

Proactive Thermal-Aware Scheduling

by

Sankari Swaroop Anupindi

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
December 13, 2014

Keywords: thread scheduling, process scheduling, temperature aware,
regression and derivative

Copyright 2014 by Sankari Swaroop Anupindi

Approved by

Sanjeev Baskiyar, Chair, Associate Professor of Computer Science and Software Engineering
Cheryl Seals, Associate Professor of Computer Science and Software Engineering

James Cross, Professor of Computer Science and Software Engineering

ii

Abstract

Modern CPU’s cut-off operations when CPU temperature reaches a predetermined

threshold making the CPU unavailable for all processes. Furthermore, operating the

CPU for extended periods at temperatures close to, but slightly below, hardware cut-off,

lowers reliability and lifetime of the CPU. In this dissertation, we develop proactive

scheduling techniques to manage CPU temperatures by cutting off the major heat

dissipating processes rather than the entire CPU. Such proactive scheduling promotes

better component life, lower cooling fan usage, improved battery life and better

availability. The techniques can be implemented over existing dynamic voltage and

frequency scaling, dynamic power management, leakage energy and location-based

techniques.

Memory accesses and floating-point operations are two major heat-dissipating activities

in many programs. The first proactive approach developed is called Proactive Thermal

Aware Scheduler (PTAS). PTAS forms a temperature predictor using the regression of

the time derivatives of the number of Floating-Point Operations per Second (FLOPS)

and the current CPU temperature. The predictor is used to make proactive scheduling

decisions to handle thermal emergency before the temperature reaches the hardware

cut-off. If the value of the predictor for any process is above an empirically determined

iii

cut off, it is deemed likely that in the near future, the CPU will reach the hardware cut-off

temperature. Therefore, that process is moved to the sleep state for a short duration.

We analyzed the performance of PTAS using Scimark benchmarks in lowering CPU

temperature. The reductions in peak temperatures were 2-4°C for FFT, LU, SOR, and

Sparse (small) components of the Scimark benchmark runs respectively. For the larger

versions of the aforementioned benchmark component runs, the reductions were 2-4°C

respectively. The reductions in peak/average temperature on a laptop were 3-5/5°C.

The corresponding penalties in schedule lengths were between 15-30%.

The second approach is called Proactive Thermal Aware Scheduling with Floating-

Points and Memory access rates (PTFM). In this approach, a future temperature impact

predictor (TIP) for any process is formed using a regression of the time derivatives of

FLOPS, memory accesses and current CPU temperature. If the TIP for any process

goes above a predetermined threshold, that process is put to sleep for a short duration.

We evaluated the scheduler on small and large components of FFT, LU, SOR and

Sparse within the Scimark benchmark suite. We found decrease in peak/average CPU

temperatures: 3-6°C/6°C for small benchmarks and 3-6°C/5°C for large benchmarks.

The schedule length penalties were less than 2-10%. The corresponding results in

peak/average temperature on a laptop were 3-6/6°C. We compared our results against

other threshold based cut-off approaches: simple temperature, simple time derivative

based cut-off strategies and PTAS. We found PTFM outperformed these strategies.

iv

ACKNOWLEDGMENTS

I acknowledge Dr. Sanjeev Baskiyar for his valuable suggestions, ideas and directions. I

thank my committee members Dr. Cheryl Seals, Dr. James Cross and Dr. Adit Singh for

giving critical comments during the review process. I sincerely express gratitude for Dr.

David Umphress and Dr. Xiao Qin for guiding me in the initial stages. I am grateful for

all the support my spouse Kalyani has given to me. My love for my son Aarush made

me stronger. I appreciate my family members for wonderful support. In addition, I

recognize my research group members Vibudh, Adarsh, Matt, Brad, and James who

gave valuable insights to make this research successful. Finally, I respect God for

inspiration and making this research successful.

v

TABLE OF CONTENTS

ABSTRACT ... II

ACKNOWLEDGMENTS .. IV

LIST OF TABLES .. VII

LIST OF FIGURES... IX

LIST OF ABBREVIATIONS ... XII

CHAPTER 1 INTRODUCTION ... 13

CHAPTER 2 BACKGROUND ... 15

CHAPTER 3 PROACTIVE THERMAL AWARE SCHEDULING .. 21

3.1. RELATED WORK .. 21
3.2. APPROACH .. 27
3.3. EXPERIMENTS SETUP ... 31
3.4. RESULTS AND DISCUSSION .. 34
3.5. CONCLUSION ... 41

CHAPTER 4 PROACTIVE THERMAL MANAGEMENT USING FLOPS VIA MEMORY

RATES .. 43

4.1. RELATED WORK .. 43
4.2. APPROACH .. 48
4.3. EXPERIMENTS SETUP ... 50
4.4. RESULTS AND DISCUSSION .. 53
4.5. CONCLUSION ... 59

CHAPTER 5 CONCLUSION ... 81

BIBLIOGRAPHY ... 82

vi

APPENDIX ... 85

vii

LIST OF TABLES

Table 1 Peak FLOPS and peak CPU temperature for all benchmarks when running on
desktop .. 35

Table 2 Normalized STDEV of cut-off FLOPS and cut-off temperature over a single
experiment with PTAS ... 39

Table 3 Symbols and description ... 50

Table 4 MFLOPS vs. time ... 62

Table 5 Temperature vs. time ... 62

Table 6 CPU temperature without benchmarks and with benchmarks running 63

Table 7 Execution time of different benchmarks for the desktop and laptop 63

Table 8 Peak Temperature using PTAS in Desktop and laptop for various benchmarks
 .. 64

Table 9 Average CPU temperature using PTAS in desktop and laptop for various
benchmarks ... 64

Table 10 Peak CPU Temperature of smaller benchmarks (FFT, LU, SOR and Sparse)
when executed together .. 65

Table 11 Peak CPU temperature of No Strategy, Threshold, STD, PTAS and PTFM.
strategies for a sleep time of 10 ms... 66

Table 12 Average CPU temperature of No Strategy, Threshold, STD, PTAS and PTFM.
strategies for a sleep time of 10 ms... 66

Table 13 Peak CPU temperature of No Strategy, Threshold, STD, PTAS and PTFM.
strategies for a sleep time of 500 ms... 67

Table 14 Average CPU temperature of No Strategy, Threshold, STD, PTAS and PTFM.
strategies for a sleep time of 500 ms... 67

viii

Table 15 Peak CPU temperature of No Strategy, Threshold, STD, PTAS and PTFM.
strategies for a sleep time of 1 s ... 67

Table 16 Average CPU temperature of No Strategy, Threshold, STD, PTAS and PTFM.
strategies for a sleep time of 1 s ... 68

ix

LIST OF FIGURES

Fig. 1 Algorithm PTAS ... 29

Fig. 2 Peak temperatures of ISA adapter and cores with and without execution of all

benchmarks ... 32

Fig. 3 Execution time of different benchmarks for the desktop and laptop 36

Fig. 4 MFLOPS vs. time when benchmarks are executed in sequence (FFT, LU, SOR,

and Sparse) ... 37

Fig. 5 CPU temperature during execution when small benchmarks(FFT, LU, Sor and

Sparse) are executed together .. 37

Fig. 6 Peak temperature using PTAS in desktop and laptop for various benchmarks 39

Fig. 7 Average CPU temperature using PTAS in desktop and laptop for various

benchmarks ... 40

Fig. 8 Algorithm PTFM .. 47

Fig. 9 CPU Temperature for smaller benchmarks when executed successively 55

Fig. 10 Peak CPU temperatures with a sleep time of 10 ms .. 56

 Fig. 11 Average temperature for a sleep time of 10 ms .. 56

Fig. 12 Peak temperature for a sleep time of 500 ms .. 57

Fig. 13 Average temperature for a sleep time of 500 ms .. 57

Fig. 14 Peak temperature for a sleep time of 1 s .. 58

Fig. 15 Average temperature for a sleep time of 1 s .. 58

Fig. 16 Peak CPU Temperature comparison of PTFM on a desktop and laptop for a

sleep time of 50 ms .. 59

x

Fig. 17 Average CPU Temperature comparison of PTFM on a desktop and laptop for a

sleep time of 50 ms .. 60

Fig. 18 Peak CPU Temperature when all benchmarks are executed together 61

Fig. 19 Average CPU Temperature when all benchmarks are executed together 61

Fig. 20 Peak CPU Temperature due to FFT for 10 ms ... 69

Fig. 21 Average CPU Temperature due to FFT for 10 ms .. 69

Fig. 22 Peak CPU Temperature due to LU for 10 ms ... 70

Fig. 23 Average CPU Temperature due to LU for 10 ms .. 70

Fig. 24 Peak CPU Temperature due to SOR for 10 ms ... 71

Fig. 25 Average CPU Temperature due to SOR for 10 ms ... 71

Fig. 26 Peak CPU Temperature due to Sparse for 10 ms ... 72

Fig. 27 Average CPU Temperature due to Sparse for 10 ms ... 72

Fig. 28 Peak CPU Temperature due to FFT for 500 ms .. 73

Fig. 29 Average CPU Temperature due to FFT for 500 ms .. 73

Fig. 30 Peak CPU Temperature due to LU for 500 ms .. 74

Fig. 31 Average CPU Temperature due to LU for 500 ms .. 74

Fig. 32 Peak CPU Temperature due to SOR for 500 ms .. 75

Fig. 33 Average CPU Temperature due to SOR for 500 ms ... 75

Fig. 34 Peak CPU Temperature due to Sparse for 500 ms .. 76

Fig. 35 Average CPU Temperature due to Sparse for 500 ms ... 76

Fig. 36 Peak CPU Temperature due to FFT for 1 s .. 77

Fig. 37 Average CPU Temperature due to FFT for 1 s .. 78

xi

Fig. 38 Peak CPU Temperature due to LU for 1 s .. 78

Fig. 39 Average CPU Temperature due to LU for 1 s .. 79

Fig. 40 Peak CPU Temperature due to SOR for 1 s .. 79

Fig. 41 Average CPU Temperature due to SOR for 1 s .. 80

xii

LIST OF ABBREVIATIONS

DVFS Dynamic voltage and frequency scaling

DPM Dynamic process management

DTM Dynamic thermal management

FLOPS Floating point operations per second

13

Chapter 1 Introduction

CPU overheating is a major problem that can occur due to various CPU characteristics.

This includes chip material, the characteristics of CPU processes, and thermal

decisions taken by the CPU. Overheating results in permanent damage to the CPU, and

manufacturers face this problem year after year. When the CPU temperature increases

beyond a certain threshold, it decreases chip reliability and increases the CPU’s cooling

costs. Decreasing CPU chip temperature has become a major challenge. Every year,

thousands of data centers spend millions of dollars to mitigate this problem, and every

year, data loss occurs in computers due to severe thermal problems in the CPU. The

CPU’s energy consumption also increases with rising temperatures as manufacturers

use several cooling techniques to control CPU temperature. Therefore, there is a need

to control thermal-related CPU damage. We hypothesize that the rise in CPU

temperature can be reduced by proactively scheduling processes using process

characteristics. In our approach, we predict the gradient of the process by measuring

FLOPS and memory accesses, and cut off the process with a higher gradient. We

optimize the sleep time, gradient, and priority of the process.

Researchers have used Dynamic Voltage and Frequency Scaling (DVFS), Dynamic

Power Management (DPM), leakage energy reduction, and variability-aware thermal

14

management, or a combination of these approaches [1], [2]. In addition, CPUs employ

fan(s) and thermal cut-off to control chip temperature. In this research, we use a

predictive and proactive process scheduling approach to manage chip temperatures.

The major contributions of this work are:

1. Review of state of the art approaches related to Proactive Thermal-Aware CPU

Scheduling.

2. Use of time derivatives of temperature, FLOPS and memory access rates to

predict the temperature.

3. Use of regression consisting of the above to predict the future temperature and

proactively put the processes to sleep.

4. Evaluation of the approach and its outcomes as related to peak and average

CPU temperature, with simulations using SciMark benchmarks.

5. The reductions in CPU temperatures [3] [4] are important as they result in

increased component life of the CPU.

15

Chapter 2 Background

Our goal in the temperature-aware scheduling approach was to reduce CPU

temperature. We can achieve this goal by scheduling processes in the CPU. By

scheduling these processes in FIFO order, we make thermal decisions to reduce CPU

temperature. There are several strategies to reduce CPU temperature. Foremost is the

Dynamic Voltage and Frequency Scaling strategy, which varies voltage and frequency

levels of the CPU to control its temperature. This is a popular and effective strategy for

controlling CPU temperature; however, it is a reactive strategy. A proactive strategy to

decrease CPU temperature and prevent thermal emergencies is necessary. A reactive

strategy waits until the temperature reaches its threshold and slowly cuts off the

processes, which can cause permanent CPU damage. We can prevent this damage by

cutting off the process in advance, thus increasing CPU reliability and reducing cooling

costs.

Another strategy is Dynamic Thermal Management (DTM), or Dynamic Process

Management (DPM). In this strategy, we make thermal decisions dynamically to reduce

temperature. We can implement this strategy at a software level, at a hardware level, or

both. This is a reactive strategy, which allows CPU temperatures to scale up and bring

16

down the CPU temperature by effectively scheduling processes. Similar to DVFS, a

proactive variant of this strategy would effectively reduce CPU temperature. It also

increases CPU performance and energy consumption. The proactive strategy would

also increase battery lifetime.

Another strategy aims to decrease CPU leakage energy to reduce its temperature. This

strategy reduces CPU temperature and saves energy. We can use this strategy in

conjunction with DVFS and DTM. We gain thermal improvements by implementing a

proactive variant of this strategy.

A final strategy aims at allocating tasks by taking the variability factor of the CPU. We

consider this factor to gain significant thermal improvements. This strategy has

improvements above and beyond DVFS and DPM. It aims at increasing chip reliability

and preventing thermal damage. It gives good improvement with thermal emergencies.

However, it is not an entirely proactive strategy. A proactive improvement of this

strategy would be a good approach.

Researchers have implemented scheduling techniques at an OS level. The goal of

operating system (OS) scheduling is to increase CPU performance and maximize CPU

utilization. It has to give better user response. There are algorithms with complexity of O

(n^2) and O (n). However, algorithms with O (1) complexity effectively achieve the

above goals. In such algorithms, time taken by the scheduler is short, irrespective of the

17

input size. In the quadratic and linear time algorithms, tasks take much longer to finish,

and thus make the scheduler less scalable.

Previous versions of the Linux scheduler used a run queue in a symmetric

multiprocessor, resulting in load balancing of the tasks. However, it resulted in bad

memory caches. In addition, this queue locked the processes, which made processes

take longer to execute. Finally, if some tasks took longer than others did, preemption

was not possible.

Ingo Molnar developed Linux scheduler [5] with O (1) complexity. He developed a

scheduler for wakeup, context switch, and time slicing. In addition, he used Java Virtual

Machine (JVM) to reduce the overhead caused by thread execution in the O (n)

scheduler. In this algorithm, OS used First In First Out (FIFO) with 140 priority lists in

the run queue. Each task had a time slicing that let the scheduler decide the duration of

scheduling tasks. The OS reserved the first 100 priorities for real time tasks, and

reserved the next 40 tasks for user tasks (see Fig. 1). In addition to the OS’s active

queue, there was also an expired run queue. It placed expired tasks on an expired

queue and active tasks on an active queue. If the tasks on the active queue were

empty, it swapped tasks on the expired queue. The scheduler executed the highest

priority task. It also used a bitmap to determine when the tasks were on a high priority

list. Since the time to execute the tasks was dependent on priorities rather than task

input, the scheduler’s complexity was O (1). Thus, the Linux scheduler is a deterministic

scheduler.

18

The Hadoop scheduling algorithm [6] uses fair scheduler and capacity scheduler. The

Hadoop scheduler has a job tracker and a task tracker to schedule tasks on a cluster or

a grid. The core of Hadoop architecture consists of master and slave nodes. The name

node is a master node that controls filenames and clients. It distributes jobs to slave

nodes. Slave nodes include the task tracker, which completes jobs and notifies the job

tracker. Data node is a storage node, which represents the distributed file system. Both

task tracker and data node are slaves in Hadoop architecture.

Hadoop is a fault-tolerant architecture, meaning that it operates when nodes fail and

restart. Hadoop runs these nodes in isolation mode, where they do not have access to

other nodes. Hadoop uses pluggable schedulers. First among them is the FIFO

scheduler, which schedules jobs on a first-come first-served basis. It executes these

jobs in the order they arrive, and gives higher priority to a job that has to be scheduled

earlier. Another scheduler is the fair scheduler, which assigns equal share to each task.

On average, each task gets an equal share of time. This helps the scheduler to spend

equal time on all tasks, thus increasing its response time. In addition, Hadoop uses a

job pool to assign jobs, and it shares these pools among tasks. It also gives equal share

to each pool. Third is a capacity scheduler, which estimates cluster capacity and

schedules tasks accordingly. The Hadoop server load balances the tasks so that it runs

the scheduler with less response time. It executes high load levels without any change

in the schedule.

19

SciMark benchmarks are Java benchmarks for making numerical calculations in

scientific and engineering applications. They include Fast Fourier Transforms (FFT),

Gauss-Seidel Relaxation, Sparse Matrix Multiplication, Monte Carlo Integration, and

Dense LU Factorization. There are two versions of this benchmark. The smaller version

of the benchmark focuses on CPU issues, while the larger version of the benchmark

addresses the memory subsystem and out-of-cache problem sizes.

Fast Fourier Transform (FFT) consists of a 1-D forward transform of 4k complex

numbers. In addition, this kernel performs complex arithmetic, shuffling, and non-

constant memory references. It consists of two versions: one performs bit reversal,

while the second version performs Nlog(N) computations. Jacobi Successive Over-

Relaxation (SOR) does grid averaging on memory patterns in finite difference

applications. This kernel exerts access patterns on a 100x100 grid. Sparse Matrix

Multiplication uses indirection addressing and non-regular memory references in an

unstructured matrix. Dense LU Matrix Factorization calculates the LU factorization of a

dense 100x100 matrix using partial pivoting.

PAPI is a low-level interface for measuring the performance counters of hardware in

most major microprocessors. PAPI measures the relation between performance and

processor events. PAPI has components that measure real time software and hardware

performance in most major processors. We can use PAPI in a real time scheduler to

measure floating points of the processes in constant time. It gives a good predictor of

the rate of change of floating points and memory accesses. We can install PAPI as a

20

library on the system, and use an event driven model for floating-point calculations. It

gives lower overhead when used in programs.

Regression is normally used to predict a possible relationship between a dependent

variable and a set of independent variables. We reviewed current state of the art

thermal management implementations in the industry. A majority of these

implementations are hardware techniques. Intel uses the PID controller to reduce

maximum temperature in CPU chips. The PID controller is a reactive method that

reduces residual error using a combination of integral and derivatives. In addition,

thermal monitoring using fan sink and fan speed is used to reduce CPU chip

temperatures. By increasing fan speed, reducing thermal noise, and setting higher and

lower threshold points, Intel schedulers decrease CPU temperature. Finally, airflow and

clock modulation with bit encoding help to reduce maximum temperature in CPU chips.

21

Chapter 3 Proactive thermal aware scheduling

CPU overheating is a major problem that is dependent on factors such as chip material

and the rapidity of power dissipation. High temperatures reduce chip reliability and

decrease its lifetime. Chip manufacturers use hardware, software, and hybrid

approaches for CPU temperature reduction.

The remainder of this chapter is organized as follows: In Section 2, we discuss related

work; in Section 3, we introduce PTAS and our experimental methodology; in Section 4,

we discuss the results of our work, and in Section 5, we make concluding remarks. The

related work section contains a review of academic papers as well as contemporary

products in the industry.

3.1 Related Work

The majority of techniques used to reduce chip temperature are reactive, meaning chip

temperature is allowed to rise to threshold levels, and then steps are taken to bring down

the temperature [1] [2]. Such techniques have used strategies such as Dynamic Voltage

Frequency Scaling (DVFS), Dynamic Power Management (DPM), Dynamic Thermal

Management (DTM), leakage energy, and variability-aware thermal management.

However, some of these approaches result in thermal emergencies [1] [2] due to sudden

22

spikes in chip temperature, which could cause irreversible damage to the chip. A 10°C

reduction in CPU temperature below the hardware threshold cut-off produces a 20%

increase in chip lifetime and reliability [3], [4].

Xiuyi et al. [1] identified temperature correlation among vertically adjacent layers in 3-D

chips. They used OS-level task scheduling to minimize peak temperatures by identifying

such sources of heat. Using Dynamic voltage and frequency scaling in OS scheduler,

they reduced hardware DTMS in CPUs by 54% and improved CPU performance by

7.2%.

Coskun et al. [2] used an integer linear programming approach in task scheduling to

reduce thermal hotspots and temperature gradients in CPUs. Kumar et al. [7] developed

a system-level framework using DTM with proactive temperature estimates using integer

linear programming and hardware sensor measurements. The scheduler overhead on

execution time was 24% when using just the reactive hardware measurements

approach. However, upon using the framework consisting of both the software and

hardware approaches, the overhead improved to 10%.

Chuan et al. [8] identified leakage energy to be a factor in the increase of peak chip

temperature. They developed energy-efficient scheduling to reduce leakage energy in

CPUs. This consisted of a patterns-based approach that divided schedule length into

active and dormant windows. Leakage power consumption was reduced by increasing

23

the speed of tasks in active mode, and allowing the CPU temperature to cool in dormant

mode.

Wei and Nannarelli [9] discovered that the recurrence digit in floating-point computations

was one of the main causes of heat increase in caches. They used Fused Multiply-Add

(FMA) to reduce the peak temperatures in caches. They placed power-efficient drivers

between FMA and cache block that reduced leakage energy by 12%, average

temperature in caches by 5°C, and power consumption by 8.4%.

Chaturvedi et al. [10] developed validation for scheduling techniques on architectural-

level platforms that reduce peak temperature. This technique used m-oscillation (or

DVFS) to reduce dynamic energy. Senju et al. [11] investigated the Particle Swarm

Optimization (PSO) strategy to reduce peak temperatures in clusters and grids.

Schedules are distributed onto clusters based on fitness values. Cluster-best and

personal-best schedules, rather than global-best schedules, were selected using binary

PSO. Komada et al. [12] used electro-thermal coupling to reduce thermal interference in

CPUs. They investigated the accuracy of predicting the thermal behavior of silicon chips.

The thermal model used in the strategy accurately predicted chip temperature. Fisher et

al. [13] investigated global real time scheduling of homogeneous tasks on multi-core

systems. When performing matrix computations using the mathematically computed

preferred speed of each core, it reduced peak temperatures by 30-70°C lower than load

balancing strategies.

24

Jin and Maskell [14] developed a thermal-aware model at event level. This event-driven

thermal model was used to create a thermal map when high-level events occur in the

CPU. Taking temperature increments of each core, a number of lookup tables were

prebuilt offline. Afterward, a thermal map was updated online using the superposition

principle.

Jiajia et al. [15] used thermal-aware mapping methods on 3-D torus chip to increase

throughput and latency. Using this strategy and CPU execution cycles in FFT, matrix

multiplication and radix sort were reduced by 6.78%, 5.77%, and 4.07% in one

experiment, and 8.58%, 10.37%, and 21.28% in another experiment.

Yang et al. [16] optimized Energy and Performance-Delay Product (EDP) using helper

threads. The EDP criterion helps trade energy with performance. Helper threads, which

help cool the CPU, were added to optimize EDP. This strategy varied different data

points, such as CPU count, thread count, and voltage/frequency level, to optimize EDP.

They measured EDP using performance counters. EDP reduction of 60-80% was

achieved for FFT and multi-grid benchmarks. In addition to EDP, this approach reduced

thermal emergency.

Merkel and Bellosa [17] determined that task migration is better than throttling the CPU,

except in worst-case situations. They created an energy-aware scheduling policy on a

Linux machine using Dynamic Voltage and Frequency Scaling by modifying the task

25

data structure in a Linux scheduler. Migrating hot tasks to coolest core and balancing

energy of the tasks generated significant energy savings. The cost of migration was

small compared to throttling. In addition, when tasks were load balanced, throughput

increased and overhead lessened on the scheduler.

Ayoub and Rosing [4] created a temperature predictor by using the bandwidth of the

temperature frequency spectrum and workload characterization of the tasks. The

workload characterization of the tasks was measured by finding the task fetch rate.

They used both parameters to reduce the average temperature of the tasks. They

created an experiment with SPEC CPU 2000 benchmarks and compared their approach

with other reactive approaches. Using this scheme, they reduced the average

temperature of hottest cores by 6-8°C. There was a performance improvement of 41%

and 72%. They discovered that average CPU temperature was related to Mean Time to

Failure (MTTF).

Weissel and Bellosa [18] used event performance counters to measure the run-time

characterization of the tasks. They assigned weights to events and used performance

counters temperature and a count of CPU cycles to measure the energy. They used

processor throttling to save energy and reduce temperature. They framed the problem

as a linear optimization equation.

Altet and Rubio [3] discovered that a 10°C reduction in temperature below the hardware

threshold cut-off produces a 20% increase in lifetime. They studied component lifetime

26

and the lifetime impact model of chips by reducing temperature using scheduling

approaches.

Bellosa [19] examined the impact of a coarse-grained approach versus a fine-grained

approach on a scheduling decision. He found that lightweight threads reduced

scheduling decisions and minimized context switching by the scheduler. A fine-grained

approach should increase the efficiency and scalability of the scheduler in computer

systems.

Intel uses a PID controller [20] to reduce maximum temperature in CPU chips. The PID

controller reactively reduces residual error gain, integral gain, and derivative gain to

control fan speeds. Intel sets an upper level of temperature, or the thermal threshold

point, to ensure that the CPU runs below dangerous levels. The threshold point is far

below the critical thermal point at which semiconductor hazards occur. The CPU chip

was designed with airflow ventilation. Clock frequency modulation varies the frequency

to reduce CPU temperature. AMD [21] uses task migration to coolest core along with

coarse- and fine-grained controls to turn off registers and thus save energy. When the

temperature rises, a multi-point control using sensors reduces CPU performance states

(p-states). The p-states define the frequency and voltage of the CPU. Depending on

usage, it also reduces temperatures by using dual dynamic power management to vary

the voltage of the cores and the integrated memory controller independently. ARM uses

kernel thermal framework [5] to register thermal zones, and cooling devices for reducing

temperature. Kernel thermal framework sets the power gating and clock gating of the

peripherals and components. Devices can configure which of the chip’s thermal sensors

27

and cooling devices to use on specific platforms. Linux thermal management [22] uses

thermal zones with active, passive, and critical cooling points. Thermal zones are

different trip points after which temperature increases. These zones are used to

differentiate temperature levels, with passive being a low temperature trip point, and

critical being a dangerous trip point in the CPU. Linux implements generic thermal

management architecture to control temperature, using drivers for the cooling device

(fan), event framework, and thermal zones. A platform-independent Sysfs driver

architecture has been used to interact with platform specific thermal management [23].

In advanced configurations, device reconfiguration is used for power management. A

third-party tool, Coretemp [24], uses digital thermal sensors to monitor temperature on

each CPU core. All major processor manufacturers utilize Coretemp.

3.2 Approach

In this study, we propose a proactive scheduler to reduce temperature. The approach

attempts to put a process to sleep before it can cause the CPU to reach threshold

temperature. We base our approach on the observation [9] that temperature is

dependent on FLOPS. We also observed a rise in temperature for SciMark benchmark

programs, which have substantial floating-point computations. Fig. 2 shows the

temperature of the ISA adapter and the cores before and after all SciMark benchmarks

were run together. It shows that the temperature rises about 20°C upon execution of all

the benchmarks.

The motivation for using the time derivative of FLOPS as a parameter in regression is

the observed higher temperatures during intensive floating-point operations. The

28

motivation for using the rate of rise of temperature as a regression parameter comes

from the recognition that when the temperature increases by repeated execution of a

certain part of code, it is likely to continue that path (or loop) until that part terminates.

We use a multiple regression1 consisting of the partial time derivative of FLOPS, F

(which is the independent variable in the regression), the application process, and the

partial time derivative of temperature (the dependent variable) to predict the CPU

temperature. In actual implementation, we can use Performance Application

Programming Interface (PAPI) or hardware counter, and the lm-sensors the Application

Programming Interface (API) calls to determine the FLOPS and temperature of the

CPU. The scheduler PTAS predicts the impact of the application level process on CPU

temperature by using a regression of the current CPU temperature and the FLOPS

generated by the application-level process. If the prediction was above an empirically

determined threshold, the application process was put to sleep for a short duration. The

duration for which the processes remain in the sleep state is empirically determined for

best results.

1
 Regression is used to predict a possible relationship between a dependent variable and a set of independent

variables.

29

PTAS schedules the application processes in a FIFO manner. The procedure PTAS is

outlined in Fig. 1 further elaborated below. In Equation 1, Fi and Ti represent the FLOPS

and temperature for the ith observation. We name the regression intercept Yi, which

represents the temperature predictor immediately following the ith observation. Using

regression, we have the intercept Yi as:

Procedure PTAS (int i) // i is observation number

const ThresholdGradient, K=1000

static float F[K], T[K], M[K], Y[K]

Process p, Q[n] //Application processes

 //n is the number of processes

 1 For each p ∈ Q do // in FIFO

 2 Fi = FLOPS (p)

 3 Ti = CPUTemperature() //From lmsensors

 4 Wait for δt time

 5 Fi+1 = FLOPS (p)

 6 Ti+1 = CPUTemperature()

 7 (𝛿𝐹/𝛿t)𝑖= (Fi+1-Fi)/𝛿t
 8 (𝛿𝑇/𝛿t)𝑖= (Ti+1-Ti)/𝛿t
 9 Wait for δt time

 10 Fi+2 = FLOPS (p)

 11 Ti+2 = CPUTemperature()

 12 (𝛿𝐹/𝛿t)𝑖+1= (Fi+2-Fi+1)/𝛿t
 13 (𝛿𝑇/𝛿t)𝑖+1= (Ti+2-Ti+1)/𝛿t
 14 Yi = 1 + (𝛿𝐹/𝛿t)𝑖 * Fi + (𝛿𝑇/𝛿t)𝑖* Ti + σ𝑖(Y)

 15 Yi+1 = 1 +(𝛿𝐹/𝛿t)𝑖+1 * Fi+1 + (𝛿𝑇/𝛿t)𝑖+1 * Ti+1 + σ𝑖+1(Y)

 16 𝛿𝑌𝑖/𝛿t = (𝑌𝑖+1 − 𝑌𝑖)/𝛿t
 17 if 𝛿𝑌𝑖/𝛿t > ThresholdGradient then

 18 Sleep(p)

 19 endif

 20 endfor

 end PTAS

Fig. 1 Algorithm PTAS

30

𝑌𝑖 = 𝛽0 + 𝛽1𝐹𝑖 + 𝛽2𝑇𝑖 + ∈ (1)

where, β0 = 1, β1 =
δF

δt
, β2 =

δT

δt
, and ∈ = σ(Y) is the standard deviation.

After computing the gradient Yi of all application processes, PTAS moves the processes

with gradients higher than threshold to the sleep state, allowing the CPU to cool. The

goal was to maintain the temperature below threshold level, and thereby avoid spikes in

temperature. The threshold gradient is the value of dYi/dt (empirically determined) at

which the process cuts off.

Probing the temperature and FLOPS took constant time. The complexity of PTAS is

O(n), where n is the number of processes. In our implementation, we used a Java

Process API call to select the application-level processes, and Java Apache commons

math API2 to determine Yi, using the historical standard deviation. We used scheduling

quanta [25] and divisible load approaches [26] to schedule tasks in FIFO order. In the

above two approaches, the process is broken down into manageable threads. It reduces

load on the scheduler to execute the processes fairly and efficiently.

All the processes considered in this experiment are data-intensive tasks that have

substantial floating-point operations, which increases the temperature significantly. The

collective run results are shown in Fig. 2.

2
 org.apache.commons.math3.stat.regression

31

As stated earlier, when implementing PTAS in a real system, PAPI [27] or hardware

counters may be used to measure FLOPS. The benchmark process computes floating-

point calculations. In order to estimate the overhead due to PAPI in such an

implementation, we ran benchmark programs with PAPI. These benchmark programs

were Inner Product, Matrix Vector Multiplication, and Matrix Multiplication. We

performed calibration on PAPI with various matrix sizes ranging from 2x2 to 500x500 to

estimate the overheads on latency and throughput using PAPI. We found the overheads

to be negligible, thus suggesting the feasibility of such an implementation. PAPI

computes percentage error overhead between theoretical and real time computation of

floating points. We conducted experiments to empirically determine error overhead due

to PAPI for matrix vector test, inner product test, and matrix multiplication, and found the

normalized error overheads to be 0.0016, 0.0000, and 0.0017 respectively.

3.3 Experimental Setup

The experiments were conducted on a desktop and laptop machine with the Ubuntu

operating system. We used Ubuntu 9.10 on a Dell Optiplex 9020 i5 @ 2.90 Ghz desktop

with 4 GB RAM and 320 GB HDD. For the laptop, we used Lenovo Intel Dual Core

@2.10 Ghz with 4 GB RAM and 302 GB HDD. The ambient room temperature was 70°F

with central air in the lab. We developed the scheduler using Java, and used Java APIs

to calculate the temperature gradient. We ran our experiments on laptops as well, and

saw similar benefits. We used the desktop results using Ubuntu in the dissertation as the

OS is freely available, making the experiments easily replicable.

32

The experiment was run on eight SciMark benchmarks: Fast Fourier Transform (FFT),

Jacobi Successive Over-Relaxation (SOR), Dense Unit Factorization (LU),

Fig. 2 Peak temperatures of ISA adapter and cores with and without execution of all benchmarks

Sparse Matrix Multiplication (Sparse), FFT-Large, SOR-Large, LU-Large, and Sparse-

Large. When conducting the above experiments, the benchmark FFT does a 1-D

transform of complex numbers. It uses complex arithmetic, shuffling, non-constant

memory references, trigonometric, and bit reversal functions [28]. The benchmark SOR

does a 100x100-matrix calculation on finite applications [28]. The benchmark LU uses

pivoting methods on a 100x100 matrix to perform linear algebra kernels and dense

matrix operations [28]. Sparse Matrix Multiplication computes 1000x1000 sparse matrix

with uncompressed storage patterns [28].

The peak CPU temperature (and peak FLOPS) for a benchmark run was the maximum

of all observed temperatures (and FLOPS) during the run of that benchmark. The

average temperature (and average FLOPS) was a simple average of the observed

values over time during the run of the benchmark.

33

We ran the benchmarks individually to estimate their specific impact on temperature. No

processes other than those belonging to the OS were running on the computer on which

the experiment was conducted. For each of the eight benchmarks mentioned above, we

noted CPU temperatures, FLOPS, and schedule length with and without the PTAS

scheduler. In addition, the CPU temperature was measured before and after each thread

was sent to sleep to observe whether there was indeed a drop in CPU temperature. We

ran each benchmark 10 times. The schedule length here represents the execution time.

The results in the graphs shown in this dissertation are the average over these 10 runs.

Both sleep time and threshold gradient were empirically determined using several

runs. The sleep time was chosen as the shortest time that can reduce CPU temperature

below an empirically defined threshold temperature. In an implementation, these values

can be user-programmable (such as in a data center) to achieve best outcomes of

thermal and execution time savings.

To determine the best threshold gradient and sleep times, we ran the experiment many

times with various threshold gradients and sleep durations. We kept the sleep duration

short, such that the corresponding increase in the schedule length was minimal. We

noted the threshold gradient and sleep duration for which there was a maximum

decrease in temperature and used them for future experiments. In these experiments,

the best values for threshold gradient and sleep time were found to be 0.24 units and

1msec respectively. We monitored 𝛿𝑡 by an electronic stopwatch. The duration for

statements 5 and 6 in Fig. 1 were negligible compared to 𝛿𝑡.

34

We probed the CPU temperature and FLOPS dynamically. The benchmarks provided a

mechanism to probe the FLOPS. The benchmarks were modified to probe the CPU

temperature using hardware sensors [29].

3.4 Results and Discussion

We found a favorable decrease in temperature for all eight benchmarks with PTAS. In

FFT, LU, SOR, and Sparse benchmarks, temperature reductions were 2-4°C, whereas

those in FFT-Large, LU-Large, SOR-Large, and Sparse-Large were 3-5°C. The

reductions on a laptop were 3-5°C in FFT, LU, SOR, and Sparse, whereas those in FFT-

Large, LU-Large, SOR-Large, and Sparse-Large were 3-6°C.

Table 1 shows the peak FLOPS and peak CPU temperature for all the benchmarks. The

peak FLOPS using PTAS was smallest as the processes were put to sleep, when there

were rapidly rising floating-point computations.

35

As expected, there was an increase in schedule length when using PTAS, because

processes were put to sleep to reduce CPU temperature. Fig. 4 MFLOPS vs. time when

benchmarks are executed in sequence (FFT, LU, SOR, and Sparse)shows the FLOPS

versus time when all the small benchmarks (FFT, LU, SOR, and Sparse) are run

together. This graph shows the FLOPS reduction with PTAS over the execution time of

small benchmarks. The x-axis represents MFLOPS and the y-axis represents time. Fig. 4

MFLOPS vs. time when benchmarks are executed in sequence (FFT, LU, SOR, and

Sparse)also shows the temperature versus time when small benchmarks are executed

together. There is a decrease in CPU temperature with PTAS for the execution time of

the small benchmarks.

Table 1 Peak FLOPS and peak CPU temperature for all benchmarks when running on
desktop

Peak FLOPS Peak Temp (°c)

Benchmark Without PTAS With PTAS Without PTAS With PTAS

LU Large 3503 2547 44 43

FFT Large 188 187 44 43

SOR Large 2032 2007 49 48

Sparse Large 1225 1162 45 43

LU 3510 3421 44 41

FFT 170 90 49 49

SOR 2377 2355 44 43

Sparse 1517 1280 49 48

36

In the smaller benchmark group (FFT, LU, Sparse, and SOR), the schedule length

increases with PTAS were from 26-33%. The increase in schedule length of the Sparse

benchmark was highest (33%). This could be attributed to the Sparse benchmark

process causing a steep rise in peak CPU temperature due to large non-contiguous

memory accesses.

Fig. 3 Execution time of different benchmarks for the desktop and laptop

The peak CPU temperature of SOR without PTAS was highest. The maximum reduction

of CPU temperature was in LU. This can be attributed to the higher FLOPS in LU

compared to Sparse (see Fig. 6).

37

Fig. 4 MFLOPS vs. time when benchmarks are executed in sequence (FFT, LU, SOR, and Sparse)

Fig. 5 CPU temperature during execution when small benchmarks(FFT, LU, Sor and Sparse) are
executed together

In the larger benchmarks group (FFT-Large, LU-Large, Sparse-Large, and SOR-Large),

increase in schedule length with PTAS was between 15-25% (see Fig. 3).

38

For all benchmarks, as seen in Fig. 7, the average peak CPU temperature decreased

with the application of PTAS. We also determined the median results. We found that

median readings with PTAS with and without PTAS were similar to average readings.

We noted that we could decrease the schedule length by decreasing the sleep time, at

the cost of temperature. A carefully selected sleep time can reduce both the schedule

length and temperature. Finally, we investigated the deviation of the readings to provide

the level of confidence on the experiments. Table 2 lists the normalized standard error

in our readings in a single experiment, where there are several crests of FLOPS at

which the processes were put to sleep (cut-off points). The data represents the

deviation of the cut-off values of the FLOPS at many crests in a single experiment. The

normalized values were computed by dividing the standard deviation of the FLOPS at

which the processes cut off. The corresponding deviations of temperature are also

shown. We infer that in the experiment, the cut off occurred at similar points, suggesting

confidence in experimental observations.

39

Table 2 Normalized STDEV of cut-off FLOPS and cut-off temperature over a single
experiment with PTAS

Benchmark Cut-off FLOPS Cut-Off Temp (°c)

FFT 0 0.02

LU 0 0.01

SOR 0 0.02

Sparse 0 0.05

FFT-Large 0 0

LU-Large 0 0.02

SOR-Large 0 0.02

Sparse-Large 0 0.02

Fig. 6 Peak temperature using PTAS in desktop and laptop for various benchmarks

40

Fig. 7 Average CPU temperature using PTAS in desktop and laptop for various benchmarks

The peak CPU temperature for all the benchmarks decreased when we ran PTAS (see

Fig. 6). There was also a drop in average CPU temperature for all the benchmarks (see

Fig. 7). The temperature reduction comes from cooling during sleep times, and a more

even redistribution of floating-point operations over time.

We also obtained temperature improvements on a battery-powered laptop. Fig. 6 and

Fig. 7 show the comparison of peak CPU temperature and average CPU temperature

on a desktop and laptop for FFT, LU, SOR, and Sparse small benchmarks.

Peak temperatures reduced for SciMark benchmarks, such as FFT, SOR, and Sparse,

which are either integer arithmetic intensive or memory intensive. This shows that PTAS

also has predictive power for non-FP applications.

41

The benefits of PTAS are over and above hardware-based approaches, such as DVFS,

DTM, leakage energy, and system throttling. The experiment machine had Thermal

Design Power (TDP). This strategy can also be implemented on a web browser or

mobile device, as they have floating-point calculations.

3.5 Conclusion

In this chapter, a Proactive Temperature-Aware Scheduler was developed to cut off a

process and put it to sleep if its predicted gradient was high. Such a strategy stabilizes

CPU temperature and prevents temperature surges. Thus, PTAS would increase chip

reliability by reducing thermal damage to the chip, and reduce related costs. In FFT, LU,

SOR, and Sparse benchmarks, temperature reductions were 2-4°C, whereas those in

FFT-Large, LU-Large, SOR-Large, and Sparse-Large were 3-5°C. The reductions on a

laptop were 3-6°C in FFT, LU, SOR, and Sparse, whereas those in FFT-Large, LU-

Large, SOR-Large, and Sparse-Large were 3-6°C.

As the regression uses the time derivative of the temperature, the effectiveness goes

beyond FP intensive applications. Future work should add the rate of memory accesses

as a predictor, which we have also found helpful in reducing CPU temperatures in our

preliminary work. As pointed out in [5], these are the major causes of high

temperatures. Our future work will explore the impact of this approach on web browsing

and mobile devices. We expect similar benefits, as preliminary work with rate of memory

change is encouraging.

42

As discussed previously, in our future work we will account for non-uniform memory

accesses in the prediction. Preliminary results show a reduction in the schedule length

penalty by employing memory access in the prediction. Future research will also focus

on a detailed study of the relationship of threshold gradient to the duration of sleep time,

schedule length, and multi-core temperature-aware scheduling.

43

Chapter 4 Proactive thermal management using flops via memory rates

After carefully reviewing literature, we found our approach is novel. The remainder of

this paper is organized as follows: in Section 2, we discuss related work, Section 3 the

PTFM approach, Section 4 the experiment section, Section 5 the results and discussion

and finally, we discuss conclusion.

4.1 Related Work

There are several approaches to reducing CPU temperature. Temperature and energy

aware strategies comprise of dynamic voltage and frequency scaling (DVFS), dynamic

power management (DPM) or dynamic thermal management (DTM), leakage energy

and variability thermal management or location based management.

Coskun et al. [2] implemented a workload scheduler using DVFS and DPM strategies

that reduces CPU temperature by identifying spatial variations in workloads. This

approach reduced hotspots by 35%, spatial gradients by 85% and thermal cycles (i.e.

hot cool cycles) by 60%. Chatrurvedi et al. [10] developed m-oscillation (DVFS) thermal

management strategy to reduce the chip temperature where m represents the speed of

the CPU core. They used lower speed amongst two frequencies to complete tasks,

which resulted in peak CPU temperature reduction of 2°C.

44

Xiuyi et al. [1] implemented DPM using operating system (OS) scheduler to minimize

peak CPU temperatures in 3-d torus chips. In this research, there was 7.2%

performance improvement in speedup of the processor using this scheduler. They

discovered that hotspots around vertically adjacent layers in 3-d torus chip were the

main reason for the increase in the 3-d torus chip temperature.

Kumar et al. [7] reduced CPU temperature by using DTM in an OS scheduler. This

scheduling approach managed CPU temperatures effectively with average performance

overhead of 10.4% (20.1% maximum). Chuan et al. [8] used leakage energy using

active and passive modes of the OS or CPU to schedule the tasks. Their approach

increased context switching of the tasks, which increased energy consumption. This

research has small scheduling overhead and 5% to 6% energy savings.

Wei and Nannarelli [9] discovered that floating-point operations increased heat in

caches. They used fused multiply add to optimize the division of the floating points

which This approach reduced average temperature in caches by 5% and reduced

leakage energy by 12%. In addition, this approach reduced power consumption by

8.4%.

Jin and Maskell [14] studied thermal management at an event level. They built a thermal

map of events that reduced CPU temperature. By using an offline lookup table, they

built a low complexity scheduler, which can be integrated into the kernel.

Fisher et al. [13] used speed scheduling that identifies ideal speed for each core of the

45

CPU to reduce CPU temperature. In this research they reduced peak CPU

temperatures are reduced by 30-70 °C when compared to load balancing strategies.

Homogeneous scheduling in 3-d torus chips by Jiajia et al. [15] controls peak CPU

temperatures. In the scheduling technique there was a speedup of 1.06, 1.05 and 1.04

in FFT, matrix multiply and radix sort.

Yang et al. deployed helper threads [16] to reduce peak temperatures in CPUs. Helper

threads (which are cool threads) execute tasks in parallel thereby giving CPU thermal

improvements and energy savings. The results were 66.3% and 83.3% savings in

energy delay product (EDP) for FFT and Multigrid. This research reduced CPU thermal

emergency.

Anupindi and Baskiyar [30] developed a proactive and predictive approach using

derivative of floating points (FLOPS) and temperature to reduce CPU temperature. They

evaluated the performance of PTAS using the various small and large FFT, LU, SOR

and Sparse components of the Scimark benchmarks. The reductions in CPU

temperatures on a desktop machine were between 7-13°C with the corresponding

percentage reductions between 21-39%. Those for the desktop were between 3-6°C

with the corresponding improvements between 4-9%. The corresponding penalties in

schedule lengths in desktop were between 15-30% and 5-10% in laptop and there was

3-5% energy savings in both the desktop and laptop. The work reported in this paper is

a substantial improvement over the previous work by including memory rates in the

46

predictor and varying sleep times and threshold cut-offs to conduct a more rigorous

study.

Merkel and Bellosa [17] discovered that migration could be better than system throttling.

They created an energy aware scheduling policy on a Linux scheduler by creating a

task data structure. The scheduler moved hot tasks to the coolest core and balanced

energy to get energy savings. They computed energy readings at a task level using

event performance counters. The cost of migration was smaller than throttling.

Ayoub and Rosing [4] implemented a proactive thermal management strategy using a

predictor formed by historical bandwidth of signals where temperature was modeled as

a RC network. They discovered that Mean time to failure (MTTF) was related to average

and peak CPU temperatures. The workload characterization of the tasks can be

computed by finding the fetch rate of tasks. They measured the CPU temperatures due

to reactive and proactive approaches using SPEC 2000 benchmarks. Using their

proactive strategy, they decreased the average temperature of the hottest cores by 6-8

°C with a performance penalty between 40-60%.

Weissel and Bellosa [18] implemented event performance counters to measure tasks

characteristics. They put weights to task events and measured CPU energy and

temperature using performance counters. They measured CPU cycles to find energy

consumption. Using static and dynamic parts of a linear optimization equation, they

reduced temperature and saved energy. Scimark numerical benchmarks [28] were

used for the experiment.

47

Lenovo [31] uses four schemes for energy management in laptops. They are energy

star, high performance, balanced and super energy saver. Energy star uses sleep,

hibernation, hard disk rotation and CPU speed in a/c and battery mode to get energy

savings. This scheme optimizes battery health. In addition, smart power savings for CD-

ROM, hard disk, CPU and screen refresh rates are gained. Using smart sensing

Procedure PTFM (int i) // i is observation number

const ThresholdGradient, K=1000

static float F[K], T[K], M[K], Y[K]

Process p, Q[n] //Application processes

 //n is the number of processes

 1 For each p ∈ Q do // in FIFO

 2 Fi = FLOPS (p)

 3 Ti = CPUTemperature() //From lmsensors

 4 Mi = MemoryAccessRate(p)

 5 Wait for δt time

 6 Fi+1 = FLOPS (p)

 7 Ti+1 = CPUTemperature()

 8 Mi+1 = MemoryAccessRate (p)

 9 (𝛿𝐹/𝛿t)𝑖= (Fi+1-Fi)/𝛿t
 10 (𝛿𝑇/𝛿t)𝑖= (Ti+1-Ti)/𝛿t
 11 (𝛿𝑀/𝛿t)𝑖= (Mi+1-Mi)/𝛿t
 12 Wait for δt time

 13 Fi+2 = FLOPS (p)

 14 Ti+2 = CPUTemperature()

 15 Mi+2 = MemoryAccessRate (p)

 16 (𝛿𝐹/𝛿t)𝑖+1= (Fi+2-Fi+1)/𝛿t
 17 (𝛿𝑇/𝛿t)𝑖+1= (Ti+2-Ti+1)/𝛿t
 18 (𝛿𝑀/𝛿t)𝑖+1= (Mi+2-Mi+1)/𝛿t
 19 Yi = 1 + (𝛿𝐹/𝛿t)𝑖 * Fi + (𝛿𝑇/𝛿t)𝑖* Ti + (𝛿𝑀/𝛿t)𝑖 * Mi + σ𝑖(Y)

 20 Yi+1 = 1 +(𝛿𝐹/𝛿t)𝑖+1 * Fi+1 + (𝛿𝑇/𝛿t)𝑖+1 * Ti+1 + (𝛿𝑀/𝛿t)𝑖+1 * Mi+1 + σ𝑖+1(Y)

 21 𝛿𝑌𝑖/𝛿t = (𝑌𝑖+1 − 𝑌𝑖)/𝛿t
 22 if 𝛿𝑌𝑖/𝛿t > ThresholdGradient then

 23 Sleep(p)

 24 endif

 25 endfor

 end PTFM

Fig. 8 Algorithm PTFM

48

approaches for ambient light sensing, ambient keyboard sensing and ambient panel light

significant energy savings are obtained.

Dell [32] uses energy smart architecture for high power efficiency and intelligent power

management. It uses a power supply unit with common form factor for a/c or battery. In

addition, it uses Intel node manager firmware for power monitoring capabilities to the

PSU and subsystem, processor, I/O, memory, storage and fan. Using it, a sample for ten

seconds can be obtained to measure the accuracy and efficiency. Finally, energy

controlling and reporting capabilities are provided in dell servers.

IBM [33] uses intelligent power management features in POWER7 processors. Using

energy scale, this processor intelligently monitors power trending, power-saving capping

of maximum power that allows the server to set system policies for energy-efficient

servers. It maintains energy feeds and sets the upper limit of energy for a server in a

data center. The core of IBM energy management is to eliminate hotspots in the CPUs.

In addition, it eliminates wasteful cool spots, which decrease energy savings.

Linux [34] uses CPUfreq subsystem to control processor energy savings varying the

frequency dynamically for different workloads.

4.2 Approach

We developed a proactive scheduler that reduces CPU temperature. This work is based

on our previous work [30] in which we developed a proactive scheduler by predicting the

impact of any process on CPU temperature using the time derivatives of its floating

point instruction execution rate and current CPU temperature. This strategy was called,

49

PTAS, which used regression of FLOPS and temperature gradients to determine CPU

temperature of a process in a CPU. This strategy successfully reduced CPU

temperature.

In this research we hypothesize that using a memory derivative gradient in the

temperature impact predictor could provide additional CPU temperature reductions. We

call the resulting scheduler Proactive Thermal manager using Floating point rates and

Memory rates (PTFM) which uses the time derivatives of FLOPS, memory access rates

and current temperature to predict and proactively reduce CPU temperature. The

temperature impact predictor of a process can be formulated as a regression as follows:

Yi = β0 + β1 Fi + β2 Mi + β3 Ti + ∈ (1)

where the co-efficient are β0 = 1, β1=δF/ δt, β2=δM/ δt, and β3= δT/ δt and σ(y) is standard

deviation

Fig. 8 gives the algorithm for PTFM. The algorithm computes the rate of FLOPS for a

process, the rate of CPU temperature change, and the rate of memory accesses of any

process. In the experiment, these values were computed by determining the total

FLOPS and total memory accesses separated by delays δt (among ith, i+1th,i+2th

observation points) and then dividing them by δt. The temperatures were also observed

at the ith, i+1th,i+2th observation points and the differences were divided by δt to get the

rates of temperature. The term σi(Y) represents the standard deviation of values from 0th

to ith observation. Using the above values a regression predictor (δY/δt)i was formed. If

the value of the predictor is greater than the predefined threshold gradient, the process

is temporarily put to sleep. In order to get better thermal improvements, we

50

experimented with different sleep times and cut-off gradients. The cut-off gradient

values that we experimented with are: 0.22, 0.23, 0.24 and 0.25. We used 10 ms, 50

ms, 250 ms, 500 ms and 1 s sleep times for our strategies. The threshold cut-off

gradient of 0.22 gave the best thermal improvements. The graphs shown in this paper

correspond to this threshold value.

The approach taken by PTFM does not cut-off all the user processes in CPU whereas

hardware based cut-off suspends all user processes, making the CPU temporarily

unavailable for a short duration. Therefore, in PTFM approach the CPU remains usable

for other processes. Table 3 shows the symbols used by PTFM.

4.3 Experimental Setup

In order to evaluate PTFM, we used the Scimark benchmarks. We selected Scimark

benchmarks since they performed numerical calculations. The benchmarks used Fast

Fourier transform, Jacobi successive over-relaxation, dense unit factorization and

Table 3 Symbols and description

Symbol Description

𝛥𝑡 Delay time between successive observations

𝑑Y/ 𝑑𝑡 Temperature gradient predictor

𝑌𝑖 TIP of the process at the ith observation

𝛽 Regression co-efficient

𝐹𝑖 FLOPS at the ith observation

𝑀𝑖 Memory accesses at the ith observation

𝑇𝑖 Temperature at the ith observation

51

Sparse matrix multiply. These numerical benchmarks perform various functions like bit

reversal, matrix multiply and memory accesses. These benchmark processes (FFT,

SOR, LU and Sparse) are floating point intensive, memory intensive and integer

intensive.

We conducted the experiment with Ubuntu 9.10 on a Dell OptiPlex 9020 i5 @ 2.90 Hz

desktop with 4 GB RAM and 320 GB HDD. We also conducted the experiments on a

Lenovo Intel Dual Core @2.10 Hz with 4 GB RAM and 302 GB HDD laptop running

Ubuntu 9.10 operating system. The ambient room temperature was 70 °F.

The algorithm was written in Java and used apache commons API for mathematical

calculations. We modified the code in the Scimark benchmarks to calculate the values

of FLOPS and memory access rates. In a real time scheduler implementation, we can

measure FLOPS and memory access rates using PAPI. In order to see whether in a

real implementation what sort of overheads PAPI could cause, we performed calibration

tests on PAPI for Matrix Multiply, Inner Product and Matrix Vector Multiply benchmarks.

We found overheads for FLOPS and memory access rates for matrix multiplication to be

negligible (0.0017). This shows that PAPI can be used in a real implementation without

incurring significant overhead.

We used hardware temperature sensors [29] in the simulator to measure CPU

temperature. We measured the temperature readings from these sensors and

calculated.

52

Using the memory access rates, FLOPS and current temperature of the CPU, we

compute Temperature Impact Predictor for any process. The regression for any

process can also be computed by using the apache commons library [35].

When the value of the gradient of the predictor goes above a threshold, we proactively

put the process to sleep for a small duration to reduce CPU temperature.

We evaluated the effect of four different strategies on CPU temperature: PTAS, PTFM,

STD (Simple Time derivative) and Threshold. STD strategy used a derivative of CPU

temperature (d/dt). Using this derivative a cut-off was employed if the derivative

exceeds a threshold value to reduce CPU temperature. The simple derivative value

used was 0.24—we chose this value after a few experiments to provide the best CPU

temperature reduction, and schedule length penalty. Finally, Threshold strategy does

not use a derivative or regression of FLOPS, memory and temperature but used a direct

cutoff. It cuts off a process, which exceeds a given Threshold. In all these strategies, the

threshold used was computed empirically after many experiments. The threshold value

used for comparison was the minimum threshold at which there was maximum CPU

temperature reduction. The threshold temperature used for Threshold strategy was 45

°C for desktop and 53 °C for laptop. We compared the results of these four different

strategies for peak CPU temperature, average CPU temperature and performance.

53

4.4 Results and Discussion

We recorded the readings of our experiment and plotted the results. The average CPU

temperature is an average of several readings during the entire execution of the specific

component of the benchmark. The peak CPU temperature is the peak temperature

reached during the entire execution of the specific component of the benchmark. Fig. 9

shows CPU temperature readings for the small benchmarks in Celsius when they are all

run successively. The crests in the graph indicate rise in CPU temperature with the

benchmarks whereas troughs in the graph indicate process cut-offs due to PTFM. For

these benchmarks, there was an overall reduction of CPU temperature of 3-6°C with

PTFM than without. The reduction of CPU temperature was due to reducing FLOPS and

memory accesses. There were thermal improvements with large benchmarks too. For

large benchmarks, there was 3-6°C of average CPU temperature reduction.

The schedule length with PTFM extends from 2-10% whereas with PTAS it extends by

15-25%. We were able to keep the schedule length tight for PTFM by employing

optimization of sleep time, the additional memory rate parameter in the regression, and

experimenting with different predictor threshold cut-offs.

Fig. 10 shows peak CPU temperature comparison for Threshold, STD, PTAS and PTFM

PTAS and PTFM strategies with a sleep time of 10 ms. We found that peak CPU

temperature reduction for PTFM was greater than PTAS, STD and Threshold for FFT. In

PTFM strategy, the FFT benchmark had greater peak CPU temperature reduction than

due to LU, SOR and Sparse. In all the strategies, with Sparse benchmark there was

minimal peak CPU temperature reduction due to non-uniform accesses. Perhaps the

54

lack of locality causes memory accesses, which causes increase in CPU temperature

[36]. The peak CPU temperature of the threshold strategy was greater than No Strategy

for SOR and Sparse benchmarks because the temperature continues to rise during the

cut-off for the entire execution of the run.

We found that average CPU temperature reduction for PTFM (see Fig. 11) was higher

than PTAS at 10ms sleep time. In addition, as expected, we observed that average CPU

temperature reductions were higher than peak CPU temperature reductions for all the

strategies, for all benchmarks and all sleep times.

We set the cut-off slope of the predicted gradient as 0.22 as we found best results at this

value. This was determined after several experiments. In a real time scheduler, the cut-

off slope can be varied using a feedback control loop to get further CPU temperature

improvements. For all the processes, priority was set as normal.

Fig. 12 shows peak CPU temperature comparison for four different strategies at 500 m

seconds sleep time. We found that the peak CPU temperature reduction for all the

benchmarks. The PTFM strategy was better for FFT, LU Large and Sparse Large. The

PTAS strategy had a better run for LU, Sparse and FFT Large. For Sparse and SOR

threshold strategy was better.

Fig. 13 shows average CPU temperature comparison for 500 ms sleep time. The PTFM

strategy outperforms for SOR, FFT Large and SOR Large. The threshold strategy shows

55

better results for LU and Sparse. We found PTAS improvements are similar to PTFM.

Fig. 14 shows peak CPU temperature comparison for 1 s. We found PTFM was superior

for FFT, LU, SOR Large. The threshold strategy shows improvement for SOR and

Sparse Large. The PTAS strategy gives good results for FFT large. Fig. 15 shows

average CPU temperature comparison for 1 s sleep time. The PTFM strategy had

thermal improvements for FFT, LU and SOR large. For Sparse and SOR Large PTAS

gives thermal savings. The threshold strategy had improvements for SOR and Sparse

Large. The thermal behavior was similar to smaller sleep time but the process goes to

sleep for a longer duration.

Fig. 9 CPU Temperature for smaller benchmarks when executed successively

The PTFM strategy used memory rates in addition to FLOPS, which was instrumental in

giving the best outcome when compared to the other strategies.

56

Fig. 10 Peak CPU temperatures with a sleep time of 10 ms

Fig. 11 Average temperature for a sleep time of 10 ms

57

Fig. 12 Peak temperature for a sleep time of 500 ms

Fig. 13 Average temperature for a sleep time of 500 ms

58

Fig. 14 Peak temperature for a sleep time of 1 s

Fig. 15 Average temperature for a sleep time of 1 s

Fig. 16 shows the peak CPU temperature comparison for a desktop and laptop whereas

Fig. 17 shows average CPU temperature comparison for a desktop and laptop. We got

better thermal improvements (3-6°C) on the laptop. The peak CPU temperature is the

peak CPU temperature the CPU reaches during the entire execution of specific program

59

4.5 Conclusion

In this chapter, we developed a proactive CPU thermal management strategy, which

reduce CPU temperature by predicting the higher temperature gradient of a process

using rates of change of No current CPU temperature, floating point access rates and

memory access rates. We varied sleep time, cut-off gradient of any process to provide

the best temperature and execution times. We compared our strategy with PTFM, STD

and Threshold strategies. We found PTFM outperformed other three strategies. We

found around 3-6°C/6°C reduction in peak/average CPU temperatures due to small

benchmarks (FFT, LU, SOR and Sparse) and 3-6°C/6°C for large benchmarks (FFT-

Large, SOR-Large, LU-Large and Sparse Large). Preliminary results on Spec suite

gave similar improvements. We compared our strategy with PTFM, STD and Threshold

strategies. We found PTFM outperformed other three strategies.

Fig. 16 Peak CPU Temperature comparison of PTFM on a desktop and laptop for a sleep time of 50
ms

60

Fig. 17 Average CPU Temperature comparison of PTFM on a desktop and laptop for a sleep time
of 50 ms

This strategy can be applies over and above the hardware approaches such as DVFS,

DPM and leakage energy. In the future, we aim to conduct these experiments on other

mobile devices and on cloud environments. Based on this research we can implement a

real time scheduler on multi cores with different scheduling policies. Fig. 18 shows the

peak CPU temperature for different slopes values when all the benchmarks are

executed together whereas Fig. 19 shows the average CPU temperature of different

slope values when all benchmarks are executed together. The peak CPU temperature

reduction for a slope of 0.21 and 0.22 was higher than other slope values (0.23 and

0.24). Similarly, the average CPU temperature reduction was high at 0.21 and 0.22

slope values.

61

Fig. 18 Peak CPU Temperature when all benchmarks are executed together

Fig. 19 Average CPU Temperature when all benchmarks are executed together

Table 4 shows the time relationship between different floating-point values (MFLOPS).

We see a drop in MFLOPS with our strategy. Similarly, in Table 5 we see a drop in CPU

temperature.

62

Table 6 depicts the CPU temperature without benchmarks running and with

benchmarks running for core 0, core1 and ISA adapter. It shows our motivation that

running floating-point intensive workloads increase CPU temperature. These

benchmarks are floating-point intensive and memory intensive.

Table 4 MFLOPS vs. time

Time Without PTAS With PTAS

0 4 5

1 28 5

2 94 43

3 113 43

4 123 85

5 124 25

6 126 43

7 126 85

8 126 40

9 170 45

10 329 96

Table 5 Temperature vs. time

Time Without PTAS With PTAS

0 72 69
1 74 71
2 76 72
3 76 76
4 77 73
5 85 85
6 86 84
7 86 77
8 87 85
9 90 88
10 92 91
 94 89

63

Table 6 CPU temperature without benchmarks and with benchmarks running

 Benchmarks not running Benchmarks running

Core 0 45 65

Core 1 45 63

ISA
Adapter

46 69

Table 7 displays the execution times of different benchmarks on a desktop and laptop

for different benchmarks. We see that there was an increase in schedule length by 10 -

15%. Table 8 depicts the peak CPU temperature using PTAS in a desktop and laptop

for different benchmarks. We see a considerable drop in peak CPU temperature with

PTAS.

Table 7 Execution time of different benchmarks for the desktop and laptop

Desktop
without
PTAS

Desktop with
PTAS

Laptop without
PTAS Laptop with PTAS

LU
Large 46 64 54 54
FFT

Large 72 76 72 75
Sparse
Large 71 82 88 122
SOR
Large 62 73 46 58

LU 36 47 27 38
FFT 33 45 26 26

Sparse 68 131 53 64
SOR 72 84 46 58

64

Table 8 Peak Temperature using PTAS in Desktop and laptop for various benchmarks

Table 9 shows the average CPU temperature using PTAS in desktop and laptop. We

were able to get a clear reduction in CPU temperature in all the benchmarks using

desktop and laptop.

Table 9 Average CPU temperature using PTAS in desktop and laptop for various
benchmarks

Desktop without
PTAS

Desktop with
PTAS

Laptop without
PTAS

Laptop with
PTAS

LU
Large 42 39 83 83
FFT

Large 42 39 64 61
Sparse
Large 43.3 37.5 83.4 80
SOR
Large 46.5 41.3 93.2 86.3
FFT 40 36 71.9 69.4
LU 46 44 81.4 77.6

SOR 42 39 77.3 73.4
Sparse 45 43 81.2 80.5

Desktop
without PTAS

Desktop
with

PTAS Laptop without PTAS Laptop with PTAS

LU
Large 44 43 86 86
FFT

Large 44 43 64 61
Sparse
Large 49 48 84 81
SOR
Large 45 43 98 95
FFT 44 41 77 73
LU 49 49 86 84

SOR 44 43 81 77
Sparse 49 48 90 88

65

Table 10 gives peak CPU temperature without PTFM and with PTFM for smaller

benchmarks for a sleep time of 10 ms. We see that PTFM has best reductions at a

sleep time of 10 ms .We are able to reduce peak CPU temperature using PTFM

whereas Table 11 shows peak CPU temperature comparison of PTAS and PTFM. We

see PTFM is better than PTAS as we use FLOPS and memory rates to predict a

process and put it to sleep.

Table 10 Peak CPU Temperature of smaller benchmarks (FFT, LU, SOR and Sparse)
when executed together

 Without PTFM With PTFM

 0 52 52

1 52 49

2 57 54

3 60 58

4 63 51

5 63 56

6 63 54

7 63 62

8 63 62

9 63 57

10 63 57

66

Table 11 Peak CPU temperature of No Strategy, Threshold, STD, PTAS and
PTFM. strategies for a sleep time of 10 ms

FFT LU SOR Sparse

FFT
Large

LU
Large

SOR
Large

Sparse
Large

No
Strategy 44 44 49 45 44 46 44 49

Threshold 43 43 48 43 41 45 43 48
STD 43 44 48 44 42 45 44 48

PTAS 44 44 50 50 45 45 45 49
PTFM 45 49 44 47 43 48 45 47

Table 12 gives average CPU temperature for No Strategy, Threshold, STD, PTAS and

PTFM on smaller benchmarks for a sleep time of 10 ms. As expected, the average CPU

temperature drop was lower than peak CPU temperature. Table 13, Table 14, Table 15

and Table 16 show peak and average CPU temperature of No Strategy, Threshold,

STD, PTAS and PTFM for all the benchmarks for a sleep time of 500 ms and 1 s

respectively. The thermal behavior was similar for other sleep times.

Table 12 Average CPU temperature of No Strategy, Threshold, STD, PTAS and PTFM.
strategies for a sleep time of 10 ms

FFT LU SOR Sparse

FFT
Large

LU
Large

SOR
Large

Sparse
Large

No

Strategy 43 45 40 45 40 44 41 46
PTAS 42 44 39 44 36 43 41 45
PTFM 42 43 39 44 36 43 41 45
STD 40 41 46 47 42 42 42 44

Threshold 39 46 41 42 41 46 43 43

67

Table 13 Peak CPU temperature of No Strategy, Threshold, STD, PTAS and PTFM.

strategies for a sleep time of 500 ms

FFT LU SOR Sparse

FFT
Large

LU
Large

SOR
Large

Sparse
Large

No

Strategy 44 44 49 45 44 44 44 49

PTAS 43 43 48 43 41 45 43 48

PTFM 43 44 48 44 42 45 44 48

STD 46 45 50 50 45 45 47 49

Threshold 46 46 45 49 43 46 45 48

Table 14 Average CPU temperature of No Strategy, Threshold, STD, PTAS and PTFM.

strategies for a sleep time of 500 ms

FFT LU SOR Sparse

FFT
Large

LU
Large

SOR
Large

Sparse
Large

No
Strategy 42 42 43 47 40 46 42 45

PTAS 42 44 39 44 36 43 41 45

PTFM 42 43 39 44 36 43 41 45

STD 39 39 40 40 42 42 43 46

Threshold 39 39 40 40 42 44 43 43

Table 15 Peak CPU temperature of No Strategy, Threshold, STD, PTAS and PTFM.

strategies for a sleep time of 1 s

FFT LU SOR Sparse

FFT
Large

LU
Large

SOR
Large

Sparse
Large

No
Strategy 44 44 49 45 44 49 44 49
PTAS 43 43 48 43 41 49 43 48
PTFM 42 43 48 44 42 48 43 48
STD 46 48 50 50 45 44 50 44

Threshold 45 45 45 49 43 46 46 46

68

Table 16 Average CPU temperature of No Strategy, Threshold, STD, PTAS and PTFM.
strategies for a sleep time of 1 s

FFT LU SOR Sparse

FFT
Large

LU
Large

SOR
Large

Sparse
Large

No Strategy 42 42 43 47 40 46 42 45

PTAS 39 39 38 41 36 44 39 43

PTFM 38 38 41 44 36 45 41 45

STD 38 38 39 40 42 42 46 42

Threshold 38 38 39 40 42 44 44 44

The Fig. 20 shows the peak CPU temperature of FFT for 10 ms whereas Fig. 21 shows

average CPU temperature of FFT for 10 ms. In both cases, there was a drop in CPU

temperature. The average CPU temperature drop was higher than peak CPU

temperature. Fig. 22 shows the peak CPU temperature of LU for 10 ms and Fig. 23

shows the average CPU temperature of LU for 10 ms. The LU benchmark gave better

thermal improvements in average CPU temperature and peak CPU temperature at 10

ms. Fig. 24 shows the peak CPU temperature of SOR for 10 ms. and Fig. 25 depicts

shows the average CPU temperature of SOR for 10 ms. The PTFM strategy

outperformed other three strategies. Finally, Fig. 26 and Fig. 27 shows the peak and

average CPU temperature of Sparse for 10 ms. The PTAS strategy was better than

other three strategies. We see that CPU temperature drop in Sparse was lower than

other benchmarks. As discussed, before it could be attributed to non-uniform accesses

by Sparse.

69

Fig. 20 Peak CPU Temperature due to FFT for 10 ms

Fig. 21 Average CPU Temperature due to FFT for 10 ms

70

Fig. 22 Peak CPU Temperature due to LU for 10 ms

Fig. 23 Average CPU Temperature due to LU for 10 ms

71

Fig. 24 Peak CPU Temperature due to SOR for 10 ms

Fig. 25 Average CPU Temperature due to SOR for 10 ms

72

Fig. 26 Peak CPU Temperature due to Sparse for 10 ms

Fig. 27 Average CPU Temperature due to Sparse for 10 ms

Fig. 28 shows the peak CPU temperature of FFT for 500 ms whereas Fig. 29 shows

average CPU temperature of FFT for 500 ms. The Fig. 30 shows the peak CPU

temperature of LU for 500 ms and Fig. 31 shows the average CPU temperature of LU

for 500 ms. In this figure, the LU benchmark has better readings for threshold strategy.

73

Fig. 32 shows the peak CPU temperature of SOR for 500 ms. and Fig. 33 depicts the

average CPU temperature of SOR for 500 ms. PTFM and PTAS outperformed other two

strategies. Fig. 34 and Fig. 35 shows the peak and average CPU temperature of Sparse

for 500 ms. We see similar thermal behavior for SOR and Sparse.

Fig. 28 Peak CPU Temperature due to FFT for 500 ms

Fig. 29 Average CPU Temperature due to FFT for 500 ms

74

Fig. 30 Peak CPU Temperature due to LU for 500 ms

Fig. 31 Average CPU Temperature due to LU for 500 ms

75

Fig. 32 Peak CPU Temperature due to SOR for 500 ms

Fig. 33 Average CPU Temperature due to SOR for 500 ms

76

Fig. 34 Peak CPU Temperature due to Sparse for 500 ms

Fig. 35 Average CPU Temperature due to Sparse for 500 ms

Fig. 36 shows the peak CPU temperature of FFT for 1 s whereas Fig. 37 shows

average CPU temperature of FFT for 1 s. The PTFM strategy outperformed other three

77

strategies at 1 s. We see that putting a process to sleep for a larger time might

decrease the performance as process takes a longer duration to complete. The Fig. 38

shows the peak CPU temperature of LU for 500 ms and Fig. 39 shows the average

CPU temperature of LU for 500 ms. The Fig. 40 shows the peak CPU temperature of

SOR for 1 s and Fig. 41 average CPU temperature of SOR for 1 ms. We see similar

thermal behavior for LU and SOR.

Fig. 36 Peak CPU Temperature due to FFT for 1 s

78

Fig. 37 Average CPU Temperature due to FFT for 1 s

Fig. 38 Peak CPU Temperature due to LU for 1 s

79

Fig. 39 Average CPU Temperature due to LU for 1 s

Fig. 40 Peak CPU Temperature due to SOR for 1 s

80

Fig. 41 Average CPU Temperature due to SOR for 1 s

81

Chapter 5 Conclusion

In this dissertation, we developed two proactive thermal aware approaches PTAS and

PTFM, which reduces CPU temperature by predicting the higher temperature gradient

of a process using rates of change of current CPU temperature, floating point access

rates and memory access rates. We formed a regression predictor formed by FLOPS,

memory and CPU temperature and cut-off a process when the predicted gradient goes

beyond threshold gradient. We do not cut-off all processes but we put a process to

sleep when its predicted gradient exceeds threshold gradient. We found thermal

improvements in both the strategies. We varied sleep time and gradient of the process

to optimize PTFM. We compared our strategies with PTAS, STD and Threshold

strategies and we found that PTFM outperformed other approaches. PTAS and PTFM

can be applied along with the Intel PID controller technique, DVFS, DTM, and leakage

energy strategies, making the benefits of this approach far exceed those strategies.

Since it is a software scheduling strategy, it can be readily applied to all CPUs, including

those in mobile devices. PTAS and PTFM successfully lower the CPU temperature

using a prediction based on FLOPS and memory. The benefits are beyond fp-

applications (floating point) and these two strategies can be implemented for non fp-

applications. Preliminary results on Spec suite benchmarks gave similar results.

82

BIBLIOGRAPHY

[1] Z. Xiuyi, Y. Jun, X. Yi, Z. Youtao and Z. Jianhua, "Thermal-Aware Task Scheduling for 3D

Multicore Processors," IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 1, pp.

60-71, 2010.

[2] A. Coskun, T. Rosing, K. Whisnant and K. Gross, "Temperature-aware MPSoC scheduling for

reducing hot spots and gradients," in Proceedings of Design Automation Conference, pp. 49-54,

2008.

[3] J. Altet and A. Rubio, in Thermal Testing of Integrated Circuits, Spain, Springer, 2002, pp. 1-21.

[4] A. Raid and R. Tajana, "Predict and Act: Dynamic Thermal Management for Multi-Core

processors," in ISLPED, San Fransisco, 2009.

[5] Elinux, “Linux.org,” Linux, [Online]. Available:

http://elinux.org/images/2/2b/A_New_Simplified_Thermal_Framework_For_ARM_Platforms.pdf.

[Accessed 25 Sep 2012].

[6] "Hadoop," [Online]. Available: http://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html.

[Accessed 12 Feb 2013].

[7] A. Kumar, S. Li, P. Li-Shiuan and N. Jha, "System-level dynamic thermal management for high-

performance microprocessors," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 27, no. 1, pp. 96-108, 2008.

[8] Y. Chuan- Yue, C. Jian-Jia, L. Thiele and K. Tei-Wei, "Energy-efficient real-time task scheduling

with temperature-dependent leakage," in Design, Automation & Test in Europe Conference &

Exhibition, Dresden, Germany, 2010.

[9] L. Wei and A. Nannarelli, "Temperature aware power optimization for multicore floating-point

units," in Signals, Systems and Computers (ASILOMAR), Pacific grove, CA, 2010.

[10] V. Chaturvedi, P. Thanarungroj, L. Chen and Q. Gang, "Validation of scheduling techniques to

reduce peak temperature on an architectural level platform set-up," in Proceedings of IEEE

Southeastcon, Nashville, Tennessee, 2011.

[11] T. Senjyu, S. Chakraborty, A. Saber, H. Toyama, A. Yona and T. Funabashi, "Thermal generation

scheduling strategy using binary clustered particle swarm optimization algorithm," in Power and

Energy Conference(PECon), Orlando, Florida, 2008.

[12] T. Kojima, Y. Yamada, Y. Nishibe and K. Torii, "RC Compact Thermal Model of HV Inverter

Module for Electro-Thermal Coupling Simulation," in PCC '07, Power Conversion Conference,

Nagoya, Japan, 2007.

[13] N. Fisher, C. Jain-Jia, W. Shengquan, L. Thiele and W. Shengquan, "Thermal-Aware Global Real-

Time Scheduling on Multicore Systems," in Real-Time and Embedded Technology and

Applications Symposium(RTAS), San Fransisco, CA, 2009.

83

[14] C. Jin and D. L. Maskell, "High level event driven thermal estimation for thermal aware task

allocation and scheduling," 15th Asia and South Pacific Design Automation Conference, pp. 793-

798, 2010.

[15] J. Jiajia, F. Yuzhuo, L. Ting, W. Han, H. Xing and W. Janfang, "Performance analysis and

optimization for homogenous multi-core system based on 3D Torus Network on Chip," in 8th IEEE

International NEWCAS Conference, Boston, MA, 2010.

[16] D. Yang, M. Kandemir, P. Raghavan and M. Irwin, "A helper thread based EDP reduction scheme

for adapting application execution in CMPs," in Parallel and Distributed Processing(IPDPS),

Shangai, China, 2008.

[17] A. Merkel and F. Bellosa, "Event–Driven Thermal Management in SMP Systems," in Proceedings

of the Second Workshop on Temperature-Aware Computer Systems, Madison, USA, 2005.

[18] A. Weissel and F. Bellosa, "Dynamic thermal managment for distibuted systems," 2005. [Online].

Available: www.cs.virginia.edu/~skadron/tacs/weiss.pdf. [Accessed 15 Feb 2014].

[19] F. Bellosa, "Job Scheduling Strategies for Parallel Processing," Lecture Notes in Computer Science,

vol. 1162, pp. 271-289, 1996.

[20] Intel, "Processor design," 2009 Jun. [Online]. Available:

http://download.intel.com/design/processor/designex/317804.pdf. [Accessed 25 Sep 2012].

[21] AMD, “Energy features,” [Online]. Available:

http://www.amd.com/us/products/desktop/processors/athlon-ii-x2/Pages/athlon-ii-key-

features.aspx. [Accessed 25 Sep 2012].

[22] Linux, “Operating system,” Linux, [Online]. Available: www.linux.org. [Accessed 25 Sep 2012].

[23] Linux, "Kernel.org," [Online]. Available: http://kernel.org/doc/ols/2008/ols2008v2-pages-227-

234.pdf. [Accessed 25 Sep 2012].

[24] Coretemp, “alcpu.com,” [Online]. Available: http://www.alcpu.com/CoreTemp/. [Accessed 25 Dec

2012].

[25] Y. He, W. Hsu and C. Leiserson, "Provably Efficient Online Non-clairvoyant Adaptive

Scheduling," in International Parallel and Distributed Processing Symposium(IPDPS), Shenzen,

China, 2007.

[26] V. Sivakumar, V. Bharadwaj and T. Robertazzi, "Resource-Aware Distributed Scheduling

Strategies for Large-Scale Computational Cluster/Grid Systems," IEEE Transacations on Parallel

and Distributed Systems, vol. 18, no. 10, pp. 1450-1461, 2007.

[27] PAPI, "Event driven interface," [Online]. Available: http://icl.cs.utk.edu/papi/. [Accessed 15 Sep

2012].

[28] B. Miller and R. Pozo, "Scimark 2.0," 31 March 2004. [Online]. Available:

http://math.nist.gov/scimark2. [Accessed 19 August 2011].

[29] lmsensors, "Hardware sensors," [Online]. Available: www.lm-sensors.org. [Accessed 15 Sep

2012].

[30] S. S. Anupindi and S. Baskiyar, Proactive Thermal Aware Scheduling, Unpublished manuscript,

2014.

[31] Lenovo, "Laptop Energy," IBM, [Online]. Available:

http://support.lenovo.com/en_AE/downloads/detail.page?DocID=HT034410. [Accessed 10 Jan

2014].

[32] Dell, "Power and Cooling," Dell, [Online]. Available:

http://content.dell.com/us/en/enterprise/d/business~solutions~whitepapers~en/Documents~power-

and-cooling-innovations.pdf.aspx. [Accessed 31 Jan 2013].

[33] IBM, "Power Systems Energy," [Online]. Available: http://www-

84

03.ibm.com/systems/power/software/energy/about.html. [Accessed 31 Jan 2013].

[34] Linux, "CPU Frequency," [Online]. Available:

http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp?topic=%2Fliaai%2Fcpufreq%2

Fliaai-cpufreq.htm. [Accessed 31 Jan 2013].

[35] Apache, “Maths Library,” Apache Commons, [Online]. Available:

http://commons.apache.org/math/api-2.2/index.html. [Accessed 23 Jan 2014].

[36] V. Tiwari, S. Malik and A. Wolfe, "Power analysis of embedded software: a first step towards

software power minimization," in Proceedings of the IEEE/ACM international conference on

Computer-aided design, Los Alamitos, CA, 1994.

85

APPENDIX

Initializing...
--
PAPI Version : 5.0.0.0
Vendor string and code : GenuineIntel (1)
Model string and code : Pentium(R) Dual-Core CPU T4300 @ 2.10GHz (23)
CPU Revision : 10.000000
CPUID Info : Family: 6 Model: 23 Stepping: 10
CPU Max Megahertz : 2100
CPU Min Megahertz : 1200
Hdw Threads per core : 1
Cores per Socket : 2
NUMA Nodes : 1
CPUs per Node : 2
Total CPUs : 2
Running in a VM : no
Number Hardware Counters : 5
Max Multiplex Counters : 64
--

Inner Product Test:
i papi theory diff %error

1 2 2 0 0.0000
2 4 4 0 0.0000
3 6 6 0 0.0000
4 8 8 0 0.0000
5 10 10 0 0.0000
6 12 12 0 0.0000
7 14 14 0 0.0000
8 16 16 0 0.0000
9 18 18 0 0.0000
10 21 20 1 5.0000
11 22 22 0 0.0000
12 24 24 0 0.0000
13 26 26 0 0.0000
14 ……...28………28…… 0….0.0000

86

15 30 30 0 0.0000
16 32 32 0 0.0000
17 34 34 0 0.0000
18 36 36 0 0.0000
19 38 38 0 0.0000
20 40 40 0 0.0000
21 42 42 0 0.0000
22 44 44 0 0.0000
23 46 46 0 0.0000
24 48 48 0 0.0000
25 50 50 0 0.0000
26 52 52 0 0.0000
27 54 54 0 0.0000
28 57 56 1 1.7857
29 58 58 0 0.0000
30 60 60 0 0.0000
31 62 62 0 0.0000
32 64 64 0 0.0000
33 66 66 0 0.0000
34 68 68 0 0.0000
35 70 70 0 0.0000
36 72 72 0 0.0000
37 74 74 0 0.0000
38 76 76 0 0.0000
39 78 78 0 0.0000
40 80 80 0 0.0000
41 82 82 0 0.0000
42 84 84 0 0.0000
43 86 86 0 0.0000
44 88 88 0 0.0000
45 90 90 0 0.0000
46 92 92 0 0.0000
47 94 94 0 0.0000
48 97 96 1 1.0417
49 98 98 0 0.0000
50 100 100 0 0.0000
51 102 102 0 0.0000
52 104 104 0 0.0000
53 106 106 0 0.0000
54 108 108 0 0.0000
55 111 110 1 0.9091
56 112 112 0 0.0000
57 115 114 1 0.8772
58 116 116 0 0.0000
59 118 118 0 0.0000

87

60 120 120 0 0.0000
61 122 122 0 0.0000
62 124 124 0 0.0000
63 126 126 0 0.0000
64 128 128 0 0.0000
65 130 130 0 0.0000
66 132 132 0 0.0000
67 134 134 0 0.0000
68 136 136 0 0.0000
69 138 138 0 0.0000
70 141 140 1 0.7143
71 142 142 0 0.0000
72 144 144 0 0.0000
73 146 146 0 0.0000
74 149 148 1 0.6757
75 150 150 0 0.0000
76 152 152 0 0.0000
77 154 154 0 0.0000
78 156 156 0 0.0000
79 158 158 0 0.0000
80 160 160 0 0.0000
81 162 162 0 0.0000
82 164 164 0 0.0000
83 166 166 0 0.0000
84 168 168 0 0.0000
85 170 170 0 0.0000
86 172 172 0 0.0000
87 174 174 0 0.0000
88 177 176 1 0.5682
89 178 178 0 0.0000
90 180 180 0 0.0000
91 183 182 1 0.5495
92 184 184 0 0.0000
93 186 186 0 0.0000
94 188 188 0 0.0000
95 190 190 0 0.0000
96 193 192 1 0.5208
97 195 194 1 0.5155
98 196 196 0 0.0000
99 198 198 0 0.0000
100 200 200 0 0.0000
150 301 300 1 0.3333
200 400 400 0 0.0000
250 500 500 0 0.0000
300 600 600 0 0.0000
350 700 700 0 0.0000

88

400 801 800 1 0.1250
450 900 900 0 0.0000
500 1000 1000 0 0.0000
--
PAPI Version : 5.0.0.0
Vendor string and code : GenuineIntel (1)
Model string and code : Pentium(R) Dual-Core CPU T4300 @ 2.10GHz (23)
CPU Revision : 10.000000
CPUID Info : Family: 6 Model: 23 Stepping: 10
CPU Max Megahertz : 2100
CPU Min Megahertz : 1200
Hdw Threads per core : 1
Cores per Socket : 2
NUMA Nodes : 1
CPUs per Node : 2
Total CPUs : 2
Running in a VM : no
Number Hardware Counters : 5
Max Multiplex Counters : 64
--

Matrix Vector Test:
i papi theory diff %error

1 2 2 0 0.0000
2 8 8 0 0.0000
3 18 18 0 0.0000
4 32 32 0 0.0000
5 50 50 0 0.0000
6 72 72 0 0.0000
7 98 98 0 0.0000
8 128 128 0 0.0000
9 162 162 0 0.0000
10 200 200 0 0.0000
11 242 242 0 0.0000
12 288 288 0 0.0000
13 338 338 0 0.0000
14 392 392 0 0.0000
15 450 450 0 0.0000
16 512 512 0 0.0000
17 578 578 0 0.0000
18 648 648 0 0.0000
19 722 722 0 0.0000
20 800 800 0 0.0000
21 882 882 0 0.0000

89

22 968 968 0 0.0000
23 1058 1058 0 0.0000
24 1152 1152 0 0.0000
25 1250 1250 0 0.0000
26 1352 1352 0 0.0000
27 1458 1458 0 0.0000
28 1568 1568 0 0.0000
29 1682 1682 0 0.0000
30 1800 1800 0 0.0000
31 1922 1922 0 0.0000
32 2048 2048 0 0.0000
33 2178 2178 0 0.0000
34 2312 2312 0 0.0000
35 2450 2450 0 0.0000
36 2592 2592 0 0.0000
37 2738 2738 0 0.0000
38 2888 2888 0 0.0000
39 3042 3042 0 0.0000
40 3200 3200 0 0.0000
41 3362 3362 0 0.0000
42 3528 3528 0 0.0000
43 3698 3698 0 0.0000
44 3872 3872 0 0.0000
45 4050 4050 0 0.0000
46 4232 4232 0 0.0000
47 4418 4418 0 0.0000
48 4608 4608 0 0.0000
49 4802 4802 0 0.0000
50 5000 5000 0 0.0000
51 5202 5202 0 0.0000
52 5408 5408 0 0.0000
53 5618 5618 0 0.0000
54 5832 5832 0 0.0000
55 6050 6050 0 0.0000
56 6272 6272 0 0.0000
57 6498 6498 0 0.0000
58 6728 6728 0 0.0000
59 6962 6962 0 0.0000
60 7200 7200 0 0.0000
61 7442 7442 0 0.0000
62 7688 7688 0 0.0000
63 7938 7938 0 0.0000
64 8192 8192 0 0.0000
65 8451 8450 1 0.0118
66 8712 8712 0 0.0000
67 8980 8978 2 0.0223

90

68 9248 9248 0 0.0000
69 9524 9522 2 0.0210
70 9800 9800 0 0.0000
71 10084 10082 2 0.0198
72 10368 10368 0 0.0000
73 10658 10658 0 0.0000
74 10953 10952 1 0.0091
75 11250 11250 0 0.0000
76 11557 11552 5 0.0433
77 11858 11858 0 0.0000
78 12168 12168 0 0.0000
79 12482 12482 0 0.0000
80 12803 12800 3 0.0234
81 13122 13122 0 0.0000
82 13450 13448 2 0.0149
83 13780 13778 2 0.0145
84 14113 14112 1 0.0071
85 14453 14450 3 0.0208
86 14793 14792 1 0.0068
87 15138 15138 0 0.0000
88 15488 15488 0 0.0000
89 15842 15842 0 0.0000
90 16201 16200 1 0.0062
91 16562 16562 0 0.0000
92 16929 16928 1 0.0059
93 17299 17298 1 0.0058
94 17674 17672 2 0.0113
95 18050 18050 0 0.0000
96 18432 18432 0 0.0000
97 18818 18818 0 0.0000
98 19208 19208 0 0.0000
99 19603 19602 1 0.0051
100 20001 20000 1 0.0050
150 45002 45000 2 0.0044
200 80001 80000 1 0.0012
250 125002 125000 2 0.0016
300 180005 180000 5 0.0028
350 245005 245000 5 0.0020
400 320003 320000 3 0.0009
450 405009 405000 9 0.0022
500 500008 500000 8 0.0016
--
PAPI Version : 5.0.0.0
Vendor string and code : GenuineIntel (1)
Model string and code : Pentium(R) Dual-Core CPU T4300 @ 2.10GHz (23)
CPU Revision : 10.000000

91

CPUID Info : Family: 6 Model: 23 Stepping: 10
CPU Max Megahertz : 2100
CPU Min Megahertz : 1200
Hdw Threads per core : 1
Cores per Socket : 2
NUMA Nodes : 1
CPUs per Node : 2
Total CPUs : 2
Running in a VM : no
Number Hardware Counters : 5
Max Multiplex Counters : 64
--

Matrix Multiply Test:
i papi theory diff %error

1 2 2 0 0.0000
2 16 16 0 0.0000
3 54 54 0 0.0000
4 128 128 0 0.0000
5 250 250 0 0.0000
6 432 432 0 0.0000
7 686 686 0 0.0000
8 1024 1024 0 0.0000
9 1458 1458 0 0.0000
10 2000 2000 0 0.0000
11 2662 2662 0 0.0000
12 3456 3456 0 0.0000
13 4394 4394 0 0.0000
14 5488 5488 0 0.0000
15 6750 6750 0 0.0000
16 8192 8192 0 0.0000
17 9826 9826 0 0.0000
18 11664 11664 0 0.0000
19 13718 13718 0 0.0000
20 16000 16000 0 0.0000
21 18522 18522 0 0.0000
22 21296 21296 0 0.0000
23 24334 24334 0 0.0000
24 27648 27648 0 0.0000
25 31250 31250 0 0.0000
26 35152 35152 0 0.0000
27 39366 39366 0 0.0000
28 43904 43904 0 0.0000

92

29 48778 48778 0 0.0000
30 54000 54000 0 0.0000
31 59582 59582 0 0.0000
32 65536 65536 0 0.0000
33 71874 71874 0 0.0000
34 78608 78608 0 0.0000
35 85750 85750 0 0.0000
36 93313 93312 1 0.0011
37 101306 101306 0 0.0000
38 109744 109744 0 0.0000
39 118638 118638 0 0.0000
40 128000 128000 0 0.0000
41 137842 137842 0 0.0000
42 148178 148176 2 0.0013
43 159014 159014 0 0.0000
44 170368 170368 0 0.0000
45 182250 182250 0 0.0000
46 194672 194672 0 0.0000
47 207646 207646 0 0.0000
48 221184 221184 0 0.0000
49 235298 235298 0 0.0000
50 250000 250000 0 0.0000
51 265302 265302 0 0.0000
52 281216 281216 0 0.0000
53 297754 297754 0 0.0000
54 314928 314928 0 0.0000
55 332750 332750 0 0.0000
56 351232 351232 0 0.0000
57 370386 370386 0 0.0000
58 390224 390224 0 0.0000
59 410758 410758 0 0.0000
60 432001 432000 1 0.0002
61 453962 453962 0 0.0000
62 476656 476656 0 0.0000
63 500094 500094 0 0.0000
64 524289 524288 1 0.0002
65 549252 549250 2 0.0004
66 574992 574992 0 0.0000
67 601529 601526 3 0.0005
68 628864 628864 0 0.0000
69 657020 657018 2 0.0003
70 686002 686000 2 0.0003
71 715822 715822 0 0.0000
72 746498 746496 2 0.0003
73 778035 778034 1 0.0001
74 810449 810448 1 0.0001

93

75 843752 843750 2 0.0002
76 877954 877952 2 0.0002
77 913066 913066 0 0.0000
78 949108 949104 4 0.0004
79 986078 986078 0 0.0000
80 1024002 1024000 2 0.0002
81 1062886 1062882 4 0.0004
82 1102740 1102736 4 0.0004
83 1143579 1143574 5 0.0004
84 1185408 1185408 0 0.0000
85 1228257 1228250 7 0.0006
86 1272113 1272112 1 0.0001
87 1317009 1317006 3 0.0002
88 1362977 1362944 33 0.0024
89 1409944 1409938 6 0.0004
90 1458000 1458000 0 0.0000
91 1507154 1507142 12 0.0008
92 1557384 1557376 8 0.0005
93 1608834 1608714 120 0.0075
94 1661193 1661168 25 0.0015
95 1714755 1714750 5 0.0003
96 1769477 1769472 5 0.0003
97 1825351 1825346 5 0.0003
98 1882386 1882384 2 0.0001
99 1940962 1940598 364 0.0188
100 2000003 2000000 3 0.0002
150 6750071 6750000 71 0.0011
200 16000275 16000000 275 0.0017
250 31251991 31250000 1991 0.0064
300 54005677 54000000 5677 0.0105
350 85750270 85750000 270 0.0003
400 128007477 128000000 7477 0.0058
450 182265956 182250000 15956 0.0088
500 250004275 250000000 4275 0.0017
calibrate.c PASSED

