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Abstract 

 

 

Modern CPU’s cut-off operations when CPU temperature reaches a predetermined 

threshold making the CPU unavailable for all processes. Furthermore, operating the 

CPU for extended periods at temperatures close to, but slightly below, hardware cut-off, 

lowers reliability and lifetime of the CPU. In this dissertation, we develop proactive 

scheduling techniques to manage CPU temperatures by cutting off the major heat 

dissipating processes rather than the entire CPU. Such proactive scheduling promotes 

better component life, lower cooling fan usage, improved battery life and better 

availability. The techniques can be implemented over existing dynamic voltage and 

frequency scaling, dynamic power management, leakage energy and location-based 

techniques. 

 

Memory accesses and floating-point operations are two major heat-dissipating activities 

in many programs. The first proactive approach developed is called Proactive Thermal 

Aware Scheduler (PTAS). PTAS forms a temperature predictor using the regression of 

the time derivatives of the number of Floating-Point Operations per Second (FLOPS) 

and the current CPU temperature.  The predictor is used to make proactive scheduling 

decisions to handle thermal emergency before the temperature reaches the hardware 

cut-off. If the value of the predictor for any process is above an empirically determined 
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cut off, it is deemed likely that in the near future, the CPU will reach the hardware cut-off 

temperature. Therefore, that process is moved to the sleep state for a short duration. 

We analyzed the performance of PTAS using Scimark benchmarks in lowering CPU 

temperature. The reductions in peak temperatures were 2-4°C for FFT, LU, SOR, and 

Sparse (small) components of the Scimark benchmark runs respectively.  For the larger 

versions of the aforementioned benchmark component runs, the reductions were 2-4°C 

respectively. The reductions in peak/average temperature on a laptop were 3-5/5°C. 

The corresponding penalties in schedule lengths were between 15-30%.  

 

The second approach is called Proactive Thermal Aware Scheduling with Floating-

Points and Memory access rates (PTFM). In this approach, a future temperature impact 

predictor (TIP) for any process is formed using a regression of the time derivatives of 

FLOPS, memory accesses and current CPU temperature. If the TIP for any process 

goes above a predetermined threshold, that process is put to sleep for a short duration. 

We evaluated the scheduler on small and large components of FFT, LU, SOR and 

Sparse within the Scimark benchmark suite. We found decrease in peak/average CPU 

temperatures: 3-6°C/6°C for small benchmarks and 3-6°C/5°C for large benchmarks.  

The schedule length penalties were less than 2-10%. The corresponding results in 

peak/average temperature on a laptop were 3-6/6°C. We compared our results against 

other threshold based cut-off approaches: simple temperature, simple time derivative 

based cut-off strategies and PTAS. We found PTFM outperformed these strategies. 
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Chapter 1 Introduction 

 

 

CPU overheating is a major problem that can occur due to various CPU characteristics. 

This includes chip material, the characteristics of CPU processes, and thermal 

decisions taken by the CPU. Overheating results in permanent damage to the CPU, and 

manufacturers face this problem year after year. When the CPU temperature increases 

beyond a certain threshold, it decreases chip reliability and increases the CPU’s cooling 

costs. Decreasing CPU chip temperature has become a major challenge. Every year, 

thousands of data centers spend millions of dollars to mitigate this problem, and every 

year, data loss occurs in computers due to severe thermal problems in the CPU. The 

CPU’s energy consumption also increases with rising temperatures as manufacturers 

use several cooling techniques to control CPU temperature. Therefore, there is a need 

to control thermal-related CPU damage. We hypothesize that the rise in CPU 

temperature can be reduced by proactively scheduling processes using process 

characteristics. In our approach, we predict the gradient of the process by measuring 

FLOPS and memory accesses, and cut off the process with a higher gradient. We 

optimize the sleep time, gradient, and priority of the process. 

 

 

Researchers have used Dynamic Voltage and Frequency Scaling (DVFS), Dynamic 

Power Management (DPM), leakage energy reduction, and variability-aware thermal 
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management, or a combination of these approaches [1], [2]. In addition, CPUs employ 

fan(s) and thermal cut-off to control chip temperature. In this research, we use a 

predictive and proactive process scheduling approach to manage chip temperatures. 

 

The major contributions of this work are: 

1. Review of state of the art approaches related to Proactive Thermal-Aware CPU 

Scheduling. 

2. Use of time derivatives of temperature, FLOPS and memory access rates to 

predict the temperature. 

3. Use of regression consisting of the above to predict the future temperature and 

proactively put the processes to sleep. 

4. Evaluation of the approach and its outcomes as related to peak and average 

CPU temperature, with simulations using SciMark benchmarks. 

5. The reductions in CPU temperatures [3] [4] are important as they result in 

increased component life of the CPU. 
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Chapter 2 Background 

 

 

Our goal in the temperature-aware scheduling approach was to reduce CPU 

temperature. We can achieve this goal by scheduling processes in the CPU. By 

scheduling these processes in FIFO order, we make thermal decisions to reduce CPU 

temperature. There are several strategies to reduce CPU temperature. Foremost is the 

Dynamic Voltage and Frequency Scaling strategy, which varies voltage and frequency 

levels of the CPU to control its temperature. This is a popular and effective strategy for 

controlling CPU temperature; however, it is a reactive strategy. A proactive strategy to 

decrease CPU temperature and prevent thermal emergencies is necessary. A reactive 

strategy waits until the temperature reaches its threshold and slowly cuts off the 

processes, which can cause permanent CPU damage. We can prevent this damage by 

cutting off the process in advance, thus increasing CPU reliability and reducing cooling 

costs. 

 

Another strategy is Dynamic Thermal Management (DTM), or Dynamic Process 

Management (DPM). In this strategy, we make thermal decisions dynamically to reduce 

temperature. We can implement this strategy at a software level, at a hardware level, or 

both. This is a reactive strategy, which allows CPU temperatures to scale up and bring 
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down the CPU temperature by effectively scheduling processes. Similar to DVFS, a 

proactive variant of this strategy would effectively reduce CPU temperature. It also 

increases CPU performance and energy consumption. The proactive strategy would 

also increase battery lifetime. 

 

Another strategy aims to decrease CPU leakage energy to reduce its temperature. This 

strategy reduces CPU temperature and saves energy. We can use this strategy in 

conjunction with DVFS and DTM. We gain thermal improvements by implementing a 

proactive variant of this strategy. 

 

A final strategy aims at allocating tasks by taking the variability factor of the CPU. We 

consider this factor to gain significant thermal improvements. This strategy has 

improvements above and beyond DVFS and DPM. It aims at increasing chip reliability 

and preventing thermal damage. It gives good improvement with thermal emergencies. 

However, it is not an entirely proactive strategy. A proactive improvement of this 

strategy would be a good approach. 

 

Researchers have implemented scheduling techniques at an OS level. The goal of 

operating system (OS) scheduling is to increase CPU performance and maximize CPU 

utilization. It has to give better user response. There are algorithms with complexity of O 

(n^2) and O (n). However, algorithms with O (1) complexity effectively achieve the 

above goals. In such algorithms, time taken by the scheduler is short, irrespective of the 
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input size. In the quadratic and linear time algorithms, tasks take much longer to finish, 

and thus make the scheduler less scalable. 

 

Previous versions of the Linux scheduler used a run queue in a symmetric 

multiprocessor, resulting in load balancing of the tasks. However, it resulted in bad 

memory caches. In addition, this queue locked the processes, which made processes 

take longer to execute. Finally, if some tasks took longer than others did, preemption 

was not possible. 

 

Ingo Molnar developed Linux scheduler [5] with O (1) complexity. He developed a 

scheduler for wakeup, context switch, and time slicing. In addition, he used Java Virtual 

Machine (JVM) to reduce the overhead caused by thread execution in the O (n) 

scheduler. In this algorithm, OS used First In First Out (FIFO) with 140 priority lists in 

the run queue. Each task had a time slicing that let the scheduler decide the duration of 

scheduling tasks. The OS reserved the first 100 priorities for real time tasks, and 

reserved the next 40 tasks for user tasks (see Fig. 1). In addition to the OS’s active 

queue, there was also an expired run queue. It placed expired tasks on an expired 

queue and active tasks on an active queue. If the tasks on the active queue were 

empty, it swapped tasks on the expired queue. The scheduler executed the highest 

priority task. It also used a bitmap to determine when the tasks were on a high priority 

list. Since the time to execute the tasks was dependent on priorities rather than task 

input, the scheduler’s complexity was O (1). Thus, the Linux scheduler is a deterministic 

scheduler. 
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The Hadoop scheduling algorithm [6] uses fair scheduler and capacity scheduler. The 

Hadoop scheduler has a job tracker and a task tracker to schedule tasks on a cluster or 

a grid. The core of Hadoop architecture consists of master and slave nodes. The name 

node is a master node that controls filenames and clients. It distributes jobs to slave 

nodes. Slave nodes include the task tracker, which completes jobs and notifies the job 

tracker. Data node is a storage node, which represents the distributed file system. Both 

task tracker and data node are slaves in Hadoop architecture. 

 

Hadoop is a fault-tolerant architecture, meaning that it operates when nodes fail and 

restart. Hadoop runs these nodes in isolation mode, where they do not have access to 

other nodes. Hadoop uses pluggable schedulers. First among them is the FIFO 

scheduler, which schedules jobs on a first-come first-served basis. It executes these 

jobs in the order they arrive, and gives higher priority to a job that has to be scheduled 

earlier. Another scheduler is the fair scheduler, which assigns equal share to each task. 

On average, each task gets an equal share of time. This helps the scheduler to spend 

equal time on all tasks, thus increasing its response time. In addition, Hadoop uses a 

job pool to assign jobs, and it shares these pools among tasks. It also gives equal share 

to each pool. Third is a capacity scheduler, which estimates cluster capacity and 

schedules tasks accordingly. The Hadoop server load balances the tasks so that it runs 

the scheduler with less response time. It executes high load levels without any change 

in the schedule. 
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SciMark benchmarks are Java benchmarks for making numerical calculations in 

scientific and engineering applications. They include Fast Fourier Transforms (FFT), 

Gauss-Seidel Relaxation, Sparse Matrix Multiplication, Monte Carlo Integration, and 

Dense LU Factorization. There are two versions of this benchmark. The smaller version 

of the benchmark focuses on CPU issues, while the larger version of the benchmark 

addresses the memory subsystem and out-of-cache problem sizes. 

Fast Fourier Transform (FFT) consists of a 1-D forward transform of 4k complex 

numbers. In addition, this kernel performs complex arithmetic, shuffling, and non-

constant memory references. It consists of two versions: one performs bit reversal, 

while the second version performs Nlog(N) computations. Jacobi Successive Over-

Relaxation (SOR) does grid averaging on memory patterns in finite difference 

applications. This kernel exerts access patterns on a 100x100 grid. Sparse Matrix 

Multiplication uses indirection addressing and non-regular memory references in an 

unstructured matrix. Dense LU Matrix Factorization calculates the LU factorization of a 

dense 100x100 matrix using partial pivoting. 

PAPI is a low-level interface for measuring the performance counters of hardware in 

most major microprocessors. PAPI measures the relation between performance and 

processor events. PAPI has components that measure real time software and hardware 

performance in most major processors. We can use PAPI in a real time scheduler to 

measure floating points of the processes in constant time. It gives a good predictor of 

the rate of change of floating points and memory accesses. We can install PAPI as a 
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library on the system, and use an event driven model for floating-point calculations. It 

gives lower overhead when used in programs. 

Regression is normally used to predict a possible relationship between a dependent 

variable and a set of independent variables. We reviewed current state of the art 

thermal management implementations in the industry. A majority of these 

implementations are hardware techniques. Intel uses the PID controller to reduce 

maximum temperature in CPU chips. The PID controller is a reactive method that 

reduces residual error using a combination of integral and derivatives. In addition, 

thermal monitoring using fan sink and fan speed is used to reduce CPU chip 

temperatures. By increasing fan speed, reducing thermal noise, and setting higher and 

lower threshold points, Intel schedulers decrease CPU temperature. Finally, airflow and 

clock modulation with bit encoding help to reduce maximum temperature in CPU chips. 
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Chapter 3 Proactive thermal aware scheduling 

 

 

CPU overheating is a major problem that is dependent on factors such as chip material 

and the rapidity of power dissipation. High temperatures reduce chip reliability and 

decrease its lifetime. Chip manufacturers use hardware, software, and hybrid 

approaches for CPU temperature reduction. 

  

The remainder of this chapter is organized as follows: In Section 2, we discuss related 

work; in Section 3, we introduce PTAS and our experimental methodology; in Section 4, 

we discuss the results of our work, and in Section 5, we make concluding remarks. The 

related work section contains a review of academic papers as well as contemporary 

products in the industry. 

3.1 Related Work 
 

The majority of techniques used to reduce chip temperature are reactive, meaning chip 

temperature is allowed to rise to threshold levels, and then steps are taken to bring down 

the temperature [1] [2]. Such techniques have used strategies such as Dynamic Voltage 

Frequency Scaling (DVFS), Dynamic Power Management (DPM), Dynamic Thermal 

Management (DTM), leakage energy, and variability-aware thermal management. 

However, some of these approaches result in thermal emergencies [1] [2] due to sudden 
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spikes in chip temperature, which could cause irreversible damage to the chip. A 10°C 

reduction in CPU temperature below the hardware threshold cut-off produces a 20% 

increase in chip lifetime and reliability [3], [4].   

 

Xiuyi et al. [1] identified temperature correlation among vertically adjacent layers in 3-D 

chips. They used OS-level task scheduling to minimize peak temperatures by identifying 

such sources of heat. Using Dynamic voltage and frequency scaling in OS scheduler, 

they reduced hardware DTMS in CPUs by 54% and improved CPU performance by 

7.2%. 

 

Coskun et al. [2] used an integer linear programming approach in task scheduling to 

reduce thermal hotspots and temperature gradients in CPUs. Kumar et al. [7] developed 

a system-level framework using DTM with proactive temperature estimates using integer 

linear programming and hardware sensor measurements. The scheduler overhead on 

execution time was 24% when using just the reactive hardware measurements 

approach. However, upon using the framework consisting of both the software and 

hardware approaches, the overhead improved to 10%. 

 

Chuan et al. [8] identified leakage energy to be a factor in the increase of peak chip 

temperature. They developed energy-efficient scheduling to reduce leakage energy in 

CPUs. This consisted of a patterns-based approach that divided schedule length into 

active and dormant windows. Leakage power consumption was reduced by increasing 
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the speed of tasks in active mode, and allowing the CPU temperature to cool in dormant 

mode. 

 

Wei and Nannarelli [9] discovered that the recurrence digit in floating-point computations 

was one of the main causes of heat increase in caches. They used Fused Multiply-Add 

(FMA) to reduce the peak temperatures in caches. They placed power-efficient drivers 

between FMA and cache block that reduced leakage energy by 12%, average 

temperature in caches by 5°C, and power consumption by 8.4%. 

 

Chaturvedi et al. [10] developed validation for scheduling techniques on architectural-

level platforms that reduce peak temperature. This technique used m-oscillation (or 

DVFS) to reduce dynamic energy. Senju et al. [11] investigated the Particle Swarm 

Optimization (PSO) strategy to reduce peak temperatures in clusters and grids. 

Schedules are distributed onto clusters based on fitness values. Cluster-best and 

personal-best schedules, rather than global-best schedules, were selected using binary 

PSO. Komada et al. [12] used electro-thermal coupling to reduce thermal interference in 

CPUs. They investigated the accuracy of predicting the thermal behavior of silicon chips. 

The thermal model used in the strategy accurately predicted chip temperature. Fisher et 

al. [13] investigated global real time scheduling of homogeneous tasks on multi-core 

systems. When performing matrix computations using the mathematically computed 

preferred speed of each core, it reduced peak temperatures by 30-70°C lower than load 

balancing strategies. 
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Jin and Maskell [14] developed a thermal-aware model at event level. This event-driven 

thermal model was used to create a thermal map when high-level events occur in the 

CPU. Taking temperature increments of each core, a number of lookup tables were 

prebuilt offline. Afterward, a thermal map was updated online using the superposition 

principle. 

 

Jiajia et al. [15] used thermal-aware mapping methods on 3-D torus chip to increase 

throughput and latency. Using this strategy and CPU execution cycles in FFT, matrix 

multiplication and radix sort were reduced by 6.78%, 5.77%, and 4.07% in one 

experiment, and 8.58%, 10.37%, and 21.28% in another experiment. 

 

Yang et al. [16] optimized Energy and Performance-Delay Product (EDP) using helper 

threads. The EDP criterion helps trade energy with performance. Helper threads, which 

help cool the CPU, were added to optimize EDP. This strategy varied different data 

points, such as CPU count, thread count, and voltage/frequency level, to optimize EDP. 

They measured EDP using performance counters. EDP reduction of 60-80% was 

achieved for FFT and multi-grid benchmarks. In addition to EDP, this approach reduced 

thermal emergency. 

 

Merkel and Bellosa [17] determined that task migration is better than throttling the CPU, 

except in worst-case situations. They created an energy-aware scheduling policy on a 

Linux machine using Dynamic Voltage and Frequency Scaling by modifying the task 
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data structure in a Linux scheduler. Migrating hot tasks to coolest core and balancing 

energy of the tasks generated significant energy savings. The cost of migration was 

small compared to throttling. In addition, when tasks were load balanced, throughput 

increased and overhead lessened on the scheduler. 

 

Ayoub and Rosing [4] created a temperature predictor by using the bandwidth of the 

temperature frequency spectrum and workload characterization of the tasks. The 

workload characterization of the tasks was measured by finding the task fetch rate. 

They used both parameters to reduce the average temperature of the tasks. They 

created an experiment with SPEC CPU 2000 benchmarks and compared their approach 

with other reactive approaches. Using this scheme, they reduced the average 

temperature of hottest cores by 6-8°C. There was a performance improvement of 41% 

and 72%. They discovered that average CPU temperature was related to Mean Time to 

Failure (MTTF).  

 

Weissel and Bellosa [18] used event performance counters to measure the run-time 

characterization of the tasks. They assigned weights to events and used performance 

counters temperature and a count of CPU cycles to measure the energy. They used 

processor throttling to save energy and reduce temperature. They framed the problem 

as a linear optimization equation. 

 

Altet and Rubio [3] discovered that a 10°C reduction in temperature below the hardware 

threshold cut-off produces a 20% increase in lifetime. They studied component lifetime 
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and the lifetime impact model of chips by reducing temperature using scheduling 

approaches. 

 

Bellosa [19] examined the impact of a coarse-grained approach versus a fine-grained 

approach on a scheduling decision. He found that lightweight threads reduced 

scheduling decisions and minimized context switching by the scheduler. A fine-grained 

approach should increase the efficiency and scalability of the scheduler in computer 

systems. 

 

Intel uses a PID controller [20] to reduce maximum temperature in CPU chips. The PID 

controller reactively reduces residual error gain, integral gain, and derivative gain to 

control fan speeds. Intel sets an upper level of temperature, or the thermal threshold 

point, to ensure that the CPU runs below dangerous levels. The threshold point is far 

below the critical thermal point at which semiconductor hazards occur. The CPU chip 

was designed with airflow ventilation. Clock frequency modulation varies the frequency 

to reduce CPU temperature. AMD [21] uses task migration to coolest core along with 

coarse- and fine-grained controls to turn off registers and thus save energy. When the 

temperature rises, a multi-point control using sensors reduces CPU performance states 

(p-states). The p-states define the frequency and voltage of the CPU. Depending on 

usage, it also reduces temperatures by using dual dynamic power management to vary 

the voltage of the cores and the integrated memory controller independently. ARM uses 

kernel thermal framework [5] to register thermal zones, and cooling devices for reducing 

temperature. Kernel thermal framework sets the power gating and clock gating of the 

peripherals and components. Devices can configure which of the chip’s thermal sensors 
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and cooling devices to use on specific platforms. Linux thermal management [22] uses 

thermal zones with active, passive, and critical cooling points. Thermal zones are 

different trip points after which temperature increases. These zones are used to 

differentiate temperature levels, with passive being a low temperature trip point, and 

critical being a dangerous trip point in the CPU. Linux implements generic thermal 

management architecture to control temperature, using drivers for the cooling device 

(fan), event framework, and thermal zones. A platform-independent Sysfs driver 

architecture has been used to interact with platform specific thermal management [23]. 

In advanced configurations, device reconfiguration is used for power management. A 

third-party tool, Coretemp [24], uses digital thermal sensors to monitor temperature on 

each CPU core. All major processor manufacturers utilize Coretemp. 

3.2 Approach 
 

In this study, we propose a proactive scheduler to reduce temperature. The approach 

attempts to put a process to sleep before it can cause the CPU to reach threshold 

temperature. We base our approach on the observation [9] that temperature is 

dependent on FLOPS. We also observed a rise in temperature for SciMark benchmark 

programs, which have substantial floating-point computations. Fig. 2  shows the 

temperature of the ISA adapter and the cores before and after all SciMark benchmarks 

were run together. It shows that the temperature rises about 20°C upon execution of all 

the benchmarks. 

 

The motivation for using the time derivative of FLOPS as a parameter in regression is 

the observed higher temperatures during intensive floating-point operations. The 
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motivation for using the rate of rise of temperature as a regression parameter comes 

from the recognition that when the temperature increases by repeated execution of a 

certain part of code, it is likely to continue that path (or loop) until that part terminates. 

 

We use a multiple regression1 consisting of the partial time derivative of FLOPS, F 

(which is the independent variable in the regression), the application process, and the 

partial time derivative of temperature (the dependent variable) to predict the CPU 

temperature. In actual implementation, we can use Performance Application 

Programming Interface (PAPI) or hardware counter, and the lm-sensors the Application 

Programming Interface (API) calls to determine the FLOPS and temperature of the 

CPU. The scheduler PTAS predicts the impact of the application level process on CPU 

temperature by using a regression of the current CPU temperature and the FLOPS 

generated by the application-level process. If the prediction was above an empirically 

determined threshold, the application process was put to sleep for a short duration. The 

duration for which the processes remain in the sleep state is empirically determined for 

best results. 

                                                           
1
 Regression is used to predict a possible relationship between a dependent variable and a set of independent 

variables. 
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PTAS schedules the application processes in a FIFO manner. The procedure PTAS is 

outlined in Fig. 1 further elaborated below. In Equation 1, Fi and Ti represent the FLOPS 

and temperature for the ith observation. We name the regression intercept Yi, which 

represents the temperature predictor immediately following the ith observation. Using 

regression, we have the intercept Yi  as: 

Procedure PTAS (int i ) // i is observation number 

const            ThresholdGradient, K=1000 

static float   F[K], T[K], M[K], Y[K] 

Process        p, Q[n]  //Application processes 

                    //n is the number of processes 

 1 For each  p ∈ Q do  // in FIFO 

 2       Fi = FLOPS (p)  

 3       Ti  = CPUTemperature() //From lmsensors 

 4       Wait for δt time  

 5       Fi+1  = FLOPS (p)   

 6       Ti+1 =  CPUTemperature()  

 7       (𝛿𝐹/𝛿t)𝑖=  (Fi+1-Fi)/𝛿t 
 8       (𝛿𝑇/𝛿t)𝑖=  (Ti+1-Ti)/𝛿t 
 9       Wait for δt time 

 10  Fi+2  = FLOPS (p)   

 11  Ti+2 =  CPUTemperature()  

 12  (𝛿𝐹/𝛿t)𝑖+1=  (Fi+2-Fi+1)/𝛿t 
 13  (𝛿𝑇/𝛿t)𝑖+1=  (Ti+2-Ti+1)/𝛿t 
 14  Yi = 1 +  (𝛿𝐹/𝛿t)𝑖  * Fi + (𝛿𝑇/𝛿t)𝑖* Ti  +  σ𝑖(Y ) 

 15  Yi+1 = 1 +(𝛿𝐹/𝛿t)𝑖+1  * Fi+1 + (𝛿𝑇/𝛿t)𝑖+1 * Ti+1  +  σ𝑖+1(Y ) 

 16  𝛿𝑌𝑖/𝛿t   = (𝑌𝑖+1 − 𝑌𝑖)/𝛿t 
 17      if 𝛿𝑌𝑖/𝛿t > ThresholdGradient then       

 18           Sleep(p) 

 19      endif 

 20    endfor 

 end PTAS 

Fig. 1 Algorithm PTAS 
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𝑌𝑖 = 𝛽0 +  𝛽1𝐹𝑖 +  𝛽2𝑇𝑖  + ∈                                                                                                                   (1) 

where, β0 = 1,  β1 =
δF

δt
,  β2 =

δT

δt
, and ∈ = σ(Y) is the standard deviation. 

 

After computing the gradient Yi of all application processes, PTAS moves the processes 

with gradients higher than threshold to the sleep state, allowing the CPU to cool. The 

goal was to maintain the temperature below threshold level, and thereby avoid spikes in 

temperature. The threshold gradient is the value of dYi/dt (empirically determined) at 

which the process cuts off. 

 

Probing the temperature and FLOPS took constant time. The complexity of PTAS is 

O(n), where n is the number of processes. In our implementation, we used a Java 

Process API call to select the application-level processes, and Java Apache commons 

math API2 to determine Yi, using the historical standard deviation. We used scheduling 

quanta [25] and divisible load approaches [26] to schedule tasks in FIFO order. In the 

above two approaches, the process is broken down into manageable threads. It reduces 

load on the scheduler to execute the processes fairly and efficiently. 

 

All the processes considered in this experiment are data-intensive tasks that have 

substantial floating-point operations, which increases the temperature significantly. The 

collective run results are shown in Fig. 2. 

 

                                                           
2
 org.apache.commons.math3.stat.regression 
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As stated earlier, when implementing PTAS in a real system, PAPI [27] or hardware 

counters may be used to measure FLOPS. The benchmark process computes floating-

point calculations. In order to estimate the overhead due to PAPI in such an 

implementation, we ran benchmark programs with PAPI. These benchmark programs 

were Inner Product, Matrix Vector Multiplication, and Matrix Multiplication. We 

performed calibration on PAPI with various matrix sizes ranging from 2x2 to 500x500 to 

estimate the overheads on latency and throughput using PAPI. We found the overheads 

to be negligible, thus suggesting the feasibility of such an implementation. PAPI 

computes percentage error overhead between theoretical and real time computation of 

floating points. We conducted experiments to empirically determine error overhead due 

to PAPI for matrix vector test, inner product test, and matrix multiplication, and found the 

normalized error overheads to be 0.0016, 0.0000, and 0.0017 respectively. 

 

3.3 Experimental Setup 
 

The experiments were conducted on a desktop and laptop machine with the Ubuntu 

operating system. We used Ubuntu 9.10 on a Dell Optiplex 9020 i5 @ 2.90 Ghz desktop 

with 4 GB RAM and 320 GB HDD. For the laptop, we used Lenovo Intel Dual Core 

@2.10 Ghz with 4 GB RAM and 302 GB HDD. The ambient room temperature was 70°F 

with central air in the lab. We developed the scheduler using Java, and used Java APIs 

to calculate the temperature gradient. We ran our experiments on laptops as well, and 

saw similar benefits. We used the desktop results using Ubuntu in the dissertation as the 

OS is freely available, making the experiments easily replicable.  
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The experiment was run on eight SciMark benchmarks: Fast Fourier Transform (FFT), 

Jacobi Successive Over-Relaxation (SOR), Dense Unit Factorization (LU), 

 

Fig. 2 Peak temperatures of ISA adapter and cores with and without execution of all benchmarks 

Sparse Matrix Multiplication (Sparse), FFT-Large, SOR-Large, LU-Large, and Sparse-

Large. When conducting the above experiments, the benchmark FFT does a 1-D 

transform of complex numbers. It uses complex arithmetic, shuffling, non-constant 

memory references, trigonometric, and bit reversal functions [28]. The benchmark SOR 

does a 100x100-matrix calculation on finite applications [28]. The benchmark LU uses 

pivoting methods on a 100x100 matrix to perform linear algebra kernels and dense 

matrix operations [28]. Sparse Matrix Multiplication computes 1000x1000 sparse matrix 

with uncompressed storage patterns [28]. 

 

The peak CPU temperature (and peak FLOPS) for a benchmark run was the maximum 

of all observed temperatures (and FLOPS) during the run of that benchmark. The 

average temperature (and average FLOPS) was a simple average of the observed 

values over time during the run of the benchmark. 
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We ran the benchmarks individually to estimate their specific impact on temperature. No 

processes other than those belonging to the OS were running on the computer on which 

the experiment was conducted. For each of the eight benchmarks mentioned above, we 

noted CPU temperatures, FLOPS, and schedule length with and without the PTAS 

scheduler. In addition, the CPU temperature was measured before and after each thread 

was sent to sleep to observe whether there was indeed a drop in CPU temperature. We 

ran each benchmark 10 times. The schedule length here represents the execution time. 

The results in the graphs shown in this dissertation are the average over these 10 runs. 

 

Both sleep time and threshold gradient were empirically determined using several 

runs. The sleep time was chosen as the shortest time that can reduce CPU temperature 

below an empirically defined threshold temperature. In an implementation, these values 

can be user-programmable (such as in a data center) to achieve best outcomes of 

thermal and execution time savings. 

 

To determine the best threshold gradient and sleep times, we ran the experiment many 

times with various threshold gradients and sleep durations. We kept the sleep duration 

short, such that the corresponding increase in the schedule length was minimal. We 

noted the threshold gradient and sleep duration for which there was a maximum 

decrease in temperature and used them for future experiments. In these experiments, 

the best values for threshold gradient and sleep time were found to be 0.24 units and 

1msec respectively. We monitored 𝛿𝑡 by an electronic stopwatch. The duration for 

statements 5 and 6 in Fig. 1 were negligible compared to 𝛿𝑡. 
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We probed the CPU temperature and FLOPS dynamically. The benchmarks provided a 

mechanism to probe the FLOPS. The benchmarks were modified to probe the CPU 

temperature using hardware sensors [29]. 

 

3.4 Results and Discussion 
 

We found a favorable decrease in temperature for all eight benchmarks with PTAS. In 

FFT, LU, SOR, and Sparse benchmarks, temperature reductions were 2-4°C, whereas 

those in FFT-Large, LU-Large, SOR-Large, and Sparse-Large were 3-5°C. The 

reductions on a laptop were 3-5°C in FFT, LU, SOR, and Sparse, whereas those in FFT-

Large, LU-Large, SOR-Large, and Sparse-Large were 3-6°C. 

 

Table 1 shows the peak FLOPS and peak CPU temperature for all the benchmarks. The 

peak FLOPS using PTAS was smallest as the processes were put to sleep, when there 

were rapidly rising floating-point computations. 
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As expected, there was an increase in schedule length when using PTAS, because 

processes were put to sleep to reduce CPU temperature. Fig. 4 MFLOPS vs. time when 

benchmarks are executed in sequence (FFT, LU, SOR, and Sparse)shows the FLOPS 

versus time when all the small benchmarks (FFT, LU, SOR, and Sparse) are run 

together. This graph shows the FLOPS reduction with PTAS over the execution time of 

small benchmarks. The x-axis represents MFLOPS and the y-axis represents time. Fig. 4 

MFLOPS vs. time when benchmarks are executed in sequence (FFT, LU, SOR, and 

Sparse)also shows the temperature versus time when small benchmarks are executed 

together. There is a decrease in CPU temperature with PTAS for the execution time of 

the small benchmarks.  

 

 
Table 1 Peak FLOPS and peak CPU temperature for all benchmarks when running on 
desktop 

 

Peak FLOPS Peak Temp (°c) 

Benchmark Without PTAS With PTAS Without PTAS With PTAS 

LU Large 3503 2547 44 43 

FFT Large 188 187 44 43 

SOR Large 2032 2007 49 48 

Sparse Large 1225 1162 45 43 

LU 3510 3421 44 41 

FFT 170 90 49 49 

SOR 2377 2355 44 43 

Sparse 1517 1280 49 48 
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In the smaller benchmark group (FFT, LU, Sparse, and SOR), the schedule length 

increases with PTAS were from 26-33%. The increase in schedule length of the Sparse 

benchmark was highest (33%). This could be attributed to the Sparse benchmark 

process causing a steep rise in peak CPU temperature due to large non-contiguous 

memory accesses. 

 

Fig. 3 Execution time of different benchmarks for the desktop and laptop 

The peak CPU temperature of SOR without PTAS was highest. The maximum reduction 

of CPU temperature was in LU. This can be attributed to the higher FLOPS in LU 

compared to Sparse (see Fig. 6). 
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Fig. 4 MFLOPS vs. time when benchmarks are executed in sequence (FFT, LU, SOR, and Sparse) 

 

 

 

Fig. 5 CPU temperature during execution when small benchmarks(FFT, LU, Sor and Sparse) are 
executed together 

 

In the larger benchmarks group (FFT-Large, LU-Large, Sparse-Large, and SOR-Large), 

increase in schedule length with PTAS was between 15-25% (see Fig. 3). 



  

38 

 

 

For all benchmarks, as seen in Fig. 7, the average peak CPU temperature decreased 

with the application of PTAS. We also determined the median results. We found that 

median readings with PTAS with and without PTAS were similar to average readings. 

 

We noted that we could decrease the schedule length by decreasing the sleep time, at 

the cost of temperature. A carefully selected sleep time can reduce both the schedule 

length and temperature. Finally, we investigated the deviation of the readings to provide 

the level of confidence on the experiments. Table 2 lists the normalized standard error 

in our readings in a single experiment, where there are several crests of FLOPS at 

which the processes were put to sleep (cut-off points). The data represents the 

deviation of the cut-off values of the FLOPS at many crests in a single experiment. The 

normalized values were computed by dividing the standard deviation of the FLOPS at 

which the processes cut off. The corresponding deviations of temperature are also 

shown. We infer that in the experiment, the cut off occurred at similar points, suggesting 

confidence in experimental observations. 
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Table 2 Normalized STDEV of cut-off FLOPS and cut-off temperature over a single 
experiment with PTAS 

Benchmark Cut-off FLOPS Cut-Off Temp (°c) 

FFT 0 0.02 

LU 0 0.01 

SOR 0 0.02 

Sparse 0 0.05 

FFT-Large 0 0 

LU-Large 0 0.02 

SOR-Large 0 0.02 

Sparse-Large 0 0.02 

 

 

Fig. 6 Peak temperature using PTAS in desktop and laptop for various benchmarks 
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Fig. 7 Average CPU temperature using PTAS in desktop and laptop for various benchmarks 

 

The peak CPU temperature for all the benchmarks decreased when we ran PTAS (see 

Fig. 6). There was also a drop in average CPU temperature for all the benchmarks (see 

Fig. 7). The temperature reduction comes from cooling during sleep times, and a more 

even redistribution of floating-point operations over time. 

 

We also obtained temperature improvements on a battery-powered laptop. Fig. 6 and 

Fig. 7 show the comparison of peak CPU temperature and average CPU temperature 

on a desktop and laptop for FFT, LU, SOR, and Sparse small benchmarks. 

 

Peak temperatures reduced for SciMark benchmarks, such as FFT, SOR, and Sparse, 

which are either integer arithmetic intensive or memory intensive. This shows that PTAS 

also has predictive power for non-FP applications. 
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The benefits of PTAS are over and above hardware-based approaches, such as DVFS, 

DTM, leakage energy, and system throttling. The experiment machine had Thermal 

Design Power (TDP). This strategy can also be implemented on a web browser or 

mobile device, as they have floating-point calculations. 

 

3.5 Conclusion 
 

In this chapter, a Proactive Temperature-Aware Scheduler was developed to cut off a 

process and put it to sleep if its predicted gradient was high. Such a strategy stabilizes 

CPU temperature and prevents temperature surges. Thus, PTAS would increase chip 

reliability by reducing thermal damage to the chip, and reduce related costs. In FFT, LU, 

SOR, and Sparse benchmarks, temperature reductions were 2-4°C, whereas those in 

FFT-Large, LU-Large, SOR-Large, and Sparse-Large were 3-5°C. The reductions on a 

laptop were 3-6°C in FFT, LU, SOR, and Sparse, whereas those in FFT-Large, LU-

Large, SOR-Large, and Sparse-Large were 3-6°C. 

 

As the regression uses the time derivative of the temperature, the effectiveness goes 

beyond FP intensive applications. Future work should add the rate of memory accesses 

as a predictor, which we have also found helpful in reducing CPU temperatures in our 

preliminary work. As pointed out in [5], these are the major causes of high 

temperatures. Our future work will explore the impact of this approach on web browsing 

and mobile devices. We expect similar benefits, as preliminary work with rate of memory 

change is encouraging. 
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As discussed previously, in our future work we will account for non-uniform memory 

accesses in the prediction. Preliminary results show a reduction in the schedule length 

penalty by employing memory access in the prediction. Future research will also focus 

on a detailed study of the relationship of threshold gradient to the duration of sleep time, 

schedule length, and multi-core temperature-aware scheduling. 
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Chapter 4 Proactive thermal management using flops via memory rates 

 

 

After carefully reviewing literature, we found our approach is novel. The remainder of 

this paper is organized as follows: in Section 2, we discuss related work, Section 3 the 

PTFM approach, Section 4 the experiment section, Section 5 the results and discussion 

and finally, we discuss conclusion. 

4.1 Related Work 
 

There are several approaches to reducing CPU temperature. Temperature and energy 

aware strategies comprise of dynamic voltage and frequency scaling (DVFS), dynamic 

power management (DPM) or dynamic thermal management (DTM), leakage energy 

and variability thermal management or location based management.   

 

Coskun et al. [2] implemented a workload scheduler using DVFS and DPM strategies 

that reduces CPU temperature by identifying spatial variations in workloads. This 

approach reduced hotspots by 35%, spatial gradients by 85% and thermal cycles (i.e. 

hot cool cycles) by 60%. Chatrurvedi et al. [10] developed m-oscillation (DVFS) thermal 

management strategy to reduce the chip temperature where m represents the speed of 

the CPU core. They used lower speed amongst two frequencies to complete tasks, 

which resulted in peak CPU temperature reduction of 2°C. 
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Xiuyi et al. [1] implemented DPM using operating system (OS) scheduler to minimize 

peak CPU temperatures in 3-d torus chips. In this research, there was 7.2% 

performance improvement in speedup of the processor using this scheduler. They 

discovered that hotspots around vertically adjacent layers in 3-d torus chip were the 

main reason for the increase in the 3-d torus chip temperature.   

 
Kumar et al. [7] reduced CPU temperature by using DTM in an OS scheduler. This 

scheduling approach managed CPU temperatures effectively with average performance 

overhead of 10.4% (20.1% maximum). Chuan et al. [8] used leakage energy using 

active and passive modes of the OS or CPU to schedule the tasks. Their approach 

increased context switching of the tasks, which increased energy consumption. This 

research has small scheduling overhead and 5% to 6% energy savings.  

 

Wei and Nannarelli [9] discovered that floating-point operations increased heat in 

caches. They used fused multiply add to optimize the division of the floating points 

which This approach reduced average temperature in caches by 5% and reduced 

leakage energy by 12%. In addition, this approach reduced power consumption by 

8.4%. 

 

Jin and Maskell [14] studied thermal management at an event level. They built a thermal 

map of events that reduced CPU temperature. By using an offline lookup table, they 

built a low complexity scheduler, which can be integrated into the kernel.  

 

Fisher et al. [13] used speed scheduling that identifies ideal speed for each core of the 
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CPU to reduce CPU temperature. In this research they reduced peak CPU 

temperatures are reduced by 30-70 °C when compared to load balancing strategies.  

 

Homogeneous scheduling in 3-d torus chips by Jiajia et al. [15] controls peak CPU 

temperatures. In the scheduling technique there was a speedup of 1.06, 1.05 and 1.04 

in FFT, matrix multiply and radix sort.  

 

Yang et al. deployed helper threads [16] to reduce peak temperatures in CPUs. Helper 

threads (which are cool threads) execute tasks in parallel thereby giving CPU thermal 

improvements and energy savings. The results were 66.3% and 83.3% savings in 

energy delay product (EDP) for FFT and Multigrid. This research reduced CPU thermal 

emergency.  

 

Anupindi and Baskiyar [30] developed a proactive and predictive approach using 

derivative of floating points (FLOPS) and temperature to reduce CPU temperature. They 

evaluated the performance of PTAS using the various small and large FFT, LU, SOR 

and Sparse components of the Scimark benchmarks. The reductions in CPU 

temperatures on a desktop machine were between 7-13°C with the corresponding 

percentage reductions between 21-39%. Those for the desktop were between 3-6°C 

with the corresponding improvements between 4-9%. The corresponding penalties in 

schedule lengths in desktop were between 15-30% and 5-10% in laptop and there was 

3-5% energy savings in both the desktop and laptop. The work reported in this paper is 

a substantial improvement over the previous work by including memory rates in the 
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predictor and varying sleep times and threshold cut-offs to conduct a more rigorous 

study. 

 

Merkel and Bellosa [17] discovered that migration could be better than system throttling. 

They created an energy aware scheduling policy on a Linux scheduler by creating a 

task data structure. The scheduler moved hot tasks to the coolest core and balanced 

energy to get energy savings. They computed energy readings at a task level using 

event performance counters. The cost of migration was smaller than throttling. 

 

Ayoub and Rosing [4] implemented a proactive thermal management strategy using a 

predictor formed by historical bandwidth of signals where temperature was modeled as 

a RC network. They discovered that Mean time to failure (MTTF) was related to average 

and peak CPU temperatures. The workload characterization of the tasks can be 

computed by finding the fetch rate of tasks. They measured the CPU temperatures due 

to reactive and proactive approaches using SPEC 2000 benchmarks. Using their 

proactive strategy, they decreased the average temperature of the hottest cores by 6-8 

°C with a performance penalty between 40-60%. 

 

Weissel and Bellosa [18] implemented event performance counters to measure tasks 

characteristics. They put weights to task events and measured CPU energy and 

temperature using performance counters. They measured CPU cycles to find energy 

consumption. Using static and dynamic parts of a linear optimization equation, they 

reduced temperature and saved energy.  Scimark numerical benchmarks [28] were 

used for the experiment. 
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Lenovo [31] uses four schemes for energy management in laptops. They are energy 

star, high performance, balanced and super energy saver. Energy star uses sleep, 

hibernation, hard disk rotation and CPU speed in a/c and battery mode to get energy 

savings. This scheme optimizes battery health. In addition, smart power savings for CD-

ROM, hard disk, CPU and screen refresh rates are gained. Using smart sensing 

Procedure PTFM (int i ) // i is observation number 

const            ThresholdGradient, K=1000 

static float   F[K], T[K], M[K], Y[K] 

Process        p, Q[n]  //Application processes 

                    //n is the number of processes 

 1 For each  p ∈ Q do  // in FIFO 

 2       Fi = FLOPS (p)  

 3       Ti  = CPUTemperature() //From lmsensors 

 4       Mi  = MemoryAccessRate(p)     

 5       Wait for δt time  

 6       Fi+1  = FLOPS (p)   

 7       Ti+1 =  CPUTemperature()  

 8       Mi+1 = MemoryAccessRate (p)  

 9        (𝛿𝐹/𝛿t)𝑖=  (Fi+1-Fi)/𝛿t 
 10  (𝛿𝑇/𝛿t)𝑖=  (Ti+1-Ti)/𝛿t 
 11  (𝛿𝑀/𝛿t)𝑖=  (Mi+1-Mi)/𝛿t 
 12  Wait for δt time 

 13  Fi+2  = FLOPS (p)   

 14  Ti+2 =  CPUTemperature()  

 15  Mi+2 = MemoryAccessRate (p)  

 16  (𝛿𝐹/𝛿t)𝑖+1=  (Fi+2-Fi+1)/𝛿t 
 17  (𝛿𝑇/𝛿t)𝑖+1=  (Ti+2-Ti+1)/𝛿t 
 18  (𝛿𝑀/𝛿t)𝑖+1=  (Mi+2-Mi+1)/𝛿t 
 19  Yi = 1 +  (𝛿𝐹/𝛿t)𝑖  * Fi + (𝛿𝑇/𝛿t)𝑖* Ti  +  (𝛿𝑀/𝛿t)𝑖  * Mi +  σ𝑖(Y ) 

 20  Yi+1 = 1 +(𝛿𝐹/𝛿t)𝑖+1  * Fi+1 + (𝛿𝑇/𝛿t)𝑖+1 * Ti+1  +   (𝛿𝑀/𝛿t)𝑖+1   * Mi+1  +  σ𝑖+1(Y ) 

 21 𝛿𝑌𝑖/𝛿t   = (𝑌𝑖+1 − 𝑌𝑖)/𝛿t 
 22     if 𝛿𝑌𝑖/𝛿t > ThresholdGradient then       

 23           Sleep(p) 

 24     endif 

 25    endfor 

 end PTFM 

Fig. 8 Algorithm PTFM 
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approaches for ambient light sensing, ambient keyboard sensing and ambient panel light 

significant energy savings are obtained.  

 

Dell [32] uses energy smart architecture for high power efficiency and intelligent power 

management. It uses a power supply unit with common form factor for a/c or battery. In 

addition, it uses Intel node manager firmware for power monitoring capabilities to the 

PSU and subsystem, processor, I/O, memory, storage and fan. Using it, a sample for ten 

seconds can be obtained to measure the accuracy and efficiency.  Finally, energy 

controlling and reporting capabilities are provided in dell servers.  

 

IBM [33] uses intelligent power management features in POWER7 processors. Using 

energy scale, this processor intelligently monitors power trending, power-saving capping 

of maximum power that allows the server to set system policies for energy-efficient 

servers. It maintains energy feeds and sets the upper limit of energy for a server in a 

data center. The core of IBM energy management is to eliminate hotspots in the CPUs. 

In addition, it eliminates wasteful cool spots, which decrease energy savings.  

Linux [34] uses CPUfreq subsystem to control processor energy savings varying the 

frequency dynamically for different workloads.  

4.2 Approach 
 

We developed a proactive scheduler that reduces CPU temperature. This work is based 

on our previous work [30] in which we developed a proactive scheduler by predicting the 

impact of any process on CPU temperature using the time derivatives of its floating 

point instruction execution rate and current CPU temperature.  This strategy was called, 
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PTAS, which used regression of FLOPS and temperature gradients to determine CPU 

temperature of a process in a CPU. This strategy successfully reduced CPU 

temperature.  

 

In this research we hypothesize that using a memory derivative gradient in the 

temperature impact predictor could provide additional CPU temperature reductions. We 

call the resulting scheduler Proactive Thermal  manager using Floating point rates and 

Memory rates (PTFM) which uses the time derivatives of FLOPS, memory access rates 

and current temperature to predict and proactively reduce CPU temperature.   The 

temperature impact predictor of a process can be formulated as a regression as follows: 

Yi   = β0 +  β1 Fi  + β2 Mi + β3 Ti +     ∈                                                                                                  (1) 

where the co-efficient are β0 = 1, β1=δF/ δt, β2=δM/ δt, and β3= δT/ δt and σ(y) is standard 

deviation 

Fig. 8 gives the algorithm for PTFM. The algorithm computes the rate of FLOPS for a 

process, the rate of CPU temperature change, and the rate of memory accesses of any 

process.  In the experiment, these values were computed by determining the total 

FLOPS and total memory accesses separated by delays δt (among ith, i+1th,i+2th 

observation points) and then dividing them by δt.  The temperatures were also observed 

at the ith, i+1th,i+2th observation points and the differences were divided by δt to get the 

rates of temperature. The term σi(Y) represents the standard deviation of values from 0th 

to ith observation.  Using the above values a regression predictor (δY/δt)i was formed.  If 

the value of the predictor is greater than the predefined threshold gradient, the process 

is temporarily put to sleep. In order to get better thermal improvements, we 
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experimented with different sleep times and cut-off gradients.  The cut-off gradient 

values that we experimented with are:  0.22, 0.23, 0.24 and 0.25.  We used 10 ms, 50 

ms, 250 ms, 500 ms and 1 s sleep times for our strategies.   The threshold cut-off 

gradient of 0.22 gave the best thermal improvements.  The graphs shown in this paper 

correspond to this threshold value.  

 

The approach taken by PTFM does not cut-off all the user processes in CPU whereas 

hardware based cut-off suspends all user processes, making the CPU temporarily 

unavailable for a short duration. Therefore, in PTFM approach the CPU remains usable 

for other processes. Table 3 shows the symbols used by PTFM. 

4.3 Experimental Setup 
 

In order to evaluate PTFM, we used the Scimark benchmarks.  We selected Scimark 

benchmarks since they performed numerical calculations. The benchmarks used Fast 

Fourier transform, Jacobi successive over-relaxation, dense unit factorization and 

Table 3  Symbols and description 

Symbol Description 

𝛥𝑡 Delay time between successive observations 

𝑑Y/ 𝑑𝑡 Temperature gradient predictor 

𝑌𝑖 TIP of the process at the ith observation 

𝛽 Regression co-efficient 

𝐹𝑖 FLOPS at the ith observation 

𝑀𝑖 Memory accesses at  the ith  observation 

𝑇𝑖 Temperature at  the ith observation 
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Sparse matrix multiply.  These numerical benchmarks perform various functions like bit 

reversal, matrix multiply and memory accesses. These benchmark processes (FFT, 

SOR, LU and Sparse) are floating point intensive, memory intensive and integer 

intensive.  

 

We conducted the experiment with Ubuntu 9.10 on a Dell OptiPlex 9020 i5 @ 2.90 Hz 

desktop with 4 GB RAM and 320 GB HDD. We also conducted the experiments on a 

Lenovo Intel Dual Core @2.10 Hz with 4 GB RAM and 302 GB HDD laptop running 

Ubuntu 9.10 operating system. The ambient room temperature was 70 °F.  

 

The algorithm was written in Java and used apache commons API for mathematical 

calculations. We modified the code in the Scimark benchmarks to calculate the values 

of FLOPS and memory access rates.  In a real time scheduler implementation, we can 

measure FLOPS and memory access rates using PAPI. In order to see whether in a 

real implementation what sort of overheads PAPI could cause, we performed calibration 

tests on PAPI for Matrix Multiply, Inner Product and Matrix Vector Multiply benchmarks. 

We found overheads for FLOPS and memory access rates for matrix multiplication to be 

negligible (0.0017). This shows that PAPI can be used in a real implementation without 

incurring significant overhead. 

 

We used hardware temperature sensors [29] in the simulator to measure CPU 

temperature. We measured the temperature readings from these sensors and 

calculated. 
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Using the memory access rates, FLOPS and current temperature of the CPU, we 

compute Temperature Impact Predictor for any process.  The regression for any 

process can also be computed by using the apache commons library [35].  

 

When the value of the gradient of the predictor goes above a threshold, we proactively 

put the process to sleep for a small duration to reduce CPU temperature.  

 

We evaluated the effect of four different strategies on CPU temperature:  PTAS, PTFM, 

STD (Simple Time derivative) and Threshold.  STD strategy used a derivative of CPU 

temperature (d/dt). Using this derivative a cut-off was employed if the derivative 

exceeds a threshold value to reduce CPU temperature. The simple derivative value 

used was 0.24—we chose this value after a few experiments to provide the best CPU 

temperature reduction, and schedule length penalty.  Finally, Threshold strategy does 

not use a derivative or regression of FLOPS, memory and temperature but used a direct 

cutoff. It cuts off a process, which exceeds a given Threshold. In all these strategies, the 

threshold used was computed empirically after many experiments. The threshold value 

used for comparison was the minimum threshold at which there was maximum CPU 

temperature reduction. The threshold temperature used for Threshold strategy was 45 

°C for desktop and 53 °C for laptop. We compared the results of these four different 

strategies for peak CPU temperature, average CPU temperature and performance.  
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4.4 Results and Discussion 
 

We recorded the readings of our experiment and plotted the results. The average CPU 

temperature is an average of several readings during the entire execution of the specific 

component of the benchmark.  The peak CPU temperature is the peak temperature 

reached during the entire execution of the specific component of the benchmark.  Fig. 9 

shows CPU temperature readings for the small benchmarks in Celsius when they are all 

run successively. The crests in the graph indicate rise in CPU temperature with the 

benchmarks whereas troughs in the graph indicate process cut-offs due to PTFM. For 

these benchmarks, there was an overall reduction of CPU temperature of 3-6°C with 

PTFM than without. The reduction of CPU temperature was due to reducing FLOPS and 

memory accesses. There were thermal improvements with large benchmarks too.  For 

large benchmarks, there was 3-6°C of average CPU temperature reduction.  

 

The schedule length with PTFM extends from 2-10% whereas with PTAS it extends by 

15-25%. We were able to keep the schedule length tight for PTFM by employing 

optimization of sleep time, the additional memory rate parameter in the regression, and 

experimenting with different predictor threshold cut-offs.   

 

Fig. 10 shows peak CPU temperature comparison for Threshold, STD, PTAS and PTFM 

PTAS and PTFM strategies with a sleep time of 10 ms. We found that peak CPU 

temperature reduction for PTFM was greater than PTAS, STD and Threshold for FFT. In 

PTFM strategy, the FFT benchmark had greater peak CPU temperature reduction than 

due to LU, SOR and Sparse. In all the strategies, with Sparse benchmark there was 

minimal peak CPU temperature reduction due to non-uniform accesses. Perhaps the 
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lack of locality causes memory accesses, which causes increase in CPU temperature 

[36]. The peak CPU temperature of the threshold strategy was greater than No Strategy 

for SOR and Sparse benchmarks because the temperature continues to rise during the 

cut-off for the entire execution of the run. 

 

We found that average CPU temperature reduction for PTFM (see Fig. 11) was higher 

than PTAS at 10ms sleep time. In addition, as expected, we observed that average CPU 

temperature reductions were higher than peak CPU temperature reductions for all the 

strategies, for all benchmarks and all sleep times.  

 

We set the cut-off slope of the predicted gradient as 0.22 as we found best results at this 

value. This was determined after several experiments. In a real time scheduler, the cut-

off slope can be varied using a feedback control loop to get further CPU temperature 

improvements. For all the processes, priority was set as normal. 

 

Fig. 12 shows peak CPU temperature comparison for four different strategies at 500 m 

seconds sleep time. We found that the peak CPU temperature reduction for all the 

benchmarks. The PTFM strategy was better for FFT, LU Large and Sparse Large. The 

PTAS strategy had a better run for LU, Sparse and FFT Large. For Sparse and SOR 

threshold strategy was better. 

 

Fig. 13 shows average CPU temperature comparison for 500 ms sleep time. The PTFM 

strategy outperforms for SOR, FFT Large and SOR Large. The threshold strategy shows 
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better results for LU and Sparse. We found PTAS improvements are similar to PTFM. 

Fig. 14 shows peak CPU temperature comparison for 1 s. We found PTFM was superior 

for FFT, LU, SOR Large. The threshold strategy shows improvement for SOR and 

Sparse Large. The PTAS strategy gives good results for FFT large. Fig. 15 shows 

average CPU temperature comparison for 1 s sleep time. The PTFM strategy had 

thermal improvements for FFT, LU and SOR large. For Sparse and SOR Large PTAS 

gives thermal savings. The threshold strategy had improvements for SOR and Sparse 

Large. The thermal behavior was similar to smaller sleep time but the process goes to 

sleep for a longer duration.  

 

Fig. 9 CPU Temperature for smaller benchmarks when executed successively 

The PTFM strategy used memory rates in addition to FLOPS, which was instrumental in 

giving the best outcome when compared to the other strategies.  
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Fig. 10 Peak CPU temperatures with a sleep time of 10 ms 

 

Fig. 11 Average temperature for a sleep time of 10 ms 
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Fig. 12 Peak temperature for a sleep time of 500 ms 

 

Fig. 13 Average temperature for a sleep time of 500 ms 
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Fig. 14 Peak temperature for a sleep time of 1 s 

 

Fig. 15 Average temperature for a sleep time of 1 s 

 

 

 

Fig. 16 shows the peak CPU temperature comparison for a desktop and laptop whereas 

Fig. 17 shows average CPU temperature comparison for a desktop and laptop. We got 

better thermal improvements (3-6°C) on the laptop. The peak CPU temperature is the 

peak CPU temperature the CPU reaches during the entire execution of specific program 
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4.5 Conclusion 
 

In this chapter, we developed a proactive CPU thermal management strategy, which 

reduce CPU temperature by predicting the higher temperature gradient of a process 

using rates of change of No current CPU temperature, floating point access rates and 

memory access rates. We varied sleep time, cut-off gradient of any process to provide 

the best temperature and execution times. We compared our strategy with PTFM, STD 

and Threshold strategies. We found PTFM outperformed other three strategies.  We 

found around 3-6°C/6°C reduction in peak/average CPU temperatures due to  small 

benchmarks (FFT, LU, SOR and Sparse) and 3-6°C/6°C  for large benchmarks (FFT-

Large, SOR-Large, LU-Large and Sparse Large).  Preliminary results on Spec suite 

gave similar improvements. We compared our strategy with PTFM, STD and Threshold 

strategies. We found PTFM outperformed other three strategies.   

 

Fig. 16 Peak CPU Temperature comparison of PTFM on a desktop and laptop for a sleep time of 50 
ms 
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Fig. 17 Average CPU Temperature comparison of PTFM on a desktop and laptop for a sleep time 
of 50 ms 

 

This strategy can be applies over and above the hardware approaches such as DVFS, 

DPM and leakage energy. In the future, we aim to conduct these experiments on other 

mobile devices and on cloud environments. Based on this research we can implement a 

real time scheduler on multi cores with different scheduling policies. Fig. 18 shows the 

peak CPU temperature for different slopes values when all the benchmarks are 

executed together whereas Fig. 19 shows the average CPU temperature of different 

slope values when all benchmarks are executed together. The peak CPU temperature 

reduction for a slope of 0.21 and 0.22 was higher than other slope values (0.23 and 

0.24). Similarly, the average CPU temperature reduction was high at 0.21 and 0.22 

slope values. 
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Fig. 18 Peak CPU Temperature when all benchmarks are executed together 

 

Fig. 19 Average CPU Temperature when all benchmarks are executed together 

 

Table 4 shows the time relationship between different floating-point values (MFLOPS). 

We see a drop in MFLOPS with our strategy. Similarly, in Table 5 we see a drop in CPU 

temperature.  
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Table 6 depicts the CPU temperature without benchmarks running and with 

benchmarks running for core 0, core1 and ISA adapter. It shows our motivation that 

running floating-point intensive workloads increase CPU temperature. These 

benchmarks are floating-point intensive and memory intensive. 

 

 

Table 4 MFLOPS vs. time 

Time Without PTAS With PTAS 

0 4 5 

1 28 5 

2 94 43 

3 113 43 

4 123 85 

5 124 25 

6 126 43 

7 126 85 

8 126 40 

9 170 45 

10 329 96 

 
Table 5 Temperature vs. time 

Time Without PTAS With PTAS 

0 72 69 
1 74 71 
2 76 72 
3 76 76 
4 77 73 
5 85 85 
6 86 84 
7 86 77 
8 87 85 
9 90 88 
10 92 91 
 94 89 
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Table 6 CPU temperature without benchmarks and with benchmarks running 

 Benchmarks not running Benchmarks running 

Core 0 45 65 

Core 1 45 63 

ISA 
Adapter 

46 69 

 
 
 

Table 7 displays the execution times of different benchmarks on a desktop and laptop 

for different benchmarks. We see that there was an increase in schedule length by 10 -

15%.  Table 8 depicts the peak CPU temperature using PTAS in a desktop and laptop 

for different benchmarks. We see a considerable drop in peak CPU temperature with 

PTAS. 

 
 

Table 7 Execution time of different benchmarks for the desktop and laptop 

 

Desktop 
without 
PTAS 

Desktop with 
PTAS 

Laptop without 
PTAS Laptop with PTAS 

LU 
Large 46 64 54 54 
FFT 

Large 72 76 72 75 
Sparse 
Large 71 82 88 122 
SOR 
Large 62 73 46 58 

LU 36 47 27 38 
FFT 33 45 26 26 

Sparse 68 131 53 64 
SOR 72 84 46 58 
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Table 8 Peak Temperature using PTAS in Desktop and laptop for various benchmarks 

 
 
 

 
Table 9 shows the average CPU temperature using PTAS in desktop and laptop. We 

were able to get a clear reduction in CPU temperature in all the benchmarks using 

desktop and laptop. 

 
 

Table 9 Average CPU temperature using PTAS in desktop and laptop for various 
benchmarks 

 

Desktop without 
PTAS 

Desktop with 
PTAS 

Laptop without 
PTAS 

Laptop with 
PTAS 

LU 
Large 42 39 83 83 
FFT 

Large 42 39 64 61 
Sparse 
Large 43.3 37.5 83.4 80 
SOR 
Large 46.5 41.3 93.2 86.3 
FFT 40 36 71.9 69.4 
LU 46 44 81.4 77.6 

SOR 42 39 77.3 73.4 
Sparse 45 43 81.2 80.5 

 

Desktop 
without PTAS 

Desktop 
with 

PTAS Laptop without PTAS Laptop with PTAS 

LU 
Large 44 43 86 86 
FFT 

Large 44 43 64 61 
Sparse 
Large 49 48 84 81 
SOR 
Large 45 43 98 95 
FFT 44 41 77 73 
LU 49 49 86 84 

SOR 44 43 81 77 
Sparse 49 48 90 88 
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Table 10 gives peak CPU temperature without PTFM and with PTFM for smaller 

benchmarks for a sleep time of 10 ms.  We see that PTFM has best reductions at a 

sleep time of 10 ms .We are able to reduce peak CPU temperature using PTFM 

whereas Table 11 shows peak CPU temperature comparison of PTAS and PTFM. We 

see PTFM is better than PTAS as we use FLOPS and memory rates to predict a 

process and put it to sleep. 

 
 

Table 10 Peak CPU Temperature of smaller benchmarks (FFT, LU, SOR and Sparse) 
when executed together 

 
 Without PTFM With PTFM 

   0 52  52  

1 52 49 

2 57 54 

3 60 58 

4 63 51 

5 63 56 

6 63 54 

7 63 62 

8 63 62 

9 63 57 

10 63 57 
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Table 11 Peak CPU temperature of No Strategy, Threshold, STD, PTAS and 
PTFM.  strategies for a sleep time of 10 ms 

 
FFT LU SOR Sparse 

FFT 
Large 

LU 
Large 

SOR 
Large 

Sparse 
Large 

No 
Strategy 44 44 49 45 44 46 44 49 

Threshold 43 43 48 43 41 45 43 48 
STD 43 44 48 44 42 45 44 48 

PTAS 44 44 50 50 45 45 45 49 
PTFM 45 49 44 47 43 48 45 47 

 

 
 
 

 
Table 12 gives average CPU temperature for No Strategy, Threshold, STD, PTAS and 

PTFM on smaller benchmarks for a sleep time of 10 ms. As expected, the average CPU 

temperature drop was lower than peak CPU temperature. Table 13, Table 14, Table 15 

and Table 16 show peak and average CPU temperature of No Strategy, Threshold, 

STD, PTAS and PTFM for all the benchmarks for a sleep time of 500 ms and 1 s 

respectively. The thermal behavior was similar for other sleep times. 

 
 
 
 

Table 12 Average CPU temperature of No Strategy, Threshold, STD, PTAS and PTFM.  
strategies for a sleep time of 10 ms 

 
FFT LU SOR Sparse 

FFT 
Large 

LU 
Large 

SOR 
Large 

Sparse 
Large 

         
No 

Strategy 43 45 40 45 40 44 41 46 
PTAS 42 44 39 44 36 43 41 45 
PTFM 42 43 39 44 36 43 41 45 
STD 40 41 46 47 42 42 42 44 

Threshold 39 46 41 42 41 46 43 43 
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Table 13 Peak CPU temperature of No Strategy, Threshold, STD, PTAS and PTFM.  

strategies for a sleep time of 500 ms 

 
FFT LU SOR Sparse 

FFT 
Large 

LU 
Large 

SOR 
Large 

Sparse 
Large 

         
No 

Strategy 44 44 49 45 44 44 44 49 

PTAS 43 43 48 43 41 45 43 48 

PTFM 43 44 48 44 42 45 44 48 

STD 46 45 50 50 45 45 47 49 

Threshold 46 46 45 49 43 46 45 48 
         
         

 
Table 14 Average CPU temperature of No Strategy, Threshold, STD, PTAS and PTFM.  

strategies for a sleep time of 500 ms 

 
FFT LU SOR Sparse 

FFT 
Large 

LU 
Large 

SOR 
Large 

Sparse 
Large 

No 
Strategy 42 42 43 47 40 46 42 45 

PTAS 42 44 39 44 36 43 41 45 

PTFM 42 43 39 44 36 43 41 45 

STD 39 39 40 40 42 42 43 46 

Threshold 39 39 40 40 42 44 43 43 
         
         
         
         
         

 
Table 15 Peak CPU temperature of No Strategy, Threshold, STD, PTAS and PTFM.  

strategies for a sleep time of 1 s 

 
FFT LU SOR Sparse 

FFT 
Large 

LU 
Large 

SOR 
Large 

Sparse 
Large 

No 
Strategy 44 44 49 45 44 49 44 49 
PTAS 43 43 48 43 41 49 43 48 
PTFM 42 43 48 44 42 48 43 48 
STD 46 48 50 50 45 44 50 44 

Threshold 45 45 45 49 43 46 46 46 
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Table 16 Average CPU temperature of No Strategy, Threshold, STD, PTAS and PTFM.  
strategies for a sleep time of 1 s 

 
FFT LU SOR Sparse 

FFT 
Large 

LU 
Large 

SOR 
Large 

Sparse 
Large 

No Strategy 42 42 43 47 40 46 42 45 

PTAS 39 39 38 41 36 44 39 43 

PTFM 38 38 41 44 36 45 41 45 

STD 38 38 39 40 42 42 46 42 

Threshold 38 38 39 40 42 44 44 44 

         

         
The Fig. 20 shows the peak CPU temperature of FFT for 10 ms whereas Fig. 21 shows 

average CPU temperature of FFT for 10 ms. In both cases, there was a drop in CPU 

temperature. The average CPU temperature drop was higher than peak CPU 

temperature. Fig. 22 shows the peak CPU temperature of LU for 10 ms and Fig. 23 

shows the average CPU temperature of LU for 10 ms. The LU benchmark gave better 

thermal improvements in average CPU temperature and peak CPU temperature at 10 

ms. Fig. 24 shows the peak CPU temperature of SOR for 10 ms. and Fig. 25 depicts 

shows the average CPU temperature of SOR for 10  ms. The PTFM strategy 

outperformed other three strategies. Finally, Fig. 26 and Fig. 27 shows the peak and 

average CPU temperature of Sparse for 10 ms. The PTAS strategy was better than 

other three strategies. We see that CPU temperature drop in Sparse was lower than 

other benchmarks. As discussed, before it could be attributed to non-uniform accesses 

by Sparse. 
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Fig. 20 Peak CPU Temperature due to FFT for 10  ms 

 

 
 

 

Fig. 21 Average CPU Temperature due to FFT for 10 ms 

 



  

70 

 

 

Fig. 22  Peak CPU Temperature due to LU for 10 ms 

 

 

Fig. 23 Average CPU Temperature due to LU for 10 ms 
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Fig. 24 Peak CPU Temperature due to SOR for 10 ms 

 

 

Fig. 25 Average CPU Temperature due to SOR for 10 ms 
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Fig. 26 Peak CPU Temperature due to Sparse for 10 ms 

 
 

 

Fig. 27 Average CPU Temperature due to Sparse for 10 ms 

 

Fig. 28 shows the peak CPU temperature of FFT for 500 ms whereas Fig. 29 shows 

average CPU temperature of FFT for 500 ms. The Fig. 30 shows the peak CPU 

temperature of LU for 500 ms and Fig. 31 shows the average CPU temperature of LU 

for 500  ms. In this figure, the LU benchmark has better readings for threshold strategy. 
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Fig. 32 shows the peak CPU temperature of SOR for 500 ms. and Fig. 33 depicts the 

average CPU temperature of SOR for 500 ms. PTFM and PTAS outperformed other two 

strategies. Fig. 34 and Fig. 35 shows the peak and average CPU temperature of Sparse 

for 500 ms. We see similar thermal behavior for SOR and Sparse. 

 

 

Fig. 28 Peak CPU Temperature due to FFT for 500 ms 

 

 

Fig. 29 Average CPU Temperature due to FFT for 500 ms 
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Fig. 30 Peak CPU Temperature due to LU for 500 ms 

 

 

Fig. 31 Average CPU Temperature due to LU for 500 ms 
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Fig. 32 Peak CPU Temperature due to SOR for 500 ms 

 

 

Fig. 33 Average CPU Temperature due to SOR for 500 ms 
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Fig. 34 Peak CPU Temperature due to Sparse for 500 ms 

 
 
 

 

Fig. 35 Average CPU Temperature due to Sparse for 500 ms 

 
 

Fig. 36 shows the peak CPU temperature of FFT for 1 s whereas Fig. 37 shows 

average CPU temperature of FFT for 1 s. The PTFM strategy outperformed other three 
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strategies at 1 s. We see that putting a process to sleep for a larger time might 

decrease the performance as process takes a longer duration to complete. The Fig. 38 

shows the peak CPU temperature of LU for 500 ms and Fig. 39 shows the average 

CPU temperature of LU for 500 ms. The Fig. 40 shows the peak CPU temperature of 

SOR for 1 s and Fig. 41 average CPU temperature of SOR for 1 ms. We see similar 

thermal behavior for LU and SOR. 

 

 

Fig. 36 Peak CPU Temperature due to FFT for 1 s 
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Fig. 37 Average CPU Temperature due to FFT for 1 s 

 

 

Fig. 38 Peak CPU Temperature due to LU for 1 s 
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Fig. 39 Average CPU Temperature due to LU for 1 s 

 
 

 

Fig. 40 Peak CPU Temperature due to SOR for 1 s 
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Fig. 41 Average CPU Temperature due to SOR for 1 s 
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Chapter 5 Conclusion 

 

 

In this dissertation, we developed two proactive thermal aware approaches PTAS and 

PTFM, which reduces CPU temperature by predicting the higher temperature gradient 

of a process using rates of change of current CPU temperature, floating point access 

rates and memory access rates. We formed a regression predictor formed by FLOPS, 

memory and CPU temperature and cut-off a process when the predicted gradient goes 

beyond threshold gradient. We do not cut-off all processes but we put a process to 

sleep when its predicted gradient exceeds threshold gradient. We found thermal 

improvements in both the strategies. We varied sleep time and gradient of the process 

to optimize PTFM. We compared our strategies with PTAS, STD and Threshold 

strategies and we found that PTFM outperformed other approaches. PTAS and PTFM 

can be applied along with the Intel PID controller technique, DVFS, DTM, and leakage 

energy strategies, making the benefits of this approach far exceed those strategies. 

Since it is a software scheduling strategy, it can be readily applied to all CPUs, including 

those in mobile devices. PTAS and PTFM successfully lower the CPU temperature 

using a prediction based on FLOPS and memory. The benefits are beyond fp-

applications (floating point) and these two strategies can be implemented for non fp-

applications. Preliminary results on Spec suite benchmarks gave similar results. 
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APPENDIX 

 
 

 
Initializing... 
-------------------------------------------------------------------------------- 
PAPI Version             : 5.0.0.0 
Vendor string and code   : GenuineIntel (1) 
Model string and code    : Pentium(R) Dual-Core CPU       T4300  @ 2.10GHz (23) 
CPU Revision             : 10.000000 
CPUID Info               : Family: 6  Model: 23  Stepping: 10 
CPU Max Megahertz        : 2100 
CPU Min Megahertz        : 1200 
Hdw Threads per core     : 1 
Cores per Socket         : 2 
NUMA Nodes               : 1 
CPUs per Node            : 2 
Total CPUs               : 2 
Running in a VM          : no 
Number Hardware Counters : 5 
Max Multiplex Counters   : 64 
-------------------------------------------------------------------------------- 
 
 
Inner Product Test: 
i         papi       theory     diff   %error 
------------------------------------------------------------------------- 
1            2            2        0     0.0000 
2            4            4        0     0.0000 
3            6            6        0     0.0000 
4            8            8        0     0.0000 
5           10           10        0     0.0000 
6           12           12        0     0.0000 
7           14           14        0     0.0000 
8           16           16        0     0.0000 
9           18           18        0     0.0000 
10           21           20        1     5.0000 
11           22           22        0     0.0000 
12           24           24        0     0.0000 
13           26           26        0     0.0000 
14 ……...28………28…… 0….0.0000 
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15           30           30        0     0.0000 
16           32           32        0     0.0000 
17           34           34        0     0.0000 
18           36           36        0     0.0000 
19           38           38        0     0.0000 
20           40           40        0     0.0000 
21           42           42        0     0.0000 
22           44           44        0     0.0000 
23           46           46        0     0.0000 
24           48           48        0     0.0000 
25           50           50        0     0.0000 
26           52           52        0     0.0000 
27           54           54        0     0.0000 
28           57           56        1     1.7857 
29           58           58        0     0.0000 
30           60           60        0     0.0000 
31           62           62        0     0.0000 
32           64           64        0     0.0000 
33           66           66        0     0.0000 
34           68           68        0     0.0000 
35           70           70        0     0.0000 
36           72           72        0     0.0000 
37           74           74        0     0.0000 
38           76           76        0     0.0000 
39           78           78        0     0.0000 
40           80           80        0     0.0000 
41           82           82        0     0.0000 
42           84           84        0     0.0000 
43           86           86        0     0.0000 
44           88           88        0     0.0000 
45           90           90        0     0.0000 
46           92           92        0     0.0000 
47           94           94        0     0.0000 
48           97           96        1     1.0417 
49           98           98        0     0.0000 
50          100          100        0     0.0000 
51          102          102        0     0.0000 
52          104          104        0     0.0000 
53          106          106        0     0.0000 
54          108          108        0     0.0000 
55          111          110        1     0.9091 
56          112          112        0     0.0000 
57          115          114        1     0.8772 
58          116          116        0     0.0000 
59          118          118        0     0.0000 
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60          120          120        0     0.0000 
61          122          122        0     0.0000 
62          124          124        0     0.0000 
63          126          126        0     0.0000 
64          128          128        0     0.0000 
65          130          130        0     0.0000 
66          132          132        0     0.0000 
67          134          134        0     0.0000 
68          136          136        0     0.0000 
69          138          138        0     0.0000 
70          141          140        1     0.7143 
71          142          142        0     0.0000 
72          144          144        0     0.0000 
73          146          146        0     0.0000 
74          149          148        1     0.6757 
75          150          150        0     0.0000 
76          152          152        0     0.0000 
77          154          154        0     0.0000 
78          156          156        0     0.0000 
79          158          158        0     0.0000 
80          160          160        0     0.0000 
81          162          162        0     0.0000 
82          164          164        0     0.0000 
83          166          166        0     0.0000 
84          168          168        0     0.0000 
85          170          170        0     0.0000 
86          172          172        0     0.0000 
87          174          174        0     0.0000 
88          177          176        1     0.5682 
89          178          178        0     0.0000 
90          180          180        0     0.0000 
91          183          182        1     0.5495 
92          184          184        0     0.0000 
93          186          186        0     0.0000 
94          188          188        0     0.0000 
95          190          190        0     0.0000 
96          193          192        1     0.5208 
97          195          194        1     0.5155 
98          196          196        0     0.0000 
99          198          198        0     0.0000 
100          200          200        0     0.0000 
150          301          300        1     0.3333 
200          400          400        0     0.0000 
250          500          500        0     0.0000 
300          600          600        0     0.0000 
350          700          700        0     0.0000 
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400          801          800        1     0.1250 
450          900          900        0     0.0000 
500         1000         1000        0     0.0000 
-------------------------------------------------------------------------------- 
PAPI Version             : 5.0.0.0 
Vendor string and code   : GenuineIntel (1) 
Model string and code    : Pentium(R) Dual-Core CPU       T4300  @ 2.10GHz (23) 
CPU Revision             : 10.000000 
CPUID Info               : Family: 6  Model: 23  Stepping: 10 
CPU Max Megahertz        : 2100 
CPU Min Megahertz        : 1200 
Hdw Threads per core     : 1 
Cores per Socket         : 2 
NUMA Nodes               : 1 
CPUs per Node            : 2 
Total CPUs               : 2 
Running in a VM          : no 
Number Hardware Counters : 5 
Max Multiplex Counters   : 64 
-------------------------------------------------------------------------------- 
 
 
Matrix Vector Test: 
i         papi       theory     diff   %error 
------------------------------------------------------------------------- 
1            2            2        0     0.0000 
2            8            8        0     0.0000 
3           18           18        0     0.0000 
4           32           32        0     0.0000 
5           50           50        0     0.0000 
6           72           72        0     0.0000 
7           98           98        0     0.0000 
8          128          128        0     0.0000 
9          162          162        0     0.0000 
10          200          200        0     0.0000 
11          242          242        0     0.0000 
12          288          288        0     0.0000 
13          338          338        0     0.0000 
14          392          392        0     0.0000 
15          450          450        0     0.0000 
16          512          512        0     0.0000 
17          578          578        0     0.0000 
18          648          648        0     0.0000 
19          722          722        0     0.0000 
20          800          800        0     0.0000 
21          882          882        0     0.0000 
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22          968          968        0     0.0000 
23         1058         1058        0     0.0000 
24         1152         1152        0     0.0000 
25         1250         1250        0     0.0000 
26         1352         1352        0     0.0000 
27         1458         1458        0     0.0000 
28         1568         1568        0     0.0000 
29         1682         1682        0     0.0000 
30         1800         1800        0     0.0000 
31         1922         1922        0     0.0000 
32         2048         2048        0     0.0000 
33         2178         2178        0     0.0000 
34         2312         2312        0     0.0000 
35         2450         2450        0     0.0000 
36         2592         2592        0     0.0000 
37         2738         2738        0     0.0000 
38         2888         2888        0     0.0000 
39         3042         3042        0     0.0000 
40         3200         3200        0     0.0000 
41         3362         3362        0     0.0000 
42         3528         3528        0     0.0000 
43         3698         3698        0     0.0000 
44         3872         3872        0     0.0000 
45         4050         4050        0     0.0000 
46         4232         4232        0     0.0000 
47         4418         4418        0     0.0000 
48         4608         4608        0     0.0000 
49         4802         4802        0     0.0000 
50         5000         5000        0     0.0000 
51         5202         5202        0     0.0000 
52         5408         5408        0     0.0000 
53         5618         5618        0     0.0000 
54         5832         5832        0     0.0000 
55         6050         6050        0     0.0000 
56         6272         6272        0     0.0000 
57         6498         6498        0     0.0000 
58         6728         6728        0     0.0000 
59         6962         6962        0     0.0000 
60         7200         7200        0     0.0000 
61         7442         7442        0     0.0000 
62         7688         7688        0     0.0000 
63         7938         7938        0     0.0000 
64         8192         8192        0     0.0000 
65         8451         8450        1     0.0118 
66         8712         8712        0     0.0000 
67         8980         8978        2     0.0223 
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68         9248         9248        0     0.0000 
69         9524         9522        2     0.0210 
70         9800         9800        0     0.0000 
71        10084        10082        2     0.0198 
72        10368        10368        0     0.0000 
73        10658        10658        0     0.0000 
74        10953        10952        1     0.0091 
75        11250        11250        0     0.0000 
76        11557        11552        5     0.0433 
77        11858        11858        0     0.0000 
78        12168        12168        0     0.0000 
79        12482        12482        0     0.0000 
80        12803        12800        3     0.0234 
81        13122        13122        0     0.0000 
82        13450        13448        2     0.0149 
83        13780        13778        2     0.0145 
84        14113        14112        1     0.0071 
85        14453        14450        3     0.0208 
86        14793        14792        1     0.0068 
87        15138        15138        0     0.0000 
88        15488        15488        0     0.0000 
89        15842        15842        0     0.0000 
90        16201        16200        1     0.0062 
91        16562        16562        0     0.0000 
92        16929        16928        1     0.0059 
93        17299        17298        1     0.0058 
94        17674        17672        2     0.0113 
95        18050        18050        0     0.0000 
96        18432        18432        0     0.0000 
97        18818        18818        0     0.0000 
98        19208        19208        0     0.0000 
99        19603        19602        1     0.0051 
100        20001        20000        1     0.0050 
150        45002        45000        2     0.0044 
200        80001        80000        1     0.0012 
250       125002       125000        2     0.0016 
300       180005       180000        5     0.0028 
350       245005       245000        5     0.0020 
400       320003       320000        3     0.0009 
450       405009       405000        9     0.0022 
500       500008       500000        8     0.0016 
-------------------------------------------------------------------------------- 
PAPI Version             : 5.0.0.0 
Vendor string and code   : GenuineIntel (1) 
Model string and code    : Pentium(R) Dual-Core CPU       T4300  @ 2.10GHz (23) 
CPU Revision             : 10.000000 
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CPUID Info               : Family: 6  Model: 23  Stepping: 10 
CPU Max Megahertz        : 2100 
CPU Min Megahertz        : 1200 
Hdw Threads per core     : 1 
Cores per Socket         : 2 
NUMA Nodes               : 1 
CPUs per Node            : 2 
Total CPUs               : 2 
Running in a VM          : no 
Number Hardware Counters : 5 
Max Multiplex Counters   : 64 
-------------------------------------------------------------------------------- 
 
 
Matrix Multiply Test: 
i         papi       theory     diff   %error 
 
------------------------------------------------------------------------- 
1            2            2        0     0.0000 
2           16           16        0     0.0000 
3           54           54        0     0.0000 
4          128          128        0     0.0000 
5          250          250        0     0.0000 
6          432          432        0     0.0000 
7          686          686        0     0.0000 
8         1024         1024        0     0.0000 
9         1458         1458        0     0.0000 
10         2000         2000        0     0.0000 
11         2662         2662        0     0.0000 
12         3456         3456        0     0.0000 
13         4394         4394        0     0.0000 
14         5488         5488        0     0.0000 
15         6750         6750        0     0.0000 
16         8192         8192        0     0.0000 
17         9826         9826        0     0.0000 
18        11664        11664        0     0.0000 
19        13718        13718        0     0.0000 
20        16000        16000        0     0.0000 
21        18522        18522        0     0.0000 
22        21296        21296        0     0.0000 
23        24334        24334        0     0.0000 
24        27648        27648        0     0.0000 
25        31250        31250        0     0.0000 
26        35152        35152        0     0.0000 
27        39366        39366        0     0.0000 
28        43904        43904        0     0.0000 
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29        48778        48778        0     0.0000 
30        54000        54000        0     0.0000 
31        59582        59582        0     0.0000 
32        65536        65536        0     0.0000 
33        71874        71874        0     0.0000 
34        78608        78608        0     0.0000 
35        85750        85750        0     0.0000 
36        93313        93312        1     0.0011 
37       101306       101306        0     0.0000 
38       109744       109744        0     0.0000 
39       118638       118638        0     0.0000 
40       128000       128000        0     0.0000 
41       137842       137842        0     0.0000 
42       148178       148176        2     0.0013 
43       159014       159014        0     0.0000 
44       170368       170368        0     0.0000 
45       182250       182250        0     0.0000 
46       194672       194672        0     0.0000 
47       207646       207646        0     0.0000 
48       221184       221184        0     0.0000 
49       235298       235298        0     0.0000 
50       250000       250000        0     0.0000 
51       265302       265302        0     0.0000 
52       281216       281216        0     0.0000 
53       297754       297754        0     0.0000 
54       314928       314928        0     0.0000 
55       332750       332750        0     0.0000 
56       351232       351232        0     0.0000 
57       370386       370386        0     0.0000 
58       390224       390224        0     0.0000 
59       410758       410758        0     0.0000 
60       432001       432000        1     0.0002 
61       453962       453962        0     0.0000 
62       476656       476656        0     0.0000 
63       500094       500094        0     0.0000 
64       524289       524288        1     0.0002 
65       549252       549250        2     0.0004 
66       574992       574992        0     0.0000 
67       601529       601526        3     0.0005 
68       628864       628864        0     0.0000 
69       657020       657018        2     0.0003 
70       686002       686000        2     0.0003 
71       715822       715822        0     0.0000 
72       746498       746496        2     0.0003 
73       778035       778034        1     0.0001 
74       810449       810448        1     0.0001 
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75       843752       843750        2     0.0002 
76       877954       877952        2     0.0002 
77       913066       913066        0     0.0000 
78       949108       949104        4     0.0004 
79       986078       986078        0     0.0000 
80      1024002      1024000        2     0.0002 
81      1062886      1062882        4     0.0004 
82      1102740      1102736        4     0.0004 
83      1143579      1143574        5     0.0004 
84      1185408      1185408        0     0.0000 
85      1228257      1228250        7     0.0006 
86      1272113      1272112        1     0.0001 
87      1317009      1317006        3     0.0002 
88      1362977      1362944       33     0.0024 
89      1409944      1409938        6     0.0004 
90      1458000      1458000        0     0.0000 
91      1507154      1507142       12     0.0008 
92      1557384      1557376        8     0.0005 
93      1608834      1608714      120     0.0075 
94      1661193      1661168       25     0.0015 
95      1714755      1714750        5     0.0003 
96      1769477      1769472        5     0.0003 
97      1825351      1825346        5     0.0003 
98      1882386      1882384        2     0.0001 
99      1940962      1940598      364     0.0188 
100      2000003      2000000        3     0.0002 
150      6750071      6750000       71     0.0011 
200     16000275     16000000      275     0.0017 
250     31251991     31250000     1991     0.0064 
300     54005677     54000000     5677     0.0105 
350     85750270     85750000      270     0.0003 
400    128007477    128000000     7477     0.0058 
450    182265956    182250000    15956     0.0088 
500    250004275    250000000     4275     0.0017 
calibrate.c                             PASSED 
 
 
 


