Development of Lipid based Nanoparticles for Melanoma Treatment

by

Li Chen

A dissertation submitted to the Graduate Faculty of
Auburn University
in partial fulfillment of the
requirements for the Degree of
Doctor of Philosophy

Auburn, Alabama
May 9, 2015

Keywords: Nanoparticles, Lipid coated Nanoparticles, Liposome, Microemulsion,
Melanoma, Cancer Treatment

Copyright 2015 by Li Chen

Approved by

William R. Ravis, Co-chair, Professor, Drug Discovery and Development
Jayachandra Babu Ramapuram, Co-chair,
Associate Professor, Drug Discovery and Development
Daniel L. Parsons, Professor, Drug Discovery and Development
Robert D. Arnold, Associate Professor, Drug Discovery and Development



Abstract

Melanoma is the most malignant skin cancer with high mortality. Currently, it can be
treated multiple ways, such as chemotherapy, immunotherapy and targeted therapy. However,
patients under these therapies usually have low response rates due to inefficient drug delivery
and multidrug resistance. Nanoparticles are a promising technology for delivering one or two
agents to the cellular level. Among these, lipid based nanoparticles attract more attention due to
its easy preparation and modification, biocompatibility, enhanced permeability and retention
(EPR) effects and reduced toxicity. This dissertation focuses on the lipid based nanoparticles
delivery system for leukemia and melanoma treatment.

We prepared micelles with an oxidized phospholipid, 1-palmitoyl-2-azelaoyl-sn-glycero-
3-phosphocholine (PazPC), via both electrostatic and hydrophobic interaction for delivery of
Doxorubicin (DOX) and ldarubicin (IDA). In vitro uptake and cytotoxicity were evaluated on
leukemia P388 and its resistant subline P388/ADR. The drug-loaded PazPC micelles enhanced
drug uptake and exhibited higher cytotoxicity in both leukemia P388 and its resistance subline
P388/ADR in comparison to free drugs.

Both zolendronic acid and Polyinosinic acid-polycytidylic acid [poly (I:C)] showed
potent anticancer activity in melanoma treatment. However, high preferential accumulation of
zolendronic acid within bone and poor intracellular delivery of poly (1:C) limited their uses in
chemo-immunotherapy. Cationic lipid-coated calcium phosphate nanoparticles (LCP) were

developed to enable intracellular co-delivery of zoledronic acid and poly (I: C). The co-delivery



system demonstrated significantly enhanced and synergistic activity both in vitro in melanoma
cell line B16BL6 and in vivo in melanoma-bearing mice.

Genistein, a soy flavone, is a well-known anti-oxidant and has been reported to be
effective in preventing UV induced skin damage and melanoma. However, intradermal delivery
of genistein is inefficient due to its low permeability as well as its low solubility. We reported
microemulsions for enhanced transdermal delivery of genistein, in vitro. The optimized
formulation consisted of 2% (w/w) genistein, 18% (w/w) oleic acid, 60% (w/w) cremophor
EL/ethanol (5:11), and 20% (w/w) water and it exhibited small particle size and highest skin
permeation rate based on various formulation factors optimization.

Finally, to achieve co-delivery of Doxorubicin (DOX) and ceramide using a liposomal
system in B16BL6 melanoma cell lines for synergistic cytotoxic effects, different types of
ceramides (Cs-ceramide, Cg-ceramide and Cg-glucosylceramide) and lipids (DOTAP, DPPC,
DSPE and DSPC) were screened to optimize the formulation. The optimum liposome
formulation provided a mean diameter 150 nm with a narrow size distribution (poly-dispersity
index, 0.09) and a positive zeta potential (+34mv) with 92% DOX recovery. DOX and Cg-
Ceramide loaded DOTAP liposomes exhibited a significantly higher anti-tumor activity in
melanoma cell line B16BL6 in comparison with liposomes made with other lipids such as DSPC,
and a combination of DSPC and DSPE (P < 0.05). Co-delivery of DOX and Cg-ceramide with
DOTAP lipids based liposome demonstrated 9 folds higher cytotoxicity in the B16BL6

melanoma cell line as compared to DOX alone.
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1. Introduction to Lipid based Drug Delivery Systems for Melanoma Treatment

1.1 Abstract

Melanoma is one of the most aggressive forms of malignancy and the treatment options
are limited. Although it only accounts for a very small proportion of skin cancer incidence, it
leads to the vast majority of skin cancer deaths. Melanoma can be surgically removed if detected
in early stages with up to a 99% survival rate. However, metastatic melanoma can only be treated
by other therapies, such as chemotherapy, immunotherapy and the combination of these and
targeted therapy. These treatments still show low patient response rate and high adverse effects
even though they have enhanced efficacy in the beginning, but develop resistance gradually.

There is an urgent need for the development of efficient melanoma treatment methods.
Nanoparticle based delivery systems have been studied extensively for their application in the
diagnosis and treatment of melanoma. Nanoparticles can deliver drug candidates with a wide
range of solubilities and improve blood circulation time by avoiding the reticulo-endothelial
system. Nanoparticles could enhance tumor cell uptake with minimized toxicity. Moreover,
delivering two or more drugs simultaneously for combinational therapies can be achieved with
nanoparticles. In this review, the progress of using different lipid based delivery systems
including solid lipid nanoparticles, nanoemulsions, and liposomes for melanoma treatment are
presented. They can be utilized either for single drug delivery or multiple agents delivery such as
chemotherapeutic drugs, SIRNA, DNA and targeting antibodies.

1.2 Melanoma



The skin is the largest organ protecting the body from foreign injury and infections,
maintaining fluid retention and controlling and adjusting body temperature (1, 2). The skin can
be affected by many ailments, the severe one is cancer. They are three main types of skin cancer:
basal cell carcinoma, squamous cell carcinoma and melanoma. Melanoma, originating from
melanocytes, is the most aggressive type of skin cancer (3). Although melanoma accounts for
only a very small proportion of skin cancer incidence, it leads to the vast majority of skin cancer
mortality. There were more than 2 million new cases of skin cancer in USA in 2012 and
melanoma only accounts for 3.75% (75,000) of skin cancer cases. The incidence of melanoma is
increasing faster than that of all preventable cancers, except lung cancer, and is becoming more
severe in the caucasians (4, 5).

Treatment of melanoma is largely dependent on the stage of the disease. Surgery
provides the best prevention procedure for patients with early-stage melanoma. An early-stage
melanoma that has not metastasized to other organs can be removed by surgery with high
survival rates (6). The cure rate for those patients with removable melanoma is 97%—-99.8%. The
standard excision size was usually considered to be around 0.5 cm with 0.2 cm margin, which is
acceptable for margin-controlled surgery (7). However, metastatic melanoma is a highly
aggressive malignant skin cancer that is notoriously difficult to be treated through surgical
removal. It could only be treated by other therapies, such as chemotherapy, immunotherapy, the
combination of the two and targeted therapy (8-11). Traditional chemotherapy is still the most
conventional therapy for melanoma treatment. Common chemotherapeutic agents typically
include dacarbazine, cisplatin, vinblastine and temozolomide, which interfere with cell division

leading to cell death. Dacarbazine, approved for first-line treatment of wild-type melanomas, is



one of the commonly used drugs in melanoma treatment. No other drugs or combinational
therapies are superior to dacarbazine (12).

Combination of two or more of these drugs is one of the main strategies to prevent the
development of multidrug resistance in tumors. Dacarbazine is co-administered with cisplatin
and vinblastine, and this combination is known as the CVD regimen for the treatment of cancer
(14). Trametinib, a MEK inhibitor, and dabrafenib, a BRAF inhibitor, were the first-ever
approved combination therapy, but did not show significant improvement in melanoma
treatment.

Intracellular signaling pathways play a key role in the carcinogenesis of melanoma. The
mitogen-activated protein kinase (MAPK)/ERK (extracellular signal-regulated kinase) and
phosphoinositide 3-kinase (PI3K) are the major pathways in the development and progression of
melanoma. Also, the PI3K/protein kinase B (Akt) pathway has been shown to facilitate the
development of melanoma in a synergistic manner with MAPK/ERK pathway (15). Some
inhibitors have been developed based on these cellular mechanisms to treat melanoma. Inhibition
of both pathways was found to show synergistic effects in the treatment of melanoma.
Nanoparticles loading with two siRNAs targeting the oncogene v-Raf murine sarcoma viral
oncogene homolog B1 (BRAF) and Akt Pathways exhibit significantly increased cytotoxicity in
1250Lu human melanoma cell line (16-17). Ipilimumab, an anti-cytotoxic T lymphocyte antigen
4 antibody that enhances T-cell activity in the tumor, and selective BRAF inhibitors, such as
vemurafenib that blocks tumor cell proliferation in patients with activating BRAF mutations, are
two promising therapies. Ipilimumab is the first and vemurafenib is the second drugs shown to
improve patient survival rate (18). However, acquired drug resistance to these agents is a major

issue in the treatment of melanoma. The majority of patients will develop drug resistance despite



the high initial response to vemurafenib (80%). The occurrence of the resistance could be
attributed to multiple factors, such as overexpression of P-gp, altered drug targets and the
dysregulation of intracellular signaling pathways (19, 20).

Traditional therapies including surgery, chemotherapy and radiotherapy are ineffective in
metastatic melanoma treatment and are usually associated with severe adverse effects. However,
melanoma is highly immunogenic, which provides the rationale to develop immunotherapies for
its treatment. Immunotherapy could boost immune response of patients with melanoma, also it
can help clear cancer cells, especially cells which are impaired or killed by chemotherapy agents
(21). Thus, the combination of immunotherapy and chemotherapy could produce synergistic
effects. Meanwhile, the survival cancer cells after chemotherapy will contribute to development
of drug resistance. The immunotherapeutic drugs that are effective in melanoma treatment are
interferon (IFN)-alpha, ipilimumab, and interleukin (IL)-2. IL-2 plasmid loaded in nanoparticle
with low molecular weight polyethylenimine and folate inhibit tumor growth and prolong
survival rate of melanoma bearing mice (22, 23).

Unfortunately, most of these treatment outcomes are not satisfactory and response rate of
patients are very low. The median survival time of patients with metastasized melanoma is only
6-10 months, and the 5-year survival rate is less than 20%. Several approaches improve current
melanoma therapeutics: identification of protein targets causing the disease, development of
novel agents, determination of optimal therapeutic combinations, and effective delivery of agents
into tumor cells. Moreover, promising effects from combination therapies of conventional drugs
are difficult to obtain in clinical trials. It may be due to the diverse pharmacokinetic profiles of
drugs in patients. The development of multi-drug resistance (MDR) is one of the major reasons

for the low efficiency of these therapies. Unfortunately, the mechanisms for acquired drug



resistance in melanoma have been shown to be diverse (24, 25). Therefore, this situation makes it
urgent to design and develop novel nanoparticle based drug delivery systems for melanoma
treatment. In recent years nanotechnology based delivery systems have been studied extensively
and demonstrated to have many advantages for melanoma treatment including the ability to
target the drugs to tumors, reduced side effects and drug resistance.

Nanoparticle-based drug delivery systems are superior to conventional drug delivery in
the following three aspects. First, nanoparticles protect encapsulated drugs from degradation in
the body, especially biotechnology-based drugs. Second, the nanoparticle delivery system could
significantly change the pharmacokinetic profile of drugs. Because of the targetable nature,
nanoparticles provide increased drug accumulation at the cancer site, which leads to improved
efficacy and decreased side effects. Also, the enhanced permeability and retention (EPR) effect
caused by the leakiness of tumor vasculature as well as poor lymphatic drainage could result in
drug accumulation in the tumors (26). Third, nanoparticles make it easy to deliver multiple
agents in the common platform so that chemotherapy, immunotherapy can be combined to
achieve potent effects against melanoma tumors. Furthermore, nanoparticles can be designed to
have multiple functions, such as therapeutics and diagnostics called theranostics (27-29). Various
nanotechnology based drug delivery platforms for melanoma include liposomes, dendrimers,
polymersomes, carbon-based nanoparticles, nanoemulsions and protein-based nanoparticles (30-
39). Among these, polymeric nanoparticles usually have poor physical stability and relatively
high toxicity from the use of polymers. Lipid based drug delivery systems have some advantages
over other particulate carrier systems such as good physical stability, controlled release and

excellent biocompatibility. Among these, lipid based nanoparticles are usually biodegradable,



biocompatible with low side effects, and have relatively high physical stability. A brief review

on the use of lipids based nanoparticle delivery system for melanoma is presented here.

1.3 Lipid based Nanoparticle Delivery Systems
Lipid based nanoparticle delivery systems focusing on melanoma treatment can be
classified into solid lipid nanoparticles (SLNs), nanoemulsions and liposomes. Niosomes and

polymerosomes that are related to liposomes make a minor role in melanoma delivery systems.

1.3.1 Solid Lipid Nanoparticles

Solid lipid nanoparticles have been used increasingly since the early 1990s as an
alternative delivery system to liposomes, nanoemulsions, and polymeric nanoparticles. Solid
lipid nanoparticles are made from crystalline solid lipids with particle size under the submicron
range (50-1000 nm). Currently, there are three main methods for SLNs preparation:
homogenization, solvent emulsification/evaporation and emulsification at high temperature (40,
41). There are many distinct advantages that differentiate SLNs from liposomes: SLNs generally
provide good physical stability and prolonged and modulated drug release due to the solid state
of the lipids used in the formulation, avoidance of organic solvents in the formulation and ease of
large-scale production and commercialization. Also, SLNs can protect encapsulated agents from
degradation and have better passive targeting ability for drugs (42). Nanostructured lipid carriers
(NLC) composed of a solid lipid matrix with a certain content of a liquid lipid phase are another
generation of SLNs (43).

Solid lipid nanoparticles containing docetaxel were prepared with compritol, precirol,
and hydrogenated soy phosphatidylcholine using the microemusion and probe sonication

method. The docetaxel loaded solid lipid nanoparticles showed increased cytotoxicity (2-fold) in



the malignant melanoma (A-375) cell line compared with Taxotere® (TXT) (44). Cholesteryl
butyrate SLNSs inhibited human umbilical vein endothelial cells’ adhesiveness to cancer human
melanoma cell line (45). Huang et. al., prepared different camptothecin loaded SLNs, NLCs and
lipid emulsion and compared their cytotoxicity toward a melanoma cell line with the free drug
group (46). Camptothecin loaded SLNs made of precirol exhibited 3-fold higher cytotoxicity
towards the melanoma cell line compared with the free control group, while NLCs and lipid
emulsion had comparable cytotoxicity with the control, which may be due to the excellent
endocytotic activity of SLNs. Etoposide has poor solubility and associated low bioavailability.
However, the SLNs made with the solid lipid trimyristin, tripalmitin, and tristearin and compritol
ATO 888 provided an accumulative effect in the highly perfused organ, suggesting targeting
effect toward metastasized tumors. Improvement in the tumoricidal activity and survival rate was
found in the B16F10 mouse melanoma model. This study substantiates the application of

nanoparticles for improved therapeutic activity of etoposide (47).

1.3.2 Nanoemulsion

Nanoemulsion is a heterogeneous system composed of emulsifying agent and oil
suspended in water with mean particle diameters usually of 50-200 nm based on the components
and preparation method. Emulsifying agents are surfactants that can reduce interfacial tension
between two immiscible liquid phases by preferentially adsorbing at their interfaces (48, 49).
There are two types of nanoemulsion: water-in-oil and oil-in-water, the formation depends on the
emulsifying agent used. Nanoemulsions are commonly prepared from Generally Recognized as
Safe (GRAS) grade excipients approved by the United States Food and Drug Administration
(US-FDA) (50). Nanoemulsions are easily produced in large quantities by high shear stress or a

mechanical extrusion process. Nanoemulsion based drug delivery systems offer several



advantages. These include greater physical stability, and increased surface to volume ratios
containing the drug that enhances the drug bioavailability (51, 52). They serve not only as
excellent vehicles for drug encapsulation, but could also alleviate the hypersensitivity associated
with surfactants such as ethoxylated castor oil (Cremophor®EL) (53). Because of the nanometer
oil droplet size, they can easily be targeted to the tumor tissue using targeting ligands on their
surface or by passive accumulations.

Dacarbazine is approved for the first line treatment of malignant melanoma. It is usually
administered intravenously, but different dosing and administration methods are warranted in
certain therapeutic situations which are accompanied by significant side effects. Nanoemulsions
containing dacarbazine showed a 10-fold greater reduction of tumor size compared to the
suspension preparation of dacarbazine. During drug cessation period dacarbazine nanoemulsion
showed 5-fold greater efficacy (73% versus 14%) in preventing tumor growth compared with
dacarbazine suspension (54).

A cholesterol-rich lipid nanoemulsion (LDE) was used as a vehicle to target etoposide
for melanoma. LDE was prepared using cholesteryl oleate, egg phosphatidylcholine, triolein and
cholesterol. The efficacy of LDE-etoposide oleate or commercial etoposide was evaluated in
melanoma-bearing mice. LDE drastically reduced the drug toxicity, as the maximum tolerated
dose was approximately five-fold greater than for commercial etoposide. LDE-etoposide oleate
accumulated at four-fold higher concentrations in the tumor compared with the surrounding
normal cells, and remained in the bloodstream longer than commercial etoposide. The tumor
growth inhibition rate and survival were greater in animals treated with LDE-etoposide oleate
compared with commercial etoposide. The incorporation of etoposide oleate into LDE resulted in

markedly reduced toxicity and superior antitumoral activity (55).



Kretzer and coworkers studied the combination of etoposide (ETP) with paclitaxel in
cholesterol-rich lipid (LDE-PTX) nanoemulsions in comparison to administrating etoposide and
paclitaxel directly. The results indicated that B16F10 melanoma bearing mice treated with LDE-
PTX+ETP had much less metastases than mice treated with PTX+ETP (30% versus 82%). LDE-
PTX+ETP reduced cellular density, and blood vessels and increase collagen fibers in tumor

tissues, which is absent in the PTX+ETP group (56).

1.3.3 Liposomes

Liposomes were introduced in 1961 and was the first nanoparticle used in medicine. The
concept of using a liposome as a selective drug delivery system for the skin was described
initially in 1980 (57). A liposome is a nanoscopic or microscopic structure that contains an
aqueous core for hydrophilic drugs and hydrophobic drugs can be contained in the lipid bilayer,
which provides a broader choice of drugs for encapsulation. Homogeneous nanosized liposomes
can be achieved by filtering through polycarbonate membranes with different sizes. Furthermore,
specific ligands against tumor antigens can be attached to the liposome surface so that the
nanoparticles can target cancer cells specifically (58, 59).

There are certain factors affecting drug loaded liposome efficacy in cancer treatment.
The size of liposome vesicles plays a crucial role. Vesicles less than 100 nm have reduced uptake
into liver tissue, while vesicles >100 nm are quickly cleared by the reticulo-endothelial system
(RES). Furthermore, surface modification of liposomes with polyethylene glycol (PEG) can
result in prolonged circulation by the liposome escaping from RES. Heating and light can also be
used to facilitate nanovesicle contents release in the body rather than through nanoparticle
degradation alone (60, 61). Liposomes have been investigated extensively in melanoma research.

Several liposomes based anticancer drugs are either on the market or in clinical trials. Some
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examples are doxorubicin liposomes and camptothecin liposomes. Many chemotherapeutic
drugs, antibodies and siRNAs have been encapsulated in liposomes to enhance treatment
efficacy for melanoma treatment (62-64).

Niosome is a relatively new drug delivery system. It presents a similar bilayer structure
as liposome, but the bilayer in niosome is composed of non-ionic surfactant rather the
phospholipids in the liposomes. Most aqueous solution of surfactants can form micelles
automatically, however some surfactants can form bilayer vesicles called niosomes (25).
Therefore, niosomes generally have some advantages over conventional liposomes such as
increased penetrating ability, physicochemical stability and reduced toxicity. Niosomes can
accommodate drugs with a wide range of solubilities due to the structure containing hydrophobic
and hydrophilic parts. The hydrophilic drugs within the space were enclosed in the vesicle, the
hydrophobic drugs were embedded in the bilayer. The particle size of niosome is usually 100 nm
to 2 um (66).

The first niosomes were formulated with cholesterol and single-chain surfactants such as
polyglycerol monoakyl ethers and polyoxylate analogs and another non-ionic surfactant for
further stabilization. Positively charged molecules such as stearylamine and cetylpyridinium
choloride were added to prevent the aggregation of niosome. There are three major types of
niosomes: multi lamellar vesicles (MLV), large unilamellar vesicles (LUV) and small
unilamellar vesicels (SUV). They can be unilamellar or multilamellar depending on the
preparation method. Current preparation methods are: the ether injection method, thin film
hydration method, remote loading, reverse-phase evaporation technique, sonication, the bubble

method and multiple membrane extrusion method.
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The advantages of niosomes include high patient compliance due to the water-based
delivery system rather than conventional oil based delivery system, wide range of solubilities,
flexibility and ability to release drugs in a controlled manner (67, 68). They have been developed
for multiple uses in cancer treatments such as drug targeting, peptide and anti-neoplastic drugs
delivery and immune response related studies. Niosome have been widely studied in drug
delivery and targeting. These have been employed for dermal and transdermal delivery, ocular
and oral delivery, pulmonary, parenteral delivery and gene delivery (69-74).

Fang et al. showed enhanced skin permeation of enoxacin encapsulated in niosomes
compared with liposomes of enoxacin (75). Also, tretinoin stability was better in noisome than it
was incorporated into liposomes. Niosomes demonstrated prolonged circulation time, drug
release, and increased drug permeation and retention in skin (76). A novel niosomal system
made of alpha, omega-hexadecyl-bis-(1-aza-18-crown-6), Span 80, and cholesterol (2:5:2 molar
ratio) was formulated as a topical delivery system for 5-fluorouracil (5-FU). The drug loaded
niosome provided 8- and 4-fold increased drug permeation compared with aqueous drug solution
and mixture of blank niosome and free drug solution (77). Overall, niosomes have great potential
in melanoma treatment due to their superiority, such as higher stability and cost-effectiveness in

comparison with liposomes.

1.3.3.1 Chemotherapy

Liposome delivery system has been widely used in traditional chemotherapeutic agents’
delivery for melanoma treatment (78-81). Among these, liposomal doxorubicin (Doxil®) is
widely used for various cancers treatment. Liposomal doxorubicin prolongs blood circulation

and decreases cardiovascular related toxicity when compared with free doxorubicin in cancer
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treatment (82-84). However, phase Il trials oDoxil in melanoma patients were discontinued
because of low activity (85). Pegylated phosphatidyl ethanolamine liposomal cisplatin with a
particle size of approximately 100 nm had a higher cytotoxicity than free cisplatin, and provided
3.6 fold higher level of intra-tumoral drug concentration for 72 h than the free drug (86).
Vincristine encapsulated liposomes formulation was investigated and showed an extended drug
circulation time and the potential for enhanced tumor targeting and anti-tumor activity. The
safety and activity of vincristine liposome were evaluated in patients with metastatic melanoma
and had good tolerance and promising antitumor activity (87). Four types of synthetic
glucocorticoids were loaded into long-circulating liposome and the in vitro results suggested that

all drug loaded liposomes had strong cytotoxic effects on B16F10 melanoma cells (88).

1.3.3.2 Immunotherapy

Endogenous sphingolipids such as ceramides play an important role as mediators of the
intracellular signaling molecules involved in cell differentiation, cell cycle arrest and apoptosis
through the PI3K/Akt pathway (89, 90). However, due to hydrophobicity of ceramides, the
bioavailability is low and limits its use in the systemic delivery for cancer treatment (91).
Liposomes can incorporate ceramides in their lipid core and provide a better delivery method to
overcome this limitation. Intravenous administration of both pegylated and non-pegylated
liposomal ceramide showed improved pharmacokinetics and resulted in inhibition of breast
tumors in mice (92). Intracellular delivery of ceramides via liposomes increased apoptosis in the
MDA435/LCC6 human breast cancer and J774 mouse macrophage cell lines (93). Sorafenib and
liposomal ceramide synergistically inhibited melanoma cell growth through mitogen-activated

protein kinase and phosphatidylinositol 3-kinase signaling. In a co-delivery system, cell
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apoptosis was increased two-fold and cellular proliferation decreased by 25% compared with
agent delivered alone, suggesting an additive effect between ceramide and sorafenib (94).

Gene therapy has become a promising strategy for the treatment of various inheritable or
acquired diseases (95-97). However, nucleic acids are rapidly degraded by nucleases in the body
and result in poor cellular uptake, so that the development of safe and efficient gene carriers is
critical for the success of gene therapy (98). Viral vectors (DNA and RNA) have been developed
for gene delivery. But they are usually associated with immunogenicity, high toxicity and
production cost. Viral integration can induce severe immune response which may cause harm to
normal tissues and interrupt normal gene expression. Non-viral vectors, such as cationic lipids
and polymers, have been developed to efficiently deliver gene products (99).

Liposomes, especially positively charged ones, provide an alternative in which nucleic
acids are protected and delivered into targeted cells without limitations along with viral vectors.
Cationic polymers and nanoparticles are frequently used for gene delivery, because the positive
charges of these delivery systems can interact with negative charges on nucleic acids. Moreover,
cell membranes are known to have negative charges which enable them to attract cationic
nanoparticles (100). Cationic liposomes also have other common advantages of nanoparticles
such as protection of genes from degradation in the body, and passive targeting because of their
EPR effects. However, liposomes with positive charges are known to show higher associated
cell toxicity than neutral or negative liposomes. Strategies, such as surface modifications by
pegylation (101) and targeting ligand conjugation (102) have been used to overcome or minimize
this side effect. A number of investigations demonstrate that liposomes are capable of delivering

different nucleic acids and show promising anti-melanoma effects.
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Cationic liposomes loaded with interferon-beta (IFN) genes were formulated to study
their mechanisms of action and anti-tumor effects in mouse B16F1 melanoma cells in vitro and
in vivo. A liposome based IFNB formulation exhibited 5.5-fold reductions in
subcutaneous melanoma lesions in mice and higher infiltration of natural killer (NK) cells
compared with phosphate buffered saline. The data confirms that cationic liposome-mediated
IFNP could induce cell death and increase production of NK cells to tumors (103).

Human leukocyte antigen (HLA)-B7/B-2 macroglobulin plasmid DNA/lipid complex,
also known as Allovectin-7® loaded liposome have an extremely safe toxicity profile with low
toxicities (104). mRNAs instead of DNA loaded liposomes have been developed for melanoma
treatment. The mMRNAs delivery skips the transcription procedure, which is necessary in DNA
delivery. MART1 mRNA in liposome formulations with L-histidine-(N, N-di-n-hexadecylamine)
ethylamide (HDHE) and cholesterol prevent murine B16 melanoma cell growth and metastasis
(105). Polyinosinic-polycytidylic acid (PIC), synthetic dSRNA, is well known to react with Toll-
like receptor 3 and then stimulate innate immune response. PIC liposomes could directly
suppress the growth of B16F10 melanoma in vitro in a dose-dependent manner. The mechanism
can be explained by the enhanced immune response due to the maturation of dendritic cells and
TRP-2-specific IFN-gamma-producing cells in the lymph nodes as well as spleen (106). BAX
MRNA is a proapoptotic gene and inhibits the growth of various types of tumors. The BAX
MRNA gene was loaded in cationic liposomes composed of 1, 2-dioleoyl-3-trimethylammonium-
propane and 1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine and human melanoma treated with
liposomes were 36.7% smaller than saline control after 10 days’ treatment (107).

It is well known that liposomes are preferentially accumulated in tumors cells due to

their EPR effect. Tumor cells have leaky vasculature while normal cells lack this property, which
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gives a priority for nanoparticles based delivery system to be passively accumulated in tumor
cells rather than normal cells (108). In addition to passive targeting, specific antigens have been
conjugated on the surface of liposomes for targeting tumor cells. Many specific proteins are
found on melanoma cells surfaces, which could distinguish them from normal cells in patients
(109,110). Therefore, melanoma cells can be targeted specifically through various antibodies and
ligands which can recognize proteins specifically expressed on melanoma cells. Folic acid and
transferrin are two common molecules expressed highly in tumor cells. GD, was originally
identified as an antigen from a melanoma cell line and found to be expressed on 65% of
melanoma cells (111). GD, modification of the oncogene c-Myc loaded liposome had increased
blood circulation time, inhibition of tumor growth and survival rate in human melanoma cell
lines (NG, MZ2-MEL). This suggested that inhibition of tumor growth via GD; targeting could
provide an effective approach for the treatment of melanoma (112). Finally, several external
physical energy sources have been utilized to prepare targeting liposome, such as ultrasound,

magnetics and electrics (113, 114).

1.3.3.3 Combinational Therapies

Complicated tumor microenvironment and signaling pathways involved in cancer cell
growth and metastasis are the major factors which make the development of an efficient cancer
treatment very challenging (115). Single chemotherapeutics always showed low survival rate and
melanoma tumor cells developed resistance toward the drug, so chemotherapy is usually
performed with a combination of two or more agents. Targeting two or more specific sites
simultaneously or sequentially is expected to show maximal efficacy (116). As combinational
drugs inhibit tumor growth under different mechanisms such as proliferation, angiogenesis, and

metastasis, this provides a novel idea for treatment of melanoma. Different drug combinations in
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clinical trials involve the co-administration of two or more anticancer drugs, the co-
administration of multidrug resistance (MDR) modulators with anticancer drugs, and the co-
administration of anticancer drugs and gene regulating drugs. This may also lead to addidative
or possibly effects (117, 118).

Nanoparticles such as liposomes or microemulsions provide visible options for
simultaneous delivery of two or more drugs. Liposomes presented a good co-delivery strategy
for loading hydrophobic and hydrophilic molecules simultaneously for decreasing drug
resistance and toxicity, thus improving patient compliance (119). Liposomes co-delivering 4-S-
cystaminyl-phenol (4-S-CAP) and magnetite particles resulted in 17% tumor regression in mice.
Combination of a vascular-disruptive drug, combretastatin A4 phosphate, and an anticancer drug,
doxorubicin, in encapsulated liposomes produced 2-fold higher inhibition of B16-F10 tumor
growth than single therapy (120). Treatment of doxorubicin-loaded liposomes along with
cyclophosphamide obtained a 1.5-fold higher inhibitory effect on pulmonary metastatic B16BL6
melanoma-bearing mice compared with drug solutions. However, treatment with combined
chemotherapy is also associated with higher toxicities as more cytotoxic drugs are introduced.
The combination of high dose DXR-SL and cyclophosphamide caused significant decreases in
lung weight indicating increased toxicity (121). Co-delivering paclitaxel and etoposide in a
cholesterol-rich nanoemulsion showed strong tumor growth inhibition and reduced tumor
metastases (119). A cross-linked multilamellar liposome co-delivering doxorubicin and
paclitaxel exhibited enhanced encapsulation efficiency (approximately 90%) and a 2.5-fold
increased therapeutic effect in the treatment of melanoma-bearing mice compared with
delivering drug solution. Also, a synergistic function in inhibiting tumor growth was found in the

co-delivery of doxorubicin and paclitaxel (122).
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Chemo-immunotherapy using cytotoxic drugs and immune stimulators could increase
efficacy in the treatment of cancers. Moreover, some chemotherapeutics bring synergistic
function with certain cytokines. The anticancer drugs can not only kill cells directly, but also
could adjust the immune response, and activated immune response would cause more cell
apoptosis. Meanwhile, the induction of immune response from the cytokines inhibits tumor cell
growth to a greater degree, which provides support for direct cell killing capabilities of
chemotherapeutic drugs (123, 124). Significantly enhanced tumor growth inhibition (4-fold) and
a 30 day prolongation in survival time were found in melanoma-bearing mice treated by anionic
liposomes co-delivering paclitaxel and adenoviral vector expressing IL-12 compared with
delivery of paclitaxel alone within liposomes (125).

Gene therapy is becoming more popular in cancer treatment over the past several
decades due to the deep understanding of the relationship between gene and cancer development.
MDR is a major obstacle to the successful treatment of cancer (126, 127). There are two major
advantages of co-delivering a small molecule anticancer drug and siRNA including a decrease in
drug efflux and an increase in cell apoptosis. The use of nanoparticles co-delivering small
interfering RNA (siRNA) and small molecule anticancer drugs in cancer treatment has been
reported in many studies. A co-delivery system of siRNA and small anticancer drugs has three
major advantages: overcoming drug resistance, synergistic apoptotic effect, and reduced
toxicities. All these characteristics could enhance anti-tumor effects in cancer treatment (128,
129).

Many nanoparticle delivery systems such as liposomes (130), polymer micelles (131)
and dentrimers (132) have been developed for gene delivery. Nanoparticles are taken up by cells

via two major pathways: endocytosis and micropinocytosis pathways (133). Doxorubicin was co-
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administrated with different siRNAs, such as MVP siRNA, ASCL 1 siRNA in triblock co-
polymeric system, and nanorods. They were tested in a human carcinoid cell line (in vitro) and
HelLa cells (in vitro and in vivo) and co-delivery of siRNA and anticancer drugs significantly
decreased drug efflux and increased cell apoptosis, causing enhanced anti-tumor effects (134).
The efficacy of combined chemotherapy containing cisplatin, vinblastine and dacarbazine (CVD)
and biotherapy using interleukin-2 and interferon-alpha was tested in patients with melanoma.
The biochemotherapy treated group had a longer median survival period compared with only

CVD treated groups, which was 13 and 9 months, respectively (135).

1.4 Conclusion

Nanoparticle based drug delivery systems can provide a major contribution in cancer
treatment. They can encapsulate drugs having a wide range of solubility with significantly
enhanced cell cytotoxicity. Meanwhile, it offers many other advantages: protection from
degradation, increased circulation time, controlled release of drugs at tumor sites, and potent
targeting efficiency. Among these, liposome, nanoemulsion and SLNs exhibited great potential
in melanoma treatment. The passive accumulation and active targeting could significantly
decrease adverse side effects usually associated with chemotherapeutic agents. Liposomes can be
applied in melanoma diagnosis and theranostics.

However, it is still challenging to develop formulations for effective delivery of
therapeutic agents to treat melanoma. Many patients develop multidrug resistance.
Combinational therapies, such as multiple agents and immuno-chemotherapy, are promising
strategies to overcome MDR. However, most reports showed that separate administrations of
different agents are necessary in these combination therapies. Formulation and co-delivery two

or more agents in one system in melanoma treatment is generally complicated. While there are
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obvious advantages of co-delivery systems for tumors, limited information is available on
nanoparticle based co-delivery systems for melanoma treatment.

Therefore, the objective of this dissertation research was to develop lipid based
nanoparticle delivery systems for melanoma treatment. This dissertation is presented in six
chapters. In Chapter 1, a brief review of various lipid based drug delivery systems for tumor
targeting with a special emphasis on melanoma tumors was presented. The application of
liposomes in chemotherapy, immunotherapy and their combination, and various co-delivery

systems were presented.

Chapter 2 provides a compilation of data generated on oxidized phospholipid based
micelles for the delivery of drugs to leukemia cell lines. A novel pH sensitive oxidized
phospholipid-based micellar formulation with potential use in delivering anthracycline anti-
cancer drugs (doxorubicin and idarubicin) was developed. This formulation provides a novel
strategy for increasing the therapeutic index and overcoming multidrug resistance for leukemia
treatment.

Chapter 3 presents data on a co-delivery system containing zoledronic acid and a double-
strand RNA as a nanoparticle system. This formulation combines agents for chemotherapy and
immunotherapy for effective treatment of melanoma. The formulation consists of a cationic lipid
(DOTAP) coated CaP nanoparticle for simultaneous delivery of zoledronic acid and polyinosinic
acid-polycytidylic acid (a synthetic double-stranded RNA). The cytotoxicity of the formulations
was evaluated in B16BL6 melanoma cell line and melanoma tumor bearing mice.

Chapter 4 consists of data on genistein microemulsion formulation optimization for

prevention and treatment of melanoma. Microemulsions were optimized through pseudo-ternary
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phase diagrams and these formulations were further optimized for better human skin permeation
and retention.

Chapter 5 presents data on a liposome based co-delivery system containing ceramide
and doxorubicin. A liposome formulation is utilized for delivering doxorubicin for treating
various types of cancers, but to our knowledge very limited data has been reported on a co-
delivery system for melanoma treatment. A liposome formulation for co-delivering doxorubicin
and ceramide for additive or synergistic cytotoxicity in a melanoma cell line was optimized.

Chapter 6 presents a comprehensive summary and conclusions on the data pertaining to
each project presented in this dissertation. The author’s opinion and perspective on future

directions based on this work is provided.
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