1

y is simply round-

ing to the nearest integer in order to reduce the complexity. Thus, we must make sure

the constellation of symbols s belongs to Gaussian integer ring, and both the real and the

imaginary parts are drawn from an integer set whose elements are consecutive integers,

or can be transferred to consecutive integers by shifting and scaling. Otherwise, for each

realization of channel Hequ, one needs to calculate T and then find the set of possible ẑ.

Typically, M -QAM constellations satisfy this prerequisite, e.g., 4-QAM symbols s whose

constellation is {±1± j}, can be transferred to {1(0)+1(0)j} by performing 1
2(s+1+ j).

Different from the simple rounding in Step S5, the quantization in Step S6 is to map

the product of T and ẑ to the original information constellation.

2.3.2 Performance Analysis on LR-aided Linear Equalizers

In this section, we prove the diversity order collected by LR-aided linear equalizers.

To make our proof compact, we introduce some important definition and lemmas first.

Definition 1 An orthogonality deficiency (od) of an M ×N matrix B = [b1, b2, . . . , bN ]

as:

od(B) = 1 − det(BHB)∏N
n=1 |bn|2

(2.20)

where |bn|, 1 ≤ n ≤ N is the norm of the nth column of B.

Note that 0 ≤ od(B) ≤ 1, ∀B and if B is singular, od(B) = 1; and if the columns of B

are orthogonal, od(B) = 0. It has been shown that LLL algorithm tries to reduce the
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od of the studied matrix [10]. The quantitative result on od reduction is given in the

following lemma:

Lemma 2 Given a matrix H ∈ CM×N with rank N , H̃ is obtained after applying

complex LLL (CLLL) algorithm with parameter δ on H [30]. Then, the orthogonality

deficiency of H̃ satisfies:

√
1 − od(H̃) ≥

(
4

4δ − 1

)−N(N−1)/4

:= cδ, (2.21)

where cδ is determined by δ and N , and δ can be any fixed real number in (1/4, 1).

For real H, Lemma 2 is consistent with the result in [10, Proposition 1.8]. Here, we

extend it to complex field according to the CLLL algorithm in [30]. Given δ and any

integer N ≥ 1, cδ is always less than 1. Therefore, the od(H) is bounded by 1 − c2
δ . If

H is singular, i.e., rank(H) < N , then Lemma 2 does not hold true. In this case, we

need to reduce the size of H and then apply CLLL algorithm.

Since information symbols s belong to Gaussian integer ring, then Hs generates a

lattice L ∈ CM×1 with a set of basis vectors H = [h1, h2, . . . , hN ]. The following lemma

shows an important statistical property of the minimum distance of the lattice L, which

will be useful for our proof on diversity order.

Lemma 3 Let H = [h1, h2, . . . , hN ] be a set of bases for a lattice L in CM×1. Define

hmin as the vector in L which has the minimum non-zero norm among all the vectors. If

all entries of H are complex Gaussian distributed with zero mean, the following inequality
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holds:

P{|hmin|2 ≤ ε} ≤ chεD, (2.22)

where ch is a constant determined by N and M , and

D = min
∀p 6=0

rank(E(ppH)), (2.23)

where p ∈ L and p 6= 0.

The proof can be found in Appendix C. From Lemma 3 we notice that the degrees of

freedom D of hmin is determined by the minimum rank of all possible covariance matrices

generated by the vectors L. Apparently, it depends on the covariance matrices of each

column hn and the cross-correlation among the columns.

To facilitate the use of Lemma 3, we give a corollary as follows:

Corollary 1 Let H = [h1, h2, . . . , hN ] be a set of bases for a lattice L in CM×1. If 1) all

the entries of H are complex Gaussian distributed with zero mean; 2) rank(E[hnhH
n ]) =

D, ∀n ∈ [1, N ]; and 3) all the columns are linear independent with each other on the

Gaussian integer ring, then we have P{|hmin|2 ≤ ε} ≤ chεD.

Now we are ready to analyze the diversity order collected by the LR-aided ZF

equalizer for the LLP-OFDM systems which is quantified in the following proposition:

Proposition 3 Considering an LLP-OFDM system with group size of K and frequency-

selective channel order of L, given the model in (2.2), the diversity order collected by an
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LR-aided ZF equalizer is min(K,Rh) which is the same as that obtained by ML detector,

where Rh = E[hhH] and h = [h(0), ..., h(L)]T .

Proof: The output of the LR-aided ZF equalizer is stated in (2.19). Because the entries

of z are integers, if the real and imaginary parts of each entry of n = H̃
−1

w are in

the interval (−1
2 , 1

2), one is able to decode z correctly and thus obtain s correctly. Let

us denote H̃
−1

as [a0, a1, . . . , aK−1]T , where aT
i , i ∈ [0,K − 1] is the ith row of H̃

−1
.

Hence, if |aT
i w| is less than 1

2 , we will definitely decode the ith symbol correctly. Thus,

Pe|Hequ
, the error probability for a given Hequ is upper-bounded by

Pe|Hequ
≤ P

(
|aT

i w| ≥ 1
2

∣∣∣∣ Hequ

)
.

From [19, Lemma 1], we obtain the following inequality:

|aT
i | ≤

1√
1 − od(H̃)|h̃i|

(2.24)

where h̃i, i ∈ [0, K − 1] represents the ith column of H̃. Because

|aT
i w| ≤ |aT

i ||w| ≤ |w|√
1 − od(H̃)|h̃i|

,

if |w| is less than 1
2

√
1 − od(H̃)|h̃i|, we will have |aT

i w| ≤ 1
2 . Furthermore, since H̃ is

reduced from Hequ using CLLL algorithm,
√

1 − od(H̃) ≤ ( 4
4δ−1)−K(K−1)/4 according

to Lemma 2 wp1. Define Hequ := [h0, h1, . . . , hK−1], where hi, i ∈ [0,K − 1] is the ith

column of Hequ. Let hmin represent the vector with minimum non-zero norm of all the

vectors in the lattice generated by Hequ. Since T is unimodular, H̃ spans the same
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lattice as Hequ. It is easy to verify that |hmin| is less than or equal to min
1≤i≤K

|h̃i|. Thus,

we can see that if |w| is less than 1
2cδ|hmin|, then |w| is less than 1

2

√
1 − od(H̃)|h̃i| for

any i ∈ [1,K]. Here we notice that though cδ is independent on Hequ, hmin depends on

Hequ. In summary, we have:

Pe|Hequ
≤ P

(
|aT

i w| ≥ 1
2

∣∣∣∣ Hequ

)
≤ P

(
|w| ≥ 1

2
cδ|hmin|

∣∣∣∣ Hequ

)
. (2.25)

Since w is complex Gaussian white noise, |w|2 is a central Chi-square random vari-

able with degrees of freedom 2K and mean Kσ2
w. Thus, by averaging (2.25) with respect

to the random matrix Hequ (or hmin, the error probability can be further simplified as:

Pe ≤ EH

[
P

(
|w| ≥ 1

2
cδ|hmin|

∣∣∣∣ Hequ

)]
≤ P

{
(cδ|hmin|)2 ≤ 4Kσ2

w

}
P

{
|w|2 ≥ Kσ2

w

}
+P

{
4Kσ2

w ≤ (cδ|hmin|)2 ≤ 4t2Kσ2
w

}
P

{
|w|2 ≥ t2Kσ2

w

}
+P

{
4t2Kσ2

w ≤ (cδ|hmin|)2 ≤ 4t3Kσ2
w

}
P

{
|w|2 ≥ t3Kσ2

w

}
+ . . . (2.26)

where t is a positive constant that satisfies t > 1. Here, we notice that all the entries

of Hequ are complex Gaussian distributed with zero mean and all the columns are

linear independent with each other with probability one. Furthermore, the rank of the

covariance matrices of hi, i ∈ [0,K − 1] is min(K,Rh) [11]. With these three conditions

satisfied, according to Corollary 1, we have P{|hmin|2 ≤ ε} ≤ chεmin(K,Rh). Thus, we

can get the probability that:

P
{
(cδ|hmin|)2 ≤ aKσ2

w

}
≤ ch ·

(
aKσ2

w

c2
δ

)min(K,Rh)

.

22



Because |w|2 is Chi-square distributed, we obtain that [9, p. 25]

P
{
|w|2 ≥ aKσ2

w

}
= e−aK

K−1∑
k=0

(2aK)k

k!
≤ cKe−aKaK ,

where cK =
∑K−1

k=0
(2K)k

k! is a constant that only depends on K. By using Gd to represent

min(K,Rh), Eq. (2.26) is simplified as :

Pe ≤ chcK

(
4K

c2
δ

)Gd
(

1
σ2

w

)−Gd
[ ∞∑

n=0

tn(K+Gd)e−Ktn

]
. (2.27)

It is not difficult to show that the summation (2.27) converges to a constant which only

depends on K, t, and Gd when t > 1. Therefore, the diversity order of the LR-aided ZF

equalizer is greater than or equal to Gd = min(K,Rh). However, as we know, the maxi-

mum diversity order for each group is min(K,Rh). Thus for LLP-OFDM, the LR-aided

ZF equalizer collects diversity order min(K,Rh). ¥

As we have shown, linear equalizers cannot exploit the multipath diversity for LLP-

OFDM systems, however, after introducing the LR technique into the linear equalization

process, multipath diversity is collected. Similar to the proof for Proposition 3, one

can show that LR-aided MMSE estimator also collects multipath diversity. Note that

LR-aided linear equalizers have some unique properties: i) the decoding complexity

is much lower than ML and quite close to linear ones; ii) unlike SD, the complexity

does not depend on SNR; iii) the complexity of CLLL part does not change along with

constellation size.
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Figure 2.1: Comparisons among different linear equalizers

2.4 Simulation Results

In this section, we use computer simulations to verify our theoretical claims on the

diversity order of linear equalizers and the performance of LR-aided linear equalizers.

Example 1 (Performance comparison of different equalizers): We first compare

the performance of the LLP-OFDM with different equalizers with the conventional

(plain) OFDM. We select L = 3, and the total subcarriers N = 8. The channel taps are

i.i.d complex Gaussian random variables with zero mean and variance σ2 = 1/(L + 1).

To enable the multipath diversity Gd = L + 1 = 4, we adopt the LLP-OFDM. The

subcarriers are split into Ng = 2 groups with group size K = 4. QPSK modulation is

used. The bit-error-rate (BER) versus SNR for linear equalizers is shown in Figure 2.1.
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Figure 2.2: Comparisons among different equalizers for LLP-OFDM

For plain OFDM, we only consider symbol-by-symbol ML detection. For LLP-OFDM,

we consider ZF, ZF-GDFE, MMSE, MMSE-GDFE. From Figure 2.1, we notice that: i)

plain OFDM only achieves diversity one, and so do ZF, ZF-GDFE, MMSE and MMSE-

GDFE detectors for LLP-OFDM; ii) for LLP-OFDM, the performance of ZF equalizer

has the worst performance, while MMSE(-GDFE) has better performance than others.

Figure 2.2 shows the BER curves of LR-aided ZF, LR-aided MMSE, LR-aided ZF-GDFE

and ML detectors for LLP-OFDM. From this figure, we observe LR-aided ZF, MMSE or

ZF-GDFE detectors of LLP-OFDM collect diversity order L+1 and so does ML detector.

The performance of LR-aided MMSE equalizer is better than that of LR-aided ZF and

ZF-GDFE, but there still exists a gap between the performance of LR-aided equalizers

and ML detector. This is one of our future topics.
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Example 2 (Performance comparison of different group sizes): In this example,

we fix the total number of subcarriers N = 12, channel order L = 2 and the number

of total channel taps is L + 1 = 3. We use different group sizes to simulate the LLP-

OFDM, and then compare the performance of them. The group size is chosen to be

K = 2, 3, 4 respectively, and precoder Θ is designed according to [29]. At the receiver,

both SD decoder and complex LR-aided ZF equalizer are employed and compared. Fig-

ure 2.3 shows the performance for different cases. Theoretically, the diversity order is

Gd = min(K,L + 1) [12]. Based on the simulation results, we observe that the diversity

order collected by both SD and complex LR-aided ZF equalizer is 2, 3 respectively cor-

responding to group size K = 2, 3. When K = 4, the channel taps in each group are
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Figure 2.4: Complexity comparison of different decoding methods

correlated. We notice that our LR-aided linear equalizer still collects full diversity.

Example 3 (Complexity comparison of decoding schemes): After comparing the

performance of different decoding methods with different group size, we verify here the

difference of the complexity. Here, we choose the number of total sub-carriers of OFDM

as N = 12 and the order of channel L = 5, then the multipath diversity order is 6.

To compare the complexity of different decoding methods, we fix SNR = 30dB and

count the number of arithmetic operations (real additions and real multiplications). In

Figure 2.4, we plot four curves to represent: SD method [7], complex LR-aided ZF

equalizer, general ZF equalizer and ZF detection for LLP-OFDM. Here, general ZF

detection means using pseudo-inverse equalizer ((DHΘ)−1) and the simple ZF detection
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is ΘHD−1
H . From Figure 2.4, we notice that, the curve of LR-aided ZF equalizer is

much colser to general ZF detection than to SD method. This means that the decoding

complexity of LR-aided ZF is near that of general linear equalizers, and much lower than

SD method. Furthermore, the ratio of the gap between LR-aided ZF and SD to the

gap between LR-aided ZF and general ZF increases as group size K increases. Thus,

LR-aided ZF equalizer becomes computational preferable as K increases. All of these

four curves increase as K increases, which means the complexity increases as the group

size increases while the performance is getting better. From Figure 2.4, we can see that

the simplified ZF equalizer for LLP-OFDM is quite low but it can only collect diversity

1. However, with a complexity that is a little bit higher than ZF equalizer, LR-aided ZF

equalizer can gurantee the same diversity as ML detector.
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Chapter 3

LINEAR EQUALIZATION FOR V-BLAST SYSTEMS

In this chapter, we study the performance of V-BLAST multi-antenna architecture

which is presented in [4] and [25]. Similar to the LLP-OFDM systems, through the

analysis, we show that LR-aided linear equalizers can exploit the same diversity as ML

detection while linear equalizers lose diversity which means performance degradation.

3.1 System Model of V-BLAST Systems

Consider a multi-antenna system with Nt transmit-antennas and Nr receive-antennas,

where Nr ≥ Nt. In V-BLAST model ([4, 25]), the data stream is divided into Nt

sub-streams and transmitted through Nt antennas. These sub-streams consist of M -

QAM symbols (or in general, symbols on Gaussian integer ring). For notation sim-

plicity, we assume that the power of each transmit-antenna is normalized to one. Let

s = [s1, s2, . . . , sNt ]
T represents the Nt × 1 transmitted data vector at one time slot,

while w = [w1, w2, . . . , wNr ]
T denotes the white Gaussian noise vector observed at the

Nr receive-antennas with zero mean and variance σ2
w. Without any coding, we consider

that E
{
ssH

}
= INt and E

{
wwH

}
= σ2

wINr .

The received signal at one time slot is denoted as: y = [y1, y2, . . . , yNr ]
T which is

represented by:

y = Hs + w, (3.1)
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where H is the channel matrix, which consists of Nr × Nt uncorrelated complex Gaus-

sian channel coefficients with zero mean and unit variance. We assume a flat-fading

environment that the channel coefficients are constant during a frame and change inde-

pendently from frame to frame. Also we assume that the channel matrix H is known at

the receiver.

Theoretically, at the receiver, we can perform maximum-likelihood (ML) detection

to obtain the optimal performance of the system. Recall that the ML estimate is given

as:

ŝML = arg
s∈SNt

min ‖ y − Hs ‖2, (3.2)

where ‖ ∗ ‖ denotes the 2-norm. The diversity order collected by an ML decoder for

the system in (3.1) is Nr, the number of receive-antennas (see e.g., [28]). However, the

cardinality of the searching space is |SNt | = MNt , thus the exponential complexity pro-

hibits the use of ML detection in practical systems (especially for systems that have large

constellations and numbers of antennas). In the next section, we will introduce the linear

detectors, whose decoding complexity is much lower than ML and thus computationally

preferable in certain situation.

3.2 Linear Equalizers and Performance Analysis

In this section, we briefly describe the linear equalizers for V-BLAST systems and

then focus on analyzing their performance.
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3.2.1 ZF Equalizers

The zero-forcing (ZF) detector for the input-output relationship in (3.1) is given as:

xZF = H†y = s + H†w = s + n, (3.3)

where H† denotes the Moore-Penrose Pseudo-inverse of the channel matrix H and n :=

H†w is the noise after equalization. The pseudo-inverse matrix can be written as :

H† = (HHH)−1HH (3.4)

where the channel matrix H has full column rank with probability one. Note that the

noise vector n is no longer white and its covariance matrix depends on the equalizer

matrix H†. The quantization step is then used to map each entry of x into the symbol

alphabet S :

ŝZF
n = Q(xn) = arg

s∈S
min |xn − sn|, (3.5)

where xn denotes the nth element of xZF and Q(·) means the quantizer of the symbol.

Starting from (3.3), we first study the performance of the ZF equalizer. Following

the proof for Proposition 1 with Hequ = H, we can get the error probability given H

as:

P (si → s̃i | H) = Q

(√
| ei |2
2σ2

wCii

)
, (3.6)
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where Cii is the (i, i)th element of C and C can be expressed as:

C = H†(H†)H = (HHH)−1. (3.7)

Based on (3.6), the diversity order collected by ZF equalizer is established in the

following:

Proposition 4 Given the model in (3.1), if the channels are i.i.d. complex Gaussian

distributed, then the ZF equalizer in (3.3) exists with probability one and the diversity

order for the system is Nr − Nt + 1.

Proof: See Appendix D.

This proposition shows that not surprisingly, the ZF linear equalizer enables the

same diversity as nulling-cancelling (NC) method for V-BLAST system [28], since NC

method agrees with ZF equalizer when detecting the first symbol ( the Ntth symbol of

s). However, the diversity order is lower than the ML equalizer.

3.2.2 MMSE Equalizers

Another type of linear equalizer is minimum mean square error (MMSE) detector

which takes into account the noise variance. It minimizes the mean-square error between

the actually transmitted symbols and the output of the linear detector and thus improves

the performance. Given the model in (3.1), the MMSE equalizer is :

xMMSE =
(
HHH + σ2

wINt

)−1
HHy. (3.8)
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Again, the quantization step is the same as the one in (3.5). As shown in [26], with the

definition of an extended system, the MMSE detector agrees with the ZF detector.

For the MMSE equalizer, we start from (3.8) and rewrite the system model as:

xMMSE = s +
(
HHH + σ2

wINt

)−1
(HHw − σ2

ws). (3.9)

Define the equivalent noise vector n = (HHH +σ2
w INt)−1(HHw−σ2

ws). Given a signal

vector s, the noise vector n has mean and covariance matrix, respectively as:

n̄ = −σ2
w(HHH + σ2

wINt)
−1s

Σ = σ2
w(HHH + σ2

wINt)
−1 − σ4

w(HHH + σ2
wINt)

−2. (3.10)

Similar to the analysis for the ZF equalizer, we can verify that error probability is given

as:

P (si → s̃i | H) = Q

(√
(| ei |2 +e∗i n̄i + ein̄∗

i )2

2|ei|2Σii

)
, (3.11)

where n̄i is the ith element of noise mean n̄ and Σii is the (i, i)th element of noise

covariance matrix Σ in (3.10). At high signa-to-noise ratio (SNR), i.e., when σ2
w is much

smaller than 1, Eq. (3.11) can be approximated as:

P (si → s̃i | H) ≈ Q

(√
| ei |2

2σ2
wC̃ii

)
, (3.12)
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where C̃ii is the (i, i)th element of (HHH + σ2
wINt)

−1. It is ready to verify that C̃ii

has the same degrees of freedom as Cii in (3.6). This shows that MMSE detector can

achieve the same diversity as ZF detector:

Proposition 5 Given the model in (3.1), if the channels are i.i.d. complex Gaussian

distributed, then MMSE equalizer in (3.8) exists with probability one and the diversity

order for the system is Nr − Nt + 1.

In general, the MMSE equalizer outperforms the ZF equalizer with larger coding ad-

vantage because C̃ii is always less than Cii. Furthermore, if we spell out C̃ii and Cii,

for the same SNR, as the number of receive-antennas (Nr) increases, the performance

gap between MMSE and ZF detectors decreases. In [21], it has been shown that certain

linear precoded OFDM systems can also achieve maximum diversity by linear equaliz-

ers. However, here we have shown that linear equalizers for V-BLAST systems can only

achieve diversity order Nr −Nt +1, which is less than the maximum diversity Nr. In the

following, we show that using lattice reduction methods, we can restore the maximum

diversity order Nr.

3.3 LR-Aided Linear Equalizers

The performance of LR-aided linear detectors for V-BLAST system is established

in the following proposition:

Proposition 6 The diversity order collected by a Lattice-Reduction aided linear detector

(LR-aided ZF or LR-aided MMSE) for an MIMO V-BLAST system with Nt transmit-

antennas and Nr receive-antennas is Nr, which is the same as that obtained by maximum-

likelihood detector.
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The proof is similar to that of Proposition 3. What we need to prove is P{|hmin| ≤ ε} ≤

chε2Nr , where hmin is the vector with the minimum norm of all the vectors in the lattice

spanned by H. Since all the entries of H are i.i.d. complex Gaussian random variables

with zero-mean, the rank of E[hnhH
n ] is Nr for n ∈ [1, Nt]. Furthermore, the Nt columns

are linear independent with each other on the Gaussian integer ring with probability

one. Thus, according to Corollary 1, we can obtain that P{|hmin| ≤ ε} ≤ chε2Nr . Then

following the proof of Proposition 3, we can see, for V-BLAST systems LR-aided ZF

equalizer can collect diversity Nr, which is the same as that exploited by ML detection.

3.4 Simulation Results

In this section, we use computer simulations to verify our theoretical claims on the

diversity order of linear equalizers and the performance of LR-aided linear equalizers for

V-BLAST systems. The channels are generated as i.i.d. complex Gaussian variables

with zero mean and unit variance. The SNR is defined as symbol energy per transmit-

antenna versus noise power.

Example 1 (Diversity collected by linear equalizers): The ZF and MMSE equal-

izers in (3.3) and (3.8) are considered for V-BLAST systems in this example. We consider

Nt = 2 transmit-antennas, and different numbers of receive-antennas Nr = 2, 3, 4. BPSK

is used as the modulation scheme. The bit-error rate (BER) versus SNR is depicted in

Figure 3.1. Reading the slopes of the curves in Figure 3.1, we observe that the diversity

orders enabled by either ZF or MMSE equalizer are indeed Nr − Nt + 1, which in this
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Figure 3.1: BER of systems with Nt = 2 and Nr = 2, 3, 4 separately and BPSK modu-
lation

example are 1, 2, and 3. Furthermore, we observe that the performance of MMSE detec-

tion is better than ZF detection and the gap between them decreases as Nr increases.

Example 2 (LR-aided linear equalizers): In this example, we fix the number of

transmit- and receive-antennas as Nt = 3, Nr = 4, and use QPSK as the modulation

scheme. Five detection methods are applied to the system: ZF detection, MMSE de-

tection, complex LR-aided ZF detection, complex LR-aided MMSE detection and ML

detection. Observing Figure 3.2, we notice that the linear detectors can only achieve the

diversity order Nr − Nt + 1 which is 2 in this case. The ML detector enables diversity

order Nr = 4. As expected, the LR-aided linear detectors achieve the same diversity

order as the ML does. The performance gap between LR-aided linear detectors and ML

36



0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR in dB

S
E

R

ZF Detection
LR−aided ZF Detection
MMSE Detection
LR−aided MMSE Detection
ML Detection

Figure 3.2: SER of a system with (Nt, Nr) = (3, 4) and QPSK modulation

detector is because the LLL algorithm cannot perfectly diagonalize the channel matrix.

Example 3 (Complex LLL algorithm): As shown in Chapter 2, we have extended

the LLL algorithm to complex field for any number of transmit-antenna. The detailed

CLLL algorithm can be found in Appendix B. In this example, we compare the complex

LLL algorithm with the real LLL algorithm in terms of complexity and performance. The

arithmetic operations we count are the number of real additions and real multiplications.

In Figure 3.3, we count the average number of arithmetic operations needed by the

complex and real LLL algorithm separately as Nr = Nt = n increases. We can see

that the complexity of the real LLL algorithm is about O(n4) which is consistent with

the result in [10]. The number of arithmetic operations that the real LLL algorithm
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Figure 3.3: Complexity comparison between complex LLL and real LLL algorithms

needs is about 1.5 times of that of the complex LLL algorithm. Therefore, the complex

LLL algorithm is more efficient. In Figure 3.4, we also compare the performance of

complex LR-aided and real LR-aided schemes. It can be seen that complex LR-aided

linear equalizers have the same performance as the real ones. So we can see, with

lower complexity and the same performance, complex LLL algorithm is computational

preferable to real LLL algorithm.

38



0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR in dB

S
E

R

ZF
Complex−LR−aided ZF
Real−LR−aided ZF
ML

Figure 3.4: Performance comparison between the complex and real LLL algorithms with
(Nt, Nr) = (4, 4)
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Chapter 4

EXTENSION TO MIMO-OFDM SYSTEMS

As we have shown, linear equalizers can not exploit the multipath diversity for LLP-

OFDM systems, however, after introducing the LR technique into the linear equalization

process, multipath diversity is collected. In this chapter, we see similar situation happens

to the MIMO-OFDM designs. The block diagram of MIMO-OFDM is depicted in Fig.4.1.

There are Nr receive-antennas and Nt transmit-antennas, and the frequency-selective

wireless links between transmit- and receive-antennas have the same channel order L.

The channel taps of the link between the µth transmit-antenna and the νth receive-

antenna are denoted as h
(ν,µ)
l for l ∈ [0, L] and ν ∈ [1, Nr], µ ∈ [1, Nt]. xµ

n(p) represents

the symbol transmitted on the pth subcarrier from the µth transmit-antenna in the nth

OFDM time slot while yν
n(p) is received at the νth receive-antenna on the pth subcarrier

in the nth OFDM slot.

There are many coding schemes designed for MIMO-OFDM and different designs

will present different performance even with the same equalizers. In this section, we will

use two coding schemes: full-diversity-full-rate (FDFR) design in [13] and space-time-

frequency (STF) design in [11] as examples to show the diversity that linear equalizers

and LR-aided linear detection methods can collect.

4.1 FDFR-OFDM

Multi-antenna systems not only provide space diversity, but also boost transmission

rate. FDFR design has been introduced to enjoy both advantages [13]. When channels

40



Figure 4.1: Block Diagram of MIMO-OFDM

are frequency-selective, FDFR design can be combined with OFDM to reduce the equal-

ization complexity and collect diversity to combat fading. However, the main price paid

here is decoding complexity (see [13] for details). In the following, we briefly introduce

the FDFR-OFDM design and then give the performance analysis when linear equalizers

or LR-aided equalizers are employed.

Let y(p) ∈ CNr×1 represent the symbol vector received through Nr receive-antennas

on the pth subcarrier. By stacking y(p), p ∈ [0, Nc − 1] (Nc is the number of total sub-

carriers which we assume to be Nt(L+1) for simplicity) into one symbol vector, the I/O

relationship of FDFR design is represented as:


y(0)

...

y(Nc − 1)

 =


H(0)(P 1Dβ) ⊗ θT

1

...

H(Nc − 1)(P NtDβ) ⊗ θT
Nc

 s +


w(0)

...

w(Nc − 1)

 = HFDFRs + w, (4.1)

where the permutation matrix Pn and the diagonal matrix Dβ are defined as:

P n :=

 0 In−1

INt−n+1 0

 , Dβ := diag[1, β, . . . , βNt−1], (4.2)
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and scalar β can be found in [13], H(p), p ∈ [0, Nc − 1] is the MIMO channel matrix on

the (p +1)st sub-carrier with the (ν, µ)th entry H(ν,µ)(p) =
∑L

l=0 h
(ν,µ)
l e−j 2πpl

Nc , θT
n is the

nth row of Nc ×Nc LCF encoding matrix Θ and s comprises N2
t (L+1) symbols. Based

on this system model, we first summarize the results for FDFR design as follows:

Proposition 7 Considering an FDFR-OFDM system with Nt transmit-antennas and

Nr receive-antennas, and the frequency-selective channel order of L, given the model in

(4.1), if the channel taps are independently complex Gaussian distributed with zero mean,

then the ZF equalizer exists wp1 and collects diversity order Nr − Nt + 1. An LR-aided

ZF equalizer exists wp1 and collects full diversity NrNt(L + 1) which is the same as that

exploited by ML detector.

According to the design of β and Θ in [13] and the structure of HFDFR, it is not

difficult to verify that HFDFR has full rank wp1, which means ZF equalizer exists wp1

for the model given in (4.1). Following the general proof of Proposition 1, we can express

the error probability of the FDFR design using ZF equalizer as:

P (si → s̃i | HFDFR) = Q

(√
|ei|2

2σ2
wCii

)
. (4.3)

where Cii is the (i, i)th entry of the matrix C = (HH
FDFRHFDFR)−1. Given HFDFR

as in (4.1) we can get the specific form of Cii as:

Cii =
1
Nc

Nc−1∑
p=0

Ckk(p) =
1

Nc

Nc−1∑
p=0

1
C−1

kk (p)
, k = (m + p) −

(⌈
m + p

Nt

⌉
− 1

)
Nt (4.4)
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where m =
⌈

i
Nc

⌉
and Ckk(p) is the (k, k)th entry of the matrix C(p) = (HH(p)H(p))−1.

Thus, we can bound Cii as:

1
NcC

−1
kckc

(c)
≤ Cii ≤

1
min

0≤p≤Nc−1
C−1

kk (p)
(4.5)

Here c is a constant number, c ∈ [0, Nc − 1] and kc is determined by c and i. As stated

in Appendix. D, C−1
kk (p) is a Chi-square random variable with degrees of freedom of

2(Nr − Nt + 1). With the error probability expressed in (4.3), by using Lemma 1, the

outage probability can be bounded as:

(Nr − Nt + 1)Nr−Nt

Γ(Nr − Nt + 1)

(
2σ2

wγth

Nc|ei|2

)Nr−Nt+1

≤ P (γ < γth) ≤ cu

(
2σ2

wγth

|ei|2

)Nr−Nt+1

. (4.6)

So we can obtain that the diversity order of ZF equalizer for FDFR design is Nr−Nt +1.

Regarding the performance of LR-aided ZF equalizer for FDFR designs, the proof is

similar to that for Proposition 3. We only need to prove P{|hmin|2 ≤ ε} ≤ chεNrNt(L+1),

where hmin is the vector with minimum non-zero norm of all the vectors in the lattice

spanned by HFDFR. Given the system in (4.1), we can write the specific form of the

ith column of HFDFR as :

hi =



H(0)mβ(m−1)Θ1, i−(m−1)Nc

...

H(p)(p+m)−(n−1)Nt
β(m−1)Θp+1, i−(m−1)Nc

...

H(Nc − 1)(Nc+m)−(n−1)Nt
β(m−1)ΘNc, i−(m−1)Nc


, (4.7)
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where m = d i
Nc

e and n = dm+p
Nt

e. H(p)(p+m)−(n−1)Nt
is the ((p + m) − (n − 1)Nt)th

column of the matrix H(p), and Θp+1, i−(m−1)Nc
is the (p + 1, i − (m − 1)Nc)th entry

of the LCF encoder Θ. Since β(m−1)Θp+1, i−(m−1)Nc
is deterministic given i and p, the

statistical property of the ith column is determined by H(p)(p+m)−(n−1)Nt
, p ∈ [0, Nc−1],

which is the frequency response of the pth subcarrier of the frequency-selective channels

between the ((p + m) − (n − 1)Nt)th transmit-antenna and Nr receive-antennas. Intu-

itively, the NrNt(L + 1) × 1 vector hi selects L + 1 subcarriers from each of the total

NrNt frequency-selective channels. So the rank of the covariance matrix of each column

is NrNt(L + 1). The N2
t (L + 1) columns are linear independent with each other which

is guaranteed by the LCF encoder Θ and the choice of β in [13]. Thus, similar to LLP-

OFDM, following the proof of Proposition 3, we can get that the diversity order of the

LR-aided linear equalizer for FDFR design is NrNt(L + 1) which is also the maximum

diversity order that the system can achieve.

4.2 STF-OFDM

STF design is also composed of two stages: LCF encoding across subcarriers and ST

multiplexing using ST orthogonal code [20]. For example, when Nt = 2, the 2NgK × 1

symbol vector s is split into 2Ng groups, sn ∈ CK×1, n ∈ [1, 2Ng]. Then, we transmit

every two groups through two transmit-antennas using Alamouti scheme [2] after encod-

ing the symbol blocks sn with the K×K LCF encoding matrix Θ. The I/O relationship
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for each group is:


yn(0)

...

yn(K − 1)

 =


|H(0)|

. . .

|H(K − 1)|

Θsn + ŵ = HSTF sn + ŵ. (4.8)

where ŵ is the equivalent white Gaussian noise vector, and

|H(p)|2 =
Nr∑
ν=1

Nt∑
µ=1

|H(ν,µ)(p)|2 =
Nr∑
ν=1

Nt∑
µ=1

∣∣∣∣∣
L∑

l=0

h
(ν,µ)
l e−j 2π p l

K

∣∣∣∣∣
2

. (4.9)

Based on this system model in (4.8), we apply the ML detection or SD method to get

the estimation of information symbols ŝn. According to [11], when the group length K

is greater than or equal to L + 1, these optimal and near optimal detectors exploit the

full diversity NrNt(L + 1).

Given the model in (4.8), we can see that the ZF equalizer for the STF design

exits with probability one. Since (4.8) has the same form as (2.2), we can get the

error probability as in (2.7), where Cii now is the (i, i)th entry of the matrix C =

(HH
STF HSTF )−1. Similarly, we can bound Cii as:

1
K

1
|H(c)|2

≤ Cii =
1
K

K−1∑
k=0

1
|H(k)|2

≤ 1
min

0≤k≤K−1
|H(k)|2

, (4.10)

where c is a constant in [0,K − 1]. Since |H(p)|2 is the summation of NrNt independent

Chi-square random variable with degrees of freedom 2 as shown in (4.9), according to

[15], |H(p)|2 still performs like a Chi-square random variable with degrees of freedom
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2NrNt. Following the proof of Proposition 3, we can bound the outage probability as:

(NrNt)NrNt−1

Γ(NrNt)

(
2σ2

wγth

K|ei|2

)NrNt

≤ P (γ < γth) ≤ cu

(
2σ2

wγth

|ei|2

)NrNt

(4.11)

So, the diversity order that the ZF equalizer can exploit for STF design is NrNt.

To show that the diversity order collected by LR-aided ZF equalizer for STF design

is NrNt(L + 1), we need to show for the lattice spanned by HSTF , P{|hmin|2 ≤ ε} ≤

chεNrNt(L+1), where hmin is the vector with minimum non-zero norm of all the vectors in

the lattice. In other words we need to make sure the three conditions in Corollary 1 are

satisfied. Obviously, all the entries in HSTF are complex Gaussian distributed with zero

mean. From (4.8), we can see that the kth column of the equivalent channel matrix HSTF

of the system is hk = diag [|H(0)|, . . . , |H(K − 1)|]θk, k ∈ [1,K], the square norm of

which is a Chi-square random variable with degrees of freedom 2NrNt(L + 1), where θk

is the kth column of Θ. Further, because of the linear independence of LCF encoding

matrix Θ, all the columns of the equivalent channel matrix HSTF are linear independent

with each other. So according to Corollary 1, we have P{|hmin| ≤ ε} ≤ chε2NrNt(L+1).

Thus, following the proof of Proposition 3, we can get that the diversity order of LR-aided

ZF equalizer for STF design is NrNt(L+1). The results for STF design are summarized

in the following proposition:

Proposition 8 Consider an STF-OFDM system with Nt transmit-antennas and Nr

receive-antennas, and the frequency-selective channel order of L. Given the model in

(4.8), if the channel taps are independently complex Gaussian distributed with zero mean,

then ZF equalizer in (2.3) exists wp1 and exploits diversity order NrNt. For STF design,
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Figure 4.2: Comparison among different equalizers for FDFR design

an LR-aided ZF equalizer collects diversity order NrNt(L + 1) which is the same as that

obtained by ML detector.

4.3 Simulation Results

Example 1 (Performance comparison of different equalizers for FDFR): Con-

sider a multiantenna system with Nt = Nr = 2 and frequency-selective channel order

L = 1. Five detectors are employed respectively on model (4.1): ZF, MMSE, LR-aided

ZF, LR-aided MMSE detectors and sphere decoder (SD). QPSK modulation is used for

modulation. The BER versus SNR performance is depicted in Figure 4.2. It shows that

the linear detectors (ZF, MMSE) can only achieve diversity Nr − Nt + 1 = 1. How-

ever, the LR-aided linear detectors achieve maximum diversity NrNt(L + 1) = 8 with
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Figure 4.3: Comparison among different equalizers for STF design

much lower complexity than the SD detector though there exists a gap between SD and

LR-aided linear detectors.

Example 2 (Performance comparison of different equalizers for STF): STF de-

sign is simulated and 16-QAM is chosen as symbol modulation scheme. We use the chan-

nel configuration in previous example. ZF, LR-aided ZF and SD equalizers are applied

to the system model in (4.8). Performance of different equalizers is plotted in Figure

4.3. Reading the slopes of the curves in Figure 4.3, we observe that the diversity orders

for ZF equalizer is indeed NrNt = 4 while LR-aided ZF equalizer can achieve maximum

diversity NrNt(L + 1) = 8, the same as SD. Note that Figure 4.3 also shows that if the

spatial diversity order (NtNr) is high, linear equalizers achieve similar performance as

SD for a large SNR range.
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Chapter 5

CONCLUDING REMARKS AND FUTURE RESEARCH DIRECTIONS

In this thesis, we have discussed the performance in terms of diversity of linear

detectors for LLP-OFDM systems, V-BLAST systems and two MIMO-OFDM designs.

It shows that conventional linear equalizers can only collect diversity 1 for LLP-OFDM

systems and Nr −Nt +1 for V-BLAST systems though they have the lowest complexity.

For MIMO-OFDM designs, it depends on the ST coding schemes. However, with slightly

increased complexity, LR-aided linear equalizers achieve maximum diversity for LLP-

OFDM, V-BLAST and MIMO-OFDM designs, which is the same as that collected by

ML detector. The complexity of LR-aided linear equalizers is much lower than those of

ML and near-ML detectors.

Based on this thesis, future research directions are listed but not limited as follows:

First, the performance analysis in terms of coding gain will be studied. Based on

our simulation results, it has been shown that although LR-aided equalizers achieve the

same diversity as ML does, there still exists a performance gap which is mainly due to

coding gain loss. In this research thrust, we will first quantify the coding gain of LR-

aided linear equalizers and then try to modify the equalizers to reduce the performance

gap with ML. Furthermore, we will study the performance of coded linear systems with

LR-aided decoding and compare the performance and complexity with other alternatives

in the literature.

Another future research direction is the study of the orthogonality deficiency of the

equivalent channel matrix for wireless communications. As we know, for linear systems,
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when the equivalent channel matrix is diagonal, the performance of ZF equalizer is the

same as that of ML detector. However, in general the channel matrix Hequ is not

diagonal, and thus linear equalizers have inferior performance. Orthogonality deficiency

describes how “diagonal” a matrix is. So the study of orthogonality deficiency provides a

useful tool to quantify the diversity and coding gains of linear equalizers. Furthermore,

how it will affect the performance of linear equalizations may guide us to construct

the coding schemes to reach full diversity and high coding gain when linear equalizers

are adopted at the receiver. Hybrid equalizers will also be designed to trade-off the

performance with complexity.
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APPENDIX A: Proof of Lemma 1

Suppose the joint probability density function (pdf) of Xn’s is f(x1, x2, . . . , xN ).

The cumulative density function (cdf) of Xmin is:

F (v) = P (xmin < v) = 1 − P (xmin ≥ v)

= 1 −
∫ ∞

v
dx1

∫ ∞

v
dx2 · · ·

∫ ∞

v
f(x1, x2, . . . , xN )dxN . (1)

Then, we can obtain the pdf of Xmin by taking the derivative of the cdf:

f(v) =
d

dv
F (v) = −

∫ ∞

v
dx1

d

dv

(∫ ∞

v
dx2 · · ·

∫ ∞

v
f(x1, x2, . . . , xN )dxN

)
+

∫ ∞

v
dx2 · · ·

∫ ∞

v
f(v, x2, . . . , xN )dxN

=
N∑

n=1

∫ ∞

v
dx1 · · ·

∫ ∞

v
dxn−1

∫ ∞

v
dxn+1 · · ·∫ ∞

v
f(x1, · · · , xn−1, v, xn+1 . . . , xN )dxN

≤
N∑

n=1

fXn(v), (2)

where fXn(x) is the pdf of Xn. According to [9, p. 25], we know that for a central

Chi-square random variable Xn with degrees of freedom 2M , we have

P (xn < ε) = 1 − e−ε/2
M−1∑
k=0

(
ε
2

)k

k!
= e−ε/2

∞∑
k=M

(
ε
2

)k

k!
≤

( ε

2

)M
= cM εM ,
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where cM := 2−M is a constant only dependent on M . With this inequality, we can

obtain:

P (xmin < ε) =
∫ ε

0
f(v)dv ≤

∫ ε

0

N∑
n=1

fXn(v)dv ≤
N∑

n=1

cM εM = cuεM , (3)

where cu := NcM . Thus, Lemma 1 is proved. We notice that, Lemma 1 can be general-

ized to Xn’s with other pdfs. ¥

56



APPENDIX B: Complex LLL algorithm

Here, we give the details of complex LLL algorithm in conventional Matlab nota-

tion in the following table.

INPUT: H
OUTPUT: Q, R, T

(1) [Q,R] = QR Decomposition(H);
(2) δ = 0.75;
(3) m = size(H, 2);
(4) T = Im;
(5) k = 2;
(6) while k ≤ m
(7) for n = k − 1 : −1 : 1
(8) u = round((R(n, k)/R(n, n)));
(9) if u ∼= 0
(10) R(1 : n, k) = R(1 : n, k) − uR(1 : n, n);
(11) T (:, k) = T (:, k) − uT (:, n);
(12) end
(13) end
(14) if δ(R(k − 1, k − 1)2) > ‖R(k − 1, k)∗Q(:, k − 1) + R(k, k)∗Q(:, k)‖2

(15) Swap the (k-1) th and k th columns in R and T

(16) Θ =
[

α∗ β
−β α

]
where α = R(k−1,k−1)

‖R(k−1:k,k−1)‖ ; β = R(k,k−1)

‖R(k−1:k,k−1)‖ ;

(17) R(k − 1 : k, k − 1 : m) = ΘR(k − 1 : k, k − 1 : m);
(18) Q(:, k − 1 : k) = Q(:, k − 1 : k)ΘH;
(19) k = max(k − 1, 2);
(20) else
(21) k = k + 2;
(22) end
(23) end

Table 1: The complex LLL algorithm
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APPENDIX C: Proof of Lemma 3

Let x be a vector in the lattice L. Since L is spanned by the columns of H, then x

can be expressed as Ha, where a is an N × 1 column vector with all entries belonging

to Gaussian integer ring. So based on the definition of hmin, we can obtain:

hmin = arg min
x∈L, x 6=0

|x|2 = HaH , (4)

where aH ∈ Z[
√
−1]N×1. By defining an MN × 1 vector h = [hT

1 , . . . , hT
N ]T , we have:

|hmin|2 = |HaH |2 = hH(IM ⊗
(
(aT

H)HaT
H

)
)h = hHAHh, (5)

where AH = IM ⊗
(
(aT

H)HaT
H

)
. Suppose that the correlation matrix of the channel

vector is E[hhH] = Rh. The singular-value decomposition (SVD) of Rh is UhΛhUH
h

where Uh is a unitary matrix and Λh is a diagonal matrix with all singular values.

Suppose rank(Rh) = Rh and define an Rh × 1 vector h̃ with i.i.d. entries. Then h and

UhΛ
1
2
h h̃ have identical distribution and thus the same statistical properties. Similar to

pairwise error probability (PEP) analysis in [18] and [22], we can get an upper bound

for the probability that |hmin| is less than ε by averaging (5) with respect to the random

basis H:

P (|hmin|2 ≤ ε) = P (h̃
H
Λ

1
2
h UH

h AHUhΛ
1
2
h h̃ ≤ ε) ≤ chεD, (6)
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where

D = min
∀aH

rank(RhAH).

Since H are complex Gaussian distributed, the set of possible aH can be the whole

Gaussian integer ring. Thus, we can represent D as

D = min
∀p6=0

rank(E(ppH)). (7)

¥
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APPENDIX D: Proof of Proposition 4

In (3.7), we have defined that C = (HHH)−1. By properly permutating H to

[hi, H i], where hi is the ith column of H and H i denotes the rest columns, we obtain

that

C = (HHH)−1 = P

 hH
i hi hH

i H i

HH
i hi HH

i H i


−1

P T ,

where P is a permutation matrix such that HP = [hi H i]. Based on the matrix

inversion lemma, we know that the (i, i)th element of C is

Cii =
(
hH

i hi − hH
i H i

(
HH

i H i

)−1
HH

i hi

)−1
. (8)

Suppose the singular value decomposition (SVD) of H i is H i = V DUH, where V

is an Nr × (Nt −1) unitary matrix, D is an (Nt −1)× (Nt −1) diagonal matrix and U is

an (Nt − 1) × (Nt − 1) unitary matrix. Plugging this SVD result into (8), we are ready

to verify that:

H i(HH
i H i)−1HH

i = V V H.

It is straightforward to see that the rank of V V H is Nt − 1. More specifically, V V H is

an Nr × Nr matrix whose eigenvalue decomposition can be written as:

V V H = Ṽ

 INt−1 0Nt−1,Nr−Nt+1

0Nr−Nt+1,Nt−1 0Nr−Nt+1,Nr−Nt+1

 Ṽ
H

,
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where Ṽ is an Nr × Nr unitary matrix with the first Nt − 1 columns same as V . This

is because the matrix V V H has the same non-zero eigenvalues as V HV . Therefore, we

can verify

C−1
ii = hH

i (INr − V V H)hi

= hH
i Ṽ

 0Nt−1 0Nt−1,Nr−Nt+1

0Nr−Nt+1,Nt−1 INr−Nt+1,Nr−Nt+1

 Ṽ
H

hi.

It can be seen that the number of degrees of freedom in C−1
ii is 2(Nr − Nt + 1). Fur-

thermore, C−1
ii is a chi-squared random variable with 2(Nr −Nt +1) degrees of freedom,

because the channel coefficients are complex Gaussian distributed. As shown in [22], if

we integrate the right side of (2.7) with respect to this random variable, we obtain that

the diversity order is equal to Nr − Nt + 1. This means the diversity order of the ZF

detection is Nr − Nt + 1. ¥
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