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Abstract 

 

Piezoelectric energy harvesting from vibrations is a field that has gathered much attention 

over the past decade. The purpose of this application is to realize ambient sources of kinetic 

energy such as vibrations, and turn them into useful electrical energy for powering low powered 

sensor nodes. The most typical form of piezoelectric energy harvesting comes from cantilevered 

bimorphs. These bimorph structures are typically rectangular in shape with a tip mass, resonating 

in the fundamental mode of vibration. This creates a stress concentration near the fixed end of 

the cantilever, which linearly decreases towards the free end, hence creating an inefficient 

system. In order to improve this scenario by achieving a constant axial strain profile through the 

length of the geometry, tapered cantilevered bimorphs have been proposed in literature. 

However, an exhaustive set of experimental data and proper characterization, with appropriate 

constraints such as matching resonance frequency to prove this concept is elusive.  

In this dissertation, the effect of changing the geometry from rectangular cantilevered 

bimorphs into triangular ones with matching resonance frequency and volumes is presented. It is 

shown that for tapered geometry with matching volume and resonance frequencies, triangular 

bimorphs operate at lower maximum stresses, and provide enhanced electromechanical coupling 

coefficients. With enhanced electromechanical coupling coefficients, the impedance at resonance 

is lower, providing a smaller optimal load resistance value from which power can be extracted at 

lower currents. The absolute values of peak capacitance are also enhanced, with larger positive 

capacitance peaks and smaller negative capacitance peaks for triangular cantilevers as compared 

to rectangular counterparts. Studies for damping ratios as a function of load resistance also show 

damping ratios at optimal load resistance values indicate optimal damping ratios for power 

generation exist for high coupling systems. With increased electromechanical coupling and 

damping, triangular bimorphs provide higher electromechanical coupling figure of merits, when 

they can be compared with matching size, proof mass, and frequencies. 
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CHAPTER 1: INTRODUCTION 

 

With the developments and incredible advancements in silicon technology, and 

developments of devices such as MEMS or NEMS (micro or nano- electro mechanical systems), 

electronic devices are seeing very high levels of integration. [1, 2]. Examples of these very 

highly integrated devices include multigate transistors such as FinFETs. With such high levels of 

integration and complexity, electronic devices are comprised of a vast number of individual 

sensor nodes [1] that are connected to larger wireless networks. These sensor nodes individually 

require low levels of power for operation, which fall in the micro- to milli-watt range. In order to 

power these nodes, traditional solutions have utilized electrochemical batteries, which can be 

tedious and expensive to replace, and in some cases impractical, especially when sensors are 

placed in remote locations [3]. A scenario such as this could be presented when sensors for 

detection of harmful gases such as CO, CO2, ozone, tri-cresyl-phosphate (TCP) are placed on 

board an airliner in the passenger cabin, or in the bleed air system of the aircraft, which would be 

a highly inaccessible location [4]. In such cases, it would be very desirable to power up sensors, 

or other such devices requiring low levels of power using a method alternative to batteries. 

Some alternative solutions to batteries that have been presented, as reviewed by Roundy 

et al [5, 6] and Cook-Chennault [7] include micro-batteries, micro-fuel cells, micro-turbine 

generators, micro-heat engines; but these may require a source for fuel. In certain cases, they 

might not have the desired efficiency, or may be expensive and cumbersome to integrate into low 

powered sensor nodes. Truly renewable sources of energy that are completely regenerative 

would utilize sources that are present within the sensors vicinity such as light, thermal or kinetic 

energy in the environment. Photovoltaics for solar panels, and thermoelectric motors could 

provide solutions, but the sources of energy required for their operation are insufficient in indoor 

applications. Other sources of energy to consider could be kinetic energy in the environment; 

such as ambient vibrations. [6, 7].  

Vibrations are ubiquitous in the environment in the form of noise from various machines 

such as microwave ovens, HVAC ducts, or on mobile structures such as automobile engines or 
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airplanes. Such ambient noise sources typically vibrate from 60 Hz for HVAC ducts to 240 Hz 

for a refrigerator, with peak acceleration amplitudes ranging from 0.1 ms
-2

 for a refrigerator to 10 

ms
-2

 for the base of a 5 horsepower 3-axis machine tool [6]. A publication depicting a study for 

identification of vibration from various objects and instruments is provided in [8], and also 

mentioned in [1, 6], which have been characterized in [9]. Such vibrations can also be harnessed 

from human motion such as walking [10], or even heartbeats as well [11], which are 

characterized by low frequency, high amplitude displacements. Therefore, there is a great 

opportunity to harness these vibrations, which are forms of ambient kinetic energy in the 

mechanical form, and convert them into usable electric energy for powering a sensor node.  

The conversion of mechanical to electrical energy requires an electro-mechanical 

transduction mechanism. Vibration energy is suitable in cases where an inertial frame is attached 

to a vibrating host or generator, which acts as a fixed reference. This vibrating fixed reference 

can transmit vibrations to a suspended inertial mass producing a relative displacement between 

them. Such a system would possess a characteristic resonance frequency, which when matched 

would amplify the relative displacement of the system [12]. Williams and Yates [13] identified 

the use of three different transduction mechanisms in the form of these inertial generators, which 

include electromagnetic, electrostatic, and piezoelectric devices. These transduction mechanisms 

are described individually in [6], and have been compared by Priya [9] in Figure 1. Even though 

electrostatic devices offer easy integration into microelectronics such as CMOS devices, they 

suffer from high impedance, and require mechanical stops. Figure 2 [7], which illustrates 

voltages versus power density for various devices, does not feature electrostatic devices due to 

their high voltages. Electromagnetic devices tend to be somewhat bulky, and require multistage 

post-processing to reach desired levels of voltages [14]. Piezoelectric devices however are less 

bulky, and theoretically provide the largest energy density per volume when compared to other 

inertial generators. They also have a direct voltage output, inherent to the material. Figure 2 [7] 

depicts them as the most versatile in terms of output voltages, and fairly high power densities 

compared to other sources of energy.  
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Figure 1: Comparison of three electromechanical transduction mechanisms [9] 

 

 

Figure 2: Power Density estimates versus operation voltages for various sources of energy [7] 
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Therefore, piezoelectric materials are prime candidates for vibration energy harvesting, 

and the publication of a number of review articles [2, 9, 12, 15-17] within the last 10 years bears 

testament to this exploding area of research. Piezoelectric energy harvesting is usually carried 

out using cantilevered bimorphs, which are heterogeneous structures consisting of two 

piezoceramic layers sandwiching a metallic layer. These devices are attached on a vibrating host 

generating a dynamic strain in the beam, resulting in an alternating voltage across their 

electrodes. This is an inherent property of piezoelectric devices, which is described in the 

following section. 

Cantilevered piezoelectric bimorphs have been widely explored and studied in the past 

decade for energy harvesting from vibrations. In this field, the d31 mode of operation is exploited, 

where the cantilevered bimorph is attached on a vibrating host structure causing longitudinal 

deflections in the bimorph, when resonating in the fundamental mode. This vibration causes 

axial stresses over the surfaces of the bimorphs, while generating charge in the longitudinal 

direction. Most commonly, these axial stresses are concentrated near the fixed end of the beam, 

and linearly decrease towards the free end of the beam. This results in inefficiencies in the 

cantilevered piezoelectric bimorphs wherein only a small portion of the device is engaged in 

generating power. In order to circumvent this inefficiency, the geometry of the cantilevered 

bimorph can be altered. Changing the geometry from a rectangular to triangular bimorph, where 

the wide end of the isosceles triangle is clamped, can result in a linear stress profile [18].  

This concept of tapering geometry and even shape optimization to obtain greater amounts 

of power from a cantilevered device has been presented in a few studies, which are reviewed in 

the following section. However, changing the geometry usually affects the resonance frequency 

of the device, yielding results that are difficult to compare with rectangular counterparts. 

Moreover, the effect of changing geometry on various important parameters such as 

electromechanical coupling coefficients, impedance, capacitance, and damping ratios are elusive 

in literature. Therefore, in this dissertation, various sets of rectangular and triangular cantilevered 

piezoelectric bimorphs with matching volumes and resonance frequencies are found and 

experimentally characterized for these parameters. The tests are conducted with piezoelectric 

bimorphs with varying degrees of proof masses into varying load resistances. It is shown that 

triangular devices with the given constraints of matching volume and resonance frequency 

operate with lower values of maximum stress, resulting in larger electromechanical coupling 
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coefficients (k31), and larger electromechanical coupling figure of merits (k
2
Qm). It is also shown 

that with these larger coupling coefficients, the triangular devices are more electrically 

compliant, since they provide lower impedance values at resonance, and larger impedance values 

at anti-resonance. The capacitance characteristics in the frequency domain are also measured, 

indicating larger absolute values of positive and negative capacitance peaks in the case of 

triangular bimorphs, compared to their rectangular counterparts. Therefore, the dissertation 

reports an exhaustive electronic characterization of these materials, which so far have only been 

partly reported in literature, mostly by means of numerical studies, showcasing the effects of 

electronic parameters such as k31 and Qm from a hypothetical point of view. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Brief introduction to piezoelectricity and piezoelectric bimorphs 

The phenomenon of piezoelectricity was famously found by the Curie family in 1880. 

This effect occurs in a special class of crystal structures, which is among the 21 non centro-

symmetric point groups. In these materials, when the crystal is strained, it becomes electrically 

polarized, and the degree of polarization is proportional to the applied strain [7, 12]. This 

behavior is seen in single crystal materials such as Quartz and Rochelle salt. Engineering 

materials that have a perovskite crystal structure, as shown in Figure 3 gives rise to strong levels 

of piezoelectricity below the Curie temperature, where they maintain non-centrosymmetry. The 

most common examples of materials that possess the perovskite structure include Barium 

Titanate (BTO) and Lead Zirconate Titanate (PZT), which contain two cations and an oxygen 

atom acting as the anion per unit cell. The most commonly used material in the field of 

piezoelectric energy harvesting are versions of PZT materials – namely PZT-5A and PZT-5H. 

 

 

Figure 3: Perovskite Structure in PZT [19] 
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Due to the mentioned non-centrosymmetry, piezoelectric materials exhibit anisotropic 

characteristics in terms of stress, strain, compliance, stiffness, permittivity and piezoelectric 

coefficients. These are related to the orientation of the ceramic material and the direction of 

measurements and applied stresses/forces. Therefore, these properties are reported in tensor 

forms.  The constitutive equations [20, 21] that describe the piezoelectric effect are as follows: 

𝑆𝑖𝑗 = 𝑠𝑖𝑗𝑘𝑙
𝐸 𝑇𝑘𝑙 + 𝑑𝑘𝑖𝑗𝐸𝑘 (1) 

𝐷𝑖 = 𝑑𝑖𝑘𝑙𝑇𝑘𝑙 + 𝜀𝑖𝑘
𝑇 𝐸𝑘 (2) 

where,  

𝑆𝑖𝑗 is strain,  

𝑠𝑖𝑗𝑘𝑙
𝐸  is elastic compliance at constant electric field,  

𝑇𝑘𝑙 is stress,  

𝐸𝑘 is the electric field,  

𝐷𝑖 is dielectric displacement component,  

and 𝜀𝑖𝑘
𝑇  is the permittivity of the material at constant stress.  

The subscripts indicate the tensor notation.  

𝑑𝑘𝑖𝑗, the piezoelectric coefficient is one of the most important properties, which is a third rank 

tensor. This property is a representation of the charge developed based on the applied stress, or 

the strain developed based on the applied electric field. Hence, it can be represented as [12]: 

𝑑 =
𝑠ℎ𝑜𝑟𝑡 𝑐𝑖𝑟𝑐𝑢𝑖𝑡 𝑐ℎ𝑎𝑟𝑔𝑒 𝑑𝑒𝑛𝑠𝑖𝑡𝑦

𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑠𝑡𝑟𝑒𝑠𝑠
𝐶/𝑁 (3) 

𝑑 =
𝑠𝑡𝑟𝑎𝑖𝑛 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑒𝑑

𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑓𝑖𝑒𝑙𝑑
𝑚/𝑉 (4) 

The reduced piezoelectric coefficient is represented as 𝑑𝑖𝑗, where i is the direction of 

poling, and j is the direction of stress. Since the magnitude of stress/strain defines how much 

charge can be extracted from a piezoelectric material, the mode of operation is based on the 

direction of stress. These directions are based on the Cartesian coordinate system as represented 

in Figure 4. There are three major modes of operation: 𝑑31, 𝑑33 and 𝑑15, which are based on an 

indicial Cartesian system, as shown in Figure 4. Therefore, it can be observed that the d31 mode 

is one where the voltage acts in the 3 direction, which is considered as the longitudinal direction 

that is parallel to the applied electric field or voltage; and the resulting stresses act in the 1 

direction, which is the axial direction. The d33 mode is such that the stress and voltage both act in 
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the same longitudinal direction. The d15 mode is a shear mode, where the voltage acts in the 1 

direction, while the material is sheared in the 5 direction. Piezoelectric coefficients for 

commonly used piezoelectric materials are represented in Table 1.  

 

Figure 4: Cartesian Coordinate System for Piezoelectric Materials [22] 

 

Typically, for commonly used PZT materials such as PZT-5A and PZT-5H, d15>d33>d31. 

However, the shear mode is very difficult to realize in brittle ceramics such as PZT. The d33 

mode is realized by the use of interdigitated electrodes. The most commonly used mode of 

operation is the d31 mode due to its ease of application while utilizing a piezoelectric cantilevered 

device. The d31 mode of operation is the main focus of this research. The reduced constitutive 

equations for this mode of operation are given as follows [23]: 

𝑆1 = 𝑠11
𝐸 𝑇1 + 𝑑31𝐸3 (5) 

𝐷3 = 𝑑31𝑇1 + 𝜀3
𝑇𝐸3 (6) 

Another important property of piezoelectric materials that is not included in the 

constitutive equations is its electro-mechanical coupling coefficient, which for piezoelectric 

materials is a third rank tensor. By definition, the coupling coefficient relates the total energy put 

into a system to the amount of energy that is converted by the transducer. It is similar to the 

efficiency of the material in context, and therefore, describes how efficiently the input 

mechanical energy is converted into electrical energy. In the absence of a load such as a resistor 

on the output of the transducer, the ratio of the input to the output energy is equal to the square of 

the coupling coefficient [24]. Therefore, it can be mathematically represented as [12]: 
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𝑘𝑖𝑗
2 =

𝑊𝑖
𝑒

𝑊𝑗
𝑚 

7 

where 𝑊𝑖
𝑒 is the electrical energy stored at the output port of the transducer in the i axis, and 

𝑊𝑗
𝑚 is the mechanical energy input into the system in the j axis. Typical k33 and k31 values for 

common piezoelectric materials are also included in Table 1. 

 

Table 1: Coefficients of common piezoelectric materials [6, 14] 

Property PZT-5H PZT-5A BaTiO3 PVDF 

d33 (10
-12

 C/N) 593 374 149 -33 

d31 (10
-12

 C/N) -274 -171 75 23 

k33 0.75 0.71 0.48 0.15 

k31 0.39 0.31 0.21 0.12 

Relative Permittivity (ε/ε0) 3400 1700 1700 12 

 

The electromechanical coupling coefficient reported in Table 1 however is based on 

unconstrained conditions, such as a freestanding beam, or a bar-like shaped bulk material where 

the resonance frequency of the device is very high. In conditions where the boundary conditions 

can cause the resonance frequency of the device to be closer to the frequency of operation, the 

electromechanical coupling coefficient is greatly affected, and deviates from theoretical, or 

manufacturer furnished values. In such cases, the electromechanical coupling coefficient can be 

calculated based on the resonance and anti-resonance frequency of the device, or the open-circuit 

and short-circuit resonance frequency of the device, given as [25]: 

𝑘2 = 1 − (
𝑓𝑟

𝑓𝑎
)

2

 
(8) 

where 𝑓𝑟 is the resonance frequency of the device, and 𝑓𝑎 is the anti-resonance frequency of the 

device. These values can be obtained from impedance spectroscopy, which are explained in the 

methodology section. 

In a similar fashion, the electromechanical coupling coefficient can also be calculated 

from the open circuit and short circuit resonance frequencies as [6]: 

𝑘2 =
𝜔𝑂𝐶

2 − 𝜔𝑆𝐶
2

𝜔𝑂𝐶
2

 
(9) 
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where, 𝜔𝑂𝐶 is the resonance frequency of the device in open-circuit conditions, and 𝜔𝑆𝐶  is the 

resonance frequency of the device under short circuit conditions.  

Therefore, as mentioned earlier, the piezoelectric coefficients in the d33 mode are higher 

than in d31 mode, and the higher coupling coefficients also illustrate that the longitudinal mode is 

theoretically more efficient. However, this mode is more difficult to realize since piezoelectric 

materials such as PZT are brittle, and under compression they can crack when mechanically 

strained beyond certain limits. The d31 mode is realized in the form of cantilevered devices, 

where the material is displaced in the direction of poling, and the charge is generated as a 

function of strain in the material, and the cantilevered boundary condition allows for the 

maximum possible strain on a beam or a plate like structure.  

The most commonly used structures for cantilevered piezoelectric energy harvesters are 

piezoelectric bimorphs, which contain two layers of PZT materials that sandwich a metallic 

shim, which is used for structural compliance. The two piezoelectric layers can be poled in 

opposite directions; which is called series poling, or they can be poled in the same direction, 

which is called parallel poling. An illustration for the two poling cases is shown in Figure 5 [26].  

In order to understand the operation of these piezoelectric bimorphs, an electrical 

representation is convenient, as shown in Figure 6 [26]. Each piezoelectric layer is represented as 

a current generating source in parallel with an inherent capacitor. As the cantilevered 

piezoelectric bimorph is bent, the stresses in the surface under tension have a positive sign, and 

the stresses in compression have a negative sign. Therefore, in the case of series poled bimorphs, 

with opposite signs of stress, the voltages generated across the two surfaces have the same sign 

due to opposite polarities, and hence they add together. In the case of parallel poled bimorphs, 

with the stresses having the opposite signs, but with the shim layer being grounded (hence 

requiring an extra electrical connection), the voltages are halved, but the currents add together. 

Regardless of the configurations, the power generated remains the same.  

Due to the simplicity of the series poling in terms of the electrical connections required, 

and the fact that it is associated with higher voltages, series poled bimorphs are chosen for the 

work in this dissertation. 
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Figure 5: Series and Parallel poling in piezoelectric bimorphs [26] 

 

 
a. Series Poling 

 

 
b. Parallel Poling 

 

Figure 6: Electrical representation of (a) Series, (b) Parallel poled piezoelectric bimorphs [26] 
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2.2 Literature Review on Piezoelectric Generators 

Various types of piezoelectric transduction generators have surfaced in the past few 

years. Some of the early studies were performed on impact coupled devices, followed by human 

powered piezoelectric energy harvesting. This was done in order to test the feasibility of 

piezoelectric devices for power generation, and have been mentioned very briefly. 

 

2.2.1 Impact Coupled Devices 

The transduction mechanism for piezoelectric devices requires a form kinetic energy, 

which can be converted into mechanical energy. Some of the early studies that were conducted in 

this area for consideration and validation of the piezoelectric effect were conducted by Umeda et 

al [27], where a 5.5 g steel ball was impacted on a piezoelectric 0.25 mm thick generator, while 

obtaining an efficiency of less than 10% into a resistive load of 10 kΩ. The low efficiency was 

attributed to a loss of energy, which was attributed to the bouncing of the ball. Other impact 

energy experiments that have been conducted have been reviewed in [12]. 

 

Figure 7: Impact on a piezoelectric bulk generator [27] 

 

2.3 Human Powered Piezoelectric Generation 

A study on generating power from humans while walking was conducted by Shenck et al 

[10] which consisted of retrofitting a shoe with piezoelectric devices. The devices were placed 

below the insole of a shoe, consisting of an 8 layer PVDF stave laminated with electrodes 

operating under the d31 mode. At walking frequencies of 0.9 Hz, this device produced an average 

power of 1.3 mW into a 250 kΩ resistive load. With an added PZT dimorph structure under the 

heel as shown in Figure 7, the device is capable of generating an alternating voltage with 

walking, and an average power of 8.4 mW into a 500 kΩ load.  
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Figure 8: Shoe insert power generator [10] 

  

The above studies are examples of power generated using piezoelectric devices upon 

impact or human power as a source of energy. Such studies have been further looked into from 

various authors, as reviewed by Beeby et al [12], which give an illustration of the work done by 

researchers in using piezoelectric devices for power generation.  
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2.4 Energy Harvesting from constant base excitations 

Rather than impact coupled devices as mentioned in the previous section, in recent years, 

various researchers have developed and explored the use of ambient vibrations as a source of 

energy for the generation of electricity using piezoelectric devices. The use of an ambient source 

of kinetic energy such as vibrations to produce power can be depicted by using inertial based 

generators, such as the one realized by Williams and Yates [13] shown in Figure 9. Such systems 

consist of a seismic mass m, on a spring k. When the inertial frame is sinusoidally excited in the 

form 𝑦(𝑡) = 𝑌𝑠𝑖𝑛(𝜔𝑡), the seismic mass undergoes a relative displacement 𝑧(𝑡) with respect to 

the frame. This relative displacement drives a transducer, that is depicted by a damper d, to 

generate electrical energy, and also accounts for the parasitic losses encountered by the system 

based on its damping coefficient.  

 
Figure 9: An interial generator representing an energy scavenging system from vibrations [13] 

 

The equation of motion describing the motion of the mass with respect to the frame due 

to the sinusoidal excitation is given as: 

𝑚𝑧̈ + 𝑑𝑧̇ + 𝑘𝑧 =  −𝑚𝑦̈ (10) 

The steady state solution for the displacement of the mass is given by: 

𝑧(𝑡) =
𝜔2

√(
𝑘
𝑚 − 𝜔2)

2

+ (
𝑑𝜔
𝑚 )

2
𝑌𝑠𝑖𝑛(𝜔𝑡 − 𝜙) 

(11) 

where ϕ is the phase angle given by: 

𝜙 = tan−1 (
𝑑𝜔

𝑘 − 𝜔2𝑚
) (12) 
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The instantaneous power can be calculated as the product of the force acting on the mass 

and its velocity, which can be represented as:  

𝑝(𝑡) = −𝑚𝑦̈[𝑦̇(𝑡) + 𝑧̇(𝑡)] (13) 

Taking Laplace transform for P, we arrive at: 

𝑃 =
𝑚𝜁𝑇𝜔3 (

𝜔
𝜔𝑛

)
3

𝑌2

(1 − (
𝜔

𝜔𝑛
)

2

)
2

+ (2𝜁𝑇
𝜔
𝜔𝑛

)
2
 (14) 

where  

𝜁𝑇 =
𝑑

2𝑚𝜔𝑛
 (15) 

and 𝜔𝑛 is the natural frequency of the system 

If 𝜔 = 𝜔𝑛 then  

𝑃 =
𝑚𝑌2𝜔𝑛

3

4𝜁𝑇
 (16) 

Or, 

𝑃 =
𝑚𝐴2

4𝜔𝑛𝜁𝑇
 (17) 

However, since these are steady state solutions, the maximum power does not tend to 

infinity as damping tends to zero. In fact, the power available from the vibrating structure is 

limited by the undesirable parasitic damping 𝜁𝑝 such as air damping. Therefore 𝜁𝑇 is a 

summation of parasitic damping 𝜁𝑝 and electrical damping 𝜁𝑒 . The expression for power obtained 

can therefore be attained as 

𝑃 =
𝑚𝑌2𝜔𝑛

3𝜁𝑒

4(𝜁𝑒 + 𝜁𝑝)2
 (18) 

or in terms of excitation amplitude as  

𝑃 =
𝑚𝐴2𝜁𝑒

4𝜔𝑛(𝜁𝑒 + 𝜁𝑝)2
 (19) 
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The above model has certain restrictions, wherein certain assumptions are to be made in 

order to apply it to a piezoelectric transducer. One of the major assumptions is that the seismic 

mass is much larger as compared to the system, and acts as the main driving force for the 

generator. In addition, the transducer that is represented by the dashpot is assumed to be a linear 

transducer. These assumptions are a bit crude for a cantilever beam with a small tip mass, but 

important conclusions can be made based on the model that depicts important behavior for the 

piezoelectric generator. These conclusions are provided in the following bullets [6, 13]: 

- Maximum power is generated at the resonance frequency of the system where the 

displacement is maximized. Therefore, a system could be designed where z(t) is maximized 

within allowable limits. 

- Power generated is finite, and reduction in the damping factor results in increased mass 

displacement. 

- However, low damping ratio results in a high peak power concentrated at a particular natural 

frequency. Therefore, an increased bandwidth for power generation can be obtained with 

higher damping factors. 

- Since power generation is inversely proportional to the resonant frequency at a given 

acceleration, the system should be designed to operate at the lowest available fundamental 

frequency.  

- The power generated is proportional to the square of the input acceleration amplitude 
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2.4 Energy Harvesting from Vibrations using piezoelectric cantilever devices 

 The above model is a depiction of a piezoelectric generator in the form of a single degree 

of freedom lumped parameter model, wherein the power generated is dominated by the seismic 

mass placed in the system. While this model gives a general idea about the behavior of a 

piezoelectric generator, it neglects many details of the piezoelectric converter. An analytical 

model has been developed by Roundy et al in order to account for various factors of the 

piezoelectric bimorph such as the bending behavior in the d31 mode, and the constitutive 

equations involved in it. This is done by incorporating the physical characteristics of the bimorph 

as equivalent electrical components, which make up the mechanical subsystem of the generator. 

This includes the seismic mass modeled as an inductor L, the damper is shown as a resistor R, 

and the stiffness of the beam is modeled as the capacitor C. The across variable on the 

mechanical subsystem is the stress σ, and the through variable is the strain δ. The electrical 

subsystem includes voltage V as the across variable, and current i(t) is the through variable. The 

coupling between the mechanical and electrical subsystems is represented by the number of coils 

in the transformer represented by n. The overall equivalent circuit model is shown in Figure 10, 

which is solved by applying Kirchhoff’s current and voltage laws. A complete derivation is 

provided in the author’s publications [5, 6, 23]. 

 
Figure 10: Equivalent Circuit Model for Piezoelectric Bimorph with a Resistive Load [5] 

The vibration input is shown as a stress generator (σin), which comes from the input 

acceleration 𝑦̈. The relationship between the two is  

𝜎𝑖𝑛 =
𝑚

𝑏̈
𝑦̈ (20) 

where 𝑏̈ is the geometric constant relating average bending stress to force at the end of the beam: 

𝑏̈ =
2𝐼

𝑏(2𝑙𝑏 + 𝑙𝑚 − 𝑙𝑒)
 (21) 
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The constitutive equations for piezoelectricity are reduced to  

𝜎 =  −𝑑𝑌𝐸 (22) 

𝐷 =  −𝑑𝑌𝛿 (23) 

Using the above equations, the resulting model is shown as: 

𝛿̈ =
−𝑘𝑠𝑝

𝑚
𝛿 −

𝑏𝑚𝑏∗∗

𝑚
𝛿̇ +

𝑘𝑠𝑝𝑑

𝑚𝑡𝑐
𝑉 + 𝑏∗𝑦̈ (24) 

𝑉̇ =
−𝑌𝑑𝑡𝑐

𝜀
𝛿̇ (25) 

Assuming 𝜔 = 𝜔𝑛, the analytical expression for power transferred to the load is shown as:  

𝑃 =  
1

𝜔𝑛
2

𝑅𝐶𝑝
2 (

𝑌𝑐𝑑31𝑡𝑐𝑏∗

𝜀 )
2

(4𝜁2 + 𝑘31
4)(𝑅𝐶𝑝𝜔)

2
+ 4𝜁𝑘31

2(𝑅𝐶𝑝𝜔) + 2𝜁2
𝐴𝑖𝑛

2  (26) 

where, 

𝑏∗ =
3𝑏

𝑙𝑏
2

2𝑙𝑏 + 𝑙𝑚 − 𝑙𝑐

2𝑙𝑏 + 1.5𝑙𝑚
 (27) 

b = distance from center of piezo to center of shim 

lb = length of the beam (not covered with mass) 

le = length of electrode (in most cases assumed to be < or = to lb) 

lm = length of the mass 

This analytical model that was developed provides further insights into the piezoelectric 

energy harvesting system from a cantilevered bimorph, that were absent in the Williams and 

Yates model. The input parameters, driving frequency and acceleration amplitude have profound 

effects on power generation. In addition, the equation describes the importance of the coupling 

coefficient, the piezoelectric coefficient, damping ratio, and the geometric constants that are 

dependent on the beam’s and proof mass geometry. 

This analytical model was verified by the author on a PZT 5A cantilever beam with a   

proof mass as shown in Figure 11 [1]. The resonance frequency of the structure was measured, 

and tuned to a desired driving frequency of 120 Hz, using an attached proof mass, and driven 

with an acceleration amplitude of 2.25 m/s
2
, which matches the driving frequency and amplitude 

of a small microwave oven. The output was measured at different load resistances, and the 

simulated and experimental power generated is presented in Figure 12, which showed decent 

validity for the model.  
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Figure 11: Vibrating Piezoelectric 

generator with attached proof mass [1] 

 

Figure 12: Measured output power versus 

resistive load [1] 

 

 It can be seen that the power dissipated into the load resistor has a maximum value. This 

occurs when the mechanical damping and electrical damping ratios in the system are matched. 

This optimal load resistor can be estimated as a function of total damping in the system, and 

other characteristics of the system. This optimal load resistance can be estimated as: 

𝑅𝑜𝑝𝑡 =  
1

𝜔𝐶𝑝

2𝜁

√4𝜁2 + 𝑘4
 (28) 

 The optimization of the device to derive the maximum amount of power was also 

performed by Roundy et al, as illustrated in [6], where the design parameters included the 

parametric dimensions of the beam, electrode and mass. In general, increasing the mass load on 

the cantilever device would increase the strain on the material, but then it diminishes the surface 

of the electrode where the charge is actually generated. Two designs that were optimized are 

shown in Figure 13, where the constraint was to keep the overall volume of the structure within 1 

cm
3
. Tungsten being one of the most dense structures was utilized as the proof mass, and 

attached to the surface, and ‘Design 2’ provided a power output of 375 µW/cm
3
. This device was 

capable of powering a radio transceiver with a capacitor used for energy storage, and achieved a 

duty cycle of 1.6%. 
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Figure 13: Design optimization for piezoelectric bender [6] 

 

Around the same time, Sodano et al investigated [28] the use of a commercially available 

actuator, Quick Pack QP40N (Mide Technology Corporation) cantilevered on a mechanical 

shaker, where the piezoceramic is a composite formed from four piezoceramic elements 

embedded in a kapton and epoxy matrix. This study honed in on the effect of impedance on 

damping at various resistive loads. The manufacturer reports that the device with a proof mass 

would be capable of generating about 1.7 µW/cm
3
 power at 113 Hz and 1g acceleration [12].  

 
Figure 14: Quick Pack actuator for vibration energy harvesting [28] 
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2.5 Distributed Parameters Models  

The lumped parameter models mentioned provide useful insights into the dynamic behavior 

of piezoelectric bimorphs, but they are reported to be accurate for systems that have large proof 

masses attached to them. For smaller proof masses, or in the absence of proof masses, various 

corrections need to be accounted for, which have been realized by Erturk and Inman [14, 29, 30]. 

This model is based on deflections induced by the bending dynamics of the cantilever, and not 

on static Euler-Bernoulli assumptions as used by other researchers. The developed general 

equation of motion based on a continuous system, which is accurate for a cantilever beam is 

developed using Hamilton’s principle and solved using the Rayleigh-Ritz method. The general 

equation of motion for the coupled cantilevered bimorph device is given as: 

𝑌𝑝𝐼
𝜕4𝑤𝑟𝑒𝑙(𝑥, 𝑡)

𝜕𝑥4
+ 𝑐𝑠𝐼

𝜕5𝑤𝑟𝑒𝑙(𝑥, 𝑡)

𝜕𝑥4𝜕𝑡
+ 𝑐𝑎

𝜕𝑤𝑟𝑒𝑙(𝑥, 𝑡)

𝜕𝑡
+ 𝑚

𝜕2𝑤𝑟𝑒𝑙(𝑥, 𝑡)

𝜕𝑡2

+ 𝜗𝑉(𝑡) [
𝑑𝛿(𝑥)

𝑑𝑥
−

𝑑𝛿(𝑥 − 𝑙𝑏)

𝑑𝑥
] = −[𝑚 + 𝑀𝛿(𝑥 − 𝑙𝑏)]

𝜕2𝑦

𝜕𝑡2
 

29 

where, 

𝑌𝑝 is the Young’s modulus of the piezoelectric material 

𝐼 is the 2
nd

 moment of area of the bimorph 

𝑤𝑟𝑒𝑙 is the transverse displacement of the tip relative to the host 

𝑐𝑠 is strain rate damping 

𝑐𝑎 is damping due to air 

M is the proof mass 

𝛿(𝑥) is the Dirac delta function 

𝜗 is the backward coupling term, dependent on material properties and dimensions.  

This equation of motion is solved by expanding the relative displacement in the form  

𝑤𝑟𝑒𝑙(𝑥, 𝑡) =  ∑ 𝜑𝑟(𝑥)

∞

𝑟=1

𝜂𝑟(𝑡) 30 

where, 

𝜂𝑟(𝑡) is the modal coordinate, and  

𝜑𝑟(𝑥) is the mode shape. 
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Therefore, the dynamics of the mode-shape can be described by the set of coupled equations: 

𝜂̈𝑟(𝑡) + 2𝜁𝑟𝜔𝑟𝜂̇𝑟(𝑡) + 𝜔𝑟
2𝜂𝑟(𝑡) + 𝜒𝑟𝑉(𝑡) = 𝑓𝑟(𝑡) 31 

𝐶𝑝

2
𝑉̇(𝑡) +

𝑉(𝑡)

𝑅𝐿
= 𝑖(𝑡) 32 

where, 𝜒𝑟 is the modal coupling term correlated to the mode shape 𝜑𝑟, 𝜔𝑟 is the resonant 

frequency, 𝑓𝑟(𝑡) is the mechanical forcing function and 𝐶𝑝 is the inherent equivalent capacitance 

of the piezoelectric layer. 

Under a pure sinusoidal excitation of the fixed end of the cantilever with a frequency 𝜔𝑟, the 

electric voltage across the piezoelectric layers in series becomes 

𝑉 =
𝑗2𝜔𝑅𝐿𝜘𝑟𝐹𝑟

(2 + 𝑗2𝜔𝑅𝐿𝐶𝑝)(𝜔𝑟
2 − 𝜔2 + 𝑗2𝜁𝑟𝜔𝑟𝜔) + 𝑗2𝜔𝑅𝐿𝜘𝑟𝜒𝑟

 
33 

where 𝐹𝑟 is the amplitude of the modal mechanical forcing function, and 𝜘𝑟 is the forward 

coupling term 

Based on a similar approach, with coupled equations of motion, similar to equations 31 

and 32, a distributed parameters model for a piezoelectric bimorph with a varying cross-sectional 

area was presented by Dietl and Garcia [31]. More recently, a similar analysis with expressions 

for voltage generated by the piezoelectric cantilever have been presented by Rosa and De 

Marquis Jr. [32]. The expression for voltage generated is given as: 

𝑉(𝑡)

𝑎(𝑡)
=

𝑉(𝑡)

−𝜔2𝑌0𝑒−𝑗𝜔𝑡
 

= 𝑗𝜔 (
1

𝑅
+ 𝑗𝜔𝐶𝑝)

−1

𝛩𝑇 × [−𝜔2𝐌 + j𝜔𝐂 + 𝐊 + 𝑗𝜔 (
1

𝑅
+ 𝑗𝜔𝐶𝑝)

−1

𝛩𝛩𝑇] 𝑝∗ 
(34) 

where, 𝛩 is the electromechanical coupling matrix, and the superscript T is for constant stress.  

𝑝∗ is the input matrix, defined in [32].  

 It can be noted that due to the changing cross-sectional area, equation (34), and similar 

equations in [31, 32] for tip displacement or tip velocity are not provided in closed-form. 

Detailed derivations for these expressions are available in the references mentioned. Hence the 

terms M, C, K, are the mass, damping and stiffness matrices respectively, which are calculated 

as a function of axial length of the device, where the width varies.   
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2.6 Shape Optimization of single cantilever beams 

The piezoelectric power generators tested by Roundy and Sodano as shown in the 

previous section indicate that the power generation is directly related to the magnitude of the 

proof mass on the structure. This is also evident in the analytical models developed by William 

and Yates [13], and Roundy [23] where the input stress from vibrations on the cantilevered 

structure is due to the force provided by the proof mass. However, the placement of such a proof 

mass is constrained by the mechanical limits on a cantilevered structure, which should not 

exceed a maximum stress on a structure. On a rectangular cantilever that is loaded at its free end, 

the maximum stress is concentrated near the clamped end, which linearly decreases with length. 

The concentration of maximum stress is generally located over a very small area, and this could 

greatly diminish the loading that could be applied on a cantilevered bimorph, which being made 

out of brittle piezoceramics such as PZT would be imperative. This was realized by Roundy et al 

in [18] where they mention that bulk material properties impose a strain limit of 500 microstrain 

(one microstrain is the strain producing a deformation of one part per million (10
-6

)) on the 

bimorph to avoid brittle fracture.  

 

Figure 15: Effect of shape change on the transversal stress along the length of a cantilever [18] 

Therefore, in order to mitigate the effects of a large stress concentration near the fixed 

end of a cantilever beam, which diminishes with a constant slope as shown in Figure 15 [18], 

there is a motivation to lower the maximum axial stress on the surface in order to make it less 

susceptible to brittle fracture. Moreover, the decreasing stress distribution along the length of the 

cantilevered beam also directly translates into inefficient charge generation over the surface. The 

magnitude of stress at a location dictates the amount of charge being generated at that location, 

and hence the small stress concentrated area near the clamped end of a beam would generate 

more charge, while the rest of the cantilever where the stress is decreasing would not be 
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generating as much charge. Therefore, there is an impetus to find a way of generating equal 

charge along the length of the beam, while maintaining the maximum stress level below a critical 

level. Hence, there is a quest to linearize the stress and strain along the length of the beam.  

One of the ways to obtain this linearized strain distribution over the surface of the 

bimorph is by modifying the surface topology of the cantilevered devices. Such modified 

geometries have been explored by a few researchers. Glynne-Jones et al [33, 34] mentioned a 

tapered geometry in their early study in the development of thick-film MEMS piezoelectric 

generator based on PZT5H material, poled for d31 operation. The device geometry, as shown in 

Figure 16 was tapered such that the piezoelectric patch was an isosceles trapezoid in shape with a 

base width of 20 mm and a top width of 10 mm, while the PZT layer thickness was 0.07 mm. 

therefore the PZT patch was 1.05 mm
3
 in volume. This device was able to produce 3 W of 

power in to a resistive load of 333 kΩ while resonating at its fundamental frequency of 80.1 Hz. 

 
Figure 16: Development of MEMS scale PZT harvester with a tapered piezoelectric patch [34] 

 In a similar fashion, Friswall and Adhikari [35] studied the effect of four shapes of 

piezoelectric patches on the surface of a rectangular substrate with fixed dimensions. Based on 

numerical simulations, it was shown that a triangular patch on the rectangular substrate having a 

smaller active area produced more power than the fully covered rectangular device. The power 

generated was into a 100 kOhm load resistor, which may not be the optimal value for both 

devices. The maximum power generating device from this study was a shorter rectangular patch 
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on a larger rectangular substrate. Even though the numerical model and example presented was 

not exhaustive enough to conclude an optimal geometry, the impetus to investigate the effect of 

changing geometry with changing electromechanical coupling and capacitance was presented.   

Mateu and Moll [36] analyzed the tapering effect in homogeneous, symmetric 

heterogeneous, and asymmetric heterogeneous structures. The homogenous structures were 

modeled as two piezoelectric sheets of identical dimensions bonded together, without the 

presence of a metallic layer. The symmetric heterogeneous structures consisted of two 

piezoelectric layers sandwiching a metallic layer, and this case is similar to the bimorph as 

studied in this study. The asymmetric structure can consist of varying numbers piezoelectric and 

metallic layers, but the study illustrates the use of one piezoelectric layer on a metallic layer, thus 

representing a unimorph. The cross-sections of these various structures are shown in Figure 17.  

a.  

b.  

c.  

Figure 17: Cross-sections of a) Homogeneous, b) symmetric heterogeneous and c) asymmetric 

heterogeneous cantilevers [36] 

The study focuses on developing mathematical equations for calculating average strain 

(Saverage) over the surface of the material for the three structures for the rectangular and triangular 

shapes. Each of these structures have an overall length L, which in case of the triangular 

structure is the altitude. The width W0 is the base of the rectangle, or the width of the triangle at 

the base, which linearly decreases with the relation: 
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𝑊(𝑥) =  𝑊0 (1 −
𝑥

𝐿
) (35) 

where x is any position along the length of the beam. 

The average strain for a homogenous structure can be defined as a product of the net 

strain along the length (x) and thickness (z) directions as: 

𝑆𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
1

𝑡𝑐 2⁄

1

𝐿
∫

𝑡𝑐 2⁄

0

∫
𝑧

𝜌(𝑥)
𝑑𝑧 𝑑𝑥

𝐿

0

 (36) 

where tc is the thickness of the piezoelectric layer, L is the length of the beam, z is the distance 

from the neutral axis, which for the homogeneous case is tc/2, and ρ(x) is the radius of curvature 

of the beam under a concentrated load at the free end of the cantilever.  

This results in the following expressions for average strain and maximum deflection for a 

rectangular homogeneous cantilever: 

𝑆𝑥 =
3𝐹𝐿

2𝑌𝑐𝑊0𝑡𝑐
2

=
3

8

𝑦𝑚𝑎𝑥𝑡𝑐

𝐿2
 (37) 

𝑦𝑚𝑎𝑥 =
4𝐹𝐿3

𝑌𝑐𝑊0𝑡𝑐
3 (38) 

And for a triangular homogenous cantilever:  

𝑆𝑥 =
3𝐹𝐿

𝑌𝑐𝑊0𝑡𝑐
2

=
𝑦𝑚𝑎𝑥𝑡𝑐

2𝐿2
 (39) 

𝑦𝑚𝑎𝑥 =
6𝐹𝐿3

𝑌𝑐𝑊0𝑡𝑐
3 (40) 

The above expressions provide very useful insights into behavior of cantilever beams 

under a point load. For a triangular cantilever, the radius of curvature ρ(x) is a constant value, 

and therefore, the strain becomes a constant value through its length. Therefore, for an identical 

load, the average strain in a rectangular cantilever is 75% of the triangular cantilever as a 

function of its maximum deflection. In fact in such a case, the maximum deflection of the 

rectangular cantilever is also seen to be 67% of the triangular cantilever.  

The authors in this study also develop similar expressions for the symmetric 

heterogeneous (bimorph) case. However, here the maximum deflection is restricted by a cavity 

depth (D), and therefore values for absolute maximum defection and average strain for these 

cases are not available. However, it may be possible to replace D with y-max in these 
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expressions to obtain absolute deflections. The resulting expressions for triangular homogenous 

cantilevers are:   

𝑆𝑥 =
𝐷𝑡𝑐

2𝐿2
 (41) 

𝑦𝑚𝑎𝑥 =
6𝐹𝐿3

𝑌𝑐𝑊0𝑡𝑐
3 (42) 

𝑧𝑠 =
𝑡𝑐

2
 (43) 

And for symmetric heterogeneous triangles, the expressions are given as: 

𝑆𝑥 =
𝐷𝑡𝑐

2𝐿2
(1 + 2

𝑡𝑠

𝑡𝑐
) (44) 

𝑦𝑚𝑎𝑥 =
6𝐹𝐿3

𝑌𝑐𝑊0𝑡𝑐
3

1

1 + 3(𝑡𝑠 𝑡𝑐⁄ ) + 3(𝑡𝑠 𝑡𝑐⁄ )2 + (𝑌𝑠 𝑌𝑐⁄ )(𝑡𝑠 𝑡𝑐⁄ )3
 (45) 

𝑧𝑠 =
𝑡𝑐+𝑡𝑠

2
 (46) 

 Therefore, these expressions can be quite useful in understanding the strain behavior in 

different types of cantilevers. In the case of homogeneous and symmetric heterogeneous 

triangular cantilevers, the average strain and maximum deflection are independent of the 

Young’s modulus (which is not the case for asymmetric heterogeneous triangular cantilevers). 

Also, the average strain in the triangular cantilevers can be increased with increasing thickness 

ratio of shim thickness to piezoelectric layer thickness. Increasing strain also results in increased 

charge, which is evident from the constitutive equations, and also equations for harvested power. 

These equations are elaborated in the reference [36].  

 In a later study, Goldshmidtboeing and Woias [37] also characterized the differences 

between rectangular and triangular cantilevers, and also included a truncated rectangle, which 

was effectively a trapezoidal cantilever. They developed and verified an analytical model, based 

on which the inferences are made in the study. Unlike the previous study where the cantilevers 

were characterized for bending behavior using an average stress, this study employed the use of a 

relative mean curvature κ’ in order to characterize the stress homogeneity: 

𝜅′ =
|𝜅𝑚𝑒𝑎𝑛|

|𝜅𝑚𝑎𝑥|
 

(47) 

where 𝜅𝑚𝑒𝑎𝑛refers to the mean curvature of the piezoelectric layer at its surface, and 𝜅𝑚𝑎𝑥 is the 

maximum absolute value at the surface. Based on the above equation, perfect homogeneity 
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would occur when 𝜅′is equal to 1; i.e. the radius of curvature would be constant. On the other 

hand, as 𝜅′goes to zero would imply that the curvature is not defined. 

The shapes in this study are classified using a truncation ratio r, which is a ratio of the 

base width to the tip width; and hence a rectangle would have an r value of 1, while a triangle 

would have a truncation ratio of 0. Figure 18 gives some useful insights into the behavior of 

three different shapes characterized by the r values. It can be seen that when the relative mean 

curvature 𝜅′is plotted as a function of tip mass that is normalized to the mass of the beam, the 

maximum 𝜅′occurs when the tip mass is 10 times the mass of the beam. For the triangular 

cantilever, a 𝜅′ of 1 is achieved at this loading condition, and hence the radius of curvature, and 

hence strain can be considered to be constant when the tip mass is 10 times the mass of the beam. 

The maximum 𝜅′for a trapezoidal beam (with r = 0.15) is roughly 0.86, and for the rectangular 

cantilever is 0.5, indicating that these shapes never obtain constant strain conditions. The first 

two mode shapes for the triangular cantilever with no tip mass, i.e. when 𝜅′ = 0.61 from Figure 

18 is shown in Figure 19, which clearly shows that the first mode shape has linear bending at a 

position past 0.3L, where L is the length of the beam. This happens to be the location of the 

centroid of a triangular beam, and therefore, a rectangular cantilever without a tip mass has better 

efficiency since its centroid is located at 0.5L. This effect is further investigated and shown in 

Figure 20 by simulating values for normalized power for different beam shapes with three cases 

for mass loading. This figure shows that with changing truncation ratios, i.e. from r=0 (triangle) 

to r=1 (rectangle), normalized power remains same, which by the authors is explained by 

opposing mechanisms of mean curvature, which is higher in triangular cantilevers, that is 

canceled out by the centroid location. However, the maximum mass loading condition in Figure 

19 is where the mass of the tip is equal to the mass of the beam, which according to Figure 18 is 

a condition where the mean curvature is about 0.61, which is well below the desired mean 

curvature of 1. However, Figure 21 does show an advantage of truncating the shape from a 

rectangular to a triangular cantilever, as it can be seen that the loading capacity in terms of 

tolerable acceleration amplitudes is greatly increased for triangular cantilevers. 
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Figure 18: Mean curvature for rectangular, 

trapezoidal and triangular beam for various tip 

mass-to beam mass ratio [37] 

 
Figure 19: Mode shapes for triangular beam 

with no tip mass [37] 

 
Figure 20: Normalized power for various 

shapes based on truncation ratio’s for different 

tip masses [37] 

 
Figure 21: Maximum achievable excitation 

amplitude based for different shapes [37] 

 

Dietl and Garcia [31] conducted a study for the optimization of beam shapes for power 

harvesting. They developed a mathematical model using Hamilton’s principle, similar to that 

done by Erturk and Inman [29], but for a varying cross-section, over the surface, and used the 

Rayleigh-Ritz method to solve the Hamiltonian operators. This method was verified with 

experimental results first, and then utilized search algorithms in MATLAB for optimization of 

beam structures. The first exercise conducted was to test three geometries which included a 

rectangular beam, a tapered beam, and a reverse tapered beam, each of which had a target 

resonance frequency of 28 Hz, and hence had slightly varying lengths, as shown in Figure 22. 

These beams were characterized by plotting their mode shapes for each geometry that was 
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calculated using the analytical model. Figure 23 (a) shows how the amount of deflection in the 

reverse taper beam, which is the shortest of the three is the highest. More interestingly, they 

plotted the second derivative of the mode shape, which happens to be the second spatial 

derivative of the displacement function. This second derivative of the mode shape clearly shows 

which represents the effect of changing geometry by providing a schematic that is directly 

proportional to the strain on the surface of the beam, as shown in Figure 23 (b). Therefore, this 

curve representing the second derivative for each shape (Figure 23 (b)) can be compared to a plot 

that represents calculated strain distribution along the length of the beam which is shown in 

Figure 22 (a). However, with tapering geometry over the surface of a beam, the electric field 

generated at a particular area is not constant due to the changing width, and hence it is weighted 

with it. This is done by multiplying the strain at a particular transversal location with the width at 

that point, and dividing that by the mass of the beam at that location. This provides a measure of 

the effective electric field being generated at each location, as it can be see in Figure 24 (b).  

 

Figure 22: Three geometries showing Rectangular, Tapered and Reverse-Tapered 

bimorphs 

 

Figure 23: a) Mode shapes for the three geometries b) 2
nd

 spatial derivative of mode 

shape 

a. 

b. 
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Figure 24: a) Strain distribution along the length over the surface of the beam, and b) weighted 

strain distribution due to tapering through the length of the beam 

Figure 24 (b) provides an important inference. Even though Figure 24 (a) shows that the 

amount of strain over the surface of the beam drastically changes due to changing geometry, 

where the tapered beam has a much more linear distribution over its surface, and the reverse 

tapered is much more skewed, the effect of changing geometry seems to be negated due to the 

weighting of the strain in those areas, as these plots are more or less linear through the length of 

the beam. However, as it was pointed out in the last study by Goldshmidtboeing and Woias [37], 

the fact is that these geometries are not being operated at their limit, and the linear taper has a 

larger tolerance for acceleration amplitude, which is also conceded by Dietl and Garcia.  

Following this, they utilized a method to find an optimal geometry with a linear profile, 

and also a non-linear profile, by means of calculating an integral where the negative of the 

average voltage squared that was minimized, as shown in the expression: 

𝐽 = − lim
𝑇→∞

1

𝑇
∫ 𝑉(𝑡, 𝑤(𝑥), 𝐿)2 𝑑𝑡

𝑇

0

 
(48) 

where T is stress, V is voltage, t is thickness, L is length, and the beam shapes are defined using 

the function 𝑤̃(𝑥̃) = 𝑎0 + 𝑎1𝑥̃ + 𝑎2𝑥̃2 + ⋯. Hence, the linear tapered beams would have no 

higher order polynomial terms. 

Therefore, using this, a linear optimum and curved optimum geometry is shown in Figure 

25. Both these geometries had a negligible improvement in performance, and hence results from 

these are not illustrated here.  



32 
 

  

Figure 25: Geometries showing a) optimal linear, and b) optimal curved profile 

 As mentioned earlier, the beams in Figure 24 and Figure 25 were characterized without 

taking into account the maximum strain that can be withstood by each of them respectively, and 

hence the optimization did not show any drastic improvements. Another optimizations was thus 

carried out taking into account the maximum acceleration amplitude that can be tolerated by each 

of these shapes, and in doing so, another non-linear geometry was explored as well, which is 

plotted in Figure 26. This geometry has a wider base tip which tapers down, and then curves 

back out to facilitate the positioning of a large proof mass. The wider base allows a large 

acceleration amplitude tolerance, and the wider tip perhaps provides greater amount of bending.  

 

Figure 26: Non-linear optimized geometry 

 The effect of maximizing the strain for each particular geometry that include the 

rectangular, linear taper (trapezoidal), reverse taper, and the optimal geometry (Figure 26) can be 

seen in Figure 27. Figure 27 (a) depicts the strain distribution over the surface, and shows that 

modifying geometry has a profound effect on each of these structures, where the linear taper has 

a greater amount of strain compared to the rectangle, and the modified optimal structure is even 

higher, specially in the areas where the beam is narrow. The weighted strain plot in Figure 27 (b) 

also shows that when these structures are operated at their maximum strain, the weighted strain 
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through the length of the beam gives a clear indication of performance of these devices. It can be 

inferred that the amount of allowable strain in the material can be improved by maxing a wider 

base, allowing a greater acceleration amplitude, and higher loading. This is evident when 

noticing the behavior of the reverse tapered beam, which has the lowest strain distribution, and 

also the lowest weighted strain, which is due to the realization that this configuration is most 

susceptible to fracture, and has the lowest allowable loading. 

  

Figure 27: Effect of geometry on a) strain distribution, and b) weighted strain, when the 

structures are under maximum allowable excitation amplitudes. 

A study conducted by Park et al [38] analyzes the stress distribution over the surface of 

cantilever devices with two geometries – a rectangular cantilever and a trapezoidal one, using 

fabricated PZT devices. The authors describe that in a rectangular device, the stress is 

concentrated near the fixed end of a beam, and therefore the area is mainly responsible for the 

generation of voltage, while the rest of the beam is essentially inactive in power generation. By 

changing the geometry to a trapezoidal shape, the stress and strain is more evenly distributed 

through the length of the cantilever, and thus there is a greater power output. Under an 

acceleration input of 2.45 m/s
2
, and with a normalized power output based on the real area of the 

electrodes, this is confirmed in results, where the power output is 39% higher for the trapezoidal 

cantilever compared to the rectangular cantilever under.  

Benascuitti et al [39] looks into the optimization of power output using cantilever beams 

of optimized shapes as well. The authors realize two types of trapezoidal geometries – the 

normal trapezoidal and a reverse trapezoidal. In the normal trapezoidal setup, the wide end of the 

beam is fixed, while in the reverse trapezoidal geometry, the wide end is free, and a proof mass 
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is attached there. The authors mention that the highest conversion of mechanical energy to 

electrical energy can be achieved when the material is completely strained. However, in the case 

of the reversed trapezoidal geometry, since the beam is clamped at the narrow end, it results in a 

large stress concentration at the fixed end. This however facilitates the positioning of a large 

proof mass. 

 

Figure 28: Trapezoidal and Reverse Trapezoidal geometries [39] 

The results from this study indicate that the power output from a reversed trapezoidal 

structure is greater than that of a regular trapezoidal device, and far greater than that of a 

rectangular geometry. The authors attribute the result to the notion that efficiency of a 

trapezoidal system are affected by the clamping of the wide end, which causes the voltage levels 

to drop through the system. This is not convincing enough, since the authors do not indicate that 

the proof mass situated on both the trapezoidal geometries are identical. They also do not report 

an effective volume or electrode surface area. In fact, from visual inspection, the proof masses 

seem to be too large for the structure, and it would be worthwhile reporting a static stress 

analysis with the described parameters. Other studies have also surfaced, that challenge the 

optimization of power from tapered piezoelectric bimorphs [40].  

 

 
Figure 29: Reverse Trapezoidal geometry with 

a proof mass [14] 

 

 
Figure 30: FEM results from scavenger shapes 

of equal maximum transversal widths 



35 
 

  

With the outlook for a larger strain through the cantilever device, Park et al [41] explored 

some innovative designs for piezoelectric energy harvesting. Although, the study is focused 

towards tip excitations with a fixed amount of displacement amplitude, rather than base 

excitations with fixed acceleration amplitudes, the authors report resonance frequencies for the 

devices that vary considerably. However, the authors compare geometries with similar overall 

areas, and constrain the overall length. In order to design the geometry, the authors chose 4 

equally spaced lateral control points referred to as design variables through the length of the 

beam. A design optimization formulation to maximize power output was solved using the 

Sequential Quadratic Programming algorithm in MATLAB, and an optimal geometry was found. 

It is noted, as shown in Figure 31 that with similar areas, as in Design 1, 2, and 4, a wider tip 

provides increasing amounts of power. Design 3 shows the maximum amount of power, 

attributed to the largest tip width and the largest area.  

 

 
Area=136 mm

2 

Avg Power=1.43µW 

Design 1 

 
Area = 136 mm

2 

Avg Power=2.84µW 

Design 2 

 
Area = 152 mm

2 

Avg Power=3.72µW 

Design 3 

Area = 136 mm
2
 

Avg Power=0.76µW 

Design 4 

Figure 31: Optimal shapes: Maximum average power [15] 

 

While the authors report that Design 3 generates the largest amount of power with 

comparable area, the comparison is conducted over varying resonance frequencies. It is 

interesting to note that the device with the highest power output is the one with the lowest 

fundamental frequency, around 500 Hz, and the tapered device in Design 4 has the highest 

fundamental frequency, over 600 Hz.  

  



36 
 

2.7 Optimization of cantilever beams with zigzag structures  

A study conducted by Berdy et al [42] demonstrates a novel design of creating a zigzag-

like meandered device for power energy harvesting. The main motivation behind this work is to 

address the issue of charge cancellation; the authors utilize the distribution of strain across the 

device, by strain-matching two electrodes that are next to each other in the meandered device. It 

can be seen in Figure 31 (b), that the strain on an electrode (as shown in the light blue color) is a 

lot lower on the electrode that is next to it (which shows a strain contour). The authors report that 

there is a significant improvement in the output voltage, by 5 times as compared to the single 

electrode design. It is true that the charge cancellation is a factor, but an important factor that the 

authors do not report is the actual distribution of strain throughout the device that most likely 

provides a much larger average strain when the structure is vibrating, contributing a large power 

output.   

  

Figure 32: Single and Meandered cantilever device [16] 

 

An in depth study in the numerical modeling of a zigzag geometry has been done by 

Karami and Inman [43] with the quest of developing a geometry that would resonate at 

frequencies that are suitable for applications at the MEMS scale. One of the basic parameters 

identified is the length to thickness ratio, which in a previous study by Lu et al was chosen to be 

10:1. This provided resonance frequency to be 3 kHz, which is too large for these applications, 

and thus the device modeled in this study has a length to thickness ratio of 100:1.  

Moreover, the superiority of this type of shape provides a deflection that is 3 times the 

maximum deflection to that of a simple rectangular beam under the same static load. Therefore, 

in addition to charge cancellation, the authors do indicate that the larger deflections, resulting in 

the larger strains do provide much higher output power. An actual prototype has not yet been 

microfabricated, but a bulk scale device shows good agreement with an analytical model in the 
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same paper for resonance frequencies and deflections. Also, with the increasing number of 

members, as shown in Figure 32 the resonance frequency substantially decreases, and with the 

11 member structure, the resonance frequency is decreased to 1/17 that of a cantilever beam with 

the same thickness and beam length.  

In addition, this device can also undergo torsional vibrations, i.e. bending at higher 

frequency modes, which could allow the use of d15 mode from the piezoelectric effect, which 

allows a much higher piezoelectric coefficient. A recent article [11] by the same authors has 

proposed the use of such a device for heart pacemakers as an application.  

 

 

Figure 33: Zigzag cantilever device for piezoelectric energy harvesting [17] 
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2.8 Optimized shape with variable thickness 

 One design parameter that intuitively comes to mind for design optimization is 

controlling the thickness of the beam, since it is the greatest contributing factor to the moment of 

inertia for a beam, and hence the spring constant. In order to obtain a constant strain through the 

material, this is a design parameter that can be varied. One such study has been reported by 

Paquin and St-Amant [44], where the authors mathematically model a tapered beam, as shown in  

Figure 34 and obtain analytical equations for power dissipation for such devices, which have 

been compared to FEA results. The interesting aspect of this study is that the authors discuss 

various parameters such as thickness at free end and are able to decouple these by determining a 

slope angle θ, as indicated in Figure 34. They parameterized an optimal slope angle of 0.94°, 

which increased the power output by 3.6 times when compared to a constant thickness cantilever 

with similar dimensions. This would effectively be higher, since the volume of the tapered beam 

would be lower. This device was not microfabricated, but it would be interesting to see if two 

piezoelectric layers were bonded on a tapered brass shim, and obtain experimental results for 

such a device.  

 

Figure 34: Tapered cantilevered piezoelectric bimorph [18] 
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2.9 Torsional system for d15 and d36 modes 

 Most of the literature reported for the optimization of power output by changing 

geometry, and enhancing strain through the cantilever bimorph device has been reported for the 

d31 mode, where the voltage generated and applied strain are perpendicular to each other. Thus, 

mode 1 vibration can be easily applied for this. It has been reported that the d15 mode provides a 

much higher conversion efficiency, and also larger piezoelectric coefficient. However, this is not 

as easily extractable, as this requires a shear mode displacement, as illustrated in Figure 34, and 

with the PZT materials being fairly brittle, there is a chance for fracture. It is also very difficult 

to apply the right amount of shear on the material to actually access the d15 mode.  

 

Figure 35: Operating principle of a shear mode piezoceramic. E1 is the electric field developed, 

and P is the poling direction [19] 

One possibility of accessing the d15 mode displacements could be using torsional motion 

on a circular tube. Piezoelectric devices could be bonded to the outer surface of a cylindrical 

tube. The fabrication of such a device would be difficult, but nevertheless the concept is one that 

can extract a higher amount of energy directly as a consequence of the higher dielectric 

coefficient.  

The design setup as shown in Figure 35 shows the possibility of using the d15 mode, 

where the piezoceremic would have to be poled in the tangential direction, when attached on the 

surface of the torsional tube. The torsional tube also presents the possibility of using the d36 

mode, and in this case the poling direction would have to be in the radial direction, as depicted in 

Figure 37. No experimental or numerical work was presented in this study, and it remains a 

concept.  
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Figure 36: Poling and harvesting directions for the d15 shear mode harvester [19] 

 

Figure 37: Poling and harvesting direction for the d36 mode energy harvester [19] 
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2.10: Studies on parameter identification and optimization 

 The previous section indicated studies on optimizing shape to enhance power output from 

cantilevered bimorph structures with changing geometry. Another approach to enhance power is 

by considering the enhancement of efficiency by identifying lumped parameters, and enhance 

coupling in the system. Shu and Lien presented two studies [45, 46] identifying an equivalent 

circuit based lumped parameter model based on the spring-mass-damper system in series with a 

AC-DC rectified energy harvesting system. In these studies, the importance of conversion 

efficiency, with regards to the generation of optimal power were identified by characterizing the 

coupling in the system, while introducing several non-dimensionless terms. In general, the 

harvested power per unit mass is described as: 

𝑃

𝑀
=

𝐴2

𝜔𝑆𝐶
𝑃̅(𝑟, 𝛺, 𝑘𝑒

2, 𝜁𝑚) (49) 

Here, it can be seen that the power per unit mass is directly proportional to the square of 

the base acceleration A, and inversely proportional with the short-circuit resonance frequency of 

the cantilever beam. The short-circuit resonance frequency is equivalent to the resonance 

frequency of an uncoupled device, i.e. without any electrically induced damping due to the 

coupling effect in the piezoelectric system. 

𝑘𝑒
2 is the electromechanical coupling coefficient, and 

𝜁𝑚  is the mechanical damping ratio, which is the inverse of the Quality factor 𝑄𝑚 

The term 𝑃̅ represents non-dimensional power normalized by the input function, 

represented as:  

𝑃̅ =
𝑃

𝐹0
2

𝜔𝑛𝑀

 
(50) 

The term r is the normalized resistance, based on the short circuit resonance frequency, 

and the inherent capacitance of the piezoelectric device, in conjunction with the external load 

resistor R as: 

𝑟 = 𝐶𝑝𝜔𝑆𝐶𝑅 (51) 

The term 𝛺 represents the resonance frequency of the device normalized with the short 

circuit resonance frequency. Thus, 
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𝛺 =
𝜔

𝜔𝑆𝐶
 (52) 

Therefore, the short circuit and open-circuit resonance frequencies are: 

𝛺𝑆𝐶 = 1 (53) 

𝛺𝑂𝐶 = √1 + 𝑘𝑒
2 (54) 

 It can be quickly realized that with large electromechanical coupling coefficients, the 

shift from the short circuit resonance frequency to the open circuit resonance frequency would be 

large.  

The magnitude of the electromechanical coupling coefficient and the mechanical 

damping ratio in fact has a much wider implication. It has been reported that small values of the 

figure of merit, i.e. where 𝑘2𝑄𝑚 ≪ 1, there exits one value for the optimal load resistance, where 

maximum power is generated. These are regarded as low coupling systems. In such cases, it is 

reported that the maximum power generated can never match the power available in the 

mechanical system. For higher coupling systems where 𝑘2𝑄𝑚 ≫ 1, there exist two values where 

power can be maximized.  

This discussion was further refined in Goldschmidtboeing et. al (2011) [47], where a 

threshold value of 2 for the coupling figure of merit is presented, which is attributed due to the 

presence of resonance and anti-resonance. This publication highlights the use of a unimorph with 

a thick passive layer for a low coupling harvester, and the use of a bimorph with as the high 

coupling harvester, where a 𝑘2𝑄𝑚 value of 8.2 was reached.  

Lei et. al [48] provide an excellent explanation of the threshold value of 2 for the 

electromechanical coupling figure of merit. Based on their SDOF equivalent circuit model, and 

expressing impedance in terms of coupling and a transformation factor, it is found that the peak 

phase angle becomes zero when 𝑘2𝑄𝑚 = 2. At this point, maximum power can be drawn from a 

single optimal load resistance, by performing a complex conjugate impedance match [49]. As the 

peak phase angle is greater than zero, two optimal load resistance values can be found, 

contributing to two optimal load resistance values. In the instance where the peak phase angle is 

less than zero, i.e. when it is negative, complex conjugate impedance matching is not possible.  

Xiong and Oyadiji present an exhaustive numerical study [50] on parameterizing the 

electromechanical coupling coefficient, quality factor, and the mass ratio. The mass ratio is 

defined as the effective-mass-of-the-beam to the total mass of the beam. All three parameters 
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affect the electromechanical coupling figure of merit, and the study illustrates the transitioning of 

the low coupling harvesters with a single optimal load resistor, to an intermediate region that 

does not display optimal load resistance values as peaks, to high coupling systems where two 

distinct optimal load resistance values are found. They also present a numerical study on tapered 

piezoelectric beams, and report that the electromechanical coupling coefficient is enhanced with 

tapering beams.  

This very short compendium of a set of exhaustive and important publications highlights 

a few key points. They describe the importance of electrical measurements for being able to 

characterize piezoelectric energy harvesters, by measuring capacitance, impedance, and 

determining the resonance and anti-resonance frequencies. The electromechanical coupling 

figure of merit is an important aspect that describes the behavior of piezoelectric energy 

harvesters, and the numerical studies so far indicate that they have a large impact on the power 

generated. Therefore, this forms a basis for characterization of these materials, an aspect that is 

taken into consideration for the entirety of this work. 
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CHAPTER 3: METHODOLOGY 

  

The methodology section is primarily divided into two sections; the first of which describes the 

setup of the piezoelectric bimorph coupled with circuit elements in ANSYS Mechanical APDL, 

and the second one describing the experimental approaches used for sample preparation, and 

testing and analysis.  

3.1 Numerical Modeling  

Several researchers [39, 41, 51] have employed the use of ANSYS for modeling 

piezoelectric energy harvesting devices for estimation of various parameters such as stress 

distribution, strain, and the analysis of output voltages. Zhu et. al [52, 53] have illustrated the use 

of the commercial code in the most detail that gives the basis for the formulation of the 

numerical model used in this study, while other studies such as carried out by Takacs [54] have 

also provided useful insights. Excerpts have been taken from these researchers to develop this 

model, as described in the following paragraphs. This particular study is carried out using 

ANSYS Mechanical APDL, Version 14.0. The ANSYS Mechanical Help files have been used 

numerous times in this study.  

Figure 5 in the introduction section illustrated the makeup of a piezoelectric bimorph, 

which consists of two piezoelectric layers that sandwich a metallic brass layer. The two 

piezoelectric layers are connected in series, where they are poled opposite to each other, and are 

connected to an external load resistor. The metallic brass layer can be modeled using the 20-node 

SOLID186 element, which can be used as a brick-shaped or tetrahedral shaped element. The 

element option is chosen to be structural. The piezoelectric layer is modeled using the 20-node 

coupled-field SOLID226 element, which can also be shaped as a brick or a tetrahedron for 

meshing purposes, and the element behavior is chosen as electrostatic-piezoelectric (element 

option K3). The load resistor is modeled using the two-node CIRCU94 element. The two types 

of elements are illustrated in Figure 38 showing various possible element shapes for the 

SOLID186 and SOLID226 elements, and the CIRCU94 element is shown in Figure 38, which 

can form various types of electrical components. 
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Figure 38: SOLID186 and SOLID226 element 

shapes 
 

Figure 39: CIRCU98 Elements in ANSYS 

  

Following the choice of elements, the requirement is the input of material properties for 

the various components of the bimorph. The brass is modeled as a linear isotropic material 

having an elastic modulus of 105 GPa, Poisson’s ratio of 0.30 and mass density of 9000 kg/m
3
.  

 The piezoelectric material that is modeled in this study is based on the PZT-5H material, 

which is the PSI-5H4E material from Piezo Systems, Inc., Woburn, MA. This material has a 

Poisson’s ratio of 0.31 and a mass density of 7500 kg/m
3
. The elastic properties of this material 

are anisotropic due to the fact that the stiffness (or compliance) are dependent on directions, and 

hence forms a 6x6 matrix which is a 4
th

 rank tensor. The piezoelectric coefficient is also 

anisotropic, which forms a 3
rd

 rank tensor, while the permittivity values are formed as a 2
nd

 rank 

tensor.  

One critical thing to mention is that the compliance (s
E
) matrix, (or the stiffness matrix- 

c
E
) when found in literature may be presented in the IEEE Standard 176 format [20]. In this 

format, the row order for the matrix is [x, y, z, yz, xz, xy]. ANSYS DOES NOT utilize this 

format. It is mentioned in the ANSYS Coupled Field Analysis Guide that ANSYS uses the 

standard structural matrix format, where the row order is in the form [x, y, z, xy, yz, xz]. 

Therefore, the xy from the IEEE format has to be inserted in as the 4
th

 row in the matrix. Further, 

while entering the material properties for the compliance matrix, the matrix has to be adjusted for 

the direction of polarization as well. The problem set up in this project report has the piezo 

polarized in the y-direction, and hence the piezoelectric matrix is required to be rotated as well, 

since the IEEE standard usually provides the matrix polarized in the z-direction. These two 
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adjustments – the insertion of row xy, in the 4
th

 row, and the rotation of the matrix to polarize the 

material in the z-direction are critical to performing a proper piezoelectric analysis.  

The adjusted and rotated piezoelectric compliance matrix in ANSYS format for the PZT-

5A material is given as [6, 7, 8]:  

        X           Y              Z          XY           YZ           ZX 

    0.16400E-10 -0.72200E-11 -0.57400E-11   0.0000       0.0000       0.0000     

   -0.72200E-11  0.18800E-10 -0.72200E-11   0.0000       0.0000       0.0000     

   -0.57400E-11 -0.72200E-11  0.16400E-10   0.0000       0.0000       0.0000    (m/N
2
) 

     0.0000       0.0000       0.0000      0.47500E-10   0.0000       0.0000     

     0.0000       0.0000       0.0000       0.0000       0.0000       0.0000     

The next property that is defined for the modeling of piezoelectric materials is the 

piezoelectric strain matrix [d]. Once again, the format prescribed in the IEEE 176 Standard is 

different than the one that ANSYS uses. The typical strain matrix is a 3x6 where the order of the 

6 columns are [x, y, z, yz, xz, xy]. ANSYS requires the definition in terms of a 6x3 matrix. 

Therefore the matrix in the IEEE format is first transposed to the 6x3 form, and then the xy row 

is inserted in as the 4
th

 row. The PZT-5A piezoelectric strain matrix (d), poled in the +Y 

direction is given as [6, 7, 8]:  

             X           Y           Z     

     X     0.0000    -0.17100E-09  0.0000     

     Y     0.0000     0.37400E-09  0.0000     

     Z     0.0000    -0.17100E-09  0.0000     

    XY    0.58400E-09  0.0000      0.0000    (C/N) 

    YZ     0.0000      0.0000      0.0000     

    XZ     0.0000      0.0000      0.0000     

Also, when the bimorph is used in series operation, one of the piezoelectric layers is 

poled in the –Y direction. This piezoelectric strain matrix has coefficients that are opposite in 

sign to the +Y coefficients [52] 

The third required material property for modeling of piezoelectric devices is the dielectric 

permittivity matrix, which is an inherent material property. This is a 3x3 symmetric matrix for 

PZT-5A at constant stress, and the values for the material are [6, 7, 8]:  

      1700   0     0   

       0   1730    0     (F/m) 

       0     0    1700 

 The next step is to create the geometry of the piezoelectric bimorphs. Since Solid 

elements are being utilized in this work, the modeling is performed in 3-D. The piezoelectric 

bimorphs that are described here are described for a simple rectangular geometry. A rectangular 

layer with desired dimensions is modeled as an area, and then extruded to specific dimensions. 

The chosen bimorphs from Piezo Systems, Inc. are of the T220 series, where the thickness of 
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each piezoelectric layer is 0.19 mm and the thickness of the brass layer is 0.13 mm. the three 

extruded volumes are then glued together.  

Following the generation of the structure, the volumes are meshed, but in order to do so, 

each layer must be assigned the proper element attributes; i.e. the top and bottom layers are 

modeled as SOLID226 layers, while the middle layer is assigned the SOLID186 element. The 

top and bottom layers are assigned material properties relevant to the piezoelectric materials, 

respective to poling directions, while the middle layer is assigned the material properties for the 

elastic isotropic brass material. Once element attributes are assigned, the mesh is setup such that 

the elements have an aspect ratio of 1:1 on the transverse plane (i.e. the xz plane as modeled). 

For example, for a rectangular bimorph that has a clamped length of 21.5 mm and width of 12.7 

mm has its length divided into 50 parts, and width divided into 15 parts. A mapped mesh is then 

created resulting in brick shaped elements, giving an even distribution of nodes across the 

different layers. 

The nodes on the top and bottom layers of the piezoelectric material are then coupled for 

voltages. This essentially creates a common node for each surface that can be used to create an 

electrode connection, and an external load resistor can be added in between these coupled nodes. 

The resistor is added by creating a single two-node CIRCU94 element between these coupled 

nodes, and the value of the resistance is defined as a real constant.  

The next step is to enter the solution phase of the modeling, where appropriate loads and 

boundary conditions can be applied. The setup of the piezoelectric bimorphs is primarily as a 

cantilevered device, hence the areas (there are three areas due to three layers) on one of the ends 

of the beam are fixed in all three directions (i.e. Ux = Uy = Uz = 0). In addition to this, one of the 

coupled nodes should be grounded by setting the voltage to nil, in order to provide a reference 

for the voltage generated by the bimorph.  

At this point, a modal analysis for the structure may be performed in order to obtain its 

natural frequency. Therefore, the same is chosen from the “Analysis Type” menu, and the Block 

Lanczos algorithm is chosen. Since we are only interested in the fundamental frequency of the 

system, only one mode is expanded. The analysis is performed, and the fundamental frequency is 

recorded.  

In order to simulate the piezoelectric bimorph under excitation, a harmonic analysis is 

performed, where the external excitation is applied by using the ACEL command. This 
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command is accessible as a gravity load from, under inertial loads in the Structural Loads menu. 

Since this load is applied at the Global Cartesian origin in the +Y direction, the beam should be 

modeled such that clamped end is centered on the y-axis, and the bottom layer is on the xz plane. 

This is shown in Figure 40. Also, harmonic analysis requires the definition of a start frequency 

and end frequency under the load step options menu. In order to reduce computational 

processing time, the frequency is swept for a range of 20 Hz around the resonance frequency. A 

constant damping ratio 𝜁𝑝 is defined here, which is chosen based on the quality factor 𝑄 of the 

piezoelectric material by using the relationship: 

𝜁𝑝 =
1

2𝑄
 (55) 

Following this, the model is solved. Once the solution is completed, the voltage drop can 

be obtained by reading the solution at the resonance frequency substep, and either plotting the 

contour for electric potential, or simply listing the solution. The Time-history postprocessor can 

also be used to obtain the frequency response function for displacements, which provides both 

real and imaginary parts.  

 
Figure 40: Example of a developed FEM model in ANSYS for a piezoelectric unimorph [51]  

 

 While a coupled-field finite element code such as the one described above has been 

developed for piezoelectric bimorphs, it has not been used extensively used in this dissertation. A 

sample set of results using the ANSYS code is provided in APPENDIX A. 
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3.2 Experimental Procedure 

3.2.1 Sample Preparation 

Piezoelectric bimorphs are obtained from Piezo Systems, Inc. The material of choice is 

PSI-5H4E. The commercial bimorphs are available in a variety of sizes, with relevant sizes as 

pertaining to part numbers listed in Table 2.  

Table 2: Piezoelectric Bimorphs dimensions as available from Piezo Systems, Inc 
Part Number Length 

(mm) 

Width 

(mm) 

Thickness of each piezo 

layer (mm) 

Thickness of brass layer 

(mm) 

T220-H4-103X 31.8 3.18 0.19 0.13 

T220-H4-203X 31.8 6.35 0.19 0.13 

T220-H4-303X 31.8 12.7 0.19 0.13 

T220-H4-503X 63.5 12.7 0.19 0.13 

 It should be noted that the dimensions provided in Table 2 are of the piezoelectric 

benders as provided by the manufacturer. They do not represent the effective clamped lengths for 

the bimorphs. In order to maintain consistency between experiments, a standard rectangular 

bimorph has an effective length of 21.5 mm. This facilitates a small length for clamping, and a 

small area extending behind the clamp as a tail, where wires are soldered for electrical 

connections.  

 The samples that have a modified geometry, which until now has been of triangular 

shapes are cutouts from the above mentioned commercial bimorphs. They are usually cut from a 

T220-H4-303X or a T220-H4-503X bimorph, depending on the required dimensions based for 

parametric studies. So far two methods have been used for cutting the bimorphs, both of which 

have certain advantages and limitations. The first method to cut samples is done by using an 

Abrasive Slurry Saw – Model 850, South Bay Technology. The saw is equipped with a stainless 

steel wire blade, 0.15 mm in thickness. This wire-blade provides very fine cuts, but care must be 

taken to orient the samples properly, especially in the absence of a goniometer. Without a 

goniometer, the samples can be placed on a graphite holder inside a grooved pocked, angling the 

samples to obtain the desired shapes. An easier alternative is to print out the desired shape on a 

transparent film, and pasting it on the bimorph to obtain guidelines over which the blade can be 

placed for cuts.  
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Figure 41: Abrasive Slurry Saw – Model 850, South Bay Technology 

 

The other method used to cut samples is using a dicing saw that is furnished at the 

Auburn University Microfabrication lab. This is a DAD3220 Disco Automatic Dicing Saw, 

Disco Kiru. The blade used to cut the sample in this saw is a flanged diamond blade, 0.25 mm in 

thickness. This saw can provide highly precise cuts, but once again the limitation is in sample 

orientation prior to cutting. This saw uses a starting point and an end point to create a line 

through which a cut is to be made, and these points need to be marked out on the sample 

physically, which are displayed on a monitor using a microscope furnished with the saw. Precise 

marking of cutting points on the sample, and finding these in the dicing saw can be challenging. 

 

3.2.2 Experimental Setup for Energy Harvesting 

In order to test the piezoelectric device for energy harvesting characteristics, and power 

generation, the clamped piezoelectric bimorph is mounted on a shaker table (Labworks Inc. ET-

132-203). This shaker table is driven by applying a sinusoidal excitation from a function 

generator (Agilent 33220A). The experiments are conducted at varying frequencies and constant 

excitation amplitude of 2.4525 m/s
2
 (0.25g). This acceleration is obtained by applying a 5 mV 

RMS alternating voltage from the function generator. This 5mV RMS signal from the function 

generator is amplified to 24.5 mV RMS using a linear power amplifier (Labworks Inc. PA-119). 
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This 24.5 mV RMS signal is obtained using an output signal from an accelerometer (PCB 

Piezotronics Inc. 480C02), that is connected to a channel on a digital oscilloscope (Tetronix TDS 

3014B). The acceleration amplitude needs to be adjusted to 25 mV RMS each time the frequency 

is changed using the function generator. This adjustment is needed due to the fact that a constant 

voltage is supplied from the power amplifier. In order to keep acceleration constant with 

changing frequency, a constant current source could help, and would get the base acceleration 

relatively constant. A fool-proof method would be to employ the use a servo-feedback controller, 

adjusting the input power each time the frequency is changed to obtain the desired acceleration.  

The two wires that are soldered on the outer surfaces of the series-poled piezoelectric 

device are connected to two probes that feed into a second channel on the digital oscilloscope. in 

addition, a load resistor is connected in parallel with the piezoelectric device and the digital 

oscilloscope. The value of this load resistor can be adjusted. In the absence of the load resistor, 

or very high resistance values (>1 MΩ), the conditions are close to having an open circuit for 

with the piezoelectric bimorph. Under open circuit conditions, the dielectric displacement is 

zero, as there is no current flowing out of the device. Very low values of the load resistor provide 

short circuit conditions, and here the electric potential is zero as the top and bottom layers of the 

piezoelectric device are shunt. The digital oscilloscope reading from this channel provides the 

voltage generated from the piezoelectric device, which is recorded manually. Figure 42 provides 

a schematic for the experimental setup, which is also shown in a picture in Figure 43. 

 

 
Figure 42: Schematic of energy harvesting experimental setup [22] 
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Figure 43: Energy Harvesting Experimental Setup in Laboratory [55] 

 

 

3.2.3 Damping Ratio Measurements 

The damping ration of a vibrating cantilever beam can be measured using a number of 

ways, as reported in any classical vibrations textbook. In piezoelectric energy harvesting, one of 

the most convenient ways to measure damping ratio is by utilizing the piezoelectric effect of the 

bimorph mounted as a cantilever, and measuring the voltage response from an impulse, and 

utilizing the logarithmic decrement method.  

In order to perform this measurement, the “Burst” function from the Agilent 3220A 

function generator is chosen, and an impulse wave with a Time Period of 200 ms is chosen. The 

acceleration amplitude is chosen such that a sufficiently large signal-to-noise ratio is obtained. 

This typically relates to a reading of about 15-20 mV RMS from the accelerometer, which is kept 

constant in each experiment, when the load resistance is changing. Therefore, the voltage 

response obtained from the piezoelectric cantilever is in the form of repeating wave-packets, of 

which a single wave-packet is saved, as shown in Figure 44 [5]. A MATLAB script is used to 

export the peaks from each crest, through which an exponential trend-line is fitted to obtain the 

coefficient. The obtained coefficient can be set equal to the coefficient of the exponential term in 

the logarithmic decrement equation,  

𝑉(𝑡) = 𝑉0exp (−𝜔𝑛𝜁𝑡) (56) 

where, 𝑉0is the voltage response at time = 0, 𝜔𝑛 is the natural frequency, and 𝜁 is the desired 

damping ratio. 
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Figure 44: Piezoelectric voltage response to an impulse wave [5] 

 

This analysis is performed for obtaining the quality factor at various load resistances. 

Chapter 6 in this research is dedicated for this study and characterization of damping ratio at 

varying load resistances for different cantilevers, with various proof mass loading conditions. In 

this chapter, it is shown that the damping ratio changes as a function of load resistance; but the 

damping ratio under open circuit and short circuit conditions are relatively the same. Therefore, 

due to a large signal to noise ratio under open circuit conditions, the mechanical quality factor is 

estimated using the open circuit damping ratio. 

 

3.2.4 Impedance Analyzer Measurements 

An impedance analyzer, Agilent 4294A is utilized to measure various dielectric 

properties as a function of frequency, and can be referred to as Dielectric Response 

Spectroscopy, or Impedance Spectroscopy. Prior to measurements, the instrument must be 

calibrated under both open circuit, and short circuit conditions, which is done by holding the 

probe such that the two ends are open, or touching each other respectively. Once the instrument 

is calibrated, the clamped piezoelectric bimorph is affixed on to a surface using a C-clamp to 

obtain a cantilevered condition. The wires on the piezoelectric bimorph surfaces are connected to 

the two ends of the probe. A frequency sweep of about 400 Hz around resonance is usually 

chosen for the dielectric response. The number of points for this frequency sweep is set to a 

maximum of 801 points possible (thus giving a resolution of ~0.5 Hz). Various responses as a 

function of frequency can be obtained such as Z-θ, where Z is the impedance measured in ohms, 
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and θ is the phase angle. Another response that is measured is Cp-D, where Cp is the parallel 

capacitance of the piezoelectric device, and D is the dissipation factor, which is an inverse of the 

loss tangent. All these values provide peaks at specific frequencies, which primarily relate to the 

resonance and anti-resonance frequency of the device. 

The peaks on the impedance curve provide some very important information. The 

impedance value is maximized at the resonance frequency of the structure, and minimum at the 

anti-resonance frequency of the structure. Moreover, the maximum impedance value at the 

resonance frequency is a very important factor to measure, since this value gives an indication of 

the internal resistance of the device. This value should be matched with an external load resistor 

for maximum power dissipation through it. The phase angle θ, describes the phase difference 

between the current and voltage in an AC field. Therefore, impedance when expressed as a 

complex number has a real part, which is resistance, and the imaginary part is reactance. 

The other quantity that is measured is equivalent parallel capacitance, which is an 

important quantity that needs to be measured since it is a function of area of the overhanging 

clamped piezoelectric beam. The effect of shape change on equivalent parallel capacitance 

would also be an important parameter to identify. The dissipation factor, D is an inverse of the 

quality factor of the piezoelectric device, and this can provide important information regarding 

the damping ratio of the material.  
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CHAPTER 4: PRELIMENARY NUMERICAL ANALYSIS 

 

This chapter primarily deals with numerical simulations and calculations that form the 

basis of the experimental work of this dissertation. The first set of numerical simulations are 

static calculations, that provide the impetus for the effect of geometry in terms of stress 

distribution. Following static simulations, the simulations are of a dynamic nature by means of 

modal analyses on the structures, to determine resonance frequencies, and design the devices to 

obtain target resonance frequencies.   

 

4.1 Quasi-static numerical analysis for various shaped cantilevers 

As mentioned in the literature review and depicted in the piezoelectric constitutive 

equations, one of the major factors that influences the generation of power in a device is the 

amount of strain produced in the device when it is loaded. Therefore, a cantilevered piezoelectric 

device under sinusoidal base excitation undergoing mode 1 vibration produces charge as a 

function of the strain produced in the material. This mode shape can be mimicked in a quasi-

static state by applying a point load at the free end of a beam, and the bending characteristics of a 

cantilevered device can be studied. The magnitude and distribution of strain, which is directly 

related to stress by Hooke’s law over the surface of a device can be influenced by changing the 

geometry of the device, and hence the effects of changing shapes is studied in this section in a 

quasi-static manner. 

The cantilever beams that are generated in the software have dimensions adopted from 

commercially available piezoelectric bimorphs from Piezo Systems Inc. The adopted rectangular 

beam is 31.8 mm in length, 12.7 mm in width and overall thickness is 0.51 mm. These 

rectangular beams have been tapered into triangular shapes. The triangular beams that have been 

generated maintain the same length and thickness as the rectangular cantilevers, while the width 

at the base is altered to study the beams. The material properties applied utilize the d31 

directional properties of PZT-5A from Piezo Inc. The Young’s modulus is 62 GPa, Poisson’s 

ratio of 0.31, and mass density of 7750 kg m
-3

. 
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The geometry is constructed, using the 20 node SOLID186 element, and applying a brick 

shaped mesh, while attempting to maintain an elemental aspect ratio of 1:1. The back of the 

beam is fixed by setting displacements at the prescribed fixed end to zero. An arbitrary point 

load of 0.5N is applied at the free end; which is distributed at the free end in the case of the 

rectangular cantilevers, and a simple point load at the free end of the triangular cantilevers. 

Quasi-static analyses are performed, and nodal displacements, transversal stresses and strains 

along the mid-span (i.e. length at the center) on the surface are extracted from the numerical 

package and plotted and evaluated.  

Three of the explored geometries, along with their meshes, load and boundary conditions 

are presented in Figure 45. Figure 45(a) shows the rectangular beam with the above mentioned 

dimensions. Figure 45 (b) (Triangle 1) is a triangular cutout from the rectangular geometry while 

maintaining the base width, and Figure 45 (c) (Triangle 2) is a triangular beam which has twice 

the base width of the Rectangular beam and Triangle 1. 

 

 
(a) Rectangular Cantilever 

l=31.8mm, w=12.7mm, 

t=0.51mm 

(b) Triangle 1 

1=31.8mm, w=12.7mm, 

t=0.51mm 

(c) Triangle 2 

1=31.8mm, w=25.4mm, 

t=0.51mm 

Figure 45: Geometric considerations for cantilevered devices 

 

As the geometries mentioned above were constructed and meshed, the boundary 

conditions were applied to cantilever the structures, and the loads were applied. Static mode 

analyses were carried out in ANSYS, and the main parameters that were extracted include 

longitudinal deflection (y-direction), and axial stresses (x-direction). These parameters are shown 

in Figures 46-49, where Figure 46 gives an illustration of the deflection contour plots, and Figure 

47 provides the numerical deflection data of the three structures. Similarly, Figure 48 and Figure 

49 provide the axial stress contours and numerical data respectively. 
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(a) Rectangular Cantilever (b) Triangle 1 (c) Triangle 2 

Figure 46: Deflection Contours of cantilevered devices 

 

 

Figure 47: Deflection along mid-span of cantilevered devices 

 

It is worthwhile noticing some of the subtle differences between the three cantilevered 

devices, indicative upon close inspection of Figure 47. As expected, the overall magnitude of 

deflection of Triangle 1 (0.92 mm) is about 54% of the Rectangular cantilever (0.59mm), since it 

has half the volume by comparison, and thus less amount of material to provide resistance to 

deformation. However, when comparing the rectangular cantilever, and Triangle 2, the tip 

deflection of Triangle 2 is 21% less (0.47mm) than the Rectangular cantilever, even though they 

have the same volume, and the same surface area. This is a direct effect of the changing 

geometry wherein the tapering in the triangular cantilevers provides a linear decrease in the area 
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moment of inertia from the fixed end to the free end. An effect of this can also be again noticed 

in Figure 47, where it can be seen that the slope of the curve is somewhat linear in the second 

half of deflection of the beam, whereas the deflection is more radial in the case of the triangular 

cantilevers; i.e. bending has a more constant radius of curvature. This behavior is further 

discussed upon inspection of the next two figures.  

Figure 48, shows the axial stress contours for the three bimorphs, which is numerically 

plotted in Figure 49. In the case of the rectangular cantilever, it can be clearly seen that the stress 

along the length of the beam decreases linearly, while in the case of the triangular cantilevers, it 

remains constant for 90% of the length span. It is also important to notice the magnitudes of the 

stresses with the given geometries. The maximum stress on the rectangular cantilever is 34.6 

MPa, and the minimum is 78.4 kPa, a two order of magnitude decrease over the length. 

However, when compared to Triangle 1, the maximum stress is 37.1 MPa, but in the linear 

region, the stress is 29.0 MPa in the linear region, which is only a 20% decrease and that too 

within a 10% length span. Hence, the average stress can be considered to be 29.0 MPa for 

Triangle 1. Therefore, Triangle 1, which has half the volume of the rectangular cantilever is 

stressed to the same level of stress over the entirety of the surface, as of the rectangular 

cantilever with the same applied load. In the case of triangular cantilever 2, the maximum stress 

and average stress are very similar, which is about 14.60 MPa. This stress is about half the 

average stress of Triangle 1 and maximum stress of the rectangular cantilever, with the same 

applied load. Therefore, in essence, changing the geometry of the rectangular cantilever to a 

triangular cantilever while maintaining the length and thickness, and varying the base (Triangle 

2), in essence the loading capacity can be doubled, which would allow for a much greater strain 

on the device and at least double the power output with the same given area from a quasi-static - 

mechanical standpoint. 

Overall, it can be seen that when a rectangular and triangular geometry with the same 

volume are compared, the maximum stress in the triangular cantilever is half as much as the 

rectangular counterpart, and also that it is linearly distributed. This analysis however is quasi-

static, but forms the basis of the hypothesis, wherein a triangular device would perform more 

reliably. 
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(a) Rectangular Cantilever 
(b) Triangle 1 (c) Triangle 2 

Figure 48: Axial Stress Contours on cantilevered devices 

 

 

Figure 49: Axial Stresses along the length over the mid-span of the cantilevered devices 
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4.2Effect of shape change on resonance frequency 

4.2.1 Resonance frequency with constant L 

The previous section provides an indication of the distribution of the stress states on 

triangles of various shapes as compared to rectangular counterparts. However, the analyses of 

piezoelectric bimorphs in this research are under harmonic loading conditions, and therefore the 

first step to evaluate the performance of the cantilevered devices is to determine each specimen’s 

resonance frequency. For varying shapes, a convenient and accurate way of determining 

resonance frequency is by using the finite element method; hence ANSYS is employed here. 

Analytical solutions for rectangular bimorphs are available, but are valid for dimensions 

restricted to Euler-Bernoulli beam assumptions, and exact solutions are unavailable for triangular 

bimorph structures. Therefore, Finite Element solutions circumvent the inaccuracies that could 

be caused due to deviations from the Euler-Bernoulli beam assumptions.  

The first set of geometries that are considered here are rectangular bimorphs, which are 

taken as “reference” geometries. These are based on the Piezo, Inc. samples, as described in 

Table 2, in Chapter 3.2. While the samples have overall lengths of 31.8 mm (1.25 in), clamping 

the sample in a holder, and soldering wire connections require a small overhang at the tail. 

Therefore, the clamped length for the rectangular geometries is chosen to be 21.5 mm in this 

study. Based on 1-D Euler-Bernoulli beam theory, changing widths does not affect the resonance 

frequency of the rectangular cantilevers; however, this is an approximation. Four 21.5 mm long, 

rectangular PZT-5H bimorphs, of the T-220 series, with a piezoelectric layer thickness of 0.19 

mm, and overall thickness of with widths of 3.175 mm (1/8”), 6.35 mm (1/4”), 9.525 mm (3/8”), 

and 12.7 mm (0.5”) are chosen. Figure 50 shows that with increasing base width, hence 

increasing volume, the resonance frequency increases slightly. This can be easily deduced by 

considering the fact that with increasing width at the base, the stiffness increases, which is 

directly proportional to the resonance frequency of a triangular device. It must be noted that 

these resonance frequencies calculated from ANSYS do not include the piezoelectric effect; 

hence, these mechanical resonance frequencies are equivalent to the resonance frequency of the 

piezoelectric bimorphs under short circuit conditions; i.e. when the load resistance tends to zero, 

or very low values (typically <500 Ω for these bulk scaled bimorphs) [29].  
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Figure 50: Resonance Frequency of Rectangular cantilevered bimorph structures with 

L=21.5mm, t=0.51mm and varying widths 

 

Sectioning out triangular cantilevers from rectangular counterparts (as presented in the 

previous section), i.e. samples that have the same length, thickness and base widths has a 

profound effect on the resonance frequency of the devices. The resonance frequency of the 21.5 

mm long rectangular cantilevers, which varied from ~502 Hz to about ~512 Hz with changing 

widths, is roughly doubled. Comparing devices with the same base widths (hence, half the 

volume in a triangular cantilever), as shown in Figure 51 has resonance frequencies around 1000 

Hz.  

It is however interesting to note that in the case of triangular cantilevers, the resonance 

frequencies of the devices decrease with increasing base width. Therefore, unlike the rectangular 

bimorphs, increasing the volume as a function of base width actually decreases. With increasing 

base widths, while the stiffness at the base increases, the base angle (the angle between the base 

and the hypotenuse of the isosceles triangle) decreases. This decreasing base angle causes the 

device becoming increasingly triangular with a linearly decreasing moment of inertia (which is 

constant for rectangles). 
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Figure 51: Resonance Frequency of Triangular Cantilevers with L=21.5mm, t=0.51mm and 

varying widths 

 

4.2.2 Constant resonance frequency and volumes 

 The doubling of resonance frequency on devices greatly diminishes the power generated 

from the bimorph devices due to much lower levels of tip deflections and hence reduced strain in 

the devices in the dynamic mode. Therefore, in order to evaluate the effect of geometry, it is 

desired to find devices of comparable volume and resonance frequency. In order to do this, the 

70 mm
3
 (21.5mm x 6.35mm x 0.51mm) rectangular geometry is chosen as reference. This device 

had a resonance frequency of 513 Hz. In order to obtain the same resonance frequency from a 

triangular counterpart of 70 mm
3
 volume with 0.51 mm thickness, a parametric study with 

changing widths and lengths (altitudes) had to be performed, as shown in Figure 52. It was found 

that a triangular cantilever that has a base width of 8.95 mm, and length of 30.5 mm has a 

resonance frequency of roughly 515 Hz. Therefore, it can be seen that the length of the device, 

whether in the case of triangles, or rectangles plays a major role in determining its resonance 

frequency. Interestingly, it can be noticed in Figure 53 that when the resonance frequency is 

plotted in terms of the base angle, rather than the length of the device, the relationship is found to 

be linear. The triangular geometry with the matching resonance frequency as the 90° rectangle 

has a base angle of ~81.4°, which describes it as a fairly long and slender device. 
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Figure 52: Effect of length on resonance frequency for triangles 70 mm

3
 in volume 

 

 
Figure 53: Effect of base angle on triangles 70 mm

3
 in volume 
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4.2.3 Triangles with L=30.5mm and changing base widths 

 In order to get a device with matching resonance frequency and volume for the 70 mm
3
 

rectangular device, the triangular device found had a length of 30.5 mm. It was also shown in the 

case of the 21.5 mm altitude triangles with changing base width or angles, and constant length, 

the resonance frequency slightly decreased with increasing length. This scenario was also tested 

for triangles with a fixed length of 30.5 mm, and changing base widths. With increasing base 

width, increasing volume, and decreasing base angle, it is observed in Figure 54 that the 

resonance frequency of triangular bimorphs decrease. However, this decrease is not very large, 

and therefore, with constant thickness, the length of the isosceles triangular bimorph (i.e. the 

altitude) is the main contributing parameter behind determining the resonance frequency.   

 

 

Figure 54: Resonance Frequency for triangular cantilevers with varying clamping widths 

 

Therefore, since maintain length (or altitude) and thickness roughly maintains the 

resonance frequency within cantilevers of rectangular or triangular shapes, L=30.5 is chosen as a 

standard for triangles. This aids in reducing the number of geometric variables in the study, and 

also provides the opportunity for comparing devices in a more systematic fashion. 
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CHAPTER 5: EXPERIMENTAL RESULTS 

 

This chapter provides results and discussion from all the experiments carried out in this 

research. The chapter is broken down into several subsections. Section 5.1 provides results from 

a single experimental run to explain the flow of results and characterization samples in the 

following sections, where results from various geometries are compared with varying degrees of 

proof mass are compared.  

 

5.1 Introduction to a single experimental run 

The goal of this section is to provide an overview of the raw data that is obtained from a 

single experiment, and provide an interpretation of the data. The comparison between samples of 

various geometries and changing proof masses is deferred to future sections. The single 

experiment presented here is characterized by the voltage generated from the bimorph into 

varying load resistances, the electromechanical coupling coefficient, mechanical quality factor, 

and impedance spectroscopy. 

The sample chosen for this illustration is the T220-H4-203X sample, with a clamped 

length of 21.5 mm, resulting in an overall volume of 70 mm
3
, and mass of 0.622 milligrams. No 

proof mass is attached to this sample. The results presented here give an average of two tests 

performed on the same sample. The resonance frequency of this device was expected to be 

around 513 Hz from numerical calculations. As mentioned previously, this calculated 

mechanical resonance frequency is expected to be the short circuit resonance frequency of the 

device, due to the absence of electrically induced damping in the device. The average short 

circuit frequency of the device is experimentally found to be 512 Hz, as shown in Figure 55 at 

low values of load resistance. It can be observed that the resonance frequency at low values of 

load resistance remains constant up to about 2500 ohms, after which it starts increasing steadily 

with a constant slope. The resonance frequency approaches a threshold at about 100,000 ohms, 

and remains constant hereafter, and this is regarded as the open circuit resonance frequency. The 

increase in resonance frequency in the regime where it shifts is attributed to the electrically 
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induced damping, and impedance matching with the load resistor. More light on this 

phenomenon is shed from impedance analyzer measurements, presented in Figure 60 for this 

sample. For this sample, the open circuit resonance frequency is observed to be 528 Hz; 

therefore the change between open circuit and short-circuit resonance frequencies is 16 Hz. This 

fairly large shift can be very advantageous in real world applications, due to the fact that the 

power generated in this regime is less resonance frequency specific, i.e. the frequency response 

has wider peaks due to increased damping. The increased damping ratio at these levels of load 

resistance is illustrated in a future section. One of the most important parameters that can be 

derived from the data presented in Figure 55 is the electromechanical coupling coefficient. As 

presented in Chapter 3, this can be calculated from the two resonance frequencies, using the 

equation 𝑘2 =
𝜔𝑂𝐶

2−𝜔𝑆𝐶
2

𝜔𝑂𝐶
2 . With fr = 528 Hz, and fa = 512 Hz, this results in an average k31 value 

of 0.24, which is much lower than 0.39, as reported by the manufacturer.  

 

 

Figure 55: Resonance frequency as a function of load resistance for the 70 mm
3
 rectangular 

bimorph 
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In order to illustrate the change in resonance frequency due to the change in stiffness in 

the system due to the external load resistor, one can normalize the resonance frequency to the 

short circuit resonance frequency in the system, where the open circuit resonance frequency is 

dependent on stiffness due to the electromechanical coupling. This can be represented as. 

Therefore, this would result in the short circuit resonance frequency normalized to unity, i.e. 

𝑓𝑆𝐶 = 1 and 𝑓𝑂𝐶 = √1 + 𝑘2 [45]. Therefore, Figure 55 can be normalized, and represented in 

Figure 56, illustrating the electromechanical coupling effect. 

 

 

Figure 56: Normalized Resonance Frequency illustrating the electromechanical coupling in the 

system 

 

The data collected in order to estimate the power generated from a piezoelectric bimorph 

is the RMS voltage into the load resistance at resonance. The voltage generated is also dependent 

on the load resistance, and is a little more intuitive, based on Ohm’s law. At low values of load 

resistance, the voltage generated is very low with high currents, and vice versa. It is however 

interesting to notice in Figure 57 that the inflection points are noticeable in voltage generation as 

well, as they were in Figure 55 and Figure 56 for resonance frequencies. The voltages have the 

highest slope in the region where the maximum power is generated.  
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Figure 57: RMS voltage generated from the piezoelectric bimorph into various load resistors at 

resonance 

Figure 58 shows the trend for the generation of power as a function of load resistance. 

The power is calculated by means of using the simple definition of power as 𝑃 = 𝑉𝐼, where the 

current I is replaced by V/R from Ohm’s law. Due to the presence of two piezoelectric layers, the 

resulting equation to calculate power becomes, 

𝑃 = 𝑉𝑟𝑚𝑠
2 2𝑅⁄  57 

where, 𝑉𝑟𝑚𝑠 is the RMS voltage presented in Figure 58 at each given load resistance RL.  

The amount of power generated when the resonance frequency of the device is equal to 

the short circuit frequency is fairly low (the first four-to-five data points, corresponding to low 

values of load resistance. In the intermediate zone of load resistance values, where the resonance 

frequency in Figure 58 shifts, is the area where the most amount of power is generated. In fact, 

as reported in literature, the maximum power is generated at a specific load resistance, known as 

the optimal load resistance. In highly coupled systems, which are the nature of these bimorphs 

without a proof mass, there exist two values of optimal load resistance values. The optimal load 

resistance occurs when the impedance of the device matches the external load resistance. In the 

case of these highly coupled bimorphs, there exist two such impedance values, which are 

explained in the impedance analyzer measurements in Figure 60. From Figure 58, the two 

0

200

400

600

800

1000

1200

1400

1600

1800

100 1000 10000 100000 1000000 10000000

R
M

S 
V

o
lt

ag
e

 (
m

V
) 

Load Resistance (Ohms) 

R70-0M



69 
 

optimal load resistance values are ~15,000 Ohms, and 75,000 ohms, generating 3.7 W and 4.1 

W of power respectively.  

 

 

Figure 58: Power generated by the piezoelectric bimorph as a function of load resistance, each at 

their corresponding resonance frequency 

 

The power generated can be normalized with the square of the base acceleration (2.4525 

ms
-2

, which is kept constant in this study) and volume to represent an absolute value of power 

density [30]. This is especially useful when comparing various geometries and devices with or 

without proof masses. The normalized data from Figure 58 is shown in Figure 59, and it can be 

seen that the maximum power is about 9.77 (mW/g
2
)/cm

3
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Figure 59: Power Density of 70 mm
3
 device without a proof mass 

  

The impedance analyzer measurements provide very useful insights, and also validation 

of experimental results from the shaker-table experiments. Impedance measurements are carried 

out by the impedance analyzer at a constant oscillating voltage of 100 mV (500 mV to 1V for 

measurements with samples resonating at lower frequencies ~100 Hz or below), as a function of 

frequency. Impedance being a complex quantity, represented by Z, which is the sum of 

resistance (R) and imaginary (j) reactance (X), i.e. 𝑍 = 𝑅 + 𝑗𝑋 is therefore presented in 

magnitude and phase form. As the phase angle goes to zero, the impedance becomes purely 

resistive. When the external load resistance matches the impedance value when the phase angle 

is zero, i.e. purely resistive loads, an optimal load resistance is found, since the dielectric loss 

(tanδ) is minimum, or zero. In the case of highly coupled systems, the impedance measurements 

show two values for which the phase angle is zero, as indicated in Figure 60. The impedance 

value at which the phase angle is zero is 5,558 ohms. The second value where the impedance is 

purely resistive is 143,641 ohms. Both of these values are not outrageously far away from the 

values at which peak power was observed from the shaker table setup, especially considering the 

fact that measurements at load resistances, exactly at the purely resistive impedance’s were not 

performed. Another worthwhile observation is that the zero phase angle abscissa crosses the 
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impedance curve at two locations. The impedance at this abscissa is about 75,000 ohms, almost 

exactly the load resistance at which the power was maximized.  

 In addition, another important characteristic of the impedance measurements where the 

phase angles are zero, are the frequencies at which impedance values are maximum and 

minimum. The frequency at which the impedance is at a minimum is known as the resonance 

frequency, and the value at which the impedance is maximum is the anti-resonance frequency. 

These values are observed to be 511 Hz and 530 Hz, corresponding almost exactly to the short-

circuit and open-circuit resonance frequencies as measured from the shaker table setup 

respectively. Since the resonance frequencies are dominated by mechanical parameters, such as 

stiffness and mass, which are dependent on geometric and material properties respectively, the 

findings here provide very valuable experimental validation of the resonance frequency based on 

two transduction mechanisms – the generator effect for the shaker table measurements, and the 

actuator effect for the impedance analyzer measurements. 

 

 

Figure 60: Impedance analyzer measurement for the 70 mm
3
 rectangular bimorph with 100 mV 

oscillations as a function of frequency 
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Another parameter that can be measured from impedance spectroscopy is equivalent 

parallel capacitance. This is an important property, which is characteristic of the piezoelectric 

bimorph as a material property. As mentioned before, the piezoelectric bimorph is described as 

an inherent capacitor with a current source in parallel when it is generating power. While the 

capacitance is normally regarded as a constant value based on the permittivity, size and the 

thickness of the dielectric medium, it in fact has a frequency dependency. Due to the fact that 

this study is resonance specific, it becomes quite important to characterize the frequency 

dependent capacitance values at resonance. It can be seen in Figure 61 that the capacitance 

around resonance has two peaks. One of these peaks is a positive peak, which is useful as a 

capacitance enhancement mechanism in piezoelectric devices. The negative peak, i.e. where the 

capacitance is minimum also has important implications, such as in shunt damping applications 

for vibration attenuation [56]. 

 

 

Figure 61: Capacitance and Dissipation factor for 70 mm
3
 rectangular bimorph with 100 mV 

oscillations as a function of frequency 
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described in the methodology chapter, this is obtained by using the voltage response of the 

piezoelectric cantilever to an impulse wave. As an impulse is applied, the cantilevered bimorph 

resonates, but exponentially decays due to damping. This damped response is plotted as a 

function of time, as shown in Figure 62. The damped response is affected by the external load 

resistor, where the voltage response is greatest in open circuit conditions. In short circuit 

conditions, the voltage generated is nearly zero, and the only response that is observed is a noise 

signal. Therefore, a generalized quality factor is calculated based on the open circuit voltage 

response to an impulse wave. Section 5.6 shows a qualification for this measurement, where it is 

shown that the damping ratios (inverse of quality factor) under open-circuit and near short-circuit 

conditions are very similar, but do have a variation with load resistance. 

 

 

Figure 62: Damped voltage response to an impulse wave from the cantilevered bimorph 

  

In order to obtain the damping ratio of the piezoelectric bimorph, the data points 
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0.0085 for this particular case. Using the relation, 𝑄 = 1 2𝜁⁄ , the quality factor is found to be 

75.4. This is a particularly high quality factor, indicating a relatively small damping ratio. The 

general quality factor reported for this device as used in a few studies is 32. However, it is clear 

that the quality factor can change due to various circumstances (clamping as a cantilever, 

dimensions, and electrical loads), and hence needs to be measured.  

 

 

Figure 63: Calculation of damping ratio for 70 mm
3
 Rectangle under Open Circuit Conditions 

 Based on the quality factor calculated, and the coupling coefficient obtained, a figure of 

merit based on the electromechanical coupling can be obtained. This figure of merit is calculated 

as the product of the square of the coupling coefficient and the quality factor, i.e. 𝑘2𝑄. 

Therefore, 0.24
2
*75.4 provides an electromechanical coupling figure of merit of 3.61, which 

according to literature falls in the intermediate levels of coupled systems. Systems where this 

figure of merit is less than 2 are regarded as low coupled systems (as described in section 2.10).  
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5.2: Experimental Results with no proof mass 

This section provides an overview of the results that were obtained, mainly from three 

sets of samples. The designations used are in the form of SV-XM, where S stands for shape (R 

for rectangles, T for Triangles), V for the volume of the device in mm
3
 (70 mm

3
, 104 mm

3
 or 140 

mm
3
), and X stands for the amount of proof mass (in this section, it is 0M for no proof mass). 

Initial results in this section represent three sets of samples – R70-0M, T70-0M; R104-0M, 

T104-0M; and R140-0M, T140-0M. The rectangles here have a fixed length of 21.5 mm, and the 

triangles have a fixed length of 30.5 mm. As the nomenclature describes, the goal is to compare 

samples with different shapes having the same volume, and resonance frequency. Chapter 4 

described that the resonance frequency of these devices were relatively the same (around 500 

Hz). In the case of the rectangles, with increasing width and constant length, the resonance 

frequency increases due to the increasing stiffness. In the case of the triangles, with increasing 

base width (i.e. increasing base angle), the resonance frequency decreases. The attempt is to 

compare these three described sets of geometries, and compare them at the same operating 

resonance frequency.  

 

5.2.1: 70 mm
3
 samples 

The first set tested is samples that 70 mm
3
, where the rectangles have dimensions of 21.5 

x 6.35 x 0.51 mm
3
 and the triangles have dimensions of 30.5 x 8.95 x 0.51 mm

3
. The two devices 

are illustrated in Figure 64.  

 

  
Figure 64: Schematics for 70 mm

3
 devices without a proof mass 
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 From numerical simulations, the short circuit resonance frequency of these samples is 

expected to be around 515 Hz. This is in fact experimentally achieved for the rectangular 

samples with an average short circuit resonance frequency of 512 Hz. In the case of the 

triangular samples, the resonance frequency is found to be 500 Hz, which is a deviation of about 

15 Hz, that amounts to a an error of 3%. This error can be attributed to fabrication or clamping 

length errors. The 3% error is not considered to be as huge, and comparisons between the two 

geometries are worthwhile. 

  Figure 65 and Figure 66 show the shift in resonance frequency for the rectangular and 

triangular piezoelectric bimorphs with changing load resistance. It can be seen that the shift in 

resonance frequency for the triangular samples is much larger at about 24 Hz, as compared to 17 

Hz for the rectangular samples, which would result in a larger coupling coefficient for the 

triangles. This is the case indeed, as the coupling coefficients are calculated to be about 0.24 for 

the R70-0M samples, and 0.29 for the T70-0M samples. Therefore, the triangles give enhanced 

conversion efficiency, and also greater electromechanical damping.  

 

 

Figure 65: Resonance frequency as a function of load resistance for 70 mm
3
 samples without a 

proof mass 
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Figure 66: Normalized resonance frequency for 70 mm
3
 samples without a proof mass 

  

The power generated from the two samples is shown in Figure 67. It can be seen that the 

T70-0M barely outperforms R70-0M, only at certain load resistance values. The spread between 

the optimal load resistance’s for the triangular samples is in fact larger, with two distinct peaks, 

as opposed to two shoulders for the rectangular samples; a clear indication of a higher coupling 

in the system. The power generated by R70-0M is about 3.64 W at 10,000 Ω, and 4.06 W at 

100,000 Ω. The triangular samples show optimal load resistance’s at 5000 Ω and 100,000 Ω, 

with maximum power of 3.52 and 4.31 W respectively. The dip in power for the triangular 

device at about 20,000 ohms is attributed to a maxima in damping at that frequency (illustrated 

in Section 5.6). 

The damping ratio calculated for the two devices under open circuit conditions are found 

to be fairly similar to each other as 0.0085 for R70-0M, and slightly higher at 0.0097 for T70-

0M. However, based on the larger electromechanical coupling coefficient, the k
2
Q figure of 

merit for T70-0M is 4.71, larger than 3.61 for R70-0M. These two values describe the system in 

an intermediate coupling regime.  
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Table 3: Power output at optimal load resistance values for 70 mm
3
 samples without proof mass 

 

Ropt,1(Ω) P (W) Ropt,2(Ω) P (W) ζOC k31 k
2
Q 

R70-0M 10000 3.64 100000 4.06 0.0085 0.24 3.61 

T70-0M 5000 3.52 100000 4.31 0.0097 0.29 4.71 

 

 

Figure 67: Power Generated from 70 mm
3
 geometries without a proof mass 

  

In order to understand the lack in performance for the triangular cantilever as compared 

to the rectangular counterpart, it is worthwhile understanding the state of deflection and stress in 

these cantilevers. This exercise has been performed numerically, with a harmonic analysis in 

ANSYS with a base acceleration of 2.4525 ms
-2

 and a frequency sweep of 20 Hz around 

resonance. This harmonic analysis here is done for a non-coupled system, hence the results 

shown for deflection and stress relate to short circuit conditions in a piezoelectric bimorph. The 

results at resonance for deflection, plotted in Figure 68 and Figure 69 show that the deflection at 

the tip for the triangular bimorph is about 0.017 mm (17 m), as compared to the rectangular 

bimorph, with 0.012 mm (12 m). This result can be qualitatively anticipated due to the longer 

length of the triangular cantilever.  
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However, the results in Figure 70 and Figure 71, indicate the state of axial stresses are 

more important for correlating the amount of power generated from the piezoelectric bimorphs. 

It can be seen that the maximum stress, which is highly concentrated towards the fixed end of the 

beam in the rectangular cantilever is higher in magnitude as compared to the triangular 

cantilever. The maximum stress in the rectangular cantilever is 1.8 MPa, while in the case of the 

triangular bimorph, even with greater deflection at the tip is lower at 1.1 MPa. This indicates that 

the triangular structure, with the same volume, and roughly the same resonance frequency (not 

much error between the two structures in ANSYS), is capable of handling a greater load at the 

base due to its ability to distribute the stress in the structure more evenly.  

This phenomenon is more apparent in Figure 72 and Figure 73, where the deflection and 

stresses along the length of the beam, on the top surface are plotted. Even though the resonance 

frequencies of the two devices are very similar, the deflection is greater in the case of the 

rectangular bimorph everywhere it exists, while the triangular bimorph has a greater deflection 

only where it is longer than the rectangular cantilever. The most likely explanation for this 

difference in deflection between the two devices is due to the fact that with the tapering of the 

beam, there is very little effective mass at the top of the beam in the case of the triangular device. 

Therefore, unlike the rectangular device R70-0M, the triangular device T70-0M suffers from a 

lack of inertial loading.  

This lack of inertial loading at the tip shows a very apparent effect at the maximum 

stress, at the base of the cantilevered triangular bimorph. It can be observed in Figure 73 that the 

maximum stress in the case of the rectangular bimorph is 1.8 MPa, and in the case of the 

triangular bimorph is 1.14 MPa. Moreover, with the absence of the tip loading, the desired 

constant axial stress through the length of the device is not achieved. Overall, this indicates that 

the triangular device, with the same given inertial loading due to base excitation is operating at 

much lower levels of stress due to a stiffer base due to increased clamping width, and also 

slightly more even distribution of stress (not up to the desired level though) with a smaller 

declining slope over the axial stress profile. 
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Figure 68: Deflection for 70 mm
3
 Rectangular Cantilevered bimorph structure (non-

piezoelectric) at resonance 

 

 

Figure 69: Deflection for 70 mm
3
 Triangular Cantilevered bimorph structure (non-piezoelectric) 

at resonance 

Max Deflection = 0.012 mm 

Max Deflection = 0.017 mm 
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Figure 70: Axial Stress for 70 mm
3
 Rectangular Cantilevered bimorph structure (non-

piezoelectric) at resonance  

  

 

Figure 71: Axial Stress for 70 mm
3
 Rectangular Cantilevered bimorph structure (non-

piezoelectric) at resonance  

  

Max Stress = 1.8 MPa 

Max Stress = 1.1 MPa 
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Figure 72: Deflection of the 70 mm
3
 cantilevers along the beam mid-span 

 

 

Figure 73: Axial stress per unit width along the beam midspan for 70 mm
3
 cantilevers 
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 An impedance spectroscopy analysis of the two sets of samples can also illustrate the 

effect of geometry on coupling. The |Z|-θ plots are given for the two samples in Figure 74 and 

Figure 75, where it can be seen that the impedance at which the phase angle is zero is far more 

spread out in terms of the frequency (20 Hz for rectangles, and 29 Hz triangles). In addition, the 

difference between the maximum and minimum impedance (i.e. impedance at anti-resonance and 

resonance frequency) is larger for the triangular cantilevers. The impedance at the resonance 

frequency for the rectangular sample is higher, at 5558 Ω as compared to 3010 Ω for the triangle. 

The impedance at anti-resonance however is lower at 143,641 Ω for the rectangle and higher at 

223,137 Ω for the triangular cantilever. Both of these observations are consistent with enhanced 

coupling in the system. Another indication of this is the wider peak seen for the triangular 

cantilevered bimorph. Interestingly, the magnitude of the peak of the phase angle is also higher 

in the case of the triangle at 66 degrees, as compared to 51 degrees for the rectangle. This larger 

phase angle at the peak implies a larger dielectric loss due to damping, which was seen in the 

case of the triangular cantilever, as the dip in Figure 69. The larger dielectric loss causes a dip in 

power generation, but increases the frequency bandwidth in that region, where power can be 

extracted from. These results are summarized in Table 4. 

 

Table 4: Impedance characteristics for 70 mm3 devices with no proof mass 

Sample fr (Hz) Z (Ohms) fa (Hz) |Z| (Ohms) Peak Phase° 

R70-0M 511.2 5558 530.5 143,641 51 

T70-0M 501 3023 530 223,137 66 
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Figure 74: Impedance and Phase angle for R70-0M 

 

 

Figure 75: Impedance and Phase angle for T70-0M 
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From the impedance analyzer, the data for equivalent parallel capacitance and dissipation 

factor is also compared, which is presented in Figure 76 and Figure 77, and summarized in Table 

5. While the bulk capacitance for the devices with equal volumes remains the same based on the 

constant dielectric permittivity; the capacitance changes around resonance.   

The maximum capacitance for the rectangular sample is 37 nF, and for the triangular 

sample, with the same volume is 63.7 nF, a 42% increase. The negative capacitance in the 

triangular sample is also greater by 53%, which shows a capacitance of -46.1 nF, and the 

rectangle shows a negative capacitance of -21.4 nF. This larger absolute value is also indicative 

of larger electromechanical coupling in the system, and also has implications in circuitry 

applications. A larger capacitance is more compliant with the circuitry attached in series with the 

bimorph, and a large negative capacitance, which indicates that the dielectric material becomes 

conductive at this frequency, is applicable in shunt damping applications for vibration 

attenuation [56].  

 

Table 5: Capacitance characteristics for 70 mm
3
 devices with no proof mass 

Sample Positive capacitance peak (nF) Negative capacitance peak (nF) 

R70-0M 37 -21.4 

T70-0M 63.7 -46.7 
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Figure 76: Capacitance and Dissipation factor for R70-0M 

 

 

Figure 77: Capacitance and Dissipation factor for T70-0M 

 

 

0

5

10

15

20

25

30

35

40

-7.0E-08

-5.0E-08

-3.0E-08

-1.0E-08

1.0E-08

3.0E-08

5.0E-08

7.0E-08

350 400 450 500 550 600 650 700 750

D
is

si
p

at
io

n
 F

ac
to

r 

Eq
u

iv
al

e
n

t 
P

ar
al

le
l C

ap
ac

it
an

ce
 (

F)
 

Frequency (Hz) 

Capacitance

Dissipation Factor

508 Hz, 
37 nF 

515 Hz, 
-21.4 nF 

512 Hz, 
14.6 

530 Hz, 
36.1 

0

5

10

15

20

25

30

35

40

-7.0E-08

-5.0E-08

-3.0E-08

-1.0E-08

1.0E-08

3.0E-08

5.0E-08

7.0E-08

350 400 450 500 550 600 650 700 750
D

is
si

p
at

io
n

 F
ac

to
r 

C
p

, E
q

u
iv

al
e

n
t 

P
ar

al
le

l C
ap

ac
it

an
ce

 (
F)

 

Frequency (Hz) 

Capacitance

Dissipation Factor

500 Hz, 
63.7 nF 

505 Hz, 
-46.1 nF 

502 Hz, 
17.3 

528 Hz, 
17 



87 
 

5.2.2 104 mm
3
 samples 

 Another set of samples that was created was rectangular and triangular geometries that 

were 104 mm
3
 in volume. The clamped lengths of the rectangles were fixed at 21.5 mm, and 

30.5 mm for the triangular bimorphs. The rectangular bimorphs were 9.525 mm in width, and 

triangles had a base width of 13.43 mm, resulting in a base angle of 77.6°. Schematics for these 

devices are shown in Figure 78.  

  

Figure 78: Schematic for 104 mm
3
 devices with no proof mass 

 

The resonance frequency of these devices was around 528 Hz for both samples. With the 

increase in base width, there was a substantial increase in the coupling coefficient for the 

rectangular sample, which has a coupling coefficient that was calculated to be 0.286, an increase 

of 17% from the 70 mm
3
 sample. The coupling coefficient for the triangular sample also 

increased, but only by 2% from the 70 mm
3
 sample, which is 0.308 for the 104 mm

3
 triangle. 

Nevertheless, the triangular bimorph still shows an advantage here with respect to its rectangular 

counterpart in terms of the coupling coefficient, which can be noticed in Figure 79 and especially 

in Figure 80, where the normalized resonance frequency under open-circuit conditions for the 

triangular bimorphs is larger. It is important to notice that, with increasing base (clamping) 

width, the electromechanical coupling coefficient is increasing. 
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Figure 79: Resonance Frequency for 104 mm
3
 devices 

 

 

Figure 80: Normalized resonance frequency for the 104 mm
3
 samples 
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Figure 81 compares the power generated from the 104 mm
3
 samples, where it can be seen 

that the power output from the triangular bimorphs is a substantially lower compared to the 

rectangular bimorphs, as presented in Table 6. The rectangular bimorphs produce 5.35 W and 

5.85 W, as compared to 3.68 W and 4.38 W, at their optimal load resistance values. Both of 

these optimal load resistance values are represented by two distinct peaks in Figure 81, indicative 

of the increased electromechanical coupling figure of merits.  

 

 

Figure 81: Power generated from 104 mm
3
 samples without a proof mass 

 

Table 6: Power output at optimal load resistance values for 104 mm
3
 samples without proof mass 

 

Ropt,1(Ω) P (W) Ropt,2(Ω) P (W) ζOC k31 k
2
Q 

R104-0M 5000 5.35 100000 5.85 0.0086 0.29 4.76 

T104-0M 5000 3.68 75000 4.38 0.0095 0.31 5.64 

 

The deflections and stresses for the 104 mm
3
 samples, shown in Figure 82 and Figure 83 

are nearly identical to the results found for the 70 mm
3
 devices. This is seen mainly due to the 

fact that the devices have very similar resonance frequencies and the same base excitation, and 

therefore, in the absence of any proof mass loading, the differences between the two sets in terms 
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of maximum stress at the base are negligible. It is once again seen that the triangular device 

operates at much lower levels of maximum stress compared to its rectangular counterpart.  

  

 

Figure 82: Deflection of 104 mm
3
 cantilevers without a proof mass 

 

 

Figure 83: Axial Stress for 104 mm
3
 samples 
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The results from the impedance spectroscopy here reinforce the results based on 

electromechanical coupling from resonance frequency measurements and the occurrence of 

double peaks at optimal load resistance values for the power generated between the two devices. 

It can be clearly seen in Figure 84 and Figure 85 that the difference between the minimum and 

maximum impedance for the triangular sample, as summarized in Table 7. It can be seen that the 

triangular device has a lower impedance value (1979 Ω) at resonance and higher impedance at 

anti-resonance (156,866 Ω) compared to the rectangular bimorph (3279 Ω and 107,373 Ω 

respectively). Therefore, with the triangular device, peak power can be generated at lower load 

resistance values with high voltages, which can be beneficial for external circuitry to extract 

power with lower currents. Moreover, the wider spread between the optimal load resistance 

values with the triangular devices would allow a greater number of load resistance values at 

which appreciable power can be generated.  

 

Table 7: Impedance measurements for 104 mm
3
 devices with no proof mass 

Sample fr (Hz) Z (Ohms) fa (Hz) |Z| (Ohms) Peak Phase° 

R104-0M 523 3,297 547.5 107,373 55.15 

T104-0M 521.5 1979 550.6 156,866 67.09 

 

 The capacitance measurements for the two devices with the same device volume are 

presented in Figure 86 and Figure 87. The capacitance peaks for the two devices are appreciably 

increased for the triangular device, with a 35% increase in the case of the positive peak, and a 

50% increase in the case of the negative capacitance peak. This is again in relation with the 

enhanced electromechanical coupling in the triangular device, at very similar resonance 

frequencies, providing enhanced capacitance properties, for energy harvesting, or vibration 

attenuation.  

Table 8: Capacitance measurements for 104 mm
3
 devices with no proof mass 

Sample Positive capacitance peak (nF) Negative capacitance peak (nF) 

R104-0M 60.96 -34.70 

T104-0M 93.45 -70.59 
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Figure 84: Impedance-Phase Angle for R104-0M 

 

 

Figure 85: Impedance-Phase Angle for T104-0M 
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Figure 86: Capacitance-Dissipation factor for R104-0M 

 

 

Figure 87: Capacitance-Dissipation Factor for T104-0M 
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5.2.3 140 mm
3
 samples 

 This set of samples includes geometries that are 140 mm
3
 in volume. In similar fashion to 

the previous two cases, the thickness for both sets is 0.51 mm, and the length of the rectangular 

bimorphs is set at 21.5 mm, while the triangles are set at 30.5 mm length. The width of the 

rectangular bimorph was 12.7 mm, while the triangle was calculated to be 19.05 mm, as 

illustrated in Figure 88. This results in a base angle of 73.64 degrees. 

 

  

Figure 88: Schematics for 140 mm
3
 devices without a proof mass 

 

The resonance frequency of the rectangular sample(s) was expected to rise from the 

previous case of 104 mm
3
 samples, however it is found to be around 516 Hz, as shown in Figure 

89. This can be attributed to a combination of experimental errors, and also due to increased 

damping due to stiffness and viscous damping due to a larger surface area, due to which the 

damped natural frequency could be lower. The modal analysis predictions report un-damped 

natural frequencies, which is the limiting nature of these simulations, when the experimental 

damping ratio is unknown prior to simulations. However, the experiments do depict a trend that 

follows previous results, and the error in resonance frequencies is not outrageous. 

Figure 90 shows the normalized resonance frequencies of the 140 mm
3
 samples, again 

indicating a larger coupling coefficient in the case of the triangular bimorph as compared to the 

rectangle. The trend for increasing coupling coefficients with increasing base width also follows 

as it did in the 104 mm
3
 samples from the 70 mm

3
 samples. The average coupling coefficient for 

the 140 mm
3
 rectangles is found to be 0.29, while for the 140 mm

3
 triangles is found to be 0.32.  
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Figure 89: Resonance frequency for 140 mm
3
 cantilevered bimorphs without proof mass 

 

 

Figure 90: Normalized Resonance frequency for 140 mm
3
 cantilevers without proof mass 
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the optimal load resistances are now found to be at 2500 ohms 75000 ohms. Therefore, in both 

these samples, the optimal resistance values are shifting to lower values compared to previously 

tested samples (104 mm
3
 devices and 70 mm

3
 devices), with enhanced coupling. This would be a 

desired effect, since devices with lower impedances would relate to lower dielectric losses. This 

phenomenon is discussed in results from the impedance analyzer measurements. The powers 

with optimal load resistance values for 140 mm
3
 samples are summarized in Table 9.  

 

Table 9: Power output at optimal load resistance’s for 140 mm
3
 devices without proof mass 

 

Ropt,1(Ω) P (W) Ropt,2(Ω) P (W) ζ k31 k
2
Q 

R140-0M 5000 6.53 50000 7.41 0.0088 0.29 4.73 

T140-0M 2500 3.14 75000 3.48 0.0087 0.31 5.86 

  

Similar to the trends as followed in previous sections, it can be seen that the absolute 

power generated for R140-0M increases from R104-0M, whereas it decreases for T140-0M from 

T104-0M. The reasoning behind this is again enhanced stiffness for the triangular cantilevers, 

with increasing base width, allowing a larger inertial loading capacity. 

 

 

Figure 91: Power generated from 140 mm
3
 cantilevered bimorphs without proof mass 
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Figure 92: Deflection along the mid-span for the 140 mm
3
 cantilevered bimorphs without proof 

mass 

 

Figure 93: Axial Stress for 140 mm
3
 cantilevered bimorphs without proof mass 
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The impedance analyzer measurements, presented in Figure 94 and Figure 95 show a 

consistent trend from previous cases. In the case of the triangular cantilevers, the spread between 

the resonance and anti-resonance frequencies is larger, and also the spread between the 

differences in magnitude of impedance values is also larger, compared to rectangular 

counterparts. Both of these phenomena, as reported in Table 10 are related to enhanced stiffness 

in the device with the change in shape.  

 

Table 10: Impedance measurements for 140 mm
3
 samples with no proof mass 

Sample fr (Hz) Z (Ohms) fa (Hz) |Z| (Ohms) Peak Phase° 

R140-0M 511.3 2471.7 537.1 90,831.3 56.4 

T140-0M 524 1291.1 556 152,511.6 71.26 

 

The capacitance measurements also follow a similar trend from the 104 mm
3
 and 70 mm

3
 

devices. As the shape of the device is changed from the rectangular to triangular bimorph, the 

peak capacitance values are increased. The positive capacitance peak measured for the 140 mm
3
 

triangular bimorph is 40% greater than the rectangular device, and the negative capacitance peak 

is 60% greater, as presented in Table 11. 

 

Table 11: Capacitance measurements for 140 mm
3
 samples with no proof mass 

Sample Positive capacitance peak (nF) Negative capacitance peak (nF) 

R140-0M 84.16 -48.24 

T140-0M 139.81 -117.69 
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Figure 94: Impedance-Phase Angle for R140-0M 

 

 

Figure 95: Impedance-Phase Angle for T140-0M 
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Figure 96: Equivalent Parallel Capacitance-Dissipation Factor for R140-0M 

 

 

Figure 97: Equivalent Parallel Capacitance-Dissipation Factor for T140-0M 
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5.2.4 Summary for no proof-mass samples 

 The results in the previous sections have given an overview for three sets of samples with 

matching volumes, and similar resonance frequencies. Here, the goal is to normalize the power 

generated from these samples and per unit volume and compare them, in order to see trends for 

the effect of changing geometry.  

Figure 98 shows the Power Density for the three rectangular bimorphs. In the previous 

sections, it was reported that the power was increasing with increasing base widths (and hence 

volumes), though these increases were not substantial. Comparing the devices on a per unit 

volume basis (i.e. 70 mm
3
, 104 mm

3
 and 140 mm

3
), it can be seen that the power density actually 

decreases. The reasoning behind this is again two-fold: decreased stress per unit width with 

increasing volume due to increasing stiffness, and increased damping ratios with increasing 

volumes. These effects are far more pronounced in the case of the triangular bimorphs, shown in 

Figure 99. Here, with increasing stiffness with increasing size, the bimorphs have an enhanced 

inertial loading capacity, hence are under lower states of stress with increased size.  

Also, as previously reported, and more clearly illustrated in Figure 98 and Figure 99 is 

the changing optimal load resistance. As the samples are getting stiffer, and have a lower 

effective inertial load per unit volume, with enhanced electromechanical coupling, the optimal 

load resistances shift to lower values. The arrows pointing downwards in both Figures Figure 98 

and Figure 99 indicate this phenomenon. Therefore, beams with wider clamping widths provide 

lower internal impedance, leading to lower dielectric losses, and enhanced coupling.  

The enhancement in the electromechanical coupling coefficient is summarized in Figure 

100 for the samples without the proof masses. Clearly, the electromechanical coupling 

coefficient in the case of triangular cantilevered bimorphs is much greater in each case compared 

to their rectangular counterparts, indicating enhanced efficiency due to a more even stress 

distribution over the surface of the device. Therefore, the triangular devices are capable of 

handling a much larger mechanical load, which can potentially serve the application for a target 

resonance frequency with a larger inertial loading capacity with enhanced coupling. The 

damping ratios for the devices without proof masses remain fairly similar in all cases, as shown 

in Figure 101. Therefore, the system coupling, represented by the figure of merit, as shown in 

Figure 102 in this case is mainly controlled by the electromechanical coupling coefficient, which 
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increases with increasing volume, hence increasing stiffness at the base, and hence always 

remains greatest for the triangular cantilevered piezoelectric bimorphs. 

 

 

Figure 98: Power density for rectangular cantilevered bimorphs without proof mass 

 

 

Figure 99: Power density for triangular cantilevered bimorphs without proof mass 
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Figure 100: Effect of changing geometry on the electromechanical coupling coefficient for 

cantilevered piezoelectric bimorphs without a proof mass.  

 

 

Figure 101: Damping Ratio in open circuit conditions for cantilevered piezoelectric bimorphs 

without a proof mass 
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Figure 102: Electromechanical Coupling figure of merit for cantilevered bimorphs without proof 

mass 

 The impedance measurements at resonance and anti-resonance frequencies as a function 

of device volume are summarized in Figure 103. It can be seen that for each sets of devices, the 

impedance at resonance for the triangular bimorphs is lower than the rectangular counterpart; 

and at anti-resonance, the impedance for the triangular counterparts is greater than the 

rectangular counterparts. With increasing volume as a function of increasing clamping width, 

which increases stiffness in the device, the impedance values decrease. Decreased impedance 

values provide the opportunity for producing peak power at lower external resistance values, 

which would aid in producing less heat in real device applications. 

 Capacitance is a property dependent on size; therefore with increasing volume, the 

capacitance theoretically increases. In these measurements, peak positive and negative 

capacitance values are found around the resonance frequency. For rectangular cantilevers, the 

positive and the absolute value of the negative capacitance increase linearly, while in the case of 

the triangular cantilevers, they seem to fan out, as shown in Figure 104. These capacitance values 

do seem to be increasing proportionally with volume for the rectangular bimorphs (as volume is 

doubled, peak capacitance values are doubled), but normalizing these values on a per volume 

basis could be an approximation unsuitable for the dynamic mode around resonance, hence this 

is avoided.  

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

65 75 85 95 105 115 125 135 145

El
e

ct
ro

m
e

ch
an

ic
al

 C
o

u
p

lin
g 

(k
2 Q

) 

Volume (mm3) 

Rect-0M

Tri-0M



105 
 

 

Figure 103: Maximum and Minimum Impedance values for cantilevered piezoelectric bimorphs 

with no proof mass 

 

 

Figure 104: Maximum and Minimum Equivalent Parallel Capacitance for piezoelectric bimorphs 

with no proof mass 
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5.3 Studies with 2 gram Proof Mass Samples 

The previous section provided results on three sets of samples without a proof mass, and 

the overall results indicated that while the triangular cantilevers show enhanced coupling due to 

increased stiffness, they fail to outperform the rectangular counterparts. This is primarily due to a 

lack of inertial loading, which is more pronounced in the case of triangular cantilevers, which 

effectively have no mass at the free end, due to the nature of the shape. Therefore, samples from 

the previous case are loaded with a nominal tip mass. The tip mass is a 6.35 x 6.35 x 6.35 mm
3
 

block of stainless steel, which amounts to 2 grams. The effect of the tip mass is illustrated on the 

three sets of samples as R70-1M, T70-1M; R104-1M, T104-1M, and R140-1M and T140-1M.  

Subsequently, another sample is presented, designated as T70-1M-P, where P stands for 

position (i.e. proof mass has been positioned to match resonance frequency). Another two 

samples are presented, designated as T35-1M-L and T70-1M-L, where L stands for length (here 

length matches rectangular samples). The premise for these subsequent samples is given as the 

results are presented. 

5.3.1 RT70-1M 

The first set of samples is the RT70-1M samples. As mentioned, the 1M stands for 1 

block of mass, amounting to 2 grams, which is placed at the tip of the bimorphs, as shown in 

Figure 105. It can be noticed that the proof mass, when placed on the tip of the triangular 

bimorph has a small amount of area where the bimorph is absent (due to the tapered geometry). 

In order to account for this, the proof mass on the rectangular bimorph is placed such that half of 

the proof mass overhangs from the bimorph. The resonance frequencies of the uncoupled beams, 

i.e. under short circuit conditions are found to be 116 Hz for the Rectangular bimorph, and 92 Hz 

for the Triangular bimorph with the proof masses (verified from ANSYS modal analyses – 120 

Hz for Rectangle, and 85 Hz for Triangle), there is a 20% difference between them. Therefore, in 

order to compare the devices at matching resonance frequencies, an attempt was made to do so 

by changing the position of the proof mass on the triangular cantilever. The cubic proof mass, 

which has dimensions of 6.35 mm
3
, was pulled back by about half of its dimension, i.e. 3.175 

mm, which gave a short-circuit resonance frequency of 115 Hz. Therefore, R70-1M, and T70-

1M-P are more comparable. Nevertheless, results from all three devices are presented, in order to 

evaluate any penalty that there may be from changing the position of the proof mass, and to see 

the effect of the lower resonance frequency on T70-1M.  
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(a) R70-1M 

 

(b) T70-1M 

 

(c) T70-1M-P 

Figure 105: Schematic for R70-1M and T70-1M 
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 The difference between the short circuit and open circuit resonance frequencies for R70-

1M is 6 Hz, T70-1M is 7 Hz, and 7.25 Hz for T70-1M-P. These differences seem much smaller 

than they were in the case of the no-proof mass samples, where R70-0M had a difference of 17 

Hz, and T70-1M had a difference of 24 Hz, but the percentage differences here is in fact larger: 

5%, 7%, and 6.3% respectively for R70-1M and T70-1M, T70-1M-P, as opposed to 3.2% 4.6%, 

for R70-0M and T70-0M. This results in a k31 coupling coefficients of 0.31 for R70-1M and 0.34 

for T70-1M and 0.34 for T70-1M-P again. Therefore, a larger coupling is still observed for the 

triangular bimorph compared to its rectangular counterpart, and this can be seen in the plot for 

short-circuit resonance frequency normalized resonance frequency plot in Figure 107. However, 

positioning the proof mass has no apparent effect on the electromechanical coupling coefficient 

in this case.  

 

 

Figure 106: Resonance frequency as a function of load resistance for R70-1M and T70-1M 
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Figure 107: Normalized resonance frequencies as a function of load resistance for R70-1M and 

T70-1M 

 One of the major aspects of results from no proof mass samples was that the power 

generated by the triangular counterparts almost never outperformed their rectangular 

counterparts. One of the reasons was increased stiffness in triangular devices due to its ability to 

linearize strain, but an important aspect was the absence of any effective mass at the tip, due to 

which there was a loss of torque at the base. With the added proof masses, the first observable 

fact in Figure 108 is that the triangular counterparts substantially outperform the rectangular 

bimorph. A stress analysis to characterize the bending is presented following the discussion on 

the power generated.  

It is worth highlighting the magnitude of power generated. The power generated from the 

two devices at their optimal load resistances, with the nominal 2 gram proof mass is about 55 

W for R70-1M, and 76 W for T70-1M, which is an order of magnitude greater than it was 

without the proof mass. This is a significant gain in power, and therefore shows the importance 

of added proof masses for the moment it creates at the base. In the case of T70-1M-P, the 

positioning of the proof mass increases the resonance frequency of the device from 92 Hz to 115 

Hz, and the effect on power generated is quite noticeable. With the increased resonance 

frequency, which is now closer to that of the rectangular bimorph resonating at 116 Hz, the 
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power generated by T70-1M-P into a 50,000 ohm resistor is 67.65 W, and 66.14 W into a 

300,000 ohm resistor. In order to reason this loss in power, it is important to consider the 

damping ratio that is calculated. The damping ratio for R70-1M, and T70-1M, with the proof 

masses located at the tip are quite close to each other, at 0.0091 and 0.0092, but larger for the 

device with the positioned proof mass, at 0.013. Therefore, as illustrated in Table 7, with the 

similar damping ratios, and increased coupling in T70-1M, as compared to R70-1M, the system 

electro-mechanical coupling increases, but it is relatively strongly affected with the increased 

damping in the case of the triangular bimorph where the proof mass is positioned to match the 

rectangular bimorph’s resonance frequency.  

 

 

Figure 108: Power generated by R70-1M and T70-1M into various load resistors 

 

Table 12: Summary of Power generated from 70mm
3
 bimorphs with a 2 gram proof mass 
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In order to visualize the effect of the differences in resonance frequency, and its effect on 

the state of stress, Figure 109 and Figure 110 show representative plots for the three devices 

being discussed, generated from numerical simulations. It can be seen that, while the resonance 

frequency for T70-1M is lower, the deflection in comparison to the rectangular counterpart is 

smaller at ever point where it exists. This is an (intuitively) unexpected result, but the difference 

could possibly be explained due to the fact that the moment generating device, i.e. the proof 

mass is located farther away, and the fact that the radius of curvature for deflection is relatively 

more constant. This explanation is amplified by looking at T70-1M-P, where the resonance 

frequencies between the rectangular and triangular bimorphs are very similar. It can be seen that 

the magnitude of deflection at the matching resonance frequency at the tip of the rectangle is the 

same for both devices, but the triangular device has a more pronounced radius of curvature. In 

the case of T70-1M-P, the deflection is linear from the location of the base of the proof mass to 

the tip of the device, where the stresses are negligible. 

The stress curves in Figure 110 also provide useful insights, and also validation for the 

original hypothesis of this thesis. It can be seen that the stress in the case of R70-1M is highly 

concentrated at the fixed end, and linearly decreases, unlike T70-1M, where the stress is linearly 

distributed through the length of the device. The only region where the stress drops down to 

negligible values is the area where the proof mass exists, since that particular area is not strained. 

The average stress for T70-1M is about 8 MPa, and the maximum value is about 12 MPa, as 

compared to 18 MPa for the rectangular cantilevered bimorph, which has the same volume and 

mass.  

The mass positioned sample, T70-1M-P shows somewhat hybrid characteristics for 

stress. This is because of the fact that the proof mass positioning effectively makes the device 

into a trapezoid. It can be seen that due to tapering, the maximum stress, which is about 13 MPa, 

is lower than the R70-1M, but this device with the same resonance frequency has a small linearly 

decreasing slope for axial stress along the length of the beam. Triangular devices therefore are 

the only ones that provide a linear stress profile.  
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Figure 109: Deflection for 70 mm
3
 bimorphs with a 2 gram proof mass 

 

 

Figure 110: Axial Stress along the length over the surface for 70mm
3
 bimorphs with a 2 gram 

proof mass 
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The impedance characteristics for the three aforementioned devices are described in 

Figure 111, Figure 112 and Figure 113, and summarized in Table 13. In the previous section, one 

of the conclusions from the impedance analysis was that the difference between the impedance 

values at resonance and anti-resonance frequencies increases with increasing electromechanical 

coupling coefficients. Simply comparing R70-1M and T70-1M, this behavior is observed here as 

well, and depicted in Table 12, where the electromechanical coupling increases as the shape of 

the cantilever beam is changed from rectangular to triangular beams. With the larger 

electromechanical coupling coefficient of 0.34 for T70-1M, as compared to 0.31 for R70-1M, the 

impedance value at resonance frequency is lower at 17,165 ohms as compared to 37,171 ohms 

for R70-1M; while the impedance at the anti-resonance is greater at 1,192,406 ohms for T70-1M, 

as compared to 246,245 ohms. While the electromechanical coupling coefficient for T70-1M-P is 

nearly the same as that of T70-1M, the impedance characteristics do indicate that the 

electromechanical coupling is somewhat smaller when the mass is positioned, and the device is 

turned into an effective trapezoid. The impedance at resonance here is smaller than the 

rectangular bimorph, and larger at anti-resonance, still indicating larger coupling for the 

triangular device.  

Another correlation that can be made here is of coupling and impedance with the 

maximum stress of the device, which is in fact related to stiffness. With the largest maximum 

stress, as is the case for R70-1M, the impedance at resonance is the largest, and the smallest 

maximum stress results in a lower impedance at resonance. The converse trend at anti-resonance 

is also true, as the anti-resonance impedance increases with increasing maximum stress. 

 

Table 13: Summary of impedance analysis for 70 mm
3
 devices with a 2 gram proof mass 

Sample fr (Hz) Z (Ohms) fa (Hz) |Z| (Ohms) Peak Phase° 

R70-1M 120 37,172 130.2 246,245 18.3 

T70-1M 95.3 17,165 102 1,192,406 67.5 

T70-1M-P 117 22,852 125 983,238 56.21 
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Figure 111: Impedance-Phase Angle for R70-1M 

 

 

Figure 112: Impedance-Phase Angle for T70-1M 
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Figure 113: Impedance-Phase Angle for T70-1M-P 

 

 The implications of the shape change with the proof mass are quite profound in the case 

of capacitance measurements, as presented in Figure 114, Figure 115, and Figure 116, and 

summarized in Table 14. As R70-1M, T70-1M-P and T70-1M are compared, with decreasing 

values of maximum stress, and increased coupling, the positive capacitance at resonance 

increases, and so does the absolute value of the negative capacitance. As the piezoelectric device 

is described as a capacitor in parallel with a current source, increasing values of capacitance with 

the same volume, and similar frequencies can have major advantages in circuit applications. It is 

observed that with changing the geometry, T70-1M has larger peak capacitance values compared 

to its rectangular counterpart. However, as for the mass-positioned sample, it can be seen that the 

capacitance peaks suffer with the apparent trapezoidal shape.  

 

Table 14: Capacitance measurements for 70 mm
3
 devices with 2 gram proof mass 

Sample Positive capacitance peak (nF) Negative capacitance peak (nF) 

R70-1M 39.1 -21.31 

T70-1M 62.74 -61.40 

T70-1M-P 42.82 -21.27 
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Figure 114: Capacitance-Dissipation Factor for R70-1M 

 

 

Figure 115: Capacitance-Dissipation factor for T70-0M 
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Figure 116: Capacitance-Dissipation Factor for T70-1M-P 

 

  

0

5

10

15

20

25

30

-8.0E-08

-6.0E-08

-4.0E-08

-2.0E-08

0.0E+00

2.0E-08

4.0E-08

6.0E-08

8.0E-08

60 110 160 210 260

D
is

si
p

at
io

n
 F

ac
to

r 

Eq
u

iv
al

e
n

t 
P

ar
al

le
l C

ap
ac

it
an

ce
 (

F)
 

Frequency (Hz) 

Capacitance

Dissipation Factor



118 
 

5.3.2 RT104-1M 

  The next set of samples that are considered are the 104 mm3 devices, as it was done in 

Section 5.2.2 in the absence of proof mass. The same samples are now tested with the 2 gram 

proof mass, as illustrated in Figure 117. 

 

  

Figure 117: 104 mm
3
 devices with a 2 gram proof mass 

 

 The parameter of primary interest is the short circuit resonance frequency, which for 

comparison purposes is being targeted at 115 Hz. In the case of the triangular bimorph, as 

mentioned, this was achieved by adjusting the position of the proof mass slightly for the 70 mm
3
 

devices. In the case of the 104 mm
3
 devices, the 115 Hz resonance frequency is achieved by 

placing the proof mass, flush to the tip, as it was done for the un-positioned 70 mm
3
 device. 

Therefore, the positioning adjustment in the previous case was quite minor.  

However, in the case of the rectangular device, Figure 118 shows that the short circuit 

resonance frequency with identical proof mass positioning diverges, and goes to 145 Hz (verified 

with ANSYS modal analyses), which is thought to be a significant difference. Physically 

lowering the resonance frequency of the rectangular device down to 115 Hz in this case is not 

possible with the given length and thickness constraints. However, in order to assess the penalty 

of this divergence, in terms of losing comparability, the tests are carried out, and presented. This 

is an aspect that is often missed in literature.  
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Figure 118: Resonance frequency of the 104 mm
3
 devices with a 2 gram proof mass as a function 

of load resistance 

 

 

Figure 119: Short circuit normalized resonance frequency for 104 mm
3
 devices as a function of 

load resistance 
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 The short circuit normalized frequencies of the two devices presented in Figure 119 do 

indicate that T104-1M provides a larger coupling coefficient than R104-1M, which has been a 

consistent trend so far. With the larger coupling coefficients, the spread between the optimal load 

resistance values is expected to be larger, which happens to be the case, as shown in Table 15; 

the optimal load resistance values for T104-1M are 25,000 ohms and 250,000 ohms, as 

compared to a narrower regime in R104-1M, where the optimal load resistance values are 35,000 

ohms and 150,000 ohms. It is interesting to notice that the damping ratios for the two devices are 

quite similar to each other, with T104-1M being very slightly larger at 0.0088 as compared to 

0.0080. However, it is important to recall here that the resonance frequency for the T104-1M is 

lower, which provides larger deflections, hence could provide the larger damping ratio. 

Nevertheless, the system coupling, or the k
2
Q figure of merit is indeed larger for T104-1M, as 

compared to R104-1M.  

 

Table 15: Power generated at optimal load resistance values for the 104 mm
3
 devices with a 2 

gram proof mass 

 

Ropt,1(Ω) P (W) Ropt,2(Ω) P (W) ζ k31 k
2
Q 

R104-1M 35000 63.7 150000 67.2 0.0080 0.32 6.53 

T104-1M 25000 62.3 250000 65.7 0.0088 0.35 7.12 

 

It can be noticed in Figure 120 that the amount of power generated between the two 

devices is very similar, around 65 W at the optimal load resistance values. It is expected that 

the power generated from the rectangular device would suffer here due to the higher resonance 

frequency, which would cause a smaller displacement amplitude. This in fact happens to be the 

case, as shown in Figure 121. Unlike previous comparisons where the displacement of the 

triangular cantilever compared to a rectangular counterpart is always smaller at every location 

where it exists, in this case, this trend does not hold with the large difference in resonance 

frequency. The maximum deflection at the tip (i.e. L=21.5 mm) of R104-1M is 89 m, at which 

point T104-1M has a deflection of 111 m, and has a maximum deflection of 213 m. This is a 

clear indication that the comparison between the two devices in Figure 120 on a merit basis is 

unfair. 
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While the trends indicate that comparisons between R104-1M and T104-1M are unfair, 

and that there is a loss of performance in the case of the rectangular cantilever, the magnitude of 

power generated from T104-1M should also be considered, and especially comparing it with 

T70-1M, and T70-1M-P. It can be noticed that the amount of power generated from T70-1M-P, 

and T104-1M, both resonating at 115 Hz is nearly the same, at about 65 W. This loss of power 

is again attributed to increased stiffness at the base, and hence a larger inertial loading capacity 

in the case of the triangular cantilevers. The axial stress plot in Figure 122 (and Figure 110 for 

T70-1M-P) shows that the maximum stress on the triangular cantilever is decreased to 9 MPa 

with the larger triangle, as compared to 11 MPa previously for the 70 mm
3
 triangle. Moreover, in 

the case of T104-1M, the axial stress profile over the surface of the beam is not constant, as a 

small negative slope is observed, which was not the case for the T70-1M devices. 

While comparing R104-1M and R70-1M, it can be seen that while the narrower beam 

was generating around 55 W at resonance around 115 Hz, R104M-1M does manage to produce 

a greater amount of power of about 65 W. Even though this amount of power generated is 

smaller on a per volume basis, the comparison is difficult to make due to the mismatch between 

the resonance frequency, hence lower deflections, and hence smaller stresses.  

 

Figure 120: Power generated by the 104 mm
3
 devices with a 2 gram proof mass into various load 

resistors 
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Figure 121: Deflection for 104 mm
3
 devices with a 2 gram proof mass 

 

 

Figure 122: Axial stress along the mid-span length over the surface for the 104 mm
3
 devices with 

a 2 gram proof mass 
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The impedance spectroscopy from the two devices also indicates the mismatch between 

R104-1M and T104-1M. However, the larger coupling for the triangular device at the lower 

resonance frequency is apparent, with the impedance values at the resonance and anti-resonance 

frequencies are presented in Table 16. While the two samples do not present a viable 

comparison, T104-1M is comparable with T70-1M, hence Table 16 is generated.  

 

Table 16: Impedance characteristics for 104 mm
3
 devices with a 2 gram proof mass 

Sample fr (Hz) Z (Ohms) fa (Hz) |Z| (Ohms) Peak Phase° 

R104-1M 150 12,914 160 423,002 56 

T104-1M 117 16,115 125 641,920 59 

 

Similarly, the equivalent parallel capacitance characteristics are presented for the two 

devices, and the triangular device. The capacitance values obtained for the two devices are very 

similar to each other, as the power generated was. However, these are at different resonance 

frequencies, hence only T104-1M can be compared to T70-1M-P, but it was seen that due to the 

positioning of the proof mass, the effect on the capacitance measurements was quite noticeable. 

It is however quite interesting to notice the direct correlation between the power produced, and 

the capacitance peaks. These comparisons will be consolidated in the summary in section 5.3.4 

 

Table 17: Equivalent Parallel Capacitance for 104 mm
3
 devices with a 2 gram proof mass 

Sample Positive capacitance peak (nF) Negative capacitance peak (nF) 

R104-1M 57.67 -29.78 

T104-1M 59.89 -29.74 
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Figure 123: Impedance - Phase Angle for R104-1M 

 

 

Figure 124: Impedance – Phase Angle for T104-1M 
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Figure 125: Capacitance – Dissipation Factor for R104-1M 

 

 

Figure 126: Capacitance – Dissipation Factor for T104-1M 
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5.3.3 RT140-1M 

 Following the 104 mm
3
 samples, the third set of samples that was prepared were the 140 

mm
3
 bimorphs with the rectangle having a length of 21.5 mm and triangular bimorph being 30.5 

mm. These samples are now tested with the given 2 gram proof mass as shown in Figure 127.   

 

  

Figure 127: 140 mm
3
 devices with a 2 gram proof mass 

  

Following the 70 mm
3
 devices, where both the samples had a resonance frequency of 

about 115 Hz, as the 2 gram proof mass was placed on the 104 mm
3
 rectangular device, the short 

circuit resonance frequency increased to 145 Hz. As the same proof mass is now placed on the 

140 mm
3
 devices, the resonance frequency for the rectangular device further increases to 162 Hz 

(shown in Figure 130), presenting a diverging trend. However, it is very interesting to notice that 

the resonance frequency for T140-1M remains at 115 Hz. This geometric/design factor can have 

major implications from a design point of view for a target resonance frequency, where the size 

of the device is not greatly affecting the resonance frequency, as opposed to the rectangular 

device, which increases with increasing size and width, which would call for larger proof masses 

to maintain the resonance frequency.  

Even though the devices have matching volumes and proof masses, it was shown in the 

case of the 104 mm
3
 devices that it is difficult to compare these, as the performance of the 

rectangular device is affected due to lower deflections. This conclusion is amplified from results 

in this section that are presented. However, the set T140-1M set of results would be quite useful 

with other triangular bimorphs with the same proof mass and matching resonance frequency. 
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Figure 128: Resonance frequency for 140 mm
3
 devices with a 2 gram proof mass with varying 

load resistance  

 

 

Figure 129: Short circuit normalized resonance frequency for 140 mm
3
 devices with a 2 gram 

proof mass 
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Once again, with the triangular cantilevers, enhanced coupling is observed, as depicted in 

Figure 129. The coupling coefficient calculated for the two devices, R140-1M and T140-1M is 

found to be 0.32 and 0.35 respectively. Damping ratios are also calculated and presented in Table 

18, and it is observed that the damping in the T140-1M sample is lower than the R140-1M 

samples. Therefore, with the enhanced quality factor, the resulting figure of merit of T140-1M is 

found to be 8.16, which is in the very high coupling regime. This is similar to the case for the 

140 mm
3
 triangle without the proof mass, where the large coupling figure of merit showed 

distinct optimal load resistance values. However, it must be mentioned that the figure of merit 

for R140-1M at 5.33 is also quite large, and in fact quite comparable to T140-0M, but the 

presence of unique load resistance values is absent. More comparisons and observations on this 

will be presented in the conclusions chapter of this section.  

One of the major implications of the increased resonance frequency for R140-1M is the 

diminishing performance for producing power. In fact, in this case, as shown in Figure 130, 

where a 2 gram proof mass is placed on the two devices, the triangular device outperforms the 

rectangular device. Therefore, the apparent effect of the lower resonance frequency for the 

triangular device is quite strong; i.e. the rectangular device R140-1M greatly suffers due to the 

increase in resonance frequency.  

 

Table 18: Power generated at optimal load resistance values for the 140 mm
3
 devices with a 2 

gram proof mass 

 

Ropt,1(Ω) P (W) Ropt,2(Ω) P (W) ζ k31 k
2
Q 

R140-1M 25,000 66.97 100,000 69.19 0.00962 0.32 5.33 

T140-1M 15,000 88.34 200,000 88.75 0.00767 0.35 8.16 
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Figure 130: Power generated by 140 mm
3
 devices with a 2 gram proof mass into various load 

resistors 

 

Therefore, these two devices do not provide a viable comparison, as it can be seen in 

Figure 131, where the maximum deflection in the case of R140-1M is even further reduced to 70 

m, down from 88 m when R104-1M was resonating at 145 Hz at the short circuit resonance 

frequency. It is however interesting to report the maximum deflection for T140-1M, and 

compare it with T104-1M especially, both resonating at 115 Hz. Even though the frequency is 

the same, the maximum deflection is now reduced to 163 m, as compared to 213 m for T104-

1M, and 237 m for T70-1M-P. This is a direct result of the enhanced inertial loading capacity, 

and decreasing maximum stresses. In fact, Figure 132 shows the state of axial stresses, and it can 

be seen that for R140-1M, with the reduced deflection due to higher resonance frequency, the 

maximum stress is decreased. The deflection and maximum stress for T140-1M is also 

decreased, even though the resonance frequency for other comparable triangular counterparts is 

the same. More light will be shed on this aspect when compared on a power per volume basis, 

presented in the summary section.   
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Figure 131: Deflection for the 140 mm
3
 devices with a 2 gram proof mass at resonance 

 

 

Figure 132: Axial stress along the mid-span length over the surface for the 104 mm
3
 devices with 

a 2 gram proof mass 
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The impedance analyzer measurements for the two devices, presented in Figure 133 and 

Figure 134, and show that the two devices with the same proof mass and volume, even though at 

different frequencies have fairly low impedance values at the resonance frequency. R140-1M in 

fact shows lower impedance compared to T140-1M at the resonance frequency, the first instance 

for such a scenario. This lower impedance is attributed to the low stress in the device due to the 

higher resonance frequency and lower deflections. The impedance at the anti-resonance 

frequency for T140-1M is double as that of R140-1M, although it must again be emphasized that 

these resonance and anti-resonance frequencies do not match. The 2 gram proof mass triangles 

are compared in the conclusions section. 

 

Table 19: Impedance – Phase Angle for 140 mm
3 
devices with a 2 gram proof mass 

Sample fr (Hz) Z (Ohms) fa (Hz) |Z| (Ohms) Peak Phase° 

R140-1M 168.1 9833 178.7 227,071 45 

T140-1M 116.4 10,105 125.5 508,239 63 

 

 The capacitance measurements presented in Figure 135 and Figure 136 show that once 

again, the capacitance at their respective peaks for the two devices are greater in the case of 

T140-1M as compared to R140-1M. This has mostly been a consistent trend so far, while 

comparing devices with or without matching resonance frequencies.   

 

Table 20: Capacitance – Dissipation Factor for 140 mm
3
 devices with a 2 gram proof mass 

Sample Positive capacitance peak (nF) Negative capacitance peak (nF) 

R140-1M 68.13 -29.65 

T140-1M 94.46 -55.28 

 



132 
 

 

Figure 133: Impedance – Phase Angle for R140-1M 

 

 

Figure 134: Impedance – Phase Angle for T140-1M 
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Figure 135: Capacitance – Dissipation Factor for R140-1M 

 

 

Figure 136: Capacitance – Dissipation Factor for T140-1M 
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5.3.4 Summary for devices with 2 grams proof mass 

 The three sets of devices considered in this section had volumes of 70 mm
3
, 104 mm

3
 and 

140 mm
3
. In section 5.2, it was seen that these devices had relatively the same resonance 

frequencies, and hence could be easily compared with each other. In this section however, it is 

seen that as the devices are loaded with a 2 gram proof mass, the resonance frequencies are much 

more difficult to manage. In the case of the rectangular bimorph, when the 2 gram proof mass is 

placed on the three devices, the resonance frequencies increase from 115 Hz, to 145 Hz, to 160 

Hz. In the case of the triangular cantilevers, with minor adjustments in the positioning of the 

proof mass, the resonance frequencies can be maintained. The proof mass in the triangular 

devices could possibly be positioned to meet the 145 Hz and 160 Hz frequencies on T104 and 

T140 devices. However, this method is not followed up with due to the fact that a considerable 

amount of area on the tip of the triangular bimorphs would be present in front of the proof mass, 

which could create external effects such as segmented nodes that are beyond the scope of this 

study.  

 However, some important insights can be gained from Figure 137 and Figure 138, which 

present the power density of the rectangular and triangular devices. These power densities that 

are calculated include the volume of the proof mass as part of the device volume. Therefore, as 

the volume of the proof mass dominates the entire volume, it can be observed that the power 

density of these devices under the base excitation load of 2.45 ms
-2

 and 2 gram proof mass is 

quite close to each other. There are some subtle differences that must be pointed out however.  

 In Figure 137, it can be seen that the overall power density of the three devices is 

relatively the same, even though the resonance frequencies are changing appreciably. Therefore, 

the proof mass is clearly dominating the amount of power density of these devices. However, 

with the change in size, hence changing tip mass per volume of the beam, the optimal load 

resistance values are shifting. As the devices become larger (R140-1M > R104-1M > R70-1M), 

the tip mass to beam mass ratio decreases proportionally, and the optimal load resistance values 

shift to lower values. In fact, in the case of R70, only a single optimal load resistance is 

observed, while the other two devices present either a plateau, or two peaks.  

A similar trend is observed in Figure 138 for the triangular devices with the 2 gram proof 

mass, where more viable comparisons can be made, with the resonance frequency maintained at 

about 115 Hz. It can be observed that the power density from the triangular devices with the 2 
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gram proof mass is somewhat higher than the rectangular counterparts, even though the 

maximum stresses reported each time are lower. This is a great advantage provided by the 

triangular devices, as they would be operating much more reliably compared to the rectangular 

counterparts. Moreover, the effect of enhanced strain distribution and lower stresses with the 

same tip mass to beam ratios as rectangular counterparts also show an advantage. While the R70-

1M device shows only one optimal load resistance, the triangular device T70-1M-P (at 115 Hz) 

shows the presence of two peaks.  

In both cases, the position of the optimal load resistance shifts to lower values, and with 

increasing size and lowering of stresses, the presence of two peaks becomes more apparent. This 

is especially distinctive in the case of the T140-1M device, with the lowest value for the first 

optimal load resistance, and presence of two distinct peaks. 

  The resulting electromechanical coupling coefficient, damping ratios, and figure of 

merits are presented in Figures Figure 140Figure 141 and Figure 142. In these figures, the data 

points for the rectangular devices are not connected due to the mismatch in resonance frequency. 

It can be clearly seen that the k31 coupling coefficients for triangular devices with the 2 gram 

proof mass are always higher compared to the rectangular counterparts. The figure of merit also 

keeps increasing in the triangular devices with the decreasing tip mass to beam mass ratios; 

however, this is affected in the case of the rectangular devices due to the increasing resonance 

frequency.  
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Figure 137: Power Density for 2 gram proof mass rectangular bimorphs as a function of load 

resistance 

 

 

Figure 138: Power Density for 2 gram proof mass triangular bimorphs as a function of load 

resistance 
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Figure 139: Maximum tip deflection for 2 gram proof mass bimorphs 

 

 

Figure 140: Electromechanical Coupling Coefficient for devices with 2 gram proof mass 
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Figure 141: Damping Ratio for 2 gram proof mass devices 

 

 

Figure 142: Coupling Figure of Merit for 2 gram proof mass devices 
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Figure 143: Minimum Impedance for 2 gram proof mass devices 

 

 

Figure 144: Maximum Impedance for devices with 2 gram proof mass 
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The peak impedance measurements at resonance and anti-resonance for the two devices 

are also shown in Figures Figure 143 and Figure 144. As expected, and consistent with the power 

generation plots especially in the case of the triangular devices, the impedance peaks shift to 

lower values with increasing size. Figure 144 shows expected behavior, where the impedance at 

anti-resonance for triangular devices is always higher than rectangular devices. However, in the 

case of the impedance at resonance, the impedance measurement is not always lower for 

triangular devices. The sole case where the resonance frequency matches between the two 

devices, at 70 mm
3
, the triangular device shows the advantage of lower impedance at resonance.   

The capacitance measurements for the three sets of devices, as consolidated in Figure 145 

do maintain the trend of increased capacitance in the case of the triangular peaks as opposed to 

the rectangular peaks. From the electrical domain point of view for the piezoelectric cantilevers, 

where capacitance is a key characteristic to describe the piezoelectric bimorph, changing 

geometry into triangular shapes to enhance strain distribution and lower the maximum stress 

levels in the device provide enhanced capacitance, a marked advantage.  

 

 

Figure 145: Capacitance peaks for 2 gram proof mass devices 

  

-80

-60

-40

-20

0

20

40

60

80

100

120

70 90 110 130

Eq
u

iv
al

e
n

t 
P

ar
al

le
l C

ap
ac

it
an

ce
 (

n
F)

 

Frequency (Hz) 

Rect-1M -Cp peak

Tri-1M -Cp peak

Rect-1M +Cp peak

Tri-1M +Cp peak



141 
 

5.4 Increased Proof Masses 

5.4.1:  70 mm
3
 devices with 4 grams proof mass 

In section 5.3, it was seen that as the proof mass is added on to the 70 mm
3
 rectangular 

and triangular devices, the resonance frequency drops from 512 Hz to about 115 Hz. The 115 Hz 

resonance frequency was achieved on triangular samples with small adjustments in the 

positioning of the proof mass. However, in the case of the rectangular bimorphs, as the clamping 

width is increased (i.e. increasing volume), and the proof mass is kept constant, the resonance 

frequency increases with decreasing effective loading at the tip. 

 Due to the fact that the resonance frequency is dominated by the proof masses, it was 

desired to study the effect of increasing proof masses, and see if the resonance frequencies 

converge. Therefore, an additional 2 gram proof mass was attached on the bottom surface of the 

beam, resulting in a total of 4 grams. These samples, designated as R70-2M and T70-2M are 

shown in Figure 146.   

 

  

Figure 146: Schematic for R70-2M and T70-2M 

 The short circuit resonance frequencies of the two devices, the 21.5 mm long rectangular 

bimorph, and the 30.5 mm long triangular bimorph, with 4 grams of proof mass are found to be 

81 Hz and 64 Hz respectively, shown in Figure 147. These resonance frequencies do not match 

with each other; hence viable comparisons between the samples are not possible.  

However, with the addition of a nominal proof mass, from the no proof mass case, there 

was an order of magnitude improvement in power generated by the devices. Therefore, the effect 

of doubled proof mass is worth exploring, which is presented in the following section.  
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Figure 147: Resonance frequencies as a function of load resistance for 70 mm
3
 devices with 4 

grams proof mass 

 

 

Figure 148: Short circuit resonance frequency normalized resonance frequencies as a function of 

load resistance for 70 mm
3
 devices with 4 grams proof mass 
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 The power generated by the two devices is shown in Figure 149, where two major things 

are of interest – the magnitude of power generated, and the peaks for optimal load resistance 

values. In terms of power generated, the maximum power for R70-2M is 125 W with a 

resonance frequency of about 84 Hz at the optimal load resistance. The power generated by R70-

1M was about 55 W at a resonance frequency of 119 Hz. Therefore, with the addition of mass, 

and lowering of resonance frequency, the power generated is directly proportional to the addition 

of mass and inversely proportional to the resonance frequency. This relates to the simple 

analytical expression by Williams and Yates’ lumped parameter model, 𝑷 =
𝒎𝑨𝟐

𝟒𝝎𝒏𝜻𝑻
 presented in 

section 2. A similar conclusion can be drawn for the triangular cantilevered bimorph, where the 

power generated by T70-1M at the optimal load resistance at the resonance frequency of 95 Hz is 

about 76 W, which goes up to 163 W at 66 Hz.  

 One of the aspects that is quite noticeable is the similarity in the electromechanical 

coupling coefficient between the two devices. It can be seen that with the same proof mass, the 

coefficients are very close to each other, roughly equal to 0.34, as shown in Table 21. In fact, 

with the increasing proof mass, the optimal load resistance value is converging to a single point, 

rather than the double peaks or plateau behavior, which is especially seen for the triangular 

device. In the case of R70-2M, a damping ratio of 0.0161 is found, resulting in a k
2
Q figure of 

merit of 3.51, while in the case of T70-2M, a larger damping ratio (largest one measured in this 

thesis), resulting in a k
2
Q of 2.79. Therefore, with increasing proof mass, and in the case of the 

longer triangular sample, with the larger moment arm, the device goes towards the low coupling 

regime, and becomes more resonance frequency, and optimal load resistance specific.  

 

Table 21: Power generated at optimal load resistance values for 70 mm
3
 devices with 4 grams 

proof mass 

 

Ropt,1(Ω) P (W) Ropt,2(Ω) P (W) ζ k31 k
2
Q 

R70-2M 75,000 125 200,000 128 0.0161 0.3360 3.51 

T70-2M 75,000 159 100,000 163 0.0205 0.3379 2.79 
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Figure 149: Power generated by 70 mm
3
 samples with 4 grams proof mass as a function of load 

resistance 

 

 The numerical analysis calculating longitudinal deflections and axial stresses are shown 

in Figure 150 and Figure 151. It can be seen that with the resonance frequencies not matching, 

and the triangular device having lower frequencies, the deflections are larger. The constant 

radius of curvature in the triangular sample with the 4 grams proof mass is quite apparent. 

 The maximum value of stress is quite interesting to notice though. With the same proof 

mass in the triangular device (however unmatched resonance frequency), the maximum stress in 

the device is very close to the maximum stress in the rectangular device, and gives the advantage 

of the linear stress profile.   
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Figure 150: Deflection at resonance for R70-2M and T70-2M 

 

 

Figure 151: Axial stress along the mid-span length for R70-2M and T70-2M 
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The impedance analyzer measurements for the two devices are presented in Figure 152 

and Figure 153. The results from these measurements indicate that the coupling in the case of the 

triangular sample, T70-2M is indeed larger, with a wider spread between the minimum and 

maximum impedance values. The impedance value at resonance for the two devices, although at 

different frequencies are close to each other. However, the impedance at anti-resonance for T70-

2M occurs at greater than 3 Mega-Ohm, which is a very high number.  

 

Table 22: Impedance – Phase Angle for 70 mm
3 

devices with 4 grams proof mass 

Sample fr (Hz) Z (Ohms) fa (Hz) |Z| (Ohms) Peak Phase° 

R70-2M 86.8 24,392 90.9 1,650,976 65.8 

T70-2M 67.8 27,326 72.4 3,373,502 69.02 

 

  The peak capacitance values, presented in Figure 154 and Figure 155 maintain the trend 

presented so far, that with the changing geometry, and same volume, the triangular device 

provide larger peak capacitance values. With the 4 gram proof mass, it can be seen in Table 23 

that both peak values, i.e. the positive capacitance and negative capacitance are roughly doubled. 

This is quite an interesting find due to the fact that with unmatched resonance frequency, it was 

seen that the triangular device T70-2M had a larger maximum stress, which was in fact matching 

the stress of the rectangular cantilevered bimorph, R70-2M. 

 

Table 23: Capacitance – Dissipation Factor for 70 mm
3
 devices with 4 grams proof mass 

Sample Positive capacitance peak (nF) Negative capacitance peak (nF) 

R70-2M 45.76 -32.23 

T70-2M 85.88 -73.26 
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Figure 152: Impedance – Phase Angle for R70-2M 

 

 

Figure 153: Impedance – Phase Angle for T70-2M 
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Figure 154: Capacitance – Dissipation Factor for T70-2M 

 

 

Figure 155: Capacitance – Dissipation factor for T70-2M 
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5.4.2: Summary on 70 mm
3
 devices as a function of proof mass 

 The first set of samples that were created, were the 70 mm
3
 devices which were designed 

in a manner that the resonance frequency of the two devices matched. This resonance frequency 

matching was performed for the devices without any proof mass loading. Keeping the thickness 

and overall volume as constraints, the R70-0M device has an overhang length of 21.5 mm, width 

of 6.35 mm, and thickness of 0.51 mm. The T70-0M counterpart with the same resonance 

frequency and above mentioned constraints was found to be 30.5 mm in altitude, 8.95 mm in 

base width, and 0.51 mm thickness. As a nominal 2 gram proof mass was added, the resonance 

frequency for R70-1M was found to be 115 Hz. This resonance frequency on the triangular 

device was achieved by positioning the proof mass on the device, as T70-1M-P, which was 

effectively a pseudo trapezoidal shape. Addition of a further 2 grams of proof mass caused 

further divergence in the resonance frequency, as the device R70-2M resulted in a short circuit 

resonance frequency of 81 Hz, and the device T70-2M resulted in a short circuit resonance 

frequency of 64 Hz. Therefore, comparing the three sets of data as a function of proof mass 

loading falls does not allow proper comparison of the devices due to the dynamic nature of the 

problem, and drastic changes in tip deflections and power generated.  

 However, one of the most noticeable facts was the change in the behavior of the Power 

vs. load resistance curves for each of the three sets, which is related to the electromechanical 

coupling coefficient, damping, and more importantly the electromechanical coupling figure of 

merit, k
2
Q. It was observed that with the addition of proof mass, the double peaks for optimal 

load resistance turned into a plateau when a 2 gram proof mass was added. As a subsequent 

proof mass was added for a total of 4 grams, the T70-2M sample showed a unique optimal load 

resistance as opposed to two optimal load resistance values. While the electromechanical 

coupling coefficient increased with increasing proof mass, as shown in Figure 156, the increase 

in the damping ratio, giving a small quality factor for the 4 gram samples causes the k
2
Q figure 

of merit to decrease drastically (shown in Figure 158), which relates to the low 

electromechanical coupling regime, where only one optimal load resistance is found.  
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Figure 156: Electromechanical coupling coefficient for 70 mm
3
 devices as a function of proof 

mass 

 

 

Figure 157: Open Circuit Damping Ratio for 70 mm
3
 devices as a function of proof mass 
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Figure 158: Electromechanical coupling figure of merit for 70 mm
3
 devices as a function of 

proof mass 

 

 As it has been reported, the electromechanical coupling can also be determined using 

impedance spectroscopy, and its characteristics are indicative of the coupling in the system. The 

impedance measurements as a function of proof mass for the 70 mm
3
 devices are consolidated in 

Figure 159 and Figure 160, which present the minimum and maximum impedance peaks 

respectively. With the addition of proof mass, the impedance values tend to increase, although 

there seems to be an anomaly in the case of the 4 gram rectangular device, where the impedance 

value seems to be decreasing, which could be due to noise in the measurements. It must again be 

emphasized here that the resonance frequencies between these devices do NOT match; hence it is 

difficult to quantitatively compare these. However, due to the fact that the impedance values 

were decreasing with increasing base width in the case of the no proof mass devices, which 

indicates that as the stiffness is increasing, and impedance is decreasing, the qualitative analogy 

can be extrapolated to expect that with increasing proof mass, the impedance values would 

increase. That seems to be the case in Figure 159, a little more convincingly, especially for the 

T70 sample. Also, the trend here is consistent that the minimum impedance peak for T70 is 

always lower than R70, and the maximum impedance peak for T70 is always higher than R70. 

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 0.5 1 1.5 2 2.5 3 3.5 4

C
o

u
p

lin
g 

fi
gu

re
 o

f 
m

e
ri

t 
k2 Q

 

Proof Mass (g) 

Rectangle

Triangle



152 
 

 

Figure 159: Minimum Impedance peaks for 70 mm
3
 devices as a function of proof mass 

 

 

Figure 160: Maximum Impedance peaks for 70 mm
3
 devices as a function of proof mass 

 

 

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

0 1 2 3 4

M
ax

im
u

m
 Im

p
e

d
an

ce
 (

O
h

m
s)

 

Proof Mass (grams) 

R70

T70

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

3.0E+04

3.5E+04

4.0E+04

0 1 2 3 4

M
in

u
m

u
m

 Im
p

e
d

an
ce

 (
O

h
m

s)
 

Proof Mass (grams) 

R70

T70



153 
 

In the case of the capacitance measurements for the 70 mm
3
 devices, as shown in Figure 

161, the positive peak measurements do not show much change as proof masses are added on. 

However, the negative capacitance peaks do seem to be decreasing more steadily (barring the 

unexpected R70-1M measurements). The negative capacitance peaks decrease more steadily than 

the increase in the positive peaks. Also, once again, the absolute value of the capacitance 

measurements are greater for the T70 than R70 in each case; clearly an indication of the 

advantage provided by the triangular device which enhances the distribution of strain. It is 

however again worth mentioning that the resonance frequency change with increasing proof 

mass is quite drastic. However, the triangular devices consistently outperform the rectangular 

counterparts for capacitance characteristics.  

 

 

Figure 161: Capacitance measurements for 70 mm
3
 devices as a function of proof mass 
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5.5: Comparison with Triangles with L=21.5 mm 

 Section 5.2 showed that for each rectangular cantilevered bimorph there exists one 

triangular counterpart with matching resonance frequency, when the volume and thickness are 

constrained, and the topology is allowed to be altered. For rectangular cantilevers of length 21.5 

mm, and varying widths, it was found that the resonance frequency of the devices roughly 

matched when the altitude for the isosceles triangles were maintained at 30.5 mm, and the 

clamping widths were allowed to vary to match the size. However, when a nominal proof mass is 

placed on the tip of the cantilevers, the frequencies of the two devices are difficult to match. In 

the case of the 70 mm
3
 devices, resonance frequency matching was achieved by positioning of 

the proof mass, while in the other two cases, this scenario did not work.  

 In this section, another scenario for matching resonance frequency is presented. This 

comes from the hint provided by the mass positioned device, which gave an indication that the 

resonance frequencies of the two devices could match when the relative position of the mass on 

the device, independent of the shape is the same, especially when the mass of the tip is greater 

than the mass of the beam. Therefore, the devices presented here have the same length (or 

altitude for triangles), set at 21.5 mm, and the corresponding counterparts also have the same 

clamping widths. Hence, the two devices are compared with unequal volumes, i.e. the volume of 

the triangle is essentially truncated in half, as a cutout from the rectangular device.  

It was shown in Chapter 4 that when two such devices are compared, the resonance 

frequency of the triangular device doubled from the rectangular sample, i.e. the resonance 

frequency of triangular devices with an altitude of 21.5 mm was over 1030 Hz, as compared to 

the rectangular counterpart with a resonance frequency of about 515 Hz. This behavior 

remarkably changes with the addition of a proof mass, as presented in the following two 

subsections. 

 

5.5.1: R70-1M vs. T35-1M 

 The first set of comparison presented is between R70-1M, and the resulting triangular 

cutout, which is T35-1M. The data presented for R70-1M here is repeated from section 5.4.1. A 

schematic of the two devices side-by-side is shown in Figure 162. 
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Figure 162: R70-1M and T35-1M 

  

The two devices, T70-1M and T35-1M as shown in Figure 162 were prepared, and have 

resonance frequencies that are very close to each other indeed. R70-1M has a short circuit 

resonance frequency of 116 Hz, while the triangular counterpart with half the volume, i.e. T35-

1M has a resonance frequency of 123 Hz. Therefore, there is a small difference from the target 

resonance frequency, of 115 Hz. However, this difference can be described due to the fact that 

there is no overhang length from the triangular cantilevered bimorph to the point where the force 

from the proof mass could be exactly resolved at the tip, as in the case of the rectangular 

bimorph. Physically placing the proof mass at the tip of the triangular device with a narrow angle 

was difficult, and made the mass unstable. Hence, the proof mass was placed such that the outer 

edge was flush with the tip of the bimorph. Therefore, the resonance frequency with the shorter 

effective length can be expected to be slightly higher, which happens to be the case.  

The coupling behavior for the two devices, based on the resonance frequency as a 

function of load resistance can be seen in Figure 163 and Figure 164. So far, in every case the 

coupling has been greater in the case of the triangular device. However, the coupling coefficient 

for the two devices here is nearly identical: 0.3093 for R70-1M and 0.3122 for T70-1M. The 

difference between the short circuit and open circuit resonance frequency between the two 

devices is nearly identical, at 6 Hz for R70-1M, and 6.5 Hz for T35-1M.  

It is quite remarkable that the resonance frequency of T35, without a proof mass is 1032 

Hz (numerically), and drops down to 123 Hz with the 2 gram proof mass, while for R70, the 

drop to 116 Hz with a proof mass is from 515 Hz without one.  
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Figure 163: Resonance frequency for R70-1M and T35-1M as a function of load resistance 

 

 

Figure 164: Short Circuit normalized Resonance frequency for R70-1M and T35-1M as a 

function of load resistance  
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The power generated by the two samples as a function of load resistance values is 

presented in Figure 165. It can be seen that the power generated by both samples do not two 

well-defined peaks, rather a plateau of about three or four measurements. Two maximum values 

for power are considered as the optimal load resistance values (hence impedance analysis is quite 

useful to determine the proper optimal load resistance). The power generated from R70-1M at 

75,000 ohms and 200,000 ohms is about 55 W. In the case of R35-1M, the device with half the 

volume produces about 45 W into 200,000 and 250,000 ohm load resistors. Therefore, two 

major observations are apparent here. The first one is that the power generated by the device that 

has half the volume is only about 18-20% less than the device with twice the volume, implying 

that it could be in a greater amount of stress. The second observation is that the optimal load 

resistance, which relates to peak impedance values shifts to higher values.  

 Due to the fact that the power generated from these two devices is from unequal volumes, 

it is imperative to compare them from a power density point of view. However, the total device 

volumes are in fact quite close to each other, since the identical proof masses dominate these. 

The resulting volumes for R70-1M and T35-1M-L are 0.326 cm
3
, and 0.256 cm

3
 respectively. 

The maximum power density from the rectangular device R70-1M is about 28 (mW/g
2
)/cm

3
, 

while for the triangular device is about 25(mW/g
2
)/cm

3
; which are quite close to each other. This 

is a remarkable feat, since the triangular device has half the active piezoelectric volume as 

compared to the rectangular device. Even though there are no apparent peaks for optimal load 

resistance in Figures Figure 165 and Figure 166, the T35-1M-L peak power is certainly shifting 

towards higher load resistance values. This indicates that the triangular device could have a 

similar maximum stress, which is presented following the discussion on coupling coefficients.  

Table 24 summarizes the data in terms of the power generated at the optimal load 

resistance values, and the coupling coefficients. It can be seen that when the two devices with the 

same base width and proof mass are compared, the electromechanical coupling coefficients are 

found to be virtually identical. The triangular device shows substantially higher levels of 

damping, hence the electromechanical coupling figure of merit decreases substantially, which is 

5.23, as compared to 3.14 for T35-1M-L. At this point, one of the comparisons that can be made 

between the two samples is the tip mass to beam mass ratio, which is 7.28 for T35-1M-L, which 

is twice as much as 3.64 for R70-1M. Hence, with half the piezoelectric material, and the same 

proof mass, the electromechanical coupling figure of merit is decreasing.  
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Figure 165: Power generated by R70-1M and T35-1M-L into various load resistors 

 

 

Figure 166: Power density for R70-1M and T35-1M into various load resistors 
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Table 24: Power generated by R70-1M and T35-1M at optimal load resistances 

 

Ropt,1(Ω) P (W) Ropt,2(Ω) P (W) ζ k31 k
2
Q 

R70-1M 75,000 54.92 200,000 54.53 0.00914 0.3123 5.232 

T35-1M-L 200,000 44.31 250,000 44.74 0.01553 0.3122 3.139 

 

 One of the most important comparisons between the two devices R70-1M and T35-1M is 

for the longitudinal tip deflection, and axial stresses at resonance, which are shown in Figure 

167. The two devices, with the same overall length, and almost the same tip mass position show 

relatively similar deflections, although slightly lower for T35-1M, which has a much more 

constant radius of curvature. The deflection of the T70-1M sample is provided for reference 

purposes, and it can be seen that the deflections overlap by a high degree. The maximum 

deflection at the tip for rectangular device, R70-1M is 131 m, while for the 21.5 mm long 

triangular device is 118 m. These two maximum deflections are not too far apart, hence this 

proves that it is very important to compare devices with matching resonance frequencies. 

 The stresses generated by the two devices are shown in Figure 168. From the results 

obtained as shown in Figure 166, intuitively it was expected that the maximum stress in the 

triangular device, T35-1M would be very close to T70-1M, due to the similar amounts of power 

generated from a device with half the volume. However, the stress analysis in Figure 168 shows 

that the maximum stress at the base is still much lower than R70-1M, and in fact very slightly 

higher than T70-1M. While this result is somewhat unexpected, it gives a marked advantage for 

using triangular samples with the same length (altitude) and proof masses due to the fact that 

these devices are operating at lower levels of maximum stress, thus providing reliable operation. 

While the optimal load resistance values have increased in the case of T35-1M, the maximum 

stress does not. 
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Figure 167: Longitudinal deflection along the mid-span for R70-1M and T35-1M-L 

 

 

Figure 168: Axial Stress over the midspan for R70-1M and T35-1M 
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can shed more light on these, as they have in previous sections. The impedance analyzer 

measurements, as presented in Table 25 and Figure 169 for R70-1M as previously mentioned 

show minimum impedance of 37,172 ohms and maximum impedance of 246,245 ohms. While 

the minimum impedance does not match very well with the first reported optimal load resistance 

of 75,000 ohms, the maximum impedance is relatively close to the reported 200,000 ohms, as the 

power generated at the next measured load resistance of 250,000 ohms is quite similar at 53 W, 

compared to 54.5 W in Figure 165. In case of the triangular bimorph, T35-1M-L, the optimal 

load resistance values reported are 200,000 and 250,000 ohms. These values are far off from the 

impedance analyzer measurements in Figure 170. While the external load resistor may not have 

captured the optimal load resistance values based on peak power, since measurements at these 

values of load resistance were not made, the impedance measurements do provide useful data in 

terms of providing peak values for impedance matching. However, it is important to note that 

with increased proof mass to beam mass ratios, the impedance peaks are substantially increased.  

 

Table 25: Impedance measurements for T70-1M and T35-1M 

Sample fr (Hz) Z (Ohms) fa (Hz) |Z| (Ohms) Peak Phase° 

R70-1M 120 37,172 130.2 246,245 18.3 

T35-1M-L 129 41,439 139 850,758 45 

 

 The capacitance measurements for the two devices under discussion are presented in 

Table 26, and Figure 171 and Figure 172. Here, the capacitance measurements for the T35-1M-L 

sample are roughly half as that of the rectangular R70-1M sample, clearly showing the 

dominance of the size dependency of capacitance measurements. It also becomes difficult to 

compare these with different tip mass to beam mass ratios, where there was an apparent 

dependency in the 4 gram proof mass study on 70 mm
3
 devices.  

Table 26: Capacitance peaks for R70-1M and T35-1M-L 

Sample Positive capacitance peak (nF) Negative capacitance peak (nF) 

R70-1M 39.1 -21.31 

T35-1M-L 21.99 -8.6 
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Figure 169: Impedance – Phase Angle for R70-1M (same as Figure 111) 

 

 

Figure 170: Impedance – Phase Angle for T35-1M-L 
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Figure 171: Capacitance – Dissipation Factor for R70-1M (same as Figure 114) 

 

 

Figure 172: Capacitance – Dissipation factor for T35-1M-L 
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5.5.2: R140-1M vs. T70-1M 

 The next set of samples that is tested is a comparison of R140-1M which provided a short 

circuit resonance frequency of 159 Hz. The triangular counterpart to this sample originally was 

T140-1M, which had an altitude of 30.5 mm, and maintained a resonance frequency of about 115 

Hz. Due to this large discrepancy, these two shapes did not provide viable comparisons. Hence 

the triangle being tested now is T70-1M-L, which is a triangular cut-out from the rectangular 

counterpart, with half the volume and the same length (21.5 mm), and same clamping width at 

the base (12.7 mm). Schematics of these samples are provided in Figure 173.  

  

Figure 173: Schematic for T140-1M and T70-1M-L 

 As anticipated, with the matching dimensions of the two devices in terms of 

length/altitude, clamping width, and identical proof masses, the resonance frequencies of the two 

devices are found to be very similar to each other. While the resonance frequency of the T70-

0M-L (in Chapter 4) device was twice as much as that of R70-0M, it is quite remarkable that 

these match with each other, as shown in Figure 174. The short circuit resonance frequency for 

T70-1M-L is found to be 162 Hz, which is much more comparable to R140-1M. This 

phenomena goes on to give an indication that the resonance frequency, which is directly 

proportional to the stiffness of the material, is dominated by the stiffness at the base in the case 

of cantilevers, provided the tip mass to beam ratio is large.  

Figures 174 and 175 show that the electromechanical coupling coefficient in the case of 

the case of these two devices are quite similar to each other; where the k31 T70-1M-L is 0.34, and 

0.32 for R140-1M. This is in trend with the previous section, where the triangular device with 

identical base width and altitude as its rectangular counterpart, but half the bimorph volume 
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provides similar electromechanical coupling coefficients. Therefore the tip mass to beam mass 

ratio in the triangular device is again doubled (3.64 for T70-1M-L; 1.82 for R140-1M).  

 

Figure 174: Resonance frequency vs. load resistance for R140-1M and T70-1M-L 

 

 

Figure 175: Short circuit normalized Resonance frequency vs. load resistance for R140-1M and 

T70-1M-L 
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 The power generated by the two devices as a function of load resistance is shown 

in Figure 175. In this set of data, it can be seen that with the increased electromechanical 

coupling coefficients, and increased figure of merits, as presented in  

Table 27, two optimal load resistance occur. The maximum power generated by R140-1M occurs 

at optimal load resistance values of 15,000 and 200,000 ohms, about 88 W for both values. For 

the triangular cantilever, T70-1M-L, these values are observed to be 35,000 and 200,000 ohms, 

and the power in both these cases is also similar, to be about 55 W. Therefore, while the 

rectangular sample seems to provide a larger spread in terms of optimal load resistance values, 

the exact values for impedance matching are to be determined from impedance spectroscopy. 

The damping ratios for both these devices are also quite similar; hence the calculated k
2
Q value 

for the triangular device is larger.  

It is also once again important to observe the power density of the two devices due to the 

mismatch in volumes. The device volume for the 70 mm3 triangle with the 2 gram proof mass is 

0.326 cm
3
, and the 140 mm3 rectangle is 0.395 cm

3
; hence both of these are quite close to each 

other. However, with the triangular device having half of the active volume, the power density 

between the two devices is quite similar. This is similar to the previous case, where the T35-1M-

L and R70-1M samples were compared. The observation for the shift in the optimal load 

resistance for the triangular sample, under similar anticipated maximum stress is also observed, 

which is now a consistent trend. The deflection and stress analyses are presented in Figures 178 

and 179.  

Table 27: Power at optimal load resistance for R140-1M and T70-1M 

 

Ropt,1(Ω) P (W) Ropt,2(Ω) P (W) ζ k31 k
2
Q 

R140-1M 15,000 88.34 200,000 88.75 0.00962 0.32 5.33 

T70-1M-L 35,000 53.21 200,000 57.36 0.00923 0.34 6.22 
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Figure 176: Power generated by R140-1M and T70-1M-L as a function of load resistance 

 

 

Figure 177: Power density for R140-1M and T70-1M-L as a function of load resistance 
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pronounced is more apparent in the case of the triangular device. Overall, the deflection for the 

two devices is found to be about 69 m, expectedly lower than the devices presented in the 

previous case (R70-1M and T35-1M-L) due to the increased size. However, this deflection 

analysis emphasizes the importance of matching resonance frequency to compare the behavior of 

two structures for power generation. This is in spite of unequal volumes between the two 

devices, which can be normalized for power density, as shown.  

In terms of the axial stresses generated in the two devices, even though the triangular 

device, T70-1M-L has half the bimorph volume, the maximum stress at the clamped end is still 

lower than the axial stress in R140-1M. The maximum stress for the rectangular device, R140-

1M is found to be about 8.96 MPa, while the triangular device with half the volume has a 

maximum stress of 7.18 MPa. Both of these devices are resonating at about 160 Hz. Therefore, 

this shows that the triangular device, with its enhanced loading capacity is able to operate more 

reliably from a mechanical standpoint. Impedance characteristics are however affected, as 

observed in the power plots, and more clearly described using impedance spectroscopy results 

presented next.  
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Figure 178: Longitudinal Deflection for R140-1M and T70-1M-L at resonance  

 

 

Figure 179: Axial Stress along the mid-span for R140-1M and T70-1M-L 
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The impedance analysis, which takes us back to the discussion of electromechanical 

coupling in the system, is presented in Figure 180 and Figure 181, and summarized in Table 28. 

The results here give a more accurate representation of the minimum and maximum impedance, 

which relate to the optimal load resistance. Here, it can be seen that as the two devices with 

unequal volumes are compared, the minimum impedance, which is found to be 9833 ohms R140-

1M, is lower than 15,820 ohms for T70-1M. The maximum impedance, i.e. the impedance at the 

anti-resonance frequency is in much lower, in fact roughly half with a value of 227,071 ohms for 

R140-1M, as compared to 519,497 ohms for T70-1M-L. The larger spread between the 

maximum and minimum impedance, although similar difference between the resonance and anti-

resonance frequency is an indication of higher coupling. However, the main parameter that is 

different between the two devices is the volume, and hence the resulting stress over the device.  

 

Table 28: Impedance Analysis for R140-1M and T70-1M-L 

Sample fr (Hz) Z (Ohms) fa (Hz) |Z| (Ohms) Peak Phase° 

R140-1M 168.1 9833 178.7 227,071 45 

T70-1M-L 166 15,820 177 519,497 55 

 

 The capacitance of the two devices, presented in the Figure 182 and Figure 183 show a 

similar trend to the previous section again. The positive peak capacitance value for the triangular 

device is smaller, but not half of the rectangular device with half the volume. In fact, in the case 

of the negative capacitance peaks, the capacitance values in fact fall within 9 nF of each other. It 

is again difficult to compare these results with the previous set, due to changing resonance 

frequencies and tip mass to beam mass ratios. The bulk capacitance values however, are mainly 

size dependent.  

Table 29: Capacitance peaks for R140-1M and T70-1M-L 

Sample Positive capacitance peak (nF) Negative capacitance peak (nF) 

R140-1M 68.13 -29.65 

T70-1M-L 42.85 -21.30 
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Figure 180: Impedance – Phase angle for R140-1M  

 

 

Figure 181: Impedance – Phase Angle for T70-1M-L 
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Figure 182: Capacitance – Dissipation for R140-1M 

 

 

Figure 183: Capacitance – Dissipation Factor for T70-1M-L  

 

  

0

5

10

15

20

25

30

35

40

45

-1.0E-07

-5.0E-08

0.0E+00

5.0E-08

1.0E-07

60 110 160 210 260

D
is

si
p

at
io

n
 F

ac
to

r 

Eq
u

iv
al

e
n

t 
P

ar
al

le
l C

ap
ac

it
an

ce
 (

F)
 

Frequency (Hz) 

Capacitance

Dissipation Factor

0

5

10

15

20

25

30

35

40

45

-1.0E-07

-5.0E-08

0.0E+00

5.0E-08

1.0E-07

60 110 160 210 260
D

is
si

p
at

io
n

 F
ac

to
r 

Eq
u

iv
al

e
n

t 
P

ar
al

le
l C

ap
ac

it
an

ce
 (

F)
 

Frequency (Hz) 

Capacitance

Dissipation Factor



173 
 

5.5.3 Summary on constrained length devices 

One of the major findings in this section is the dependence of resonance frequency on the 

shaped devices, as long as the tip mass to beam ratio is significant. In this section, when 

comparing two shapes, the clamping width and length (altitude for triangles) was kept the same, 

and the proof mass placed on the device, the resonance frequencies for the two devices was 

identical. This was quite unintuitive, due to the fact that without the proof mass, the resonance 

frequency of the triangular device in such circumstances is double as its rectangular counterpart. 

Therefore, as long as the tip mass to beam ratio is large, the simple analytical equation 𝜔 =

 √𝑘 𝑚⁄  can be employed to predict the resonance frequency. In such cases, the clamping width, 

which affects the stiffness in the device greatly affects resonance frequency; hence indicating 

that the stiffness at the clamped cross-section is the one dominating the stiffness term in the 

analytical equation. Therefore, the two devices that were compared with unequal volumes 

(rectangle twice as large as triangle), and matching resonance frequencies.  

With the volume in the triangular device being half as much as the rectangular device, the 

maximum stress values in the device were expected to match. This however was not the case, 

and attributed to the magnitude of maximum stress values, which are well below the maximum 

allowed stresses. However, with a higher amount of stress per unit volume in the triangular 

device, the electromechanical coupling coefficient matched that of the rectangular device. But 

with large mass tip to beam mass ratio, the damping ratios are large, which give smaller figure of 

merits. 

Also, with the larger stresses in the triangular devices, the resonance frequency 

impedance were higher than the rectangular devices, a trend that was not observed in triangular 

devices when volumes matched. The impedance anti-resonance for triangular devices always 

remained larger than rectangular counterparts with half the volume. 

It is quite difficult to consolidate data from this set in plots, due to the variability between 

the resonance frequency, and variability in size giving different tip mass to beam mass ratios. 

Moreover, an exact solution for the effective mass, or spring constant for a triangular bimorph is 

not known, which could otherwise have been used as an independent variable. 
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5.6 Damping Ratio as a function of load resistance 

One of the biggest contributing factors towards the electromechanical coupling figure of 

merit 𝑘2𝑄𝑚 is the quality factor. This quality factor in common vibration literature is regarded as 

the inverse of the damping ratio. In the figure of merits that have been reported in this study, the 

quality factor used is the one calculated under open circuit conditions for each device. This is 

done because of the fact that the voltage signal under open circuit conditions is the largest; and 

as the load resistance tends to short circuit conditions, the voltage signal is very noisy and quite 

difficult to read. The results in this section justify the use of the open circuit damping ratio as a 

safe assumption for the mechanical quality factor.  

While the literature uses the mechanical quality factor to describe the figure of merit, 

very few studies [28, 57] have focused on the effect of the load resistance on damping ratio. This 

section presents two sets of data on the effect of changing damping ratio with load resistance. 

The first set presented is for R104-1M and T104-1M, where the two devices were found to have 

pretty strong coupling with 𝑘2𝑄𝑚 > 5. The second set is from R70-2M and T70-2M, where the 

𝑘2𝑄𝑚 figure of merit was approaching 2, the low coupling regime.  

In both sets of data presented in Figure 184 and Figure 185, it is quite conclusive that the 

damping ratio does not remain constant with load resistance. The behavior presented shows as 

increase in the damping ratio with increase in load resistance up to a certain value, after which it 

diminishes. This phenomenon begs a comparison with the power generated from the device.  

In the case of the 104 mm
3
 devices with a 2 gram proof mass, it can be seen that the 

damping ratio increases up to 25,000 ohms, after which a small dip is found at 35,000 ohms, 

following which a small plateau exists. The damping ratio starts diminishing from 150,000 ohms. 

Comparing this with the data in Table 15, the two load resistance values mentioned are the ones 

where the optimal load resistance values were found for R70-1M. The plateau region is where 

the power generated remained flat. In the case of the triangular sample T104-1M, a small peak at 

15,000 ohms is more evident, showing a damping ratio of about 0.02 (𝑄 ≈ 33). This load 

resistance is precisely the same value for the first optimal load resistance in Figure 120. The 

second optimal load resistance was found at 250,000 ohms; interestingly where the damping 

ratio is again 0.02. The damping ratio shows a peak values at 75,000 and 100,000 ohms, which in 

the case of T104-1M triangles goes to about 0.032 (𝑄 ≈ 15). Interestingly, these are the same 

load resistances where the dip in power is observed in Figure 120. 
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In the case of the 4 gram proof mass samples, as shown in Figure 185, it can be seen that 

the small peak followed by a large peak at intermediate load resistance values are still evident. 

The first peak for the R70-2M is observed at 15,000 ohms, and for the triangular device is 

observed at 10,000 ohms. Following these peaks, a small dip is observed, at 20,000 ohms for 

R70-2M, and 15,000 ohms for T70-2M. While two distinct optimal load resistance values for 

power were not discernable in Figure 149, it is worth comparing this region against the 

impedance minima for the two devices. The impedance at resonance frequency, although without 

an external load resistor in series with the bimorph showed peak values of 24,392 ohms and 

16,325 ohms for R70-2M and T70-2M respectively from Table 22, which are in good correlation 

with the first peaks for the damping ratio. Therefore, the first peak damping ratio is related to the 

first optimal load resistance value.  

The damping ratio at the first peak of 15,000 ohms for R70-2M is 0.025; and this 

particular damping ratio is found at 200,000 ohms. These are both locations where power is 

maximized in Figure 149.  

However, for the relatively low coupling harvester, T70-2M, which had a 𝑘2𝑄𝑚 value of 

2.7, the power was maximum at 100,000 ohms; precisely the location where the maximum 

damping ratio is found. Moreover, it can be seen that the damping ratio at this point is the 

largest, with a value of 0.043; corresponding to a low Q-factor of about 11.6.  

Therefore, damping ratio has a noticeable dependency with load resistance. The damping 

ratio for triangular devices is found to be larger than rectangular counterparts. In the case of high 

coupling harvesters, the damping ratio at which power is maximized is not the largest, but higher 

than open or short circuit conditions. The highest damping ratio relates to the dip in the power 

curve in high coupling harvesters, whereas in low coupling harvesters, it is where the power is 

expected to be maximized.  
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Figure 184: Damping ratio as a function of load resistance for 104 mm
3
 devices with 2 grams 

proof mass 

 

 

Figure 185: Damping ratio as a function of load resistance for 70 mm
3
 devices with 4 grams 

proof mass 
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CHAPTER 6: CONCLUSIONS & FUTURE WORK 

  

In this study, the effect of changing geometry on cantilevered bimorphs has been 

explored. Cantilevered bimorphs of traditional rectangular geometry have a limitation, which is 

that the axial stress in the device under harmonic excitations is concentrated near the fixed end of 

the beam. The idea of linearizing strain by altering the geometry of the device, and producing 

more power has been presented in literature before. However, it was realized that in the dynamic 

mode, it is very important to compare devices at matching resonance frequencies to evaluate 

device characteristics. It was seen that managing the resonance frequency of two different 

shapes, with and without proof mass can be a difficult task to manage. This self-imposed 

constraint was attempted to be maintained throughout this study, with some success.  

One of the aspects of changing geometry to enhance power output, with given constraints 

that is missing in literature is an exhaustive characterization of the material, especially with 

geometrical considerations. This was thoroughly performed by comparing power generated, the 

calculation of electromechanical coupling, impedance spectroscopy, and comparison of damping 

ratios. Several conclusions can be drawn from these studies, which are listed below: 

- Changing the shape of the device from rectangular to triangular enhances the loading 

capacity of the device, hence making it stiffer (consistent with literature review). 

- When rectangular and triangular counterparts with no proof mass are considered, the 

triangular bimorphs operate at very low axial stresses, providing more reliable operation. 

They however produce less power in such a scenario. 

- When rectangular and triangular counterparts with proof masses are considered, triangles 

slightly produce greater power than rectangular bimorphs, provided the tip mass to beam 

ratio is significant. In this study, the smallest tip mass to beam mass ratio where the triangles 

outperformed rectangular counterparts was 3.6 (for example T70-1M).  

- As rectangular and triangular devices with or without proof mass are compared, with each set 

having matching resonance frequency and volumes, the triangular devices show enhanced 

electromechanical coupling coefficients, which is quite significant for electrical parameters.   
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- With enhanced electromechanical coupling, the impedance at resonance is smaller, and 

impedance at anti-resonance is larger. Therefore, power can be more easily extracted at lower 

load resistance values from triangular devices, where the impedance minima are found. 

- The triangular devices with larger electromechanical coupling also show larger capacitance 

peaks around resonance compared to rectangular counterparts, a phenomena that was 

observed very consistently. Therefore, triangular bimorphs are more efficient capacitors with 

larger positive capacitance peaks, and better conductors with larger (absolute value) negative 

capacitance peaks.  

- The damping ratio for the triangular devices is usually larger than rectangular counterparts, 

especially when resonance frequencies match. With higher damping ratios at optimal load 

resistances, and smaller quality factors, a greater amount of power can be generated, and 

larger electromechanical coupling figure of merits are obtained. 

- Also, with smaller quality factors, the frequency bandwidth at which appreciable power can 

be extracted is wider, making the devices more compliant, making them easier to tune for 

resonance frequency. 

- Overall, triangular bimorphs, when compared to rectangular bimorphs with matching 

resonance frequency always operate with lower axial stresses, providing more reliable 

operation.  

Therefore, triangular devices provide several advantages over rectangular counterparts. The 

only disadvantage is that with the added processes involved in cutting and producing requires 

more design work or finite element modeling to target devices for certain applications. However, 

with changing geometry as a function or size, it is quite difficult to manage the resonance 

frequency to compare devices. Due to the fact that most parameters in this study are frequency 

dependent, maintaining this becomes paramount. 

From a future work perspective, an excellent study would be to study the effects of thickness 

of cantilevered bimorphs, and also the thickness ratio of the piezoelectric layers to the shim 

layer. However, due to the mismatch in elastic modulus and density between the shim and the 

piezoelectric layers, it would be difficult to compare devices with similar resonance frequencies. 

This would actually be quite difficult to constraint due to the fact that the resonance frequency in 

the generic formula is directly proportional to the stiffness, and the stiffness has a cubic 

proportionality with thickness. This would be a challenging but worthwhile study. 
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APPENDIX A: Coupled-Field Numerical Simulations 

Numerical simulations using ANSYS have been performed in order to match 

experimental results, and use these simulations as a tool to evaluate power generation 

characteristics from devices of more complex geometry. In order to do so, a harmonic analysis is 

performed on a modeled rectangular bimorph in a multi-physics environment, as described in the 

methodology section. The rectangular bimorph has the same dimensions as mentioned for R70-

0M, where length is 21.5 mm, width is 6.35 mm, and the overall thickness is 0.51 mm, but here 

three layers are modeled, where the piezoelectric layers are 0.19 mm and the brass layer is 0.13 

mm in thickness respectively. The ANSYS model is able to calculate the transverse 

displacements at the free end as shown in Figures 186 and 187, and also the electric potential 

generated through the bimorph layers as shown in Figures 188 and 189.  

It can be seen in Figures 188 and 189 that the value of the load resistance greatly 

influences the voltage generated in the device. It is observed that, increasing values of load 

resistances increase the amount of deflection in the device. This can be explained due to 

increased damping in the device with increasing values of load resistances. As the amount of 

electrical damping induced in the system increases, the device resonates at a lower frequency 

with a greater amplitude.  

Moreover, as it was seen in the previous sections that there was an optimal load 

resistance for power generation. This effect may also be related to the large resonance frequency 

shift that is seen in Figures 68-71 where it is seen that at load resistance values of 25k ohms and 

below, the displacement and voltage plots show much lower resonance frequencies. The power 

generated here would be different, since these values may be close to the optimal load resistance 

of the device.  

Figure 190 shows voltage generated by the device as a function of load resistances as 

calculated by ANSYS and compared with experimental data. The ANSYS plot mimics the 

behavior of the experimental data, but the values are quite far off from each other. This is once 

again attributed to the improper damping ratio that is prescribed in the ANSYS model, which 

utilized the equation ζp =
1

2Q
, where Q is the quality factor of the device, which was given as 32 

for PZT-5H by the manufacturer. The results from the impedance analyzer measurements 

suggest that this value changes when the devices are clamped as cantilevers. Therefore, the 

numerical model needs to be fine-tuned with proper damping ratios. 
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Figure 186: Real part of tip displacement for R70-0M at various load resistances 

 

 

Figure 187: Imaginary part of tip displacement for R70-0M at various load resistances 
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Figure 188: Real part of electric potential for R70-0M at various load resistances 

 

 

Figure 189: Imaginary part of electric potential for R70-0M at various load resistances 
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