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Abstract

Inspired by the structure and functional aspects of the biological neural networks, the

Artificial Neural Network (ANN) is a very popular model in the machine learning fields to

learn complex relationships in the data. The Feedforward Neural Networks (FNN) are the

basic and most common type of ANN used in the supervised learning area. The research of

the FNN consists of two major issues: architecture selection and learning.

The architecture of the FNN mainly includes Multilayer Perceptron (MLP) and Bridged

Multilayer Perceptron (BMLP). As the simplest MLP with only one hidden layer, the Single

Layer Feedforward Neural Networks (SLFN) had attracted much attention among the shallow

models. When a BMLP has all the bridge connections, it becomes the special deep narrow

architecture, called Fully Connected Cascade Networks (FCCN), which had been widely

applied in different fields since it was proposed.

In this dissertation, we explored the learning of these two special types of FNN in details

for regression problems. When applied to the regression problems, the output neuron of the

FNN is usually set with linear activation function. With this character, the SLFN and FCCN

architectures have much in common and their most learning algorithms could share to each

other. The FCCN could be viewed as a SLFN with nest connections in the single hidden

layer. Because the output neuron is linear, all the output parameters (weights) are linear

related. Taking advantage of this relationship, a new hybrid learning algorithm is proposed

for these two types of FNN by combining the efficient Levenberg-Marquardt (LM) algorithm

and Least Square (LS) method.

In order to search the optimal network size, the hybrid algorithm is extended to the

construction scheme. Two hybrid constructive algorithms are proposed for the SLFN and

FCCN learning, namely HC1 and HC2 algorithm. The HC1 algorithm constructs the SLFN
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or FCCN by adding randomly initialized hidden neuron one by one, each time the preceding

hybrid algorithm is carried out to train the entire network. The HC2 algorithm can be

considered as an enhanced version of HC1. Each time adding the new neuron, its initial

parameters are picked in a more sophisticated way. Similar to the Orthogonal Least Square

(OLS) algorithm, a contribution objective function of the new neuron is derived. The Particle

Swarm Optimization (PSO) is cooperated to search the best set of parameters leading to the

biggest contribution.

Both the HC1 and HC2 algorithms are practiced on several classical function approxi-

mation benchmarks for SLFN and FCCN construction. The experiment results illustrated

the proposed hybrid constructive strategies can obtain more compact networks with good

generalization ability compared with other popular learning algorithms.
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Chapter 1

Introduction

1.1 Artificial Neural Networks Background

Artificial neural networks (ANN) are computational models inspired by animals’ central

nervous systems (in particular the brain) which is capable of machine learning and pattern

recognition. In the ANN, simple artificial neurons are connected together to form a network

which mimics a biological neural networks. Modern neural networks are non-linear statistical

data modeling tools. They are usually used to model complex relationships between inputs

and outputs, to find patterns in data, or to capture the statistical structure in an unknown

joint probability distribution between observed variables.

The first ANN model was created by Warren McCulloch and Walter Pitts with electronic

circuits in 1943[1]. In 1949, Donald Hebb published the book The Organization of Behavior,

which outlined a law for synaptic neuron learning[2]. This law, called Hebb’s rule, is one

of the simplest and most straight-forward learning rules for artificial neural networks. In

1959, Bernard Widrow and his PhD student Ted Hoff developed models called ”ADALINE”

(short for ADAptive LINear Elements) and ”MADALINE” (short for Multiple ADALINE)

in Stanford. They also invented the popular Least Mean Square (LMS) filter to adapt the

model parameters. ADALINE was developed to recognize binary patterns so that if it was

reading streaming bits from a phone line, it could predict the next bit. MADALINE was

the first neural networks applied to the real world problem, using an adaptive filter that

eliminates echoes on phone line. In 1969, Marvin Minsky and Seymour Papert published

a precise mathematical analysis of the perceptron to show that the perceptron model was

not capable of representing many important problems, like XOR problems[3], which lead to

a silence period of the ANN research. The research was reconstructed slowly in 1970s and
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(a) Feedforward Neural Networks (b) Recurrent Neural Networks

Figure 1.1: two types of Artificial Neural Networks

1980s. In 1982, Teuvo Kohonen looked into the mechanism involving self-organization in the

brain and proposed the self-organizing maps (SOM)[4]. In 1974, Paul Werbos developed a

learning procedure called backpropagation of error. But it was not until one decade later in

1986[8], the error backpropagation (EBP) algorithm became popular and important in the

later ANN research. In the 1990s, neural networks were partially overtaken in popularity in

machine learning by support vector machine (SVM) and other simpler methods. However,

the renewed interest in ANN was sparked in 2000s by the success of deep learning[5]-[7].

The ANN consists of some interconnected ”neurons”, each of which can compute values

from inputs, has adaptive weights (or parameters), and can represent nonlinear feature of the

inputs. According to the connection topology, ANN can be divided into two main categories:

Feedforward Neural Networks (FNN) and Recurrent Neural Networks (RNN), as shown in

Figure 1.1. The RNN has some feedbacks to form directed cycles in the networks while the

FNN doesn’t. The RNN has temporal memories and is able to learn the sequences. However

it’s more difficult to train than the FNN.

The ANNs are widely used in many real life applications. According to the learning

target, the ANN learning can be divided into supervised learning, unsupervised learning and

semi-supervised learning. The application fields of ANN learning include,
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1. Regression, like interpolation, time series prediction, etc.

2. Classification, like pattern recognition, fault detection, decision making, etc.

3. Data processing, like filtering, clustering, feature selection, compression, etc.

4. System identification and control.

1.2 Feedforward Neural Networks

The FNN architecture has two main types: Multilayer Perceptron (MLP) and Bridged

Multilayer Perceptron (BMLP), as shown in Figure 1.2 and Figure 1.3. The MLP architecture

has several hidden layers between inputs and outputs, every two adjacent layers has forward

connections and there’s no connections between the neurons in the same layer. The Single

Layer Feedforward Neural Networks (SLFN) is the simplest MLP, which has only one hidden

layer. Different from the MLP, the BMLP has bridge connections across layers. The Fully

Connected Cascade Networks (FCCN) is the special case of the BMLP, in which each layer

has only one neuron.

While learning with the FNN model, one of the main task is to determine the network

size. Observe the above architectures, a general MLP and BMLP have more structure

(a) Multilayer Perceptron (b) Single Layer Feedforward Networks

Figure 1.2: MLP and its special case SLFN
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(a) Bridged Multilayer Perceptron (b) Fully Connected Cascade Networks

Figure 1.3: BMLP and its special case FCCN

parameters. One has to determine the how many layers (the depth) and how many neurons

in each layer (the width). It’s quite difficult and complicated to find the optimal architecture

parameters for them. Compared to the MLP and BMLP, the SLFN and FCCN are relatively

easy to learn the structure. Since the SLFN has only one hidden layer, the depth is fixed as

1, one only needs to determine the width of this layer (the number of neurons). Similarly,

the FCCN has only one hidden neuron in each layer, the width is fixed as 1, one only needs

to determine the depth (the number of neurons). In this paper, we mainly focused on the

learning algorithms of these two architectures.

The activation function of the neuron in the FNN could be linear or nonlinear. The neu-

ron with linear activation function behaves like the summator, whose outputs the weighted

summation of its inputs. The popularly used nonlinear activation functions include sig-

moid functions and Radial Basis Functions (RBF). The output of a sigmoid neuron can be

calculated as,

h(x) =
1

1 + e−ρ×net
(1.1)

in which, net is the weighted summation of the inputs,

net = w0 +
D∑
d=1

xdwd (1.2)
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Figure 1.4: sigmoid function and tanh function

x = [x1, x2, ..., xD] is the D-dimension input vector, w = [w0, w1, w2, ..., wD] are the

corresponding weights (including bias w0), ρ is gain of the neuron. The adaptive input

weights w will be tuned during training. The gain ρ is the scale factor of the weights w

and usually not considered for tuning. The output of the sigmoid function in (1.1) ranges in

[0,1]. In some literature, its scaled format which ranges in [-1,1] is similarly used.

h(x) = tanh(ρ× net) =
2

1 + e−2ρ×net
− 1 (1.3)

Figure 1.4 shows some examples of the sigmoid function and tanh function shape respect to

net value.

The RBF network uses the activation function whose output only depends on the dis-

tance from the input to the center. The most popularly used is the gaussian function,

h(x) = exp(−‖x− c‖2

σ2
) (1.4)

in which, ‖•‖ represents Euclidean distance. The tunable parameters are center c and width

σ. Figure 1.5 shows 1D shape of the RBF with different widths.
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1.3 Problem Formulation

The function approximation is one of the major branches in the supervised learning

research. In general, a function approximation problem asks us to select a function among

a well-defined class that closely matches an unknown target function. The problem can be

formulated as following.

Given the training data set {(xp, yp)|xp ∈ RD, yp ∈ R, p = 1, 2, ..., P}, in which there

are P training patterns with D-dimension input and scalar output, (xp, yp) denotes the pth

input and output. For simplicity, we only consider a single function to be mapped from the

multi-dimensional inputs (the desired output is a scalar). For the problem with multiple

outputs, one can split it into several independent single output approximation problems.

After selecting the FNN architecture as prior, one has to search the optimal structure (e.g.

number of neurons) and the optimal set of the parameters (e.g. the weights) of the FNN,

so that the obtained FNN could approximate those data to a desired accuracy. The usual

procedure to train a FNN is to optimize those parameters to minimize some cost function.

According to the value of the desired outputs yp, the function approximation can be

divided into classification and regression. For the classification problems, the desired outputs

are usually discrete values (e.g. labels). For the regression problems, the desired outputs
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are continuous values. These two problems normally use different strategies during training.

The FNN for classification usually uses neuron with sigmoid activation function as the last

neuron. So the outputs are in the range [0,1] and they are considered as the probability of

each pattern belonging to each category. The classification problems usually use the cross

entropy function from the information theory as the cost function for optimization. For the

regression problems, the FNN normally uses the linear neuron as the last neuron so that the

outputs can be any continuous range. The outputs are interpreted directly as the outputs

of the model instead of the probability. The cost function to be optimized in regression

problems is simply the differences between the actual outputs and the desired outputs. In

this dissertation, we mainly focused on the FNN learning for regression problems. A common

used cost function in regression is the sum squared error (SSE),

C =
P∑
p=1

e2p =
P∑
p=1

(yp − ỹp)2 (1.5)

where, ỹp, ep are the actual output and the error with respect to the pth training pattern.

ep = yp − ỹp (1.6)

For convenience, we also use the vectors ỹ = [ỹ1, ỹ2, ..., ỹP ]T , e = [e1, e2, ..., eP ]T in the rest

of the paper. Except the SSE, some literatures also used its variants, like Mean Square

Error(MSE), Root Mean Square Error(RMSE), etc. to evaluate the approximation quality.

Though the training procedure is to approximate those training data, the core objective

of the learning task is to generalize from its experience. The generalization in this context is

the ability of a learning machine to perform accurately on new, unseen examples or patterns

after having experienced the training data set. To examine the generalization capability of

the learned FNN, it’s usually validated on another data set, called testing data set, which is

different from the training set, given as {(xtp, ytp)|xtp ∈ RD, ytp ∈ R, p = 1, 2, ..., Pt}.
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1.4 Contribution

In this dissertation, we mainly focused on the FNN learning, SLFN and FCCN architec-

tures in specific, for regression problems. Several current popularly used learning algorithms

are explored and analyzed in details. Then a series of new hybrid learning algorithms for

these two architectures are proposed. The dissertation has the following contributions:

1. A new hybrid algorithm for fixed size SLFN and FCCN is proposed, which combines

the LM algorithm, one of the most efficient second order algorithm and the LS method.

By converting the output weights to the dependent variables of the hidden parameters,

the LM optimization is simplified.

2. The hybrid algorithm is extended to the constructive scheme to determine the net-

work size simultaneously, namely HC1 algorithm. Each time when previous training

entrapped into local minima, a new randomly initialized new neuron is added to the

network. Then the entire network is trained again by the hybrid algorithm.

3. In order to enhance the HC1 algorithm to achieve more compact network, the HC2

algorithm is proposed. Instead of initializing each new neuron randomly, the HC2 picks

the new neuron’s parameters in a more sophisticated way. Similar to the Orthogonal

Least Square (OLS) algorithm, a contribution objective function of the new neuron

is derived. The Particle Swarm Optimization (PSO) is used to search the optimal

parameters leading to the biggest contribution.

4. Both the HC1 and HC2 are practiced on some classic regression benchmarks and com-

pared with other popularly used learning algorithms. The experiments demonstrated

the HC1 and HC2 algorithms worked efficiently to obtain compact SLFN or FCCN

with good generalization ability.
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1.5 Organization

The rest part of the dissertation is organized as following.

In the chapter 2, some general gradient learning algorithms of the FNN are introduced.

These algorithms are all based on the error backpropagation (EBP) and they can be used to

train the fixed size FNN with different architectures. Most of them are still popularly used

in SLFN and FCCN learning, like Quickprop, Rprop, Conjugate gradient, BFGS algorithm,

LM algorithm, NBN algorithm, etc.

In the chapter 3, several architecture oriented learning algorithms of SLFN and FCCN

are introduced. These algorithms are designed specifically for the SLFN or FCCN archi-

tecture. Since the SLFN and FCCN are similar in architecture, most of their architecture

oriented learning algorithms can share to each other.

In the chapter 4, a hybrid algorithm for fixed size SLFN and FCCN learning is pro-

posed in specific for the regression problem. So it’s also architecture and problem oriented

algorithm. By taking advantage of the linear relation of the output weights, the LS method

is embedded into the LM algorithm to improve the efficiency.

In the chapter 5, the hybrid algorithm is extended to the construction scheme. Two

hybrid constructive algorithms are proposed, namely HC1 and HC2 algorithm. The HC1

algorithm constructs the SLFN or FCCN by adding randomly initialized hidden neurons one

by one. Each time after adding new neuron, the entire network is trained with the preceding

hybrid algorithm. The HC2 combined the OLS and PSO algorithm to pick the optimal

initial parameters of the new neuron sophistically.

In the chapter 6, several regression benchmarks are carried out to test the proposed

hybrid algorithms for SLFN and FCCN construction. The experiment results are compared

with other popular learning algorithms. The efficiency and advantages of the proposed

algorithms are analyzed.

In the chapter 7, the conclusion is given and the future research is discussed.
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Chapter 2

General Gradient Learning Algorithms

The learning of the FNN consists of two main tasks: determining the optimal network

size and tuning the network parameters (weights). In the neural networks research history,

the trial and error approach was usually used to determine the network size. As a result,

the second task, to tune the network parameters, had attracted much more attentions. In

this chapter, we mainly discussed those popular parameters tuning algorithms for fixed size

FNN.

Since the popularity of the Error Backpropagation (EBP), a lot of well-known parame-

ters tuning algorithms for FNN had been proposed. Most of these algorithms are based on

the EBP and used gradient optimization to tune the network parameters. These algorithms

can be generally divided into two categories according to their update schedule: online learn-

ing and offline learning. The online learning, also called stochastic learning, is the group of

algorithms that update the parameters every time passing one training pattern. In the con-

trast, the offline learning, also called batch learning, requires to pass through all the data set

to calculate the averaged gradient each time before updating the parameters. While using

the online learning, one doesn’t need to prepare all the data set before training. As a result,

many industrial applications preferred the online learning. Another advantages of the online

learning is that it’s more suitable for big data learning, since offline learning usually needs

very large storage space and computing units for big data. However, because the online

learning only used single pattern’s information, the gradient is noisy and the parameters

may not move precisely down along the gradient direction in each step.

In this dissertation, we mainly focused on the offline learning algorithms. In this chapter,

we will analyze some popularly used offline learning algorithms, like the Quickprop[16],

10



(a) SLFN architecture (b) FCCN architecture

Figure 2.1: notations for SLFN and FCCN architecture

Rprop[17], Conjugate gradient (CG)[18], Levenberg-Marquardt (LM) algorithm[19, 20, 21],

BFGS algorithm[22], NBN algorithm[23], etc. All these algorithms are general learning

algorithms for the FNN and they could be used for most FNN architectures.

Before introducing these algorithms, we declared some common notations in the FNN.

Because we mainly focused on the SLFN or FCCN, whose depth or width is fixed as 1, we

don’t specify the layer of each neuron in the FNN. Instead, we only index the hidden neurons

as k = 1, 2, ..., K. The FNN has K hidden neurons and the output neuron is always a linear

summator, as shown in Figure 2.1.

For the kth hidden neuron, the outputs for the P patterns are hk = [h1, h2, ..., hP ]T .

The parameters of this neuron are denoted as wk = [wk,1, wk,2, ..., wk,m], where there are

m parameters. For the neuron with sigmoid activation function, wk are the input weights

(including the bias); for the neuron with RBF, wk are the center and width of this neuron.

For the SLFN, the number of parameters (m) of each neuron is the same. For the FCCN,

the number of parameters (m) increases as the depth of the neuron increases. For the kth

hidden neuron in the FCCN, its parameters will be wk ∈ RD+k, where D is the number of

inputs. For convenience, we denote the parameters of the output neuron (output weights)

as wK+1. For the SLFN, wK+1 ∈ RK+1; For the FCCN, wK+1 ∈ RD+K+1. Denote ψ as a
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vector including all the tunable parameters. Assume there are M parameters to be tuned in

total so that the length of ψ is M . For the SLFN with K hidden neurons and each hidden

neuron has m parameters, M = Km + K + 1; For the FCCN with K hidden neurons and

D inputs, M = (K + 1)D + (K+1)(K+2)
2

. Because all the algorithms are iterative, we defined

the iteration number is t = 1, 2, ..., T .

2.1 Error Backpropagation

While the sum squared error (SSE) in (1.5) is used as optimization cost function in the

training procedure, the Error Backpropagation (EBP) uses the gradient descent method to

tune the weights of the network iteratively. For a general MLP, the derivatives of the SSE

respect to the weights are calculated as,

∂C

∂wk,i
=
∂
∑P

p=1(yp − ỹp)2

∂wk,i
= 2

P∑
p=1

ep
∂ep
∂wk,i

= −2
P∑
p=1

ep
∂ỹp
∂wk,i

(2.1)

so, one only needs to calculate the derivatives of the error or output respect to each param-

eter for every pattern. They can all be obtained through one forward and one backward

propagation.

Figure 2.2: propagation through single neuron
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For a single neuron, the propagation is shown in Figure 2.2. When calculating forward

through the FNN, each neuron sums all the weighted inputs as net value and computes

its output with the activation function h(x) (sigmoid function or RBF). While propagating

backward, the error propagated from output to input following the differential chain rule.

We defined a delta value (δ) for each neuron, which is actually the derivative of the error

respect to its net value.

δp,k =
∂ep

∂netp,k
(2.2)

where δp,k, netp,k are delta value and net value of the kth neuron for the pth pattern. ep is the

network error for the pth pattern.

During the backpropgation, the output neuron can calculate its delta value directly. For

the internal hidden neuron k, as shown in Figure 2.2, it collects the weighted delta values

from its fan-out neurons as the propagated error ep,k, and multiplies its activation derivatives

h′(netp,k) to obtain its own delta value δp,k, as shown below.

δp,k = h′(netp,k)

ol∑
j=o1

wk→jδp, j (2.3)

in which, j = o1, o2, ..., ol are indices of this neuron’s fan-out neurons, wk→j is the weight

connecting from the kth neuron to the jth neuron.

With the delta value δp,k, the derivatives of the network error respect to its fan-in weights

can be calculated as,

∂ep
∂wk,i

=
∂ep

∂netp,k

∂netp,k
∂wk,i

= δk,pxp,i (2.4)

in which, xp,i is the ith input (the network inputs or some previous neuron’s output) of this

neuron for the pth pattern.

The error propagates backward as described above. By combining (2.1-2.4), the deriva-

tives of the SSE respect to every weight of the network can be obtained. The EBP algorithm
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update each weight with the following formula,

∆wk,i = −α ∂C

∂wk,i
(2.5)

where ∆wk,i is the change of the weight wk,i, each time wk,i will update by adding this

change.

wk,i = wk,i + ∆wk,i (2.6)

α is a positive constant value set by the user, called learning rate. The selection of the

learning rate is important in EBP. If α is too small, the training will converge very slow;

If α is too large, the training tends to oscillate. Rumelhart et al.[8] suggested to add a

momentum term to the standard EBP method, and the change of each weight becomes,

∆wk,i(t+ 1) = −α ∂C

∂wk,i
(t) + η∆wk,i(t) (2.7)

where the momentum parameter η is a positive constant value preset by the user. ∆wk,i(t+1),

∆wk,i(t) are the change of wk,i at the (t+ 1)th and tth iteration. The addition of momentum

can speed up the convergence and smooth the oscillation. Another modification of the EBP,

called steepest descent, is to perform line search for the learning rate in each iteration.

In each step, the parameters are searched as far as possible along the downhill gradient

direction.

The EBP algorithm is the basis of almost all the other gradient methods for neural

networks learning. The EBP worked slowly by using the constant learning rate, more so-

phisticated algorithms adapt the learning rate α while training or replace it with a matrix

(like Hessian) to speed up the convergence.
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1: ∀k, i: ∆k,i(0) = ∆0,
∂C
∂wk,i

(0) = 0.

2: for t← 1 to T do . Iteration number
3: for all the parameters (weights) do . update each weight
4: Calculate derivative of each weight ∂C

∂wk,i
like in EBP.

5: if ∂C
∂wk,i

(t− 1) ∗ ∂C
∂wk,i

(t) > 0 then

6: ∆k,i(t) = min(∆k,i(t− 1) ∗ η+,∆max)
7: ∆wk,i(t) = −sign( ∂C

∂wk,i
(t)) ∗∆k,i(t)

8: wk,i(t+ 1) = wk,i(t) + ∆wk,i(t)
9: else if ∂C

∂wk,i
(t− 1) ∗ ∂C

∂wk,i
(t) < 0 then

10: ∆k,i = max(∆k,i(t− 1) ∗ η−,∆min)
11: wk,i(t+ 1) = wk,i(t)−∆wk,i(t− 1)
12: ∂C

∂wk,i
= 0

13: else if ∂C
∂wk,i

(t− 1) ∗ ∂C
∂wk,i

(t) = 0 then

14: ∆wk,i(t) = −sign( ∂C
∂wk,i

(t)) ∗∆k,i(t)

15: wk,i(t+ 1) = wk,i(t) + ∆wk,i(t)
16: end if
17: end for
18: end for

Figure 2.3: Pseudocode of the Rprop algorithm

2.2 Rprop

Resilient backpropagation (Rprop)[17] is a heuristic first order algorithm for FNN learn-

ing. It was created by Martin Riedmiller and Heinrich Braun in 1992. The Rprop algorithm

only considers the sign of the derivatives of the cost function respect to each weight and up-

date them independently. In the Rprop, the update step size (always nonnegative) of each

weight is defined as ∆k,i, which has a upper bound (∆max) and lower bound (∆min). The

∆k,i is adapted according to the derivative sign by multiplying two scale factors η+ > 1 and

0 < η− < 1. Empirically, η+ and η− are set as 1.2 and 0.5 respectively. A typical procedure

of the Rprop algorithm is shown in Figure 2.3.

The Rprop is one of the most efficient first order learning algorithms for FNN. Because

only the signs of the derivatives are used for the parameters update, the Rprop is efficient

respect to both time and storage consumption. It’s also much less sensitive to the ”gradient

vanishing” problem of the deep architectures compared to the standard EBP algorithm.
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2.3 Conjugate gradient

While optimizing the parameters, each update step would cost some computation. One

doesn’t want to destroy the preceding update during the next update step. According to

the conjugate gradient method[18], every two successive update directions are ”conjugate”,

which is defined as,

d(t)Hd(t+ 1) = 0 (2.8)

where d(t),d(t + 1) are search direction in step t and t + 1. H is the Hessian matrix,

containing the second order derivatives information of the all the weights. In order to fullfill

(2.8), each new step’s search direction is set as following in the conjugate gradient,

d(t+ 1) = −∇C(t+ 1) + β ∗ d(t) (2.9)

where ∇C(t + 1) is the gradient of the SSE with respect to all the weights in the (t + 1)th

iteration. The parameter β is computed according to one of the following rules,

1. Fletcher-Reeves: β =
∇TC(t+ 1)∇C(t+ 1)

∇TC(t)∇C(t)

2. Polak-Ribiere: β =
∇TC(t+ 1)(∇C(t+ 1)−∇C(t))

∇TC(t)∇C(t)

3. Hestenes-Stiefel: β = −∇TC(t+ 1)(∇C(t+ 1)−∇C(t))

dT (t)(∇C(t+ 1)−∇C(t))

4. Dai-Yuan: β =
∇TC(t+ 1)∇C(t+ 1)

dT (t)(∇C(t+ 1)−∇C(t))

The conjugate gradient method searches along the steepest gradient direction in the

first iteration, and searches along the conjugate direction in the rest steps. Following shows

the optimization procedure in the tth iteration,

1. Calculate the steepest gradient direction ∇C(t).

2. Compute parameter β with one of the above 4 formulas.
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3. Update the conjugate direction d(t) with (2.9).

4. Perform a line search: optimize α = arg minα{SSE(ψ(t) + αd(t))}.

5. Update all the parameters: ψ(t+ 1) = ψ(t) + αd(t)

2.4 Quickprop

Quickprop algorithm[16] is a simple local adaptive second order learning algorithm in-

vented by Fahlman. In Quickprop, there’re two bold assumption: Firstly, each weight is

independent to each other. Secondly, it assumes the error function respect to each weight is

a parabola whose arms are opened upward. With these assumptions, each weight is updated

locally with the following formula, which is same as the local Newton’s method,

∆wk,i(t) =

∂C
∂wk,i

(t)

∂C
∂wk,i

(t− 1)− ∂C
∂wk,i

(t)
∆wk,i(t− 1) (2.10)

Since bold assumption was made while obtaining the simple update formula (2.10),

the situations violating the assumption are necessary to be considered. For example, if the

current slope is in the same direction as the previous slope and is the same size or large in

magnitude, the parabola’s arm is obviously not opened upward. When the successive two

slopes are similar, the denominator will be small and the result step size will be too large. If

∆w becomes 0 in some step, we have to find a way to wake the update again. To overcome

these problems, Fahlman introduced a ”maximum growth factor” µ (usually set as 1.75)

to constrain the update step size. When the previous weight falls below a threshold, the

conventional EBP update rule is taken to replace (2.10).

2.5 Levenberg-Marquardt algorithm

Due to the slow convergence of the first order gradient methods, most researchers inves-

tigated into second order algorithms. Different from the first order algorithms whose learning
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rate is a scalar, the second order algorithms use a matrix to replace the scalar learning rate.

Especially in Newton’s method, the update formula is,

∆ψ = H−1∇C (2.11)

where H ∈ RM×M (there are M parameters in total) is the hessian matrix, containing second

order derivatives information,

H =



∂2C
∂w2

1,1

∂2C
∂w1,1∂w1,2

· · · ∂2C
∂w1,1∂wK,m

∂2C
∂w1,2∂w1,1

∂2C
∂w2

1,2
· · · ∂2C

∂w1,2∂wK,m

...
...

. . .
...

∂2C
∂wK,m∂w1,1

∂2C
∂wK,m∂w1,2

· · · ∂2C
∂w2

K,m


(2.12)

While it’s very complex and time-consuming to calculate the exact Hessian matrix as

Newton’s method, Gauss-Newton method simplified it by approximating the Hessian matrix

as JTJ, in which J ∈ RP×M is the Jacobian matrix. There’re two types of Jacobian matrix

in the literatures: one type uses the network errors as objective function, the other uses the

network outputs as objective function. Following shows the Jacobian matrix using network

outputs as objective function, similarly, one can get the other type by replacing the outputs

ỹ = [ỹ1, ỹ2, ..., ỹP ]T in each numerator into e = [e1, e2, ..., eP ]T .

J =



∂ỹ1
∂w1,1

∂ỹ1
∂w1,2

· · · ∂ỹ1
∂wK,m

∂ỹ2
∂w1,1

∂ỹ2
∂w1,2

· · · ∂ỹ2
∂wK,m

...
...

. . .
...

∂ỹP
∂w1,1

∂ỹP
∂w1,2

· · · ∂ỹP
∂wK,m


(2.13)

Levenberg-Marquardt (LM) algorithm is considered a trust region modification to Gauss-

Newton, which introduced a damping factor µ[19, 20]. By adjusting the damping factor, LM

algorithm can switch between the Gauss-Newton algorithm and gradient descent method.
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For the two different types of Jacobian matrix, the update formula of the LM algorithm has

the opposite sign. For the Jacobian matrix using network errors as objective function, the

update formula is,

∆ψ = −(JTJ + µI)−1JTe (2.14)

where I is the identity matrix; For the Jacobian matrix using network outputs as objective

function, the update formula is,

∆ψ = (JTJ + µI)−1JTe (2.15)

each time, all the weights are updated as ψ = ψ + ∆ψ. In this paper, we use the second

type with the network outputs as objective function, which is more straightforward.

The tuning of the damping factor µ plays an important role in the efficiency of LM

algorithm. Given an initial guess µ0 and scale factor β > 1, a common procedure for µ

tuning can be described as:

1. compute forward and get SSE with (1.5).

2. calculate backward and get Jacobian matrix J.

3. compute ∆ψ with (2.15).

4. calculate forward with the parameters ψ + ∆ψ and get the new SSE. If the new SSE

decreased, then reduce µ as µ/β, update the parameters ψ = ψ + ∆ψ and go back to

step 1). If the new SSE increased, then increase µ as βµ and go back to step 3).

5. The training stops when the norm of gradient is less than some preset value or SSE

arrives the required value.

In this paper, the above tuning procedure and the suggested setting(µ0 = 0.01, β = 10)[21]

are used in the later experiments.
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2.6 Quasi-Newton Method (BFGS algorithm)

Similar to the Gauss-Newton method and LM algorithm, the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm doesn’t calculate the exact Hessian matrix[22]. Instead, it uses

a positive definite matrix B to approximate the Hessian matrix and update this matrix

iteratively.

Starting from the initial guess of all the weights and initial set of the matrix B (usually

initialized as identity matrix I). The BFGS algorithm optimize the weights iteratively,

following shows the update procedure in the tth iteration.

1. Obtain a direction p(t) by solving: B(t)p(t) = −∇C(t).

2. Perform a line search to find an acceptable step size α in the direction found in the

first step, so the update step will be δ(t) = αp(t), then update the weights: ψ(t+1) =

ψ(t) + δ(t).

3. Calculate the change of derivatives φ(t) = ∇C(t+ 1)−∇C(t).

4. Update the matrix: B(t+ 1) = B(t) +
φ(t)φT (t)

φT (t)δ(t)
− B(t)δ(t)δT (t)B(t)

δT (t)B(t)δ(t)

More conveniently, not only the Hessian matrix is approximated with matrix B, one can

also update the approximated inverse Hessian (B−1) by applying Sherman-Morrison formula.

So the update formula in step 4 can also be written as,

B−1(t+1) = B−1(t)+(1+
φT (t)B−1(t)φ(t)

δT (t)φ
)
δ(t)δT (t)

δT (t)φ(t)
− δ(t)φT (t)B−1(t) + B−1(t)φ(t)δT (t)

δT (t)φ(t)
(2.16)

2.7 Neuron by Neuron algorithm

Although the LM algorithm works efficiently, one will have trouble to store the Jacobian

matrix J while learning from a data set with large size. The Jacobian matrix is a P ×M

matrix, where P is the number of patterns and M is the number of tunable parameters.
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(a) conventional way for Jacobian multiplication

(b) alternative way for Jacobian multiplication

Figure 2.4: Core idea behind NBN algorithm

Since modern machine learning problems usually have a large data set whose P is huge, a

computer with limited memory could hardly handle the problem with the LM algorithm.

In order to overcome this deficiency, Wilamowski and Yu modified the computation

convention of the matrix multiplication in JTJ and proposed the Neuron by Neuron (NBN)

algorithm[23]. Observe Figure 2.4, the conventional computation is to calculate the Jacobian

matrix and stored as J, then multiplied JT and J to obtain the quasi Hessian matrix Q as

shown in 2.4(a). With the NBN algorithm, instead of storing the entire Jacobian matrix J,

the multiplication is processed pattern by pattern separately. For each pattern, one stores a

Jacobian vector jp which is actually the pth row of the Jacobian matrix. Then by multiplying

each jTp j, we could obtain a small quasi Hessian matrix qp for that pattern. Finally, the quasi

Hessian matrix Q = JTJ will be the sum of all the small hessian matrices (
∑P

p=1 qp).
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With the NBN algorithm, the space complexity is decreased. The LM algorithm could

be utilized for any regression problem no matter how large the data set is.

2.8 Forward only gradient calculation

The EBP algorithm provided a strategy to calculate the derivatives of the cost function

respect to every parameter in the FNN according to the differential chain rule. It works ef-

ficiently on the MLP architecture. However, for more complex architectures, like FCCN, or

Arbitrary Connected Networks (ACN), the back propagation procedure becomes quite com-

plicated. To simplify it, Wilamowski and Yu proposed a forward only strategy to calculate

the gradients in ACN by using Dynamic Programming (DP)[39]. This strategy removed the

backward propagation in EBP. Instead, all the required information are stored during the

forward propagation. Following gives a FCCN example for the forward only computation.

Observe Figure 2.5, the FCCN has 4 neurons, whose activation functions are h1(net),

h2(net), h3(net), h4(net) (h(•) is a function respect to each neuron’s net value). In general,

h1, h2 and h3 are sigmoid functions, h4 is linear function. For convenience, the weight

connecting from the ith neuron to the jth neuron is noted as wi→j, as shown in Figure 2.5.

All the other variables use the the preceding notation convention. Given the training pattern

Figure 2.5: Using forward only strategy on a FCCN with 4 neurons
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Table 2.1: δ table

neuron # 1 2 3 4

1 δ1,1

2 δ2,1 δ2,2

3 δ3,1 δ3,2 δ3,3

4 δ4,1 δ4,2 δ4,3 δ4,4

(xp, yp), whose actual output is ỹp, review (2.1), we need to calculate the derivative of the

actual output respect to each parameter (weight)
∂ỹp
∂wk,i

.

The forward only strategy defined a general delta variable δi,j, which is the derivative

of the ith neuron’s output respect to the jth neuron’s net value.

δi,j =
∂hp,i
∂netp,j

i ≥ j (2.17)

Then our target becomes,

∂ỹp
∂wk,i

=
∂hp,4
∂wk,i

= δ4,k
∂netp,k
∂wk,i

(2.18)

In the forward only strategy, a 4× 4 (number of neuron) δ table is created, as shown in

Table 2.1. One has to fill all the δ values in the table. The δs on the diagonal are actually

the h′(net) of each neuron. Other δs can be obtained according the above δs in the column

with the following rule,

δi,j = δi,i

i−1∑
m=j

δm,jwm→i (2.19)

After filling all the δs in the table, one can simply use the last row of the table to calculate

∂ỹp
∂wk,i

by multiplying the δ with the corresponding input of the neuron, as in (2.18).
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Chapter 3

Architecture Oriented Learning Algorithms

In Chapter 2, several well-known batch learning algorithms for the fixed size FNN are

introduced. However, the other task of the FNN learning, to determine the optimal network

size is still unsolved. The traditional strategy is to use trial and error approach. Try the

FNN with different size, for each size, those algorithms in Chapter 2 are carried out to tune

the parameters. The generalization performance is observed after each tuning. The process

is repeated until the satisfactory results are obtained. Although some of those gradient

learning algorithms work efficient, like LM, BFGS, etc, the trial and error approach costs

much useless computation time.

Except those popular gradient learning algorithms, there are some other algorithms

which are designed for some specific architectures. These algorithms take the advantage of

some special characteristics of the architecture and improved the learning efficiency, we call

them architecture oriented learning algorithms. Most of these algorithms not only tune the

parameters, but also involve the search of the network size during the tuning process. In this

chapter, we will review some of the popular algorithms specifically designed for the SLFN

and FCCN. As analyzed previously, the SLFN and FCCN have much in common. So most

learning algorithms of them could share to each other.

3.1 Linear Least Square Method

The least square model is a common model in statistics and optimization area. It can

be generally described as,

minimize
β

S =
n∑
i=1

(yi − f(xi,β))2 (3.1)
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where the β are the parameters of the model. In fact, while solving the regression problems,

the FNN is a nonlinear least square model, where f(•) is the output of the networks.

When the parameters of the least square model (β) are linear related,

f(xi,β) =
m∑
j=1

βjxi,j (3.2)

it becomes the linear least square model. This becomes a typical convex optimization. The

optima is unique and could be calculated in one step[26], as shown below,

β̂ = (XTX)−1XTy (3.3)

where X = [x1; x2; ...; xn], y = [y1, y2, ..., yn]T .

To our concern in this dissertation, since the SLFN and FCCN use linear activation

function for the output neuron, they can be regarded as a linear least square model with

respect to the output weights. As a result, the optimal output weights can always be de-

termined as (3.3). Most of the following architecture oriented learning algorithms in this

chapter are based on this LS method.

3.2 Kwok’s methods

In the 1990s, Kwok and Yeung made a comprehensive review to the constructive algo-

rithms to the FNN, especially the SLFN[24]. They also proposed a simple strategy for the

SLFN construction[25]. The constructive algorithm is a very common strategy to search the

network size. It starts from an empty SLFN or FCCN and then adds the hidden neurons

one by one. Each time adding the new neuron, some parameters tuning is processed. Before

introducing the constructive algorithm proposed by Kwok et al [25], we separate the param-

eters of the SLFN into 4 components, as shown in Figure 3.1. Assume the current SLFN

has K hidden neurons, one is trying to add the (K+ 1)th hidden neuron. All the parameters

while adding the new neurons could be divided into 4 parts: the hidden parameters of the
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Figure 3.1: SLFN construction

previous SLFN A, the output weights of the previous SLFN B, the hidden parameters of

the new added neuron C and the output weight corresponding to the new added neuron

D. In the Kwok’s algorithm, each time adding the new hidden neuron, the previous input

parameters (A) are frozen. Several objective functions were proposed for optimization of

the input parameters of the new neuron (C). Then with the optimized parameters C, all

the output weights (B , D) are determined by pseudo inverse.

Following shows the several objective functions proposed by Kwok and Yeung [25] for

optimizing hidden parameters of the new neuron (C). The cascade correlation objective func-

tion Scascor is inspired from the cascade correlation algorithm for FCCN (will be introduced

in section 3.5)[61].

1. S1 =
(eTKhK+1)

2

hTK+1hK+1

2. S2 = (eTKhK+1)
2

3. S3 =
(
∑P

p=1(eK,p − ēK)(hK+1,p − h̄K+1))
2∑P

p=1(hK+1,p − h̄K+1)

4. Scascor = |
∑P

p=1(eK,p − ēK)(hK+1,p − h̄K+1)|
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where eK are the residual errors of the current SLFN (with K hidden neurons), hK+1 are the

outputs of the new neuron, ēK and h̄K+1 are the average values of them over all the training

patterns. In order to alleviate the plateau problem during the optimization, transformed

version of these objective functions (
√
S1,
√
S2,
√
S3) are also used.

The Kwok’s algorithms can be summarized as following,

Start from a SLFN without hidden neurons, K = 0.

1. Add a randomly initialized hidden neuron, whose outputs are hK+1.

2. Using some algorithms to optimize the input parameters of this neuron (C) with one

of the above objective functions. (quickprop was used in [25])

3. With the new input parameters, recalculate the outputs of the new neuron hK+1.

Combined with previous network, compute the optimal output weights by LS method:

θ̂ = (HT
K+1HK+1)

−1HT
K+1y

4. K = K + 1. If the SSE of the new SLFN is acceptable, stop training; Otherwise, go

back to step 1 to add another neuron.

3.3 Extreme Learning Machine

In 2000s, Huang et al.[27] proposed an Extreme Learning Machine (ELM) for SLFN

learning, which attracted more and more attentions recently. The ELM is very simple to

implement and the biggest advantage is the training speed is hundreds or thousands faster

than other BP algorithms. The original ELM algorithm was proposed for training fixed size

SLFN. In the ELM, all the input parameters are randomly generated (normally in the range

[-1,1]) and there’s no further tuning. One only determines the optimal output weights with

the LS method in one step,

θ = H†y (3.4)
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where H† is the Moore-Penrose generalized inverse of the hidden matrix H[26],

H† = (HTH)−1HT (3.5)

Based on the ELM theory, many its variances were developed for SLFN construction.[28, 29,

30, 31, 32, 33, 34] Following introduces several popular constructive ELMs.

3.3.1 Incremental ELM (I-ELM)

In the Incremental ELM (I-ELM) algorithm[28], most parameters are frozen once they

are generated. Observe the SLFN in Figure 3.1, each time adding the new neuron, the

parameters A and B are frozen as previous values, parameters C are generated randomly

and then frozen. Only the parameter D is determined with the following formula,

θK+1 =
eTKhK+1

hTK+1hK+1

(3.6)

The learning procedure of the I-ELM algorithm can be summarized as following,

Starting from an empty SLFN without hidden neurons, K = 0, eK = y.

1. Add a random hidden neuron, whose outputs are hK+1.

2. Calculate output weight of this new neuron with (3.6).

3. Update error eK+1 = eK − θK+1hK+1.

4. K = K + 1. If the SSE of the new SLFN is acceptable, stop training; Otherwise, go

back to step 1 to add another neuron.

The convergence of the I-ELM had been proved mathematically[28]. However, since

most of the parameters are not tuned once they were randomly generated, the I-ELM usually

resulted in a SLFN much larger then required to arrive an acceptable error level.
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3.3.2 Enhanced Incremental ELM (EI-ELM)

The Enhanced Incremental ELM (EI-ELM) improved based on the I-ELM by selecting

the input parameters (C) of each new neuron from a random candidate pool, instead of

generating directly[29]. The procedure is shown below,

Set the pool size Nc, starting from an empty SLFN without hidden neurons, K = 0,

eK = y.

1. Randomly generate a candidate pool for the new neuron’s input parameters, whose

size is Nc. Then the outputs of each candidate are {h(1)
K+1,h

(2)
K+1, ...,h

(Nc)
K+1}.

2. For each candidate in the pool, calculate its corresponding optimal output weight with

(3.6), then compute the SSE if adding this neuron. (virtually add each candidate).

3. Select the candidate which leads to maximum SSE reduction and add it to the SLFN.

4. K = K + 1. If the SSE of the new SLFN is acceptable, stop training; Otherwise, go

back to step 1 to add another neuron.

The EI-ELM sacrifices the computation time to increase the network’s compactness.

While extra time cost on the selection of each neuron, the result SLFN could be more

compact than I-ELM while obtaining similar approximation accuracy.

3.3.3 Convex Incremental ELM (CI-ELM)

The Convex Incremental ELM (CI-ELM) improved the I-ELM based on the convex

optimization method by tuning more parameters[30]. Observe the SLFN architecture in

Figure 3.1, instead of determining only parameters D as the I-ELM, the CI-ELM both

calculates the optimal parameters D and rescales the previous output weights B. The

output weight of the new added neuron is determined as,

θK+1 =
eTK(eK − (y− hK+1))

(eK − (y− hK+1))T (eK − (y− hK+1))
(3.7)
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all the previous output weights are rescaled as,

θk = (1− θK+1)θk, k = 1, 2, ..., K (3.8)

The training procedure of CI-ELM is shown below,

Starting from an empty SLFN without hidden neurons, K = 0, eK = y.

1. Add a random hidden neuron, whose outputs are hK+1.

2. Compute optimal output weight of the new neuron with (3.7), rescale output weights

of other hidden neurons as (3.8).

3. K = K + 1. If the SSE of the new SLFN is acceptable, stop training; Otherwise, go

back to step 1 to add another neuron.

3.3.4 Error Minimized ELM (EM-ELM)

The Error Minimized ELM (EM-ELM) proposed by Feng et al.[31] can be considered to

be the constructive version of the original ELM. Each time adding the random new hidden

neurons, all the output weights (B and D) are kept to be least square optimal. However,

instead of doing the pseudo inverse repeatedly, the EM-ELM provides a recursive way to

update those output weights, which works more efficient than the original ELM with trial

and error.

The EM-ELM algorithm has two versions: Adding hidden neurons one by one; Adding

hidden neurons batch by batch. For the second version, one doesn’t know how big the batch

should be and it’s easy to make the network size large. Here, we only introduce the first

version, adding hidden neurons one by one. In the EM-ELM algorithm, two intermediate

matrices are defined,

DK =
hTK+1(I−HKH†K)

hTK+1(I−HKH†K)hK+1

(3.9)

UK = H†K(I− hK+1DK) (3.10)
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then all the output weights (including previous neurons and new neuron) are determined as,

θK+1 = H†K+1y =

 UK

DK

y (3.11)

Same as the ELM, the EM-ELM always kept the output weights to be LS optimal.

So it could result in much more compact SLFN than I-ELM, EI-ELM and CI-ELM while

obtaining similar approximation accuracy. Because it provides a recursive way to update

those optimal output weights, the EM-ELM works more efficiently than the direct ELM.

3.4 Support Vector Regression

Another special learning algorithm for the SLFN is the Support Vector Regression

(SVR)[55, 56, 57]. Some literatures distinct the SVR (or SVM) from the ANN as differ-

ent models. In fact, the SVR has the same architecture with SLFN and the kernels of the

SVR can be regarded as the activation functions of the SLFN’s hidden neurons. The SVR

was inspired by the Support Vector Machine (SVM), which was popularly used for binary

classification. The SVM was invented by Vladimir Vapnik and his co-workers in 1990s and

the popularity overtook the interest of ANN in machine learning community in the following

two decades until the appearance of deep learning.

The core idea of the SVM is to map the training data into a high or infinite dimensional

space by using the kernel function and search an optimal hyperplane to separate the two

classes in this space. The commonly used kernel functions include polynomial function, RBF

and hyperbolic tangent (tanh) function. If the training patterns can be separated linearly

in the high dimensional space, many different satisfactory hyperplanes exist. According to

the SVM, a good separation is achieved by the hyperplane that has the largest distance to

the nearest training pattern of any class (so-called functional margin). In general, the larger

the margin is, a better generalization the classifier will have. The training patterns nearest

to the hyperplane are called support vectors. Figure 3.2(a) shows a simple example of the
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Figure 3.2: Explanation of the SVM and SVR

SVM classifier. The solid circle and squares are the support vectors. The line in the middle

of the support vectors is the optimal separation solution.
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The SVR has a similar idea. In order to approximate the training data set, the SVR

maps them into a high dimensional space by using the kernel function and hopefully the

data can be approximated with a hyperplane in that space. For the linear approximation

task in the mapped high dimensional space, the SVR tries to build a hyper-tube, which can

include all the training patterns. The center of the tube will be the desired hyperplane. A

tube width ε needs to be set before training. Figure 3.2(b) shows a simple 2D example. The

approximation allows to exist some outliers in the training data by introducing the slack

variables ζ+ and ζ−. The penalty of the outliers will be added in the cost function.

The model of the SVM or SVR are described as,

f(x,θ) =
K∑
j=1

θjk(x,xsj) + b (3.12)

in which, there are K kernels (similar to the hidden neurons). Each kernel function is

k(x,xsj), which is similar to the activation function of the hidden neurons h(x) in SLFN.

{xs1 , ...,xsK} ∈ {x1, ...,xP} are the K support vectors selected from the training patters.

They are regarded as tunable parameters, which is similar to the input weights of the sig-

moid hidden neuron or the center of the RBF hidden neuron. θ = [θ1, θ2, ..., θK ]T are the

coefficients of each kernel (like SLFN’s output weights), b is the bias. The training procedure

of the SVM or SVR is to find the support vectors from the training data set, and search

the optimal parameters θ and b in continuous space. An advantage of the SVR over the

general gradient algorithms for SLFN is that the number of kernels K can be determined

automatically according to the selected support vectors.

Different from the conventional loss function (SSE), the SVR uses ε-insensitive loss

function Lp(yp, f(xp,θ)) for each pattern.

Lp(yp, f(xp,θ)) =

 0 if |yp − f(xp,θ)| ≤ ε

|yp − f(xp,θ)| − ε otherwise
(3.13)
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So if the point is in the tube, the error is zero; if the pattern is outside of the tube, the error

is linear related to the distance from the point to the tube. The entire loss function is,

L(y, f(x,θ)) =
P∑
p=1

Lp(yp, f(xp,θ)) (3.14)

At the same time, in order to reduce the complexity of the model, regularization is used by

constraining the size of the coefficients θ. By introducing the nonnegative slack variables

ζ+p , ζ
−
p (p = 1, 2, ..., P ) for each pattern, the SVR is robust to allow the existence of the

outliers outside the tube. To obtain the tube with as many data points as possible inside

it, the slack variables are added to the cost function so that the optimization makes the

slack variables as sparse as possible. With all above considerations, the SVR is formulated

as following constraint optimization problem,

minimize
θ

1

2
‖θ‖2 + C

P∑
p=1

(ζ+p + ζ−p )

subject to


yp − f(xp,θ) ≤ ε+ ζ+p

f(xp,θ)− yp ≤ ε+ ζ−p

ζ+p , ζ
−
p ≥ 0, p = 1, 2, ..., P

The above optimization could be converted to quadratic programming problem. One

has to preset the three hyperparameters before training: the tube width ε, the penalty C

and the kernel parameters (e.g. gain for sigmoid kernel, width for RBF kernel, etc.). The

result’s generalization performance relies much on the selection of these hyperparameters.

After the training, the SVR obtains several support vectors from the training data set. Then

the number of the kernels will be the number of support vectors. Each support vector will

be the parameters of the corresponding kernel (like input parameters of each hidden neuron

in SLFN). The result θ will be like the output weights of the SLFN. From the principle of

the SVR, one can observe that the hidden parameters of the SLFN are not searched in the
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continuous space. As a result, this strategy could hardly to find the optimal compact SLFN

model.

3.5 Cascade Correlation Algorithm

The Fully Connected Cascade Networks (FCCN) topology was originally proposed by

Fahlman and Lebiere in 1990 together with the Cascade Correlation (CasCor) algorithm[61].

Some literatures also called it as Cascade Correlation Neural Network. As shown in Figure

2.1(b), the FCCN topology has all the possible forward connections between every pair of

neurons, where each neuron is a single layer of the network. Since each hidden neuron of

the FCCN receives connections from all the inputs and all the previously installed hidden

neurons, it’s more powerful to represent high order nonlinear features. As a result, the

FCCNs are widely used in different application fields.

The CasCor algorithm starts with a FCCN with no hidden neurons and constructs

it by simply adding neurons one by one. Each time adding the new neuron, the CasCor

algorithm has two steps: Input training and Output training. In the Input training step,

several candidates of the hidden parameters of the new neuron are randomly generated.

Each candidate is independently optimized by gradient ascent methods (the original paper

used quickprop) to maximize the covariance between the outputs of this candidate neuron

and the residual errors of the previous FCCN.

Scascor = |
P∑
p=1

(eK,p − ēK)(hK+1,p − h̄K+1)| (3.15)

The candidate with the maximum trained covariance is inserted to the FCCN. Then in

the Output training step, all the output weights are tuned to minimize the SSE in (1.5).

One can use some gradient methods or the LS method for the optimization task. The

training procedure of the CasCor algorithm is exactly same as the previous mentioned Kwok’s

method, though one is training FCCN and the other is training the SLFN. As a result, all
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the objective functions proposed by Kwok and the covariance of the CasCor could be shared

for construction of both SLFN and FCCN.

3.6 Cascade2 Algorithm

While the CasCor algorithm worked well on many classification problems, like the two-

spiral problem and the parity-N problem, it was argued that the covariance measurement for

each hidden neuron’s selection tended to make it saturate, which was not suitable for smooth

regression problems[62, 63, 64]. For this reason, a second version of learning algorithm from

the original author, the Cascade2 algorithm, had been investigated in several literatures[65].

The Cascade2 acts similar to the original CasCor algorithm, which has two steps: Input

training and Output training. The Output training step is exactly same as the CasCor

algorithm. In the Input training step, the Cascade2 doesn’t use the covariance criteria to

tune the input parameters of each candidate. Instead, it optimizes the input weights and

output weight by minimizing the error between the weighted outputs of this neuron and the

previous FCCN’s residual error.

3.7 Orthogonal Least Square Algorithm

The Orthogonal Least Square (OLS) algorithm is a stepwise forward selection method[35,

36]. It was popularly used in RBF networks construction[37, 38]. Recently, Huang et. al.[60]

utilized the OLS on the FCCN construction and proposed an OLSCN algorithm, which

improved the learning performance a lot compared to the CasCor algorithm. In fact, the

OLS algorithm is a constructive version of the LS method. By converting each component

(neuron) to the orthogonal basis vector, each component’s contribution to the squared error

reduction can be considered independently. As a result, it’s convenient to use the OLS algo-

rithm in SLFN and FCCN construction. Following gives a simple introduction to the OLS

algorithm.
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In the SLFN or FCCN construction scheme, a candidate pool is initially generated for

the (K + 1)th neuron selection. Their input parameters are,

Wpool
K+1 = {w(1)

K+1,w
(2)
K+1, ...,w

(N)
K+1} (3.16)

the corresponding outputs are,

Hpool
K+1 = {h(1)

K+1,h
(2)
K+1, ...,h

(N)
K+1} (3.17)

The core idea of the OLS algorithm is to convert the components of the model (the

columns of HK) into a set of orthogonal basis vectors by using QR decomposition.

HK = OK∆K (3.18)

in which, ∆K is a (K + 1)× (K + 1) upper triangle matrix with 1s on the diagonal.

∆K =



1 a01 a02 · · · a0K

0 1 a12 · · · a1K

0 0
. . . . . .

...

...
. . . . . . 1 aK−1K

0 · · · · · · 0 1


(3.19)

OK is an N × (K + 1) matrix with orthogonal columns (o0 are all 1s as bias),

OK = [o0,o1, ...,oK ] oioj = 0, for all i 6= j (3.20)

With the storage of above decomposition for previous network, Gram-Schmidt process

is carried out to convert each candidate in (3.17) to the new orthogonal basis vector. So
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OK , ∆K are expanded to OK+1, ∆K+1 by simply adding a new column. The detail of the

process is described as below,

For i from 1 to N (every candidate in the pool),

1. Expanding new column to ∆K .

For j from 0 to K, a
(i)
jK+1 =

oTj h
(i)
K+1

oTj oj

2. Expanding new column to OK .

o
(i)
K+1 = h

(i)
K+1 −

∑K
j=0 a

(i)
jK+1oj

The advantage of the OLS algorithm is that by converting each component into an

orthogonal vector, the cost function (SSE) of FCCN with K hidden neurons can be presented

as,

C = yTy−
K∑
j=0

(oTj y)2

oTj oj
(3.21)

which means, every hidden neuron’s contribution to the total error reduction can be described

independent to each other.

As a result, for the (K + 1)th neuron, one just select the candidate with the biggest

contribution,

arg max
i
{[err](i)K+1 =

(o
(i)
K+1

T
y)2

o
(i)
K+1

T
o
(i)
K+1

} (3.22)

While one finished the selection process (assume Km neurons are selected), the least

square solutions of output weights can be achieved by solving the following equation,

∆Kmθ = gKm
(3.23)

in which,

gKm
= [

oT1 y

oT1 o1

,
oT2 y

oT2 o2

, ...,
oTKm

y

oTKm
oKm

]T (3.24)

Since ∆Km is a upper triangle matrix, it’s easy to solve (3.23) by using back substitution.
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Though the original OLS algorithm selects the best candidate from the pool as (3.22),

it’s not reasonable and necessary to search the parameters in the discrete space. With the

objective function in (3.22), one can search the optimal parameters in continuous space by

using some optimization methods. For example, in the OLSCN algorithm[60], a modified

Newton’s method was proposed to maximize the OLS objective function for searching each

optimal new neuron in the FCCN construction.

3.8 Casper Algorithm

All the above algorithms use the freezing strategy during the construction. Though

this strategy improves the learning efficiency, the result network is usually much larger than

required. To overcome this problem, Treadgold and Gedeon dropped the freezing strategy

and proposed a Casper algorithm[68, 69, 70] for the FCCN construction, which employed a

Simulated Annealing Rprop (SARPROP) algorithm[67] to tune all the parameters in each

stage.

The SARPROP algorithm was also proposed by Treadgold and Gedeon in 1998[67]. It

modified the original Rprop algorithm by cooperating with the Simulated Annealing algo-

rithm. With the aid of the Simulated Annealing algorithm, the SARPROP had more chances

to arrive the global optima instead of the local minima during the training. The SARPROP

also added the weight decay in the cost function in order to improve the generalization

performance. The derivative of the cost function respect to each weight is shown as,

∂C

∂wk,i

SARPROP

=
∂C

∂wk,i
− 0.01 ∗ wk,i

1 + w2
k,i

∗ SA (3.25)

where SA = 2−T∗epoch is the Simulated Annealing parameters decreasing exponentially as

the iteration increases, T is the temperature, which is usually set in the range 0.01 to 0.05.

The procedure of the SARPROP algorithm is similar to the Rprop algorithm. Figure 3.3

shows the pseudo code.
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1: ∀k, i: ∆k,i(0) = ∆0,
∂C
∂wk,i

(0) = 0.

2: for t← 1 to T do . Iteration number
3: for all the parameters (weights) do . update each weight
4: Calculate derivative of each weight ∂C

∂wk,i
with (2.14).

5: if ∂C
∂wk,i

(t− 1) ∗ ∂C
∂wk,i

(t) > 0 then

6: ∆k,i(t) = min(∆k,i(t− 1) ∗ η+,∆max)
7: ∆wk,i(t) = −sign( ∂C

∂wk,i
(t)) ∗∆k,i(t)

8: wk,i(t+ 1) = wk,i(t) + ∆wk,i(t)
9: else if ∂C

∂wk,i
(t− 1) ∗ ∂C

∂wk,i
(t) < 0 then

10: if ∆k,i(t− 1) < 0.4 ∗ SA2 then
11: ∆k,i(t) = ∆k,i(t− 1) ∗ η− + 0.8 ∗ r ∗ SA2 . r is random number in [0,1]
12: else
13: ∆k,i(t) = ∆k,i(t− 1) ∗ η−
14: end if
15: ∆k,i(t) = max(∆k,i(t),∆min)
16: ∂C

∂wk,i
(t− 1) = 0

17: else if ∂C
∂wk,i

(t− 1) ∗ ∂C
∂wk,i

(t) = 0 then

18: ∆wk,i(t) = −sign( ∂C
∂wk,i

(t)) ∗∆k,i(t)

19: wk,i(t+ 1) = wk,i(t) + ∆wk,i(t)
20: end if
21: end for
22: end for

Figure 3.3: SARPROP

Different from the freezing strategy of other algorithms, the Casper algorithm tuned

the entire FCCN with the SARPROP each time adding a new neuron. All the parameters

setting of the SARPROP are same as the original Rprop algorithm except the initial learning

rate ∆0. The Casper algorithm divides the parameters of the network into three groups: L1,

L2 and L3. Figure 3.4 shows a simple example when adding the second hidden neuron in

the FCCN construction. The first group (L1) includes the weights connecting the inputs or

previous neurons to the new added neuron. The second group (L2) is made up the weights

connecting the new added neuron to the output neuron. The third group (L3) consists of all

the rest weights. According to the analysis of Casper, the relation of the learning rates of

the three groups should be L1� L2 > L3. With this relation, the highest value of L1 allows

the new neuron to learn previous network error. Similarly, the high value of L2 as compared
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Figure 3.4: 3 groups parameters in Casper

to L3 allows the new neuron to cut down the error of network and avoids over interference

from other weights.
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Chapter 4

Hybrid Algorithm

Review those gradient learning algorithms in Chapter 2, all of them consider all the

parameters of the FNN equally as nonlinear. However, as mentioned in Chapter 3, while

solving the regression problems, the SLFN and FCCN have an important characteristic that

the output neuron is linear. As a result, all the output weights are linear related and their

optimal values can be determined in one step with the LS method.

Though many architecture oriented learning algorithms had taken this advantage, most

of them used freezing strategy (like CasCor) or random generation mechanism (like ELMs).

As a result, the training usually resulted in a network much larger than required. The

large network would waste computing units and sometimes causes the computation delays,

especially for the deep FCCN. On the other hand, the large network is more likely to overfit

the data compared to the compact network. In order to achieve a compact network, the

hidden parameters are necessary to be tuned.

The idea of combining the LS method and gradient algorithms to tune all the parame-

ters is not new. McLoone et al.[42] proposed a hybrid Linear/Nonlinear training algorithm

for SLFN training and used Full memory BFGS (FM) to optimize the nonlinear hidden

parameters. Hui Peng et al.[43] combined LM algorithm and LS method for RBF networks

training. Jian-Xun Peng et al.[44] proposed a new Jacobian matrix while using LM algo-

rithm for nonlinear parameters optimization. Their experiments illustrated that the hybrid

training outperformed the conventional optimization algorithms for SLFN training. How-

ever, the computation of the new Jacobian matrix by Jian-Xun Peng et al.[44] involved a

large matrix manipulation (e.g. R ∈ RP×P in [44]). It’s not practical for most of the modern

regression problems with large data set. In this chapter, we derive a simpler update formula
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for this idea and proposed the hybrid learning algorithm for the fixed size SLFN and FCCN.

The hybrid algorithm also belongs to the architecture oriented learning algorithms defined

in Chapter 3.

4.1 Review Conventional LM Algorithm

The conventional BP algorithm with LM optimization(LM-BP) treated all the parame-

ters of SLFN or FCCN nonlinear and tuned them together. Define ψ = [WT
v ;θ] as a vector

including all the tunable parameters. The update formula of the conventional LM-BP algo-

rithm was introduced in Chapter 2 (2.14)(2,15). The Jacobian matrix could use the network

errors or outputs as objective function. Here, we use the direct outputs version as shown in

(2.13).

The Jacobian matrix of the conventional LM-BP algorithm consists of two compo-

nents —— derivatives over nonlinear parameters(Wv) Jn and derivatives over linear output

weights(θ) Jl.

J = [Jn,Jl] (4.1)

The nonlinear part Jn is,

Jn = [
∂ỹ

∂w1,1

,
∂ỹ

∂w1,2

, ...,
∂ỹ

∂wK,m
]

= [
∂h1

∂w1,1

θ̂1,
∂h1

∂w1,2

θ̂1, ...,
∂hK
∂wK,m

θ̂K ] (4.2)

The linear part is actually the hidden matrix Jl = H.

The detailed procedure of the conventional LM-BP algorithm is shown in Section 2.5.

4.2 Derive New Update Formula for SLFN

When combining with the LS method for the output weights, we only need to update

the nonlinear part parameters. The linear part of the Jacobian matrix Jl should be dropped.
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However, we can’t use the nonlinear part of the Jacobian matrix Jn directly in the old update

formula (2.13), the new Jacobian matrix Jnew and the new update formula for only nonlinear

parameters should be derived.

∆Wv = (JTnewJnew + µI)−1JTnewe (4.3)

While determining the optimal output weights with LS method, as shown in (4.4), the

output weights become dependent variables of the nonlinear parameters.

θ̂ = (HTH)−1HTy (4.4)

where the nonlinear parameters W are included in the hidden matrix H. Then the actual

outputs become,

ỹ = Hθ̂ = H(HTH)−1HTy (4.5)

So in the new Jacobian matrix, the column for the ith parameter of the kth hidden neuron(wk,i)

is,

∂ỹ

∂wk,i
=
∂(H(HTH)−1HT )

∂wk,i
y (4.6)

in which,

∂(H(HTH)−1HT )

∂wk,i

=
∂H

∂wk,i
(HTH)−1HT + H(HTH)−1

∂HT

∂wk,i

−H(HTH)−1
∂HT

∂wk,i
H(HTH)−1HT

−H(HTH)−1HT ∂H

∂wk,i
(HTH)−1HT (4.7)

Denote Rk,i, Sk,i as,

Rk,i =
∂H

∂wk,i
(HTH)−1HT (4.8)
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Sk,i = H(HTH)−1
∂HT

∂wk,i
H(HTH)−1HT (4.9)

Substitute into (4.6)(4.7), then,

∂ỹ

∂wk,i
= (Rk,i − STk,i)y + (RT

k,i − Sk,i)y (4.10)

Because,

(Rk,i − STk,i)y =
∂H

∂wk,i
(HTH)−1HTy

−H(HTH)−1HT ∂H

∂wk,i
(HTH)−1HTy

=
∂H

∂wk,i
θ̂ −H(HTH)−1HT ∂H

∂wk,i
θ̂

= (I−H(HTH)−1HT )
∂hk
∂wk,i

θ̂k (4.11)

(RT
k,i − Sk,i)y = H(HTH)−1

∂HT

∂wk,i
y

−H(HTH)−1
∂HT

∂wk,i
H(HTH)−1HTy

= H(HTH)−1
∂HT

∂wk,i
(y−Hθ̂)

= H(HTH)−1
∂HT

∂wk,i
e

= H(HTH)−1



0

...

∂hT
k

∂wk,i
e

...

0


(4.12)
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Q =



0 0 · · · 0 0 0 · · · 0 · · · · · · 0 0 · · · 0
∂hT

1

∂w11
e ∂hT

1

∂w12
e · · · ∂hT

1

∂w1m
e 0 0 · · · 0 · · · · · · 0 0 · · · 0

0 0 · · · 0 ∂hT
2

∂w21
e ∂hT

2

∂w22
e · · · ∂hT

2

∂w2m
e · · · · · · 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

. . . . . .
...

...
. . .

...

0 0 · · · 0 0 0 · · · 0 · · · · · · ∂hT
K

∂wK1
e

∂hT
K

∂wK2
e · · · ∂hT

K

∂wKm
e

 (4.13)

So each column of the new Jacobian matrix can be divided into two parts. As a result,

the whole Jacobian matrix can be divided into two components.

Jnew = U + V (4.14)

in which, U’s every column comes from (4.11); V’s every column comes from (4.12).

One may notice that the last term ( ∂hk

∂wk,i
θ̂k) in (4.11) is exactly the corresponding column

in the conventional Jacobian matrix(Jn) in (4.2). So,

U = (I−H(HTH)−1HT )Jn (4.15)

For the second component, we define a sparse matrix Q ∈ R(K+1)×(Km) as shown in

(4.13). Then,

V = H(HTH)−1Q (4.16)

Substitute (4.14-4.16) into (4.3), one can get the update of the nonlinear parameters,

∆Wv = (UTU + UTV + VTU + VTV + µI)−1(UTe + VTe) (4.17)

Notice that (I−H(HTH)−1HT ) is symmetric and idempotent. So,

UTU = JTn (I−H(HTH)−1HT )T (I−H(HTH)−1HT )Jn

= JTnJn − JTnH(HTH)−1HTJn (4.18)
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UTV = JTn (I−H(HTH)−1HT )H(HTH)−1Q

= JTnH(HTH)−1Q− JTnH(HTH)−1HTH(HTH)−1Q

= JTnH(HTH)−1Q− JTnH(HTH)−1Q = 0 (4.19)

VTU = (UTV)T = 0 (4.20)

VTV = QT (HTH)−1HTH(HTH)−1Q

= QT (HTH)−1Q (4.21)

Notice that,

(HTH)−1HTe = (HTH)−1HT (y− ỹ)

= (HTH)−1HTy− (HTH)−1HT ỹ

= θ̂ − (HTH)−1HTHθ̂ = 0 (4.22)

which is a zero vector, so,

UTe = JTn (I−H(HTH)−1HT )Te

= JTne− JTnH(HTH)−1HTe = JTne (4.23)

VTe = QT (HTH)−1HTe = 0 (4.24)
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Substitute (4.18-2.21)(4.23-4.24) into (4.17), one can get the following simple update

formula(4.25) for the nonlinear parameters.

∆Wv = (JTnJn − JTnH(HTH)−1HTJn + QT (HTH)−1Q + µI)−1JTne (4.25)

Observe the new update formula, the manipulating matrices include JTnJn ∈ RKm×Km,

{QT ,JTnH} ∈ RKm×(K+1), (HTH)−1 ∈ R(K+1)×(K+1). They are relatively cheaper compu-

tation compared to the new Jacobian matrix proposed by Jian-Xun Peng et al.[44], which

involved a P × P matrix operation. Since general approximation problems have much more

data than number of parameters, that P � (Km + K + 1), the proposed hybrid algorithm

is more suitable for approximation with large data sets.

4.3 Regularization

By using (4.25) to update the nonlinear hidden parameters and using (4.4) to determine

the linear output weights in each iteration, the optimization process is simplified and sped

up. However, one deficiency of the algorithm is that HTH is required to be nonsingular in

every step. To avoid ill-conditioning case, it is suggested to add a regularizor λ to it. So the

optimal linear weights in (4.4) becomes,

θ̂ = (HTH + λI)−1HTy (4.26)

This is also called ridge regression, which is actually equivalent to,

minimize
θ

C = (y−Hθ)T (y−Hθ)

subject to ‖θ‖ < γ, for some γ > 0.

(4.27)

which constraints the search of the linear parameters in some trust region in each iteration.

The constraint γ is related to the regularizor λ.
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In fact, while one uses regularized LS to determine the linear weight in each iteration,

the derived update formula for nonlinear parameters are much more complex than (4.25).

However, experiments showed that adding regularizor to (4.25) directly, which is (4.28), still

performed well in most problems.

∆Wv = (JTnJn − JTnH(HTH + λI)−1HTJn + QT (HTH + λI)−1Q + µI)−1JTne (4.28)

Review the procedure of the conventional LM-BP algorithm, the proposed hybrid al-

gorithm modified the step 2) to calculate the nonlinear Jacobian matrix Jn (4.2) and the

sparse matrix Q (4.13). In step 3), instead of ∆ψ, ∆Wv is calculated with (4.28). Another

notation is that, each time update the nonlinear parameters, the linear parameters need to

update immediately with (4.26), so that to keep the linear parameters to be the LS optimal

1: Assume the SLFN has K hidden neurons, all the nonlinear parameters included in a
vector Wv, the linear output weights are θ. Set damping factor µ = 0.01, its upper
bound µU and lower bound µL, scale factor β = 10, regularizor λ, maximum iteration
T .

2: for t← 1 to T do
3: Calculate Jn with (4.2) and Q with (4.13);
4: for n← 1 to 10 do
5: Calculate ∆Wv with (4.28);
6: Compute forward with parameters Wv + ∆Wv, determine output weights as

(4.26), calculate SSE(t);
7: if t ≥ 2 then
8: if SSE(t) ≤ SSE(t− 1) then
9: µ← max{µL, µ/β}

10: Wv ←Wv + ∆Wv

11: break
12: else
13: µ← min{µU , µβ}
14: end if
15: end if
16: end for
17: end for

Figure 4.1: Pseudocode of Hybrid Algorithm For Fixed Sized SLFN
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all the time. Figure 4.1 shows the pseudocode of the entire hybrid algorithm for training a

fixed size SLFN.

4.4 New Update Formula for FCCN

Review the derivation of the hybrid update formula for SLFN, everything can be reused

for the FCCN. The only difference between the SLFN and the FCCN is the calculation of

the Jn and the Q. Compared with the SLFN, it’s more complex to calculate the Jacobian

matrix for the FCCN, since every neuron collects the backpropagated signals from all the

following neurons, as shown in Figure 2.1(b). Assume current FCCN has K hidden neurons,

then there are r = (D+1)+(D+2)+ ...+(D+K) = KD+
K(K + 1)

2
nonlinear parameters.

So the nonlinear Jacobian matrix Jn has r columns,

Jn = [
∂ỹ

∂w10

, ...,
∂ỹ

∂w1D

, ..., ...,
∂ỹ

∂wk0
, ...,

∂ỹ

∂wk(D+k−1)
] (4.29)

The sparse matrix Q ∈ R(k+D+1)×r becomes a blockwise lower triangular matrix with the

first D + 1 rows to be all zeros, as shown in (4.30).

Direct using of the backpropagation process according to the differential chain rule is

quite complex in the FCCN architecture. In this dissertation, we use the forward only

strategy by Wilamowski and Yu (shown in Section 2.8)[39] to calculate each components of

the Jn and Q.

The forward-only method removed the backpropagation process and created a lower

triangular δ table to store every desired values through the forward computation. Here, we

created a vector version of the δ table to store all desired values for calculating Jn and Q,

as shown in Table 4.1. The neuron number is from 1 to K in the order of the depth. ”o”

represents the linear output neuron. The vector in the cell (i,j) is the derivative of the ith

neuron’s output over the jth neuron’s net value for all the training patterns, denote as δi,j
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Q =



0 0 · · · 0 0 0 · · · 0 · · · · · · 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

. . . . . .
...

...
. . .

...

0 0 · · · 0 0 0 · · · 0 · · · · · · 0 0 · · · 0

∂hT
1

∂w10
e ∂hT

1

∂w11
e · · · ∂hT

1

∂w1D
e 0 0 · · · 0 · · · · · · 0 0 · · · 0

∂hT
2

∂w10
e ∂hT

2

∂w11
e · · · ∂hT

2

∂w1D
e ∂hT

2

∂w20
e ∂hT

2

∂w21
e · · · ∂hT

2

∂w2(D+1)
e · · · · · · 0 0 · · · 0

...
...

. . .
...

...
...

. . .
...

. . . . . .
...

...
. . .

...

∂hT
K

∂w10
e

∂hT
K

∂w11
e · · · ∂hT

K

∂w1D
e

∂hT
K

∂w20
e

∂hT
K

∂w21
e · · · ∂hT

K

∂w2(D+1)
e · · · · · · ∂hT

K

∂wK0
e

∂hT
K

∂wK1
e · · · ∂hT

K

∂wK(D+K−1)
e



(4.30)

Table 4.1: vector version of the δ table

neuron
#

1 2 3 · · · K o

1 ∂h1

∂net1

2 ∂h2

∂net1

∂h2

∂net2

3 ∂h3

∂net1

∂h3

∂net2

∂h3

∂net3

...
...

...
...

. . .

K ∂hK

∂net1

∂hK

∂net2

∂hK

∂net3
· · · ∂hK

∂netK

o ∂ỹ
∂net1

∂ỹ
∂net2

∂ỹ
∂net3

· · · ∂ỹ
∂netK

1

* All the partial derivatives are pointwise.

(The partial derivatives shown in the table are all pointwise).

δi,j =
∂hi
∂netj

= [
∂h1,i
∂net1,j

,
∂h2,i
∂net2,j

, ...,
∂hP,i
∂netP,j

]T (4.31)

The values on the diagonal are directly the slopes of each single neuron. The other

values are computed according to all the above values in the same column.

δi,j = δi,i ◦
i−1∑
m=j

δm,jwm→i (4.32)
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where wm→i is the weight connecting the mth neuron to the ith neuron, ◦ represents pointwise

product of two vectors.

After going through the forward computation, with the vectors stored in the δ table,

one can calculate the Q matrix with the first K rows and compute the Jn matrix with

the last row. For example, with the vector ∂hi

∂netj
(K ≥ i ≥ j ≥ 1), one can calculate the

corresponding differential term in matrix Q as,

∂hi
∂wjm

=
∂hi
∂netj

◦H(:,m) m = 0, 1, ..., D + j − 1 (4.16)

in which, H(:,m) is the mth column of the signal matrix H. Also given the vector ∂ỹ
∂neti

in

the last row, one can calculate the corresponding column in the nonlinear Jacobian matrix

Jn as,

∂ỹ

∂wim
=

∂ỹ

∂neti
◦H(:,m) m = 0, 1, ..., D + i− 1 (4.17)

In fact, while using the forward only strategy for conventional LM algorithm, only the

last row of the δ table is finally used and the rest values are dropped, like most dynamic

programming problems. However, the hybrid algorithm used all the values in the table,

which may be more suitable to employ the forward only strategy.

Same as in the SLFN, we introduce a regularizor λ to the hybrid algorithm for FCCN,

which constrains the search of the output weights in a trust region. As a result, the optimal

output weights are determined with (4.26), the update formula for the nonlinear parameters

uses (4.28). This regularization avoids the risk of ill conditioning, it can also guarantee a

better generalization for the training process.
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Chapter 5

Extend Hybrid Algorithm for Construction

The hybrid learning algorithm reduces the LM optimization dimension by converting the

linear output weights into dependent variables of the nonlinear parameters with LS method.

It improves the training efficiency compared to the conventional backpropagation with LM

optimization (LM-BP) algorithm. The hybrid algorithm works well while optimizing the

parameters of SLFN and FCCN with fixed size. In order to train the network size simulta-

neously, based on the hybrid algorithm in Chapter 4, an incremental constructive scheme is

proposed. We call the algorithm as Hybrid Constructive (HC) algorithm.

Since the SLFN and FCCN are similar in the construction, we don’t distinct them in this

chapter, call them FNN and introduce their construction together. Like other constructive

algorithms, we start from an empty FNN and then add the hidden neurons one by one.

However, the traditional freezing strategy is not used. Instead, each time adding a new

neuron, the previous proposed hybrid algorithm is used to tune all the parameters. The

result parameters of the previous training before adding the new neuron, are used as the

initial parameters of the new hybrid training after adding this neuron. Because the linear

output weights keep to be LS optimal in the hybrid algorithm, the convergence after adding

new hidden neuron is obvious.

5.1 When to add new neuron

Though the LM algorithm is one of the most efficient optimization algorithm, one defi-

ciency is that it can only find local minima, which means one have chance to fail during the

training. A common scheme is to initialize random parameters, train and validate, restart

with another random parameters if it fails. In fact, when the number of hidden neurons
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is not enough, even global minima still cannot meet the required error. When the training

entrapped into some local minima, no matter whether it is global minima, the proposed

hybrid constructive(HC) algorithm can get out of the local minima by introducing more

parameters(adding one more hidden neuron).

The criterion of evaluating the local minima is described as,

|C(t)− C(t−N)

C(t)
| < η (5.1)

in which, C(t), C(t−N) are the cost function (SSE) at the tth and the (t−N)th iteration.

N is the iteration latency. η is the decreasing threshold. Both N and η are preset by user.

5.2 How to add new neuron

While the local minima is detected as in (5.1), a new neuron is added to the current

FNN. One has two options to add the new neuron before the hybrid tuning: add a random

neuron directly; select or tune the parameters of the new neuron. In this section, we describe

both these two options. The first option is easy, one just generates random parameters for

the new neuron and adds it the FNN, we call it HC1 algorithm. For the second option, one

could use the objective functions by Kwok et al.[25] (Section 3.2), or the Cascade Correlation

criteria[61] (Section 3.5), etc. In this dissertation, we propose a new criteria, which uses a

similar criteria as the OLSCN algorithm[60] (Section 3.7). The Particle Swarm Optimization

is used for the selection (or tuning) of the new neuron’s parameters. We call the HC algorithm

using this selection option as HC2 algorithm.

Since the hybrid algorithm will be used to tune all the parameters of the network after

adding the new neuron, we need to update all the variables in the update formula of the

hybrid algorithm (4.28) each time. However, one doesn’t need to recalculate everything in

the update formula. In Section 5.2.1, we derive a simpler method to update those variables

in (4.28). Both the HC1 and HC2 algorithms could use this convenience for the variables
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update. In Section 5.2.2 and 5.2.3, we will introduce the neuron selection details of the HC2

algorithm.

5.2.1 Variables in Update Formula

Review the new update formula (4.28) of the hybrid algorithm, the variables that need

to update after adding new neuron include hidden matrix H, nonlinear Jacobian matrix Jn,

the sparse matrix Q, error vector e and output weights θ̂. Denote them in current FNN

(with K hidden neurons) as HK , JK , QK , eK and θ̂K . Their new values after adding a new

neuron are HK+1, JK+1, QK+1, eK+1 and θ̂K+1.

Assume the nonlinear parameters of the new neuron are wK+1 = [wK+1,1, ..., wK+1,m].

In the HC1 algorithm, wK+1 are randomly generated directly (normally in the range [-1,1]);

In the HC2 algorithm, wK+1 are the tuning results. Assume the outputs of the new neuron

for all the patterns are hK+1. Then,

HK+1 = [HK ,hK+1] (5.2)

Denote MK = (HT
KHK + λI)−1.

Now do a temporary linear LS regression to target hK+1 with current FNN (with same

regularization λ). Denote the optimal output weights of this regression as θ̂t.

θ̂t = (HT
KHK + λI)−1HT

KhK+1 = MKHT
KhK+1 (5.3)

and the error of this regression et is,

et = hK+1 −HK θ̂t (5.4)
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So,

MK+1 =


 HT

K

hTK+1

[ HK hK+1

]
+ λI


−1

=


MK +

MKHT
KhK+1h

T
K+1HKMK

a

−MKHT
KhK+1

a

−hTK+1HKMK

a

1

a



=

 MK +
θ̂tθ̂

T

t

a
− θ̂t
a

− θ̂
T

t

a

1

a

 (5.5)

in which, a is a scalar,

a = hTK+1et + λ (5.6)

Then the new optimal output weights are,

θ̂K+1 = MK+1H
T
K+1y

=

 MKHT
Ky +

MKHT
KhK+1h

T
K+1

a
(HKMKHT

Ky− y)

hTK+1

a
(y−HKMKHT

Ky)


=

 θ̂K − b

a
θ̂t

b

a

 (5.7)

in which, scalar b is denoted as b = hTK+1eK .

And the new errors are,

eK+1 = y−HK+1θ̂K+1 = eK −
b

a
et (5.8)
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So by introducing temporary LS regression to target hK+1, the update process after

adding the new neuron is simplified a lot. Based on the above formulas (5.2-5.8), without

matrix inversion, (HT
K+1HK+1 + λI)−1, θ̂K+1 and eK+1 can be updated according to their

previous values. For the nonlinear Jacobian matrix JK+1 and the sparse matrix QK+1,

according to their definitions (4.2)(4.13), their components { ∂h
T
1

∂w11
, ∂h

T
1

∂w12
, ...,

∂hT
K

∂wKm
} are exactly

same as previous. So one only need to update them according to the updated output weights

θ̂K+1 and errors eK+1 and then add the corresponding part for the new neuron.

5.2.2 Reformulate OLS algorithm

With the above formulas to update the variables in (4.28), the HC1 algorithm could be

processed clearly. However, the random generation of the parameters doesn’t guarantee the

new neuron would contribute much to the FNN in the regression task. Though expanding

the parameter dimension by adding a new neuron could help to drag the previous FNN

out of the local minima, when the new neuron is not well initialized, the hybrid algorithm

may still have trouble to escape the previous local minima. In this case, the new added

neuron doesn’t help to reduce the approximation errors (SSE). There’s no need to add these

useless neurons. In order to achieve a FNN as compact as possible, it’s necessary to filter

the initialization of each new neuron before real adding.

In Chapter 3, we introduced several architecture oriented learning algorithms. Differ-

ent criteria were used in those algorithms for selecting each new added neuron, like the

objective functions by Kwok et al.[25], the Cascade Correlation criterion[61], the Cascade2

criterion[65], the OLS criterion[60], etc. In this section, we propose a new criterion similar

to the OLS algorithm. However, we reformulated the OLS in a recursive way so that it’s

more convenient to work with the hybrid algorithm.

Consider a FNN with K hidden neurons, whose hidden matrix is HK . While HT
KHK is

nonsingular, the global optimal solution for the output weights θK can be simply computed
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as,

θ̂K = H†Ky (5.9)

where H†K is the Moore-Penrose generalized inverse of the hidden matrix HK .

H†K = (HT
KHK)−1HT

K (5.10)

For a guess of the (K + 1)th hidden neuron with hidden parameters w
(i)
K+1 and outputs

h
(i)
K+1, similar as in 5.2.1, do a temporary linear regression to the target h

(i)
K+1 with current

FNN (with K hidden neurons). We can get the optimal solution θ̂
(i)

t and error e
(i)
t of this

regression as shown in (5.3)(5.4).

Then let MK = (HT
KHK)−1, similar to (5.5), we have, (here we use the ordinary OLS

without regularization to filter the new neuron)

MK+1 = (HT
K+1HK+1)

−1

=

 HT
KHK HT

KhK+1

hTK+1HK hTK+1hK+1


−1

=


MK +

θtθ
T
t

hTK+1et
− θt

hTK+1et

− θTt
hTK+1et

1

hTK+1et

 (5.11)
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The Moore-Penrose generalized inverse of the new hidden matrix HK+1 is,

H†K+1 = MK+1H
T
K+1

=

 MKHT
K +

θt

hTK+1et
(θTt HT

K − hTK+1)

1

hTK+1et
(hTK+1 − θTt HT

K)



=

 H†K −
θte

T
t

hTK+1et
eTt

hTK+1et

 (5.12)

Denote the errors for current FNN as eK = y − ỹK , and the new errors after adding the

(K + 1)th neuron as eK+1. Based on the above update formula for H†K+1, it’s easy to derive

(5.13)(5.14) for θ̂K+1 and eK+1.

θ̂K+1 =


θ̂K −

hTK+1eK

hTK+1et
θ̂t

hTK+1eK

hTK+1et

 (5.13)

eK+1 = eK −
hTK+1eK

hTK+1et
et (5.14)

After adding the (K + 1)th hidden neuron, the total error reduction can be calculated

as,

[err]K+1 = CK − CK+1

= eTKeK − eTK+1eK+1

= 2
hTK+1eK

hTK+1et
eTKet −

(hTK+1eK)2

(hTK+1et)
2

eTt et (5.15)

59



Since (I−H(HTH)−1HT ) is symmetric and idempotent matrix,

eTKet

= (y−HK(HT
KHK)−1HT

Ky)T×

(hK+1 −HK(HT
KHK)−1HT

KhK+1)

= yT (I−HK(HT
KHK)−1HT

K)T×

(I−HK(HT
KHK)−1HT

K)hK+1

= hTK+1eK (5.16)

and,

eTt et

= hTK+1(I−HK(HT
KHK)−1HT

K)T×

(I−HK(HT
KHK)−1HT

K)hK+1

= hTK+1et (5.17)

Substitute (5.16)(5.17) into (5.15), one can get the contribution of the (K+ 1)th neuron

as shown in (5.18).

[err]
(i)
K+1 =

(h
(i)
K+1

T
eK)2

h
(i)
K+1

T
e
(i)
t

(5.15)

which can replace (3.11) to evaluate the error reduction contribution of the new neuron with

any possible hidden parameters.

Relation to the Conventional OLS Algorithm

While the conventional OLS algorithm used the orthogonal vectors as space basis vec-

tors, each new neuron was decomposed as a representation of the previous basis vectors and
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a new orthogonal vector,

hK+1 =
K∑
j=0

ajK+1oj + oK+1 (5.16)

Instead, the reformulated OLS algorithm regarded the orthogonal vectors as latent vari-

ables, and used the previous components as basis vectors directly.

hK+1 =
K∑
j=0

θt,jhj + et (5.17)

in which, θt,j is the jth element of θt.

Since {o0,o1, ...,oK} are the orthogonal basis vectors of {1,h1, ...,hK}, we can conclude

that the residual error of the temporary regression (et) in (5.17) is actually the decomposed

orthogonal vector of the new neuron (oK+1) in (5.16).

By reformulated the conventional OLS algorithm, all the parameters could be updated

recursively. Therefore, the proposed reformulated OLS algorithm is more suitable for dy-

namic construction of FNN.

5.2.3 Particle Swarm Optimization

Motivation

The conventional OLS algorithm mainly worked as a selection method, which used the

error reduction contribution criterion to pick the best component from a candidate pool.

However, the parameters of the SLFN are not necessary limit in the discrete space, like the

candidate pool. In this paper, the hidden parameters of the new added neuron are optimized

in the continuous space to maximize the new derived contribution function (5.15).

For this optimization task, Huang et al.[60] proposed a modified Newton’s method.

Because of the local property of the gradient based algorithm, several candidates need to

be trained to search the global optima. In fact, the error reduction contribution defined

in the OLS algorithm is a complex multimodal function respect to the hidden parameters.
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(a) Approximation by SLFN with 3 hidden
neurons

(b) Contribution versus hidden parameters
while adding the 4th neuron

Figure 5.1: Construct sigmoid SLFN for 1-dimension approximation

Figure 5.1 shows a 1-dimension approximation example while constructing a SLFN with

sigmoid activation function. For the 1-dimensional case, each hidden neuron only has two

parameters: one input weight and one bias. Therefore, the contribution function could be

visualized as a 3D surface, as shown in Figure 5.1(b). One can observe that, even for a

small-size SLFN, with which the approximation is not satisfied (as shown in Figure 5.1(a)),

many local maxima exist. Considering the multimodal characteristic and the existence of the

plateaus, in this paper, instead of the gradient based methods, Particle Swarm Optimization

(PSO) is used to tune the new added neuron’s hidden parameters[45].

Basis Concept of PSO

The PSO algorithm is a population based stochastic optimization technique developed

by Kennedy and Eberhart in 1995, inspired by social behavior of bird flocking and fish

schooling. Unlike genetic algorithm (GA), the PSO algorithm doesn’t have the complicated

operators, such as crossover and mutation[46], therefore it has less parameters to set. Due

to the efficiency and simplicity, PSO is popular used for neural networks learning alternative

to back propagation (BP) algorithm[47]-[50].
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The PSO algorithm optimizes an objective function by having a population of candi-

date solutions, called particles, which are initialized randomly in the searching space. Each

particle has a position and velocity. These particles are moved around the searching space

to seek the global optima by updating their positions and velocities iteratively according to

simple formula. The movement of each particle is influenced by its individual best known

position (pbest) and the best known position in the swarm (gbest). Assume a population

with N particles, for the ith particle, denote its position and velocity are w(i),v(i) ∈ Rm.

Then each dimension of w(i) and v(i) are updated as,

v
(i)
j = c0 × v(i)j + c1 × rand()× (pbest

(i)
j − w

(i)
j )

+ c2 × rand()× (gbestj − w
(i)
j ) (5.18)

w
(i)
j = w

(i)
j + v

(i)
j (5.19)

in which, w
(i)
j , v

(i)
j are the jth dimension of w(i) and v(i) (j = 1, 2, ...,m). c1, c2 are the

acceleration constants with positive values set by user. rand() is randomly generated number

in the range [0,1]. pbest
(i)
j is the jth dimension of the best known position (pbest(i)) in the ith

particle’s searching history. gbestj is the jth dimension of the best known position (gbest)

in the entire swarm. c0 is called inertia weight introduced by Shi and Eberhart[51], which

plays a key role in balancing the exploration and exploitation process of the swarm. Many

researches have been done on the parameters setting of the PSO algorithm[52, 53] In this

paper, we will use the suggested setting in [53]: c1 = c2 = 2; a linearly decreasing inertia

weight c0 starts at 0.9 and ends at 0.4.

It has been shown that the neural networks with smaller size tend to produce smoother

functions, which could generalize better[59]. Inspired by this, we have a bound for the

searching space of those hidden parameters. Assume the maximum amplitude of the input

data is r > 0, which means the input range ⊆ [−r, r]. Then the hidden parameters of each
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neuron is bounded as 10 times of this range, which is [−10r, 10r]. In particular for the

width σ of the RBF node, we bounded it as σ ∈ (0, 10r]. The velocity corresponding to

each parameter is bounded in the same range ([10r, 10r]) to constraint the exploration of

the swarm. As a result, in each iteration as the PSO proceeds, after the velocity is updated

with (5.18), it’s determined as,

v
(i)
j =


−10r if v

(i)
j ≤ −10r

v
(i)
j if − 10r < v

(i)
j < 10r

10r if v
(i)
j ≥ 10r

(5.20)

after the parameters are updated with (5.19), for all the parameters of sigmoid neuron and

centers of RBF neuron, they are determined as,

w
(i)
j =


−10r if w

(i)
j ≤ −10r

w
(i)
j if − 10r < w

(i)
j < 10r

10r if w
(i)
j ≥ 10r

(5.21)

for the width of RBF neuron, they are determined as,

w
(i)
j =


ε if w

(i)
j ≤ ε

w
(i)
j if ε < w

(i)
j < 10r

10r if w
(i)
j ≥ 10r

(5.22)

in which, ε is a small positive value set by user.

The pseudocode of the PSO procedure is shown in Figure 5.2. Each time after this pro-

cedure, the optimal parameters of the new hidden neuron is stored in gbest. The variables

θ̂t, et corresponding to this best particle will be reused for the update of H†K+1, θ̂K+1 and

eK+1 according to (5.12-5.14).
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1: Assume current SLFN has K hidden neurons, whose hidden matrix is HK , the Moore-
Penrose generalized inverse of the hidden matrix is H†K , the optimal output weights of

current SLFN is θ̂K , the error is eK . One is trying to add the (K+ 1)th hidden neuron.

2: Initialize a population of N particles with random positions {w(1)
K+1,w

(2)
K+1, ...,w

(N)
K+1}

and random velocities {v(1)
K+1,v

(2)
K+1, ...,v

(N)
K+1}. Each position is initialized as pbest(i),

whose fitness calculated by (16-18) is fi. Pick the maximum fitness as fg and the
corresponding particle position as gbest.

3: for t← 1 to T do . Iteration number
4: for i← 1 to N do . Each particle
5: for d← 1 to D do . Each dimension
6: update each velocity with (24)(26)
7: udpate each parameter with (25)(27)(28)
8: end for
9: Calculate fitness [err]

(i)
K+1 of current parameters using (16-18)

10: if [err]
(i)
K+1 > fi then

11: pbest(i) ← w
(i)
K+1

12: fi ← [err]
(i)
K+1

13: end if
14: if [err]

(i)
K+1 > fg then

15: gbest← w
(i)
K+1

16: Store θ̂t and et
17: fg ← [err]

(i)
K+1

18: end if
19: end for
20: end for

Figure 5.2: Selection of the New Neuron with PSO

5.3 When to stop adding

The construction process will stop when one of the following criterion is satisfied.

1. The cost function (SSE) meets the desired value ε, C(t) < ε.

2. The number of iteration arrives the maximum number of iteration (T ) set by the user.

3. The number of hidden neurons arrives the maximum number of hidden neurons (Kmax)

set by user.

4. When the training saturates so that adding more neurons does not help the minimiza-

tion of SSE. Similar as the start adding criterion, denote t(K) as the iteration number
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to add the Kth hidden neuron. When the following condition satisfied, the construction

can stop.

|C(t(K)− 1)− C(t(K + L)− 1)

C(t(K)− 1)
| < τ (5.23)

in which, L, τ are parameters set by user. L is the neuron number latency, τ is thresh-

old. When the above condition meets, we’ll remove the neurons from K to K +L and

use the parameters at the iteration t(K)− 1.
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Chapter 6

Experiments

6.1 Experiments on the HC1 Algorithm for SLFN Construction

In this section, the first kind of Hybrid Constructive Algorithm (HC1), which adds

randomly initialized new neuron each time, is experimented on several practical regression

problems by constructing the SLFN. All the experiments use the Root Mean Square Error

(RMSE) to evaluate the approximation accuracy.

RMSE =

√
C

P
(6.1)

in which, C is SSE defined in (1.4) and P is the number of patterns.

The experiment environment consists of: Windows 7 Enterprise 64-bit operating sys-

tem, Intel®Core™2 Quad CPU Q8400 2.67GHz process, 4.00GB RAM, MATLAB R2012a

platform.

6.1.1 SinE function

In this example, a rapidly changing continuous SinE function (6.2) is given to test the

efficiency of the HC1 algorithm for a sigmoid SLFN construction.

y(x) = 0.8 exp(−0.2x) sin(10x) (6.2)

2000 points were randomly generated in the range [0,10] for training while 1000 points

were picked in the same range randomly for testing. Both training and testing data were

added gaussian noise with variance V ar = 0.001, as shown in Figure 6.1. SLFN with sigmoid
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Figure 6.1: Training and testing data set
for SinE function approximation

(a) training error (RMSE) (b) Approximation result

Figure 6.2: One example trial while using HC1 algorithm to approximate SinE function.
(a) shows the decreasing error (RMSE) during the 1000 iterations, vertical lines are the

moment to add new hidden neuron. (this trial ended with 17 hidden neurons and training
RMSE=0.1302, testing RMSE=0.1234) (b) shows the approximation result of this trial.

function in hidden layer were constructed with the proposed HC1 algorithm, conventional

BP algorithm with LM optimization (LM-BP) and Extreme Learning Machine (ELM). Each

algorithm was trained 100 trials from random initialization. The LM-BP and ELM trained

SLFN with different size by trial and error. The maximum number of iteration of both HC1

and LM-BP were set as T = 1000. For the proposed HC1 algorithm, the maximum number

of hidden neurons was Kmax = 100, iteration latency and decreasing threshold for adding
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Table 6.1: Experiment Results Comparisons for SinE Function Approximation

Algorithms Number of hidden nodes
training RMSE testing RMSE

Average training time (s)
mean std mean std

LM-BP 24 0.1544 0.0079 0.1468 0.0091 12.47

LM-BP 26 0.1539 0.0072 0.1464 0.0085 16.03

LM-BP 28 0.1537 0.0081 0.1463 0.0097 17.39

ELM 100 0.1634 0.0433 0.1624 0.0615 0.02

ELM 200 0.1557 0.0988 0.1729 0.1462 0.04

ELM 300 0.1384 0.0828 0.1586 0.1244 0.06

HC1 24.6 (average) 0.1388 0.0204 0.1317 0.0213 8.8843

neuron criterion were N = 10, η = 0.001. The neuron number latency and threshold for

stopping criterion were set as L = 10, τ = 0.001. Regularizor in (10) is set as λ = 0.001.

Figure 6.2 shows one of the 100 trials while using HC1 algorithm to approximate the

SinE function. One can observe that the training was dragged out of some local minima by

adding more neurons. Since each training continued on the previous training results, the

computation in the early stage was light. Therefore, it costs much less computation time

than training the SLFN with the same size by using the LM-BP algorithm.

The LM-BP algorithm and ELM optimized SLFN with fixed size. Trial and error

approach needs to be used to determine the optimal network size. Because of the rapid

changing of the SinE function, as shown in Figure 6.1, many trials need to be considered.

Table 6.1 shows the comparison results of these algorithms. Benefit from the random setting

of all the nonlinear parameters, the ELM algorithm can train the SLFN hundreds of times

faster than both LM-BP and HC algorithms to achieve an acceptable accuracy. However,

because there’s no further tuning for those random nonlinear parameters, the training always

leads to a very large SLFN.

6.1.2 Peaks Function Approximation

The peaks function is a popular 2-dimension nonlinear benchmark for approximation

algorithms. In this experiment, we used a normalized format of peaks function (6.3). Figure.
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Figure 6.3: Peaks function

6.3 shows the mesh plot of the ideal peaks function.

z =(0.3 + 1.8x+ 2.7x2) exp(−1− 6y − 9x2 − 9y2)−

(0.6x− 27x3 − 243y5) exp(−9x2 − 9y2)−
1

30
exp(−1− 6x− 9x2 − 9y2)

(6.3)

In the experiment, 2000 points were generated randomly in the range [-1,1] as training

sets, and another 1000 points were generated in the same way as testing sets. All the patterns

added a guassian noise with variance V ar = 0.01. A SLFN with RBF activation function

was constructed with the proposed HC1 algorithm, LM-BP algorithm by trial and error, and

ELM by trial and error. All the algorithms ran 100 trials from random initial parameters.

The maximum number of iteration of the LM-BP algorithm and the HC1 algorithm are set

as 100 and 150. For HC1 algorithm, all the other settings were the same as the previous

experiment.

The experiment results are shown in Table 6.2. From the comparison, although ELM

requires much less training time compared to those optimization methods, several times

larger SLFN is required to achieve the same accuracy. While using LM-BP algorithm, one

needs to try SLFN with 4, 5, 6, etc. hidden nodes, each of which cost much computation
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Table 6.2: Experiment Results Comparisons for Peaks Function Approximation

Algorithms Number of hidden nodes
training RMSE testing RMSE

Average training time (s)
mean std mean std

LM-BP 4 0.1460 0.0251 0.144773 0.0238 0.2918

LM-BP 5 0.1342 0.0234 0.1335 0.0221 0.3852

LM-BP 6 0.1311 0.0242 0.1304 0.0231 0.4811

LM-BP 7 0.1203 0.0197 0.1199 0.0187 0.5639

ELM 20 0.1517 0.0093 0.1527 0.0159 0.0054

ELM 30 0.1348 0.0079 0.1448 0.0673 0.0076

ELM 40 0.1228 0.0069 0.1352 0.0811 0.0102

ELM 50 0.1141 0.0056 0.1248 0.0445 0.0135

HC1 6.54 (average) 0.1157 0.0189 0.1160 0.0178 0.4405

time. With the proposed HC1 algorithm, the network size and the parameters can be trained

simultaneously, and high accuracy can be achieved with a compact SLFN.

6.1.3 UCI real life problems

In this section, these algorithms were compared on several multivariate real life ap-

proximation problems from the UCI database[54]. The specifications of the data sets are

shown in Table 6.3. All the data sets were approximated by the SLFN with sigmoid acti-

vation function. Support Vector Regression with sigmoid kernel was also experimented for

comparison.

The maximum number of iterations for LM-BP and HC1 algorithms were both set

as 100. With HC1 algorithm, the network size can be determined automatically during

training. In this experiment, 100 trials had been run, the averaged network size and training

time are shown in Table 6.5; the mean testing error (RMSE) and the corresponding standard

deviation (std) are shown in Table 6.4. For the LM-BP and ELM algorithms, trial and error

approach was used for determining network size. SLFN with different sizes were trained by

LM-BP and ELM, the optimal network size is shown in Table 6.5. Then the SLFN with the

optimal network size for each problem was trained by LM-BP and ELM for 100 trials. The

averaged training time, mean testing error (RMSE) and corresponding standard deviation
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Table 6.3: UCI data sets specifications

Data Sets # Training Patterns # Testing Patterns Input Dimension

Abalone 2924 1253 8

Auto-MPG 274 118 7

Auto-Price 111 48 15

Boston Housing 354 152 13

California Housing 14448 6192 8

Delta-Ailerons 4990 2139 5

Delta-Elevators 6662 2855 6

are shown in Table 6.5 and Table 6.4. While training SVR, LIBSVM [58] was carried out and

ε−SVR algorithm was used. Since SVR is deterministic, that the training results only relied

on setting of hyperparameters (penalty C, kernel parameter γ and ε in loss function), no

statistics were recorded. Instead, grid search technique was used to determine the optimal

setting of these hyperparameters[57]. The penalty C was searched from 1 to 104 with scale

step 4
√

10; The parameter of sigmoid kernel γ was searched from 10−4 to 1 with the same scale

step; ε was searched in [0.1, 0.05, 0.02]. The optimal combination of these hyperparameters

and the corresponding testing error for each problem are shown in Table 6.4. With the

optimal combination of hyperparameters, the number of support vectors (SV) and training

time are shown in Table 6.5.

From the comparison results shown in Table 6.4, 6.5, one can observe that by tuning

all the parameters, LM-BP and HC1 algorithms can achieve much more compact SLFN

compared to ELM and SVR while reaching similar accuracy. Because SVR only selects

support vectors from discrete space (a training patterns pool), the size of the result SLFN is

quite large. Because HC1 algorithm starts the training from a SLFN with 0 hidden neuron,

the early stage of training is quite fast. Therefore, comparing with LM-BP for training

the SLFN with same size, the proposed HC1 algorithm worked more efficiently and cost

less computation time, as shown in Table 6.5. Since HC1 escaped from the previous local

minimum by adding one more neuron (increasing the optimization space), it’s more robust

compared to the LM-BP for seeking the global optimal parameters.
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Table 6.4: Testing RMSE and the Corresponding Standard Deviation(std) Comparison
While Approximating UCI data sets

Algorithms
LM-BP ELM SVR HC1

mean std mean std (C, γ, ε) RMSE mean std

Abalone 0.0727 0.0015 0.0743 0.0007
(56.2, 10−3,

0.05)
0.0791 0.0725 0.0018

Auto-MPG 0.0843 0.0098 0.0835 0.0044
(104, 0.0005,

0.1)
0.0849 0.0836 0.0050

Auto-Price 0.1362 0.0502 0.1365 0.0208
(17.7828,

0.0056, 0.05)
0.1146 0.1284 0.0247

Boston Housing 0.1042 0.0244 0.1181 0.0097
(316.2278,

0.0018, 0.1)
0.1037 0.1038 0.0096

California
Housing

0.1255 0.0115 0.1265 0.0015
(316.2278,

0.0018, 0.1)
0.1410 0.1217 0.0022

Delta Ailerons 0.0389 0.0002 0.0388 0.0002 (102, 10−3, 0.05) 0.0392 0.0385 0.0004

Delta Elevators 0.0540 0.0002 0.0544 0.0001
(316.2, 0.0003,

0.05)
0.0537 0.0539 0.0002

Table 6.5: Optimal Number of Hidden Neurons and the Average Training Time While
Approximating UCI data sets

Algorithms
LM-BP ELM SVR* HC1 (average)

# of
hidden
neurons

Training
Time (s)

# of
hidden
neurons

Training
Time (s)

# of
SVs

Training
Time (s)

# of
hidden
neurons

Training
Time (s)

Abalone 4 0.70 40 0.01 1246 0.3545 3.97 0.50

Auto-MPG 4 0.09 40 0.001 72 0.0515 3.53 0.07

Auto-Price 3 0.03 7 0.0003 43 0.0012 2.31 0.02

Boston Housing 3 0.11 40 0.001 96 0.0040 3.34 0.12

California
Housing

4 4.18 80 0.11 5644 17.03 4.02 2.66

Delta Ailerons 4 1.07 50 0.02 829 0.2994 3.75 0.59

Delta Elevators 4 1.33 60 0.04 2066 1.1855 4.36 1.11

* Core computation of LIBSVM is implemented in C, which is usually much faster than MATLAB.

6.2 Experiments on the HC2 Algorithm for FCCN Construction

In this section, the second kind of Hybrid Constructive Algorithm (HC2), which uses

OLS and PSO to search the optimal initialization of the new neuron each time, is experi-

mented on several classic 2D function approximation benchmarks[25][71] and the Mackey-

Glass time series prediciton problem[72][73] by constructing FCCN. The results are com-

pared with other architecture oriented learning algorithms described in Chapter 3: CasCor
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algorithm[61], Cascade2 algorithm[65], OLSCN algorithm[60], Casper algorithm[68]. Since

the convergence rate of different algorithms while adding hidden neurons is different, in the

experiments, all the algorithms construct the FCCN from empty to the same maximum

number of hidden neurons. The other stopping criteria described in Section 5.3 are not used.

All the experiments are carried out on Windows 7 Enterprise 64-bit operating system,

Intel Core i5-2500K CPU @ 3.30GHz, 8.00GB RAM, MATLAB R2014a platform.

6.2.1 2D Function Approximation

In this experiment, five classic 2D function approximations[25][71] are given as the

benchmark to compare the proposed HC2 algorithm and other learning algorithms. All the

five functions are ranged in [0, 1]2. The description of the five functions are shown as below,

their meshplots are shown in Figure 6.4.

1. Simple interaction function:

f (1)(x1, x2) = 10.391((x1 − 0.4)(x2 − 0.6) + 0.36)

2. Radial function:

f (2)(x1, x2) = 24.234(r2(0.75− r2))

in which,

r2 = (x1 − 0.5)2 + (x2 − 0.5)2

3. Harmonic function:

f (3)(x1, x2) = 42.659(0.1 + x̃1(0.05 + x̃41 − 10x̃21x̃
2
2 + 5x̃42))
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(a) function #1 (b) function #2

(c) function #3 (d) function #4

(e) function #5

Figure 6.4: meshplot of the five 2D functions for approximation

in which,

x̃1 = x1 − 0.5, x̃2 = x2 − 0.5
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4. Additive function:

f (4)(x1, x2) = 1.3356(1.5(1− x1)

+ e2x1−1 sin(3π(x1 − 0.6)2)

+ e3(x2−0.5) sin(4π(x2 − 0.9)2))

5. Complicated interaction function:

f (5)(x1, x2) = 1.9(1.35 + ex1 sin(13(x1 − 0.6)2)

× e−x2 sin(7x2))

The setup for training data and testing data are the same for all the five functions. The

training data set has 225 patterns, which are generated randomly by the uniform distribution

U [0, 1]2. All the training data are added independent and identically distributed (i.i.d.)

Gaussian noise with mean zero and standard deviation 0.25. The testing data set consists

100× 100 patterns generated from a regular spaced grid in the range [0, 1]2.

In this experiment, all the algorithms constructed the FCCN by adding hidden neurons

from 0 to 20 while the other stopping criteria were not used. For the CasCor and Cascade2,

quickprop was used to search the optimal input weights of each new hidden neuron while the

maximum iteration was set as 100. In each stage, 8 candidates were trained independently

to search the global optimal solution. For the OLSCN algorithm, in which a modified

Newton’s method was used to train each new neuron’s input weights, the maximum iteration

was set as 20. The number of candidates was also set as 8. For the Casper algorithm,

the SARPROP algorithm[67] was used to tune all the parameters in each stage. All the

parameter settings were same as in [68]. The maximum iteration was set as 1000 and the

fully training stopped while the root meas squared error (RMSE) decreased less than 1%

in 200 continuous iterations. For the HC2 algorithm, while selecting each new neuron, the
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maximum iteration and the population size of the PSO were both set as 20; While tuning

all the parameters with the hybrid algorithm, the maximum iteration were set as 200 and

the parameters in (5.1) were set as N = 70, η = 0.01. The regularizor in (4.26)(4.28) was

set as λ = 0.001. All the parameter settings were the same while approximating all the five

functions.

The generalization performance of each algorithm is evaluated by the fraction of variance

unexplained (FVU)[71] on the testing data, which is actually proportional to the SSE defined

in (1.4),

FVU =
(y− ỹ)T (y− ỹ)∑P

p=1(yp − ȳ)2
(6.4)

in which, y = [y1, y2, ..., yP ]T ∈ RP are the desired outputs for the testing patterns. ỹ are

the actual outputs with the trained FCCN. ȳ is the average value of the desired outputs for

all the testing patterns.

ȳ =
1

P

P∑
p=1

yp (6.5)

Since all the algorithms started from randomly initialized parameters, the construction

with each algorithm was repeated 20 times. The averaged testing FVU and training time of

each algorithm while approximating the five functions were shown in Figure 6.5-6.9. From

the testing FVU comparison, one can observe that the Casper algorithm and the proposed

HC2 algorithm could always achieved better generalization than the CasCor and Cascade2

algorithms. Though the OLSCN converged fast, it tended to overfit the data as the number

of hidden neuron increased. The HC2 algorithm performed similar to the Casper algorithm.

However, benefit from the efficient second order hybrid algorithm while fully tuning all the

parameters, which required much less iterations to converged, the HC2 saved much training

time compared to the Casper algorithm.
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(a) Averaged Testing FVU (b) Averaged Training Time

Figure 6.5: Averaged Testing FVU and Training Time While Approximating Function #1

(a) Averaged Testing FVU (b) Averaged Training Time

Figure 6.6: Averaged Testing FVU and Training Time While Approximating Function #2

6.2.2 Mackey-Glass Time Series Prediction

In this experiment, the Mackey-Glass chaotic time series prediction problem was given to

compare the FCCN construction algorithms[72]-[75]. The time series data set are generated
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(a) Averaged Testing FVU (b) Averaged Training Time

Figure 6.7: Averaged Testing FVU and Training Time While Approximating Function #3

(a) Averaged Testing FVU (b) Averaged Training Time

Figure 6.8: Averaged Testing FVU and Training Time While Approximating Function #4

by following the following differential equation,

ẋ(t) =
ax(t− τ)

1 + x(t− τ)10
− bx(t) (6.6)

where a = 0.2, b = 0.1 and τ = 17. x(t) is quasiperiodic and chaotic with a fractal attractor

dimension 2.1 for the above parameters[74]. The prediction scheme of the Mackey-Glass
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(a) Averaged Testing FVU (b) Averaged Training Time

Figure 6.9: Averaged Testing FVU and Training Time While Approximating Function #5

time series is usually performed by using x(t−18), x(t−12), x(t−6) and x(t) as inputs and

x(t + ∆t) as output, where ∆t = 6 is the basic short term prediction. In order to predict

longer term, like ∆t = 90, one has to start from x(t − 18), x(t − 12), x(t − 6) and x(t) to

predict x(t+6), x(t+12), ..., x(t+84) iteratively to obtain x(t+90). As a result, the longer

the prediction term is, the lower generalization accuracy will be.

Both the training data and the testing data were obtained by applying the fourth-order

Runge-Kutta method to (6.6) with initial condition x(0) = 1.2, x(t − τ) = 0 for 0 ≤ t < τ

and the time step is 1[74]. The state x(t) at t = 118 ∼ 617 were used as training targets

(500 points) while the state at t = 618 ∼ 1117 were used as testing target (500 points). For

each training target, the corresponding x(t − 24), x(t − 18), x(t − 12) and x(t − 6) were

used as inputs. After training, we performed two tests: short term (∆t = 6) and long term

(∆t = 90), to evaluate the quality the FCCN for prediction.

The prediction accuracy performance was evaluated by computing the normalized root

mean squared error (NRMS)[74][75] on the testing data, which is actually the squared root
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(a) Short term prediction NRMS (∆t = 6) (b) Long term prediction NRMS (∆t = 90)

Figure 6.10: Generalization performance for
Mackey-Glass time series prediction

(a) Short term prediction (∆t = 6) (b) Long term prediction (∆t = 90)

Figure 6.11: Best prediction results obtained by HCL among 20 trials:
a FCCN with 16 hidden neurons, short term NRMS=0.0212, long term NRMS=0.0707.

of the FVU shown in (6.4),

NRMS =

√
(y− ỹ)T (y− ỹ)/P√∑P

p=1(yp − ȳ)2/P
=
√

FVU (6.7)

All the parameters setting of each algorithm are same as in the previous experiment.

Each algorithm constructed the FCCN by adding hidden neurons from 0 to 20. Each con-

struction was repeated 20 times. The averaged NRMS for both short term testing and long

term testing by each algorithm are shown in Figure 6.10. From the comparison, the HC2
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and the OLSCN converged faster than other algorithms. The HC2 could achieve slightly

better generalization performance than the OLSCN on both short term prediction and long

term prediction. Figure 6.11 shows the prediction performance of the best FCCN trained by

the HC2 among the 20 trials. One can observe that the FCCN could predict well even for

the long term.
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Chapter 7

Conclusions and Discussion

In this dissertation, we have a thorough review of the learning algorithms of two special

architectures of the FNN, SLFN and FCCN, for regression problems. While solving regression

problems, these two architectures have much in common and their most learning algorithms

could share to each other. The current learning algorithms for the SLFN and FCCN could

be generally divided into three categories:

1. Use trial and error approach to search the optimal network size. For each specific size,

some general gradient learning algorithm is used to tune the parameters.

2. Tuning the parameters and altering network size simultaneously. Typical examples are

those constructive algorithms in the Chapter 3.

3. Other algorithms, like SVR.

While using trial and error approach, though the parameters tuning algorithm worked

efficiently, a lot of independent trials would slow down the training process. The second

type, the constructive learning algorithms constructed the FNN efficiently. However, most

of them used freezing strategy so that each time only part of the parameters are tuned

during construction. As a result, the result network is usually much larger than required.

For the SVR, since all the hidden parameters are searched in discrete space, the solution is

not optimal.

In this dissertation, several new hybrid constructive learning algorithms for SLFN and

FCCN are proposed. Firstly, a hybrid algorithm for fixed size SLFN or FCCN is proposed

by combining the LS method and the LM algorithm. Then the hybrid algorithm is extended

to the construction scheme. The training starts from an empty SLFN or FCCN and adds
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hidden neurons one by one, each time the hybrid algorithm is used to tune all the parameters.

Two construction versions are proposed together. One could generate random parameters

for each added neuron before the hybrid tuning. One could also used a OLS-PSO algorithm

to select a good initialization of the new added neuron. The experiments demonstrated the

efficiency of the hybrid constructive learning algorithms.
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Appendix B

MATLAB Programs for the Proposed Algorithms

B.1 File List

1. initialize.m Initialize the network object by setting the network’s type, activation

function, number of hidden neurons, etc. Return a network object with following

attributes:

(a) network.nd(integer): number of inputs of the network.

(b) network.type(”SLFN” ‖ ”FCCN”): network type.

(c) network.activation(”sigmoid” ‖ ”tanh” ‖ ”rbf”): activation function of each

hidden neuron.

(d) network.K (integer): number of hidden neurons.

(e) network.wi(matrix or cell array):

i. If network is SLFN and hidden neurons are ”sigmoid” or ”tanh”, wi is

(nd+1) × K matrix, first row are bias of each hidden neuron.

ii. If network is SLFN and hidden neurons are ”rbf”, wi is (nd+1) × K

matrix, first row is the width of each RBF unit, the rest of each column

are the center of each RBF unit.

iii. If network is FCCN (activation function is ”sigmoid” or ”tanh”), wi is

a cell array with K cells, each cell stores the input weights of the corre-

sponding hidden neuron.

(f) network.wo(matrix): output weights of the network. For SLFN, wo is (K+1)

× 1 matrix; for FCCN, wo is (nd+K+1) × 1 matrix.
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One can set the initial wi and wo through arguments, or randomly initialize by

default. The widths of the RBF networks are initialized as 2/rand(1); All the

other parameters are initialized in the range [-1,1].

2. forward.m Calculate forward through the network with the given inputs ”X”.

The hidden matrix ”H” is returned. The first column are always 1s as bias.

For the SLFN, ”H” is an np × (K+1) matrix; For the FCCN, ”H” is an np ×

(nd+K+1) matrix.

3. JQmatrix.m Calculate nonlinear Jacobian matrix in (4.2) and the Q matrix

defined in (4.13) or (4.30).

4. update.m Update the nonlinear parameters of the network in each iteration of

the training procedure.

5. train.m Train fixed-size network with the hybrid algorithm. ”X” (np × nd)

is the input matrix, ”T” (np × 1) is the desired outputs vector. ”maxite” is

the maximum iteration. ”lambda” is the regularization factor λ in (4.28). The

function returns the ”SSE” of each iteration and the network with the trained

parameters.

6. demo1.m Simple demo to train fixed-size SLFN or FCCN with the proposed

hybrid algorithm.

7. construct.m Construct SLFN or FCCN with the proposed HC1 or HC2 algo-

rithm. ”param” is the object including all the setting parameters as shown in

Table B.1. The function returns the ”SSE” of each iteration and the network

with the trained parameters. It also returns the ”tick”, which means the iteration

number when adding each hidden neuron.

8. PSO.m Pick the optimal parameters of each new added neuron with PSO algo-

rithm. It’s called when using the HC2 algorithm. ”H” is the hidden matrix of the

previous network. ”X” is the input matrix of the new added neuron. ”err” is the
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Table B.1: attributes of ”param” in ”construct.m”

attributes description

param.maxite maximum training iteration

param.lambda regularization factor λ in (4.28)

param.Kmax maximum number of hidden neurons

param.begin latency latency determine when to add new neuron

param.begin thd threshold determine when to add new neuron

param.end latency latency determine when to stop adding

param.end thd threshold determine when to stop adding

param.algo select algorithm 1 (HC1) or 2 (HC2)

param.PSO maxite maximum iteration of PSO

param.PSO n number of particles of PSO

error vector of previous network. ”maxite” and ”n” sets the maximum iteration

and particles size for the PSO algorithm.

9. demo2.m Simple demo to construct SLFN or FCCN with the proposed HC1 and

HC2 algorithm.

B.2 Matlab Codes

Listing B.1: initialize.m

function network = initialize(X, type, activation, K, wi, wo)

%% initialize network

if nargin<4

error('Please provide input data, network type, activation and number

of hidden neurons!');
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end;

network.nd = size(X,2);

if strcmp(type, 'SLFN') | | strcmp(type, 'FCCN')

network.type = type;

else

error('network.type should be ''SLFN'' or ''FCCN''!');

end;

if strcmp(type, 'SLFN')

if strcmp(activation, 'sigmoid') | | strcmp(activation, 'tanh') | |

strcmp(activation, 'rbf')

network.activation = activation;

else

error('SLFN Activation function (network.activation) should be ''

sigmoid'', ''tanh'' or ''rbf''!');

end;

else

if strcmp(activation, 'sigmoid') | | strcmp(activation, 'tanh')

network.activation = activation;

else

error('FCCN Activation function (network.activation) should be ''

sigmoid'' or ''tanh''!');

end;

end;

network.K = K;

if nargin>=5

network.wi = wi;

else

if strcmp(type, 'SLFN')

if strcmp(activation, 'sigmoid') | | strcmp(activation, 'tanh')

network.wi = 2*rand(network.nd+1, network.K)−1;

else

network.wi(1,:) = 2./rand(1,network.K);
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network.wi(2:network.nd+1,:) = 2*rand(network.nd, network.K)

−1;

end;

else

for k = 1:network.K

network.wi{k} = 2*rand(network.nd+k,1)−1;

end;

end;

end;

if nargin>=6

network.wo = wo;

else

if strcmp(type, 'SLFN')

network.wo = 2*rand(network.K+1,1)−1;

else

network.wo = 2*rand(network.nd+network.K+1,1)−1;

end;

end;

return;

Listing B.2: forward.m

function H = forward(network, X)

%% calculate forward to get hidden matrix

np = size(X,1);

if strcmp(network.type, 'SLFN')

if strcmp(network.activation, 'sigmoid')

X = [ones(np,1), X];

net = X*network.wi;

H = [ones(np,1), 1./(1+exp(−net))];
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elseif strcmp(network.activation, 'tanh')

X = [ones(np,1), X];

net = X*network.wi;

H = [ones(np,1), tanh(net)];

elseif strcmp(network.activation, 'rbf')

H = ones(np,1);

for k = 1:network.K

width = network.wi(1,k);

center = network.wi(2:network.nd+1,k);

dist = (X − ones(np,1)*center').ˆ2*ones(network.nd,1);

h = exp(−dist/widthˆ2);

H = [H, h];

end;

else

error('SLFN Activation function (network.activation) should be ''

sigmoid'', ''tanh'' or ''rbf''!');

end;

elseif strcmp(network.type, 'FCCN')

if strcmp(network.activation, 'sigmoid')

H = [ones(np,1), X];

for k = 1:network.K

net = H*network.wi{k};

h = 1./(1+exp(−net));

H = [H, h];

end;

elseif strcmp(network.activation, 'tanh')

H = [ones(np,1), X];

for k = 1:network.K

net = H*network.wi{k};

h = tanh(net);

H = [H, h];

end;

else
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error('FCCN Activation function (network.activation) should be ''

sigmoid'' or ''tanh''!');

end;

else

error('network.type should be ''SLFN'' or ''FCCN''!');

end;

return;

Listing B.3: JQmatrix.m

function [J, Q] = JQmatrix(network, X, error)

%% calculate noninear Jacobian matrix and Q matrix

np = size(X,1);

if strcmp(network.type, 'SLFN')

if strcmp(network.activation, 'sigmoid') | | strcmp(network.activation

, 'tanh')

X = [ones(np,1), X];

net = X*network.wi;

if strcmp(network.activation, 'sigmoid')

H = 1./(1+exp(−net));

Hp = H.*(1−H);

else

H = tanh(net);

Hp = (1−H.ˆ2);

end;

J = [];

Q = zeros(network.K+1, network.K*(network.nd+1));

for k = 1:network.K

tmp = Hp(:,k)*ones(1,network.nd+1).*X;

J = [J, network.wo(k+1)*tmp];

Q(k+1,(k−1)*(network.nd+1)+1:k*(network.nd+1)) = error'*tmp;

end;
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elseif strcmp(network.activation, 'rbf')

J = [];

Q = zeros(network.K+1, network.K*(network.nd+1));

for k = 1:network.K

width = network.wi(1,k);

center = network.wi(2:network.nd+1,k);

dist = (X − ones(np,1)*center').ˆ2*ones(network.nd,1);

h = exp(−dist/widthˆ2);

dhc = 2/widthˆ2*h*ones(1,network.nd).*(X − ones(np,1)*center

'); % centers

dhw = 2/widthˆ3*h.*dist; % width

J = [J, network.wo(k+1)*dhw, network.wo(k+1)*dhc];

Q(k+1,(k−1)*(network.nd+1)+1:k*(network.nd+1)) = error'*[dhw,

dhc];

end;

else

error('SLFN Activation function (network.activation) should be ''

sigmoid'', ''tanh'' or ''rbf''!');

end;

elseif strcmp(network.type, 'FCCN')

if strcmp(network.activation, 'sigmoid') | | strcmp(network.activation

, 'tanh')

H = [ones(np,1), X];

delta = {};

for k = 1:network.K

net = H*network.wi{k};

if strcmp(network.activation, 'sigmoid')

h = 1./(1+exp(−net));

delta{k,k} = h.*(1−h);

else

h = tanh(net);

delta{k,k} = 1−h.ˆ2;

end;
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H = [H, h];

end;

nw = network.K*network.nd+network.K*(network.K+1)/2;

J = []; Q = zeros(network.K+network.nd+1,nw);

for j = 1:network.K % j th column

ni = network.nd + j;

idx = (j−1)*network.nd+j*(j−1)/2;

Q(j+network.nd+1,idx+1:idx+ni) = error'*(delta{j,j}*ones(1,ni

).*H(:,1:ni));

for i = j+1:network.K % i th row

tmp = zeros(np,1);

for k = j:i−1 % all above values in the same column

tmp = tmp + network.wi{i}(network.nd+1+k)*delta{k,j};

end;

delta{i,j} = delta{i,i}.*tmp;

Q(i+network.nd+1,idx+1:idx+ni) = error'*(delta{i,j}*ones

(1,ni).*H(:,1:ni));

end;

tmp = zeros(np,1);

for i = j:network.K

tmp = tmp + network.wo(i+1)*delta{i,j};

end;

delta{network.K+1,j} = tmp;

J = [J, delta{network.K+1,j}*ones(1,ni).*H(:,1:ni)];

end;

else

error('FCCN Activation function (network.activation) should be ''

sigmoid'' or ''tanh''!');

end;

else

error('network.type should be ''SLFN'' or ''FCCN''!');

end;
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Listing B.4: update.m

function network = update(network, wi, dWv)

%% update parameters

if strcmp(network.type, 'SLFN')

network.wi = wi + reshape(dWv, network.nd+1, network.K);

elseif strcmp(network.type, 'FCCN')

for k = 1:network.K

network.wi{k} = wi{k} + dWv(1:network.nd+k);

dWv(1:network.nd+k) = [];

end;

else

error('network.type should be ''SLFN'' or ''FCCN''!');

end;

return;

Listing B.5: train.m

function [SSE, network] = train(network, X, T, maxite, lambda)

%% train network with hybrid algorithm

% network:

% network.type = 'SLFN' or 'FCCN'

% network.nd: number of input dimension

% network.K: number of hidden neurons

% network.activation = 'sigmoid' or 'tanh' or 'rbf'

% if 'SLFN' && ('sigmoid' | | 'tanh'):

% network.wi (nd+1 X K)

% −−−−−− input weights matrix (1st row for bias)

% if 'SLFN' && 'rbf':

% network.wi (nd+1 X K)

% −−−−−− each column: 1st width, 2:nd+1 center

% if 'FCCN' && ('sigmoid' | | 'tanh'):

% network.wi{1,2,...,K}
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% −−−−−− input weights for each hidden neuron

% network.wo: output weights of the network (1st bias)

% X (np X nd): input data

% T (np X 1): target data

network.nd = size(X,2);

mu = 0.01;

beta = 10;

muH = 1e15;

muL = 1e−15;

H = forward(network, X);

M = inv(H'*H+lambda*eye(size(H,2)));

network.wo = M*H'*T;

y = H*network.wo;

error = T − y;

SSE(1) = error'*error;

for ite = 2:maxite

[J, Q] = JQmatrix(network, X, error);

S = J'*H;

A = J'*J − S*M*S'; B = Q'*M*Q;

wi = network.wi;

for i = 1:10

dWv = (A + B + mu*eye(size(A,1)))\J'*error;

network = update(network, wi, dWv);

H = forward(network, X);

M = inv(H'*H+lambda*eye(size(H,2)));

network.wo = M*H'*T;

y = H*network.wo;

error = T − y;

SSE(ite) = error'*error;

if SSE(ite)<=SSE(ite−1)
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mu = max(muL, mu/beta);

break;

else

mu = min(muH, mu*beta);

end;

end;

end;

Listing B.6: demo1.m

clear all; format compact;

%% load training data and testing data

% training data:

% input matrix Ti, output vector Td, number of patterns N

% testing data:

% input matrix Tit, output vector Tdt, number of patterns Nt

load data

%% initialize the network

network = initialize(Ti, 'SLFN', 'sigmoid', 5);

%% train the network with training data

maxite = 100;

lambda = 0.001;

[SSE, network] = train(network, Ti, Td, maxite, lambda);

%% validate test data on the trained network

H = forward(network, Tit);

y = H*network.wo;

err = Tdt−y;

SSEt= err'*err; % SSE of test data
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Listing B.7: construct.m

function [SSE, network, tick] = construct(network, X, T, param)

%% construct the network

% param.maxite −−−−−−− maximum iteration

% param.lambda −−−−−−− regularization

% param.Kmax −−−−−−− maximum number of hidden neurons

% param.begin latency −−−−−−− latency determine when to add new neuron

% param.begin thd −−−−−−− threshold determine when to add new

neuron

% param.end latency −−−−−−− latency determine when to stop adding

% param.end thd −−−−−−− threshold determine when to stop adding

% param.algo −−−−−−− 1 (HC1) or 2 (HC2)

% param.PSO maxite −−−−−−− maximum iteration of PSO

% param.PSO n −−−−−−− number of particles of PSO

mu = 0.01; muL = 1e−15; muH = 1e15; beta = 10; % LM parameters

[np, network.nd] = size(X);

%% clear network weights

if strcmp(network.type, 'SLFN')

H = ones(np, 1);

err = T − mean(T)*H;

network.wi = [];

if param.algo==1 % HC1

if strcmp(network.activation, 'sigmoid') | | strcmp(

network.activation, 'tanh')

network.wi = 2*rand(network.nd+1, 1)−1;

elseif strcmp(network.activation, 'rbf')

network.wi = [2/rand(1); 2*rand(network.nd, 1)−1];

else

error('SLFN Activation function (network.activation) should

be ''sigmoid'', ''tanh'' or ''rbf''!');

end;
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elseif param.algo==2 % HC2

if strcmp(network.activation, 'sigmoid') | | strcmp(

network.activation, 'tanh')

network.wi = PSO(network, H, [ones(np,1), X], err,

param.PSO maxite, param.PSO n);

else

network.wi = PSO(network, H, X, err, param.PSO maxite,

param.PSO n);

end;

else

error('param.algo should be 1 (as HC1 algorithm) or 2 (as HC2

algorithm)!');

end;

elseif strcmp(network.type, 'FCCN')

H = [ones(np,1), X];

network.wo = pinv(H)*T;

err = T − H*network.wo;

network.wi = {};

if param.algo==1

if strcmp(network.activation, 'sigmoid') | | strcmp(

network.activation, 'tanh')

network.wi{1} = 2*rand(network.nd+1, 1)−1;

else

error('FCCN Activation function (network.activation) should

be ''sigmoid'' or ''tanh''!');

end;

elseif param.algo==2

if strcmp(network.activation, 'sigmoid') | | strcmp(

network.activation, 'tanh')

network.wi{1} = PSO(network, H, H, err, param.PSO maxite,

param.PSO n);

else
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error('FCCN Activation function (network.activation) should

be ''sigmoid'' or ''tanh''!');

end;

else

error('param.algo should be 1 (as HC1 algorithm) or 2 (as HC2

algorithm)!');

end;

else

error('network.type should be ''SLFN'' or ''FCCN''!');

end;

network.K = 1;

%% construct

H = forward(network, X);

M = inv(H'*H+param.lambda*eye(size(H,2)));

network.wo = M*H'*T;

y = H*network.wo;

err = T − y;

SSE(1) = err'*err;

clk = 0; tick = [];

for ite = 2:param.maxite

clk = clk + 1;

% start adding neuron criteria

if clk > param.begin latency && abs(SSE(ite−param.begin latency)−SSE(

ite−1))/SSE(ite−1) < param.begin thd

% stop adding neuron criteria

if network.K > param.Kmax

break;

end;

if network.K > param.end latency && abs(SSE(tick(network.K−

param.end latency))−SSE(tick(network.K−1)))/SSE(tick(network.K

−1)) < param.end thd

break;
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end;

% adding new neuron

if strcmp(network.type, 'SLFN')

if strcmp(network.activation, 'sigmoid') | | strcmp(

network.activation, 'tanh')

if param.algo==1

wi new = 2*rand(network.nd+1,1)−1;

else

wi new = PSO(network, H, [ones(np,1),X], err,

param.PSO maxite, param.PSO n);

end;

network.wi = [network.wi, wi new];

net = [ones(np,1),X]*wi new;

if strcmp(network.activation, 'sigmoid')

h = 1./(1+exp(−net));

else % tanh

h = tanh(net);

end;

else % rbf

if param.algo==1

width = 2/rand(1);

center = 2*rand(network.nd,1)−1;

else % algo==2

wi new = PSO(network, H, X, err, param.PSO maxite,

param.PSO n);

width = wi new(1);

center = wi new(2:end);

end;

network.wi = [network.wi, [width; center]];

dist = (X−ones(np,1)*center').ˆ2*ones(network.nd,1);

h = exp(−dist/widthˆ2);

end;

else % FCCN
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if param.algo==1

network.wi{network.K+1} = 2*rand(network.nd+network.K

+1,1)−1;

else

network.wi{network.K+1} = PSO(network, H, H, err,

param.PSO maxite, param.PSO n);

end;

net = H*network.wi{network.K+1};

if strcmp(network.activation, 'sigmoid')

h = 1./(1+exp(−net));

else % tanh

h = tanh(net);

end;

end;

network.K = network.K + 1;

woh = M*H'*h; errh = h − H*woh;

a = h'*err + param.lambda; b = (h'*err)/a;

M = [M + woh*woh'/a, −woh/a; −woh'/a, 1/a];

network.wo = [network.wo − b*woh; b];

err = err − b*errh;

H = [H, h];

clk = 0;

mu = 0.01; % set back initial mu

tick = [tick, ite];

end;

[J, Q] = JQmatrix(network, X, err);

S = J'*H;

A = J'*J − S*M*S'; B = Q'*M*Q;

wi = network.wi;

for i = 1:20

dWv = (A + B + mu*eye(size(A,1)))\J'*err;

network = update(network, wi, dWv);
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H = forward(network, X);

M = inv(H'*H+param.lambda*eye(size(H,2)));

network.wo = M*H'*T;

y = H*network.wo;

err = T − y;

SSE(ite) = err'*err;

if SSE(ite)<=SSE(ite−1)

mu = max(muL, mu/beta);

break;

else

if mu==muH

break;

end;

mu = min(muH, mu*beta);

end;

end;

end;

return;

Listing B.8: PSO.m

function gw = PSO(network, H, X, err, maxite, n)

%% PSO initialize parameters of each new neuron

c2 = 2; c3 = 2;

c1s = 0.9; c1e = 0.4;

np = size(H,1);

Hs = pinv(H);

if strcmp(network.activation, 'sigmoid') | | strcmp(network.activation, '

tanh')

nd = size(X,2);

blo = −10*ones(nd,1);
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bup = 10*ones(nd,1);

elseif strcmp(network.activation, 'rbf')

nd = size(X,2)+1;

blo = −10*ones(nd,1); blo(1) = 0.001;

bup = 10*ones(nd,1);

else

error('network.activaiton should be ''sigmoid'', ''tanh'' or ''rbf''!

');

end;

ws = 2*rand(nd,n)−1; vs = 2*rand(nd,n)−1;

pw = ws; gw = zeros(nd,1);

pbest = zeros(1,n); gbest = 0;

%% initialize particles

for i = 1:n

if strcmp(network.activation, 'sigmoid')

net = X*ws(:,i);

h = 1./(1+exp(−net));

elseif strcmp(network.activation, 'tanh')

net = X*ws(:,i);

h = tanh(net);

else

width = ws(1,i);

center = ws(2:end,i);

dist = (X−ones(np,1)*center').ˆ2*ones(nd−1,1);

h = exp(−dist/widthˆ2);

end;

wh = Hs*h; eh = h − H*wh;

dSSE = (h'*err)ˆ2/(h'*eh);

pbest(n) = dSSE;

if dSSE>gbest

gbest = dSSE;

gw = ws(:,i);
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end;

end;

%% optimization

for ite = 1:maxite

c1 = c1e + ite/maxite*(c1s−c1e);

for i = 1:n

rp = rand(nd,1); rg = rand(nd,1);

% update velocity

vs(:,i) = c1*vs(:,i) + c2*rp.*(pw(:,i)−ws(:,i)) + c3*rg.*(gw−ws

(:,i));

vs(:,i) = max(vs(:,i), blo);

vs(:,i) = min(vs(:,i), bup);

% update weight

ws(:,i) = ws(:,i) + vs(:,i);

ws(:,i) = max(ws(:,i), blo);

ws(:,i) = min(ws(:,i), bup);

% calculate constribution

if strcmp(network.activation, 'sigmoid')

net = X*ws(:,i);

h = 1./(1+exp(−net));

elseif strcmp(network.activation, 'tanh')

net = X*ws(:,i);

h = tanh(net);

else

width = ws(1,i);

center = ws(2:end,i);

dist = (X−ones(np,1)*center').ˆ2*ones(nd−1,1);

h = exp(−dist/widthˆ2);

end;

wh = Hs*h; eh = h − H*wh;

dSSE = (h'*err)ˆ2/(h'*eh);

% update pbest and gbest

if dSSE > pbest(i)
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pbest(i) = dSSE;

pw(:,i) = ws(:,i);

end;

if dSSE > gbest

gbest = dSSE;

gw = ws(:,i);

end;

end;

end;

return;

Listing B.9: demo2.m

clear all; format compact;

%% load training data and testing data

% training data:

% input matrix Ti, output vector Td, number of patterns N

% testing data:

% input matrix Tit, output vector Tdt, number of patterns Nt

load data

tic;

%% initialize the network

network = initialize(Ti, 'FCCN', 'tanh', 0);

%% set parameters

param.maxite = 1000; % maximum iteration

param.lambda = 0.0001; % regularization

param.Kmax = 10; % maximum number of hidden neurons

param.begin latency = 20; % latency determine when to add new

neuron

param.begin thd = 0.001; % threshold determine when to add new

neuron
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param.end latency = 5; % latency determine when to stop adding

param.end thd = 0.00001; % threshold determine when to stop

adding

param.algo = 1; % algorithm: 1 (HC1) or 2 (HC2)

param.PSO maxite = 20; % maximum iteration of PSO

param.PSO n = 10; % number of particles of PSO

%% construct the network

[SSE, network, tick] = construct(network, Ti, Td, param);

%% validate on testing data

H = forward(network, Tit);

y = H*network.wo;

err = Tdt−y;

SSEt= err'*err; % SSE of test data
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