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Abstract

Woody biomass is currently sold on a wet basis, a system that works because moisture

content of harvested trees normally fluctuates within a narrow range and wood from multiple

sources can be considered a uniform product. Wet wood, however, is not an optimal energy

feedstock and various methods have been proposed to reduce moisture content in woody

biomass prior to its sale. Once moisture content can vary outside its typical range, however,

the use of wet weight as a basis for selling timber products becomes untenable. Promoting

a robust bioenergy market will, therefore, require the development of reliable sensors for

measuring moisture content of wood in the field. A logical place at which to measure moisture

content of woody biomass would be just prior to shipment for final conversion. For biomass

harvested from pine plantations prevalent in the US South, that would most likely be between

the chipping and loading operations. To avoid handling the biomass an extra time, however,

a moisture sensor should work accurately on a moving stream of chips as they exit a chipper

and are blown into a van for hauling. This type of high-speed, non-contact moisture sensor

suitable for application in a rough environment is not currently available. Our goal in this

study was to develop a sensor for measuring moisture content of a rapidly moving stream of

pine chips that was robust, non-contact in operation, reliable, and accurate.

An 8-electrode electrical capacitance sensor was built for that purpose. The multiple

electrode system was used to characterize the distribution of permittivity within the circular

area (diameter = 16.5cm) enclosed by the sensor and surrounded by the electrodes (2.5x10

cm copper plates). The sensor was could be operated in two modes: a) static mode in which

the cumulative permittivity between each combination of plates was the variable correlated

with moisture (a bulk measurement), and b) a dynamic mode in which multiple sequential

readings of electrode combinations was used to sample a stream of chips moving through the
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sensor enclosure, the result being a sequence of 2-D maps of permittivity. This method is

referred to as electrical capacitance tomography (ECT).

The objectives of the research presented in this dissertation were:

1. Validate the accuracy of the sensor in static mode in predicting moisture content of

fixed quantities of biomass, and investigate the sensor’s limits of performance when

subjected to variations in such confounding variables as quantity, location, and size of

the material under test.

2. Develop the necessary hardware and software systems to perform dynamic (ECT) mode

characterization of moving streams of biomass, and establish the accuracy of moisture

content predictions.

Static mode calibration of the sensor was carried out on wood chips having uniform

moisture content. Tests were made on chips ranging in moisture content of from 4% to 140%

(dry basis), and the results compared with the widely-accepted near infrared spectroscopy

(NIR) method. For tests on individual wood chips (about 10 g each), the root mean squared

errors of prediction (RMSEP) were 13.52% and 48.43% for NIR and ECT, respectively. In

bulk measurements (multiple chips, 40-80 in number), RMSEPs were found to be 15.39%

and 11.65% for the NIR and ECT methods, indicating the main difference between the two

methods: NIR predictions were independent of sample mass, the ECT estimates were not.

Two additional measurement procedures were developed using the capacitance sensor, one

using multiple excitation frequencies and the other assuming a fixed sample mass based on

volume, to remove its dependency on sample mass. The RMSEPs for the two methods were

similar (13.0% and 10.9% for the fixed volume and two-frequency methods, respectively) and

also comparable to the previous methods when sample mass was known. It was concluded the

capacitive approach was very comparable to NIR in its ability to accurately predict moisture

content of biomass using either approach (unknown or known mass), and the capacitive

sensor was superior in predicting moisture content of bulk materials. On quantities of wood
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near the detection limit of the capacitance sensor (about 10g), however, the NIR approach

was preferable.

Dynamic mode tests of the sensor were made in two steps, the first involving simultane-

ous independent measurement of mass flow using another sensor (plus moisture content from

the sensor in capacitive mode), and the second using the sensor in ECT mode to estimate

both total mass flow and moisture content simultaneously. In the first tests, an impact mea-

surement approach was used to estimate mass flow. In the second, the ECT tomographic

mode was used to image the variation in permittivity of the flowing stream of wood chips.

The images also provided a means to estimate chip volume within the sensor, which, assum-

ing uniform density, provided a mass value. The RMSEP of moisture content predictions

using the impact and ECT mass flow estimation methods were 11.86% and 17.71%, respec-

tively. It was concluded these tests proved the feasibility of using electrical capacitance

tomography as a means of measuring moisture content of moving biomass streams. Further

development of the techniques to increase the sampling rates above that achieved in these

tests will be required to make the system practical.
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Chapter 1

INTRODUCTION

Woody biomass is often transported and used in chipped form, in the pulp and paper

industry and potentially as a feedstock for a future biomass energy industry. Predictions from

the leading information provider for the global forest products industry, RISI’s (Repository

of Industrial Security Incidents) Wood Biomass Market Report, indicate increasing demand

for wood chips in the future. Estimates for North America predict demand for up to 54

million green tons of wood chips annually, mostly from loblolly pine, through the year 2015.

With the increasing demand for wood chips, especially for energy, a potential problem is

raised. Woody biomass is currently sold on a wet basis, a system that works because moisture

content (MC) of green harvested trees normally fluctuates within a narrow range and wood

from multiple sources can be considered a uniform product. This is acceptable when chips

are used for pulp, but water is considered a contaminant for thermo-chemical processes

producing energy. Energy-producing consumers would prefer to pay for raw material on an

energy basis, rather than wet weight, to favor those suppliers bringing the driest wood chips.

Feedstock value, therefore, is directly related to moisture content. Once moisture content

can vary outside its typical range the use of wet weight as a basis for selling timber products

becomes untenable, but there is no effective, rapid method available to assess moisture

content of biomass chips, or other material, that can be applied in an industrial setting. In

both production and process control applications, chips are moved at high velocity and a

sensor that can detect variations in MC in those circumstances is not available.

In an in-woods setting, a logical place at which to measure MC would be just prior to

shipment to a conversion facility. In pine pulp chip production, that would most likely be

after stems were chipped and before the product was loaded into a truck. A sensor for that
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application would necessarily have the capability to obtain MC in a rapidly moving stream

of chips as it was blown out of a chipper. Such an arrangement would afford the ability to

sample MC for all biomass without having to handle it separately and was presumed to give

the highest degree of utility in application.

The goal of this research was to develop a sensor for that application. It was anticipated

a successful conclusion in the project might also lead to applications for the sensor in other

process control settings, or for other biomass materials.

1.1 Overview of Published Work

Wood MC is defined as the weight percent of water in wood and can defined based

either on a total weight (wood plus water, wet basis), or on the dry weight of wood (Siau

1984). In this thesis, MC is always presented on a dry basis, as equation (1.1).

MC =
Wwater

Wwood

× 100% (1.1)

For green wood, MC can vary from about 30% to more than 150%. The traditional

way of measuring wood MC is to use the oven dry method. Wet sample weight (wood plus

water) is measured before placing in an oven, and, when the weight of wood sample does

not change with time, the sample is removed and the dry weight recorded. The weight lost

during the drying process is considered to be only water. Although there exist some sources

of error in the oven-dry moisture measurement, such as incorrect temperature, incomplete

drying, water absorbtion from air, or volatile matter loss, the moisture value estimated from

the oven dry method is very accurate and usually used as the true MC. However, the oven

dry method is time consuming, typically taking 24 hours to fully dry a sample (Reeb and

Milota, 1999). The method is not appropriate, however, when a real-time assessment of

moisture is necessary, as in resolving payment systems based on dry matter, or in process

control settings. As a means toward this end, multiple types of rapid moisture sensors have
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been developed. These sensors can be classified into two categories: contact and non-contact

types.

1.1.1 Contact Type Sensor

Contact moisture meters are mainly based on wood’s electric or dielectric properties.

Electric property sensors those sensitive to variations in conductance and resistance. The

principle of conductance (or resistance) measurement is to calculate the flow of electric

current through the material according to Ohm’s law. Prediction models are built based on

the relationship between MC and conductance (or resistance) (James 1998).

Wood is a dielectric material. The dielectric property describes how much potential

electrical energy could be kept in an electric field established within the material itself. The

energy storage capacity depends on the material’s permittivity, which can be greatly affected

by the presence of water, and this is true in biomass materials, including wood.

Capacitance sensors are often used in measuring the variation in permittivity of biomass

materials with moisture content. The simplest type of capacitor is built using two parallel

conductive plates between which is sandwiched a dielectric material. The capacitance of the

device is related to the electric field established across the plates (by applying a voltage),

plus the permittivity of the material between them. Compared to other biomass components

(e.g., wood), the permittivity of water is significantly larger (for details see section 2.1) and

this property has led to development of moisture sensors for numerous materials such as

corn, peanuts, wheat, grain and other bio-products (Kandala & Sundaram 2010, Kandala

& Puppala 2012), with very good precision. A capacitance-type sensor has been built to

measure the permittivity change of wood with MC (Saxena 1981). A perfect dielectric

material can completely discharge any charge polarization if the applied electric field is

removed. However, wood is not a perfect dielectric material and will dissipate energy during

a time-varying charge-discharge cycle, a process known as hysteresis. Based on the amount

of energy lost, another moisture sensor known as a power-loss type moisture meter has been
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developed. The amount of energy loss has been shown to have high correlation with MC

(James 1998).

Although the electric moisture meters work well in measuring MC of wood, three dis-

advantages limit their applications:

1. High accuracy is obtained only when samples are under fiber saturation point (FSP),

or under about 30% MC. There are two kinds of water that exist in wood: bound water

and free water. Bound water exists as a component of cell walls; free water is that

found in the lumen and may be liquid or vapor moving freely in cavities (Reeb 1995).

Water under FSP is bound water only. However, since electrical moisture meters have

significantly different responses with bound water and free water, their measuring range

is limited (James 1998).

2. Moisture meters are usually designed with two fixed electrodes. A sample that is

appropriate to apply must typically be in contact with both electrodes. MC of small

sized materials, such as wood chips or powder, is not able to be measured.

3. Contact sensors usually require several seconds reading time, and thus are only appli-

cable to static situations.

1.1.2 Non-Contact Measurement

Compared with contact sensors, non-contact methods have advantages, particularly for

dynamic MC determination. The common principle of non-contact techniques is based on

measuring changes in energy propagating through a material. The energy source includes

electromagnetic radiation (X-ray, radio frequency (RF), microwave, near infrared (NIR)),

acoustic (ultrasonic) waves, and simple electric fields (electrical capacitance tomography,

ECT). Non-contact sensing systems typically consist of a signal emitter and a receiver with

the test material located between them. The sensor is sensitive to some difference between

the source and returned signals such as a change in amplitude, or phase, or both.
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Acoustic wave techniques have been widely used in detecting and processing chemical

components of biomass and foods. In measuring MC of biomass, two distinct acoustic

systems were reported.

(1) Ultrasonic wave system. A typical wave measuring system equipped with 1MHz ultra-

sonic source wave to measure the change in wave velocity which was related to MC in

wood. A strong linear relationship was observed if the MC was below FSP. However,

the trend of change in wave velocity was totally different when MC exceeded 30%. An

indirect method was introduced (Minamisawa et al. 1990) using longitudinal modulus

as a connection between velocity of ultrasonic sound and MC above 30%. The rela-

tionship between longitudinal modulus and sound velocity was expressed as M = ρν2

(where M stood for longitudinal modulus, kg/m · s2, ρ was wood density, kg/m3 and

ν was the velocity of ultrasonic sound, m/s ). Since the longitudinal modulus was also

proportional to MC, a polygonal equation could be identified between sound velocity

and MC. Two different models (for MC above and below 30%) were developed and

connected with each other at FSP (MC = 30%).

(2) Impact sound measurement. The system was tested using cereal grains dropped at

10cm height to the impact surface to generate sound waves. An acoustic sensor was

applied to collect sound wave with the output as voltage signals. The feed rate of

grain was almost constant. Results indicated the sound pressure level variations were

highly correlated with grains’ MC. The standard error of validation set was 1.25% for

a limited moisture range (8% to 20%).

X-ray projection is described as an accurate means to determine MC for porous mate-

rials. Implementing the method involves the following steps.

(1) System initialization. Determine the measuring space, set and record the distance

between X-ray emitter and detector. Record the intensity of the original signal.
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(2) Reference data. Dry sample, e.g. dry chips, should be measured as the reference data.

(3) Sample measurement. Acquire the transmitted X-ray intensity of test (wet) sample.

(4) Modeling. By comparing the transmitted X-ray intensity of test (wet) sample with the

original intensity, MC could be estimated by equation 1.2.

MC = − ρw
µwd

(ln (Iwet)− ln (Idry)) (1.2)

Here ρw is the density of water (g/cm3), µ is the attenuation coefficient and d is the sep-

aration between emitter and detector, Iwet and Idry are transmitted X-ray intensity through

the dry and wet sample respectively, computed from equations:

Idry = I0e
−µd (1.3)

Iwet = I0e
−µd−µwd (1.4)

where I0 is the intensity of original signal (Roel and Carmeliet 2006). Nordell and Vikterlo

(2000) developed a dual energy X-ray system to measure MC in wood fuels accurately, with

a standard error of 2.0%. The measuring range was greatly extended, compared to contact

moisture meters (75.3% vs. 30%).

Radio frequency (RF) is an electromagnetic form of energy and at frequencies up to

about 3 GHz (UHF) can be generated using an alternating current sent out through a rela-

tively simple antenna. Phase and voltage attenuation for transmitting and receiving signal

were analyzed for wood-based product MC measurement by Hanson and Kelly (1998). En-

ergy loss at multiple frequencies were used as predictors for moisture content. The method

could be extended to multiple types of wood-based boards such as hardboard, or particle-

board. Liu et al. (2010) measured the specific gravity of wood chips using phase and voltage

attenuation of RF energy. Polynomial equations were obtained relating MC and specific
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gravity, with a high correlation coefficient (0.87 and 0.89 respectively). Numerous other bio-

fuel materials have also been successfully tested in MC prediction using the approach (Paz

et al. 2006). Other wood properties, such as strength, have also been measured using an RF

sensor (Steele and Cooper 2003). Water, however, strongly absorbs electro-magnetic energy

at certain frequencies (Morrow 1980) and therefore the power of RF systems needs to be

limited if applied in MC measurements to avoid sample damage.

A nuclear magnetic resonance (NMR) sensor has also been introduced to measure MC

of wood chips at UHF frequencies (Barale et al. 2002). Samples were tested in a tube with a

permanent magnetic field. Since permanent magnets are sensitive to temperature variations,

the experiment was carried out in a temperature-controlled box. The MC measured from

phase and voltage attenuation was compared with the oven drying method. The system

required a few seconds for result calculation, but was generally accurate.

Microwave systems (above 3 GHz) can also be used for MC measurement in biomass

materials. High accuracy prediction resulst were obtained for wood chips (Johansson 2001)

with MC under FSP (standard error= 2.1%). However, due to interactions in the wood

material that changed the phase of the incident radiation, the predicting error was greatly

amplified when using 10 GHz microwaves to measure MC above FSP. As a solution to extend

the measuring range, a lower frequency microwave system was designed with a 2.4 GHz signal

(Vallejos 2009). The system was tested with radiata spp. pine boards. Results indicated

the lower frequency system had the capability to extend the moisture measuring range and

make it feasible to use for wood chips with a MC exceeding 30%. Other physical properties,

including fiber direction and density, have also been successfully predicted using microwaves

(Schajer and Orhan 2005, Hansson et al. 2005). However, microwave attenuation as used in

these tests was sensitive to total mass of the sample, which also had to be known.

Due to O-H bond of water having significant absorption bands at 760, 970, 1450, 1940

and 2950 nm wavelength, near infrared radiation (NIR) is considered an efficient way to de-

tect water content inside of materials (solid or other liquid) (Adepipe and Dawson 2008). An
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NIR spectral dataset usually consists of hundreds of points and some mathematical approach

is required to reduce the sample space of the measurements. Principal component analysis

(PCA) is a common way to deal with these large datasets (Via et al. 2003). The method is

used to extract linearly independent variables (principle components, PCs) from raw spectral

data. A regression model can be built between MC and PCs, using regression methods such

as multiple linear regression (MLR), principal component regression (PCR), or partial least

square regression (PLS) (Zhang et al. 2010). The NIR technology has been verified as a

rapid, accurate and stable method in predicting MC, as well as other chemical components.

Its application field covers agriculture, food engineering, and chemical engineering. Recent

research studies in NIR are mainly focused on improvements and dynamic applications:

(1) Improvements. Different combinations of view angles were studied in wood MC predic-

tion. Tormanen and Makynen (2011) compared 12 different view angles on fresh veneer

samples. An optimized combination was found and a highly correlated MC predicting

model was built with R2=0.891 and root-mean-square error of prediction (RMSEP) of

5.43%. Wavelength (Bull 1991) and temperature influence (Thygesen and Lundqvist

2000) was also studied to increase accuracy of wood MC measurement. Reflectance at

970nm was proved (Bull 1991) less sensitive to moisture variance because of greater

penetration into the sample. 1300 nm was found as a relatively good reference wave-

length for 1450nm (calculated as data at 1450nm divided by those at 1300nm), to

improve the MC measurement of sawdust. For the influence from surface structure,

size or color of wood, a single ray system was reported as unstable and imprecise. A

dual ray system (Corluka et al. 2004) was developed to compensate for errors from the

above sources, while the system cost was increased.

(2) On-line applications. Axrup et al. (2000) developed a dynamic wood chip and bark

measuring system using miniature diode array NIR spectrometers, which were tested

on moving samples with velocity of 1 m/s. The advantage of the array NIR detector

was to avoid splits in spectra, which were observed if applying static NIR sensors to
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measure dynamic samples. Spectra were calculated over a 3ms period. The root-mean-

square error of calibration (RMSEC) and RMSEP for wood chip MC was 1.6% and

2.3% respectively. For bark samples, RMSEC and RMSEP were 3.5% and 5.1%. The

system also had the capability to measure other chemical components of wood, such

as carbohydrates, extractive, or lignin. The method has also been successfully applied

for real time forage (Digman and Shinners 2008), corn or other biomass (John Deere,

HarvestLabTM Sensor) harvester, hardwood pulp (Brink et al. 2010), pellet and biofuel

(Lestander 2009), polymers (Leitner et al. 2003), and pharmaceutical powder (Demers

et al 2012, Aditya et al. 2010).

Electrical capacitance tomography (ECT) systems generally consist of capacitance sen-

sors, a data acquisition system, and a computer for image reconstruction and display. The

principle of ECT is to use multiple estimates of permittivity across an enclosed space to

measure its spatial distribution and reconstruct an image describing that variation (Yang

and Conway 1998). The cross-sectional images can directly show the size and location of

materials inside a closed vessel. Nurzharina (2011) developed a 12-electrode ECT sensor

to measure the distribution and volume of water inside mixtures of sand and clay. How-

ever, no literature has been published yet for wood chips or other biomass applied in MC

measurement.

1.1.3 Method Summary

As stated in 1.1.1 and 1.1.2, each method has its own power to predict MC for biomass,

however, these technologies also have some limitations. Advantages and limitations were

summarized in Table 1.1.

The purpose of reviewing these methods was to find an appropriate one for dynamic

wood chip moisture determination. Key factors of an acceptable sensor would include: wide

measuring range, low cost, robust in dusty and dirty environments, high sampling rate to

assess rapidly moving streams of material, non-contact, and accurate. Although higher
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Table 1.1: Comparison advantages, and disadvantages, of various moisture content measure-
ment sensors.

Methods Advantages Limitations

Oven dry Accurate, Time consuming, destructive,

Contact meters Robust, easy to use Static measurement

X-ray, Microwave,
Acoustic wave, RF

Rapid, non-contact

Expensive, fixed sample
quantity, sensitive to

particle size/density, single
dimension measurement

NIR Rapid, Non-contact
Surface and spot

measurement, lens
maintaince

ECT
Extremely fast,

non-contact low cost
Weak signals

energy systems would probably provide better measuring results, equipment costs for theses

type systems are usually high. The impact moisture measuring system was relatively lower

cost, the range of moisture, however, was narrow and lower than the MC of green pine chips.

The method may also be sensitive to the shape of the test material. Since the size of grain

is small and its shape is uniform, the sensor accuracy is not affected by impact direction.

However, wood chips have quite irregular shapes. Sound waves created by different impact

points of chips would likely be different and the predicting accuracy could be significantly

degraded. NIR is a surface measurement method, which is, unfortunately, imprecise in

measuring materials with non-uniform moisture gradients between surface layers and the

core, or between individual pieces in a bulk particulates. For dynamic samples, such as

a wood chip stream, a single measured sample might not be representative of the whole

population. Another limitation is the chipping process itself, which is very dusty and harsh

by nature, and preserving lens and other optical structures in that type environment would

be difficult. The ECT system outlined above does not have the limitations outlined above

and has the potential to measure wood MC for samples in motion.
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Although not much literature could be found to support ECT effectiveness in measur-

ing biomass MC directly, results from single paired parallel plate capacitance sensor tests

provided confidence in pursuit of measuring permittivity to predict MC. If the measuring

speed could be made much higher than sample velocity, the sampling could be approximated

as being of a static nature. Because a high sampling rate is an important feature of an ECT

system, we choose this capacitance based technology to measure MC of biomass chips.

1.2 ECT Introduction

The ECT system is a relatively new technology developed from computed tomography

(CT) in the 1980s. Compared to X-ray CT (the typical method used in medical scanning),

ECT uses a much lower energy source signal probe the material under test. This approach

greatly reduces the cost of system. The first 8-electrode ECT system was developed in 1988

to detect the distribution of sand in air (Huang et al. 1988). Nowadays, this technology has

been well developed, both in hardware and software.

1.2.1 Hardware Improvements

Electrodes Multiple ECT sensors have been developed, electrode counts of which have

ranged from 4 to 32, with multiple variations within that range. The increased electrode

numbers divide the sensing area into more segments, which improves the resolution of re-

constructed images. However, the combinations of capacitances measured are proportional

to the square of electrode number. Increasing the electrode number significantly decreases

the sampling rate achievable for a given data acquisition system, which reduces the number

of frames per second that can be imaged. The effect of electrode number was analyzed by

Peng et al. (2012) who suggested exceeding 12 would not contribute greatly to the quality

of images. This conclusion was made based on a fixed measuring area and electrode size,

which can varying dramatically among systems having different applications. According to

the literature, besides 8 electrode sensors, typical electrode numbers for ECT systems in use
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Figure 1.1: An illustration of the working principle of driven guards as applied in ECT mea-
surements. The guards shift any fringe electric field physically away from sensor electrodes,
increasing accuracy.

are 12 (Olmos et al. 2007) and 16 (Wang et al. 2009). The 16 electrode ECT could also

be switched to 8 electrode mode. The effect of electrode size was also studied (Olmos et al.

2007).

Driven guard electrode and earthed screen The objective in adding the complexity

of driven guard electrodes and an earthed screen was to reduce noise in the system. As

shown in Figure 1.1, the driven guard electrodes, which are connected with the same signal

as a source electrode, reduce the fringe electric field effect often observed to reduce accuracy

in ECT systems. Details of the approach can be found in the papers by Yan et al. (1999

and 2008) and Yang (2006).

Data acquisition system To implement an ECT system a computer data acquisition

system was required to effectively coordinate measurements and record results. Most data
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acquisition systems available can measure voltages quickly and inexpensively, therefore it

was necessary to develop a means to convert the parameter of interest (capacitance) to a

voltage signal that could be sampled. A capacitance to voltage transducer, therefore, is the

basic but crucial element of an ECT system, as indicated in Huang et al. (1988). For such

a transducer, its output voltage is proportional to an unknown capacitance. For an ECT

system, the unkknown capacitance is that between any two paired electrode combinations.

Dual transducer circuit have been developed to improve transducer quality (Johana et al.

2011, Yang 1995). The two signals obtained from such systems carried the same measuring

result but in different sign (one positive from a circuit in a charging state and another negative

from a discharging state). By subtracting negative output from the positive signal, the noise

could be canceled the capacitance signal doubled (Jiang and Wang, 2009). Amplifiers have

also been introduced to provide large gains to the output signal, but are more susceptible to

noise (Yang 1999).

Sensor structures The traditional ECT was designed to attach surrounding a cylindrical

vessel. For the purpose of extending their application scope, ECT systems for square vessels

(Yang and Liu 1999), bending and T-junction cylindrical vessels were also developed (Wang

et al. 2010). As the output of ECT was a two dimensional image, however, the results

for these non-circular shapes were sometimes difficult to interpret. By correlating two sets

of ECT sensors, three-dimensional ECT sensors have also been built and used to measure

the volume of objects, instead of simply their cross section (Marashdeh and Teixeira 2004,

Yan et al. 2011). The development of 3D ECT system was extremely useful for material

properties measurement.

Multiple frequency The method uses two input signals at different frequencies. Two

source signals were applied on two adjacent electrodes. By applying filters, output signals

were separated with different frequency. Though the output data number was less than
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single frequency measurement, the dual method doubled the sampling rate (Mohamad et al.

2011).

1.2.2 Software Developments

Image reconstruction methods Image reconstructing algorithms are a fundamental part

of ECT research. The common approach is to use the linear back projection (LBP) algorithm

(Xie et al. 1992). Details are presented in Chapter 3. Since the LBP method tends to

result in images with low precision, multiple algorithms have been developed to improve its

estimates, such as: Landweber iteration method (Wang et al. 2012), BP neural network (Li

et al. 2012; Chen et al. 2011), extended regularized total least squares method (Lei et al.

2008), genetic algorithm (Mou et al. 2005), fuzzy mathematical model (Abdelrahman et al.

2009), Gauss-Newton algorithm (Chen et al. 2009), Barzilai-Borwein algorithm (Liu et al.

2010), support vector machine method (Liu and Chen 2006), and sparse representation (Ye

et al. 2014), among others.

1.2.3 Application Field Extended

Besides the application in detecting mixed solid distributions, the ECT sensor has been

widely used in measuring flow of fluids in a closed nonconductive pipe. Most common ex-

amples are: measuring mixture of oil and water (Johana et al. 2011), gas/solid fluidized bed

(Huang et al. 2003, Yang et al. 2009), gas/oil two phases (Li et al. 2008) and gas/oil/water

flow measurement (Li et al. 2012). The application field has primarily been in multi-phase

flow measurements, but ECT has also been used successfully to measure moisture distribu-

tions in mixtures of sand and clay (Karim and Ismail 2011).

1.3 Dissertation Objectives

This project’s goal was to develop a MC measurement system providing accurate es-

timates on high-speed, pneumatically-conveyed streams of pine wood chips. Sensors are
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available that could potentially achieve this purpose, but most are either too expensive, or

not likely to survive the conditions under which they might be deployed. A capacitance

approach, however, appeared to be the method most likely capable of providing accurate

measurements in biomass applications, and at low cost. Many capacitive sensing systems

used to estimate moisture content in biomass, however, suffer from a significant confounding

interaction with density of the material being probed (e.g., Virk et al. 2013). In a high-

speed stream of chips, mass flow rate of material, and therefore density, is highly variable,

which could dramatically lower the accuracy of estimates, at least over short periods of

time. Because it can potentially sense both total quantity of material (through image) and

total moisture (using capacitance), it was felt ECT was the most likely candidate for this

application.

The overall hypothesis in this research was that ECT could simultaneously sense both

dry matter and moisture flow rates in streams of wood chips with accuracy sufficient for its

application in feedstock valuation or conversion process control.

To test this hypothesis, it was first necessary to build, understand, and verify the per-

formance of the sensor itself. This was done using the following steps.

1. Design the prototype ECT sensor enclosure and electrodes based on a survey of liter-

ature.

2. Design, build, and verify the sensor capacitance-to-voltage electronics.

3. Build a data acquisition system capable of taking capacitance measurements at single-

digit kHz speeds. Develop, based on a survey of literature, image reconstruction tech-

niques to implement the construction of ECT images of permittivity distribution based

on sensor measurements.

4. Investigate the sensitivity of the system to factors other than moisture content. Specif-

ically, determine the influence of material physical properties such as size (volume),
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plus variations in application of the sensor itself, such as location within the sensor

enclosure, on the overall sensor response.

1.3.1 Research Objectives

The goal of the research project was to develop a robust, non-contact moisture sensing

system for biomass. The unique aspect of the approach presented here was its use of imaging

based on capacitance tomography. In order to establish the potential of the system as a

practical means of sensing moisture in static and dynamic modes, however, its performance

must be assessed relative to other accepted methods. The research objectives of this study

were, therefore, as listed below.

1. Validate the accuracy of the sensor in static mode to predict moisture content of fixed

quantities of biomass. Compare the capacitance sensor’s accuracy to near-infrared

reflectance spectroscopy, a well-established approach for determining moisture content

in biomass materials.

2. Develop the necessary hardware and software systems to perform dynamic (ECT) mode

characterization of moving streams of biomass, and establish the accuracy of moisture

content predictions. Verify the ability of the ECT system to make simultaneous inde-

pendent measurements of mass flow and moisture content.

1.4 Dissertation Outline

Chapter 2 covers the detailed design of the ECT system. It provides information on:

1. Hardware. The principle of ECT is presented, along with the hardware implementation

developed for this study. All system design methods, parameters, theory and functions

used in the development of the sensor were covered.

2. Software. This part covered sensor control, data acquisition system, and image recon-

struction methods developed for the study.
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In Chapter 3, the characteristics of the ECT system built for this project were tested

and results summarized. The ability of the sensor to provide stable, repeatable capacitance

measurements was evaluated, as well as the effects of distribution and size of the material

under test.

Chapter 4 presents results of using the ECT sensor to measure MC of biomass when

not in motion. Experiments were carried out for both single wood chips and bulk quantities

to test the limits of detection of the sensor. NIR measurements of MC were used to validate

ECT estimates and accuracy of both sensors was compared. Two alternative approaches of

applying the ECT system were discussed as methods to eliminate the confounding effect of

sample density.

Results covering tests on moving samples are covered in Chapter 5. A force transducer-

based mass flow system was introduced and results from field and lab testing presented.

This sensor was used to validate image-based measurements of mass flow derived from ECT.

Two alternative MC prediction models for dynamic estimates based on ECT measurements

were then discussed. Advantages and shortcomings of each were presented. Chapters 4 and

5 cover the research objectives outlined above.

Chapter 6 covers overall conclusions derived from the study and presents ideas for future

work.
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Chapter 2

ECT PRINCIPLE AND SYSTEM SETUP

2.1 Principle of ECT

Electrical capacitance sensing is, in general, a nondestructive, non-contact approach to

describing variation in dielectric properties of a material occupying some space. It is an

external measurement to describe the internal dielectric property variation within a closed

space. An ECT system generally consists of three basic parts: capacitance sensors, data

acquisition system and computer (data processing and image reconstruction), as Figure 2.1.

Sensor electrodes are attached surrounding the testing vessel (non-conducting walls), each

pair of sensors provides an independent capacitance value. The cross-section image can be

reconstructed by adding all capacitor combinations together. For biomass materials, dielec-

tric properties are typically used to predict some other important physical characteristic, in

particular moisture content (Kandala & Sundaram 2010, Kandala & Puppala 2012).

The approach relies on observing the change in capacitance between two electrodes as

the material between them (or otherwise within the range of their mutual electric field)

varies. For the purposes of this study, it was desired to measure the MC of a moving stream

of biomass within an enclosed conduit and this requirement was the basis for the sensor

design. The approach was to develop a system placed in-line along a biomass conveyance

system, preferably one in which a stream of material is conducted pneumatically along some

closed conduit. Some portion of the conduit would be equipped with a system of electrodes

that would be used to generate the electric fields necessary to measure dielectric constant of

the two-phase air/biomass mixture flowing within. The realization of this sensor developed

for this study used electrodes attached around the perimeter of a cylindrical, nonconduc-

tive vessel. At least two electrodes would be necessary to form the sensor, but additional

18



Figure 2.1: Schematic diagram of an ECT system. Elements shown are: (a) Capacitance
sensors, (b) signal processing and data acquisition circuits, (c) computer to collect data and
control the experiments.

electrodes were included in this design. For an N-electrode system
(
N
2

)
combinations of

electrode pairs would be available to characterize the distribution of dielectric constant of

the material within the measurement enclosure.

The use of more than two electrodes in the measurement system provided redundancy

in measurements as each unique pair of electrodes could be used to generate the electric field

necessary for measuring dielectric constant. Their use also afforded, however, the additional

opportunity of applying tomographic techniques to reconstruct the 2-D spatial variation of di-

electric constant distributed throughout the sensor enclosure. This application of capacitive

sensors, called electrical capacitance tomography, or ECT, has been applied in character-

izing, for example, multi-phase flows or distribution of constituents within two component

systems.

2.2 Hardware Design

For this study, an 8-electrode ECT sensor was designed to determine the MC of loblolly

pine pulpwood chips.
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Figure 2.2: An illustration of the basic geometry of the design parameter referred in the text
as ‘central angle’.

2.2.1 Basic Design

A PVC pipe was selected as the measuring vessel. Electrodes were formed from copper

plates adhered at uniform intervals around the external perimeter of the pipe. Details are

shown in Table 2.1. The plates were used in pairs to generate an electric field within the

pipe, the strength of which was related to the permittivity of the material between the

electrodes. The pairs of electrodes could be viewed as a single capacitive element in a circuit

generating an electric field. The capacitance of the electrode pairs would also be related

to the permittivity of the material filling the void between them. Application of the ECT

sensor therefore involved the sequential measurement of capacitance between each unique

pair of electrodes.

2.2.2 Capacitance-to-Voltage Circuit

As noted in section 1.2, the capacitance to voltage transducer is a key element in the

performance of an ECT system. The specifics of the sensing circuit used in this study to

measure capacitance were adapted from Yang and York (1999), as in Figure 2.3. For this

circuit and an input voltage Vs a sine wave, assuming an ideal op-amp (i− = 0):
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Table 2.1: Materials used and their parameters for the designed ECT sensor.

Components of capacitance sensors Parameters

Electrode

Material Copper
Number 8
Width 2.5 cm
Length 10.0 cm

Central Angle∗ 17.63◦

Vessel
Material PVC

Outside Diameter 16.5 cm
Inside Diameter 15.2 cm

* The ‘central angle’ of an electrode was the angle subtended by the two lines
drawn from the center of the enclosure to either edge of a single electrode, as
Figure 2.2. The width of each electrode is 2.54 cm, the total length of 8 is 20.32
cm. The outside perimeter of PVC pipe is 51.87 cm, therefore electrodes covered
39.18% of the perimeter of the pipe. The central angle of each electrode was
calculated as: 360◦ × 39.18% / 8=17.63◦.

Vs − VA
1

jωCx

=
VA − Vo

1
jωCf+

1
Rf

(2.1)

Vo = − jωCxRf

jωCfRf + 1
Vs . (2.2)

Given an appropriate feedback capacitance Cf and resistor Rf , when|jωCfRf | � 1 the

output voltage Vo is proportional to the ratio of the known capacitance, Cf , to an unknown,

Cx (equation 2.3). The unknown, in this case, would be the capacitance resulting from the

material within the sample enclosure between any pair of copper plate electrodes.

Vo ≈ −
Cx
Cf
Vs (2.3)

Construction details of the capacitance-to-voltage transducer built for this project were

shown in Table 2.2.
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Figure 2.3: Capacitance-to-voltage conversion circuit

Table 2.2: Capacitance to voltage transducer circuit detail.

Element Parameters Feature

Op-Amp AD 844 Wide bandwidth, low offset voltage, low qui-
escent current

Feedback Capacitors Cf 10 pf |jωCfRf | = 34.2 for 800 kHz source signal
Feedback Resistor Rf 680 kΩ
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The measured capacitance Cx is very small, on the order of 0.01 pf to 1 pf, the change

of capacitance from variation in MC is even smaller (Yang and York 1999). The feedback

capacitance is necessarily small, according to equation 2.3, to sufficiently amplify the output

signal, Vo. Thus to make |jωCfRf | significantly larger than 1, the feedback resistor should

be selected as large as possible. The choice of Rf can be several hundred kilo to several

mega ohms. Selecting a large value for Rf ensures Vo is closer to −Cx

Cf
Vs. However, the

capacitance to voltage circuit is also a low pass filter, the cut-off frequency of which is

1
2πCfRf

. If |jωCfRf | � 1, the cut-off frequency is given by

1

2πCfRf

� fc , (2.4)

where fc is the input frequency of the source signal, rads.

The frequency of the output signal Vo will be the same as Vs which, for this research,

was an 800 kHz 10 V amplitude sine wave. If applying a very large feedback resistance (mega

Ωs), Rf , to maximize gain, the cut-off frequency will be on the order of several thousand

hertz, or much lower than the input sine wave. This could dramatically increase the signal

to noise ratio (SNR) of the output signal. Taking both |jωCfRf | and cut-off frequency into

consideration, the feedback resistor was chosen for this study as 680 kΩ.

A capacitance to voltage circuit validation test was applied to 10 known capacitors

(from 10 pf to 110 pf). The input sine wave was 800 kHz frequency and 2V amplitude.

Circuit output voltage was measured using an oscilloscope. From equation 2.3, the measured

capacitance was directly correlated with the amplitude of the output signal, Vo. For an

input amplitude of 2V, Cf = 10 pf, the amplitude of the output signal would be Cx = 0.2Ao

(amplitude of Vo). Results were plotted in Figure 2.4. A highly correlated regression model

suggested that the capacitance measuring circuit was reliable.
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Figure 2.4: Test results for the capacitance-to-voltage conversion circuit. The data illustrate
average sensor output amplitude, expressed in volts, as a function of an unknown input
resistance, Cx in Figure 2.3.

2.2.3 Switching Network

To obtain 28 (
(
8
2

)
) different capacitances from 8 electrodes, any electrode should be

able to connect either to the source signal or to the capacitance-to-voltage transducer to

form a measurement pair. This function was achieved using a switching network. For

each electrode connected to an independent capacitance-to-voltage transducer, the switching

network itself became part of the capacitance to voltage circuit, and could, potentially, alter

the measurements. The basic switching function could be achieved using a basic circuit as

shown in Figure 2.5. When S1 is on and S2 off, the electrode was used as source. When the

two switches were in the opposite states, that electrode was used as detector.

Theoretically, one double-pole switch could achieve this pattern of connection. However,

the off state of any practical switch is not completely isolated. Part of the high frequency

input signal could (and usually will) transmit across the air gap between switch contacts

and be coupled into the detection circuit. For almost all real switches, this stray capacitance

was much stronger than the capacitance between the electrodes themselves (very small gap

compared to the separation of two electrodes, even though the leakage current was small).

The basic switch system, as in Figure 2.5, was identified as a low SNR arrangement that
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Figure 2.5: Basic switch arrangement. This implementation resulted in excessive stray
capacitance.

Figure 2.6: The switch arrangement developed to isolate the measurement circuits from
switch-induced stray capacitance.

lost the sensitivity achievable without the switches in place (Yang and York 1999). An

extra switch was therefore necessary to isolate the signal from the capacitance to voltage

transducer when not in use. The advanced switching arrangement used in this project is

shown in Figure 2.6. When the electrode was being used as detector, the switch S2 was

grounded and undesirable signals would be led to ground. When the electrode was acting as

source, nothing was measured from its detector circuit so no grounding switch was necessary

in that case to block the stray capacitance.

A single three-state switch could perform this function, but, unfortunately, none were

identified that did not introduce significant stray capacitance. We therefore chose to apply

three Analog Devices ADG419 single-throw, double-pole switch devices for each electrode,

one each to connect it to either the source (Figure 2.7 a) or filter circuits (Figure 2.7 b),

plus another to shunt the electrode to ground when it was not actively involved in the
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Figure 2.7: Example showing the 2 states in which electrodes were operated and the switch
configurations used to implement them. Electrode connected (a) to the source signal, or (b)
to the output circuit.

measurements. The ADG419 devices were chosen because of their very low off-state leakage

currents. Switch leakage currents effectively introduced a parallel capacitance to ground

that, given the current was large enough, would overwhelm capacitance due to the dielectric

material in the sensor.

Since no repeat measurement was taken, e.g. if using electrode 1 as source and measuring

from electrode 2, then no measurement was acquired from electrode 1 when electrode 2 was

excited, electrode 1 (the first electrode in the measuring sequence) would only need to take

two states: source electrode and wait (no connection), and electrode 8 (the last electrode in

the measuring sequence) was at either detecting or wait (no connection) status. The other 6

electrodes were working at either of two active states (source or detector) or a single inactive

state, wait. The circuit requirements of the 8 electrodes were different, but considering the

cost, all switching networks to voltage circuits were built using the same structure.
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Figure 2.8: A half-wave envelope detector circuit.

2.2.4 Amplitude Extraction Circuit

The capacitance to be measured, Cx, was amplitude modulated in the output of the

capacitance-to-voltage circuit. To extract the capacitance information, therefore, an amplitude-

measuring method was necessary for ECT application. Hardware and software could both

achieve the function. This section introduces hardware methods only.

Envelope Detector An envelope detector is a circuit whose output is proportional to the

amplitude of a high frequency signal. A simple envelope detector is constructed using a

diode, capacitor and resistor, which act as half-wave and full-wave rectifiers . Since an input

sine is symmetric, both functions would have the same result in our application. A half-wave

envelope detector was built and tested, a schematic of the circuit was shown in Figure 2.8.

The principle of this circuit was to block negative signals and charge the capacitor when

the voltage of the input signal its current charge. The design requirements for the envelope

detector were shown in equation 2.5:

1

fc
� ReCe �

1

W
, (2.5)

where fc is the signal frequency (Hz), Re and Ce are resistor (Ω) and capacitor (f) of the

envelope detector, and W is the bandwidth of the message (Hz).

When the period of the source signal is much smaller than the time constant of the

envelope detector, the capacitor Ce has enough time to charge and maintain the output
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Figure 2.9: Original signal and envelope detector output.

voltage until arrival of the next peak of the input. Thus the output voltage can approximate

the peak level of the input signal as seen in Figure 2.9. After applying a low-pass filter, the

original AC signal is converted to a sTable and clean DC signal. A significant advantage of

the envelope detector is to reduce the sampling rate of data acquisition circuit greatly. If

sampling directly for a high frequency AC signal, e.g. 800 kHz sine wave in the experiment,

at least 1.6 MHz sampling rate is the minimum (Nyquist) sampling frequency to approximate

the original signal and calculate the amplitude. Direct sampling from a sine wave will increase

the system cost and reduce the measuring efficiency. However, sampling from a sTable DC

signal require a very low sample number, the average of which could represent the amplitude

of the output sine signal from the capacitance to voltage circuit.

A test was carried out to verify the feasibility of using envelope detectors in the designed

ECT system. Based on the rule for designing an envelope detector (equation 2.5), Re and

Ce were set to 480 kΩ and 2.0 nf, respectively, the ReCe of which was well located in the

appropriate range 2× 10−6 � 9.6× 10−4 � 10−2. The modified circuit was shown in Figure

2.10.

Sensor response was measured for a variable amount of water placed inside the sensor in

a plastic cup. The measurement circuit included the envelope detector and its performance

was tested in two steps.
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Figure 2.10: The sensor output circuit modified to include the envelope detector.

(1) Test in single pair of sensor electrodes. Two opposite electrodes were used to measure

water volume between them. No switching action was included. The output of envelope

detector V
′
o was acquired directly using a device NI 6361 (NI, Corp.). A digital low-

pass filter was designed using LABVIEW 12.0 software (NI, Corp.) with a cut-off

frequency of 100Hz. The signal was sampled at 10 kHz. 100 voltage measurements

were averaged and saved to correlate with the volume of water, which was added into

the plastic cup gradually from 0ml to 500ml. Result were listed in Figure 2.11 (blue).

A good linear relationship was observed, suggesting that the envelope detector could

extract the amplitude information accurately.

(2) Test in ECT. All electrodes and switches were used with the envelope detector. All

28 capacitances were saved and summed as the sensor output value. Other procedures

and devices were the same as step 1. Results were as in Figure 2.11 (orange).

The envelope detector worked well for non-switching system. However, outliers were

observed frequently for ECT (fully switched) mode, the cause of which were suspected to be

the switching system itself. For example, when electrode 1 was used as source, electrode 8

was at high(er) potential. The capacitance of the envelope detector connected to electrode

8 was also charged, over some (relatively short) time, to a higher voltage. During the next

measuring sequence, the source electrode was switched to 2, and one would expect the

potential at electrode 8 to decrease (the distance between electrode 2 and 8 being greater
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Figure 2.11: Output sensor voltages measured for the circuit configured as in Figure 2.7b and
as in Figure 2.10. The results indicated the envelope detection hardware caused significant
reduction in SNR.

than 1 and 8). However, the excess charge held on electrode 8 and its measurement circuit

was still present and, because the electrode was now at lower potential, was discharged and

tended to bias the new capacitance measurements, causing outliers. For this reason, this

simple envelope detector circuit was not employed in the ECT system, although some extra

design work might have been able to solve the problem.

AC/DC transducer Yang and York (1999) provided an AC to DC converting method

to measure output signal amplitude. The system consisted of three parts: phase measuring

and shifting device, signal multiplier, and low pass filter.

The method focused on the multiplier part. Suppose the input sine wave Vs = A sin(ωt+

α) and output signal Vo = AB sin(ωt + β), the multiplier is to correlate the output signal

with input signal to create a new output:

V ′o = AB sin (ωt+ β)× A sin (ωt+ α) =
A2B

2
(cos (β − α)− cos (2ωt+ α + β)) , (2.6)
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where A is the amplitude of exciting signal, B is the amplitude gain from the converting

circuit as −Cx

Cf
in equation 2.5, α, β are the phase of input and converted signal. When the

phase of the output signal is adjusted to match the source signal (α = β), the equation 2.6

would become:

V ′o =
A2B

2
(1− cos (2 (ωt+ α))) . (2.7)

The new output signal has two parts: DC, and high frequency AC. Applying a low-pass

filter, the high frequency part was removed (e.g. if the input frequency was 800 kHz, the

multiplied output frequency would be 1.6 MHz). The output signal would become a DC

signal (V = A2B
2

) only, which would be proportional to the capacitance being measured.

2.2.5 Power and Stabilization

The capacitance-to-voltage signal processing circuit contained two kinds of chips: AD844

Op-Amp and ADG419 switch, the working power of which were 15 V and 5 V respectively.

A 5V regulator was used to convert the input 15 V to 5 V that supported ADG419.

To avoid any instability arising from very quick changes in power levels in the circuit (due

to the switching network), multiple capacitors were installed into the ECT data acquisition

circuits to act as charge pumps. When the power supply for the circuits pulsed, these

capacitors could provide, or absorb, current to eliminate that specific source of measuring

error. A large capacitor (47 µF) was installed near the power supply side, and a smaller

capacitor (0.1 µF) was put as close as possible to the functional chips (Figure 2.12).

2.2.6 Grounded Shield

With all electrodes exposed directly to the air, a potential problem would be caused by

outside signals or material. Although a strong external noise signal was not observed fre-

quently, any nearby materials could alter the electric field inside the ECT enclosure and affect

the capacitance measurements. A simple test was conducted to compare sensor responses
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Figure 2.12: Power stabilization setup

with and without external influences. The introduced disturbance for the test was to use a

grounded copper sheet, which was about one inch distance away from an electrode (electrode

1 was chosen in this test). Results of using electrode 1 as source and in combination with

the shield were shown in Figure 2.13.

Without the shield, the measured capacitances (seen as voltages) were greatly decreased

when a grounded material was placed close to any electrode as the object diverted some of

the input energy to ground. The amplitude of this decrease was significant compared to

permittivity changes inside the measuring enclosure and their presence in an online sensor

would render it useless.

Wires or PCB boards nearby might create noise also. Since all PCBs were connected

with the 800 kHz sine wave, though switches were designed to separate the strong input

signal and detecting circuit completely in the circuit board, the penetrability of the high fre-

quency signal would create noise from wires that might directly arrive at the data acquisition

system. To avoid this potential problem, as well as nearby grounded materials, an earthed

shield was applied to block external signals and the grounding effect of outside bodies. A

copper sheet was chosen as the appropriate material to build the shield. The copper sheet

was fixed surrounding the electrodes area, material between electrodes and shield was air

(permittivity=1). Parameters were listed in Figure 2.14.
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Figure 2.13: Capacitances with and without ground interruption. Ground interruption refers
to the placement of a grounded object near the sensor electrode under test.

Figure 2.14: Dimensional parameters of the grounded shield.
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Figure 2.15: Example of the benefits of including the grounded shield (plus isolation ground
switch) in the sensor output circuit.

With the protection of the copper shield, another experiment was done to verify its

beneficial effect. Data were compared with and without the shield in place, as in Figure

2.15. The response indicated the grounded shield successfully protected the circuit signal

from outside disturbances, which increased the sensor robustness. However, the responses of

all electrode combinations were decreased significantly. This could be explained in the same

way as any other grounding material being placed near an electrode. Though the shield

was effectively another grounded sink for input charge, the advantage was, however, the

fixed distance between shield and measuring electrodes. Thus the effect of the shield charge

diversion was constant within the enclosure. This effect would, reduce the sensitivity of the

measurements, but not increase the measuring error. In addition, all wires for signals were

shielded to eliminate any stray capacitance between adjacent conductors. The ECT sensor,

as it appeared with all modifications in place, was shown in Figure 2.16.
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Figure 2.16: Prototype ECT sensor.

2.3 Software Design

The software of an ECT sensor may include data acquisition, switch control, and image

reconstruction. Though the switching network could be easily controlled by a pulse signal

that might not rely on software, this project used software to control it. The reason was:

(1) Easy to modify for different switch combination tests, and (2) simple to make data

acquisition match with switch actions. However, including the switch control function in

data acquisition program would reduce the sampling frequency eventually.

2.3.1 Data Acquisition Program

Since the previous test in 2.2.4 was not encouraging for the inclusion of the envelope

detector in the ECT system for AC to DC conversion, the original high frequency sine wave

was directly collected using NI 6361. The device allowed sampling ECT outputs at 2 MHz.

LABVIEW 12.0 software was chosen for implementing the data collection system. The

software provided functions to read data from the USB port, display signals in plot or data
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Figure 2.17: A screen capture of the LABVIEW block diagram and UI developed for the
ECT system.

sequence, process data, and save it in a user-defined form. It is also possible to compile

MATLAB R© (The MathWork, Inc.) codes and reconstruct images in both 2D and 3D within

LABVIEW. The user interface developed for the project was as Figure 2.17.

The data processing for this ECT system was to extract amplitude precisely from a

high frequency AC signal. Multiple methods were embedded in LABVIEW to measure the

amplitude of a signal, including time domain and frequency domain method.

Time domain amplitude measurement In time domain, the amplitude can be com-

puted by either direct calculation from the signal or correlation of two signals.

Direct calculating methods in LABVIEW are peak-to-peak measuring, standard devia-

tion (std) measuring, and root mean square (rms) computing. If a dataset is collected from

a signal as: X1, X2, · · · , XN−1, XN , the peak-to-peak method was simply calculate the

amplitude by subtracting the minimum value from the maximum of a signal with certain

length, as the equation 2.8.
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Amplitude = max [X1, X2, · · · , XN−1, XN ]−min [X1, X2, · · · , XN−1, XN ] . (2.8)

The mean of the data sequence was: µ = X1+ X2+ ···+ XN−1+ XN

N
, and the standard de-

viation is calculated as σ =
√

1
N

∑N
i=1 (Xi − µ)2. Since the relationships between amplitude

and std are fixed, the amplitude could be calculated by equations 2.9.

Amplitude =



2σ Square wave

2
√

2σ Sine(Cosine) wave

√
12σ Triangular wave

6− 8 σ Random noise

(2.9)

The rms of the signal, which is computed as: Xrms =
√

1
N

∑N
i=1Xi

2 , has the relationship

with amplitude as below.

Amplitude =



2Xrms Square wave

√
2Xrms Sine(Cosine) wave

2Xrms/
√

3 Triangular wave

2Xrms/
√

3 Sawtooth wave

(2.10)

Both methods could be also done using an electrical circuit, such as AD 636 (True

rms-to-DC converter).

Correlation is a common method to detect a known signal from a noisy measurement.

It could also be applied to measure amplitude of an AC signal. The principle of this method

is signal multiplication, as AC to DC transducer by (Yang and York 1999) stated before.

LABVIEW could also be used to simulate the correlation process. Another approach could

be to use auto-correlation. Multiplication of the two signals in that case becomes:
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y22 = B sin (ωt+ ϕ2) ·B sin (ωt+ ϕ2) =
1

2
B2 (1− cos (2 (ωt+ ϕ2))) . (2.11)

y is the output of the capacitance to voltage transducer, B is the amplitude of y (in V),

ω and ϕ2 are the frequency and phase of y, respectively.

The advantage of the method was no phase detecting and adjusting processes were

required, however, B was usually smaller than 1 and the squared signal would have much

smaller amplitude (e.g. if B was 0.5 V, then the new amplitude would be 0.125 V).

Frequency domain method Fourier transform is a mathematical approach to convert

a time domain signal to its frequency domain representation. According to the theory of

Fourier transform, any continuously acquired signal could be represented as infinite superpo-

sition of sine wave at different frequencies (Bochner and Chandrasekharan 1949). A signal is

usually considered to consist of useful information plus additive noise. The noise is usually

thought to be present with some known frequency distribution. The amplitude of signal

could be measured in the frequency domain if the frequency of source signal was known. As

in this measurement, if using 800 kHz sine wave as input, the output frequency was an 800

kHz signal plus something that might be considered white noise. In time domain, signal

and noise were compounded that might be difficult to measure the actual amplitude. But

in frequency domain, the amplitude at 800 kHz was close to the real amplitude.

To find an appropriate method to acquire the amplitude of ECT outputs, four methods,

including peak-to-peak amplitude (Amplitude and Level Measurements Express.VI), stan-

dard deviation, Fast Fourier transform (FFT.VI) and auto-correlation, were used to take

measurements at same sample. Different amounts of water (from 10 – 50ml) were measured

in a plastic cup. Since results from different methods were distinct, the measurements were

converted to amplitude using the following techniques:

38



Amplitude =



a amp.vi

2a FFT

2
√

2a Correlation

2
√

2a Standard deviation

(2.12)

Results were shown in Figure 2.18. Here the FFT and auto-correlation method showed

relatively good performance in measuring permittivity change from the variation of water

volumes inside the measuring enclosure. The peak-to-peak amplitude VI provided a relatively

lower R2 model compared to FFT and auto-correlation methods. However, the standard

deviation method did not achieve results comparable to the other methods. The influence

of noise was observed more significantly than in the other three methods. FFT and auto-

correlation methods were more robust to system noise, as was expected. Considering the

complexity of each method, auto-correlation was more time consuming to calculate than

others. Given the goal of building an ECT system was to dynamically measure MC of

biomass, it was preferable to use as high a sampling rate in acquiring data as possible.

Based on the requirements of both accuracy and high sampling rate, the FFT and peak-to-

peak amplitude approaches for estimating amplitude of the output signal were chosen for

this work.

2.3.2 Switching Control and Related Measurements

The need for a switching network was introduced in 2.2.3. For this study, the connections

between electrodes were controlled using digital outputs from the data acquisition system, NI

6361. The status’ of electrodes (for switch arrangement to achieve these states see Figure 2.6)

were controlled as in Table 2.3. Three different states of electrodes provided the capability

to carry out different sampling methods, which could be summarized as:

• single source-single receiver mode,
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Figure 2.18: Regression results for tests comparing the different amplitude measurement
techniques.

• single source-multiple receiver mode,

• multiple source-single receiver mode, and

• multiple source-multiple receiver mode.

The multiple source method was introduced in 1.2.3 and was due to Mohamad et al.

(2011). The method required having two different frequency input signals but, due to limita-

tions in available instrumentation, the approach could not be done for this study. This work

implemented only the first two of these sampling options and therefore only they will be

discussed. Single source-single receiver mode is straightforward, but single source-multiple

receiver mode has some options, which are outlined below.
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Table 2.3: Electrode state configurations possible with the switching network, and their

relation ship to switch closures.

Switch #
Source Detection Wait

Logic

Input

Switch

Condition

Logic

Input

Switch

Condition

Logic

Input

Switch

Condition

S1 1 On 0 Off 0 Off

S1 0 Off 1 On 1 On

S1 1 On 0 Off 0 Off

S1 0 Off 1 On 0 Off

(1) Single sampling option. The method could be described as: when the source electrode

was at k, take output measurements from k+1 to N simultaneously. Here k is the kth

electrode excited by input signal, N is the total number of electrodes. For the designed

8 electrodes, N is equal to 8, and k counts from 1 to 7.

(2) No waiting option. The electric field between some electrode combinations was not

able to cover the entire measuring area. If the residence time of an object within the

sampling zone was shorter than the sampling period, then the ECT would not detect

its presence. No electrode at wait status referred to the option of all electrodes having

only two states: receiving or exciting. In this 8 electrode system, always 7 electrodes

were taking data: when source electrode was at k, taking measurements from 1 to N

except k’th electrode. The method also finished data collection in one traverse around

the electrodes for each source chosen.

(3) No adjacent measurement option. Shao et al. (2003) found the contribution from

adjacent measurements was small. For an 8-electrode ECT, the number of adjacent
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measurements (side-by-side electrodes) was also 8, which exceeded one fourth of the

total (28). Removing adjacent measurements would significantly improve the sampling

rate. The large reading from adjacent electrodes was also reported to elicit side effects

in image reconstruction. The method could be expressed as: when source electrode

was at k, take measurements from k+2 to N ; e.g. when the source electrode was 1,

take measurements from 3 to 7 (skip electrodes 2 and 8)

All four methods were described in detail in Table 2.4. Though the no waiting method

could capture all information of a fast-moving object, it required redesign of the switching

network. Since the switching action was done very fast, when one electrode connected to the

source signal switched to the detector state, that electrode remained briefly at high electric

potential. As a result, part of that potential could be measured as sensor response, while

the true reading was undetecTable. A work-around solution could be achieved by adding a

ground connection during the transition between the exciting and detecting states. An extra

switching action, however, would increase the measuring period.

The no adjacent option was faster than the other methods. In this research, however,

it was not preferred. Because dynamic ECT measurements were greatly dependent on the

precision of reconstructed images (details in Chapter 5), fewer capacitance combinations

would reduce data available for reconstruction and possibly lead to poorer quality images.

The remaining two methods (single source-single receiver, single source-multiple receiver)

were therefore reserved for further use.

2.3.3 Image Reconstruction Program

The main advantage of the ECT system was its ability to create a 2-D image repre-

sentation of a field variable from a finite number of 1-D measurements. The fundamentals

of image reconstruction process are the result of a mathematic transformation named the

Radon and inverse Radon transforms, after Johann Radon (Deans 1983). It was proposed

in 1917 that any N -dimension object could be reconstructed by an infinite number of N − 1
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Table 2.4: Sampling methods summary.

Methods Source Detection Wait Measurements

One source, one
receiver (28
actions*)

1 (2) (3) (4) (5) (6) (7) (8)

Remaining 6
electrodes

1 1 1 1 1 1 1

2 (3) (4) (5) (6) (7) (8) 1 1 1 1 1 1

3 (4) (5) (6) (7) (8) 1 1 1 1 1

4 (5) (6) (7) (8) 1 1 1 1

5 (6) (7) (8) 1 1 1

6 (7) (8) 1 1

7 (8) 1

One source,
multiple receivers

(7 actions)

1 (2) (3) (4) (5) (6) (7) (8) N/A 7

2 (3) (4) (5) (6) (7) (8) (1) 6

3 (4) (5) (6) (7) (8) (1,2) 5

4 (5) (6) (7) (8) (1,2,3) 4

5 (6) (7) (8) (1,2,3,4) 3

6 (7) (8) (1,2,3,4,5) 2

7 (8) (1,2,3,4,5,6) 1

One source, seven
receivers (7
actions)

1 (2,3,4,5,6,7,8)

N/A

7

2 (1,3,4,5,6,7,8) 7

3 (1,2,4,5,6,7,8) 7

4 (1,2,3,5,6,7,8) 7

5 (1,2,3,4,6,7,8) 7

6 (1,2,3,4,5,7,8) 7

7 (1,2,3,4,5,6,7) 7

No adjacent
measurement

actions (6 actions)

1 (3,4,5,6,7,8) (2,8) 5

2 (4,5,6,7) (1,3) 5

3 (5,6,7,8) (1,2,4) 4

4 (6,7,8) (1,2,3,5) 3

5 (7,8) (1,2,3,4,6) 2

6 (8) (1,2,3,4,5,7) 1

∗ Electrode(s) in the same bracket means they are read at the same time for the given arrangement. One

‘action’ means changing the status of switches once.
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dimensional projections. For the two-dimensional situation, if f(x, y) is a continuous and

convergent function in plane Z, and there exists a line p = x cos θ+ y sin θ, then the integral

of f(x, y) along line p is defined as the Radon transform. It can be expressed as:

Rf (p, θ) =

∫ +∞

−∞

∫ +∞

−∞
f (x, y) δ (p− x cos θ − y sin θ) dx dy (2.13)

where δ() is the Dirac delta function. Since the function of the line p is known, the Radon

transform could be calculated from equation 2.13. The inverse Radon transform is used to

calculate f(x, y) with a known Rf (p, θ). The inverse formula can be written as:

f (r, ϕ) = − 1

4π2

∫ 2π

0

∫ +∞

−∞

∂Rf (p, ϕ)

∂p
· 1

p− r cos(ϕ− θ)
dp dθ (2.14)

where r =
√
x2 + y2, ϕ = tan−1 x

y
.

For an ECT system, the capacitance measurements were treated as known Rf (p, θ) and

available to calculate the two-dimensional image f(x, y). As Radon’s theory described, infi-

nite capacitance data were required to perfectly reconstruct the original image. However, the

capacitance combinations were much fewer in number, 28 for the 8-electrode sensor. Though

insufficient information would cause imprecision in the reconstructed image, the result, which

could satisfy this study’s requirement, has been widely used in ECT applications.

Mathematical Model for ECT system To solve the partial differential equation of

the inverse Radon transform, knowledge of boundary conditions was crucial. There are

three different normal boundary conditions applied, including Dirichlet boundary condi-

tions, Neumann boundary conditions, and Robin boundary conditions. For an ECT system,

the boundary condition is derived from excitation with a constant voltage signal, which is

equivalent to Dirichlet boundary conditions. If no signal were applied to any electrode, the

electric potential gradient could be described using the Poisson equation (Yang and Huang

2007):
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∇ [ε (x, y)∇φ (x, y)] = 0 (2.15)

where ε (x, y) and φ (x, y) were the permittivity and the electric potential at point (x, y),

respectively. When an electrode, e.g. electrode i, was excited by a voltage signal V , the

boundary conditions for an N -electrode ECT sensor were changed:

V =


V (x, y) ∈ si i = 1, 2, · · · , N

0(x, y) ∈ sj j = 1, 2, · · · , N j 6= i

(2.16)

where si is the surface of electrode i. The electric potential distribution φ (x, y) could be

calculated from equations 2.15 and 2.16. The capacitance between electrodes i and j was

computed as:

Ci,j = − 1

V

∮
ε (x, y)∇ (x, y) ds (2.17)

Image reconstruction process An ECT system is used to describe the permittivity dis-

tribution at discrete points inside a measuring enclosure, which can be thought of as a vector

each element of which is associated with some fixed location. The resulting permittivity dis-

tribution vector elements are used as the gray scale values for the reconstructed image (G).

The integral relationship of equation 2.17 is usually simplified to a sum operation over
(
N
2

)
electrodes, which corresponds to the matrix formulation:

C = SG (2.18)

where C is the N × 1 capacitance matrix, G is the M × 1 gray level distribution image and

S is a new concept called a sensitivity matrix (N × M). For any pixel k, its sensitivity

corresponding to electrode i and j is defined as:
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Si,j (k) =
λi,j (k)Ci,j (k)

εhigh − εlow
(2.19)

where λi,j(k) is the area factor of pixel k, Ci,j(k) is the normalized capacitance between

electrode i and j, εhigh and εlow are the permittivity of high and low dielectric materials,

respectively (Pan and Wang 2004).

To obtain the gray scale image G, it is calculated by rearranging equation 2.18:

G = S−1C (2.20)

However, the dimension of the sensitivity matrix S is N ×M , which does not have a normal

inverse unless M = N . Though there can exist a pseudo-inverse of S, for ECT applications

the inverse is usually approximated as ST to solve the ill-posed problem. The approach is

known as the Linear Back Projection (LBP) method (Xie et al. 1992).

G = STC (2.21)

The key in computing the ECT image G is to obtain the sensitivity matrix S. Two ways

could be applied to obtain S: experimentally, and software simulation (Guo et al. 2009).

The experimental measurement approach has large calculating requirements and is usually

not adopted. In this dissertation, ANSYS 13.0 (SAS IP, Inc.) was used to simulate the

sensitivity matrix S. The main steps can be stated as follows:

(1) Select element (material) type, set appropriate permittivity,

(2) Draw the sensor with true dimensions,

(3) Mesh the sensing area into 225 nodes, using a triangle mesh element shape,

(4) Set the boundary conditions (apply voltage to electrodes),

(5) Compute the electric field distribution.
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Figure 2.19: An example electric field distribution calculated using the ANSYS model. The
example shows the field resulting from two adjacent electrodes, one providing excitation, the
other as the ground (or receiver) side.

An example ANSYS output from above steps was shown in Figure 2.19. This example

was built using the ECT in single source-single detector mode with two adjacent electrodes.

An 8-electrode ECT sensor would require calculating 28 distinct sensitivity matrices, one

for each electrode combination. An example sensitivity matrix is shown in Figure 2.19.

Actually, however, it was not necessary to estimate 28 separate sensitivity matrices using

ANSYS in all situations. For the single source-single detector mode, there were only four

unique electric charge distributions (resulting electrode combinations 1-2, 1-3, 1-4, and 1-5,

the source electrode being 1). Other combinations could be generated by rotating one of the

four characteristic distributions.

As mentioned, the LBP approach using ST as a substitute for S−1 would lead to image

errors. A Landweber algorithm (Yang and York, 1999) was applied to improve the accuracy.

The algorithm was used to iteratively improve estimates of G by minimizing the squared

error term 1
2
‖SG− C‖2. New estimates of G were calculated from equation 2.22.

Gk+1 = Gk + αST (C − SGk) (2.22)

where α is fixed and ‖αSTS2‖ < 2, k = 0, 1, 2, · · · . The algorithm is repeated either for a

fixed number of iterations or until the difference |C − SGk| is less than a given threshold.
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Figure 2.20: ECT flow diagram

2.4 Chapter Summary

The ECT system was designed with 8 electrodes surrounding a PVC tube, each electrode

connected to a capacitance-to-voltage transducer. A switching network was embedded in all

electrode circuits and used to control their state of operation. The AC output of each sensor

was directly sampled using a commercial data acquisition system and the amplitude of the

signal was calculated using various methods implemented in software (LABVIEW). The

system had the capability to save resulting data, or reconstruct ECT images on-line. A flow

diagram of the ECT system operation was shown in Figure 2.20.
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Chapter 3

ECT SENSOR CHARACTERISTICS

An integrated ECT system was designed in Chapter 2. Before applying the sensor to

measure MC for wood chips, its basic characteristics were tested and the results reported in

this Chapter. Results were expected to provide information on the limits of performance of

the sensor and be important to understand before pursuing more complicated experiments

with the ECT system.

3.1 Hardware Features

To verify the design, capability, as well as limitations, of the sensor, the tests outlined

in the following sections were carried out.

3.1.1 Functionality Test

Responses of the 28 different electrode combinations were collected to verify consistency

in output. Since all electrodes and circuits were designed exactly the same, the single paired

parallel plate capacitance measurements should provide the same result under the same con-

ditions. Sources of variation that might have introduced errors could have been associated

with size or placement differences between electrodes, or response variability between elec-

tronic components used in the sensor circuits. The following two assumptions were tested

to evaluate how well the sensor approximated the ideal response.

(1) Any pair of measurements, if their detecting electrodes were separated at the same

distance, e.g. C14 and C25, should be the same theoretically.
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Table 3.1: ECT readings when empty. Units of values are in pF.

Adjacent Separation 1 Separation 2 Separation 3

C12 1.067 C13 0.382 C14 0.339 Ct15 0.311
C23 0.933 C24 0.384 C25 0.345 C26 0.325
C34 0.847 C35 0.380 C34 0.339 C35 0.322
C45 0.876 C46 0.371 C47 0.349 C48 0.317
C56 0.914 C57 0.395 C58 0.914
C67 0.958 C68 0.376 C16 0.332
C78 0.976 C17 0.390 C27 0.346
C18 0.965 C28 0.381 C38 0.331

Average 0.942 Average 0.382 Average 0.341 Average 0.319

(2) Capacitance values should decrease when the separation between two electrodes in-

crease (C12 > C13 > C14 > C15).

The experiment was done in two steps. The first step was to collect data in an empty

state (nothing but dry air in the sensing area). The input signal used in the tests was an 800

kHz sine with 10V amplitude. Data were sampled using the one source/one detector mode

at 1.99 MHz. Peak-to-peak amplitude was measured with 5 replications and the values were

averaged. Results were listed in Table 3.1 (separation 1, 2 and 3 refer to the number of

other electrode(s) between the pair of electrodes under test). According to the assumption

(1) above, the capacitance readings for each column should be the same. However, both

location of electrodes and noise from capacitance-to-voltage transducers would add error

and result in capacitance variation. Fortunately, these variations were relatively small and

within an acceptable range. Assumption (2) was supported by all individual and average

values very well since values measured at different separations were significantly different

from each other.

The second part of the test was to repeat the above experiment with the sensor in a full

state, meaning the measuring area was fully occupied by a test material. The objective in

building the ECT system was to measure moisture content of wood chips, thus green chips

(MC around 80%) were chosen as the test material. To avoid unnecessary air gaps between
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Figure 3.1: Readings from electrode 8 as captured during excitation from the other 7 elec-
trodes. The horizontal axis refers to the exciting electrode, and empty and full refer to the
absence, or presence, of chips within the sensor enclosure.

individual particles, large chips (wet weight > 10.0g) were excluded. Results were shown in

Table 3.2, with values displayed in this case being actual capacitance (rather than summed

voltages), in pF. The same trends were observed as in the empty state. Though absolute

ECT readings were different from other data reported in the literature, as, for example, in

Yang and York (1999), the trend was exactly the same.

The data from tables 3.1 and 3.2 were also shown graphically in Figure 3.1, but this time

in terms of raw sensor output (volts). The graph highlights the consistency in sensor response

for the various combinations of excitation/response electrodes and between the empty and

full states. The ratio of sensor outputs for the full and empty states for a given electrode was

uniform regardless of the separation from the excitation signal. This result strongly suggested

the arrangement of electrodes and the data processing circuits were correctly designed and

adequately built. The ratio of four different separations in empty state was 2.95:1.20:1.07:1,

while 2.85:1.25:1.05:1 in full state. The capacitance values increased with similar ratios,

example of electrode 1 was plotted as .
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Table 3.2: ECT readings when full. Units of values are in pF.

Adjacent Separation 1 Separation 2 Separation 3

C12 1.164 C13 0.467 C14 0.383 C15 0.364
C23 1.059 C24 0.469 C25 0.397 C26 0.367
C34 0.961 C35 0.453 C34 0.379 C35 0.370
C45 0.971 C46 0.438 C47 0.394 C48 0.360
C56 1.002 C57 0.461 C58 0.377
C67 1.036 C68 0.445 C16 0.380
C78 1.079 C17 0.463 C27 0.394
C18 1.051 C28 0.462 C38 0.371

Average 1.040 Average 0.457 Average 0.384 Average 0.365

3.1.2 Repeatability Test

A test of the repeatability of the sensor was also undertaken. Before the test, all output

circuits were fixed on a PVC board to eliminate undesirable variation resulting from non-

constant stray interaction between the individual elements. The board was attached outside

and perpendicular to the axial direction of the measuring vessel (Figure 3.2). The location

was relatively far from electrodes to avoid excessive stray capacitance between circuits and

electrodes. The length of lead wires between test circuits and electrodes was also fixed and

uniform.

The repeatability tests were done in the same manner as the functionality tests outlined

above: background measurements with the sensor enclosure empty, and a second reading

when filled with a test material. Tests were carried out in a lab environment where air

humidity and temperature were relatively stable. The background measurement was re-

peated three times a day for three consecutive days. The location of the experimental setup

remained fixed. 50 groups of data (28 capacitances per group) were collected for each mea-

surement, and the total measurements contained 450 groups (12,600 data points), using

one-source-multiple-receiver sampling mode. Material under test was chosen to be dry wood

chips. The dry chips were placed in the same envelopment with ECT system for two weeks,
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Figure 3.2: PVC board to fix PCBs

so that the water inside would come to equilibrium with air humidity. Methods used for

ECT measurements were the same as in the background test. The MC of the sample was

assumed constant during the three-day test, which was also the reason for not using green

chips. The chips were not disturbed during the test. Data were processed by combinations.

Distributions in sum are shown in Figure 3.3 Analysis methods were as follows:

(1) Sort the data by combination of receiving and emitting electrode. Each capacitance

combination Cxy had 450 repeats, where x=1, 2,. . . ,7, and y=2, 3,. . . ,8 represented

the index of the electrode. The data were rearranged into a matrix as:


C1

12 · · · C450
12

...
. . .

...

C1
78 · · · C450

78


28×450

(2) Calculate the mean (µ) of each row of the matrix. The signal-to-noise ratio (SNR) was

computed as equation 3.1 (Lu et al. 2004).
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Figure 3.3: Plot of the distribution in observation counts falling within the indicated summed
output voltage range. Plots are shown for (a) background and (b) dry wood chips as the ma-
terial under test. The normality of the plots indicated sensor measurements were predictably
repeatable with a known variance in response.

SNR = 20 log | µ
C
| (3.1)

where µ = 1
N

∑N
i=1Ci, and C = 1

N

∑N
i=1 |Ci − µ|, N=450.

(3) Calculated the sum of each column. Equation 3.1 was also calculated for the summed

result, referring to the overall SNR when using the sum as sensor response.

Result of both empty and full states were shown in Table 3.3. The minimum SNR

was observed from C15 (36.56 dB) in the full state. It was possibly because the separation

between electrode number 1 and 5 was the biggest and had a greater chance of undesirable

variations appearing. If choosing electrode 1 and its combinations as an example, the SNRs

decreased when the separation increased. For the capacitances C12 and C18, the materials

between the electrodes were PVC tube, wood chips, and air. Since the PVC tube was

constant and occupied a larger ratio of sensing area than any other non-adjacent electrode

combinations, the probability of variation would be reduced. Overall, even the minimum

SNR, was large enough to support the conclusion that the ECT sensor as built was a stable
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and low noise system. The variation in summed capacitances was significantly smaller than

any single capacitance. It was, therefore, reasonable to use the capacitance (or voltage) sum

as the sensor output predicting overall average permittivity within the entire sensing area.

This implied the use of the multiple-electrode system was equivalent to a single-paired-plate

capacitance sensor, but perhaps provided greater stability in the presence of variability in

the material under test.

3.1.3 Sensitivity Test

Based on Gauss’s law, any permittivity change within the ECT sensor’s measuring

area should be observable as a capacitance change, and therefore as a change in its output

voltage. In the previous section, system noise levels in the sensor output were shown to be

small relative to the effect of permittivity variation, but it was not zero and should affect the

sensitivity of the system. Experiments were undertaken to identify the minimum quantity

of a material that could be observed using the ECT sensor in the presence of typical noise

levels The material under measurement for the tests was pine chips, which for the purposes

of these experiments was considered to be composed of a mixture of two phases: dry wood

and water. Sensitivity of the sensor to both phases was estimated.

Water Test

This test was to establish the minimum quantity of water observable using the sensor.

It was not possible to accumulate only water inside the sensor, therefore a clean and dry

plastic container was used to hold it. The container was placed at two different positions

in the sensing area: on the edge near the enclosure wall, and in the center. The empty

container was used as the reference data (background) for the test. Water samples were

directly acquired from the faucet and added into the container a drop at a time using a

plastic transfer pipette, which had the capability to hold 3 ml water in total. A single drop

of water was about 0.04 ml. Each test consisted of adding two drops of water, taking the
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Table 3.3: Results of the sensitivity test showing SNR (in dB) measured for each electrode
combination for the listed materials under test.

Test
Material

Electrode Combination
C12 C13 C14 C15 C16 C17 C18 C23

Bkgd 47.97 40.50 38.55 37.28 37.15 38.15 47.71 47.95
Wood 47.77 40.03 38.85 36.56 37.09 37.81 46.03 47.06

C24 C25 C26 C27 C28 C34 C35 C36

Bkgd 38.90 37.97 37.88 38.05 37.18 40.29 38.09 38.00
Wood 38.59 36.74 37.00 37.62 36.51 44.80 37.92 37.46

C37 C38 C45 C46 C47 C48 C56 C57

Bkgd 38.01 39.02 45.37 38.78 38.59 39.17 46.37 38.98
Wood 37.49 37.91 44.64 37.80 38.20 38.32 44.81 37.95

C58 C67 C68 C78 Sum of 28 capacitances

Bkgd 37.65 43.94 37.90 43.53 59.08
Wood 37.65 44.73 37.05 45.04 58.77

capacitance measurement (sum of 28 voltages), and repeating. This experiment was repeated

10 times. Student’s t-test was used to check if a sensor reading was significantly different

from the reference level at a 95% confidence level. Once identified, that volume of water

significantly different from a background reading was defined as the system resolution, or

minimum sensible amount, for water. Part of the results were shown in table 3.4.

The minimum detectable water volumes were 24 drops (0.96ml) and 56 drops (2.24ml)

for edge and central areas, respectively. A consistent phenomenon was observed such that

the sensitivities of edge and center locations were different, and this result will be discussed

more thoroughly in the next section.

The sensitivity in the central portion of the sensor was lower than the edge and around

2.24 ml of water. The total volume of the measuring area within the sensor was about 1824

ml, which meant a 0.12% volume change from air to moisture would have a more significant

effect on measured capacitance than noise.
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Table 3.4: Results of the sensitivity test showing SNR (in dB) measured for each electrode
combination as the listed number of drops of water were added to the sensor.

Edge Area

Drops 0 4 8 12 16 20 24 28 32

Mean 14.843 14.846 14.854 14.862 14.869 14.860 14.877 14.879 14.879
P 1 0.7053 0.2428 0.0792 0.0249 0.11 0.0018 < 0.001 0.0031

Drops 36 40 44 48 52 56 60 64 68
Mean 14.874 14.887 14.891 14.894 14.897 14.890 14.892 14.919 14.925

P 0.0038 0.0016 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Central Area

Drops 0 10 20 30 36 40 44 48 52

Mean 14.806 14.819 14.822 14.822 14.825 14.825 14.821 14.824 14.827
P 1 0.9687 0.3777 0.9454 0.1732 0.2580 0.2478 0.3489 0.6593

Drops 56 60 64 68 72 76 80 84 88
Mean 14.834 14.847 14.851 14.854 14.857 14.850 14.852 14.869 14.885

P 0.0038 0.0016 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Wood Sensitivity Test

Chips were in two states, bone dry and green. Single pieces of wood (individual chips)

were measured to avoid location and air gap influences.

Dry chips, dried in an oven for 24 hours, were selected for the experiment based on

their weight. A total of 30 dry chips were selected with weights ranging from 1.73g to

28.31g. Green chips were stored in -20◦C refrigerator for a week. All chips were in a frozen

state during the measurements. As in the dry wood test, 30 green chips were selected with

weights ranging from 1.01g to 18.33g. The bottom edge of the ECT electrodes were about

one inch above the bottom of the PVC tube. To keep the chips within the measuring area,

the same container was used to hold the chips as used in the water sensitivity experiment.

Since the sensitivity was known to be different in edge and central areas, both locations were

measured with the same chip samples. Background data were also taken with the container
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Table 3.5: Summary of wood chip sensitivity results.
D

ry

E
d
ge

Weight (g) 0 1.73 3.44 5.77 8.01 11.48
Mean 14.845 14.856 14.855 14.852 14.865 14.866

P 1 0.3766 0.2592 0.1603 0.0286 0.0211
Weight 13.45 15.82 19.75 23.85 26.62 28.31
Mean 14.876 14.871 14.880 14.899 14.902 14.913

P < 0.001 0.0047 < 0.001 < 0.001 < 0.001 < 0.001

C
en

te
r

Weight (g) 0 1.73 3.44 5.77 8.01 11.48
Mean 14.809 14.813 14.812 14.819 14.819 14.827

P 1 0.3766 0.2592 0.1603 0.0286 0.0211
Weight 13.45 15.82 19.75 23.85 26.62 28.31
Mean 14.876 14.871 14.880 14.899 14.902 14.913

P < 0.001 0.0047 < 0.001 < 0.001 < 0.001 < 0.001

G
re

e
n

E
d
ge

Weight (g) 0 1.01 1.81 2.17 3.67 4.19
Mean 14.849 14.855 14.863 14.872 14.889 14.892

P 1 0.1083 0.0837 0.0101 < 0.001 < 0.001
Weight 5.65 6.29 7.40 8.68 9.02 10.87
Mean 14.882 14.909 14.887 14.937 14.926 14.945

P 0.0012 < 0.001 0.0013 < 0.001 < 0.001 < 0.001

C
en

te
r

Weight (g) 0 1.61 2.17 3.67 4.19 5.65
Mean 14.807 14.810 14.809 14.815 14.812 14.819

P 1 0.6701 0.8045 0.2681 0.3845 0.0887
Weight 6.29 7.40 8.68 9.02 10.87 12.77
Mean 14.827 14.825 14.837 14.846 14.865 14.884

P 0.0424 0.0430 0.0014 < 0.001 < 0.001 < 0.001

at empty status (but including the holding container). Individually, the dielectric constant

of air (εr = 1), dry wood (3-5), and water (80) are quite different (Norimoto 1976). The

weight increment of wood to be detectable should be much bigger than water. Data analysis

methods were exactly as in the water test. Part of the results were shown in Table 3.5.

The minimum measurable sizes of dry pine chips were 8.01g and 15.82g for edge and

central locations, respectively. The first observation with P < 0.05 (Ho: summed capacitance

equal to background data) for center measurement was at dry weight of 11.48g. However,

the following measurement at 13.45g did not have a statistically significant difference from

background at 95% confidence interval. It would be inappropriate to conclude that the
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Figure 3.4: Minimum detectable size of (a) water (0.96ml, at edge), (b) dry chip (15.82g, at
center), and (c) green chip (2.17g at edge).

system minimum background sensitivity was 13.45g of dry wood and the smallest amount of

detectable dry wood was 15.82g. For green wood, the minimum measurable amounts were

2.17g and 6.29g for edge and center locations, respectively. The water inside a green wood

chip exists in two forms: bound water and free water. Bound water exists as a component

of cell walls; free water is in the lumen parts and may be liquid or vapor moving freely in

cavities (Reeb 1995). The permittivity of bound water and free water are different (Boyarskii

et al. 2002). However, the difference has been reported as being small. From the dry wood

chip measurements, we knew that 2.17g and 6.29g dry wood could not be sensed using this

ECT system. Thus the contribution to capacitance was mainly from water in the green

chips. The MC of the green chips was around 75% normally, 2.17g and 6.29g green chips

were therefore carrying about 0.93 ml and 2.70 ml water, which were close to the minimum

volumes of water detectable in previous experiments (0.96ml and 2.24ml). Based on this

result, it was concluded the measurement of a composite material (wood and water) could

be successfully viewed as the sum of individual measurements on its two components, or

that the sensor response was linear to these two materials.

Photos of the minimum detectable amounts of water (a), dry (b) and green wood chip

(c) at edge or central areas were shown in Figure 3.4, compared with a US quarter dollar.
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Figure 3.5: Illustration of location tests. (1) Measuring vessel, (2) electrodes, and (3) sus-
pended wood chip.

3.1.4 Location Test

In the previous section, it was noted the sensor response was different for the same

sample placed at varying locations within a plane normal to the PVC tube’s central axis.

Water and wood samples tested in section 3.1.3 were also only at the bottom of the sensor,

therefore the effect of the vertical location was unknown. These variabilities were further

tested in these experiments. The measuring volume within the sensor was about 182.4

cm2 × 10.0 cm (H) and was divided into 15 test volumes: 5 locations in a horizontal plane

(4 at the sensor edge at cardinal points, and 1 in the center), and 3 levels in the vertical

direction, as in Figure 3.5. Capacitance measurements were made as in the sensitivity tests

for individual chips, but the tested sample was a single large, green chip (36.5g). A piece of

fishing line, whose permittivity was examined and found to be ignorable, was used to hang

the sample at the 15 different locations. This arrangement was also illustrated in Figure 3.5.

Each location was measured statically and sampling repeated 10 times. The sum of 28

capacitances was used the sensor response. An analysis of variance (one-way ANOVA) was

carried out to evaluate differences in sensor response by height at the 5 locations. Results

were summarized in Table 3.6 which listed P-values for the null hypothesis Ho: the readings

within a location (x, y) were the same. The P-values all exceeded 0.8, indicating no statis-

tically significant differences between the bottom, middle and top of sensing area within a

single x, y location.
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Table 3.6: ANOVA test results for vertical direction

Location
Central Edge 1 Edge 2 Edge 3 Edge 4

0.9831 0.8444 0.9346 0.9373 0.9037

Another ANOVA test was run for all 15 position data, to test Ho: all position means

within a plane were the same. The P-value was 0.0706, which suggested all means were the

same at 95% confidence interval, however, the sensor response at the central location tended

to be smaller than the edge locations for the same object. The effect would reduce sensor

accuracy, e.g. 70% MC wood chip at an edge location might have the same sum with a 73%

MC chip at the center.

A normalization process was developed to eliminate variations in sensor output resulting

from nonlinearities observed in the previous experiments. The process covered two error

sources.

(1) Design error. From assumption (1) in 3.1.1, capacitances with the same separation

should be the same. However, measurements in Table 3.1 showed small differences

between them. This error between theory and real design was referred as design error,

and it could be reduced using a normalization process.

(2) Unequal sensitivity error. This error referred to the different sensitivity at central and

edge locations.

The normalization algorithm was done in two steps:

(1) Basic calculation. From 3.1.1, the sensor responses for each electrode from excitation

by a given electrode were found to be increasing with almost the same ratio, if the

measuring volume was completely filled and air gaps distributed uniformly. Based on

this, a ratio normalization method was used. In this dissertation, wood chips would

be the material to test. Thus the data for full and empty states in 3.1.1 could be used
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as the upper and lower limit for the sensor readings. The normalized sensor response

(V ) was calculated as equation 3.2:

Vn (i,j) =
V(i.j) − Ve(i,j)
Vf(i,j) − Ve(i,j)

(3.2)

whereV(i,j)was the direct reading between electrode i and j, Ve(i,j) and Vf(i,j) were

measurements from paired electrode i and j at empty and full states, respectively.

From equation 2.3, the amplitude of the output signal was proportional to the measured

capacitance. Suppose the ratio was a constant k, such that

Vn (i,j) =
V(i.j) − Ve(i,j)
Vf(i,j) − Ve(i,j)

=
kC(i.j) − kCe(i,j)
kCf(i,j) − kce(i,j)

=
C(i.j) − Ce(i,j)
Cf(i,j) − ce(i,j)

= Cn(i,j) (3.3)

The normalized sensor output would therefore be the normalized capacitance.

(2) Outlier removing. Normalized capacitance should be in the range from 0 to 1. However,

because Cn was possibly varying outside that range due to system and measuring noise,

a threshold operation was used to limit this kind of error, as shown in equation 3.4.

f (Cn) =


0 Cn < 0

Cn 0 ≤ Cn ≤ 1

1 Cn > 1

(3.4)

An ANOVA test was performed for normalized data taken in the location tests described

previously, again with Ho: all location means were the same. The P-value after normalizing

was 0.4438, compared with P=0.0706 for the original ANOVA data. Though the normalized

data from the center region always tended to remain a little bit smaller than edge readings,

the difference was greatly reduced. The conclusion was made that the ECT sensor was robust

to sample location variation because its variability was known.
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3.1.5 Particle Size Test

A particle size test was another way to evaluate the location issue. Wood chips include

three material phases: air, water and wood. For dry chips, it would become two phases:

air and wood. When samples having the same weight, but different chip size distributions,

were placed in the ECT enclosure, the result would be segregation vertically based on size:

small chips would tend to migrate to the bottom of the sensor, which would tend to leave

air space at the top. Moderately-sized chips would create some gaps, and large chips would

leave bigger empty spaces. The difference among these situations would be the location of

wood and air. A test was designed to evaluate this effect of particle size distribution. Three

samples with different size distributions were measured in the test: wood powder, small

(<2.0g per piece) and large wood chips (>4.0g per piece). The total weight for each sample

was 200.0g. All samples were fully dried. Figure 3.6 shows the conceptual argument for

performing the tests (varying air/wood distribution for the same sample), as well as photos

of the material tested in the experiment.

The sum of 28 capacitances was again used as the ECT response. Each wood sample

was measured 10 times. An ANOVA test was applied to check if the three data groups

had the same mean. The resulting P-value was 0.5624, suggesting the particle size would

not affect the ECT output. Since the particle sizes vary for different industrial conversion

processes, the ECT sensor could be effective in process control applications across conversion

methods, provided the feedstock densities do not vary greatly.

3.2 Image Reconstruction Test

Image reconstruction algorithm was introduced in 2.3.3, the method was mainly from

the literature, e.g. Chen et al. (2007). Though the algorithm has been widely used in ECT

applications, imaging of wood chips has never been tested. In this part, the LBP method

and Landweber iteration will be tested on chips and other materials.
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Figure 3.6: Illustration of samples for particle size tests. (a) Wood powder, (b) small particle
wood chips, and (3) large chip samples

3.2.1 Electric Field Distribution of Electrode Combinations

In a high energy measuring system, such as X-ray scanning, the probe signal would

transmit straight from the emitter to the receiver, without any bending and the area under

measurement for any electrode pair would be obvious. An electric field established between

two capacitance electrodes, however, is not so simple and can be highly variable in its dis-

tribution, depending on what other conductive materials are nearby and the nature of the

dielectric material itself. It is necessary to know the electric field distribution for this partic-

ular sensor in order to successfully apply the tomographic image reconstruction algorithm.

Since it is hard to view the true electric field, software ANSYS 13.0 was selected to simulate

the electric field using a finite element approach with the measurement area meshed with

triangular elements, and the node number equal to 225.
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According to 2.3.2, two sampling methods were reserved for further experiment: single

source-single receiver (denoted here as One-One) and single source-multiple receiver (One-

N). The measuring areas, which would be different for the two sampling methods, were

simulated using ANSYS 13.0. For One-One mode, boundary conditions in the simulation

were set as source equal to 10 V, and detector electrode to 0 V. The other (unused) electrodes

did not apply any voltage. And, for One-N mode, the source electrode voltage applied was

10 V, and the N measuring electrodes were set to 0 V. Simulations results were shown in

Figure 3.7. The color blue indicated low electric potential and red was high electric potential.

The central part was always in a low energy state, which could explain the low sensitivity

discussed in the 3.1.4 location test. As mentioned in 2.3.3, the electric field distribution of

One-One mode only had 4 unique states. Because the system was symmetric, e.g. 1-2 equal

to 1-8 equal 2-3, the electric field distribution of the other combinations would be the same

but shifted. For the One-N mode, there were 7 different electric field distributions, which

were created by different detector numbers from 7 to 1.

The simulation results also provided the sensitivity matrices crucial to image recon-

struction. The matrices for the two methods were computed as follows:

1. One-One mode. Suppose electric field distributions of O1 to O4 were V1 to V4 (225x1

vector), then the transposed sensitivity matrix would be:

ST1 = [V1, V2, V3, V4, · · ·, Vk, · · ·, V28] . (3.5)

For 4 < k ≤ 28, any Vk could be calculated from V1 to V4.

2. One-N mode. If electric field distributions of N1 to N7 were V ′1 to V ′7 (225x1 vector),

the sensitivity matrix was:

ST2 = [V ′1 , · · ·, V ′1 , V ′2 , · · ·, V ′2 , V ′3 , · · ·, V ′3 , V ′4 , · · ·,′4 , V ′5 , V ′5 , V ′5 , V ′6 , V ′6 , V ′7 ] . (3.6)
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Figure 3.7: Electric field distribution in two measuring modes. O: One-One mode. Oi:
electrode 1 and i (=2,3,4). N: One-N mode. Nj: electrode j source, and (8-j) receivers.
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When electrode j (1, 2,.., 7) was used as source, (8-j) measurements were taken. So

the number of Ej in sensitivity matrix Ss was equal to (8-j).

3.2.2 Post-Processing Image Reconstruction

Given the image reconstruction methods and sensitivity matrices were implemented as

introduced in sections 2.3.3 and 3.2.1, an estimated permittivity distribution image based

on ECT sensor readings could be computed using the LBP method. According to equation

2.18, the resulting image, G, was actually a 225×1 vector, rather than an image, but the

coordinates of the 225 node points were known from the electric field distributions calculated

in the sensitivity matrix simulations. The vector-based G estimates were converted to images

using an interpolation scheme written in PYTHONTM 2.7 (PYTHON Software Foundation)

and employing the SmoothBivariateSpline routine from scipy.interpolate.

A standard material was used to test the imaging system. A PVC rod was reported in

the literature to be a detectable material (Steiner et al. 2005), and was also used in this

test. In addition, an alternative sensitivity matrix free method (SMF) for calculating the

permittivity nodes was applied to compare with the LBP method. The SMF method was

carried out in two steps:

(1) Analyze the coverage for each pair of electrodes, such as the area in Figure 3.7.

(2) Take the smallest normalized capacitance value as the gray scale for all covered pixels.

For example, if pixel k(i, j) is involved in the coverage of pair 1-5, 2-6 and 3-7, the

gray value Gk(i,j) = min {C1−5, C2−6, C3−7}.

The SMF method, although perhaps less precise, could be used to speed up imaging calcu-

lations in real-time applications.

The PVC samples were tested using One-One mode, with excitation input 800 kHz,

20V peak-to-peak sine wave. Data were sampled at 2 MHz and collected for 10 repeats. The

average of 10 measurements was used to reconstruct an image. Since it was not possible to
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measure a sensor-full background state for the PVC material, the data were only compared

with empty state (air background). Another normalization method was required to for

situations in which no background measurement could be acquired, as was the case for later

tests using PVC targets. In this alternate approach, the image was rescaled to use the

maximum and minimum value of the calculated gray scale vector G, as:

Gn =
G−Gmin

Gmax −Gmin

, (3.7)

where G was the data from the un-normalized capacitance, Gmin and Gmax were the minimum

and maximum value in vector G. After normalizing, the gray scale was limited to the range

[0-1]. The process might be inaccurate for some outliers observed in original G. However,

averaging from 10 repeated measurements would greatly reduce the effect of extreme values.

Results of both methods were shown in Figure 3.8. The true area percentage of the

test PVC rod was 6.25% (1.5 inch diameter PVC rod in 6 inch inner diameter sampling

space). The measured area estimates were 5.80% and 19.11% for SMF and LBP separately.

Both images indicated the appropriate location and area and the results supported the

conclusion it was possible to reconstruct ECT images with some accuracy. The total effective

pixels of the two methods were 293 and 225. Better resolution and accuracy were achieved

using the SMF method. Another advantage of using the SMF method was faster image

processing. Since the method was based on calculating outputs from single paired electrodes

separately, fewer computations were necessary after the 28th reading was collected compared

to LBP. However, an image reset function was necessary to initialize the image for the next

28 readings. If calculating the image for every paired-electrode capacitance reading, the

process would have lots of repetitions and that would decrease the effective sampling rate. If

implemented the method after all 28 readings were acquired, the method took a longer time

to reconstruct as opposed a simple matrix multiplication. Since the sampling rate would be

the first consideration for an ECT application in dynamic situations (moving contents), the
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Figure 3.8: Image reconstruction result of the arrangement in (a) using (b) SMF and (c)
LBP method image reconstruction methods.

LBP method, the accuracy of which could be improved by other mathematical approaches,

was chosen to measure wood chips.

The ECT image was expected not only to detect the area and location of wood chips,

but also the MC, or, at a minimum, tell the difference between wood chips with high and low

MC. To test this ability, green and dry wood chips were selected as a sample to be measured,

and the same measurement procedures used in the standard material (PVC rod) test were

applied, except reference measurements and normalization processes were possible. For these

tests, paper sheets were used to separate green chips from dry, or from empty space. The

full state used in the normalization calculations was sensor response for the tube filled with

green chips and the capacitance readings were normalized, as in 3.1.4. Resulted images were

shown in Figure 3.9. Two capabilities of the ECT imaging system could be concluded from

results in Figure 3.9:

(1) ECT could show an accurate area in an image occupied by certain materials, e.g. wood

chips, air;

(2) MC information could be extracted from the color in the image. In figure 3.9b, yellow

referred to MC = 0%, and red referred to green chips, e.g. 75% MC; for Figure 3.9d,

blue was at 0%.
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Figure 3.9: Example images generated using the sensor in tomographic mode for varying
arrangements of green and dry chips. (a) Image of green chips, dry chips, and empty sepa-
rated by cardboard partitions, (b) reconstructed image of (a); (c) Green chips surrounding
dry chips, again separated by a paper partition; (d) Reconstructed image of (c).

3.2.3 Error Source and Improvement

Though the LBP method was simple and easy to compute, the accuracy of spatial

estimates based on its results was worrisome. The image error came mainly from two sources.

One is algorithm error. From the equations 2.18 and 2.21 in 2.3.2, the LBP algorithm

used ST as a substitute for S−1 to calculate G. However, the two equations were not equal:

C 6= SG = SSTC . (3.8)

The difference between the true and computed images was a major error source of the

ECT system. To reduce this type of error, the crucial problem was to reduce the difference

between C and SG. The Landweber iteration method introduced in equation 2.22 was a

good approach to accomplish this. The algorithm was: Gk+1 = Gk + αST (C − SGk); when

C was bigger than SGk, a positive value would be added to Gk and become the next Gk+1.

The next SGk+1 would be bigger than SGk, and was closer to the measured C. When C was

smaller than SGk, the Gk would be reduced by the factor αST (C − SGk). Thus whatever

the initial situation was, by running the iteration with a correct α that made the iteration

convergent, the difference between C and SG would be minimized. The method was tested

using the PVC rod data from 3.2.2, the result for 10 and 20 iterations of the algorithm
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Figure 3.10: Application of the Landweber algorithm in improving ECT images. (a) The
actual test arrangement; (b) The initial LBP-reconstructed image; (c) LBP image after 10
Landweber iterations, and (d) after 20 iterations.

were shown in Figure 3.10. The estimated area ratio of the rod was reduced from 19.11%

to 13.33% and 6.67% for 10 and 20 iterations, respectively. The relative difference from

the true area ratio was decreased from 12.86% to 7.08% and 0.42%. Compared with the

SMF accuracy (0.45% error), the LBP-Landweber method was proven to be as rapid and

accurate. However, higher accuracy could take an indeterminate number of iterations and

that could, in some situations, reduce the sampling rate. The iteration number used needed

to be carefully selected based on the specific measuring requirements.

Another error source was from the nonlinearity of the electric field, meaning the electric

field would be affected by the material under test. When a dielectric material is placed in an

electric field, it causes the field to twist and changes the distribution of charge density. In

addition to this effect, a dielectric material would become polarized in an electric field and

create its own internal electric field. This electric field would also affect the initial field ap-

plied by the input high frequency signal. These two influences made the electric field change

with different materials, different sizes, and different locations. According to the changes in

electric field, the sensitivity matrix should be changed for every unique combination mate-

rials being probed. However, for the LBP method, the sensitivity matrix was fixed to the

sensor empty state. The assumption of LBP was the sensitivity matrix only related to the

structure and material of ECT system itself, and was immune to changes with measuring
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material. This contradictory assumption has become known as the ‘soft field’ property (Yan

et al. 1999, Elmy and Omar 2011). The phenomenon has been identified as an important

but unsolved problem limiting the accuracy of ECT systems using the sensitivity matrix

approach.

3.2.4 Online Image Test

Before analyzing the real-time imaging system, it was necessary to understand the dy-

namic measurement procedures. Two disparate sampling methods were available to collect

analog sample data in LABVIEW software (or voltage measurements in ECT): N-sample

and continuous sample. The N-sample method acquired N data points on demand, while

continuous sampling read data continuously. To achieve the highest frame rate in imple-

menting the imaging system for this study, it was necessary to use the continuous sampling

method, which could take measurements resulting in about 80 image frames generated per

second. If using the N-sample approach, 10 frames per second was the highest that could be

achieved.

The continuous sampling method, however, read from all channels simultaneously and

saved the data in a buffer. These data were incompatible with the electrode switching actions

and resulted in numerous outliers (previously excited electrodes discharging while reading

another). This was an unavoidable limitation of using LABVIEW for the ECT control and

data acquisition program.

Another parameter affecting effective sampling rate was data acquisition mode. For

experiments using LABVIEW, One-One mode required 28 iterations of a measurement loop

to complete, but only 7 iterations of the same loop for One-N mode. However, if measuring

from 7 channels simultaneously using the NI 6361, as in One-N mode, the effective device

sampling rate would be divided by 7, which for these tests was 286 kHz. This was much

lower than necessary to detect peak amplitude values in the electrode outputs.
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For an input 800 kHz sine wave, the period is 1.25×10−6s. and the peaks in amplitude

will appear at 3.125×10−7 and 9.375×10−7s after a rising transition in voltage above 0V.

With an incorrect, low sampling rate, e.g. 200 kHz, the measured points will capture a peak

only if somehow the phase of sampling and the signal are either matched, or the shift is

otherwise a multiple of the sampling rate. Given that the sampling period is 3.59375×10−6s,

the first point measured would be at 1.09375×10−6s (3.59375×10−6−2×1.25−6), the second

and seventh points at 9.375×10−7s and 3.125×10−7s, respectively. These calculations suggest

if sampling rate (1/3.59375×10−6s) were 278.26 kHz, the amplitude could be obtained in 7

readings, provided the sampling and signals are in phase. Though in actuality there exists

some phase shifting between the two, the shift is constant and, if enough data were taken,

measured voltages at specific time intervals should be at least proportional to the peak value

sought.

Figure 3.11 is an example image generated in real time using all the above methods to

speed the calculations. The target was a plastic bottle containing water. With an input 800

kHz sine wave, 300 samples were taken at 278 kHz for any single capacitances estimate (peak

detection), and the imaging algorithm was implemented in LABVIEW. With this approach,

the imaging system could generate 10 frames per second in real time.

3.3 Conclusions

In this Chapter, basic features and capabilities of the ECT sensor were tested, including

electrode response, system stability for background and test material measurements, sen-

sitivities of the system to materials with different permittivity, location, and particle size

difference, and off-line and real-time image generation. The system sampling rate was also

analyzed in a simple fashion. In summary, tests in this Chapter suggested:

(1) The designed ECT sensor was stable and and its output was sensitive to materials

across a range of permittivity. The system could, therefore, be used to detect moisture

content in woody biomass.
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Figure 3.11: ECT images reconstructed in real time using a LABVIEW program. The image
(a) is a 2D version of the image, and (b) a 3D image. Either could be constructed in real
time (10 fps).

(2) The image reconstruction algorithm could provide accurately the location and cross-

sectional area of different materials, e.g. wood, air, water, PVC.

(3) The system has the capability to measure MC of wood chips both statically (not

moving) and dynamically (moving through the sensor enclosure while measuring).
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Chapter 4

STATIC MOISTURE MEASUREMENT FOR WOOD CHIPS

In the previous Chapter, the ECT sensor built for this study was verified as being sen-

sitive to both wood and water. Since determining the MC of wood chips required measuring

the relative amounts of water and wood, this ECT sensor should have the capability to sense

variation in MC. This sensitivity was shown to be exploitable in two manners, or modes,

listed below.

(1) Parallel-plate (or summation) mode. The ECT sensor included 8 individual electrodes,

any pair of which could be used to detect permittivity of a test material. This single-

measurement-single-response method was exactly equivalent to that in a single paired

parallel plate capacitance sensor, but the ECT sensor, with multiple pairs, could more

completely probe the material housed within the measurement enclosure and might,

therefore, give higher accuracy in its readings. In this case, the summed value of all

capacitances should be proportional to the average permittivity of the material under

test.

(2) Tomography mode. In this approach, capacitances for each pair of electrodes were

used individually to to compute an image representing the 2-D variation within the

measurement enclosure. The image provided location plus quantity/volume of objects

in its field of view.

For static (non-moving sample) MC measurement, the summation mode was the prin-

cipal method applied and its application was the focus of the experiments reported in this

Chapter.
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4.1 MC Prediction Model Study

The key in building a MC prediction model was to establish a relationship between ECT

readings and the MC of mixed-phase materials. For the MC to be calculated as the ratio

between water and wood as a percentage, it was necessary to know the relationships between

ECT output and water/wood quantity.

4.1.1 Wood Test

The purpose of this test was to understand the relationship between ECT readings and

wood weight. To exclude the effect of water, dry wood chips were used in the test. The

objective was to characterize the sensor response to varying amounts of dry wood. The

experimental procedures were as follows.

(1) Set the input signal to 800 kHz, 20V peak-to-peak amplitude sine wave. The data

acquisition method applied was One-One mode (see sec. 3.2.1 in the previous Chapter,

basically referred to the sequencing approach taken to cycle through the measure-

ments), sampling at 2 MHz for 10 iterations of all paired-plate combinations (28 each

iteration, 280 measurements total). The average of the 10 summed voltage readings

was recorded as sensor response.

(2) Measure reference (background) values in the above manner for the sensor in an empty

state.

(3) Wood data collection. The minimum sensible quantity of dry wood was around 8 g

(3.1.3), so the starting quantity tested was 10 g. More wood chips were added to those

already in the sensor between readings. Response was measured for 18 different chip

quantities.
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Figure 4.1: Result of the test evaluating ECT response as a function of sample mass (dry
wood chips).

Chips were obtained from a single source in Alabama, US, dry densities of which were

varied over a small range. According to the parallel electrode capacitance calculating method:

C =
KA

4πd
(4.1)

where C is capacitance, A the area of the electrode plate surface, K the permittivity of

the material between electrodes, and d the distance between two plates. With A and d

fixed, the capacitance should have been proportional to the permittivity of sensing area.

Adding chips was equivalent to replacing some volume of air with wood, increasing the

overall permittivity. If the chip density was constant, increasing chip mass should increase

the capacitance linearly.

The difference between chip and reference data was plotted with wood chip weights, as

shown in Figure 4.1. Sensor response was significant (P < 0.001) and, as expected, linear

with dry wood mass (R2 = 0.97).
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4.1.2 Water Test

Given there was a linear relationship between wood quantity and capacitance, the next

step was to test sensor output with water as the test material. According to the capacitance

relationship in eq. 4.1, response of water should be similar to wood, with a different slope

(permittivity of water is 80, dry wood is 3-5: Norimoto 1976). However, the effect of water

inside chips was unknown. To explore the issue, a test using a fixed quantity of dry material

with varying amounts of water was performed. Several samples of pine chips (around 100g

dry weight each) were dried, weighed, and then measured using the ECT sensor. This

process was repeated on the samples over the entire expected range of moisture content.

Since the same chip sample was repeatedly dried to create the water difference, no wood

quantity variation was involved. A parallel experiment was to test water held in a plastic

container. Sampling, calibrating and modeling methods were the same as in the dry wood

test above. Results of both water tests were shown in Figure 4.2. A highly correlated (P <

0.001 for both) linear relationship between sensor output and water quantity in both tests

matched the capacitance theory and dry wood test very well. For the test with samples

consisting of water and wood, referenced to an empty sensor, the intercept was found to be

the capacitance resulting from dry wood for the sample quantity tested (100 g), as it should

have been. The slopes of the two regression results, though significantly bigger than dry

wood, were statistically different (α = 0.1). The reason for the difference was the two water

forms existing in wood chips, as mentioned before. Bound water has a smaller permittivity

than free water and that decreased the slope a bit. The difference being small, however, this

effect could be ignored, and was in further tests.

4.1.3 MC Prediction Model

From the last two tests, it was known that capacitance contributions from water and

wood were both positive and linear, which fit the theory of capacitance theory. It was
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Figure 4.2: Measured ECT response with samples of green chips (mixed water and wood)
(a) or (b) water alone held in a plastic container.

surmised, therefore, the relationship among capacitance, water and wood quantity for mixed

test samples could be modeled as in equation 4.2.

V = α0W1 + β0W2 + γW1W2 + ε0 , (4.2)

where V was the change in ECT output voltage (sum), W1 and W2 were the weight of

dry wood and water respectively, α0, β0, γ, and ε0 were constant coefficients. To test this

supposition, a validation test was done with chips at different MC.

A large quantity of loblolly pine chips were collected from a local mill (south Alabama,

US). Chip samples were randomly selected from the population and divided into 35 groups.

Each group contained 40-80 individual chips. Four groups of chips were kept in a green

state, another 31 groups were dried in a 105◦C oven for varying lengths of time to develop

a range of moisture content among the samples. Wet weights of sample after the pre-drying

process were from 167.2 g to 273.4 g. The chip samples were measured using ECT with

methods as described in 4.1.1. The chips were placed with a uniform depth to avoid the

location effect, thus no normalization was necessary to calibrate the data. Moisture content

of individual chips within a sample were considered uniform. After ECT data were acquired,
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Figure 4.3: A graph showing measured and predicted moisture content for green chip samples.
The line represents a 1:1. Prediction models were built based on equation 4.2 (blue), or
equation 4.3 (orange, no interaction term).

the chip samples were dried in an oven for 24 hours and dry weights ranged from 119.3 g to

163.7 g. Sample MC was calculated from wet and dry weights. The range was from 8.3%

to 83.5%. The calibration model 4.2 was fit, as in Figure 4.3 (blue points). The statistical

analysis showed P-values for water and wood weight coefficients were < 0.001 (R2 = 0.92),

which again proved the significant influence on capacitance from both materials, and that

they were individually discernible when mixed. However, the P-value for the interaction

term, indicated as W1W2 in equation 4.2, was 0.1019, and was therefore concluded as being

insignificant in estimating capacitance. After removing the interaction effect, both water and

wood remained significantly related to the ECT output (Table 4.1), and estimated values

without the term were shown in Figure 4.3 using orange markers. Based on these results,

the relationship among capacitance, water and wood weight was revised to:

V = α0W1 + β0W2 + ε0 . (4.3)

Since the wet weight of wood W was simply the sum of its constituents, W1 + W2,

equation 4.3 could be rewritten as:
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Table 4.1: P-values of the coefficients for the given factors in both moisture content prediction
models.

Model 1 (eq. 4.2) Model 2 (eq. 4.3)
Factor Pr(> |t|) Factor Pr(> |t|)

Intercept < 0.001 Intercept < 0.001
W1 < 0.001 W1r < 0.001
W2 < 0.001 W2 < 0.001

W1 ·W2 0.4053

V = α0W1 + β0(W −W 1) + ε0 . (4.4)

If we define α1 = α0 − β0, then equation 4.4 becomes:

V = α1W1 + β0W + ε0 . (4.5)

Dividing the wet weight W from both sides, and rearranging, equation 4.4 will be:

V

W
= α1

W1

W
+ β0 +

ε0
W

(4.6)

W1

W
=

1

α1

V

W
− ε0
α1

1

W
− β0
α1

. (4.7)

The term W1

W
= 1

MC+1
, and substituting the following variables in equation 4.6, α = 1

α1
,

β = − ε0
α1

, and ε = − β0
α1

, the final moisture content prediction equation becomes:

1

MC + 1
= α

V

W
+ β

1

W
+ ε . (4.8)

Knowing the wet weight of a sample W , and the sum of 28 capacitance readings V , MC

could be estimated using equation 4.8.
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4.2 Moisture Content Prediction

It was established in the tests outlined in the previous section that, given a wet sample

weight, the ECT sensor could provide an estimate of MC. The accuracy of those measure-

ments relative to another approach was tested and was reported in this section. The reference

method chosen was near infrared spectroscopy (NIR) because it has been applied successfully

in measuring moisture content in wood (Axrup et al. 2000).

The comparison with NIR was made on samples of two types: individual pine chips,

and bulk estimation for larger groups of chips. It was hypothesized that NIR measurements,

because they were independent of sample size, should be more accurate on small quantities,

but ECT should have an advantage in accuracy for larger amounts.

4.2.1 Chip Samples

Chips were selected from six batches of loblolly pine pulp-type chips obtained from three

local sources (Alabama, US, two batches per source). Four of the batches were fresh and

green (marked as batches 1-4, 1 and 2 were from the same local mill, 3 and 4 were from

another). Two of the batches had been stored for about six months, one had been air-dried

in a thin layer for about two months (Batch 5, MC ranging from 7%-12%), and another was

piled green outdoors (Batch 6, MC > 100%). It had been raining for three days before batch

6 was collected and the chips were in an extremely wet condition. Their surface of which was

dusty when compared to the other samples. One of the fresh batches (Batch 1) was used

to calibrate a prediction model for moisture content and samples from it and the remaining

five were used for validation.

4.2.2 Testing Procedures

Assessment of the difference in the two methods began with measurements of moisture

content in individual wood chips. The ECT sensor as used in this study could not reliably

detect quantities of wood less than about 8 grams dry weight (at edge) , so samples were
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screened to separate larger chips and the ones used in the model calibration and validation

were randomly selected from among the remaining larger ones.

Individual chips were dried in a 105◦C oven for varying lengths of time to develop a

range of MC among the samples, as in the model validation test. After drying, chips were

assessed using the NIR system followed immediately by ECT measurements on the same

samples. After measurement using sensors (ECT and NIR), chips were dried for another 24

hours to obtain the dry weight. The MC could be calculated by wet and dry weight, the

result of which could be used to estimate coefficients of equation 4.8. Calibrations between

sensor outputs and moisture content were built using 50 individual chips (from batch 1) and

validated using another 34 samples. The validation set used 10 chips from batch 2. Part of

the 10 chips were also dried in a 105◦C oven for different lengths of time to create a moisture

gradient among the samples. Another 24 were from the remaining 4 batches (6 chips each)

at their original condition: batch 3 and 4 were green, batch 5 was at a relatively low MC

state, and batch 6 was at very high MC.

Measurements on bulk samples were made on subsamples of 40-80 chips from single

batches. The chips were assembled into groups from the quantity available and each group

sample was dried for a varying period of time then weighed. This process resulted in bulk

samples ranging in average moisture content from near bone dry to about 110% (dry basis).

A total of 30 groups were used for calibration and 18 for validation. 6 groups of validation

set, which were from batch 2, were dried to develop MC difference. Another 12 from batch

3-6 were not processed (3 groups each).

NIR Measurements

A PerkinElmer Spectrum 100N FT-NIR spectrometer (PerkinElmer, Inc.) equipped

with a fiber-optic probe was used to collect woodchip spectra. The range of the spectrometer

was from 1000 nm to 2439 nm, which covers two major absorption bands of water.
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NIR measurements are derived from interactions between incident light and the material

under test, but these interactions are confined to very small volumes. All NIR measurements,

therefore, were made on individual chips, even those used in testing its ability to predict the

bulk moisture content. For each chip tested, NIR spectra were taken from two randomly

selected points, one on each large side. The test was measured at the full range of the

spectrometer. The data interval was 2.00 wave numbers. Each spectrum was an average of

16 samples taken consecutively. The software Spectrum Quant+ 4.6.0 (PerkinElmer, Inc.)

was used to baseline correct and smooth the spectra. The final spectrum used to represent

a single chip was the average of those processed spectra taken from both sides.

For bulk measurements, all chips within the sample were individually sampled in the

exact same manner as in the single chip tests. Calibration models predicting bulk moisture

content of the entire sample were built using random subsets of the sampled data with

increasing proportions of the individual chips included in the assessment. Validation tests

were done using the same approach, also being repeated using increasing proportions of the

sample included in the measurement set representing the bulk characteristic.

The spectral data were processed using the following methods:

(1) Following baseline correction, smoothing and averaging, the NIR spectra were exported

into EXCEL (Office 2013, Microsoft, Corp.) within which raw spectra from batch tests

were assembled into groups.

(2) Principle component analysis (PCA) was used to extract linearly independent variables

(principle components, PCs) from the spectral data. PCA is an efficient and common

approach to reduce the dimension of large data sets. A single spectrum in this test

had 2951 individual frequency variables and PCA facilitated identifying only those

frequencies that contributed most of the variability in the observations. After running

PCA, the 20 largest loadings could account for over 99.9% of the data variation. These

loadings became the dependent variables that were correlated with MC.
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(3) Used multiple stepwise regression, α = 95%, to identify the PC loadings most highly

predictive of MC (Via et al. 2003).

ECT Measurements

ECT measurements for individual chips were made with the chip placed on a PVC

support located on the edge of the space surrounded by sensor electrodes. Bulk measurements

were made with the sample simply poured into the sensor enclosure to a uniform depth. The

bottom of the sensing area was fully covered for those tests. A single measurement consisted

of the sum of all unique combinations of sensor outputs from electrode pairs with the sample

in place minus the observed output for the pair without the sample. The location of the

PVC container was fixed. Every sample was measured with 10 replications, using One-One

mode. The average value of 10 measurements was recorded as the final ECT response of the

specific sample.

4.3 Results and Discussion

Results for the tests outlined above assessing the response of the ECT sensor relative to

NIR in individual wood chip and bulk samples were reported in this section. The advantages

and disadvantages of both methods were also discussed.

4.3.1 Individual Chips

Predictions of moisture content of individual chips were generally more accurate using

NIR than ECT sensors. Figure 4.4 shows the measured and estimated moisture contents,

Figure 4.4a for NIR and 4.4b for ECT. Each plot includes the calibration set data (from

a single batch), plus predicted results for chips from all five batches. The coefficients of

determination shown were for the combined data (calibration plus prediction). Table 4-2

lists standard errors of prediction for the calibration (RMSEC) and prediction (RMSEP)

sets by sensor and sampling method. The calculating method for RMSE was:
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Figure 4.4: Moisture content of individual wood chips, estimated and measured using oven
drying, for the two sensors. (a) is from NIR (R2=0.84) and (b) is based on ECT (R2=0.67).
Plots are combined prediction and calibration datasets.

RMSE =

√√√√ 1

N

N∑
i=1

(Vmeasured − Vestimated)2 (4.9)

The overall prediction errors for individual chips using the ECT sensor were about 3

times that of NIR. The largest contribution to this error level was from the chips that had

been stored outdoors for six months (batch 6). These chips were less homogenous in nature

than the fresh batches (larger amounts of dirt and contaminants) and also tended to be very

wet, typically wet to the touch. Their moisture content was also outside the range observed

in the calibration set and this could have explained at least some of the extra variability

observed. Without considering batch 6, the RMSEP of ECT was about 2.6 times that of

NIR.

The relatively poor results using ECT were likely due to the sensor operating near its

detection threshold for samples as small in mass as a single chip. Such small quantities

of material in the sensor produced output signals only marginally larger than background

noise (SNR < 4 dB). This result indicated the difficulty in designing an ECT sensor to work

efficiently across a broad range of sample quantity for materials consisting of two distinct
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Table 4.2: Root mean square error of the calibration (RMSEC) and prediction (RMSEP)
data sets for MC estimates for individual chips.

Sampling Sensor RMSEC (%)
RMSEP (%)

All Samples
Batch

2 3 & 4 5 6

Individual
NIR 12.40 13.80 11.90 13.88 4.16 21.0
ECT 23.20 41.30 27.80 34.07 18.02 75.7

phases (wood and water, in this case) because of its mass dependency. NIR spectroscopy has

a strong response at frequencies corresponding to hydroxyl bonds as found in water. Hydroxyl

bonds are also present in biomass in significant numbers and would represent a source of

error in moisture content measurements, but the NIR response of these non-water bonds

should be relatively constant between individual samples of the same type of biomass. This

bias can be easily removed using regression techniques, but it also illustrates the calibration

problem inherent in NIR measurements. Accuracy of NIR in measuring moisture content

is only as good as the calibration used in its prediction, and that calibration tends to be

specific to a single form of biomass. ECT could hold an advantage if one were trying to

predict moisture content in, for example, mixed hardwood and pine chips because its output

is not tied as explicitly to the chemical composition of the material being sensed.

4.3.2 Bulk Measurements

ECT measurements of moisture content on bulk samples of chips were generally accurate,

with mean RMSEP equal to 10.9% (Table 4-3) based on a calibration set from a single batch

of chips (batch 1).

The RMSEP values for single batches were less than 9% in all cases except batch 6, which

was, as in the individual chip results, more than twice as large. Again, batch 6 moisture

contents were outside the range of calibration and this fact may have helped explain the

poor performance of the ECT system for that material. However, the RMSEP of batch 6
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Table 4.3: Root mean square error of the calibration (RMSEC) and prediction (RMSEP)
for MC estimates in bulk samples.

Sampling Sensor RMSEC (%)
RMSEP (%)

All Samples
Batch

2 3 & 4 5 6

Bulk
NIR 8.48 13.25 7.27 9.71 7.57 26.50
ECT 6.54 10.88 6.36 8.87 4.34 21.30

Figure 4.5: Calibration and prediction of moisture content for bulk samples using the two
sensors. (a) is from NIR (R2=0.90) and (b) is based on ECT (R2=0.93).

for ECT measurements was greatly reduced in bulk samples, compared to those for a single

chip. The improvement in RMSEP also proved that the error of ECT in a single chip test

was mainly from size limitations (referred to as system sensitivity Chapter 3).

Figure 4.5 shows the performance of NIR and ECT predictions of moisture content for

bulk samples. The α, β, and γ in equation 4.8 were determined as -69.1843, 65.6807 and

0.5807, respectively. The NIR response shown in the figure resulted from a 100% sampling of

the chips in the group under test, i.e., spectra were collected from all chips in the bulk sample

and then averaged. Results of the NIR testing with 100% sampling were very comparable

to ECT predictions, but were slightly better for ECT across all samples and for those in

specific batches (as seen in Table 4.3).

88



Table 4.4: RMSEC and RMSEP of MC estimates for bulk samples. In this test, all sample
batches (sample source) were included in the calibration set, rather than only batch 1.

Sensor RMSEC (%)
RMSEP (%)

All Samples
Batch

1 2 3 & 4 5 6

ECT 7.65 8.42 8.02 8.13 8.57 3.97 14.31

An alternative method was to build the calibration model using samples from all batches

(1-6), rather than a single batch. A test using this approach was in which the prediction set

also included samples from all batches. This test was only done in bulk measurement. The

calibration set consisted of 20 groups of chips from batch 1, and 10 groups from the other

five batches (2 group per batch). The validation set was 10 groups from batch 1, 4 from

batch 2, and another 4 from batches 3-6 (one each). Results were presented in Table 4.4. By

including data from all batches, the prediction accuracies increased for all samples, especially

for batch 6, for which the prediction error was reduced more than 30%. For batch 2, which

was from the same population as batch 1, the RMSEP actually increased, but only slightly.

The correlation coefficient and RMSE of the calibration model, however, was not as good as

when calibrating with only a single batch. This result suggested it would be advantageous

to include as varied a wood sample as possible (in our case, from multiple locations) if the

model was built for general use. However, a general model would have less accurate than a

specific model for some certain species or origin of samples.

Using less than 100% of the individual chips in the NIR measurements to calibrate

the bulk moisture content model resulted, as one would expect, in a greater amount of

variability in the validation samples. Table 4.5 shows RMSEP values when spectra from a

varying percentage of chips in the bulk samples were used to develop the calibration models.

Chips were randomly selected from each bulk sample for inclusion in both the calibration

and validation data sets. Errors increased when fewer chips from a bulk sample were used in
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Table 4.5: RMSEP values of MC estimates based on NIR spectra from a varying percentage
of individual chips used to predict the average value for the entire sample.

Batch
Percent Sampled

100% 80% 60% 40% 20%

RMSEC (%) 1 8.48 10.88 12.05 14.66 17.05

RMSEP (%)

2 7.27 9.57 10.88 15.34 20.09
3&4 9.71 11.29 16.90 19.22 22.43

5 7.57 8.17 8.64 8.56 9.43
6 26.50 30.07 34.37 38.78 52.36

calibration, and using a 40% sampling rate more than doubled the RMSEP relative to 100%

sampling for most batches.

4.3.3 Sensor Discussion

For predicting MC of small quantities of biomass, basically amounts that could be

considered to have uniform water content, the NIR method was superior. With more spectral

averaging on single chips (multiple spectra collection points per side, for example), the

difference in performance relative to ECT could have been even greater. The advantage of

ECT, that the sensor responded to cumulative changes in dielectric regardless of how the

sample was positioned within its confines, was also its limiting factor in tests on individual

chips. Single chips having small mass resulted in changes in sensor output that were near the

minimum resolution of the instrument and this meant higher errors when predicting MCs.

Both methods suffered when the assumption of uniform moisture content was violated,

as seen in the results for batch 6, those chips having been stored for a long period outdoors.

Batch 6 chips often had significant amounts of free water present on their surface, the result

of heavy rains just prior to sample collection. The extra water was difficult to account for

in the calibration process used and prediction errors were several times that observed in

other batches for both sensors. In NIR measurements, the free water errors could have been

compounded by variations in surface roughness, or the proportions of early and late wood
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sampled at a particular spot. Both of those variations might have been compensated for

somewhat by greater sampling density over the surface of the chip.

ECT predictions of MC in individual chips should have been less sensitive to the presence

of surface moisture because it should have responded to the total mass of water and dry wood

placed in the sensor. Besides the sensitivity issue, there could have been some additional

variation in batch 6 measurements, however, because of the different amounts of free and

bound water between it and the other samples, although the literature indicates this effect

should have been small.

NIR predictions of bulk samples composed of individual chips having variable weight

and moisture contents would be expected to have higher errors unless these factors were

controlled. In this study, spectrum estimates from each chip included in the bulk sample were

combined without regard to chip dry weight and, without compensating for that combined

mass/moisture variation, the NIR sensor errors were greater than those observed with ECT.

The ECT predictions, on the other hand, should have been immune to variation in individual

chip mass because the sensor responds to the cumulative quantities of water and dry wood

rather than an estimate of their relative proportions, as in NIR.

Both sensors should be useful in situations where moisture content of larger popula-

tions of chipped, or otherwise comminuted, biomass were predicted using subsampling. The

ECT approach, however, would be simpler since it more reliably predicts bulk MC on a

bulk sample, rather than necessitating the combined size/moisture content variation in the

material being quantified as is required with NIR. Given a relatively uniform distribution in

those parameters, however, NIR should be feasible if results from averaged measurements

on smaller quantities were sufficient. The ECT sensor had the additional advantage of being

a simple and rapid measurement technique. With the ECT system used in this study, less

than 1 second per reading was required to make a MC determination regardless of sample

quantity up to the amount that could be placed within the sensor itself. However, to achieve

equivalent accuracy as ECT measurement for bulk sample, such as 50 pieces, NIR method
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Table 4.6: NIR and ECT system summary

Method NIR ECT

Advantage
Independent with mass, Ac-
curate for small sample

Robust to surface condi-
tion and moisture gradient,
rapid, capability to recon-
struct image

Disadvantage

Spot and surface measure-
ment, sensitive to surface
condition, less efficient for
bulk measurement

Low sensitivity, chip weight
required to make the esti-
mation

needed to acquire 100 spectra. Excluded data processing steps, only spectra collection would

take more than 10 minutes to scan. The advantage and disadvantage were summarized in

Table 4.6.

All discussion on ECT for small samples, e.g. pine chips with weight around 10 g or

less, were concluded from applying the ECT system as built, the sensing area of which was 6

inches in diameter. In other words, the volume of a single chip was less than 1% that of the

sensor itself. If the sensor enclosure were reduced to a suitable size, such as perhaps a 2 inch

diameter, MC of a 10 gram chip could possibly be measured accurately. In that case, the

imaging system could be used to estimate the volume of the chip, which directly related to

the dry matter. That system, however, was not the objective of designing an ECT system.

As the goal was to measure MC for a large quantity of biomass, only the bulk measuring

method was focused on in this dissertation.

4.4 Mass-Free MC Determination Methods

Based on the bulk results reported above, MC of static samples could be measured

accurately if the weight of the bulk sample was known, e.g. by locating the ECT sensor on

a scale. That method, however, might not be appropriate in all situations. A mass free MC

detecting method was necessary to ensure the ECT system was applicable in any situation.
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Two feasible approaches were developed for static (non-moving) biomass, in particular for

wood chips.

4.4.1 Known Volume Approach

The known volume method was exactly that of the paired parallel-plate mode except for

the requirement that the volume of the sample being measured filled the sensor enclosure.

Since the ECT sensing area was fixed, overloading it with chips would not be detected

by simply measuring the original output signal. Given pine chips were of a uniform size

distribution and density, total dry weight of sample in the completely filled enclosure should

be relatively uniform. Variation in the the sensor response between samples, therefore,

should only reflect the difference in the amount of water present, and therefore the MC. To

test this premise, 20 groups of pine chips were selected that exhibited similar depth when

placed in the sensor. The chip samples were dried to different MCs. The ECT response was

tested directly with MC and dry weight using a linear model, C = αWd + βMC + γ, where

C was capacitance, Wd was dry weight, and MC was moisture content. The variation of dry

weight of tested samples was from 130.1 g to 146.8 g, and MC ranged from 15.0% to 93.4%.

The P-values for intercept and MC were < 0.001, however, for dry weight (Wd) it was 0.853.

The result supported very well the assumption that filling the enclosure removed the effect

of dry matter mass on the sensor output.

These procedures were repeated using the same samples as described in 4.2.1 to verify

the result of the overloading method. To make a direct comparison, 30 calibration set

samples were also selected from batch 1, and 15 validation sets were from the other four

batches. Batch 6 was excluded in this and further experiments. ECT data were acquired in

the same manner with all static measurements: One-One mode and 10 repetitions. Results

were listed in Table 4.7 and Figure 4.6. Without knowledge of the state of the chips in

these tests (dry or wet weight not known), the accuracy was reduced, as expected. The

reduced accuracy, however, was in an acceptable range. Without measuring any weight, the
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Figure 4.6: Measured and predicted MC of bulk samples using the known volume method
(R2=0.84, blue) and dual-frequency (R2=0.89, orange).

measuring efficiency was improved. A practical dynamic application could be potentially

be designed that accumulated samples within the sensing area for a fixed time, filling it as

described above. This would give dynamic measurements without knowledge of the sample

mass, at the expense of controlling flow in and out of the system.

4.4.2 Dual Frequency Approach

As described in papers by Kandala & Sundaram (2010) and Kandala & Puppala (2012),

a dual frequency method could also be used in an ECT system. According to the theory

outlined in the cited papers, the difference in measurements at two distinct frequencies

should only be related to moisture content, and independent of sample density, weight, and

location. This assertion provided another means of measuring material MC without any a

priori knowledge of weight.
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Table 4.7: Measuring errors (RMSEC and RMSEP) of mass-free MC prediction methods.

Method RMSEC (%)
RMSEP (%)

All Samples
Batch

2 3 & 4 5

Known Volume 12.57 12.95 13.51 14.68 6.47

Dual Frequency
Fixed Quantity 10.66 10.93 11.07 12.73 5.32

Random Quantity 11.15 12.04 12.45 13.50 7.11
Known Mass 6.54 7.17 6.36 8.87 4.34

The method was tested in parallel with the known volume experiment in 4.4.1. ECT

measurements at a second excitation frequency, 500 kHz, were taken after the regular mea-

surements at 800 kHz. Readings at both 500 kHz and 800 kHz were processed in the same

manner as other tests in this Chapter. Instead of using a single point averaged from the ECT

data sum, the dual frequency result was calculated as the average response at 800 kHz minus

that at 500 kHz. Calibration and prediction sets were the same as in the known volume test

above. Results were listed along with those from the known volume method in Table 4.7

and shown in Figure 4.6.

Since the dual frequency approach was described as a mass free method, another ex-

periment was carried out using random quantities of wood chips, amounts that represented

a varying percentage of the volume occupied in the sensor enclosure. The wet weights of

the samples varyied from 68.0 g to 533.7g. Calibration and validation sets were as in the

previous tests. Results were also included in Table 4.7.

4.4.3 Mass-Free Method Discussion

Two distinct MC measuring methods were provided as solutions to avoid the mass

acquisition step. From the experimental results in Table 4.7, both RMSEC and RMSEP for

all batches were increased significantly. The error source was mainly the variable air gaps

present in the individual samples. For the known volume method, more air gaps indicated

95



Table 4.8: Mass free methods summary.

Method Single Frequency Dual Frequency

Advantages Fast. Quantity independent, accurate.

Shortcomings Sample quantity exceeding
sensing area. Less accurate.

Doubled measuring time and
data.

less wood in the measuring volume. Since the wood was chipped to random shapes, it was

impossible to make the bulk density of the samples, and their associated air gaps, constant.

These uncontrollable influences were the main contributors to the relatively low accuracy

when compared with the known mass model. The method should be more suitable for

materials with relatively uniform shape and particle size, such as grain, corn, wheat, etc.

For the dual frequency method, according to the paper by (Kandala & Puppala 2012), the

presence of varying quantities of air gaps should also cause errors. Phase angle and impedance

data were reported as a way to compensate for this error. It was reported to work well for

a single paired plate capacitance sensor in the cited paper, however, the method could not

be applied to our ECT system directly. The sum mode was a method to simulate the single

paired plate sensor by calculating the sum of 28 different capacitances. If measuring the

phase angle, the ECT system would have 28 different values, which would have made no

sense to be summed as a single data observation. Thus no further study on this topic was

pursued in this dissertation.

Though the accuracies for both mass free MC estimation methods were not comparative

to the mass-included model, the results were still relatively close to true values, just somewhat

less precise. Especially in cases where rapid determination of MC was required the mass

free methods had advantages compared to any mass included method. Advantages and

shortcomings were list in Table 4.8. Even for the dual frequency measurement, though the

ECT scanning time was doubled (less than 2s), the time cost was shorter than independently
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acquiring the weight of a sample using, for example, a scale. As a result, no conclusion could

be made about which was the best method in determining MC of a static sample. Different

options would have different applications that depended on the specific requirements of that

measurement.

4.5 Conclusions

In this Chapter, relationships between ECT readings and materials (water and wood)

were studied. Pine chips under test were from three different locations, and in three distinct

states. A mass-based MC prediction model was built, the accuracy of which was compared

with a traditional NIR method, which worked well in predicting MC for small quantities of

biomass, or for samples exhibiting uniform water distribution within a single sample (chip,

in this case). However, due to its surface and spot scanning properties, the accuracy could

be compromised if measuring a bulk sample or sampling chips with non-uniform moisture

distribution. Comparatively, ECT was more robust in its response to particulate biomass

exhibiting a large moisture gradient. Additionally, the measuring speed of ECT, which was

independent of sample quantity (up to the volume of the measuring enclosure), was much

faster than NIR for bulk samples. However, MC of small samples (e.g. total weight of chip(s)

< 10.0g) was not reliably predicted because of the sensitivity limitation of the particular ECT

system.

Two mass-free methods of applying the ECT sensor in measuring MC of static samples

were also tested. One relied on completely filling the sensor volume, the purpose of which

was to control the variation in dry weight of measured chips. If the dry matter could

be approximated as constant, the sensor output was only related to the moisture content.

Another was to use two excitation frequencies and the difference in their outputs as the MC

predictor. Given that the goal of designing the ECT moisture sensor was to measure a large

quantity of biomass, the mass free methods were only verified in bulk measurements. Though
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the two methods did not achieve an equivalent accuracy as when mass was accounted for

independently, the faster measuring speed was a distinct advantage.

Based on the results, the following suggestions could be made for MC measurements

across the full range of biomass quantity: for very small samples (e.g. less than 10 pine

chips), use NIR; for medium quantity (chip volume larger, but less than sensing volume),

use ECT & mass model; for large quantity (exceeding the measuring volume), use mass free

models with two options – faster (known volume) or more accurate (dual frequency).

Both ECT and NIR sensors should also have utility in on-line measurement of moisture

content in flow applications, but both have limitations as well. For NIR, simultaneous

variation in chip size and moisture content would limit its accuracy in situations where this

effect could not be averaged out over time. ECT measurement accuracy would also be limited

unless simultaneous estimates of mass flow were available. The imaging capabilities of the

system may provide an acceptable estimate of mass flow, but the accuracy of the method

was not verified yet. The ECT combined mass/physical property measurement approach has

been tested by others (Arko et al. 1999, Sun et al. 2008) on different multi-phase materials,

however, and found to be feasible.
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Chapter 5

DYNAMIC MC DETERMINATION METHOD

The principle of dynamic MC measurement is the same as that for static tests covered

in Chapter 4. The ECT readings are, again, mainly affected by the two biomass phases:

water and wood, but these two effects were linear and could be separated. As the dry mass

and moving velocity could be expressed together as mass flow rate, the moisture content of

dynamic materials might be estimated from capacitance and an independently-known mass

flow rate. The capacitance in this case is referring to the overall permittivity, the value

of which is calculated using the sum mode (single paired parallel-plate mode), as it was

investigated in Chapter 4. The capacitance sum is easy to collect if the sampling rate is high

enough to finish the required 28 measurements while the the biomass to be measured resides

within the sensor. The key issue for dynamic MC measurement, therefore, is to focus on the

mass flow determination and the speed of sampling in the ECT system. In this Chapter,

two different methods were discussed to measure the mass flow for pine chips, as well as

simultaneously determine their MC.

5.1 Dynamic System Setup

A dynamic MC system requires a different approach than static measurement. It should

have two additional features: (1) feed chips into ECT continuously, and (2) not accumulate

them in the sensing region. Modifications to the measurement system were developed to

meet these two requirements, but the sensor itself remained the same.

Feeding system To feed particulate material like chips into the ECT sensor, a conveyor

belt was thought to be a good choice and also easy to build. An ideal conveyor belt should be
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Figure 5.1: Photos of the dynamic ECT measuring system as used in this study. On the left
is the conveyor system built to carry chip samples to the sensor. On the right is the sensor
itself mounted in place. Chips dropped off the conveyor into the sensor and fell onto the
impact force measurement transducer (orange) at the bottom.

capable of being driven at constant speeds and be controlled in real-time. Such a conveyor,

however, usually costs several thousand dollars. To reduce the cost, a mechanical treadmill

was used as the conveyor system, and is shown in Figure 5.1. The end of the treadmill was

placed right above the ECT sensor. A plastic pipe was placed under the conveyor belt to

drive it manually. Because it was driven manually, however, the control aspect was lost and

this could be a serious difficulty in assessing accuracy of the ECT mass flow measurement

capabilities. It also limited the speed of conveyance to about 30-40 cm/s, reducing the range

over which mass flow could be assessed. An aluminum hopper was placed between the ECT

tube and the conveyor belt to collect chip samples as they fell from the treadmill belt.

Support system A wooden base with a central hole was made to support the ECT tube.

The diameter of the hole was about 16.00 cm, which was slightly larger than the inside

diameter of the measuring tube (15.24 cm) and smaller than the outside (16.51 cm). When
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biomass was fed into the sensor, it would pass through without any contact with the support

base.

5.2 Mass Flow Measuring Method Summary

Mass flow rate is defined as the weight of matter passing per unit time. It is an important

factor in multiple industries that could be used to (1) describe the capacity of a production

line, (2) map the yield of a bio-product, (3) or control the ratio of feedstocks in some process,

etc. Because of its importance, multiple mass flow sensors have been developed and applied

in industries and our daily life. Their application field includes gas flows (Birchall et al. 1970,

Kupnik et al. 2004), gas/liquid two phase flow (Han and Dong 2009), liquid/liquid two phase

flow (Tan et al. 2013), and solid (Yan 1996) and gas/solid systems (Xu et al. 2000). Different

methods and technologies were used in these applications, such as a differential pressure

meter (Han and Dong 2009, Tan et al. 2013), ultrasonic transit-time meter (Kupnik et al.

2004, Van Deventer 2005), vortex flowmeter (Huang et al. 2003), surface acoustic wave sensor

(Brace et al. 1989), thermal mass flow sensors (Jacobs et al. 2007), Coriolis force based sensor

(Enoksson et al. 1996), dual-plane electrical-resistance-tomography (ERT) system (Dong et

al. 2006), capacitance sensor (Xu et al. 2000), and ECT system (Young et al. 1996, Sun

et al. 2008). This dissertation was aimed at developing a moisture sensor for particulate

biomass in motion, which also required knowing the material mass flow rate.

5.2.1 Mass Flow Measurement Technology

Mass flow sensors are common on agricultural combines for a variety of applications.

Many use an impact method of sensing flow rate. In this approach, the stream of material

is directed onto a force transducer that senses a change in momentum as it impacts a plate.

The resulting force is used to predict mass flow. The impact force of grain was found highly

correlated (R2 = 0.993) with the accumulated yield (Birrell et al. 1996). The method was

compared with a volumetric yield sensor which was applied simultaneously to monitor the
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total yield weight. The result showed signal with higher quality from the impact method

than the volumetric yield monitor. The impact based mass flow monitor was described as

being more closely approximating a continuous sampling method than the volumetric sensor.

The smaller calculation error supported the impact method to be a good crop yield mapping

technique. Principle and parameters of the impact based method were studied by Jiang and

Qiu (2011) in which the system was simulated using a discrete element method.

Microwave systems were described as a way to measure MC of biomass in Chapter

1. The method was sensitive to the moisture both in material and air. Since a single

frequency sensor was not able to separate the moisture variation with mass, a composite

Right/Left handed transmission line resonator which included two measuring frequencies

was used to measure mass flow and moisture content in published reports (Penirschke et

al. 2010, Penirschke and Jakoby 2010). If only measuring the mass flow of a particular

solid, the result was independent of MC, which was determined from changes in complex

resonance frequencies. The designed system was concluded to be more sensitive compared

to a conventional microwave mass flow detector (Angelovski et al. 2011).

An electrostatic sensor is a system measuring electric charge, the effect of which is

based on surface area. The output of an electrostatic sensor also carries information related

to particle mass flow rate (Xu et al. 2005). In that work, both time and frequency domain

signals were analyzed. PCA was used to reduce the number of variables. The reduced

variables (PCs) were modeled using a Neural Network method. The standard deviation of the

relative error in predicting mass flow was less than 11.5%. The electrostatic sensor was also

combined with a digital imaging sensor to measure mass flow rate and particle size (Carter

and Yan 2005). The velocity of materials was measured using paired electrostatic sensors,

and the volumetric concentration, as well as particle size information, were determined using

an imaging sensor. The two measurements were carried simultaneously. The error source

was from overlapping of particles in the images when the concentration was higher than
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a threshold value. However, in the measuring range, the system obtained accurate results

(error around ± 4%).

Capacitance based sensors also have the capability to measure mass flow for different

forms of materials. A parallel-plate capacitance sensor was introduced by Xu and others

(2000) to measure flow of solid materials with low mass concentration. This permittivity

determining method achieved a good result. However, the result was based on a uniform

particle sized material. If the particle size was not fixed, their effects on permittivity would

decrease the measuring accuracy. The system was also reported as an off-line method, since

the baseline would drift with external factors, such as temperature, humidity and pressure.

An ECT system, which consists of multiple capacitance sensors, would be insensitive to the

particle size problem. Young and others (1996) developed an ECT system to measure flow

of polyethylene and polypropylene nibs. The designed sensor provided 2-3 frames of cross

sectional images per second. The maximum capability of measuring mass flow was 100,000

kg/h, the accuracy of which was within ± 2%. Another improved system was introduced

by (Sun et al. 2008) and involved two parallel plate capacitance sensors. The principle was

to measure material volumetric concentration with the imaging function of ECT using LBP

and Landweber method (see Chapters 2 and 3), and determine the velocity of material by

correlating the two signal sequences from two parallel plate capacitance sensors. For known

distance between the two capacitance sensors, the time difference between the output signals

could be converted to the velocity of material passing through. The data acquisition time

for every frame was 0.00425s.

To select an appropriate way to determine the mass flow of wood chips, the impact

and capacitance sensor would fit the goal of the project that required a low cost system.

According to the analysis of the mass free methods in Chapter 4, the accuracy of mass

prediction was not necessary to be very high. Based on the errors of both methods reported

in the literature, the two methods should meet the requirement adequately. Considering

both system cost and accuracy, the impact and ECT methods were selected and tested in
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this dissertation as described in the following sections. The results could be compared to

make final a decision of an integrated MC and mass flow measuring system for pine chips.

5.3 MC Determination Based on Impact Method

The MC determination principle was to measure mass flow of wood chips using an im-

pact sensor, and to simultaneously measure the relative quantities of the water and wood

constituents using a capacitance sensor. Combining the two independent sensor measure-

ments, the wood and water mass flow rates was separated. The accuracy of the impact

method in determining mass flow was crucial, and validation tests of the method were done

in both field and laboratory settings.

5.3.1 Field Mass Flow Test With Load Cell

A preliminary field test was done using a chipper system to verify the method was

applicable in the intended application. A hinged element was added to the end of a chipper

(3084 WTC, Precision Husky, Corp. ) chute as shown in Figure 5.2a. A fixture mounted

between the fixed and movable portions of the chute held a dynamic force sensor (DLC101-

50, Omega Engineering, Inc. ) that was loaded in compression when chips impacted the

hinged plate (Figure 5.2b). The output from the sensor was a voltage signal proportional to

force and was read using a USB-6210 data acquisition module (NI, Corp.). The data were

sampled at 10 kHz and recorded using a program written in LABVIEW.

No independent measure of wood chip mass flow was found to be practically feasible, so

experiments were instead conducted to correlate sensor output with tree diameter at breast

height (DBH), which is a standard method of describing the size of a tree. The densities and

standing heights of trees with the same age are similar. The square of a tree’s DBH should

be proportional to its weight. Data collected by partners in the study consortium indicated

DBH2 and weight were highly correlated for the types of stands being harvested, specifically,

relatively young loblolly pine plantations. Figure 5.3 is a plot of the relationship between
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Figure 5.2: Hinged element as used in measuring impact force of chips ejected from a chipper.
The left image shows the modified chute in place, and on the right a close-up view of the
sensing element.

weight and DBH2 for a range of typical tree sizes found in the stands. The tree weights were

measured using a scale suspended from a crane. A linear regression of DBH2 on weight was

found to be significant (p < 0.001) with R2 in excess of 0.9.

Experiments consisted of measuring sensor output over the entire duration of a single

tree being chipped. The time period used (33 seconds) was fixed. Figure 5.4 shows a plot

of the typical force response while chipping a single stem. The 33s duration was sufficient,

in most cases, to record force while the entire stem was chipped (chipping time for example

plot 5.4 was less than 20 seconds). Problems with sampling the entire tree were sometimes

encountered when, for example, the stem became hung in the debarker prior to entering the

chipper. Stems in groups of about 10 were laid out on the logging deck near the chipper and

measured for DBH and total height. Stems were then fed individually into the debarker and

the chipper. Force response was measured and stored for each stem. Valid data for a total

of 98 stems were measured sampling in this manner.

Two types of measures were calculated on each force record for correlation with tree

DBH. These measures consisted of the following:

105



Figure 5.3: Results of a calibration between DBH2 and weight of pine trees used in the mass
flow measurement study.

Figure 5.4: Force response example for a single stem as measured during chipping. On the
horizontal axis is measuring sequence (time), and on the vertical, the sensor output (V,
proportional to force).
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1. Response sum. This was simply a sum of all force observations from beginning to end

of the sampling period.

2. Power spectral density (PSD). The power spectrum of a signal describes the power per

unit frequency it carries. PSD were calculated for each force response in MATLAB

using the Welch method with Hanning windows of length 4096. This resulted in a

relative power value at numerous (4096) discrete frequencies, only some of which were

assumed related to size of the tree.

A principle components analysis (PCA) was used to determine smaller groups of fre-

quencies most closely correlated with tree size (frequency domain data from measuring

method 2). The ten principal components (PCs) which explained most of data variance

were selected and used in a stepwise regression analysis to determine the smallest set of

values most closely predicting tree size. A random selection of eight force records was

reserved and the prediction model built from the remaining 90 observations. Finally,

predictions for the eight reserved trees based on the completed model were compared

to actual DBH measurements.

Results and Discussion

There was no correlation observed between the summed force response and tree DBH2.

Figure 5.5 shows a graph of DBH2 versus force sum for the 90 observations. It was originally

supposed that a larger tree would produce a bigger force over the same length of time since

the chipper fed at a constant rate and the trees were about the same height regardless of

diameter. The sum should, therefore, have been greater for a larger tree, but this was not

the case.

The PSD approach, however, proved more effective at capturing diameter information.

The stepwise regression process resulted in a model having five total independent variables,

four of which had P-values < 0.002, the fifth with P < 0.1. Though the relationship between

DBH2 and mass was linear theoretically, it was based on the assumption of uniform density

107



Figure 5.5: Plot of summed force (in units of volts) and DBH2.

and standing height. However, variations in both density and height would affect the accu-

racy of the model if using DBH2. A log-transformation was applied to the regression data to

reduce this effect. With the transform, the linearity relationship between DBHx and weight

was improved (for any x, log (DBHx) = x log(DBH)). Using this data processing method,

the relationship between predicted and actual DBH was as seen in figure 5.6. The R2 value

in this case was 0.81. This result perhaps indicated that, although the chips were striking

the impact plate as they exited the chute, their path was not changed a great deal and,

therefore, force measurements were relatively low. This was intentional in that we did not

want to alter the flow of chips into the van and cause problems filling its volume. Though

the magnitude of the impact force of chips was not altogether different for larger trees, the

rate at which they struck the plate seemed to be changed and this put higher frequency

variations into the force signal. These higher frequency components were more pronounced

for larger trees, indicating a more rapid rate of chip impact, and this was detected in the

spectral analysis of the signal.

The eight reserved trees were also tested using the log-transformed model and results

were listed in Table 5.1. The log-transformation method achieved a high accuracy in mea-

suring DBH of pine trees. The RMSEP was 0.52 inch, for the sample with average DBH 7.90

inch. The relative prediction error was 6.61% (= RMSEP / mean (DBH) × 100%). This

accuracy was calculated for each individual tree. If the eight trees were treated as a single
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Figure 5.6: DBH prediction result using the approach outlined in the text. The method
involved transformation of time-based force data to the frequency domain, calculation of
principal components from spectral data, and application of the prediction model.

Table 5.1: DBH prediction results using impact force measurements transformed to the
frequency domain. Values shown are for 8 stems reserved for validation of the prediction
model built using data from 90 other stems.

Value (inch)
Tree Number

1 2 3 4 5 6 7 8 Average

Prediction 10.7 7.3 10.3 8.5 5.2 7.6 6.2 7.8 7.95
True DBH 11.8 7.0 10.8 8.2 4.7 7.4 5.8 7.5 7.9

Error -1.1 0.3 -0.5 0.3 0.5 0.2 -0.4 0.3 0.05

109



sample, the relative error was less than 1%. The result implied the impact-based sensor

was an accurate approach to measure mass of pine chips in real-time. The error sources

were possibly from the following three factors: (a) non-uniform impact angle, (b) different

impacting locations, and (c) only part of chips impacting the measuring plate.

An experiment was conducted to test if these results calculated for individual trees

might be applicable in a production situation in which multiple stems were moving through

the chipper on a continuous basis. Fundamental to this analysis was the assumption that

the same force response would be seen whether a single stem, or multiple stems, were being

chipped as long as the total tree cross-sectional area being fed through the chipper over

time were the same. The difference in the two scenarios was the lack of knowledge about

when a stem might begin or end its trip through the chipper. In our original tests, data

were captured while the entire tree was chipped. In a production setting, the beginning

and ending points would vary for each of many stems going through at any one time and it

would not be possible to calculate the PSD and subsequent prediction based on the entire,

individual-stem force signal. It was felt a discontinuous sampling strategy would be most

practical in this scenario, that is, making estimates of mass flow over short bursts of time

and accumulating them to predict total mass flow.

Four different sampling strategies were evaluated in these experiments. For each one,

the sampling process was applied to the continuous data collected for individual stems, and

the resulting DBH calculated using the PC regression model for the (shorter) periods of time

covered. All these DBH estimates were then averaged and compared to the global average

DBH for all stems. The four sampling strategies were as follows.

1. Continuous sampling over short periods

a. Two second intervals

b. Five second intervals

2. Discontinuous sampling
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a. Sampling every other second

b. Sampling two seconds, then waiting three seconds

Results were listed in Table 5.2. For continuous sampling (strategies 1a. and 1b. above),

all data were contained in the PSD computation and, as might be expected, the global DBH

estimate was closer to the true value, differing by less than about 0.3%. For the partial

sampling strategies (2a. and 2b. above), there was some loss in accuracy with global DBH

estimates differing by about 1.8%, or less, from the true value. The correct approach to use

in creating a production mass flow sensor would be related to the practicalities involved in

developing the system itself. If the PSD calculations could be done in real time, the contin-

uous strategy would most likely be more accurate in predicting DBH. If it were necessary

to store data in order to make the PSD calculation, then the discontinuous approach would

perhaps be more suitable with only a slight decrease in total accuracy.

Method Summary

An approach to measure mass flow rate of chips exiting a chipper was presented. The

method used a force measurement over time to estimate mass flow. Data were correlated

to tree size (and therefore weight) using a prediction model based on the force signal power

spectrum. Results showed good agreement between measured and predicted individual tree

DBH for the conditions used in these tests. Other experiments indicated the approach would

be applicable for continuous measurement of mass flow from multiple stems, but this was

not verified in practice. The test also confirmed the method to be feasible for on-line MC

sensor.

5.3.2 Combination of Force Sensor and ECT for MC Determination

The impact method successfully measured mass flow for pine chips, therefore a similar

system was built with an ECT sensor included for dynamic moisture content estimation.

The same 50 lb load sensor was used as in the chipper tests, the sensitivity of which was
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Table 5.2: DBH predictions resulting from different subsampling methods. These methods
were tested as alternatives to sampling the entire force response for a single tree.

Sampling Methods
Predicted DBH on True DBH

Average (inch) (inch)

Two second intervals 7.41

7.43
Five second intervals 7.42
Sampling every other second 7.36
Sampling 2s then waiting 3s 7.30

high enough for detecting a single chip. The schematic diagram was as shown in Figure 5.7.

The load sensor was attached to a triangular holder below the ECT sensor. When a stream

of chips passed through the ECT pipe and hit the sensing metal surface, the capacitance and

impact data could be recorded. Since the height between the impact surface and electrode

was known, the time delay could be set to make the two sensor data streams (impact and

ECT) match. The slope of the impact surface would slightly affect the potential energy of

the chips and could introduce some inaccuracies into the force measurements. However, if

the surface is placed horizontal or with small slope, the chips would accumulate on the plate

and cause even larger errors. The threshold of the angle to prevent this accumulation was

about 30 degrees. In the field test, the direction of the chip stream was crucial to fill the

truck. The angle of impact surface was designed to be very small so the momentum change

did not alter the chip direction much. In this test, the impact angle was about 35 degrees,

which resulted in much stronger impact signals.

Sample Preparation

In the following discussion, the term ‘batch’ refers to the batch of chips as discussed

in the experiments in Chapter 4. A total of 109 groups of green pine chips were selected

randomly, 30 were from batch 2, 10 were from batch 3 and 4, another 60 were newly collected

from the same source as batch 3 and 4, and 9 were from batch 5. All samples were prepared

in the same manner as in the static sensor measurements, which included being dried in a
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Figure 5.7: Diagram of the force sensor used in predicting mass flow rate, and its relative
position to the ECT system.

105◦C oven for varying lengths of time to develop a range of MC among the samples (final

range was 14.0%-120.0%). Their wet weights were distributed in a wide range (from 267.6 g

to 1084.3 g). A total of 60 groups were randomly selected for calibration, and the rest (49)

were used in the validation set.

Data Acquisition Methods

Important information which was necessary to know for the test included: weights at

both wet and dry states, ECT data, and load cell outputs. The steps in the data acquisition

process were listed below.

1. Measured the wet weight of a bulk sample with scale.

2. Placed the chip sample on the conveyor belt arranged in a pile with constant length

and width (about 35 cm (L) × 20 cm (W)). The height of sample depended on the

chip quantity. For a single bulk sample, the piled height was uniform.
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3. Set a fixed time delay between two sensors. Both impact responses and ECT readings

were collected with a LABVIEW program. Though a single program could acquire

and save data from both load cell and capacitance sensors, the sampling rate of the

ECT system would be decreased when added an extra data acquisition task (force

measurement) in the measurement loop. Using the same device (NI 6361 for ECT

data collection) to sample the signal from the force transducer would also reduce the

sampling frequency of the ECT system. For these reasons, a separate LABVIEW

program was used to read data from the load cell. The sampling efficiency was improved

about 20% using two programs, compared to integration of the two sensors in a single

program. The ECT sampling rate was almost the same as when the load cell was not

applied. However, two independent programs would have a synchronization problem.

The measuring time for both sensors was necessary for data matching. In a single

program, they were running concurrently and no time synchronization was necessary,

while for two different program it was difficult to match acquitsition times. Thus a fixed

time delay was set to control the starting time of both sensors. The data acquisition

system for load sensor was run one second prior to that for ECT.

4. Program specifics. As discussed in Chapter 3 (Figure 3.7), a single paired electrode was

most sensitive in only a portion of its volume, particularly near the edge. Information

for a single chip would be reduced or missed if the sampling rate were low. To collect

material information as much as possible, the switching network used One-N mode to

sample ECT outputs. The sampling rate was 278.26 kHz (according to the calculation

in 3.2.4), sample number was 200 points, and sampling method was N samples (limita-

tion of another faster method were discussed in 3.2.4). The dynamic force sensor was

sampled at 10 kHz as in the field tests.
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5. Measurement. Procedures were (a) starting two data acquisition programs, (b) turning

the handle to drive the conveyor belt with a somewhat constant speed, (c) stop the

program and put measured chips back into the oven.

6. MC calculation. Another drying period was about 24 hours after the bulk sample

measurements were taken. The dry weight was measured using a scale accurate to

0.01g.

Data Processing Methods

The force data was processed in the same manner as the field test, which included

power spectrum calculation (pwelch function in MATLAB), PCA (princomp function in

MATLAB) and stepwise regression (stepwise function in MATLAB). 50 PCs, instead of 10

as in the preliminary test, were analyzed using stepwise regression. A total of 5 PCs were

selected as being highly correlated with mass at α = 0.05. The multiple linear regression

(MLR) method was applied to build models between selected PCs and the bulk weight.

The capacitance data was processed using sum mode, to show the combined effect of

water and wood. The empty state of ECT was measured as reference data. The difference

in sum between bulk and reference data was used as ECT response.

Results and Discussion

Mass flow measuring result. The length of the chip sample piled on the conveyor belt

did not vary among measurements (fixed around 35 cm). When the conveyor belt travel rate

was constant, the time of the total sample’s passage through the sensing area would be the

same. In that case, the sample mass would be proportional to the mass flow rate (assuming

uniform density of material on the belt). For these experiments, both assumptions were

made and only the total sample mass was used as the parameter representing mass flow

for any calculation. Figure 5.8 shows the result for calibration and validation data. The

RMSEC and RMSEP for the impact mass flow measuring method were 58.15 and 71.17
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Figure 5.8: Calibration (R2= 0.86) and validation (R2=0.72) result of measuring chip mass
using the impact method.

grams, respectively. The average weights of calibration and validation sets were 566.13

and 530.46 grams. The relative RMSEC and RMSEP, calculated as RMSE divided by the

sample mean, were 10.27 % and 13.42 %, respectively. Both RMSEC and RMSEP increased,

compared to the field test, RMSEP of which was 6.61%. Error sources were probably from

four factors.

1. Different impact locations for a chip could create significantly different responses.

When the chip number was large, e.g.10,000 pieces for a tree as in the field test,

the distribution of impact points would be more normal than in small quantity tests,

as done here.

2. The slope of impact surface. Though the impact angle in the field test was much bigger

than in laboratory, the major source of impact energy was different. As chips exited

the chipper, the energy along the moving direction was from a high speed spinning

disc inside of the chipper, and the energy imparted to chips, and lost in travel to the

spout, would be relatively uniform among all particles. However, the energy of chips
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in the laboratory test was mainly from potential energy of the chips falling in the

gravitational field. Different falling heights caused by the slope of the impact surface

would have more influence than impact location in the field test.

3. Non-uniform feeding rate. The dynamic ECT system was driven manually, causing

variation in feeding rate and affecting the energy carried by chips as they impacted the

plate, leading to error.

4. Impact surface oscillation. The impact surface used in laboratory tests was a metal

sheet. After a chip hit the plate, the signal would have a short ringing period that

took some time to disappear.

Dynamic MC Determination Results An ideal real-time moisture sensor would have

the capability to show the MC for a short period, such as every second. However, it was

difficult to calibrate the MC of a chip stream every second. An appropriate way to test

dynamic MC was to use the average of a bulk sample as a single measurement.

Based on equation 4.8 in Chapter 4.1.3, the dynamic MC could be calculated if the

weight were known and the response of the ECT system was consistent. One source of

inconsistency that could potentially affect readings was thought to be different relative ve-

locity of particles. Because the electric field in the sensor was affected by the distribution of

material inside, individual particles moving at non-uniform velocities might change the field

sufficiently to introduce variability. The effect of velocity on ECT readings was therefore

tested. A small bag of wood powder was measured statically and dynamically, the result of

which showed a larger response for dynamic response in sum mode than static measurement.

However, in this test, the particle velocity could be assumed constant (as free falling parti-

cles). Since the capacitance readings contained the influence of a uniformly moving sample,

no extra velocity data was used in the MC measuring model.
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Table 5.3: MC prediction results using the dynamic force sensor to estimate mass flow rate.

Method
R2 RMSEC RMSEP

Calibration Prediction Absolute Relative Absolute Relative

True mass 0.82 0.73 10.81% 16.75% 11.07% 15.5%
Estimated mass 0.81 0.71 11.25% 17.43% 11.86% 16.61%

Figure 5.9: Calibration and validation results of MC predictions using mass determined with
(a) scale and (b) impact method.

In Figure 5.9, two moisture measuring results were compared, Figure 5.9a using the

scale measured weights, and Figure 5.9b included the load cell estimated mass. Results were

summarized in Table 5.3.

Though the mass predicted by the force transducer was not extremely accurate, the

final MC estimating result was close to the method using a scale to measure the true mass.

The difference in error between them was less than 1%. Figure 5.9 directly compared the

two methods of both calibration and validation sets, no significant difference was observed

between these two datasets. The P-value in Table 5.3 also suggested the two methods had

equivalent performance in predicting dynamic MC.
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Figure 5.10: Regression result between MC and ECT without any knowledge of the sample
weight (R2=0.56).

Simply based on this result, it was insufficient to conclude that the impact method

was useful in predicting MC for pine chips in motion. The mass might have no significant

effect on the MC if the stream of chips moving through the sensor were uniform. For the

MC prediction model (equation 4.8), statistical analysis showed P-values for V/W and 1/W

were less than 0.001. The P-value indicated a strong relationship between MC and the mass.

If the mass were removed as a factor, the regression plot between MC and ECT reading was

as shown in Figure 5.10. RMSEP in that case would exceed 24%.

Based on these results, an impact mass flow combined with capacitance sensing was

concluded to be a feasible approach to measure both dynamic mass flow and MC for chips.

The impact method has been tested in an actual wood chipping machine, the results of which

were better than laboratory experiments. Rather than using the tomographic function, the

ECT was employed as a single paired plate capacitance sensor. However, the process still

included unnecessary ECT operations, especially the switching network. While measuring

different combinations among electrodes, some data was missed due to the slow N-sample

method. If replacing the ECT system with a simple capacitance sensor, the sampling method

could be made continuous, which could be expected to improve the moisture measuring
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accuracy. The ECT sensor could also be switched to a simple capacitance mode. Controlling

the switching network to excite the electrodes 1-4 as source, and receive data from electrodes

5-8, the ECT system could be approximated as a single paired capacitor. Since no switching

action was required, the continuous sampling method could also be applied, which in this

case allowed greater than 1 kHz sampling rate (10 Hz for N sample ECT mode). A sensor

constructed in this fashion could match the project objective very well.

5.4 ECT MC Measuring Method

Knowledge of the mass flow rate was proven to be a crucial component of dynamic

MC measurement. For a practical MC measuring system, a mass flow sensor, such as the

force transducer introduced in 5.3, would be a necessary precursor. However, all these

possible ways of using an ECT system to measure MC statically or dynamically were merely

using its single paired capacitance function, rather than using the full capabilities of ECT,

its tomographic mode. In static MC measurement, the quantity of chips under test was

normally big enough to cover the entire cross-sectional area of the ECT sensing volume.

The image in that case could not provide any useful information related to either MC or

mass, except perhaps variation within a vertical column of chips, which would be of dubious

value. The sensor applied in this fashion could not separate moisture variation from mass

variation. Using imaging, however, the water distribution (or at least between-chip MC

distribution) could be observed. In dynamic tests, however, chips occupied only part of

the sensing volume at any instant in time. When the velocity of chips was constant, the

accumulation of cross sectional area associated with biomass material in tomographic images

could possibly be used to represent the total volume of chips passing through, and that be

converted to mass using density. Different wood types or different parts of a stem, such as

juvenile wood and mature wood, early wood and late wood, tops and stems, inner veneers

and outer, have different density. However, the most significant effect on density is moisture

content, the dry densities do not vary much. Trees are usually harvested at a fixed age, their
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Figure 5.11: ECT mass flow measuring principle.

densities should be relatively uniform, on average. The volume of chipped material in that

case could be approximated as their mass. Under this assumption, an ECT sensor would

have the capability to measure mass flow and moisture content at the same time, without

including any extra device. The schematic diagram of such a system was shown as Figure

5.11. More chips would occupy a larger cross section of the measuring area and this should

be observable in an ECT image.

Two essential requirements for measuring mass flow using cross sectional imaging were:

(a) high sampling rate to capture images of all flowing material, and (b) images revealed

something about the mass currently in the sensor. To understand the requirement of ECT

sampling rate, the measuring time for an object was calculated. Suppose the initial velocity

was v0, the distance between conveyor belt and electrodes was h1, the length of electrode
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was h0, then the residence time for wood chips passing through the sensing area could be

calculated as equation 5.1.

∆t =
1

g

(√
v20 + 2g (h1 + h0)−

√
v20 + 2gh1

)
(5.1)

In this experiment, the moving speed of the conveyor belt was slow (about 0.1 m/s), the

square of which was significantly smaller than 2gh1 (around 3). Equation 5.1 could be

approximated as:

∆t =
1

g

(√
2g (h1 + h0)−

√
2gh1

)
(5.2)

For the designed ECT system, chips would reside in the sensing area for about 0.05 second.

The minimum imaging rate of the ECT system should therefore necessarily exceed 20 Hz.

5.4.1 Image Calibration

To calculate the area covered by chips, the easiest way was to convert gray scale images

to binary form, consisting of values 0 and 1 representing the presence, or absence, of wood

in that portion of the sensor. The summation of all pixels would represent the area, and

hence volume, of wood. Image processing procedures used to generate these types of images

were as the following.

1. Compute the raw gray scale image from the sensitivity matrix. Use Landweber iteration

for a fixed number of times to reduce the pseudo-inverse error.

2. Rescale the gray values of the image. For wood chips under test having different MC,

high moisture chips would bend the (soft) electric field more than dryer chips. In

order to convert gray scale images to binary, a fixed threshold was required to process

all images uniformly and automatically. This conversion forced the need to calibrate

images to some scale that could use a constant threshold not affected by moisture

significantly. The calibration was done the same way as normalization: acquiring the
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maximum and minimum value of the gray scale matrix marked as Gmax and Gmin, the

normalized value was:

Gn =
Gn −Gmin

Gmax −Gmin

(5.3)

3. Binarization. Applied a fixed threshold (Gt) to all images, as:

Gn =


0 Gn < Gt

1 Gn ≥ Gt

(5.4)

4. Sum up all pixels in the binary image. The summation of a single binary image repre-

sented the quantity of chips passing through the sensor at that moment. Accumulation

of the sum during a period of time, e.g. 1 second, could be used as the mass flow rate.

The remaining problem of the above area determination method was to select an ap-

propriate threshold for the third step. An image calibration method was applied to estimate

the unknown threshold. A digital camera was used to record videos of chips falling through

the ECT sensor. The basic idea was to find a threshold that made the reconstructed image

as close to the real situation as possible.

Five location options for the camera were tested as shown in Figure 5.12a. Positions

1 and 5 had the view least obstructed by chips between the camera location and those

within the sensor volume. However, these two locations required a camera having a wider

view angle, which was unavailable for these tests. At position 1, the chip stream came very

close to the camera location and other chips not close to the camera were difficult to detect.

Position 2 had a similar problem, but to a slightly lesser extent. For position 3, only portions

(50% or less) of sensor cross-sectional area was viewable. Thus location 4 was chosen as the

most appropriate place to install the camera. In this test, a Logitech HD Webcam c270 was

selected to take videos at 100 frames per second. The results, however, failed to capture

the cross-sectional images very well. When chips were fed continuously, the viewing area

would be fully covered and obscured, as Figure 5.12b. An alternative calibration method
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Figure 5.12: Test apparatus for calibrating ECT image volumetric estimates using a video
camera. Points 1-5 were the locations evaluated for the camera positions to perform the
tests.

was therefore taken that used a reduced quantity of chips - in fact, only a single chip. An

very large green chip (38.5g) was chosen and dropped into the ECT singly using the conveyor

belt. The camera was installed on the top of the sensor, as location 3. A circular light was

placed around the camera to illuminate the measuring pipe.

A fixed, one-second delay was set between the video recording system and the LAB-

VIEW program for ECT. The video record was processed as below.

1. Image extraction. Two images were extracted from each video recorded: one was

a background frame (Figure 5.13a), and the other was the chip location within the

sensing area (Figure 5.13b).

2. Image processing. This step included two major objectives: one was to measure the

area of the sensing space (Figure 5.13c). Procedures used were to convert the color im-

age to gray scale (using the rgb2gray function in MATLAB), then setting an appropriate

threshold to turn the gray scale image to binary (MATLAB im2bw function, threshold

set to 0.15), and removing noise areas using open and close operations (imopen and

imclose MATLAB functions within the operating area using a 5×5 probe matrix).
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Figure 5.13: An illustration of the sequence of images resulting from the algorithm applied
to correlate video and ECT images of a single chip falling through the ECT sensor.

Another was to measure area of chips (Figure 5.13d) in which similar processes were

applied except with an additional step. After gray scale conversion, the background im-

age was subtracted from the chip image to remove all background information, leaving

the area difference between these two images, which was the chip itself.

3. Calculation. Computed the percentage of chip area, dividing chip area by background

area.

The percentage of sensing area covered by the woodchip was calculated as 56.04%.

Accordingly, the ECT image should also have the same covered area, which worked out to

be a total of 126 pixels (225 pixel resolution) (Figure 5.13e). The test was repeated 5 times,

and the threshold was set as the value 0.152 for ECT image processing.
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Figure 5.14: Regression result showing the relationship between area occupied in ECT images
by wood material and the dry weight of the sample (R2

c=0.71, R2
p=0.60).

5.4.2 Mass Flow Measuring Result

These measurements differed from those using the impact mass flow approach in that

dry weight, rather than wet, was necessary to predict moisture content. ECT readings of the

impact method were directly used for this analysis. The regression result between measured

dry weight and pixels on reconstructed image was as shown in Figure 5.14. RMSEC and

RMSEP were 62.54 and 69.67 grams, respectively. The average dry weights of calibration

and validation sets were 346.25 and 304.36 grams. The relative RMSEC and RMSEP were

18.06 % and 22.89 %. Relative measuring errors were about 1.7 times that of the impact

method, though they were measuring weights in different states (wet vs dry). The major

reasons for the relative inaccuracy in the predicted results were as follows.

1. Wood chip orientation. As Figure 5.15a, the same chip with different orientation had

a significant effect on the cross sectional image. For the method outlined above, the
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Figure 5.15: Error sources of using image to estimate mass.

moisture content prediction result of orientation 1 would be much higher than 2, while

the estimated mass of position 1 was much smaller.

2. Overlap. The measuring volume was about 7.793×106 mm3 and the dimensions of

a typical pine chip was about 7.875×103 mm3 (45mm×35mm×5mm), which means

hundreds of chips could exist in the sensing area simultaneously. Some of the chips

being obscured in the images was unavoidable. An extreme example would be as in

Figure 5.15b where both stacks of chips would have the same cross-sectional area from

the image. The ECT system would estimate dry matter based on the presumption

that samples 3 and 4 had the same volume and the dry matter weights were equal. For

a higher capacitance obtained in sample 3 (larger total mass), an inaccurate moisture

content prediction, unfortunately, would be made.

3. Insufficient sampling rate. The frame rate of the designed data acquisition software

was about 10 Hz. However, the minimum sampling rate was 20 Hz to capture all chips,

as noted above.

The first two challenges would be reduced when the quantity of chips increased. The

distribution of orientation and overlapping probabilities could be expected to become more

normal for a field test, than in laboratory tests with a small sample quantity. The third
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Table 5.4: MC measurement accuracy using ECT in tomographic mode to measure both
permittivity and mass flow.

Method
R2 RMSEC RMSEP

Calibration Prediction Absolute Relative Absolute Relative

Sum mode and
True dry weight 0.76 0.60 10.68% 16.55% 14.18% 19.34%

Sum mode and
Tomographic mode 0.71 0.57 12.38% 19.18% 17.71% 24.16%

point, however, would be the limitation of the designed ECT sensor. Neither hardware or

software modification could solve the problem.

5.4.3 MC Measuring Result

The image based method was to predict dry mass of wood chips, equation 4.8 could not

be applied directly. Going back to the original relationship, equation 4.3, dividing by the

dry weight, the equation becomes:

V

W1

= α0 + β0MC +
ε0
W1

MC =
1

β0

V

W1

+
ε0
β0

1

W1

+
α0

β0

Letting α
′
= 1

β0
, β
′
= ε0

β0
, and ε

′
= α0

β0
, the above becomes

MC = α′
V

W1

+ β′
1

W1

+ ε′ (5.5)

The W1 here was the dry weight, which could be measured or estimated from imaging results.

Measuring accuracy was summarized in Table 5.4. Both results were plotted in Figure 5.16.
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Figure 5.16: MC prediction results for tests (a) using measured dry weight (R2=0.76), and
(b) those using the ECT image processing approach to estimate sample mass (R2=0.71).

5.4.4 Method Discussion

As presented by Young et al. (1996) and Sun et al. (2008), measuring the mass infor-

mation using ECT sensor was accurate and feasible when the particle density was uniform.

Though the biomass chips have different densities when their MCs are distinct, their dry

densities do not vary much. ECT tomography would have the capability to measure the dry

mass. A linear relationship between binary ECT images and the dry weight of wood chips

was found in Figure 5.14. However, with the sampling rate limitation, the accuracy was not

as reported in the two papers cited above.

The error in measuring dry weight directly affected the MC prediction result, as in

Table 5.4. In the impact test, a 13.42% relative error in estimating wet weight led to only

about 1% increase in relative error of moisture measurement. The ECT imaging tests,

however, resulted in a 22.89% relative error in dry weight, which added 5% relative error to

MC estimation. Improvements in the imaging system, especially solving the sampling rate

problem, would help ECT achieve better accuracy for dynamic MC determination.

The dry weight measuring method, however, could not provide an equivalent perfor-

mance with wet weight model. When comparing the data obtained from scale estimates of
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weight (data for two tests were from the same chip samples), though the calibration result

was close, the prediction error of using dry mass was 3% more than wet weight method. This

extra error might be from three sources.

1. Water forms. This error source was mentioned in Chapter 4, and was concluded to be

an ignorable influence. However, the contribution to capacitance from variation in dry

weight was also small. Comparing to the dry mass variation, different effects of bound

and free water might be significant. The relationship among ECT, wood and water

should be:

V = α0Ww + β0Wf + γ0Wb + ε0 (5.6)

where Ww is weight of dry wood, Wf and Wb are weight of free and bounded water

separately. For the dry weight model, γ0 was approximately equal to β0 and that added

some additional error. In the wet weight model as 4.5, it could be expressed as:

V = α1(Ww +Wf +Wb) + β1Wf + ε0 (5.7)

V = α1Ww + (α1 + β1)W f + α1Wb + ε0 (5.8)

The different slopes of bounded and free water might reduce the error compared to the

dry mass model.

2. Interactions. Though the interaction between wet weight and water weight was found

to be insignificant in the model for the parallel-plate ECT readings (Chapter 4), the

interaction between dry weight and water was left out in deriving equation 5.5. Interac-

tions from dry weight/water and wet weight/water were tested using the ECT readings,

the P-values of which were found to be 0.1019 and 0.1132, respectively. Though both

of them were not significant (95% confidence interval), the interaction between dry

weight and water was slightly stronger than that for wet weight. Thus ignoring the
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interaction term would probably affect the dry weight model more than the wet weight

version.

3. Weight lost. Chips were transported from the conveyor belt to the ECT, impact

surface, and finally collected by a plastic container. During that process, a portion

of the small wood pieces/ powder was possibly not recovered. A non-uniform loss in

weight between tests would increase the measuring error.

Though the final results for the ECT moisture predicting method were not very accurate,

the method was proven as a feasible way to measure mass flow, moisture or maybe other

components for dynamic biomass/bioproducts. The ECT sensor as built would have the

capability to distinguish chips with big differences in MC and mass, or to tell the possible

range of chip sample MC. However, dynamic sampling of MC distributed in a narrow range

would be difficult to implement using the ECT sensor alone.

5.5 Conclusion

In this Chapter, two dynamic moisture determining methods were presented. One was

the combined impact and capacitance method, another used ECT tomographic mode by

itself. As weight information was crucial to MC prediction using the capacitance sensor, the

basic principles for the two methods were to predict wet weight using a force sensor, and to

predict dry mass from cross sectional images reconstructed from ECT data, respectively.

Both methods were feasible solutions to measure MC of moving biomass. The prediction

result from the impact method achieved a higher accuracy than ECT measurement alone.

Possible reasons were discussed. Since it introduced one more sensor and extra design work,

the impact/capacitance method was more expensive than the ECT system. The combina-

tion of two sensors also required setting an appropriate time delay to match the two data

sequences. However, if the velocity of chips were not constant, the delay would be difficult

to determine, possibly increasing the measuring error. But if the velocity was constant, the
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method would be easier to use and modify. The ECT system did not have the measuring

time issue. No extra structure was necessary to make it work. However the range of fac-

tors, and their interactions, affecting accuracy was complex. For example, the threshold to

extract area information (and, hence, dry weight) might be changing with environmental

factors such as humidity. As concluded in Chapter 4, the choice of sampling systems will be

specific to an application and its operating conditions.
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Chapter 6

CONCLUSION AND FUTURE WORK

Variation in MC has been identified as a potential problem in sourcing biomass for a

conversion facility, both in deciding on a price for feedstocks and in control of the conversion

process itself. A practical moisture sensor meeting the constraints required in this application

would imply a system capable of measuring water content in moving streams of biomass, and

one that is efficient and capable of operating without the necessity of additional handling

of the material. As a step towards this end, we have begun development of a moisture

measurement system (based on electrical capacitance tomography, ECT) the design of which

we feel could be adapted to sensing water content of chips produced by an in-woods chipper

and measured as they were being blown into a van.

6.1 Conclusion

In comparing ECT with other moisture sensing technologies, including X-ray, microwave,

acoustic wave, radio frequency, and NIR, the ECT sensor was concluded as being rapid, ro-

bust and low cost and the method should be adaptable to dynamic measurements on wood

chips. In this dissertation, an 8 electrode ECT system was built to measure MC of pine

chips in both static (non-moving samples) and dynamic modes.

6.1.1 Hardware and Software

Creation of the sensor involved development of several key hardware components, and

chief amongst those was a capacitance-to-voltage transducer. The transducer built for this

work was based on circuits reported in other ECT applications and used a low-pass filtering

approach tuned to the needs of this sensor. Operation of the transducer involved cycling

133



among 28 different combinations of electrodes and a switching network was necessary to

control the state of each electrode. The design of this network was driven by the need to

minimize stray capacitance in the system. Multiple strategies were applied to stabilize power

variations and minimize noise in all components. Results of tests on the system indicated it

was a reliable and stable tool for capacitance measurements.

Capacitance measurements using the sensor required detecting the amplitude of a peri-

odic waveform output by the capacitance-to-voltage circuits. Many approaches to measuring

this amplitude were tried, including hardware detectors (envelope detection), and software

methods based on sampling the waveform. Many of the methods, however, introduced spu-

rious or biased elements into the output signal and were rejected. The final methods for

amplitude detection chosen were based on two signal processing strategies: power spectral

estimation, and autocorrelation. Both worked well, but the correlation approach achieved

the highest precision in results.

Four different strategies for cycling among readings between the 8 electrodes were in-

vestigated, each having advantages and disadvantages. These sampling ’modes’ affected

accuracy and stability of the measurement circuits, but also influenced the rate at which

measurements could be taken, which was a crucial limitation in later application of the ECT

sensor in imaging applications. Based on numerous tests, a single source-single detector

approach was found to be the mode having the least negative impact on system reliability

and accuracy, but it was also the slowest. A second approach, single source-multiple detector

mode, was quicker, but its sensitivity in detecting test material permittivity was lower. That

approach was also unique and not previously found in the ECT literature.

The unique capability of ECT was its ability to generate maps of permittivity within an

enclosed space. Imaging methods were developed for this research that were compatible with

the types of measurements and speed requirements of this application. Techniques employed

included Linear Back Projection for image reconstruction, plus a Landweber iterative method

to refine images based on a mean-squared error protocol. The LBP approach was based on an
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estimate of the charge distribution within the sensor, and this estimate, called a sensitivity

matrix, was calculated using a simulation generated using Ansys.

6.1.2 System Characteristics

The following tests of the performance of the sensor were conducted to verify its accuracy

under controlled conditions.

1. Empty and full (wood chips) states of the ECT system were tested and the responses of

all electrode combinations followed very well what the theory of capacitance suggested.

In these measurements, it was observed the full state increased ECT readings about

13.0% above the background.

2. Repeatability tests for empty and full states indicated the ECT as designed had ac-

ceptably low noise present in readings. The minimum SNR for both states was 36.6.

3. Sensitivities for water, dry and green wood were measured. Results showed that the

sensor had the capability to detect small objects, the size of which depended on the

material’s permittivity. Sensitivities to the same object in central and edge areas within

the sensor were found to be different.

4. Though statistical analysis showed no significant difference (at 95% confidence interval)

among readings taken at 15 different locations within the sensing volume, readings

from the sensor’s central area were uniformly smaller than those from the edges for the

same object. A normalization method was introduced, the result of which reduced the

difference between readings based on object location.

5. No significant difference was found in sensor output among three different dry wood

samples having the same weight but different particle size distributions.

6. According to the requirements of two different data acquisition methods, two dis-

tinct sensitivity matrices were computed to implement the LBP image reconstruction
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algorithm. Results derived from application of the methods (including Landweber it-

eration) showed that images of permittivity of wet and dry wood chips, plus PVC rods

of various sizes, were accurate in the sense they reproduced the spatial structure and

relative cross-sectional area of the samples as expected. Methods for real-time recon-

struction of images for later ECT tests were developed, but were somewhat limited in

frame rate because of limitations with sampling inherent in the ECT system.

6.1.3 Capability in Static MC Determination

Static measurements were made using the ECT system as effectively a single paired

electrode capacitance sensor. A linear relationship between ECT output and weight of ma-

terials tested was observed. For pine chips, no significant interaction was observed between

water and wood weights (both dry and wet state). A MC prediction model was derived and

its parameters estimated based on the observed results.

Compared to the traditional NIR method, ECT achieved a better performance in mea-

suring MC for bulk chips. However, the method failed to estimate the moisture for single

chips accurately, due to the sensitivity issue. Though the ECT measurement was very fast,

it required knowing the mass independently in order to estimate MC.

Two mass free methods were discussed. A dual frequency method was more accurate

than an approach using a fixed sample volume. However, its sampling time was doubled.

6.1.4 Dynamic MC Measuring Methods

Knowledge of sample mass was required in all static estimates of MC, but it was im-

possible to measure mass using a normal scale in a dynamic application of the ECT sensor.

Neither was it feasible to implement the mass-free estimation approaches developed for static

tests. A mass flow sensor was therefore necessary in MC prediction of moving samples. A

simple and robust method was to use an impact method to predict mass flow rate in con-

cert with ECT estimates of moisture. Both field and laboratory tests indicated a load cell
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could be effectively used to measure mass flow accurately for pine chips. By combining the

capacitance system with the force sensor, both mass flow and MC were determined.

The tomographic mode of ECT was also investigated as a possible means to measure

the mass flow of solid materials. A volumetric method was used to estimate the dry mass

of wood chips using the images generated with the ECT sensor. The cross-sectional per-

mittivity images were calibrated using video images captured simultaneously of the actual

flow through the ECT. An appropriate threshold was estimated to minimize the difference

between reconstructed images and the real picture. Based on dry mass and capacitance, MC

was measured, accuracy of which was 3% lower than the impact mass flow method. There

might be weak interaction between dry mass and water that influenced the ECT readings.

The ECT result, however, could definitely be improved by increasing the sampling rate.

Overall, the ECT sensor was shown to be a feasible way to measure MC for dynamic

wood chip flows with acceptable accuracy. Comparing to the impact and capacitance meth-

ods, the ECT could also provide a real-time status and location of material within the mea-

suring area. An extra application of ECT could be as a system failure check, for example, if

the flow structure within a conveyance were indicative of a plugged conduit.

6.2 Future Work

The feasibility of using the ECT sensor to measure MC was well supported, the re-

maining hurdle limiting its application is accuracy. Future work should mainly focus on

approaches to enhance system accuracy.

The most important point would be to increase the sampling rate. Much of the limi-

tation in sampling speed with the current system was due to the software estimation of the

output voltage amplitude in estimating capacitance. Switching to some kind of hardware

detection would be a relatively simple and effective means of speeding up that process. Three

simple options for doing that might be the following. Option (1): the AC/DC transducer

introduced by Yang and York (1999) was a good way to improve sampling rate. Other
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amplitude extracting ICs, such as the AD 636 (true rms-to-DC converter), may also good

to reduce the time cost of the ECT measuring period (28 readings). Option (2): If the

AC/DC transducer has limitations, a new data processing algorithm will be worked on to

extract useful information from the continuous sampling method. Option (3): Use another

development environment, such as C++ , that should be much faster than LABVIEW in

acquiring data and controlling switches.

A re-designed PCB layer, along with revised electrodes should also be considered. The

cost of making a flexible PCB that would put encircle the sensor with the measurement

electronics is about $900 for this ECT sensor. However, this approach in mounting the

electronics provides more uniform and accurate locations of electrodes than the designed

sensor. A driven guard is also a research direction to reduce errors by limiting noise side

effects. It might also be included in the flexible PCB.

New methods, as in (Sun et al. 2008), will be tried using another single paired capac-

itance sensor. Different frequency excitation as in (Kandala & Sundaram 2010, Kandala &

Puppala 2012) will be used in the modified sensor (and ECT) to measure MC and mass flow

simultaneously. A 3-dimensional ECT sensor may also be a solution.

Another important connotation of this work will be testing an improved ECT sensor on

other materials, such as corn or other cereal grains, for MC and mass flow. and dynamic

modes.

6.2.1 Hardware and Software

Creation of the sensor involved development of several key hardware components, and

chief amongst those was a capacitance-to-voltage transducer. The transducer built for this

work was based on circuits reported in other ECT applications and used a low-pass filtering

approach tuned to the needs of this sensor. Operation of the transducer involved cycling

among 28 different combinations of electrodes and a switching network was necessary to

control the state of each electrode. The design of this network was driven by the need to
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minimize stray capacitance in the system. Multiple strategies were applied to stabilize power

variations and minimize noise in all components. Results of tests on the system indicated it

was a reliable and stable tool for capacitance measurements.

Capacitance measurements using the sensor required detecting the amplitude of a peri-

odic waveform output by the capacitance-to-voltage circuits. Many approaches to measuring

this amplitude were tried, including hardware detectors (envelope detection), and software

methods based on sampling the waveform. Many of the methods, however, introduced spu-

rious or biased elements into the output signal and were rejected. The final methods for

amplitude detection chosen were based on two signal processing strategies: power spectral

estimation, and autocorrelation. Both worked well, but the correlation approach achieved

the highest precision in results.

Four different strategies for cycling among readings between the 8 electrodes were in-

vestigated, each having advantages and disadvantages. These sampling ’modes’ affected

accuracy and stability of the measurement circuits, but also influenced the rate at which

measurements could be taken, which was a crucial limitation in later application of the ECT

sensor in imaging applications. Based on numerous tests, a single source-single detector

approach was found to be the mode having the least negative impact on system reliability

and accuracy, but it was also the slowest. A second approach, single source-multiple detector

mode, was quicker, but its sensitivity in detecting test material permittivity was lower. That

approach was also unique and not previously found in the ECT literature.

The unique capability of ECT was its ability to generate maps of permittivity within an

enclosed space. Imaging methods were developed for this research that were compatible with

the types of measurements and speed requirements of this application. Techniques employed

included Linear Back Projection for image reconstruction, plus a Landweber iterative method

to refine images based on a mean-squared error protocol. The LBP approach was based on an

estimate of the charge distribution within the sensor, and this estimate, called a sensitivity

matrix, was calculated using a simulation generated using Ansys.
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6.2.2 System Characteristics

The following tests of the performance of the sensor were conducted to verify its accuracy

under controlled conditions.

1. Empty and full (wood chips) states of the ECT system were tested and the responses of

all electrode combinations followed very well what the theory of capacitance suggested.

In these measurements, it was observed the full state increased ECT readings about

13.0% above the background.

2. Repeatability tests for empty and full states indicated the ECT as designed had ac-

ceptably low noise present in readings. The minimum SNR for both states was 36.6.

3. Sensitivities for water, dry and green wood were measured. Results showed that the

sensor had the capability to detect small objects, the size of which depended on the

material’s permittivity. Sensitivities to the same object in central and edge areas within

the sensor were found to be different.

4. Though statistical analysis showed no significant difference (at 95% confidence interval)

among readings taken at 15 different locations within the sensing volume, readings

from the sensor’s central area were uniformly smaller than those from the edges for the

same object. A normalization method was introduced, the result of which reduced the

difference between readings based on object location.

5. No significant difference was found in sensor output among three different dry wood

samples having the same weight but different particle size distributions.

6. According to the requirements of two different data acquisition methods, two dis-

tinct sensitivity matrices were computed to implement the LBP image reconstruction

algorithm. Results derived from application of the methods (including Landweber it-

eration) showed that images of permittivity of wet and dry wood chips, plus PVC rods

of various sizes, were accurate in the sense they reproduced the spatial structure and
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relative cross-sectional area of the samples as expected. Methods for real-time recon-

struction of images for later ECT tests were developed, but were somewhat limited in

frame rate because of limitations with sampling inherent in the ECT system.

6.2.3 Capability in Static MC Determination

Static measurements were made using the ECT system as effectively a single paired

electrode capacitance sensor. A linear relationship between ECT output and weight of ma-

terials tested was observed. For pine chips, no significant interaction was observed between

water and wood weights (both dry and wet state). A MC prediction model was derived and

its parameters estimated based on the observed results.

Compared to the traditional NIR method, ECT achieved a better performance in mea-

suring MC for bulk chips. However, the method failed to estimate the moisture for single

chips accurately, due to the sensitivity issue. Though the ECT measurement was very fast,

it required knowing the mass independently in order to estimate MC.

Two mass free methods were discussed. A dual frequency method was more accurate

than an approach using a fixed sample volume. However, its sampling time was doubled.

6.2.4 Dynamic MC Measuring Methods

Knowledge of sample mass was required in all static estimates of MC, but it was im-

possible to measure mass using a normal scale in a dynamic application of the ECT sensor.

Neither was it feasible to implement the mass-free estimation approaches developed for static

tests. A mass flow sensor was therefore necessary in MC prediction of moving samples. A

simple and robust method was to use an impact method to predict mass flow rate in con-

cert with ECT estimates of moisture. Both field and laboratory tests indicated a load cell

could be effectively used to measure mass flow accurately for pine chips. By combining the

capacitance system with the force sensor, both mass flow and MC were determined.
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The tomographic mode of ECT was also investigated as a possible means to measure

the mass flow of solid materials. A volumetric method was used to estimate the dry mass

of wood chips using the images generated with the ECT sensor. The cross-sectional per-

mittivity images were calibrated using video images captured simultaneously of the actual

flow through the ECT. An appropriate threshold was estimated to minimize the difference

between reconstructed images and the real picture. Based on dry mass and capacitance, MC

was measured, accuracy of which was 3% lower than the impact mass flow method. There

might be weak interaction between dry mass and water that influenced the ECT readings.

The ECT result, however, could definitely be improved by increasing the sampling rate.

Overall, the ECT sensor was shown to be a feasible way to measure MC for dynamic

wood chip flows with acceptable accuracy. Comparing to the impact and capacitance meth-

ods, the ECT could also provide a real-time status and location of material within the mea-

suring area. An extra application of ECT could be as a system failure check, for example, if

the flow structure within a conveyance were indicative of a plugged conduit.

6.3 Future Work

The feasibility of using the ECT sensor to measure MC was well supported, the re-

maining hurdle limiting its application is accuracy. Future work should mainly focus on

approaches to enhance system accuracy.

The most important point would be to increase the sampling rate. Much of the limi-

tation in sampling speed with the current system was due to the software estimation of the

output voltage amplitude in estimating capacitance. Switching to some kind of hardware

detection would be a relatively simple and effective means of speeding up that process. Three

simple options for doing that might be the following. Option (1): the AC/DC transducer

introduced by Yang and York (1999) was a good way to improve sampling rate. Other am-

plitude extracting ICs, such as the AD 636 (True rms-to-DC converter), may also good to

reduce the time cost of the ECT measuring period (28 readings). Option (2): If the AC/DC
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transducer has limitations, a new data processing algorithm will be worked on to extract

useful information from the continuous sampling method. Option (3): Use another devel-

opment environment, such as C++ , that should be much faster than Labview in acquiring

data and controlling switches.

A re-designed PCB layer, along with revised electrodes should also be considered. The

cost of making a flexible PCB that would put encircle the sensor with the measurement

electronics is about $900 for this ECT sensor. However, this approach in mounting the

electronics provides more uniform and accurate locations of electrodes than the designed

sensor. A driven guard is also a research direction to reduce errors by limiting noise side

effects. It might also be included in the flexible PCB.

New methods, as in (Sun et al 2008), will be tried using another single paired capaci-

tance sensor. Different frequency excitation as in (Kandala & Sundaram 2010, Kandala &

Puppala 2012) will be used in the modified sensor (and ECT) to measure MC and mass flow

simultaneously. A 3-dimensional ECT sensor may also be a solution.

Another important connotation of this work will be testing an improved ECT sensor on

other materials, such as corn or other cereal grains, for MC and mass flow.

143



Bibliography

[1] Abdelrahman M.A., Sheta AF., Deabes W.A. 2009. Fuzzy mathematical modeling for
reconstructing images in ECT of manufacturing processes. Computer Engineering &
Systems. ICCES 2009. International Conference on, 461-468.

[2] Adepipe,O.E., Dawson-Andoh, B. 2008. Predicting moisture content of yellow-poplar
veneer using near infrared spectroscopy. Forest Products Journal, 58(4): 28.

[3] Amoodeh, M.T., Khoshtaghaza M. H., Minaei, S. 2006. Acoustic on-line grain moisture
meter. Computers and Electronics in Agriculture, 52 (1-2): 71-78.

[4] Angelovski A., Penirschke A., Jakoby R. 2011. CRLH-mass flow detector array for cross-
sectional detection of inhomogeneous distributed flow regimes in pipelines. Microwave
Conference (EuMC), 2011 41st European, 611-614.

[5] Arko A, Waterfall RC, Beck MS. 1999. Development of electrical capacitance tomogra-
phy for solids mass flow measurement and control of pneumatic conveying systems. 1st
World congress on industrial process tomography. 140-146.

[6] Axrup L., Markides K., Nilsson T. 2000. Using miniature diode array NIR spectrometers
for analyzing wood chips and bark samples in motion. Journal of Chemometrics, 14:
561-572.

[7] Barale P.J., Fong C.G., Green M.A., Luft P.A., McInturff A.D., Reimer J.A., Yahnke
M. 2002. The use of a permanent magnet for water content measurements of wood chips.
Applied Superconductivity, IEEE Transactions on, 12 (1): 975-978.

[8] Birchall I., Spencer J.M., Tanner P.H. 1970. The measurement of transient mass flow
rate in a gas using an ionization method. Review of Scientific Instruments, 41 (5):
782-783.

[9] Birrell S.J., Sudduth K.A., Borgelt S.C. 1996. Comparison of sensors and techniques for
crop yield mapping. Computers and Electronics in Agriculture, 14(2-3): 215-233.

[10] Bochner S., Chandrasekharan K. 1949. Fourier Transforms, Princeton University Press.

[11] Boyarskii D. A., Tikhonov V. V., Komarova N. Y. 2002. Model of dielectric constant of
bound water in soil for applications of microwave remote sensing. Progress in Electro-
magnetics Research, PIER 35, 251269.

[12] Brace J.G., Sanfelippo T.S., Joshi S.G. 1989. Mass flow sensing using surface acoustic
waves. Ultrasonics Symposium, 1989. Proceedings, 1: 573-578.

144



[13] Brink M. Mandenius, CF., Skoglund, A. 2010. On-line predictions of the aspen fibre
and birch bark content in unbleached hardwood pulp, using NIR spectroscopy and
multivariate data analysis, Chemometrics and Intelligent Laboratory Systems, 103: 53-
58.

[14] Bull, C. R. 1991. Wavelength selection for near-infrared reflectance moisture meters.
Journal of Agricultural Engineering Research, 49(0): 113-125.

[15] Carter R.M., Yan Y. 2005. An instrumentation system using combined sensing strate-
gies for online mass flow rate measurement and particle sizing. Instrumentation and
Measurement, IEEE Transactions on, 54(4): 1433-1437.

[16] Chen DY., Shao L., Zhang Z., Yu XY. An image reconstruction algorithm based on
artificial fish-swarm for electrical capacitance tomography system. Strategic Technology
(IFOST), 2011 6th International Forum on, 2: 1190-1194.

[17] Chen DY., Tang WM., Wang LL., Yu XY. 2007. Hardware design and system calibration
for electrical capacitance tomography system. Mechatronics and Automation. ICMA
2007. International Conference on, 3088-3093.

[18] Chen Y., Zhang J., Chen DY. 2009. Two-phase flow parameters measurement and
Gauss-Newton image reconstruction algorithm for Electrical Capacitance Tomography.
Industrial Mechatronics and Automation. ICIMA 2009. International Conference on,
192-195.

[19] Corluka, V., Filic, M., Mesic, M., Valter, Z. 2004. Near infrared based moisture meter.
Electronics in Marine. Proceedings Elmar 2004. 46th International Symposium, 412-417

[20] Deans S.R. 1983. The Radon Transform and Some of Its Applications, New York: John
Wiley & Sons.

[21] Defo M, Taylor AM, Bond B. 2007. Determination of moisture content and density
of fresh-sawn red oak lumber by near infrared spectroscopy. Forest Products Journal.
57(5): 68.

[22] Demers A.M., Gosselin R., Simard J.S., Abatzoglou N. 2012. In-line Near Infrared
Spectroscopy Monitoring of Pharmaceutical Powder Moisture in a Fluidized Bed Dryer:
an Efficient Methodology for Chemometric Model Development, Canadian Journal of
Chemical Engineering, 90, 299-303.

[23] Digman, M. F., Shinners, K. J. 2008. Real-time moisture measurement on a forage har-
vester using near-infrared reflectance spectroscopy. Transactions of the ASABE, 51(5),
1801-1810.

[24] Dong F., Xu YB., Hua L., Wang HX. 2006. Two methods for measurement of gas-
liquid flows in vertical upward pipe using dual-plane ERT system. Instrumentation and
Measurement, IEEE Transactions on, 55(5): 1576-1586.

145



[25] Enoksson P., Stemme G., Stemme E. 1996. A Coriolis mass flow sensor structure in
silicon. Micro Electro Mechanical Systems, MEMS ’96, Proceedings. An Investigation of
Micro Structures, Sensors, Actuators, Machines and Systems. IEEE. The Ninth Annual
International Workshop on, 156-161.

[26] Guo ZH,, Shao FQ., Lv DC. 2009. New calculation method of sensitivity distribution
for ECT. Chinese Journal of Scientific Instrument, 30(10): 2023-2026 (in Chinese).

[27] Han J., Dong F. 2009. Mass flow rate measurement of Gas/liquid two-phase flow in hor-
izontal pipe based on V-cone flow meter and adaptive wavelet network. Instrumentation
and Measurement Technology Conference, 2009. I2MTC ’09. IEEE, 1391-1396.

[28] Hanson C., Kelly D. 1998. Radio-frequency moisture determination of composite board
products. Proceedings of the 1998 32nd International Particleboard/Composite Mate-
rials Symposium.

[29] Hansson L., Lundgren N., Antti A.L., Hagman O. 2005. Microwave penetration in wood
using imaging sensor. Measurement, 38: 15-20.

[30] Huang SM., Plaskowski AB., Xie CG., Beck MS. 1988. Capacitance-based tomographic
flow imaging system. Electronic letters. 24(7): 418-419.

[31] Huang YM., Zhang HJ., Sun ZQ. 2003. Measurement of mass flow rate using a vortex
flowmeter. Sensors, 2003. Proceedings of IEEE, 1: 344-347.

[32] Huang ZY., Wang BL., Li HQ. 2003. Dynamic voidage measurements in a gas solid
fluidized bed by electrical capacitance tomography. Chemical Engineering Communica-
tions, 190(10): 1395-1410.

[33] Jacobs T., Gomide A., Kaspereit M., Zeyer K.P., Kienle A., Hauptmann P. 2007. In-
line analysis of chemical reactions in micro reactors using thermal mass flow sensors.
EUROCON, 2007. The International Conference on ”Computer as a Tool”, 571-574.

[34] James W.L. 1998. Electric moisture meters for wood. Gen. Tech. Rep. FPL-GTR-6.
Madison, 17p.

[35] Jenny N. Rapid measurements of the moisture content of biofuel. 2006. Mlardalen Uni-
versity Press Dissertations (Sweden), NO.24.

[36] Jensen PD, Hartmann H, Bhm T, Temmerman M, Rabier F, Morsing M. 2006. Mois-
ture content determination in solid biofuels by dielectric and NIR reflection methods.
Biomass and bioenergy. 30(11): 935-943.

[37] Jiang GW., Qiu BJ. 2011. Discrete element method simulation of impact-based measure-
ment of grain mass flow. Computer Distributed Control and Intelligent Environmental
Monitoring (CDCIEM), 2011 International Conference on, 419-422

[38] Jiang J., Wang HX. 2009. Electrical Capacitance Tomography system used in two-phase
flow monitoring. Journal of test and measurement technology, 23(6): 540-544.

146



[39] Johana E., Yunus F.R.M., Rahim R.A., Seong C.K. 2011. Hardware development of elec-
trical capacitance tomography for imaging a mixture of water and oil. Hurnal Teknologi,
54:425-442

[40] Johansson J. 2001. Property predictions of wood using microwaves. Licentiate thesis.
Sweden: Department of Chemistry, Umea University, 1402-1757.

[41] John Deere HarvestLab. Sensor information management [In-
ternet]. [Cited 2014 May 20]. Available from: http :
//www.deere.com/wps/dcom/enUS/products/equipment/agmanagementsolutions/informationmanagement/harvestlabconstituentsensing/harvestlabconstituentsensing.page.

[42] Kandala CV, Puppala N. 2012. Parallel-plate capacitance sensor for nondestructive mea-
surement of moisture content of different types of wheat. Sensors Applications Sympo-
sium (SAS). 1-5.

[43] Kandala CV, Sundaram J. 2010. Nondestructive measurement of moisture content using
a parallel-plate capacitance sensor for grain and nuts. Sensors Journal. 10(7): 1282-1287.

[44] Karim N.B.A., Bin I.I. 2011. Soil moisture detection using electrical capacitance tomog-
raphy (ECT) sensor. Imaging Systems and Techniques (IST). 83-88.

[45] Kupnik M., Schroder A., O’Leary P., Benes E., Groschl M. 2004. An ultrasonic transit-
time gas flowmeter for automotive applications. Sensors, 2004. Proceedings of IEEE, 1:
451-454.

[46] Lei J., Liu S., Li ZH., Sun M. 2008. Image reconstruction algorithm based on the
extended regularised total least squares method for electrical capacitance tomography.
Science, Measurement & Technology, IET, 2(5): 326-336.

[47] Leitner, R., Mairer H., Kercek A. 2003. Real-time classification of polymers with NIR
spectral imaging and blob analysis. Real-Time Imaging, 9(4): 245-251.

[48] Lestander TA, Johnsson B, Grothage. 2009. NIR techniques create added values for the
pellet and biofuel industry. Bioresource Technology, 100(4), 1589-1594.

[49] Li JW., Yang XG., Wang YH., Pan RZ. 2012. An image reconstruction algorithm based
on RBF neural network for electrical capacitance tomography. Electromagnetic Field
Problems and Applications (ICEF), 2012 Sixth International Conference on, 1(4): 19-21.

[50] Li X., Huang ZY., Wang BL., Li HQ. 2008. A new method for the on-line voidage
measurement of gas-oil two-phase flow. Instrumentation and Measurement Technology
Conference Proceedings, 2008, 1189-1193.

[51] Li Y., Yang WQ., Wu ZP., Tsamakis D., Xie CG., Huang SM., Lenn C. 2012.
Gas/oil/water flow measurement by electrical capacitance tomography. Imaging Sys-
tems and Techniques (IST), 2012 IEEE International Conference on, 83-88.

[52] Liu HY., Chen DY. 2006. Image reconstruction algorithms of electrical capacitance
tomography based on SVM. Journal Harbin Univ. Sci. & Tech, 1(4):13-17 (In Chinese).

147



[53] Liu L., Chen Y., Song YC. 2010. A novel Barzilai-Borwein image reconstruction al-
gorithm for electrical capacitance tomography system. Machine Vision and Human-
Machine Interface (MVHI), 2010 International Conference on, 385-388.

[54] Liu X., Zhang J., Patrick D.J., Steele P.H. 2010. In-Plane Moisture Content and Specific
Gravity Evaluation of Oriented Strandboard Using a Radio Frequency Technique. Forest
Products Journal, 60(7/8): 622-628.

[55] Lu G., Peng LH., Yao DY., Zhang BF. 2004. Practical system design for electrical
capacitance tomography. ACTA metrological SINICA, 25(3): 241-261 (in Chinese).

[56] Marashdeh Q., Teixeira F. L. 2004. Sensitivity matrix calculation for fast 3-D electrical
capacitance tomography (ECT) of flow systems. IEEE Transactions on Magnetics, 40(2):
1204-1207

[57] Mesic M, Corluka V, Valter Z. 2005. Analysis of some parameters influencing moisture
quantity measurements in wheat with NIR technique. Applied Electromagnetics and
Communications, 18th International Conference on. 1-4.

[58] Minamisawa A, Ozawa A, Sakai H, Takagi K. 1990. Moisture effects on the ultrasonic
velocities in wood. Ultrasonics Symposium. 2: 1105 1108.

[59] Mohamad E.J., Marwah O.M.F., Rahim R.A., Leow PL. 2011. An analysis of sensitivity
distribution using two differential excitation potentials in ECT,” Sensing Technology
(ICST), 2011 Fifth International Conference on, 575-580.

[60] Morrow R. 1980. Applications of radio-frequency power to the drying of timber. Physical
Science, Measurement and Instrumentation, Management and Education - Reviews, IEE
Proceedings A. 127: 394-398.

[61] Mou CH., Peng LH., Yao DY., Xiao DY. 2005. Image reconstruction using a genetic al-
gorithm for electrical capacitance tomography. Tsinghua Science and Technology, 10(5):
587-592.

[62] Nordell A., Vikterlof, K.J. 2000. Measurements of moisture content in wood fuels with
dual energy X-ray. Vaermeforsk Technical Report (Sweden), 41p.

[63] Norimoto M. 1976. Dielectric properties of wood. Kyoto University Research Informa-
tion Repository, 108-152.

[64] Olmos A. M., Primicia J. A., Marron J. L. F., 2007. Simulation design of electrical
capacitance tomography sensors, IET Sci. Meas. Techno, 1(4): 216223.

[65] Pan Y., Wang HX. 2004. Two-phase flow electrical capacitance tomography system.
Journal of Tianjin University of Science and Technology, 19(4): 38-42 (in Chinese)

[66] Paz, A., Nystrom, J., Thorin, E. 2006. Influence of temperature in radio frequency mea-
surements of moisture content in biofuel. Instrumentation and Measurement Technology
Conference (IMTC 2006). Proceedings of the IEEE, 175-179.

148



[67] Peng LH., Ye JM., Lu G., Yang WQ. 2012. Evaluation of Effect of Number of Electrodes
in ECT Sensors on Image Quality. Sensors Journal, 12(5): 1554-1565.

[68] Penirschke A., Angelovski A., Jakoby R. 2010. Moisture insensitive microwave mass flow
detector for particulate solids. Instrumentation and Measurement Technology Confer-
ence (I2MTC), 2010 IEEE, 1309-1313

[69] Penirschke A., Jakoby R. 2010. Design of a moisture independent microwave mass flow
detector for particulate solids. German Microwave Conference. 130-133.

[70] Rasteiro, M.G., Silva F.A.P.G., Faia P. 2011. Electrical Tomography: a review of config-
urations and applications to particulate processes. KONA Powder and Particle Journal,
29: 67-80.

[71] Reeb J. E. 1995. Wood and moisture relationships. Ext. Serv. EM 8600, Oregon State
Univ. 7p.

[72] Reeb J.E., Milota M.R. 1999. Moisture content by the oven-dry method for industrial
testing. 50th Western Dry Kiln Association Meeting.

[73] Roels S., Carmeliet J. 2006. Analysis of moisture flow in porous materials using micro-
focus X-ray radiography. International Journal of Heat and Mass Transfer, 49, 4762-
4772.

[74] Saxena S.C. 1981. Capacitive moisture meter. Industrial Electronics and Control In-
strumentation, IEEE Transactions on, 37-39.

[75] Schajer G. S., Orhan F. B. 2005. Microwave non-destructive testing of wood and similar
orthotropic materials. Sensing and Imaging Series, 6: 293-313.

[76] Shao XY., Huang ZY., Ji HF., Li HQ. 2003. Study on flow pattern identification of
gas-oil two-phase flow based on electrical capacitance tomography and fuzzy pattern
recognition. Journal of chemical engineering of Chinese Universities, 17(6): 616-621.

[77] Siau J.F. 1984. Transport processes in wood. Springer-Verlag, NewYork, 245p.

[78] Steele P. H. and J. E. Cooper. 2003. Estimating lumber strength with radio frequency
scanning. Computers and Electronics in Agriculture, 41(13): 77-83.

[79] Steiner G., Wegleiter H., Watzenig D. 2005. A dual mode ultrasound and electrical
capacitance process tomography sensor. Sensors, 696-699.

[80] Sun M, Liu S, Lei J, Li ZH. 2008. Mass flow measurement of pneumatically conveyed
solids using electrical capacitance tomography. Measurement science and technology.
19(4): 1-6.

[81] Thygesen L.G., Lundqvist, S.O. 2000. NIR measurement of moisture content in wood
under unstable temperature conditions. Part 1. Thermal effects in near infrared spectra
of wood, Journal of Near Infrared Spectroscopy, 8: 183-189

149



[82] Tormanen, V. O., Makynen, A.J. 2011. Determination of wood moisture content using
angularly, spatially and spectrally resolved reflectance. Instrumentation and Measure-
ment Technology Conference (I2MTC), 1-5.

[83] Vallejos C. G. 2009. Wood moisture content measurement at 2.45 GHz. Microwave and
Optoelectronics Conference (IMOC), 2009 SBMO/IEEE MTT-S International, 221-225.

[84] Van D.J. 2005. Introduction of a 2 transducer ultrasonic mass flow meter. Instrumenta-
tion and Measurement Technology Conference. IMTC 2005. Proceedings of the IEEE,
2: 1369-1372.

[85] Vanarase A.U., Jackeline M.A., Rozo I.J., Muzzio F.J., Romaach R.J. 2010. Real-time
monitoring of drug concentration in a continuous powder mixing process using NIR
spectroscopy. Chemical Engineering Science, 65: 5728-5733

[86] Via B.K., Shupe T.F., Groom L.H., Stine M., So C.L. 2003. Multivariate modelling of
density, strength and stiffness from near infrared spectra for mature, juvenile and pith
wood of longleaf pine. Journal of near infrared spectroscopy, 11(5): 365-378.

[87] Wang BL., Huang ZY., Li HQ. 2009. Design of high-speed ECT and ERT system.
Journal of Physics: Conference Series, 147(1).

[88] Wang F., Marashdeh Q., Fan LS., Warsito W. 2010. Electrical capacitance volume
tomography: design and applications. Sensors, 10: 1890-1917

[89] Wang HC., Fedchenia I., Shishkin S., Finn A., Smith L., Colket M. 2012. Electri-
cal Capacitance Tomography: A compressive sensing approach. Imaging Systems and
Techniques (IST), 2012 IEEE International Conference on, 590-594.

[90] Xie CG., Atkinson I., Lenn C. 2007. Multiphase flow measurement in oil and gas pro-
duction. Proc. 5th World Congress on industrial Process Tomography, 723-736.

[91] Xie CG., Huang SM., Hoyle BS., Thorn R., Lenn C., Snowden D., Beck MS. 1992.
Electrical capacitance tomography for flow imaging: system model for development of
image reconstruction algorithms and design of primary sensors. Circuits, devices and
systems, 139(1): 89-98.

[92] Xie CG., Stott AL., Plaskowski AB., Beck MS. 1990. Design of capacitance electrodes
for concentration measurement of two-phase flow, Meas. Sci. Technol. 1: 65-78

[93] Xu LJ., Carter R.M., Yan Y. 2005. Mass flow measurement of fine particles in a pneu-
matic suspension using electrostatic sensing and neural network techniques. Instrumen-
tation and Measurement Technology Conference. IMTC 2005. Proceedings of the IEEE,
2: 1365-1368.

[94] Xu LJ., Weber A.P., Kasper G. 2000. Capacitance-based concentration measurement for
gas -particle system with low particles loading. Flow Measurement and Instrumentation,
11(3): 185-194.

150



[95] Yan H., Shao FQ., Wang S. 1999. Simulation study of capacitance tomography sensors.
1st Word Congress on Industrial Tomography, Buxton, Greater Manchester, 388-394.

[96] Yan H., Shao FQ., Wang S., Wu EG. Analysis of soft field characteristics of capacitance
tomography sensors. Journal of northeastern university, 20(5).

[97] Yan H., Tang DD., Zhang L., Cui KX. 2008. Research on the axial responses of ECT
sensors. Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress
on, 7762-7767.

[98] Yan H., Wang YF., Zhou YG. 2011. Research on direct 3D ECT imaging: sensor mod-
eling and image reconstruction. Computational and Information Sciences (ICCIS), 2011
International Conference on, 95-98.

[99] Yan Y. 1996. Mass flow measurement of bulk solids in pneumatic pipelines. Measurement
Science and Technology, 7(12): 1687-1706.

[100] Yang DY., Zhou B., Wang SM. 2009. Electrical capacitance tomography in dense-
phase pneumatic conveying of pulverized coal under high pressure. Imaging Systems
and Techniques, 2009. IST ’09. IEEE International Workshop on, 41-46.

[101] Yang WQ.1996. Hardware design of electrical capacitance tomography systems. Meas.
Sci. Technol, 7: 225232.

[102] Yang WQ. 2006. Key issues in designing capacitance tomography sensors. Sensors,
2006. 5th IEEE Conference on, 497-505.

[103] Yang WQ., Conway, WF. 1998. Measurement of sensitivity distributions of capacitance
tomography sensors. Review of Scientific Instruments, 69(1), 233-236.

[104] Yang WQ., Liu S. 1999. Electrical capacitance tomography with square sensor. Elec-
tronics Letters, 35(4):295-296.

[105] Yang WQ., Spink DM., York TA., McCann H. 1999. An image reconstruction algorithm
based on Landwebers iteration method for electrical capacitance tomography Meas. Sci.
Technol. 10: 10651069.

[106] Yang WQ., York T.A. 1999. New AC-based capacitance tomography system. IEE Proc.
- Sci. Meas. Technol, 146(1): 47-53.

[107] Yang YL., Huang M. 2007. Simulation study of sensor capacitance of ECT system based
on ANSYS software. Electronic measurement technology, 30(3): 44-46 (in Chinese)

[108] Ye J., Wang H., Yang W. 2014. Image reconstruction for electrical capacitance to-
mography based on sparse representation. Instrumentation and Measurement, IEEE
Transactions on , 99: 1.

151



[109] Young M., Pickup E., Deloughry R., Hartley T., Nixon S.A., Barratt L. 1996. Devel-
opment of a variable density flowmeter for an industrial application using tomographic
imaging. Advances in Electrical Tomography (Digest No: 1196/143), IEE Colloquium
on, 14: 1-3.

[110] Zhang HF., Li YX., Jiang LC. 2010. Multivariate modeling Dahurian larch plantation
wood density based on near infrared spectroscopy. Measuring Technology and Mecha-
tronics Automation (ICMTMA), 2010 International Conference on, 2: 748-751

152



Appendices

153



Appendix A

ECT System Hardware Details
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Figure A.1: Printed circuit board. (a) With two switches, (b) three swicthes, (c) three
switches in a chip

Figure A.2: Printed circuit board drawing of three separate switches as in figure A.1b
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Figure A.3: Printed circuit board drawing of three switches in single chip as in figure A.1c

Figure A.4: Copper materials. (a) Copper shield, (b) sticky copper for electrodes

156



Figure A.5: Manual conveyor belt driver using a ABS pipe
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Figure A.6: Mechnical treadmill used as woodchips feeding system
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Figure A.7: Power supply, function generator and oscilloscope

Figure A.8: Data acquisition devices
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Figure A.9: Dynamic force transducer and the impact surface
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Figure A.10: Aluminium hopper above the ECT

Figure A.11: Metal basis of the ECT system
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Figure A.12: System illumination for image calibration
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Figure A.13: Webcam for ECT image calibration
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Appendix B

Related Equipments
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Figure B.1: Computer for data processing and system control
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Figure B.2: PerkinElmer Spectrum 100N FT-NIR spectrometer

Figure B.3: Scale
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Figure B.4: Oven for woodchips drying
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Figure B.5: Walk-in freezer for woodchips storage
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Appendix C

Tested materials
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Figure C.1: Tested woodchip samples. (a) Batch 1&2, (b) batch 3&4, (c) batch 5, and (d)
batch 6.
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Figure C.2: Tested dried woodchips and wood powder

Figure C.3: Tested PVC rods
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Figure C.4: Tested water in plastic bottles

Figure C.5: Plastic container for material sensitivity tests
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Appendix D

Softwares

Matlab codes

1. T-test: [h, p, ci, stats] = ttest2(x, y, 0.05).

2. Anova: p = anova1(x).

3. Stepwise: stepwise(x, y, inmodel, penter, premove).

4. PCA: [coeff, score, latent] = princomp(p);

PC = score ∗ coeff ′ + repmat(mean(p), size(p, 1), 1);

figure;

percent explained = 100 ∗ latentsum(latent);

pareto(percent explained);

xlabel(’Principal Component’);

ylabel(’Variance Explained (%)’);

print -djpeg 2;

5. Welch’s power spectral density estimate: pxx = pwelch(x,window, noverlap, nfft)

6. Landweber:

For i= 1:20

G = G+ ST (C − SG)

end
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Figure D.1: Signal auto-correlation for amplitude extraction in Labview
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Figure D.2: One source one receiver mode and FFT amplitude extraction in Labview
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Figure D.3: Labview impact data collection
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Figure D.4: Labview real-time image reconstruction program

Figure D.5: ANSYS user interface
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Figure D.6: Python image reconstruction code

Figure D.7: Amcap software for webcam

178



Appendix E

Raw Data Examples
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Figure E.1: 10 repeating readings from all electrode combinations at empty and full states

Figure E.2: Dynamic ECT readings in sum
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