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Abstract 

 

 

Gate-criteria have been identified as critical drivers of the success of a new 

product development (NPD) process.  However, a major weakness of NPD projects is 

that gate-criteria are often inadequate for making go/kill decisions.  The most commonly 

used financial gate-criterion, the net present value (NPV) method, is insufficient when a 

project involves uncertainty.  Alternatively, the real-option valuation method is also 

inadequate when a strategic decision involves the actions of competitors.  In this research, 

I first develop an option-game valuation framework that explicitly incorporates product 

diffusion when dealing with an American investment option in a finite project life.  The 

results of both simultaneous and sequential investment decisions are considered in each 

scenario of a duopolistic game.  I introduce this approach as a gate-criterion to evaluate a 

new product development project in a fast-paced industry while considering potential 

managerial flexibility and market competition.  As an option-game approach provides the 

possibility of a go/wait decision, the decision to delay represents an additional resource of 

value.  Secondly, I further develop the option-game valuation framework with Bayesian 

analysis by explicitly involving technical risk and the 3-player-game in an NPD project.  

Volatilities from the initially uncertain market can be diminished as decision makers get 

to know more about customer requirements and preferences, while uncertainties about 

technical requirements are reduced through updated information about product 

performance.  In addition, the option-game mechanism includes (inverse) measures of 



iii 

 

product differentiation to describe whether two goods are homogeneous, substituted, or 

independent, and to what degree.  Moreover, the distribution of product correction is used 

to describe the level of the additional correction costs in a project.  I introduce this 

approach as a gate-criterion to evaluate a new project at the gate and sub-gates of the 

development stages in the NPD process.  The results present important implications: 

when demand is high, the project initiates “go” action if at least one competitor has a 

high unit variable cost in competing with a highly comparable product or simply if the 

target market is highly uncertain. When demand is low, the project may take “go” action 

only if the firm has a cost advantage. By using these models, industry players can make 

strategic decisions in a project assessment at the decision points of the development 

stages. 
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Chapter 1 Introduction 

1.1 Motivation and Research Issues 

The project selection and portfolio choices that managers make are one of the most 

critical decisions in any business.  Academic and industry participants rank new product 

project selection as one of the key issues in the new product development (NPD) process 

of high-tech companies (Scott, 2000).   

However, the majority of businesses surveyed in Cooper and Edgett’s study (2012) 

indicated that they lacked a fact-based and objective approach to decision-making at their 

gates of the NPD process.  For example, before Microsoft agreed to acquire the handset 

and services business of Nokia in 2013, Nokia's global market share had been in a 

meltdown since 2009 (Steinbock, 2013).  Analysts pointed out that Nokia's failure mainly 

resulted from its lack of response in growth and flexibility in the US and emerging 

markets (Steinbock, 2013).  In addition, in 2012, three of Japan’s consumer electronics 

giants (Sony, Sharp, and Panasonic) showed significant losses "from huge investments in 

the wrong technologies to a reluctance to exit loss-making businesses" (Tabuchi, 2012).   

Moreover, Cooper (2008) further mentioned that there are “too many projects in the 

pipeline” in the NPD process.  Accordingly, my research has been motivated by the need 

for more effective criteria for product selection decisions.   

Companies have recognized that the choice of products in their portfolios is a 

central factor influencing their chance of success (Miguel, 2008; Cooper et al., 1997).  
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Therefore, portfolio management for new product and R&D spending has gained 

tremendous attention over the decades (Miguel, 2008; Cooper et al., 1997, 2001; Scott, 

2000).  Portfolio management is defined as a process in which projects for new product 

development, including both potential new projects and existing projects, are continually 

evaluated, selected and prioritized (Cooper et al., 1997).  As NPD is widely regarded as a 

vital source of competitive advantage (Bessant & Francis, 1997), the product 

development process from idea to launch consists of multiple phases, such as the project 

screening, monitoring, and progression frameworks of Cooper’s stage-gate approach, in 

which a stage-gate process is a conceptual and operational blueprint for managing an 

NPD process (Cooper, 2008).   

Since it is important that the selected projects are consistent with a business’s 

strategy (Cooper et al., 1997), both academic and industry experts rank strategic planning 

for technology products as the top issue for NPD project success (Scott, 2000).  In order 

to firmly link project selection and R&D spending to a business’s strategy, one strategic 

technique is the strategic buckets method (Cooper et al., 1997).  In this method, projects 

are classified into “buckets” and then project candidates within each bucket are rank-

ordered by scoring models or financial criteria.  The active projects within each bucket 

are prioritized based on limited allocated resources, then moved to the next stage for 

further investigation.  The individual projects proceed to the subsequent development 

process on an ongoing basis through the stage-gate process. In this process, each stage of 

development is preceded by a “gate.”  At each gate, go/kill decisions are made to manage 

the risks of new products and to serve as quality-control checkpoints to continue moving 
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the right projects forward (Cooper & Edgett, 2012; Cooper, 2008; Carbonell-Foulquié et 

al., 2004). 

Effective portfolio decisions for NPD projects are a major challenge if the 

organization is to stay in business.  To help companies make effective decisions about 

project selection, practitioners and researchers have proposed many mathematical 

approaches such as mathematical programming models, net present value (NPV), scoring 

models, and multi-attribute approaches.  Due to the mathematical complexity of these 

models, only a few are actually being used (Meade & Presley, 2002).  Of the various 

portfolio management methods, the ones most commonly used in R&D project selection 

are the financial criteria methods such as NPV and internal rate of return (IRR) (Meade & 

Presley, 2002).  According to IRI’s collected questionnaires (Cooper et al., 2001), a total 

of 40.4 percent of businesses rely on financial criteria as their dominant portfolio method, 

yet those businesses end up with the worst and poorest performing portfolios.  The main 

reason for the poor performance of financial criteria methods is that prioritization 

decisions are made in the early stages of a project when the financial data are least 

accurate (Cooper et al., 2001).   

In order to gain detailed insight into NPD projects, a method for strategic decision-

making primarily needs to measure and define the performance of the NPD.  As most 

firms’ ultimate objective is financial success (Griffin & Page, 1996), the standard 

financial analysis methods for NPD projects are either the return on investment (ROI) 

method or the net present value (NPV) method (Ulrich & Eppinger, 2004; Speirs, 2008).  

The former, which evaluates the efficiency of the investment, is calculated as the return 

of an investment divided by the cost of the investment.  The latter, which measures the 
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present value of the project, is converted from the expected net cash flow from each 

period estimated from various variables, as shown in Fig. 1.1.  The primary role 

influencers for this method are R&D, production, customers, marketing research, sales, 

and advertising.   

Managers make strategic decisions according to the innovativeness of the product, 

market targeting, the number of competitors, and the marketability of the product 

(Hultink et al., 1997).  Across a firm’s total set of product development projects, success 

needs to be measured and achieved for each of the independent multidimensional product 

development outcomes, including consumer-based success, financial success, and 

technical or process-based success (Griffin & Page, 1996; Craig & Hart, 1992; Griffin & 

Page, 1993; Hart, 1993).  Accordingly, the primary role factors and influencers in product 

management (Fig. 1.1) need to be considered in an interrelated manner.     

 

 

Fig. 1.1 Product management: primary role influencers (Gorchels, 2000) 
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However, in the increasing demand for better products launched more frequently 

and aimed at ever-narrowed customer segments (Holman et al., 2003), the standard NPV 

method for strategic decision-making in NPD projects fails not only to capture 

managerial flexibility (Harper, 2011), but also to consider new information about the 

markets and the actions of competitors.  To resolve the above issues, this study proposes 

a promising quantitative integrated framework for decision-making. 

1.2 Problem Statement   

Go/kill criteria are the heart of project selection decisions because they determine 

whether a development project is allowed to continue through the development process 

(Carbonell et al., 2004).  A wrong decision can lead to wasted resources and losses of 

strategic and market position (Meade & Presley, 2002).  Despite the significance of 

go/kill criteria, the question of how to use them effectively is an area that has not yet been 

addressed sufficiently.  In particular, financial criteria are rarely used to evaluate new 

products at the beginning of the NPD process (e.g., the idea screening and concept test 

stages) because the projected financial data at the early stages of a project are limited and 

inaccurate (Hart et al., 2003; Carbonell et al., 2004).  Accordingly, the go/kill criteria for 

the NPD process are critical features.  However, in Cooper’s study (1995), the 

management of many of the participating companies admitted that they had no criteria for 

making the go/kill decision in their new product process.  The formal gate-criteria that 

are used most often are scoring methods and conventional financial measures such as 

NPV, IRR, or ROI (Miguel, 2008; Carbonell et al., 2004; Cooper et al., 2001).  Yet those 

conventional financial methods give inadequate measurements when projects are 

accompanied by risk and uncertainty (Meade & Presley, 2002; Scott, 2000; Sommer & 
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Loch, 2004).  As a result, there is no comprehensive, cohesive, and rational alternative to 

traditional financial techniques for businesses that are faced specifically with products 

that have a rapidly changing, shorter life cycle or with new product projects that are 

competitive and risky. 

The standard financial analysis measures (e.g., NPV) for NPD projects fail to 

account for all the opportunities and situations in a fast-changing environment.  

Specifically, these methods suffer from three main problems that are summarized in Fig. 

1.2 and stated as follows. 

 

 

Fig. 1.2 Problem definitions 

 

 The NPV method cannot capture managerial flexibility in strategic decision-

making at the gates in the NPD process. 

In the current marketplace, products are launched more frequently than in the past 

and are aimed at ever-narrower customer segments (Holman et al., 2003).  Therefore, it is 

important for businesses to have the managerial flexibility (Holman et al., 2003) and the 
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speed (McDaniel & Kolari, 1987; Miles et al., 1978) to change their products and 

markets in response to changing environmental conditions.   

 The NPV method does not consider new information about the targeted 

market and the actions of competitors. 

The standard NPV method for strategic decisions in NPD projects fails not only to 

capture managerial flexibility, but also to consider new information related to markets 

and competitors.  In the traditional real-option framework, the new information is 

subjectively included in the analysis; however, methods for incorporating the arrival of 

new information into an option’s value are still underdeveloped (Artmann, 2009; 

Sundaresan, 2000; Martzoukos & Trigeorgis, 2001; Herath & Park, 2001; Miller & Park, 

2005).  While voice-of-the-customer input has been identified as one of the drivers of 

success in the NPD process (Cooper & Edgett, 2012; Calantone et al., 1995), the major 

project selection criteria should involve developing an understanding of customer 

requirements (Scott, 2000; Bessant & Francis, 1997; Griffin & Hauser, 1996). 

In addition, because “similar product developments exist in greater or lesser degree 

in almost all product areas” (Smith, 1995), the competitor's involvement in a dynamic 

setting could influence one firm’s output choice in the target market.  Hence, in the 

competitive marketplace, the real-option valuation methods fall short in resolving the 

dilemma when the moves of a rival are involved (Ferreira et al., 2009).  Moreover, as the 

project success needs to be measured and achieved in multiple dimensions (Griffin & 

Page, 1996), the primary role influencers in product management need to be considered 

in an interrelated manner.  Hence, other concepts and methods that have been developed 

for solving these problems, such as the game theory approach, might be applicable to new 
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product development and allow decision makers to integrate new or updated information 

into product development projects. 

 NPD projects are rarely killed at gates after the idea screening (Jenner, 2007). 

Without a practical valuation approach, firms in fast-paced industries are known for 

rushing investments to pre-empt market shares (Smit & Trigeorgis, 2007). Fearing that 

competitors’ growth will outpace their own, managers are too eager to invest excess cash 

in new capacities (Ferreira et al., 2009; Faughnder, 2012; Carson, 2007).  And while both 

researchers and practitioners agree on the significance of gate-criteria (Carbonell-

Foulquié et al., 2004; Agan, 2010), gates are rated as one of the weakest areas in product 

development (Cooper, 2008; Cooper, Edgett, & Kleinschmidt, 2002, 2005).  Only 33 

percent of firms have rigorous gates throughout the NPD process (Cooper, Edgett, & 

Kleinschmidt, 2002, 2005).  In too many companies, gates either do not exist or are not 

effective, allowing numerous bad projects to proceed (Cooper, 2008; Jenner, 2007; 

Cooper & Edgett, 2012). Therefore, a practical and quantitative framework is urgently 

needed, especially in fast-paced industries. 

The decision problem involves questions from two perspectives: questions about 

project investment and managerial decisions and questions about collecting and 

integrating new information.  These questions include the following: What is the value of 

flexibility in a product development project in response to the changing environmental 

conditions of a competitor's moves and updated market information?  How does Bayesian 

analysis affect the project value and the strategic decisions?  Should the current project 

proceed to the next stage?  How does this information impact a company’s investment 

and managerial decisions?  
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1.3 Research Objective   

The proposed problem in this research focuses on decision-making under market 

uncertainty and intense competition in an NPD project.  I intend to value managerial 

flexibility, especially on the gate-criteria of individual project assessment and particularly 

for the gates of development phase in the NPD process.  Specifically, the objectives of 

this research are: 

 To quantify an integrated framework and to provide a measure of and criteria 

for product development performance considering the multiple dimensions of 

product development.  

 To determine the investment and managerial decisions at the gate by valuing 

flexibility in an NPD project in response to changing environmental 

conditions of a competitor's moves and updated market information, while 

maximizing the expected economic returns. 

 To assess updated information in a product development project and explore 

how it impacts a company’s investment decisions and its competitive 

advantages. 

 

As illustrated in Fig. 1.3, three main issues have been proposed.  Regarding primary 

role influencers on strategic decisions in NPD projects, I will consider market demand 

and moves of competitors.  Annual market demand in a potential segmented market is 

variable and may change during the initial NPD process.  However, the uncertainty of 

market demand can be reduced by acquiring additional information via deriving a general 

Bayesian updating formulation during the development process to update initial forecasts 



10 

 

(Artmann, 2009).  In addition, the actions of competitors could damage the value of the 

product development projects before they enter the market.  Therefore, the payoff matrix 

of option-game is derived for the moves of a competitor in a comparable NPD project 

and incorporated with a general Bayesian updating formulation of market demand 

information. 

In this approach, I present – to the best of my knowledge – the first decision model 

for gate-criteria that integrates an option-game framework with statistical decision theory 

in the form of Bayesian analysis in an NPD project.   

 

 

Fig. 1.3 Schematic diagram of research 

 

With the described model and analysis, this research contributes to developing the 

decision models of the gate-criteria in the NPD process by deriving an option-game 
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framework with a method for updating information.  It also provides a practical and 

quantitative measure of product development performance from multidimensional 

perspectives that will help product development teams make investment and managerial 

decisions in NPD projects.  Hence, this research further enhances the basis for decisions 

for NPD projects in response to changing environmental conditions, managerial 

flexibility, the competitor's moves, and updated market information. 

The remainder of the dissertation is structured as follows:  In chapter 2, I review the 

relevant literature.  Chapter 3 develops an option-game valuation framework that 

explicitly incorporates a product life cycle (product diffusion) when dealing with an 

American investment option in a finite project life.  In addition, the results of both 

potential simultaneous and sequential investment decisions are considered in each 

scenario of a duopolistic game.  I introduce this approach as a gate-criterion to evaluate a 

new project in the NPD process with potential managerial flexibility and a competitor in 

fast-paced industries.  In chapter 4, I develop a discrete option-game valuation framework 

that explicitly incorporates statistical decision theory in the form of Bayesian analysis.  In 

addition, I include an inverse measure of product differentiation in the option-game 

mechanism to describe whether two goods are homogeneous, substituted, or independent, 

and to what degree.  I introduce this approach as the gate-criteria to evaluate a new 

project at the gate and sub-gates of development stages in the NPD process.  In chapter 5, 

I extend the option-game valuation framework with Bayesian analysis that is developed 

in chapter 4 by explicitly involving technical risk and 3-player-games in an NPD project.  

Finally, chapter 6 summarizes the main findings and provides possible extensions of the 

developed models for future research. 
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Chapter 2 Literature Review 

For decades, practitioners and academics have studied the factors related to product 

development success (Craig & Hart, 1992; Griffin, 1997; Griffin & Page, 1993, 1996; 

Hart, 1993; Hart et al., 2003; McDaniel & Kolari, 1987).  However, different strategies 

produce different levels of dependence upon new product development (Griffin, 1997; 

Griffin & Page, 1993, 1996; Hart, 1993).  These differences mean that one set of 

measures of overall success is unlikely to be suitable across firms with different strategies 

(Griffin & Page, 1996).  Instead of determining the factors of product development 

success, in this research, I focus on assessing flexibility of an individual project in an 

NPD process under changing environmental conditions. 

This research framework is based on previously developed concepts which are not 

comprehensively linked.  To build this link between flexibility and its related system 

attributes, the following literature review is split into four categories: new product 

development, real-option analysis, the option-game approach, and decision models with 

information updating.   

2.1 New Product Development 

New product development is widely regarded as a vital source of competitive 

advantage (Bessant & Francis, 1997).  A product development process from idea to 

launch consists of multiple phases, such as the project screening, monitoring, and 

progression frameworks of Cooper’s stage-gate approach, which is a conceptual and 
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operational blueprint for managing the NPD process (Cooper, 2008).  Nowadays, instead 

of a standardized mechanistic implementation process, there are many different versions 

to fit different business needs (Cooper, 2008).  In an idea-to-launch product process, each 

stage has defined procedures and requires the gathering of relevant information.  

Following each stage is a “gate” where go/kill decisions are made to manage the risks of 

new products and to serve as a quality-control checkpoint to continue moving the right 

projects forward (Cooper & Edgett, 2012; Cooper, 2008; Carbonell-Foulquié et al., 

2004).     

In order to gain competitive advantages, companies must continuously introduce 

successful and innovative products into the market (Holman, Kaas & Keeling, 2003; 

Kaplan, 1954).  However, the average success rate for NPD projects is not significantly 

high (Griffin, 1997).  Companies have recognized that the choice of products in their 

portfolios is a central factor influencing their chance of success (Miguel, 2008; Cooper et 

al., 1997).  Therefore, portfolio management for new product and R&D spending has 

gained tremendous attention over the decades (Miguel, 2008; Cooper et al., 1997, 2001; 

Scott, 2000). Portfolio management is defined as a process in which projects for product 

development, both new or potential projects and existing projects, are continually 

evaluated, selected and prioritized (Cooper et al., 1997).  Nevertheless, a benchmarking 

study (Cooper et al., 1995) has identified portfolio management as the weakest area in 

managing new product development.   

Effective portfolio decision for NPD projects is thus a major challenge if the 

organization is to stay in business.  To help organizations make decisions about project 

selection, practitioners and researchers have proposed many mathematical approaches 
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such as mathematical programming models, net present value (NPV), scoring models, 

and multi-attribute approaches.  However, due to the mathematical complexity of these 

models, only a few are actually being used (Meade & Presley, 2002).  Of various 

portfolio management methods, the most commonly used in R&D project selection are 

financial criteria (such as NPV and IRR) (Meade & Presley, 2002).  Accordng to IRI’s 

collected questionnaires (Cooper et al., 2001), a total of 40.4 percent of businesses rely 

on financial criteria as their dominant portfolio method, but those businesses end up with 

the worst and poorest performing portfolios.  The main reason for the failure of financial 

criteria is that prioritization decisions are made in the early stage of a project, when the 

financial data are the least accurate (Cooper et al., 2001).  In other words, the 

conventional financial criteria do not succeed at predicting the future financial success of 

a technology (Scott, 2000).  As the initial NPD projects are risky and multidimensional in 

nature, decisions about these projects should consider strategic and multidimensional 

measures (Meade & Presley, 2002). 

Moreover, both academic and industry experts have identified strategic planning for 

technology products as a significant issue for NPD project success (Scott, 2000), since it 

is important that the selected projects are consistent with a business’s strategy (Cooper et 

al., 1997).  A total of 26.6 percent of businesses use strategic approaches as the dominant 

portfolio method, making them the second most popular portfolio approach (Cooper et 

al., 2001).  In order to firmly link project selection and R&D spending to a business’s 

strategy, many companies use the strategic buckets method (Cooper et al., 1997).  The 

strategic bucket approach allocates spending to different buckets or envelopes based on 

the business’s strategy and strategic priorities across various dimensions (e.g., type of 
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market, type of development, product line, and so on).  After projects are classified into 

buckets, project candidates within each bucket are rank-ordered by scoring models or 

financial criteria.  The active projects within each bucket are prioritized and allocated 

limited resources, then moved to the next stage for further investigation.  The individual 

projects proceed to the subsequent development process on an ongoing basis through the 

stage-gate process with the gate-criteria of go/kill decisions.   

Go/kill criteria are the heart of project selection decisions, determining whether a 

development project is allowed to continue through the development process (Carbonell 

et al., 2004).  A wrong decision can lead to wasted resources and losses of strategic and 

market position (Meade & Presley, 2002).  Despite the significance of go/kill criteria, 

however, methods for using them successfully have not yet been addressed sufficiently.  

In particular, financial criteria are rarely used to evaluate new products at the beginning 

of the NPD process (e.g., the idea screening and concept test stages), because the 

projected financial data in the early stages are limited and inaccurate (Hart et al., 2003; 

Carbonell et al., 2004).  Accordingly, go/kill criteria for the NPD process are critical 

features.  However, in Cooper et al.’s study (1995), the managers of many participating 

companies admitted that they had no criteria for making the go/kill decision in their new 

product processes.  The formal gate-criteria that are used most often are scoring and 

conventional financial measures such as the NPV, IRR, or ROI (Miguel, 2008; Carbonell 

et al., 2004; Cooper et al., 2001).  Yet those conventional financial methods give 

inadequate measurements when projects are accompanied by risk and uncertainty (Meade 

& Presley, 2002; Scott, 2000; Sommer & Loch, 2004). 
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Literature study has determined that the financial criteria for gate decisions after the 

screening and investigation stages will positively impact new product success (Carbonell 

et al., 2004; Hart et al., 2003).  As different criteria can be used for projects from 

different buckets, it is not necessary to develop a universal criterion that fits all projects 

(Cooper et al., 1997).  Nevertheless, the traditional valuation approach techniques, which 

assume at the outset that all future outcomes are fixed, are used widely in business 

(Krychowski & Quélin, 2010).  The traditional valuation approach relies on a discounted 

cash flow series, assuming that the investment is an all-or-nothing strategy in which the 

net present worth or net present value (NPV) is considered as a project’s expected future 

cash flow into the time value of money at time 0 with a risk-adjusted discount rate 

(today’s dollars).  The main problem with this approach is that it underestimates the 

flexibility value of a project and assumes that all outcomes are static and all decisions 

made are irrevocable (Mun, 2006).  As a result, there is no comprehensive, cohesive, and 

rational alternative to traditional financial techniques for businesses that are faced 

specifically with rapidly changing, shorter product life cycles or competitive and risky 

new product projects.  

2.2 Real-Option Analysis 

A real-option approach, building upon traditional discounted cash flow analysis, 

gives decision makers a set of options without committing them to one particular 

decision.  The real-option approach considers flexibility in decision-making, and the 

flexibility can be viewed as options or investment opportunities available to the company 

(Antikarov et al., 2001).  Therefore, the real-option approach allows managers to build 

options into products and projects in the real world (Mun, 2006; Harper, 2011) and 
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increases the overall understanding of the investment decision, especially in areas of 

uncertainty (Michailidis, 2006). 

Cooper (2008) explains that the stage-gate process of an NPD project is very 

similar to that of buying a series of options on an investment: as each stage of the 

development process costs more than the preceding one, the initial amount of cost is 

analogous to the purchase of an option, and the decision of whether or not to continue 

investing in the project is made at the gate (maturity), while new information is gathered 

during the stage.  Indeed, the flexibility of the real-option approach corresponds to the 

structure of the NPD process, allowing developers to build options into products and 

projects (Mun, 2006).  In the following sections, I provide a short introduction to the real-

option method and its applications in NPD projects. 

2.2.1 Common real-option 

Real-option theory originates from methodologies developed in the field of 

financial analysis (Black & Scholes, 1973), but there are key differences between 

financial options and real-option (Mun, 2006) as listed in Fig. 2.1.  In addition, 

management can benefit from different types of real-option, which are primarily 

classified by sources of managerial flexibility, as shown in Table 2.1 (Smit & Trigeorgis, 

2004; Chevalier-Roignant & Trigeorgis, 2011).  In dynamic decision-making, the 

manager’s actions depend on all information available at time 0 as well as all new 

information revealed between times 0 and T (Guthrie, 2009).  As a result, in a product 

developer’s cost modeling, the value of future decisions can be explicitly incorporated 

into calculations of expected returns from a project (Harper, 2011; Guthrie, 2009).  In 
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other words, incorporating flexible options into the project plan can increase the financial 

performance of the project over its entire life cycle (Harper, 2011). 

 

 

Fig. 2.1 Financial options versus real-option methods (Mun, 2006) 

 

2.2.2 Basic option valuation 

Many numerical analysis techniques to value options take advantage of risk-neutral 

valuation.  In general, numerical techniques for option valuation can be classified into 

two types (Smit & Trigeorgis, 2004):   

 Approximating the underlying stochastic processes: The first category includes 

the Monte Carlo simulation used by Boyle (1977) and various lattice approaches, 

such as Cox, Ross, and Rubinstein’s (1979) standard binomial lattice method and 

Trigeorgis’s (1991) log-transformed binomial approach.  These methods are 
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generally more intuitive, and the latter methods are particularly well suited to 

valuing complex projects with multiple embedded real-option methods, a series of 

investment outlays, dividend-like effects, and option interactions. 

 Approximating the resulting partial differential equations: Examples of the second 

category include numerical integration and the implicit or explicit finite-

difference schemes used by Brennen (1979), Brennen and Schwartz (1978), and 

Majd and Pindyck (1987). 

 

Table 2.1 Common real-option (Chevalier-Roignant & Trigeorgis, 2011) 

 

 

The two best-known option-pricing models are those of Black and Scholes (1973) 

and Cox, Ross, and Rubinstein (1979).  Originally, these models were designed to price 

financial options, but they have been extended to valuing real-option models.  The Black-
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Scholes (BS) model involves advanced mathematics and notions of financial theory in 

continuous time.  The continuous-time models assume instantaneous decision-making 

and are appealing because they help better identify the theoretical value drivers and 

examine the underlying trade-offs.  On the other hand, the discrete-time multiplicative 

binomial model of Cox-Ross-Rubinstein (CRR) offers a more intuitive introduction to 

option pricing.  Discrete-time models are generally better suited to handling practical or 

complex valuation problems (e.g., portfolios of real-option) and are easier to implement 

(Chevalier-Roignant & Trigeorgis, 2011). 

2.2.3 The real-option approach in NPD projects  

The real-option approach has gained attention in the area of product development 

projects (i.e., R&D project evaluation) since it can value managerial flexibility with 

respect to contingent multi-stages in high-tech projects and the market uncertainty 

inherent in the projects (Benninga & Tolkowsky, 2002; Loch & Bode‐Greuel, 2001; 

Oriani & Sobrero, 2008; Huchzermeier & Loch, 2001; Santiago & Vakili, 2005).    

Loch and Bode‐Greuel (2001) demonstrated a quantitative evaluation of compound 

growth options in a large international pharmaceutical company using a decision tree to 

provide transparency about project value and strategic options.  Lint and Pennings (2001) 

developed a real-option framework with market and technology uncertainty in a 

development project.  They also demonstrated how any particular project in the R&D 

phase may be assigned within a 2 by 2 matrix of uncertainty versus R&D option value to 

allow managers to decide whether to speed up or delay the development process.  Oriani 

and Sobrero (2008) provided new theoretical insights into the real-option logic and gave 

empirical evidence of the effect of market and technological uncertainty on the market 
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valuation of a firm's R&D capital.  Huchzermeier and Loch (2001) incorporated the 

operational sources of uncertainty into real-option value of managerial flexibility and 

introduced an improvement option to take corrective actions during the NPD process for 

the purpose of better product performance.  Santiago and Vakili (2005) used the practical 

relevance of the improvement option to extend Huchzermeier and Loch’s (2001) work to 

value a high-technology development project in the presence of technical uncertainties.   

However, because “similar product developments exist in greater or lesser degree in 

almost all product areas” (Smith, 1995), a competitor's involvement in a dynamic setting 

could influence one firm’s output choice in the target market.  Real-option theory mainly 

considers single decision-maker problems which assume that firms are operating in a 

monopoly or perfect competition markets (Huisman et al., 2004).  These traditional 

valuation methods fall short of resolving the dilemma when moves of competitors are 

involved in the competitive marketplace (Ferreira et al., 2009).  An additional problem 

with these methods is the limited knowledge of how to evaluate projects and make 

critical go/kill decisions throughout the entire development process (Schmidt & 

Calantone, 1998; Carbonell-Foulquié, 2004).   

2.3 The Option-Game Approach 

The term “option-game” was developed by Smit and Trigeorgis (2006). Their 

theory combines real-option (which relies on the evolution of prices and demand) and 

game theory (which captures competitors’ moves) to quantify the value of flexibility and 

commitment.  As mentioned above, the traditional real-option valuations are inadequate 

when moves of competitors are involved (Ferreira et al., 2009).  Nevertheless, the real-

option approach has the potential to make a significant difference in the area of 
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competition and strategy.  Many researchers have dealt with the concepts of competitive 

and strategic options (Trigeorgis & Kasanen, 1991).  Competitive investment strategy is 

based on the strategic or expanded NPV criterion that incorporates not only the direct 

cash-flow value and the flexibility or option value but also the strategic commitment 

value from competitive interaction.  The first two studies dealing with real-option context 

in a duopoly were Smet’s (1991) and Dixit and Pindyck’s (1994). Their research has led 

to a number of studies combining real-option and game theory (Smit & Trigeorgis, 2006) 

in situations where several firms have the option to invest in the same project (Smet, 

1991; Smit & Ankum, 1993; Smit & Trigeorgis, 1995; Chevalier-Roignant & Trigeorgis, 

2011).  In the following section, I provide a brief introduction to option-game and its 

applications.  

2.3.1 An illustration of the option-game approach 

Chevalier-Roignant and Trigeorgis (2011) provided a simple illustration of the logic 

behind option-game which is shown below.  An option-game approach viewed in discrete 

time is an overlay of a binomial tree onto a payoff matrix.  A binomial tree (Fig. 2.2) is 

used to model the stochastic evolution of project value (V), while two-by-two matrices 

are used to capture the competitive iterations among players.  In the binomial tree, each 

scenario at the end of the node corresponds to the cumulative risk-neutral probability 

after two steps, where qr is the risk-neutral probability of an upward per period. 

Consider a duopoly consisting of Firms i and j sharing a European option to invest 

in an emerging market within two years.  Both firms can invest, wait and invest later (at 

maturity in time 2), or let the option expire.  If neither invests now, at the end node in 

time 2, the firm’s strategic choices (represented in two-by-two payoff matrices) are either 
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to invest or not to invest (abandon).  At maturity, both Firms i and j can invest, both can 

abandon, or only one can invest (potentially involving a coordination problem).  The 

basic structure of this option-game in discrete-time is depicted in Fig. 2.3.  Once the 

binomial tree charts the evolution of potential demand scenarios until maturity (time 2) in 

each end node, a two-by-two payoff matrix depicts the resulting competitive interaction.  

The resulting equilibrium outcome (*) and corresponding player payoffs can be 

anticipated for each of the three payoff matrices.  Once the equilibrium (*) strategic 

option values are obtained in each end state (C*
++

, C*
+-

, C*
--
), working the tree backward 

enables the firm to assess the value that each strategy creates under rivalry.  This analysis 

reveals the benefits to each player of pursuing a given strategy and enables management 

to determine how these benefits might change if certain key variables, such as growth or 

volatility, change. 

 

 

Fig. 2.2 Binomial tree representing evolution of market uncertainty and associated 

probabilities (Chevalier-Roignant & Trigeorgis, 2011) 
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Fig. 2.3 Structure of an option-game approach involving both market (demand) and 

strategic (rival) uncertainty (Chevalier-Roignant & Trigeorgis, 2011) 

 

2.3.2 Applications  

The real-option approach with a game theoretic concept has gained attention in the 

area of strategic investment (Huisman, 2001; Egami, 2010; Beveridge & Joshi, 2011; 

Huisman et al., 2004; Smit & Trigeorgis, 2007; Smit & Trigeorgis, 2009; Martzoukos & 

Zacharias, 2012), since it can quantify the value of flexibility and commitment, allowing 

decision makers to make rational choices (Ferreira et al., 2009). 

Smit and Trigeorgis (2009) applied the option-game methodology to the case of 

evaluating airport infrastructure expansion investments.  They proposed important 

advantages of a binomial-tree option-game, such as the transparency and tractability of 

value movement dynamics; the modularity to embed strategic interactions, restrictions, 
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and other features in a realistic setting; and the intuitiveness and accessibility of the 

methodological logic.  Ferreira et al. (2009) illustrated that the option-game is suited for 

competing in capital-intensive industries, using a simplified example of a mining 

company considering whether or not to add new capacity in the face of demand and 

competitive uncertainties, and analyzed four scenarios arising from their decisions to 

invest now or wait.  Martzoukos & Zacharias (2012) demonstrated to decision makers a 

method for deciding on the best action strategy and the amount of effort in a competition 

situation, a decision which is heavily dependent on the effectiveness of R&D 

investments, their cost, and the degree of coordination that is optimal for the two firms.   

However, with the increasing importance of customer orientation (Sun, 2006) in the 

current fast-changing marketplace, if managers do not have updated information on 

market requirements and foresight of market demand, this lack of information will 

significantly affect strategic decisions as well as the sales of new products (Kahn, 2002; 

Artmann, 2009).   

2.4 Decision Models with Information Updating     

Because voice-of-the-customer input has been identified as one of the drivers of 

success in the NPD process (Cooper & Edgett, 2012; Calantone et al., 1995), the major 

project selection criteria should involve developing an understanding of customer 

requirements (Scott, 2000; Bessant & Francis, 1997; Griffin & Hauser, 1996).  Due to 

shorter product life cycles in fast-paced industries, it is not necessary to wait for perfect 

information at the pre-defined gate for decision-making.   Stages can be overlapped in a 

stage-gate process by using spiral development, allowing product development to 

continuously incorporate valuable customer feedback into the product design during the 
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NPD process until the final product is closer to customers’ ideal (Cooper, 2008).  The 

data obtained from customer feedback allows decision makers to estimate the potential 

market share of each concept and to select an optimal product investment.  Without 

updated information on market requirements and foresight of market demand, the sales of 

new products will be significantly affected (Kahn, 2002; Artmann, 2009).  However, a 

common problem is that companies collect data on customer interest before the start of 

development activities and generally do not update the data (von Hippel, 1992; Artmann, 

2009).  Hence, problems arise if the customers’ needs change (Bhattacharya et al., 1998).   

Researchers have developed numerous models for decision-making that allow managerial 

flexibility for responding to new information in certain environments, permitting 

management to refine its information over time and adjust its initial decisions (Artmann, 

2009; Loch & Terwiesch, 2005).   

2.4.1 Information generation and updating 

Gathering high-quality data involves direct contact with customers and experience 

with the use environment of the product.  The most common means of generating market 

information are the traditional market research methods (Lynn et al., 1999; Zahay et al., 

2004).  Three methods are commonly used: interviews, focus groups, and observing the 

product in use (Ulrich & Eppinger, 2004).   

Depending on the issue being studied, the level of uncertainty about demand and 

the methods for reducing uncertainty can be modeled in different approaches.  There are 

three major updating methods applied to decision models: time series analysis, Markov-

modulated forecast updates, and Bayesian analysis (Sethi et al., 2005).   
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2.4.2 Basic ideas of Bayesian analysis 

Bayesian analysis is a statistical decision theory developed by Thomas Bayes 

(1764).  It is a popular method in the field of statistical decision theory, which is 

concerned with the problem of making decisions based on statistical knowledge about 

uncertain quantities.  The decision maker’s challenge is to estimate an objective 

probability model with critical parameters.  Using statistical sample data from 

experiments or market research about the unknown parameters, the Bayesian method 

combines the sample data with initial information about the problem, allowing the 

decision maker to obtain the posterior distribution of parameters.  Hence, the objective 

probability model can be updated.  Because they are easily interpreted and suitable for 

practical applications, the Bayesian methods have been used by researchers in various 

disciplines and different applications over the last decade.   

2.4.3 The real-option approach with information updating 

In the traditional real-option framework, new information is subjectively included 

in the analysis; however, methods incorporating the arrival of new information into an 

option’s value are still underdeveloped (Sundaresan, 2000; De Weck et al., 2007; 

Halpern, 2003; Martzoukos & Trigeorgis, 2001).  Several researchers have observed the 

traditional real-option framework and attempted to combine Bayesian analysis with real-

option (Herath & Park, 2001; Huchzermeier & Loch, 2001; Santiago & Vakili, 2005; 

Miller & Park, 2005; Armstrong et al., 2005; Grenadier & Malenko, 2010) and Bayesian 

learning with the binomial lattice model (Guidolin & Timmermann, 2003; Guidolin & 

Timmermann, 2007). 
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Herath and Park (2001) were the first to introduce Bayesian analysis combined with 

real-option.  They developed a simple valuation framework based on the concept of the 

expected value of perfect information (EVPI) of real-option and sampling information.  

In their approach, they studied investment decisions where management has the option to 

defer a project until more information becomes available.  Miller and Park (2005) 

indicated that reducing uncertainty in real-option theory has traditionally been regarded 

as a passive process.  In contrast, they quantified information acquisition by merging 

statistical Bayesian perspective with the real-option framework to improve decision-

making and modeled a contingent multi-stage investment scenario in which the initial 

estimates of the expected future cash flows are updated during the management phase of 

the project.  They identified a key threshold which defines when the firm’s prior decision 

should be reversed based on observed sample results.   

Armstrong et al. (2005) presented a primary practical application of a framework 

that combines Bayesian analysis with a real-option approach.  They studied the option 

value of acquiring additional information in a project for enhancing oil field production.  

They assumed that the two sources of uncertainty, the underlying oil prices and the 

characteristics of the reservoir, were bivariate normal distribution by using a Monte Carlo 

simulation.  Grenadier and Malenko (2010) augmented the standard Brownian 

uncertainty driving traditional real-option models with additional Bayesian uncertainty 

over distinguishing between the temporary and permanent nature of past cash flow 

shocks.  Artmann (2009) derived the Bayesian updating formulation for an update of the 

market requirement distribution that allows for managerial flexibility in a situation where 

product performance is uncertain. 
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2.5 Summary of the Literature 

 A common problem with NPD processes is that projects are rarely killed at gates 

after the stage of idea screening (Jenner, 2007).  Additionally, Anderson (2008) pointed 

out that the most significant challenge in managing current product development is the 

overall integration of strategy, process, the measurement of performance, and continuous 

improvement.  As shown by the above review of the relevant literatures about flexibility 

in NPD projects, the option-game approach, and decision models with information 

updating, managers need a comprehensive quantitative model to improve decision-

making about the gate-criteria of NPD projects (Fig. 2.4).  Cooper (2008) explained that 

the stage-gate process of an NPD project is very similar to that of buying a series of 

options on an investment.  On the other hand, Huchzermeier and Loch (2001) proposed 

an insightful framework of managerial flexibility in an NPD project, in which the 

product’s developer considers an improvement option to take corrective actions during 

the NPD process.  In contrast to traditional real-option methods which regard uncertainty 

reduction as a passive process (Miller & Park, 2005), Artmann (2009) extended the work 

of Huchzermeier and Loch (2001) by deriving the Bayesian updating formulation for the 

market requirement distribution and integrating this mechanism into a real-option 

framework.  Moreover, Chevalier-Roignant and Trigeorgis (2011) studied and illustrated 

the option-game framework, which allows decision makers to make rational choices 

between alternative investment strategies (Ferreira et al., 2009), combining real-option 

models (which rely on the evolution of prices and demand) and game theory (which 

captures competitors’ moves). 
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The above four areas make the option-game framework well suited for NPD 

projects as well as for a base case demonstrating the decision models of the gate-criteria 

with information updating under competitive environments.  The current option-game 

models are not considered Bayesian learning analysis.  Therefore, I introduce an option-

game valuation framework with Bayesian analysis as a gate-criterion of a new project in 

the NPD process.  By gathering new information about potential markets, project payoff, 

and the rivals’ actions, a decision maker can use this integrated approach to make the 

proper strategic decisions in the NPD process. 

 

 

Fig. 2.4 Summary of the literature 
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Chapter 3 Assessing Investment Flexibility in a New Product  

Development Project: An Option-Game Approach 

with Product Diffusion 
 

 

 

 

Abstract 

 

 

Project selection of new products is a vital issue in the new product development 

(NPD) process of high-tech companies. A major problem with project selection is the 

inadequacy of using gate-criteria to make the go/kill decisions.  The most common 

financial gate-criterion, the net present value (NPV), is insufficient when a project has a 

high degree of uncertainty, resulting in killing potential projects unnecessarily.  In this 

chapter, I develop an option-game valuation framework that explicitly incorporates 

product diffusion when dealing with an American investment option in a finite project 

life.  In addition, the results of both potential simultaneous and sequential investment 

decisions are considered in each scenario of the duopolistic game.  I introduce this 

approach as the gate-criterion to evaluate a new project in the NPD process with potential 

managerial flexibility and a competitor in fast-paced industries.  As an option-game 

approach provides a go/wait decision, it shows that the decision to delay represents an 

additional resource of value.  The results provide important implications for strategic 

project selection when investigating an NPD project during the product development 

process.  By using this approach, industry players can make strategic decisions in a 
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project assessment and plan the optimal annual production capacity at the outset of the 

product development stage. 

Keywords: option-game, product diffusion, gate-criteria, new product 

development, Cournot duopoly competition, sequential investment   

 

 

 

 

3.1 Background 

According to Scott (2000), academic and industry participants rank new product 

selection as one of the most critical issues in the NPD process of high-tech companies.  

Indeed, the project selection and portfolio choices that managers make will guide 

businesses’ new product efforts either toward or away from their organizational goals. 

3.1.1 Issues in the new product development 

In order to gain competitive advantages, companies must continually introduce 

successful and innovative products into the market (Holman, Kaas, & Keeling, 2003; 

Kaplan, 1954).  However, the average success rate for NPD projects is not significantly 

high (Griffin, 1997).  Companies have recognized that the choice of products in their 

portfolios is a central factor influencing their chance of success (Miguel, 2008; Cooper et 

al., 1997).  Therefore, portfolio management for new product and R&D spending has 

gained tremendous attention over the decades (Miguel, 2008; Cooper et al., 1997, 2001; 

Scott, 2000).  Portfolio management is defined as a process in which projects for product 

development, both new or potential projects and existing projects, are continually 

evaluated, selected and prioritized (Cooper et al., 1997).  Nevertheless, a benchmarking 

study (Cooper et al., 1995) has identified portfolio management as the weakest area in 

managing new product development.   
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Effective portfolio decision for NPD projects is thus a major challenge if the 

organization is to stay in business.  To help organizations make decisions about project 

selection, practitioners and researchers have proposed many mathematical approaches 

such as mathematical programming models, net present value (NPV), scoring models, 

and multi-attribute approaches.  However, due to the mathematical complexity of these 

models, only a few are actually being used (Meade & Presley, 2002).  Of various 

portfolio management methods, the most commonly used in R&D project selection are 

financial criteria (such as NPV and IRR) (Meade & Presley, 2002).  According to IRI’s 

collected questionnaires (Cooper et al., 2001), a total of 40.4 percent of businesses rely 

on financial criteria as the dominant portfolio method, but those businesses end up with 

the worst and poorest performing portfolios.  The main reason for the failure of financial 

criteria is that prioritization decisions are made in the early stages of a project when the 

financial data are the least accurate (Cooper et al., 2001).  In other words, the 

conventional financial criteria do not succeed at predicting the future financial success of 

a technology (Scott, 2000).  As R&D projects are risky and multidimensional in nature, 

decisions about these projects should consider strategic and multidimensional measures 

(Meade & Presley, 2002). 

Moreover, both academic and industry experts have identified strategic planning for 

technology products as a significant issue for NPD project success (Scott, 2000), since it 

is important that the selected projects are consistent with a business’s strategy (Cooper et 

al., 1997).  A total of 26.6 percent of businesses use strategic approaches as the dominant 

portfolio method, making them the second most popular portfolio approach (Cooper et 

al., 2001).  In order to firmly link project selection and R&D spending to a business’s 
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strategy, many companies use the strategic buckets method (Cooper et al., 1997).  The 

strategic buckets approach allocates spending to different buckets or envelopes based on 

business strategy and strategic priorities across various dimensions (e.g., type of market, 

type of development, product line, and so on).  After projects are classified into buckets, 

project candidates within each bucket are rank-ordered by scoring models or financial 

criteria.  The active projects within each bucket are prioritized based on limited allocated 

resources, and then moved to the next stage for further investigation.  The individual 

projects proceed to the subsequent development process on an ongoing basis through the 

stage-gate process with the gate-criteria of go/kill decisions. 

3.1.2 The go/kill gate-criteria in the NPD process 

Go/kill criteria are the heart of project selection decisions, determining whether a 

development project is allowed to continue through the development process (Carbonell 

et al., 2004).  A wrong decision can lead to wasted resources and losses of strategic and 

market position (Meade & Presley, 2002).  Despite the significance of go/kill criteria, 

methods for using them successfully are an area that is not yet addressed sufficiently.  In 

particular, financial criteria are rarely used to evaluate new products at the beginning of 

the NPD process (e.g., the idea screening and concept test stages), because the projected 

financial data in the early stages is inadequate and inaccurate (Hart et al., 2003; Carbonell 

et al., 2004).  Accordingly, go/kill criteria for the NPD process are critical features.  

However, in Cooper et al.’s study (1995), the managers of many participating companies 

admitted that they had no criteria for making the go/kill decisions in their new product 

processes.  The formal gate-criteria that are used most often are scoring measures and 

conventional financial measures such as NPV, IRR, or ROI (Miguel, 2008; Carbonell et 
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al., 2004; Cooper et al., 2001).  Yet those conventional financial methods give inadequate 

measurements when projects are accompanied by risk and uncertainty (Meade & Presley, 

2002; Scott, 2000; Sommer & Loch, 2004).   As a result, there is no comprehensive, 

cohesive, and rational alternative to traditional financial techniques for businesses that are 

faced specifically with rapidly changing, shorter product life cycles or competitive and 

risky new product projects.  

3.1.3 The scope of this chapter 

Literature study has determined that the financial criteria for gate decisions after the 

screening stage will have a positive impact on new product success (Carbonell et al., 

2004; Hart et al., 2003).  This chapter focuses on the gate-criteria of individual project 

assessment, specifically for the gate of development stage in the NPD process (the bold 

gate in Fig. 3.1), which is the first gate after the process of screening and project 

investigation.  As different criteria can be used for projects from different buckets, it is 

not necessary to develop a universal criterion that fits all the projects (Cooper et al., 

1997).  Hence, I am interested in designing a criterion specifically for the buckets of new 

product projects in the dimensions of high risk, shorter product life cycle, and a rapidly 

changing and competitive marketplace—the circumstances in which the conventional 

financial criteria are the most unsuitable (Meade & Presley, 2002; Scott, 2000; Sommer 

& Loch, 2004).  Consequently, I introduce a discrete option-game framework with the 

concept of product diffusion as the gate-criterion of the development stage.  Product 

developers can assess an NPD project with potential managerial flexibility and a 

competitor within a finite project life.  The term “option-game” has recently been 

introduced by Smit and Trigeorgis (2006).  The option-game concept combines real-
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option (which relies on the evolution of prices and demand) and game theory (which 

captures competitors’ moves).  A real-option approach with game theoretic concept has 

gained increasing interest in the area of strategic investment (Huisman, 2001; Huisman et 

al., 2004; Smit & Trigeorgis, 2007, 2009), since this approach allows decision makers to 

make rational choices by quantifying flexibility and commitment (Ferreira, Kar, & 

Trigeorgis, 2009).   

 

  

Fig. 3.1 The strategic buckets approach in the NPD process 

 

My model structure builds upon an extended and modified version of the model 

developed by Ferreira, Kar, and Trigeorgis (2009).  While their method considers adding 

a capacity option with a constant expected growth rate for demand or price in a numerical 

example (Ferreira, Kar, & Trigeorgis, 2009), I integrate product adoption rates with the 

product life cycle (Rogers, 1995; Bollen, 1999) into an option-game framework for 

evaluating an NPD project.  I further develop a formal mathematical option-game 
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framework in a discrete-time analysis when dealing with an American investment option 

in a finite project life.  In contrast to the discrete option-game models using a European 

option by Chevalier-Roignant and Trigeorgis (2011), I consider the results of both 

potential simultaneous and sequential investment decisions in each scenario of the 

duopolistic game, and project service life is set as finite years.  Therefore, I propose the 

gate-criterion of individual project assessment for the gate of development stage in the 

NPD process.  Moreover, this technique can also be used to compute optimal selection of 

the planned production capacity.  In summary, the strategic buckets approach in the early 

stages of the NPD process (Fig. 3.1) links business strategy and project portfolios 

(Cooper et al., 1997).  With an option-game framework in the gate-criterion of the project 

development stage, this approach allows further inspection and examination of the 

individual projects in the development process. 

As this research builds on proposed concepts in areas that have not yet been fully 

developed, the relevant literature concepts have been reviewed and discussed above.  The 

remaining chapter is organized as follows.  In section 3.2, I define the model description 

and develop this work by using an extended version of the proposed model structure for 

my valuation model.  The concept of product diffusion is integrated into a valuation 

model that allows determining the value of a project in a finite project life cycle.  In 

section 3.3, I illustrate the differences of demand structures by comparing the results of 

assuming a constant annual growth rate with the results of integrating product diffusion 

into the demand binomial lattice.  I also provide a case study to demonstrate the model 

and compare the results with a benchmark, using NPV, the common and widely used 

conventional financial method in gate-criteria, as the benchmark.  In section 3.4, I further 
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validate this valuation model against the benchmark and discuss the results.  Section 3.5 

includes a summary of the results and concluding remarks.  

3.2 Model Development 

As I focus on individual project assessment at the gate-criterion of the development 

stage, I will assume that the projects have already been roughly screened and initially 

selected through the strategic buckets approach in the early stages of the NPD process as 

shown in Fig. 3.1.  I am specifically interested in evaluating the buckets of projects with 

the following characteristics and dimensions: (1) managerial flexibility is expected for 

the risky and market-uncertain project; (2) there is a potential competitor for the same 

new project; (3) the new project is in a short product life cycle.   

Consider two firms (Firms i and j) in a duopoly sharing an option to invest in an 

NPD project.  Suppose that the firms are dealing with a delay investment option because 

of the highly uncertain market.  For now, this project is proceeding at the gate of 

development stage in the NPD process.  The gate decision of the development stage 

depends mainly on the expected performance and expected project value from the future 

periods (Fig. 3.1).  In other words, the gate of development stage determines whether the 

firm will invest in the project at the stage of development.  For the purpose of simplicity 

in calculation of the time horizon, the beginning development stage is set as time t = 0, 

which is the same as the gate of development stage, as shown in Fig. 3.2.   
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Fig. 3.2 The structure of model development 

 

In addition, to simplify the NPD process, the later gates and stages of testing and 

production are not demonstrated.  Hence, once the fixed investment cost is invested at the 

outset of the development stage, the cash flows will begin in the following period.  

Suppose that these two firms are active in the market now and behave rationally by 

selecting the profit-maximizing outputs.  The main sources of uncertainty here are the 

market demand and the decisions of the rival.  

According to the business strategy in the categorized buckets of projects, suppose 

that the firms’ roles and sequences are not determined a priori.  Hence, different 

combinations of actions may give further insights and help determine the values of 

potential decisions.  In addition, suppose that one of the firms has a cost advantage (unit 

variable costs i jc c ).  Due to the considerations of the product life cycle, reduced fixed 

investment cost over time, and asymmetric unit variable costs, the firms are also not 
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sufficiently distinct.  There is a trade-off between commitment and flexibility.  When 

there is a first-mover advantage for the product life cycle after the new product is 

introduced to the market, both firms will want to invest as the leader to grasp this 

advantage.  However, the fixed investment cost is reduced each year, where I0 is the 

current fixed investment cost and   is the annual reduced rate over time.  Besides, an 

NPD project normally faces large demand uncertainty.  Hence, there is also an incentive 

to delay until the market becomes larger and the fixed investment cost is lower (making 

the investment at time t before maturity T). 

The duopolists have a finite planning horizon and can choose to invest before 

maturity T.  For the purpose of clearly demonstrating insights into different possible 

scenarios, suppose that the option will expire in two years (T = 2), both firms make their 

decisions on an annual basis (Δt = 1), and the project will operate for a finite service life 

of N years.  Both firms face the same interest rate r and risk free rate rf.  The main issues 

for the option holder are to make the strategic decision and to compute the optimal 

planned capacity at the gate of development stage in the NPD process (Fig. 3.2).  To do 

so, the evolution of demand over the next two years is illustrated by a basic binomial 

lattice combined with the concept of product life cycle in section 3.2.1.  Based on the 

demand evolution and the probabilities of upward and downward of each period in 

demand, I further determine the payoff values for the scenarios in a payoff matrix of time 

t = 0 in section 3.2.2.  Each scenario at time t = 0 is considered with different 

combinations of potential decisions.  The maximization of payoffs in each combination 

of decisions and the optimal payoff in each scenario are obtained by the Nash equilibrium 

with the best response analysis.  Hence, the strategic decisions at time t = 0 and the 
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optimal planned capacity are determined in section 3.2.3.  Finally, I will compare this 

approach with a basic benchmark in section 3.3 and further discuss the results in section 

3.4.   

3.2.1 Demand evolution and the probabilities of upward in demand with product  

diffusion 

A binomial lattice framework is used to represent the market demand uncertainty 

(Q) within T = 2 years.  Based on experts’ experience and a survey collection, the current 

demand is given as Q0, its expected yearly growth rate is g, and its expected standard 

deviation is σ.  Suppose that the decisions are made annually (i.e., Δt = 1); hence, the 

parameters of a binomial lattice (Luenberger, 1998) can be simplified as shown in 

equation (3.1). 

 , 1/

 Risk-neutral probability of an upward:
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                             (3.1) 

In order to reflect the changes of demand depending on when the new product is 

introduced to the market, the binomial lattice is combined with the concept of a product 

life cycle, where cumulative product diffusion (Rogers, 1995) can be used to estimate the 

relation of the market size in each period within a product life cycle.  Hence, the demand 

structure at and after maturity will employ the concept of cumulative product diffusion, 

depending on when the product is introduced to the new market.  The value of a 

cumulative normal distribution function of elapsed time can be applied to update the 

probability of a downward of the demand binomial lattice in each period (Bollen, 1999), 



42 

 

indicating the probability of the expected non-growth in demand.  In other words, during 

the earlier periods of a product life cycle, demand is expected to have a higher future 

market growth than during the later periods, i.e., the expected non-growth demand is 

lower in the earlier periods.  Therefore, the updated probability of a downward in each 

period of the demand binomial lattice can be obtained by the average of the original 

probability of a downward at each period 1-P and a cumulative normal distribution 

function of elapsed time t as Φ(xt), expressed in equation (3.2). 

(1 ) ( )
1

2

t
t

P x
P

 
                                                        (3.2) 

where 1- :  the original probability of a downward in each period 

( ) :  a cumulative normal distribution of elapsed time t

P

x t
 

Calculating equation (3.2) gives the updated probability of an upward at each 

period Pt in a demand binomial lattice.  Assuming that the expected standard deviation σ 

in demand is the same over time, its expected yearly growth rate gt at time t can be 

determined by putting Pt into equation (3.1) as expressed in equation (3.3).   

2 ( 0.5)t tg P                                                           (3.3) 

where : the updated probability of an upward at time tP t  

With the calculation of equations (3.1) to (3.3), the market structure can be framed.  

Before the option is expired, three possible structures of market patterns will be formed 

within two years.  Suppose that the firms may invest at time t ( 2t  ) and the annual 

profit grows at an expected growth rate gt at time t with a risk-adjusted discount rate r      

( tr g ).  Hence, the total growth at maturity time 2 due to the three possible structures of 

market patterns is expressed in equation (3.4).   
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where : the project service life; 

: either firm invests now 0 ;

: no firms invest now,  but either firm invests at time 1;  
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3.2.2 Payoff matrix of option-game at time t = 0 

To determine market-clearing price and firm profits, a commonly used assumption 

in industry structure models is the linear (inverse) demand function (Chevalier-Roignant 

& Trigeorgis, 2011).  Suppose that in the discrete-time model of Smit and Trigeorgis 

(2004) and Chevalier-Roignant and Trigeorgis (2011), the demand intercept in the linear 

market demand function follows a multiplicative binomial process as shown in equation 

(3.5).  

       bQ    ( )i jb q q                                               (3.5) 

         , : constant parameters,b    , 0;b 

: the total quantity will be supplied in the market;Q

   follows a multiplicative binomial process

  

The intercept of demand function     is followed by a stochastic binomial as shown 

in Fig. 3.3 for two periods: at each up move,     is multiplied by u, while at each down 

move, it is multiplied by d from equation (3.1).  When     goes to time 1, it is noted as    , 

which indicates it could be either     or    .  Similarly, when     goes to time 2, it is noted 

as    , which indicates it could be     ,     , or     . 
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Fig. 3.3 Multiplicative binomial process followed by the intercept of demand      
at time t ( 2t  ) 

 

I next determine the payoffs for both firms in each of the four scenarios from their 

decisions to invest or wait until maturity to decide, using a two-by-two matrix to capture 

the competitive interactions among players (Chevalier-Roignant & Trigeorgis, 2011).  

The payoff matrix for strategic decision at time t = 0 (the gate of development stage) is 

shown in Fig. 3.4. 

S1: Simultaneous investment.  If both firms invest simultaneously now, their 

payoff functions of scenario 1 in Fig. 3.4 can be described as the net present value (NPV) 

of a duopoly Cournot competition as expressed in equation (3.6).   

C C C

0 0( , ) NPV [ ]h i j h hq q I E V                                                   (3.6) 

0

C

0

where :  current fixed investment cost;  Firm  or ;  

[ ] : expected present project value of duopoly Cournoth

I h i j

E V


 

The expected present project value in equation (3.6) indicates the expected present 

values of the project cash flows, which can be calculated from the intermediate and 

terminal statuses in the demand binomial lattices.  Since the option will expire in two 

years on the annual basis, the expected present project value is the sum of the expected 
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present cash flows from the intermediate statuses of time 1  [E   C

1]h
  and the expected 

project value at the expiration (time 2)   [   C

2 ]h
  as shown in equation (3.7). 

C 1

0[ ] (1 ) [hE V r E    C 2
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                                (3.7) 
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Fig. 3.4 Payoff matrix for strategic decision at time t = 0  

(C: Cournot competition, L: leader, F: follower, W: wait) 

 

The right two terms of equation (3.7) can be further defined by finding the 

differences between the market-clearing price and the firm’s unit variable cost and then 

multiplying the number of the annual planned capacity, as expressed in equation (3.8).  In 

equation (3.8),   C

1h is the stochastic value of the cash flow at time 1 for Firm h.  On the 

other hand,   C

2h includes the stochastic cash flows at time 2 and for the remaining project 

life with the total annual growth rate G0 at maturity. 
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  C

1 (h    1 )h hc q

  C

2 (h    2 0) (1 )h hc q G 

                                                        (3.8) 

where : unit variable cost of Firm  ( Firm  or ) ;hc h h i j

: annual capacity of Firm ;hq h

  1,  2: stochastic market clearing price at time 1, 2

 

Hence, both the expected value of cash flow at time 1 and the expected project 

value at time 2 for Firm h can be computed from their values at each status in Fig. 3.3 

with their corresponding probabilities from equation (3.2), given by equation (3.9). 

[E   C

1 1] [ (h hq P   1) (1 )(u hc P     )]d hc

[E   C

2 0 1 2] (1 ){ (h hq G PP    1 2 2 1) [ (1 ) (1 )](uu hc P P P P       1 2) (1 )(1 )(ud hc P P      )}dd hc
   

(3.9) 

By combining equations (3.6) to (3.9) with the linear (inverse) demand function, the 

payoff functions of scenario 3.1 in Fig. 3.4 can be rewritten as in equation (3.10).    

C 1

0( , ) (1 ) [h i jq q I r E       C 2

1 0] (1 ) (1 ) [h r G E     C

2 ]h

1

0 1(1 ) [ (hI r q P      u   ) (d    ' )]d h h hbq bq c   

2

0 1 2(1 ) (1 ){hr q G PP    1 2 2 1[ (1 ) (1 )]uu P P P P      1 2(1 )(1 )ud P P     ' }dd h h hbq bq c  

  

(3.10) 

'where : capacity of Firm 's competitorhq h  

S2: Sequential investment (Firm i invests and Firm j waits).  In the second 

scenario of Fig. 3.4, Firm i invests now and Firm j waits: this scenario makes Firm i the 

leader when Firm j invests at time 1 or 2, or makes Firm i a monopolist if Firm j 

eventually abandons the project at time 2.  Hence, each of the three possible cases will be 
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discussed individually below.  Accordingly, the payoff functions of scenario 2 will select 

the maximization of these three possible cases.  

 Case 1: When Firm i invests now, Firm j invests at time 2.  In this case, the 

payoff function of Firm i will comprise the expected monopolistic profits for the 

first two periods [E (    M

1i
      M

2i
 ) and the expected duopolistic profits for the 

remaining project service life (    C

2i
 ) as expressed in equation (3.11). 
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2 0](1 )i r G
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2 1 2]i PP   M

1 2 2 1[ (1 ) (1 )]iuu P P P P      M

1 2(1 )(1 )iud P P     M ;idd

[E   C

2 1 2]i PP   C

1 2 2 1[ (1 ) (1 )]iuu P P P P      C

1 2(1 )(1 )iud P P     C

idd

 

On the other hand, the current payoff function of Firm j describes the fixed 

investment cost of time 2 and the current values of gains from the duopolistic profits after 

time 2 (depending on the product diffusion rate in demand) as shown in equation (3.12).  

The term     C

2j   in equation (3.12) is the expected profit of Firm j at time 2 with the 

corresponding probabilities. 

                  F 2 2

(2) 2 0( , ) (1 ) (1 ) [j i jq q I r r G E         C

2 ]j

                          (3.12) 

where [E   C

2 1 2]j PP   C

1 2 2 1[ (1 ) (1 )]juu P P P P      C

1 2(1 )(1 )jud P P     C ;jdd

F

(2) : current profit function of Firm  when it is a follower at time 2;j j

2

2 2 0: the fixed investment cost at time 2, (1 )I I I 

 

 Case 2: When Firm i invests now, Firm j abandons at time 2.  In this case, Firm 

i will simply gain the monopolistic profits during its product service life and Firm 

j’s payoff value is 0 as shown in equation (3.13).  Term     M

2i
  in equation (3.13) 
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is the expected monopolistic project value of Firm i at time 2 with the 

corresponding probabilities. 

 

M 1

0( , ) (1 ) [i i jq q I r E       M 2

1 0] (1 ) (1 ) [i r G E     M

2 ]i

( , ) 0j i jq q 

                   (3.13) 

     [E   M

2 1 2]i PP   M

1 2 2 1[ (1 ) (1 )]iuu P P P P      M

1 2(1 )(1 )iud P P     M

idd
 

 Case 3: When Firm i invests now, Firm j invests at time 1.  In this case, the 

payoff function of Firm i will comprise the expected monopolistic profit in the 

first period and the expected duopolistic profits for the remaining project service 

life as shown in equation (3.14). 

L

0( , ) [i i jq q I E      M 1

1 ](1 ) [i r E    C 2

2 0](1 ) (1 )i r G 
                  (3.14) 

On the other hand, the current payoff function of Firm j describes the fixed 

investment cost of time 1 and the gains from the expected duopolistic profits after time 1 

(depending on the product diffusion rate in demand), as shown in equation (3.15).   

F 1

(1) 1( , ) (1 ) [j i jq q I r E       C 2

2 0](1 ) (1 )j r G 
                        (3.15) 

1 1 0

F

(1)

where : the fixed investment cost of time 1, (1 ) ;

: current profit function of Firm  when it is a follower at time 1j

I I I

j





 
 

Of all the above three cases in scenario 2, Firm i has a fixed setting to invest at time 

0, but Firm j instead has three possible moves.  Since Firm i has only one move, the 

payoff functions of scenario 2 will thus mainly depend on Firm j’s decision.  The 

maximization of these three possible moves from Firm j’s decision can be expressed by 

equation (3.16), which combines equations (3.12), (3.13) and (3.15).   
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L F*

F* F F

(1) (2)

Firm : ( ( , ))

Firm : ( , ) max[ ( , ), ( , ),0]

i j i j

j i j j i j j i j

i q q

j q q q q q q

 

  






                       (3.16) 

S3: Sequential investment (Firm j invests and Firm i waits).  In the third 

scenario of Fig. 3.4, Firm j invests now and Firm i waits.  This scenario allows Firm j to 

be a leader if Firm i invests at time 1 or 2, or to be a monopolist if Firm i eventually 

abandons the project at time 2.  Scenario 3 is the same concept as scenario 2 but with the 

firms having opposite roles.  Hence, Firm j has only one move, so the payoff functions of 

scenarios 3 will mainly depend on Firm i’s decision.  Similarly, the payoff functions of 

scenario 3 can be written to maximize the three possible moves from Firm i’s decision as 

expressed in equation (3.17). 

F* F F

(1) (2)

L F*

Firm : ( , ) max[ ( , ), ( , ),0]

Firm : ( ( , ))

i i j i i j i i j

j i i j

i q q q q q q

j q q

  

 

 



                       (3.17) 

S4: No investment (both wait).  If both firms wait now, their payoff functions can 

be viewed as the present value of a shared American call option with three possible 

investment actions within two periods: invest at time 1, invest at time 2, or abandon at 

time 2.  With the evolution of the demand binomial tree, I can value each strategy 

between the firm and its rival by working the tree backward (Chevalier-Roignant & 

Trigeorgis, 2011).  At maturity, there is a two-by-two payoff matrix in each of the 

terminal statuses as shown in Fig. 3.5.  When firms decide to invest or abandon the 

project at time 2, there are three combined strategies: simultaneous investment, monopoly 

investment, and no investment.  Simultaneous investment means that if both invest at 

time 2, a Cournot duopoly game is formed and their stochastic payoff functions can be 

expressed as shown in equation (3.18).  Monopoly investment means that only one of 
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them invests at time 2, so that the investing firm gains the stochastic monopolistic 

investment and its rival’s value is zero as shown in equation (3.19).  No investment gives 

both firms zero value since they abandon the project simultaneously at time 2. 
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 (3) Monopoly 

investment 

 
 

  2 ( , )j i jq q   

(4) No investment 

(Abandon) 

 
 
 
  

Fig. 3.5 Payoff matrix for strategic investment decision at time t = 2 

 

  
2 2( , )h i jq q I    C

2 2h G                                              (3.18) 

        C 2

2 (h hbq     2 ' )  h h hbq c q   

  
2 2( , )h i jq q I    M

2 2h G                                            (3.19) 

        M 2

2 (h hbq     2 )h hc q  

Thus, the resulting equilibrium outcomes in the end statuses can be obtained from 

the payoff matrices of time 2 by applying the Nash equilibrium with the best response 

analysis, where the competitive outcomes at time 2 in each status are noted as 

   * *

2 ( , ),i i jq q   * *

2 ( , )j i jq q    
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Next, working in the previous period (time 1) of the binomial tree, there is a payoff 

matrix in each of the intermediate statuses as shown in Fig. 3.6.  When the firms decide 

to invest or wait at time 1, there are three combined strategies: simultaneous investment, 

sequential investment, and no investment.  Simultaneous investment means that if both 

invest at time 1, a Cournot duopoly game is formed and their stochastic payoff functions 

can be expressed in equation (3.20).   

  1

1 1 1( , ) (1 ) (1 ) [h i jq q I r G E       C

2 ]h
                                     (3.20) 

      [E   C

2 2] (h P   C

2 2) (1 )(h P    C

2');h
 

  C 2

2 (h hbq     2 ' ) ;h h hbq c q 

'2: the up move at time 2;2 : the down move at time 2
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(3) Sequential 

investment 

 
  

1( , )i i jq q

  
1( , )j i jq q

  

(4) No investment 

(Both wait) 

 
  

1( , )i i jq q

  
1( , )j i jq q

  

Fig. 3.6 Payoff matrix for strategic investment decision at time t = 1 

 

Sequential investment means that if one of the firms invests at time 1, the other 

waits, comprising two possible cases: actual sequential investment and monopoly 

investment, as shown in Fig. 3.6.  If it is an actual sequential investment, one invests at 
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time 1 and the other invests at time 2.  If it is a monopoly investment, one of them invests 

at time 1 and gains the monopoly.  Its rival abandons the project at time 2 with zero 

value.  The payoff functions will be the maximum for sequential investment.  Equation 

(3.21) describes the payoff functions of sequential investment by maximizing the above 

two cases for scenarios 2 and 3 in Fig. 3.6, respectively.  No investment means that if 

both firms wait at time 1, their payoff functions can be computed as the option value 

from the optimal matrix outcome of time 2 with the risk neutral probability qr, as 

expressed in equation (3.22). 

 
Scenario 2: (   1,i   1) max[(j    L

1,i
  F

(2) ), (j   M

1 ,0)]i

Scenario 3: (  1,i   1) max[(j    F

(2) ,i   L

1), (0,j   M

1)]j

                           (3.21) 

        L
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1: payoff when Firm ,  is a leader at time 1;j i j

  F

(2) ,i   F

(2): payoff when Firm ,  is a follower at time 2j i j
 

[  1( , ),i i jq q   1( , )]j i jq q  [
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2 (1 )i rq    
*

2'i

1 fr
,

rq   
*

2 (1 )j rq    
*

2'j

1 fr
]                (3.22) 

        *

2h    * *

2( , ) : equilibrium results at time 2 for Firm  or h i jq q i j  

Therefore, the resulting equilibrium outcome in each intermediate status can be 

obtained from the payoff matrices of time 1 by applying the Nash equilibrium with the 

best response analysis, where the competitive outcomes are noted as 

   * *

1( , ),i i jq q   * *

1( , )j i jq q     Finally, the payoff functions of scenario 4 at time t = 0 in Fig. 

3.4 are the competitive outcomes at intermediate statuses obtained from the payoff 

matrices of time 1 by applying the Nash equilibrium with the best response analysis, as 

shown in equation (3.23).  
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        *
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1( , ) : equilibrium results at time 1 of Firm  (timeh i jq q h     or )u d  

3.2.3 Strategic decisions and the planned capacity 

The profit functions of both firms in each of the four scenarios at time t = 0 are 

derived and defined in section 3.2.2 above.  One firm’s output choice (qh) is not the only 

factor that influences the product market price; the rival’s choice (qh’) also influences it.  

In order to find the equilibrium results of the payoff matrix at time t = 0, the Nash 

equilibrium outputs (qi, qj) are applied, where each firm’s capacity choice is the best 

response to the other’s optimal capacity decision (Chevalier-Roignant & Trigeorgis, 

2011).  Therefore, one firm’s optimal capacity can be determined by taking the first-order 

condition for the firm’s profit maximization and the rival’s capacity choice as given.  The 

details of Nash equilibrium outputs for the four scenarios are derived separately in 

Appendix A and summarized in the payoff matrix shown in Fig. 3.7.  Finally, the 

resulting equilibrium for the gate decision of the development stage can be obtained from 

the payoff matrix at time t = 0 (Fig. 3.7) by applying the Nash equilibrium with the best 

response analysis, where the competitive outcomes are noted as * * * *[ ( , ), ( , )]i i j j i jX q q X q q  

with the optimal capacity * *( , )i jq q .  
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Fig. 3.7 Profit maximization for each strategic investment decision at time t = 0 

 

3.2.4 Benchmark: the NPV approach 

Suppose the two firms are competing in the target marketplace and Firm i’s and j’s 

unit variable costs ci and cj are constant ( , 0,i j i jc c c c  ).  In the settings of the 

benchmark, the demand will have the constant expected growth rate g.  In addition, the 

profit of Firm i is based on its market share of the overall product quantity in the target 

market.  To earn the maximum overall profit, the industry chooses to produce the output 

that equals their average marginal cost to marginal revenue (Chevalier-Roignant & 

Trigeorgis, 2011).  Therefore, the equilibrium quantity produced in the industry is shown 

in equation (3.24) and Appendix A. 

0

2

a c
Q

b


                                                          (3.24) 

where : average marginal cost ( ) / 2i jc c c   

The capacity of Firm i is computed by its estimated market share ω of the total 

supply quantities in the industry and represents the degree of dominance that Firm i has 

within the particular market.  To simplify the definition, the market share is estimated by 
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the unit variable costs from both firms (ci, cj).  As I assume that there is only one 

competitor, the rival’s unit variable cost directly influences Firm i’s market share as 

expressed in equation (3.25).  Finally, the resulting equilibrium profit of Firm i by the 

NPV approach can be expressed in equation (3.26) and is provided in Appendix A. 

j

i j

c

c c
 


                                                       (3.25) 

0 0

0 0
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3.3 Case Study 

In this section, a numerical example is demonstrated with the analysis and 

comparison of a project with single output.  The market demand follows a binomial 

lattice with the product life cycle as defined in section 3.2.1.  The illustrations of a 

binomial lattice integrated with product diffusion and the relevant market structure 

patterns are presented in section 3.3.1.  Accordingly, the scenarios of payoff matrices in 

the option-game framework are calculated and shown in Section 3.3.2.  I further compare 

my approach to a benchmark and observe the results of the strategic decision and the 

quantity of the planned capacity.   I chose NPV as the benchmark because it is the most 

common and widely used conventional financial method in gate-criteria.  In addition, 

further sensitivity analyses of the project payoffs and the option values are studied based 

on the assumptions of the parameters in section 3.3.3. 
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Suppose Firm i is assessing an individual project at gate-decision of the 

development stage in the NPD process, where all the individual projects have been 

screened and investigated through the strategic buckets approach in the early stages (as 

described in section 3.2).  Some portions of the buckets are the projects with the specific 

dimensions of high risk, uncertain market, short life cycle, a potential competitor, and a 

rapidly changing environment.  Firm i will need to evaluate these categories of projects in 

the gate decision before proceeding to the product development stage.  The questions for 

Firm i are how to evaluate this project at this gate-decision, whether this project should 

proceed to the next stage, and if so, what the optimal quantity of planned capacity will be. 

Firm i and its rival (Firm j) are in a duopoly and share a delay option to invest in an 

NPD project where the option will expire in two years (T = 2).  Both firms make their 

decisions on an annual basis (Δt = 1), and the project will operate for a finite service life 

of N = 4 years with the same interest rate r = 12% and risk free rate rf = 5%.  The current 

demand is given as Q0 = 750, with an expected yearly growth rate of g = 8% and an 

expected standard deviation of σ = 50%.  Both firms have the same current fixed 

investment cost (I0 = $34,500), which would be reduced 15% each year (i.e., I1 = 

$29,325; I2 = $24,926.25).  Firm i has a cost advantage where Firm i’s unit variable cost 

(ci = $10) is less than Firm j’s (cj = $15).  The current (inverse) demand function is given 

as 0 50 0.05p Q  .  Suppose that the firms’ roles and sequences are not determined a 

priori because of the business strategy in the categorized buckets of projects.  Moreover, 

due to the considerations of the product life cycle, reduced fixed investment cost over 

time, and asymmetric unit variable costs, the firms are also not sufficiently distinct.  
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Hence, mixed strategies may give further insights and help determine the values of 

potential decisions.     

3.3.1 Demand structure patterns with product diffusion 

With the above given information (g = 8%, σ = 50%, rf = 5%, T = 2, Δt = 1), I can 

calculate the parameters of the binomial lattice into equation (3.1) and obtain the 

following: u = 1.6487, d = 0.6065, qr = 0.4255, 1-qr = 0.5745, P = 0.58, and 1-P = 0.42.  

The concept of product life cycle is integrated into the binomial lattice depending on 

when the new product is introduced to the market.  There are three integrated demand 

structures considered when the project diffusion is incorporated with the binomial lattice: 

(1) if either firm invests now, (2) if the project is first invested at time 1, and (3) if the 

project is first invested at time 2.   

In the first demand structure, the upward probabilities in the first period and second 

period can be computed from equation (3.2) as 0.71 and 0.54, respectively.  The 

remaining two-year product life after maturity will have the growth rates of -0.13 and -

0.21 for years 3 and 4, respectively, from equation (3.3).  Fig. 3.8 shows the demand 

binomial lattice with product diffusion of N = 4 years product life cycle and the 

cumulative probabilities of demand at time 2 in the first demand structure, where the 

cumulative demand indicates demand at and after time 2 at each end status for the 

observation of the total future demand distribution. 

To compare the demand distribution of a binomial lattice with product diffusion to 

that of a standard one, I assume the standard binomial lattice follows a constant growth 

rate (g = 8%) in a finite project life.  Fig. 3.9 shows that the demand values at each end 

status of the standard method are slightly overestimated without considering product 
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diffusion.  In addition, when product diffusion is considered, if the product is introduced 

to market next period, the probability of the upward status at maturity is increased.  

Moreover, the expected demand at time 2 is computed as 3,141.06 units, which is about 

10.65 percent lower than that of the standard method.  The main reason for the difference 

is that the standard binomial lattice is assumed to have a constant annual growth rate.  In 

contrast, when using the product diffusion concept, the annual growth rate will be re-

calculated based on the different market structure patterns. 

 

 

Fig. 3.8 The binomial lattice with product diffusion of N = 4 product life cycle  

(The first demand structure pattern: if either firm invests now) 

 

The binomial lattices with product diffusion and the demand probability 

distributions at time 2 for the second and third demand structure patterns are shown in 
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Appendix B1.  Overall, the demand distribution will be affected by when the new product 

is introduced to the market (for all three demand structures).  In other words, if either of 

the firms invests in the project in the early periods, the demand distribution at maturity 

will not be optimistic.  Furthermore, in all three demand structures, the expected demands 

at maturity of my approach are 10.65%, 3.06%, and 8.35% lower than those of standard 

ones (in the order of the demand structure), due to the consideration of product diffusion.  

In summary, the demand distribution at T = 2 and the annual growth rate after maturity 

can be overestimated without integrating the concept of product diffusion into a demand 

binomial lattice.   

 

 

Fig. 3.9 Demand distribution at T = 2  

(The first demand structure pattern: if either firm invests now) 

 

3.3.2 Strategic decisions and the optimal planned capacity  

Appendix B2 shows the calculations in each scenario and the payoff matrices in the 

intermediate and terminal statuses.  The results are summarized in Table 3.1.  Applying 

the Nash equilibrium concept, the payoff matrix at time t = 0 can be obtained from 

combining the four scenarios of Appendix B2.  In Table 3.1, both firms will gain negative 

payoffs if they invest simultaneously.  The optimal strategic decision will be for both 
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firms to wait.  The second best outcome will be for either firm to take the action opposite 

of the rival’s to gain the monopoly profit.  Hence, based on these competitive outcomes, 

the firms should not both invest at the same time now, but carefully observe the rival’s 

move.  The optimal planned capacities in each scenario are shown in Table 3.2. 

 

Table 3.1 Payoff matrix at time t = 0 

πi, πj 
Firm j 

Invest Wait 

Firm i 
Invest -$4,583.59 -$16,028.75 $17,220.72 $0.00 

Wait $0.00 $9,136.94 $17,178.73 $9,147.47 

 

 

Table 3.2 The optimal planned capacity 

qi, qj 
Firm j 

Invest Wait 

Firm i 
Invest 467 367 614 0 

Wait 0 564 873 773 

 

In order to compare the results to a benchmark, I use the NPV approach, the 

common and widely used conventional financial method in gate-criteria.  Appendix B3 

shows the details of the calculation of NPV.  The result of NPV is -$17,022.6 with an 

average annual planned capacity of 225 units.  Hence, by this gate-criterion, the negative 

value of NPV makes the current project a kill/no go decision.  Based on the NPV 

criterion, the project should be abandoned, but the option-game approach assesses the 

value of a project’s flexibility and suggests putting the project on a waiting list (Fig. 3.1) 

to see if any new information appears. 
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3.3.3 Sensitivity analyses 

As a numerical example has been demonstrated, in this section, further sensitivity 

analyses of the project payoffs and the option values are studied based on the 

assumptions of the parameters (the expected growth rate g, the expected standard 

deviation σ, the unit variable costs ci, cj, and the project service life N).  All other 

parameters are the defaults from section 3.3.2.  The results of the sensitivity analyses in 

each of the four parameters are shown in Appendix B4.  Overall, the results show that the 

payoffs and option values of Firm i in each scenario become larger when increasing the 

value of the parameter.  In scenario 2 (Firm i invests and Firm j waits at time t = 0), with 

the growing standard deviation, or project service life, Firm i may gain a lower payoff 

from the next period of competitive outcome at time 1, since Firm j may change its 

investment decisions due to the increasing option value.  Therefore, even though Firm i 

has the cost advantage (i.e., unit variable cost), their project profits and/or option values 

could be influenced and partitioned by Firm j’s investment decision when the project 

variability or product service life is high.   

3.3.4 Interpretation of the results 

This case study shows that the integration of product diffusion into a binomial 

lattice of demand influences the demand distribution at T = 2, the probability of an 

upward in demand, and the annual growth rate when compared to a standard one (with a 

constant growth rate in a finite project life).  The results and implications are consistent 

with Bollen’s study (1999).  For the gate-criterion, this approach suggests that the firms 

should not invest simultaneously now, but carefully observe the rival’s move as long as 

there is still value in the decision to wait.  While the conventional NPV criterion gives a 
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kill/no go decision for this project, this approach allows for a “wait-and-see” action.  

Therefore, instead of abandoning a project based on a kill/no go decision, this approach 

determines that the project is worth re-investigating in the next round of periods.  On the 

other hand, the optimal planned capacities in each of the four scenarios can be obtained 

by the Nash equilibrium, which can provide a more strategic preliminary planned 

capacity for the scale of the new product development than that of the NPV approach 

with an average annual planned capacity.  The sensitivity analyses show that in scenario 

2, option values and project payoffs of Firm i can be partitioned by its rival when either 

the parameter of project variability or product service life is high.  As a numerical 

example cannot generalize the results, the next section provides further validation and 

discussion. 

3.4 Validation and Discussion 

The option value approach incorporates potential flexibility, which the NPV 

approach does not consider.  In this section, I use my approach to verify the value of 

managerial flexibility in a project.  I also discuss the research limitations and possibilities 

for future research. 

3.4.1 Validation 

The academic literature has confirmed the value of flexibility, which the NPV 

approach lacks.  Hence, I mainly focus on the value of flexibility provided by the option-

game technique.  It has been proved that the optimal exercise policy for the owner of an 

American call option is to hold the option until maturity (Hull, 2008).  Accordingly, since 

the delay option in this model can be viewed as an American investment option, I will 

validate this model as a European option at maturity for the sake of simplicity.  
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Moreover, Chevalier-Roignant and Trigeorgis (2011) have illustrated the investment 

decisions of a European option at maturity in an asymmetric Cournot duopoly.  They 

conclude that both firms invest simultaneously as an asymmetric Cournot when demand 

is high; a low-cost firm invests as monopoly but a high-cost firm does not when demand 

is in the intermediate; no one invests when demand is low.  From their findings, I can 

employ these sets of investment decisions in each status of maturity as a priori for the 

two-year binomial tree as shown in Fig. 3.10. 

 

 

Fig. 3.10 Investment decisions and payoffs at maturity in an asymmetric Cournot 

duopoly (Chevalier-Roignant & Trigeorgis, 2011) 

 

Consequently, with these payoff functions in each status at maturity (Fig. 3.10), I 

can compute their option value, which is also called strategic net present value (SNPV), 

at time t = 0.  When NPV is subtracted from the value of SNPV, the option premium is 

obtained.  In this way, I can demonstrate the value of managerial flexibility via the 

option-game approach.  More specifically, option premium is used as an indicator in the 
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option-game approach to measure the exclusive strategic value of flexibility, which the 

NPV method lacks. 

Before calculating the option value, Firm i’s resulting equilibrium profit needs to be 

determined.  The details of calculation of resulting equilibrium profits are provided in 

Appendix C.  The project service life is assumed to be N = 4 years.  Hence, the 

equilibrium profits of asymmetric Cournot and monopoly for Firm i are shown in 

equations (3.27) and (3.28), respectively.  With equations (3.27) and (3.28) and the risk-

neutral probability, the present value (t = 0) of the strategic investment option for Firm i 

can be computed as expressed in equation (3.29).  Finally, option premium (OP) is 

obtained with equation (3.29), subtracting the value of NPV, as expressed in equation 

(3.30).  
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As the value of option premium can be influenced by multiple parameters, further 

sensitivity analyses can provide the trends with specific parameters (the expected 

standard deviation of demand σ, the expected yearly growth rate g, the ratio of firms’ unit 
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costs βvc, and the annual reduced rate of the fixed investment cost λ).  All other 

parameters are set as the defaults from the previous section.  The results show that the 

expected standard deviation of demand (σ) is the most critical parameter in the option 

premium.  As shown in Fig. 3.11, option premium grows dramatically with the increasing 

value of σ.   

 

 

Fig. 3.11 Sensitivity analysis of option premium by changing  

the expected standard deviation of demand σ 

 

On the other hand, increasing either the expected yearly growth rate (g) or the ratio 

of the firms’ unit costs (βvc) increases option premium only slightly, as shown in Figs. 

3.12 and 3.13, respectively.  It is noted that when Firm j’s unit variable cost is much 

greater than Firm i’s, the ratio of βvc is larger.  Hence, Firm i can take more cost 

advantage.   
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Fig. 3.12 Sensitivity analysis of option premium by changing the expected yearly  

growth rate g 

 

 

Fig. 3.13 Sensitivity analysis of option premium by changing the ratio of firms’  

unit costs βvc 

 

The last parameter, λ, is defined as the annual reduced rate of the fixed investment 

cost.  It has an upward trend on option premium when the fixed investment cost drops 
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greatly over time.  Therefore, a rising reduced rate of λ will also positively impact option 

premium as shown in Fig. 3.14.    

 

 

Fig. 3.14 Sensitivity analysis of option premium by changing  

the annual reduced rate of the fixed investment cost λ 

 

In summary, option premium is used as an indicator in the option-game approach to 

measure the exclusive strategic value of flexibility, which the NPV method lacks.  The 

results of sensitivity analyses imply that option premium is positively influenced by the 

dimensions and characteristics in the buckets of projects in the area of interest.  

Particularly, the high risk and uncertain projects in the market have higher value of 

flexibility in this approach, while the NPV method does not consider the uncertainty.  

Moreover, the above results of the demonstrated option premium are based on the 

assumption of a European option.  An American option is generally more valuable than a 

European option, since it can be exercised at any time before maturity.  Therefore, the 
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American investment option in this approach can provide an equivalent or even better 

option premium. 

3.4.2 Limitations and possible extensions 

As I focus on individual project assessment at gate-criterion of the development 

stage in the NPD process (Fig. 3.2), this gate criterion will determine whether the project 

goes to the active development level in the next stage of development.  When the market 

condition of the project is highly uncertain, the option-game approach can assess the 

value of flexibility, which is inadequately assessed in the NPV method.  While the NPV 

criterion offers a go/kill decision, the option-game approach instead provides a go/wait 

decision.  The decision to wait is especially significant for risky projects.  Both passive 

and active strategies can be used in a delay option (Mun, 2006).  In the passive wait-and-

see strategy, the project will go to the waiting list.  Meanwhile, the firms wait and gather 

new information, and the project will be re-investigated in the next round of periods.  

Alternatively, they may also use an active market research strategy.  Instead of waiting 

until the next period, firms may budget more for marketing in order to collect 

information.  The maximum value to spend on marketing information is the value of 

option premium. 

The gate-criteria for projects are multidimensional in the NPD process. Especially 

in the early and middle stages, the financial data are inadequate and inaccurate.  Multiple 

qualitative and quantitative factors are not considered thoroughly in this option-game 

framework, such as gathering new information, technical success rate, product quality, 

periodic linking to business strategy, etc.  Hence, most companies use other supportive 

methods in conjunction with financial models in their management (Cooper et al., 2001), 
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such as scoring models and QFD (quality function deployment).  Most importantly, 

unlike the conventional financial methods, the option-game approach provides a project 

evaluation of managerial flexibility.  Combined with other standard approaches, the gate-

criteria for project assessment can become more comprehensive. 

3.5 Summary and Conclusion 

In this chapter, I develop an option-game framework for the gate-criterion of a 

project in the NPD process for which the market demand is uncertain and the new 

product is in a short life cycle.  The decision to delay adds flexibility, allowing firms to 

use a passive wait-and-see strategy or an active market research strategy while delaying.  

The standard conventional financial method in gate-criteria, NPV, is inadequate when 

projects face uncertainty.  Hence, while the NPV criterion offers a go/kill decision, the 

option-game approach instead provides a go/wait decision.   

The results of sensitivity analyses of option premium imply that option premium is 

positively influenced by the dimensions and characteristics of the project buckets on 

which I focused.  Predominantly, high risk and uncertain projects have a higher value of 

flexibility.   

To consider a short product life cycle, I integrate product adoption rates (Rogers, 

1995; Bollen, 1999) into the option-game framework for evaluating an NPD project.  I 

further develop the formal mathematical option-game framework in the discrete-time 

analysis when dealing with an American investment option in a finite project life.  In this 

model, I consider the results of both simultaneous and sequential investment decisions in 

each scenario of the duopolistic game.  Moreover, I can also use this technique to 

compute the optimal selection of the planned production capacity.  The optimal planned 
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capacities in each of the four scenarios can be obtained by the Nash equilibrium, which 

can provide a more strategic preliminary planned capacity for the scale of the new 

product development. 

The strategic buckets approach in the early stages of the NPD process links the 

business strategy and the portfolios (Cooper et al., 1997).  The option-game framework in 

the gate-criterion of the development stage allows further inspection and examination of 

the individual projects in the development process.  Most importantly, in contrast to the 

commonly used financial methods, the option-game approach provides a project 

evaluation of managerial flexibility.  Many companies use other supportive methods in 

conjunction with financial models in their management (Cooper et al., 2001), such as 

scoring models and QFD.  Combined with other standard approaches, the gate-criteria for 

project assessment become more comprehensive. 
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Chapter 4 Assessing Managerial Flexibility in a New Product  

Development Project: An Option-Game Approach 

in a Duopoly with Bayesian Analysis 
 

 

 

 

Abstract 

 

 

Effective gates are central to the success of an idea-to-launch product development 

process.  The most common financial gate-criterion, the net present value (NPV) method, 

is insufficient when the success of a project is uncertain.  Alternatively, the real-option 

valuation is inadequate when a strategic decision is affected by the moves of the 

competition.  In this chapter, I develop the idea for a discrete option-game valuation 

framework that explicitly incorporates statistical decision theory in the form of Bayesian 

analysis.  The high volatility in an initially uncertain market is diminished via consumer 

information updates and by understanding the requirements and preferences of the 

customers.  In addition, an inverse measure of product differentiation is included in the 

option-game mechanism to describe whether two goods are homogeneous, substituted, or 

independent, and to what degree.  I introduce this approach as a gate-criterion to evaluate 

a new project at the gates of the development stages in a new product development 

(NPD) process.  In a highly uncertain target market, evidence of high demand warrants a 

“go” action, especially when a firm has the cost advantage in competing with its rival's 

highly comparable product.  This research has important implications for stage-gate 



72 

 

management when investigating an NPD project in the duopoly game during the product 

development process.  By this approach, industry players can make the proper strategic 

decisions in a project assessment at the gates of the development stages.   

Keywords: option-game, asymmetric duopoly, Cournot competition, product 

differentiation, gate-criteria, new product development, Bayesian analysis  

 

 

 

 

4.1 Background 

Effective gates are central to the success of an idea-to-launch product development 

process.  Yet the majority of the businesses in Cooper and Edgett’s study (2012) 

indicated that they lacked a fact-based and objective approach to decision-making at the 

gates of the new product development (NPD) process.   

4.1.1 New product development (NPD) 

NPD is widely regarded as a vital source of competitive advantage (Bessant & 

Francis, 1997).  An NPD process from idea to launch consists of multiple stages, such as 

the project screening, monitoring, and progression frameworks of Cooper’s stage-gate 

approach.  A stage-gate process is a conceptual and operational blueprint for managing 

the NPD process (Cooper, 2008).  Nowadays, instead of a standardized mechanistic 

implementation process, there are many different versions to fit different business needs 

(Cooper, 2008).  In an idea-to-launch product process, each stage has defined procedures 

and requires the gathering of relevant information.  Following each stage is a “gate” 

where go/kill decisions are made to manage the risks of new products and to serve as a 

quality-control checkpoint to continue moving the right projects forward (Cooper & 

Edgett, 2012; Cooper, 2008; Carbonell-Foulquié et al., 2004).     
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Cooper (2008) explains the stage-gate process as being very similar to that of 

buying a series of options on an investment: as each stage costs more than the preceding 

one, the initial amount of cost is analogous to the purchase of an option.  Then the 

decision of whether or not to continue investing in the project is made at the gate 

(maturity), while new information is gathered during the stage.  Indeed, the flexibility of 

the real-option approach corresponds to the structure of the NPD process, allowing 

developers to build options into products and projects during decision-making, especially 

in areas of uncertainty (Mun, 2006).  Huchzermeier and Loch (2001) incorporated the 

operational sources of uncertainty with real-option value of managerial flexibility and 

introduced an improvement option to take corrective actions during the NPD process for 

the purpose of better product performance.  However, a major problem with this 

approach is the limited knowledge of evaluating projects and the difficulty of making 

critical go/kill decisions throughout the entire development process (Schmidt & 

Calantone, 1998; Carbonell-Foulquié et al., 2004), especially in a rapidly changing and 

competitive environment.   

4.1.2 Problem statement 

Though both researchers and practitioners agree on the significance of gate-criteria 

(Carbonell-Foulquié et al., 2004; Agan, 2010), gates are rated as one of the weakest areas 

in product development (Cooper, 2008; Cooper, Edgett, & Kleinschmidt, 2002, 2005).  

Only 33 percent of firms have rigorous gates throughout the NPD process (Cooper, 

Edgett, & Kleinschmidt, 2002, 2005).  In too many companies, gates either do not exist 

or are not effective, allowing numerous bad projects to proceed (Cooper, 2008; Jenner, 

2007; Cooper & Edgett, 2012). In addition, almost two-thirds of the respondents in 
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Cooper and Edgett's study (2012) indicated that gatekeepers’ contributions were of low 

quality.  With a lack of robust and transparent decision-making criteria, gatekeepers often 

implement stage-gate decisions with the naive belief that using opinion and even personal 

agenda is effective (Cooper, 2008).    

Moreover, since voice-of-the-customer input is identified as one of the drivers of 

success in an NPD process (Cooper & Edgett, 2012; Calantone et al., 1995), the criteria 

in a project assessment should involve the understanding of customer needs (Scott, 2000; 

Bessant & Francis, 1997; Griffin & Hauser, 1996).  Due to shorter product life cycles in 

fast-paced industries, it is not necessary to wait for perfect information at the pre-defined 

gate for decision-making.  Stages can be overlapped in a stage-gate process by using 

spiral development, allowing product development to continuously  incorporate valuable 

customer feedback into product design during an NPD process until the final product is 

closer to customers’ ideal (Cooper, 2008).  In contrast to traditional uncertainty reduction 

methods in real-option theory, which are a passive process (Miller & Park, 2005), 

Artmann (2009) derived the Bayesian updating formulation for the market requirement 

distribution and integrated this mechanism into a real-option framework.  In addition to 

the problem of predicting product demand, decision makers must also consider what 

competing companies are doing.  Because “similar product developments exist in greater 

or lesser degrees in almost all product areas” (Smith, 1995), the competitor's involvement 

in a dynamic setting could influence one firm’s output choice in the target market.  

Hence, in a competitive marketplace, the real-option valuation methods fall short in 

resolving the dilemma when the moves of a rival are involved (Ferreira et al., 2009).  

Recently, however, Smit and Trigeorgis (2006) introduced the concept of “option-game,” 
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combining real-option (which relies on the evolution of prices and demand) and game 

theory (which captures the moves of competitors) to quantify the value of flexibility and 

commitment. 

4.1.3 The scope of this chapter 

Owing to “too many projects in the pipeline” (Cooper, 2008), I am interested in 

decision-making at the gates of an NPD process, particularly involving new information 

from a competitor’s interactions and from the requirements and preferences of the 

customers.  Ronkainen (1985) pointed out that the go/kill decision-making at each gate 

should vary across product development stages.  Moreover, Cooper (2008) indicated that 

most contributions to higher success rates are from the front end of stage-gate decision-

making, where serious financial commitments are started during the go-to-development 

stages.  Therefore, this chapter focuses specifically on the outset of the development 

stages and the iterated sub-decisions of prototyping and testing within the development 

stages as shown in Fig. 4.1.    

In contrast to the assumptions in chapter 3, I assume that a new project is competing 

with a latent product to an inverse measure of product differentiation in the market at the 

outset of the development stages.  During the sub-decision gates of development (Fig. 

4.1), two kinds of new information about market risks are considered: a parameter of one 

competitor’s (inverse) product differentiation and the requirements and preferences of the 

customers.  In other words, one competitor may invest in a related project during the 

development stages, when information about the degree of (inverse) product 

differentiation might be unknown or uncertain at the outset.  While I assumed product 

homogeneity in chapter 3, I relax this assumption here and assume that the firms are 
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producing differentiated goods.  Two products from two firms are differentiated when 

there are actual substitute products but not perfect substitutes (Motta, 2004).  In addition, 

realizing the increasing importance of customer orientation (Sun, 2006), companies target 

a new project at a certain domain of market segmentation, according to the requirements 

and preferences of the customers.  Yet prediction of customers’ requirements is difficult 

because customers do not necessarily realize what their future needs are in the early 

stages of product development (Artmann, 2009), making it difficult for producers to 

estimate the nature of market demand (Smith, 1995).   

 

 

Fig. 4.1 Decision-making during the stages of product development  

 

As time progresses during the stages of development (Fig. 4.1), variations in 

demand can be diminished by effective use of updated information about the 

requirements and preferences of customers.  In addition, managerial flexibility should be 

considered when a latent product with a certain degree of (inverse) product differentiation 

is present in the future competing market.  Consequently, considering the above two 
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factors, I propose a discrete option-game valuation framework that explicitly incorporates 

statistical decision theory in the form of Bayesian analysis in an NPD project.  In view of 

the fact that projects are rarely killed at gates after the stage of idea screening (Jenner, 

2007), I introduce this approach as a rigorous gate-criterion to evaluate a new project 

during the stages of development (Fig. 4.1).  As Anderson (2008) pointed out, successful 

management of current product development requires the overall integration of strategy, 

process, measurement of performance, and continuous improvement.  Therefore, this 

product development process is discussed in the context of strategic portfolio 

management.  Hence, this method is based on the strategic buckets method for NPD 

projects and is tailored for products in the dimensions of high variability in the initial 

markets and uncertainties about latent and competitive products. 

As this research builds on concepts that have been previously proposed but not fully 

developed, the relevant literature concepts have been reviewed and discussed above.  The 

remaining parts of this chapter are organized as follows.  In section 4.2, I define the 

model description and develop this work by using an extended version of the former 

structure for my valuation model.  The theory of Bayesian analysis is integrated with a 

valuation model that allows updating the variability of a target market.  In addition, a 

latent rival’s product development in a certain degree of (inverse) product differentiation 

is considered in the option-game approach.  In section 4.3, I provide a case study to 

demonstrate the model and compare the results with two benchmarks.  The first 

benchmark is the NPV method, used to represent the actions of go/kill at the outset of 

development stages and the action of go for the remaining NPD process to highlight the 

many industrial problems.  The second benchmark is based on Artmann’s study (2009), 
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in which a real-option framework is incorporated with Bayesian analysis.  In section 4.4, 

I further validate my valuation model against the benchmarks and discuss the results.  

Section 4.5 summarizes the results and concludes the chapter. 

4.2 Model Development 

Suppose that projects are initially screened and selected through the strategic 

buckets approach in the early stages of the NPD process.  I am interested in the 

assessment of individual projects at the gate and sub-gates of the development as shown 

in Fig. 4.1.  Specifically, I focus on evaluating the buckets of projects with the following 

characteristics and dimensions: (1) managerial flexibility, expected for market-uncertain 

projects, (2) potential competing products from rivals in certain degrees of (inverse) 

product differentiation, (3) new projects with a short life cycle, and (4) high variability in 

the target market, mainly from high diversity or differences in initial customer 

requirements.  

Because the NPD process is a conceptual blueprint with pre-defined stages of idea-

to-launch development and because different products have different development 

processes (Cooper, 2008), I summarize the basic concept of an NPD process here.  Fig. 

4.2 shows the scope of the NPD process that I will discuss.  The gate of go-to-

development with an initial development cost (I0) is the starting point (t = 0) in cash 

flow.  The next is the development stage, consisting of multiple sub-gates for product 

prototype development.  To simplify the prototype process, I set two sub-gates during the 

development stage (Fig. 4.2) with the first and second advanced development costs (I1 

and I2).  In the remainder of this chapter, the term “development stages” will refer to this 

entire step of the development process, including the two sub-gates.   
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Fig. 4.2 Product development process and the corresponding cash flows 

 

Following the development stages, the next two stages of testing/validation and 

production/launch have a testing cost (I3) and a launch investment cost (I4), respectively.  

Thereafter, products are sent to market, and the annual profit occurs one period after 

launch with N periods of project service life.  For the purpose of simplifying the symbols 

of the model, I demonstrate that the time intervals of the cash flows are equivalent in the 

time horizon (Fig. 4.2).  Note that different time intervals of the cash flows will be 

demonstrated in the next section with a case study. 

In this chapter, I focus on assessment of an individual project at the gate of go-to-

development and on the two sub-gates of the development stages in the context of a 

potential competitor and updated customer requirements, thereby implementing a 

rigorous evaluation method but retaining the value of flexibility for the ongoing NPD 

projects as shown in Fig. 4.3.   
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Fig. 4.3 The concept of model structure 

 

To achieve these goals, in section 4.2.1, the evolution of demand is illustrated by a 

basic binomial lattice combined with the concept of a product life cycle (as shown in 

chapter 3).  I define the linkage of market demand and the distribution of customer 

requirements and preferences.  Hence, I base the NPV method (benchmark A) on these 

settings, taking the actions of go/kill at the gate of go-to-development and the action of 

go at the sub-gates of the development stages.  In section 4.2.2, I demonstrate how new 

information about the requirements and preferences of the customers can be updated with 

statistical decision theory in the form of Bayesian analysis until the first sub-gate of the 

development stages is reached, thus diminishing the variation of market demand.  

Therefore, the real-option framework with Bayesian analysis (benchmark B), taking the 

actions of go/kill at the first sub-gate, will be defined under these settings.  Section 4.2.3 

considers managerial flexibility with a latent product with a certain degree of (inverse) 
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product differentiation, representing the discrete option-game valuation framework.  

Finally, I compare this approach to two basic benchmarks and further discuss the results 

in sections 4.3 and 4.4. 

4.2.1 Demand evolution and the probabilities of upward in demand 

A binomial lattice framework is used to represent the market demand uncertainty 

(Q) within four periods as shown in Fig. 4.4.  The binomial model is multiplicative in 

nature, and thus demand is always positive.  Since the percentage changes in the demand 

over short intervals of time are normally distributed (Luenberger, 1998; Park, 2011), I 

can define the normal random variable y with expected yearly growth rate g and volatility 

yearly growth rate σ, i.e., 2~ ( , )y N g  .  The parameters of a binomial lattice from 

Luenberger (1998) are shown in equation (4.1). 
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On the other hand, suppose the market research contains information on market 

performance requirements and customer requirements and preferences.  The former 

represents the expected product performance from the customers, which is assumed to be 

normally distributed in Artmann (2009).  The latter indicates the firm’s knowledge of 

customer preferences, such as customer life-stage, accumulation of product knowledge, 

change in financial resources, consumption experience, etc. (Sun, 2006).  As Edwards 

and Allenby (2003) proposed a multivariate normal distribution for analyzing multiple 
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binomial response data arising in the study of consumer surveys, it is reasonable to 

assume that the overall data of customer preferences is also normally distributed.  Hence, 

the linear combination of the above two components is normally distributed.  

Consequently, I can assume that the random variable of customer requirements and 

preferences x is normally distributed with mean μx and variance ξx
2
, i.e., 

2~ ( , )x xx N   .  

 

 

Fig. 4.4 Demand binomial lattice and the decision gate and sub-gates 

 

Moreover, Smith (1995) pointed out that “lack of homogeneity on the demand side 

may be based upon different customs, desires for variety, or desires for exclusiveness, or 

may arise from basic differences in user needs.”  Therefore, I can assume that the factor 

of customer requirements and preferences x plays a key role on the demand side.  The 

random variable x, customer requirements and preferences, can be defined as the joint 

index transforming from the entire weighted customer responses, because a formal 
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treatment of the transformation from consumer questionnaires to the statistical 

relationship is outside the realm of this research (Edwards & Allenby, 2003; Kamakura et 

al., 2003).  Therefore, I emphasize the relationship of customer requirements and 

preferences on the demand side: larger variability in the index of customer requirements 

and preferences can indicate greater volatility of the growth rate in demand.  

Accordingly, I can say that there is a positive correlation between customer requirements 

and preferences x and the percentage changes in the demand y, as expressed in equation 

(4.2). 

2 2( , )x xy x N                                                        (4.2) 
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Suppose that the correlation coefficient γ in equation (4.2) is estimated by the 

weighted ratios of the factors that affect demand.  Suppose further that the correlation 

coefficient is a constant.  Based on the initial market research and past project experience, 

the current demand is given as Q00.  To determine market-clearing price and the firm 

profits, industry structure models commonly assume a linear (inverse) demand function 

(Chevalier-Roignant & Trigeorgis, 2011).  Suppose that, based on the discrete-time 

model of Smit and Trigeorgis (2004) and Chevalier-Roignant and Trigeorgis (2011), the 

demand intercept in the linear market demand function follows a multiplicative binomial 

process as shown in equation (4.3).  

  t   t bQ   ( )t i jb q q                                            (4.3) 
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        , : constant parameters, , 0;t tb a b 

: the total quantity that will be supplied in the market;Q

   follows a multiplicative binomial processt

 

The intercept of demand function     is followed by a stochastic binomial as shown 

in Fig. 4.5 for four periods: at each up move,     is multiplied by u, while at each down 

move it is multiplied by d from equation (4.1).  When     goes to time 1, it is noted as    , 

which indicates it could be either      or     .  Similarly, when     goes to time 2, it is 

noted as    , which indicates it could be     ,     , or     .  The same concepts are used for 

the notations at times 3 and 4. 

 

  

Fig. 4.5 Multiplicative binomial process followed by the intercept of demand      
at time t ( 4t  ) 

 

The expected intercept of demand at time 2,     , can be computed by the intercepts 

of demand at time 4, multiplying by the corresponding cumulative probabilities from 



85 

 

equation (4.1).  Similarly, the expected intercept of demand at time 0,     , can be 

obtained by the same procedures which are shown in equation (4.4).   

   2  

 
 
 

 
    

2

22 P   44 2 (1 )P P    2

43 (1 )P    42

   2

21 P   43 2 (1 )P P    2

42 (1 )P    41

   2

20 P   42 2 (1 )P P    2

41 (1 )P    40

 

2
000 :a a P    22 2 (1 )P P     2

21 (1 )P     20

                              (4.4) 

Suppose two firms are competing in the target marketplace, where Firm i’s and 

Firm j’s unit variable costs ci and cj are constant ( , 0,i j i jc c c c  ).  Hence, the project 

values at time 4 (Fig. 4.4) can be computed from the future expected cash flows.  The 

market-clearing price is calculated based on a linear (inverse) demand function from 

equation (4.3) with an average unit variable cost in the different statuses of the binomial 

lattice.  As shown in Fig. 4.4, suppose the product is planned to be launched at time 5, 

with a project service life of N years.  The demand after time 4 in the binomial lattice will 

follow the annual expected growth rates according to the product life cycle.  The annual 

profit after time 4 in the binomial lattice grows at an annual expected growth rate g4+m at 

time 4+m (m = 1, 2,…,N) with a risk-adjusted discount rate r ( 4 mr g  ).  Hence, based on 

chapter 3, the total future growth of the project value at time 4, G4, can be expressed as 

shown in equation (4.5).   

5 5 6 5 4
4 2

1 (1 )(1 ) (1 )...(1 )
...

1 (1 ) (1 )

N

N

g g g g g
G

r r r

    
   

  
                         (4.5) 

Therefore, with these settings, the profit function of Firm i by benchmark A at the 

second sub-gate (time 2) can be expressed in equation (4.6) as shown in Fig. 4.4 (also 

provided in Appendix A). 
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A 24
2 2 2

[
(1 )

i S i

G
I bQ c Q

r


     


   2 ]  Q

                                     (4.6) 

3 4
2 2 1 2

2 3 4

where , : interest rate;A : benchmark A;
(1 ) (1 )

: second advanced development cost, : testing cost, : launch investment cost

S

I I
I I r

r r

I I I

  
   

The profit function of Firm i by benchmark A in equation (4.6) is an absolute 

fraction of all sales in the market.  Hence, the capacity of Firm i is computed by its 

estimated market share ω of the total supplied quantities in the industry, representing the 

degree of dominance that Firm i has within the particular market.  According to the 

possible factors that determine the estimated market share in Harper (2011), I define the 

estimated market share ω as expressed in equation (4.7) and Appendix A by the unit 

variable costs (ci, cj), and the parameter of the (inverse) product differentiation τ of both 

firms.  As I assume that there is only one competitor, the rival’s unit variable cost directly 

influences Firm i’s market share.  The parameter of the (inverse) product differentiation τ 

of two products from two firms consists of product functions and positions, Harper’s 

(2011) comparative dominance of the developer’s brand over competitors, comparative 

performance of the developer’s product over competitors, and historical values for the 

developer’s comparable products.  If τ = 0, then both products are independent.  If τ = 1, 

then both products can be viewed as homogenous products.   

(1 )i j

i j

c c

c c




 



                                                     (4.7) 

where : a parameter of the (inverse) product differentiation,0 1    
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Consequently, the profit function of Firm i by benchmark A at the gate of go-to-

development in Fig. 4.4 can be rewritten from equation (4.6) with two forward periods, as 

expressed in equation (4.8). 

A 24
0000 4

[ ] 
(1 )

i i

G
I bQ c Q a Q

r


      


                                   (4.8) 

1 2
0 1 2

1 0

where ,
(1 ) (1 )

: first advanced development cost, : initial development cost

SI I
I I

r r

I I

  
   

Under these settings in benchmark A, the profit of Firm i is based on its market 

share of overall product quantity in the target market.  To earn the maximum overall 

profit, the industry chooses to produce the output that equals their average marginal cost 

to marginal revenue (Chevalier-Roignant & Trigeorgis, 2011).  Therefore, the equilibrium 

quantity produced in the industry is shown in equation (4.9) and Appendix A. 

00

2

a c
Q

b


                                                             (4.9) 

1
2

where : average marginal cost ( )i jc c c   

Finally, the resulting equilibrium profit of Firm i by benchmark A can be expressed 

in equation (4.10) and Appendix A. 

00 00
4

00 4

( )( 2 )
NPV

(1 ) 4

i

i

a c a c cG
I

r b

   
  


                           (4.10) 

4.2.2 Demand variance update: Bayesian analysis 

The purpose of obtaining updated information about customer requirements and 

preferences is to diminish the variation of market demand at the first sub-gate of the 

development stages.  Hence, suppose that the initial target group of the customers has a 
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specified value of mean, while firms are uncertain about the true variance of customer 

requirements and preferences.   

Customer requirements and preferences x (defined in section 4.2.1) follows a 

normal distribution with known mean μx (μ ϵ R) and unknown variance ξx
2
 (ξx > 0), i.e., 

f(x|μx) = N(μx,ξx
2
).  Since ξx

2
 is unknown, suppose that the prior distribution of ξx

2
, i.e., 

g(ξx
2
), is inverse gamma distributed, IG(α,β) (where α,β >0).  According to Artmann’s 

(2009) proof, therefore, customer requirements and preferences at time 0, based on the 

prior information, is t distribution noted as m(x) = St(x|μx,(αβ)
-1

,2α). 

In order to determine the posterior predictive distribution of the customer 

requirements and preferences, I need to determine the posterior distribution of the 

unknown variance ξx
2
 first, as dealt with in sample observations.  As shown in Raiffa and 

Schlaifer (1961) and Artmann (2009), after the update with actual data z = x1,…,xnx, 

which denotes a random sample from nx independent observations of customer 

requirements and preferences, the posterior distribution of ξx
2
 is given by g(ξx

2
|z) = 

IG(ξx
2
|α’,β’).   The values of α’, β’ are shown in equation (4.11). 

' ' 2 1

1

1 1
 and [ ( ) ]

2 2

xn

x
i x

i

n
x   







                                   (4.11) 

: number of the random samples of customer requirements and preferencesxn  

With the update to the posterior distribution of ξx
2
, given the actual sample data z = 

x1,x2,…,xnx, based on Artmann (2009), customer requirements and preferences are then t 

distributed, i.e., m(x|z) = St(x|μx,(α’β’)
-1

,2α+nx) with degree of freedom 2α+nx.  As the 

number of degrees of freedom grows, the t-distribution approaches normal distribution.  

Hence, with the constant correlation coefficient γ, the percentage changes in the demand 
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y in equation (4.2) can be updated as expressed in equation (4.12), as shown in Appendix 

A.   

' ' 2 2'( , )x xy x N                                                 (4.12) 

' ' 2 '

' 2 '

2 ' ' ' 1 1

where : the updated percentage changes in the demand, ( , ); ;

: the updated customer requirements and preferences ( , ) w/ 2 30;

(2 )( ) (2 2)

x x x

x x x

y y N g R

x N n

n n

 

  

     

 

  

   

 

Therefore, as the volatility of the yearly growth rate is updated to σ
2
’, the demand 

binomial lattice is re-structured after the first period, so that the new parameters of the 

binomial lattice can be recalculated from equation (4.1) as shown in equation (4.13). 

' ' ' '

'

'

' '

'

'

 , 1/

 The updated risk-neutral probability of an upward:

(1 )
   

 The updated probability of an upward:

1 1
   ( )

2 2

t

f

r

u e d u

r d
q

u d

g
P t





  



 






  

                  (4.13) 

2' 2 ' ' 1 1where (2 )( ) (2 2)x xn n           

As a result, the real-option framework with Bayesian analysis (benchmark B) 

considers the actions of go/kill at the first sub-gate.  Under these settings, the payoff 

function of benchmark B at the second sub-gate can be rewritten from equation (4.6) with 

the new updated parameters as expressed in equation (4.14).  Accordingly, the resulting 

equilibrium profit of Firm i at the second sub-gate can be written as equation (4.15). 

' '
B' 2' '4
2 2 2

[
(1 )

i S i

G
I bQ c Q

r


     


   ' '

2 ] Q
                            (4.14) 

' ' ' ' '
' 5 5 6 5 4
4 2

1 (1 )(1 ) (1 )...(1 )
where B: benchmark B; ...

1 (1 ) (1 )

N

N

g g g g g
G

r r r

    
   

  
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                               (4.15) 

Finally, with the new information updated by Bayesian analysis, the strategic net 

present value (SNPV) of benchmark B at the first sub-gates of up and down statuses can 

be written as equation (4.16). 

 
 
 

 
 B'

11SNPVi   B'

11i 

' max[0,rq   
B' '

22] (1 )max[0,i rq    
B'

21]i

1 fr
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10SNPVi   B'

10i 

' max[0,rq   
B' '

21] (1 )max[0,i rq    
B'

20 ]i

1 fr

                     (4.16) 

4.2.3 Discrete option-game valuation 

At the starting point (the gate of go-to-development), I consider managerial 

flexibility with a latent product in a certain degree τ of the (inverse) product 

differentiation in the following periods of the two sub-gates, representing a potential 

competitor’s involvement in the target market (Fig. 4.3).  The parameter τ has been 

defined as the degree of the (inverse) product differentiation between Firm i and a latent 

competitor, Firm j.  From the first-order conditions of the consumer problem in the linear 

demand model (Motta, 2004), a linear (inverse) demand function with parameter τ can be 

written as shown in equation (4.17).  If τ = 0, then qi and qj are independent, meaning that 

both products maximize differentiation.  If 0 < τ < 1, then qi and qj are substitutes.  If τ = 

1, then qi and qj are perfect substitutes (homogenous products). 

  4   4 i jbq b q                                                  (4.17) 

        4 , ; , : quantities of Firm '  and 's productsi j i jc c q q i j  
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Suppose that the two firms have different unit variable costs ( i jc c ).  Both firms 

face the same interest rate r and risk free rate rf.  Consider that both firms compete in 

quantities after product launch (i.e., Cournot competition), choosing qi, qj so as to 

maximize their profits.  The profit function of Firm i at the second sub-gate can be 

expressed as shown in equation (4.18) and provided in Appendix A, where C is the 

symbol of Cournot competition.     

  C 24
2 2 2

[ (
(1 )

i S i

G
I bq

r
    


   2 ) ]i i j ic q bq q                         (4.18) 

By substituting the reaction functions (into each other), Firm i’s equilibrium 

quantity can be written as shown in equation (4.19) (Appendix A).  Hence, Firm i’s 

resulting profit at the second sub-gate is derived in Appendix A and shown in equation 

(4.20). 

C

iq 
   2 2 i jc c 

3b

                                                      (4.19) 
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(    
2

2 2 )i jc c 

9b
                                       (4.20) 

On the other hand, if Firm i has a monopoly, the linear (inverse) demand function 

from equation (4.17) is rewritten as    4   4 ibq    Hence, based on Chevalier-Roignant 

and Trigeorgis (2011), Firm i’s equilibrium quantity and profit in monopoly at the second 

sub-gate can be expressed as shown in equations (4.21) and (4.22), respectively, where M 

is the symbol of monopoly. 

M

iq 
   2 ic

2b

                                                       (4.21) 
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Therefore, the resulting equilibrium outcome at each status of the second sub-gate 

can be obtained from the duopolistic payoff matrices by applying the Nash equilibrium 

concept, in which the optimal competitive outcomes at each status of time 2 are noted as 

   *

2 ,i   *

2j  .  The 2-player payoff matrices at the second sub-gate can be written as shown 

in equation (4.23).  Accordingly, the strategic value of the option-game approach at the 

first sub-gate of Firm i can be obtained by the Nash equilibrium with the best response 

analysis, as expressed in equation (4.24), where OG is the symbol of option-game.  

   *

2 ,i   *

2 )j   
   C * *

2 ( , ),i i jq q   C * *

2 ( , )j i jq q     M *

2 ( ),0i iq  

 0,  M *

2 ( )j jq       
                           (4.23) 
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1;I   C

10i 
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20 )i

1 fr
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Finally, the strategic value of the option-game approach at the gate of go-to-

development of Firm i can be obtained from the 2-player payoff matrix by the Nash 

equilibrium with the best response analysis, as expressed in equation (4.25). 

OG *

00 00 0SNPVi iX I                                                 (4.25) 
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As time goes to the first sub-gate, suppose that the distribution of customer 

requirements and preferences has been updated with the collected data (section 4.2.2), so 

the new strategic value of the option-game approach at the first sub-gate of Firm i can be 

obtained from the updated 2-player payoff matrices by the Nash equilibrium with the best 

response analysis, as shown in equation (4.26). 
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11SNPVi   OG'

11i   *'

11 1i I
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                                             (4.26) 

        *'

2 ,i   *'

1: the updated competitive outcomes of Firm  at time 2 and 1; i i
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4.3 Case Study 

In this section, I demonstrate a numerical example and analyze and compare a 

project by different approaches.  At the starting point (the gate of go-to-development), 

Firm i considers managerial flexibility with a latent product in a certain degree of the 

(inverse) product differentiation τ at the future sub-gates of the development stages.  I 

first compare this approach to benchmark A, the NPV method, which is the widely-used 

conventional financial method in gate-criterion, and observe its results for the strategic 

decisions and present payoff values at the starting point in section 4.3.1.  Section 4.3.2 

illustrates the update of customer requirements and preferences with the collected sample 
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data, accordingly updating the demand, so that the market demand follows a binomial 

lattice with a short product life cycle.  I then compare this approach to benchmark B, the 

real-option approach with Bayesian analysis, and observe the results of the strategic 

decisions and the payoff values at the first sub-gate of the development stages.  Finally, a 

summary is in section 4.3.3. 

Suppose that Firm i is assessing an individual project in the NPD process and that 

all the individual projects have been screened and preliminarily investigated through the 

strategic buckets approach in the early stages.  Some portions of the buckets are the 

projects with the specific dimensions of an uncertain market, a short life cycle, one 

potential competitor, and a rapidly changing environment.  Firm i will need to evaluate 

these categories of projects at the gate of go-to-development and at the sub-gates of the 

development stages, as shown in Fig. 4.6.  The questions for Firm i are how to evaluate 

this project at these gate-decisions when there might be a latent competitor’s product in 

the next decision point, and, should this project proceed to the next stage, how the 

decisions would change at the sub-gates based on the different approaches when the 

additional sample information is collected. 

Fig. 4.6 shows this project’s current and remaining gates and stages in the NPD 

process in the following sequence: the gate of go-to-development, the first and second 

sub-gates of development, the stage of testing and validation, and the stage of production 

and launch, with the corresponding costs of an initial development cost (I0 = $4,500), the 

first advanced development cost (IS1 = $6,000), the second advanced development cost 

(Ia), the testing cost (Ib), and the launch investment cost (Ic).  Assume that the sum of the 

values for the last three fixed costs is given at the second sub-gate as IS2 = $25,000 
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(assuming the rival has the same fixed costs).  Firm i and a rival (Firm j) in a duopoly 

may share an option to invest a similar NPD project with an initial parameter of the 

(inverse) product differentiation τ = 0.75, where the option will be expired in six months 

(T = 2/4), which is at the second sub-gate of the development stages (Fig. 4.6).  The 

project will operate for a finite service life of N = 4 years after product launch with the 

same interest rate r = 12%, and a risk free rate of rf = 5%.  Based on the initial market 

research and past experience, assume that customer requirements and preferences x is 

normally distributed with mean μx = 2% and standard deviation ξx = 62.5%.  The current 

demand is given as Q00 = 750.  With the estimated correlation coefficient γ = 0.8 and ε = 

0.064, an expected yearly growth rate of g = 8% in demand and the expected standard 

deviation of σ = 50% are obtained from equation (4.2).  Firm i has a cost advantage 

where Firm i’s unit variable cost (ci = $10) is less than Firm j’s (cj = $12).  The current 

(inverse) demand function is given as 0 55 0.05p Q  .       

 

 

Fig. 4.6 Cash flows in this numerical example 
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4.3.1 Strategic decisions at the starting point (the gate of go-to-development) 

With the above information (g = 8%, σ = 50%, rf = 5%, T = 2/4, Δt = 1/4), I can 

calculate the parameters of the binomial lattice from equation (4.1) and obtain as the 

following: u = 1.2840, d = 0.7788, qr = 0.5368, 1-qr = 0.4632, P = 0.54, and 1-P = 0.46.   

Appendix B shows the details of the calculations and Table 4.1 summarizes the 

current payoffs at the starting point (the gate of go-to-development).  While benchmark A 

suggests the action of “kill” with a negative payoff value of $1,036.61, the option-game 

approach obtains a positive SNPV of $8,967.71.  As the I0 = $4,500, the option-game 

approach suggests an opposite action of “go.”  Hence, at the gate of go-to-development, 

with a high variability in demand, the option-game approach assesses the value of 

flexibility, an assessment which the NPV method lacks.   

 

Table 4.1 The current payoffs at starting point of Firm i by benchmark A and  

my approach 

 

 benchmark A: NPV method OG: Option-game 

Current payoff π00 00NPV $1,036.61i    OG

00SNPV $8,967.71i   

Action taken kill go 

 

4.3.2 Strategic decisions at the sub-gates with Bayesian analysis 

Suppose that the project takes the action of “go” at the gate of go-to-development, 

and then the developer will collect actual samples for customer requirements and 

preferences.  Suppose further that the project is targeted in a specified market with a 

known mean μx = 0.02, but the variance of customer requirements and preferences ξx, is 

unknown.  The parameters of the prior distribution are given in Table 4.2. 
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Table 4.2 Parameters of the prior distribution of customer requirements and preferences 

Parameter Value 

α 19.028 

β 0.142 

μx 0.020 

 

 

Suppose the marketing department interviewed nx = 8 potential key customers of 

the product.  The results of the study show the samples with a spread of

8
2

1

( 0.02) 0.30i

i

x


  .  In addition, the parameter of the (inverse) product differentiation 

is updated and given as τ’ = 0.9.  Appendix B shows the details of the calculations by 

Bayesian analysis, and Table 4.3 summarizes the parameters of the posterior distribution.  

The posterior customer requirements and preferences is then t distribution, i.e., m(x|z) = 

St(x|0.02,0.3123,46.056) with expected value of E(x|z) = 0.02, and the variance of 

Var(x|z) = 0.3265.  Fig. 4.7 shows the prior and posterior density distributions of 

customer requirements and preferences and Appendix B provides the mean and variance 

of the density distributions in this example. 

 

Table 4.3 Parameters of the posterior distribution of customer requirements  

and preferences 

 

Parameter Value 

α ’ 23.0280 

β ’ 0.1390 

ξx ’ 0.5714 

σ ’ 0.4571 
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Fig. 4.7 Prior and posterior distributions of customer requirements and preferences x 

 

Therefore, with the updated information (σ’ = 45.71%), I can also update the 

parameters of the binomial lattice from equation (4.13) and obtain the following: u’ = 

1.2568, d’ = 0.7957, qr’ = 0.5515, 1-qr’ = 0.4485, P’ = 0.5438, and 1-P’ = 0.4562.  The 

binomial tree in demand at launch point (at year 1 in Fig. 4.6) can be described as a 

lognormal distribution.  Based on Park (2011), the mean and variance of the demand 

distribution at t = 1 can be determined.  Hence, the posterior demand is a lognormal 

distribution with the expected value of E(Q1|z) = 812.47 and the variance of Var(Q1|z) = 

153,388.43.  Fig. 4.8 shows the prior and posterior density distributions of demand at 

year 1 and Appendix B provides their mean and variance of density distributions in this 

example. 
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Fig. 4.8 Prior and posterior distributions of demand at product launch point Q1 (at year 1) 

 

Appendix B shows the details of the calculations after the information is updated 

and Table 4.4 summarizes the SNPVs at the first sub-gates of the development stages.  At 

the sub-gate of the status of “11,” the SNPVs by benchmark B and this approach are 

$9,711.40 and $12,936.80, respectively.  Since the first advanced development cost IS1 is 

$6,000, benchmark B will suggest the action of “go.”  However, the option-game 
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suggest the same action of “kill” with zero value of the SNPVs. 

 

 

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

1.2
x 10

-3

Quantity Q1

P
ro

b
.

Lognormal distribution of demand Q1 at launch phase

 

 

Prior Q1

Posterior Q1
1( )f Q z  

1( )f Q  



100 

 

Table 4.4 The SNPVs (first sub-gate) by benchmark B and my model  

after Bayesian analysis 

 

 benchmark B: Real-option OG: Option-game 

Up node Payoff π11 
B'

11SNPV $9,711.40i   
OG'

11SNPV $12,936.8i   

Action taken go go/kill 

Down node Payoff π10 
B'

10SNPV $0i   
OG'

10SNPV $0i   

Action taken kill kill 

 

 

As a result, with the updated information by Bayesian analysis, the variability in 

customer requirements and preferences (Fig. 4.7) and in market demand (Fig. 4.8) are 

reduced.  Hence, the payoff values at the sub-gates of the development stages by both 

approaches become smaller compared to the payoff values without an information 

update.  With additional information about a latent competing product with a parameter 

of the (inverse) product differentiation τ’ = 0.9, I can observe that the interaction of a 

rival’s involvement could influence Firm i’s strategic decisions (Table 4.4).   

4.3.3 Interpretation of the results 

The option-game framework with Bayesian analysis is demonstrated as a gate-

criterion of the development stages in the NPD process.  First of all, I evaluate a project 

at the starting point (the gate of go-to-development).  Benchmark A, the NPV method, is 

used to assess the project based on unchanged decisions in the future if the project is 

undertaken.  In contrast, the option-game approach not only evaluates managerial 

flexibility but also considers a potential competitor in the future.  Instead of assuming a 

homogenous competing product, I employ a parameter of the (inverse) product 

differentiation τ between Firm i’s and Firm j’s products.  Even if the parameter of 

(inverse) product differentiation may be uncertain at the starting point, the initial guess 
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value can also be used to estimate the corresponding payoff functions.  I further discuss 

the parameter of (inverse) product differentiation in the next section.  

When the project is accepted at the gate of go-to-development, given the high 

variability in the initial target market, additional market research may be needed to 

update information.  The requirements and preferences of customers are an important 

indicator to estimate the target markets.  Suppose that the distribution of customer 

requirements and preferences has a known mean but its variance is unknown.  Using the 

actual collected samples, the distribution of customer requirements and preferences is 

updated by Bayesian analysis (Fig. 4.7).  Accordingly, the volatility of the yearly growth 

rate in demand and the parameters of the demand binomial lattice are successively 

updated.  Therefore, the structure of the demand binomial lattice is re-calculated, yielding 

a reduced variability compared to the initial estimator (Fig. 4.8). 

The updated demand lattice is done by the first sub-gate of the development stages.  

As time goes to the first sub-gate, demand either goes up or down.  Hence, the payoff 

value at the first up sub-gate of the development stages is reduced compared to the payoff 

value without an information update.  Until the project reaches the first sub-gate, new 

information about a potential rival’s product and the parameter of (inverse) product 

differentiation can be updated as well.  The SNPVs will be influenced by the updated 

factor, depending on the degree of (inverse) product differentiation.  In addition, I can 

observe that the interactions of a rival’s involvement could influence Firm i’s strategic 

decisions.  This case study shows that the option-game approach not only evaluates the 

managerial flexibility in a project at the gate of go-to-development, but also provides a 

rigorous evaluation method at the first sub-gate of the development stages after updating 
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the information about demand by Bayesian analysis.  As a numerical example cannot 

generalize the results, I further study and discuss validation in the next section. 

4.4 Validation and Discussion 

In this section, I validate this approach at the separate decision-gates (i.e., the gate 

of go-to-development and the first sub-gate of the development stages) in the NPD 

process. I also discuss the model properties, the model limitations, and possible 

extensions.  

4.4.1 Validation 

First, I verify the value of managerial flexibility in a project of this approach.  Then 

I validate the SNPVs of benchmark B and this approach at the first sub-gate, which is 

after new information is updated by Bayesian analysis.   

 Strategic decisions at the gate of go-to-development  

First of all, I verify the value of managerial flexibility in a project in which the 

strategic present value of the option-game approach incorporates potential flexibility, a 

consideration which benchmark A (the NPV approach) lacks.  With the current SNPV of 

the option-game approach subtracting the value of benchmark A, the option premium 

(OP) is obtained, so that I can demonstrate the value of managerial flexibility via the 

option-game approach.  The present value (t = 0) of the strategic value in an asymmetric 

Cournot for Firm i is determined in equation (4.25).  Hence, the option premium (OP) of 

Firm i can be obtained by equation (4.25), subtracting equation (4.10), as expressed in 

equation (4.27).  

OG

00 00 00OP SNPV NPVi i i                                             (4.27) 
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As the value of OP can be influenced by multiple parameters, further sensitivity 

analyses can provide the trends with specific parameters (the expected standard deviation 

in demand σ, a parameter of the (inverse) product differentiation τ, and the ratio of both 

unit variable costs βvc).  All other parameters are set as defaults from previous sections.  

The results illustrate that the expected standard deviation in demand (σ) is the most 

critical parameter to both NPV and SNPV of the option-game approach with a positive 

option premium, as shown in Fig. 4.9.  While the project is killed by the NPV approach 

when NPV is negative, it is killed by the option-game approach when SNPV is less than 

I0 = $4,500.  Based on the changes of the expected standard deviation in demand, Fig. 4.9 

shows that the NPV approach could kill the potential projects. 

 

 

Fig. 4.9 Sensitivity analysis of SNPV of OG (the option-game approach),  

NPV (benchmark A), and OP (option premium) of Firm i by  

changing the expected standard deviation in demand σ 
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On the other hand, since a parameter of the (inverse) product differentiation τ is 

considered in the NPV method as one of the components of the market share, the 

(inverse) product differentiation influences the value of the NPV directly, as shown in 

Fig. 4.10.  A higher value of the (inverse) product differentiation τ indicates that Firm j’s 

product is very similar to Firm i’s, and Firm j may not invest the project at the 

intermediate demand statuses.  Hence, due to Firm j’s decision, the SNPV of Firm i after 

τ = 0.6 increases, as shown in Fig. 4.10. 

 

 

Fig. 4.10 Sensitivity analysis of SNPV of OG (the option-game approach),  

NPV (benchmark A), and OP (option premium) of Firm i by  

changing a parameter of the (inverse) product differentiation τ 
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industry.  Increasing the rival’s unit variable cost leads to a larger average marginal cost, 

accordingly diminishing the overall profits in the market.  Meanwhile, the market share 

of Firm i will rise directly.  This result explains why the NPV grows in a curve trend with 

an increasing value of βvc, as shown in Fig. 4.11.  On the other hand, when the rival’s 

marginal cost is very low, Firm i will kill the project by the option-game approach.  

When the parameter βvc increases, Firm i gets the cost advantage and may earn more 

profit than its rival.  Hence, the SNPV of the option-game approach goes up with an 

increasing value of βvc.  When Firm j has a very high marginal cost, Firm j will kill the 

project and Firm i can gain the monopolistic profit as shown in Fig. 4.11. 

 

 

Fig. 4.11 Sensitivity analysis of SNPV of OG (the option-game approach),  

NPV (benchmark A), and OP (option premium) of Firm i by  

changing the ratio of unit costs βvc 
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specific parameters (the expected standard deviation in demand σ, a parameter of the 

(inverse) product differentiation τ, and the ratio of both unit variable costs βvc).  I use OP 

to represent the option value of the option-game approach in assessing an individual 

project at the outset of the development stages in the NPD process.  The results of the 

sensitivity analyses imply that OP is influenced by the dimensions and characteristics in 

the buckets of asymmetric costs, uncertain market, and product-differentiated projects.  In 

addition, the results demonstrate that the NPV approach could not only kill the potential 

project but also evaluate the project insufficiently when it involves interacting with a 

competitor’s decisions.   

 Strategic decisions at the first sub-gate of the development stages 

Secondly, I validate the SNPVs of benchmark B and this approach at the first sub-

gate of the development stages, which is after new information is updated by Bayesian 

analysis.  I am interested in exploring the SNPVs by different settings of these two 

approaches.  As most of the strategic values from these two approaches are the same as 

zero when the demand is low, I only compare them when demand is high.  Hence, these 

two SNPVs of benchmark B and my approach at the status of “11” after collecting 

samples can be computed from equations (4.16) and (4.26), respectively.  

As the values of SNPVs can be influenced by multiple parameters, further 

sensitivity analyses can provide the trends with specific parameters (the expected 

standard deviation in demand σ, a parameter of the (inverse) product differentiation τ, and 

the ratio of unit costs βvc).  All other parameters are set as the defaults from previous 

sections, and all the analyses are on the side of Firm i.  The results show that the expected 

standard deviation in demand (σ) is the most significant parameter of both SNPVs.  
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While the SNPV of benchmark B grows dramatically with an increasing value of σ, the 

SNPV of the option-game approach is up and down as shown in Fig. 4.12.  The main 

reason is that the SNPV of the option-game approach is influenced by both Firm i’s and 

Firm j’s decisions.  When σ is low (σ < 0.3), Firm i takes the monopolistic profit due to 

Firm i’s cost advantage.  At σ = 0.4, there is not a pure Nash equilibrium, but a Prisoner's 

Dilemma (the go/kill decision for both firms) results in a lower SNPV of Firm i.  At σ = 

0.5, both firms kill their projects at the intermediate status of “21” in the demand, a 

decision which makes the SNPV of the option-game approach at the status of “11” a pure 

Nash equilibrium again, and then Firm i gains the monopolistic profit.  Until σ gets larger 

(σ = 0.6), both Firm i and j initiate the same action of “go” in a Cournot competition, 

resulting in a lower SNPV for Firm i. 

 

 

Fig. 4.12 Sensitivity analysis of SNPVs of Firm i by changing 

the expected standard deviation in demand σ 
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As the second parameter τ is considered in benchmark B as one of the components 

of the market share, Firm i’s SNPV of benchmark B decreases in a linear straight line 

when its rival’s product is a high substitute or homogeneous product, as shown in Fig. 

4.13.  A lower value of the (inverse) product differentiation τ indicates that Firm j’s 

product is very different from Firm i’s, and Firm j is more willing to take the action of 

“go” in future periods.  Hence, due to this decision of Firm j, the SNPV of Firm i before τ 

= 0.8 is zero.   

 

 

Fig. 4.13 Sensitivity analysis of SNPVs of Firm i by changing 

a parameter of the (inverse) product differentiation τ 
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firms) results in a positive SNPV of Firm i.  Until βvc gets larger (βvc = 1.4), Firm j kills 

its project, so that Firm i gains monopolistic profit.  However, the SNPV shows a curve 

trend in the case of benchmark B, which may come from the same problem as explained 

previously in the settings of benchmark A.  As the rival’s marginal cost increases, the 

overall profits in the market decline with an increasing value of βvc due to the setting of 

the average marginal cost, but the market share of Firm i increases.  The above two 

components of the settings in benchmark B lead to a curve trend.  Section 4.4.2 provides 

further discussion of this parameter. 

 

 

Fig. 4.14 Sensitivity analysis of SNPVs of Firm i by changing 

the ratio of unit costs βvc 
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B (not viewed as a monopolistic calculation), containing the components of (inverse) 

product differentiation and unit variable costs.  However, from the results of sensitivity 

analyses, the SNPVs of benchmark B can be overestimated or underestimated compared 

to the option-game approach.  The main reason is that the capacity of Firm i by 

benchmark B is a fraction of the overall quantities in the market place, where the 

maximum overall profit results from choosing to produce the output that equals the 

average marginal cost to marginal revenue.  Secondly, the SNPVs of benchmark B are 

measured based on the market share with one competitor, but benchmark B does not take 

the competitor’s decision into account.  However, the option with the concept of game 

theory not only evaluates managerial flexibility but also depicts the influence of each 

firm on the other firm in the industry, given the likely outcomes of strategic interactions. 

4.4.2 Discussion 

The discrete option-game framework with Bayesian analysis is developed to 

evaluate a project at the gate of go-to-development and the sub-gates of the development 

stages in the NPD process (Fig. 4.2).  In the following, I further discuss the model 

properties: the strategic decisions, the value of information about demand, the 

asymmetric unit costs of Firm i and j, and the (inverse) product differentiation τ. 

 The strategic decisions 

The results of sensitivity analyses when one parameter is changed have been 

demonstrated in previous sections.  To further analyze the strategic decisions of Firm i, I 

here consider the changes of these three parameters simultaneously: (1) the expected 

standard deviation in demand σ (low = 0.25, medium = 0.45, and high = 0.75), (2) a 

parameter of the (inverse) product differentiation τ (low = 0.25, medium = 0.5, and high 



111 

 

= 1), and (3) the ratio of unit costs βvc (low = 0.5, medium = 1, and high = 1.5).  Hence, 

there are 27 combinations.  All other parameters are set as the defaults from previous 

sections, and all of the analyses are on the side of Firm i.  As a result, the strategic 

decisions of Firm i at the status of “11,” according to these settings, are shown in Figs. 

4.15 to 4.17. 

Even though the fixed investment costs could also influence the strategic decisions, 

the results still provide the possible trends and allow decision makers to understand the 

impacts of these parameters.  Generally, Firm i will initiate the action of “go” at the status 

of “11” when Firm i has the cost advantage in competing with Firm j’s highly 

comparable product or simply when Firm i’s target market has a high uncertainty. 
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Fig. 4.15 Strategic decisions of Firm i with low expected standard deviation in demand σ 
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Fig. 4.16 Strategic decisions of Firm i with medium expected standard deviation  

in demand σ  
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Fig. 4.17 Strategic decisions of Firm i with high expected standard deviation in demand σ 
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 Value of information about demand 

When a project is accepted at the gate of go-to-development, firms may allocate 

extra budget to marketing to collect new information.  The maximum value to spend on 

the marketing information is the value of the option premium.  In Artmann’s (2009) real-

option framework with Bayesian analysis, he proved that the value of an information 

update is always positive, indicating that the maximum project value, given the optimal 

managerial response to the posterior information, is always greater than that of the prior 

managerial policy.  Accordingly, as the volatility of demand can be reduced with the 

posterior information about the market risk, the option-game framework with Bayesian 

analysis can provide a rigorous gate-criterion for decision-making.    

Consequently, the value of information in the option-game approach can also be 

obtained by the project value of the optimal managerial response to the posterior 

information, deducing project value by the prior managerial policy, where the posterior 

expected standard deviation in demand is less than the prior expected standard deviation 

in demand.  As the strategic decisions resulting from low demand (the status of “10”) are 

the same action of “kill” in either the prior or posterior distribution, I will only discuss 

the strategic decisions resulting from high demand (the status of “11”).  Suppose, based 

on the prior information, that the SNPVi11 suggests an action of “go.”  Hence, the 

maximum value of information (VI
max

) at the status of “11,” with the collection of 

samples, can be computed as shown in equation (4.28).   

OG OG' OG

max 11 11 11

11

SNPV SNPV        if SNPV  takes an action of "go" 
VI

0                                     Otherwise

i i i

i

 
 


             (4.28) 
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Further sensitivity analysis provides the trend to the value of information (VI) by 

changing the updated expected standard deviation in demand σ’.  All other parameters are 

set as the defaults from previous sections, the (inverse) product differentiation is 

unchanged (τ = τ’ = 0.75), and the analysis is on the side of Firm i.  Given the prior 

expected standard deviation in demand σ = 0.5, the x-axial in Fig. 4.18 is the range of the 

posterior expected standard deviation in demand σ’.  Fig. 4.18 illustrates the maximum 

value of information from equation (4.28), showing that VI
max

 mainly depends on the 

quality of the collected samples and accordingly impacts Firm i’s and its rival’s 

decisions.  When the collected samples have smaller variance, the posterior expected 

standard deviation in demand is lower.  Due to the low expected standard deviation in 

demand and the (inverse) product differentiation τ’ = 0.75, Firm i will kill the project.  

Until increasing to σ’ = 0.25, Firm i has a positive payoff at the status of “22,” resulting 

in a Prisoner’s Dilemma at the status of “11.”  This result explains why 
OG'

11SNPVi has 

positive values from σ’ = 0.25 to 0.4, providing for a decrease in the value of information.  

Up to σ’ = 0.45, Firm j has a positive payoff at the status of “21,” causing Firm i to take 

the action of “kill” with 
OG'

11SNPV 0.i   
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Fig. 4.18 Maximum value of information (VI
max

) at status of “11” of Firm i by  

changing the updated expected standard deviation in demand σ’ 
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quantity choice qi ultimately depends on its own cost ci, as well as on its rival’s cost cj 

and quantity choice qj (Chevalier-Roignant & Trigeorgis, 2011).   

Fig. 4.19 shows the sensitivity analysis of the profits in the market (Firms i, j, and 

total) by benchmark B and a Cournot competition in the option-game approach when 

changing the ratio of their unit costs in a substitute project (τ = 0.9) at the status of “22” 

in the demand binomial lattice.  All other parameters are set as the defaults from previous 

sections, and the fixed costs are ignored.  Even though the overall profits of both 

approaches are reduced when the value of βvc grows, Fig. 4.19 illustrates that benchmark 

B overestimates the overall profits in the market.  As the rival’s unit variable cost directly 

influences Firm i’s market share, benchmark B still overestimates Firm i’s profit with an 

increasing value of βvc and market share.  This result explains the reason for an increasing 

curve trend by benchmark B in Fig. 4.14 and explains why benchmark B is inadequate in 

the profit functions when a competitor’s actions are involved. 

 

 

Fig. 4.19 Sensitivity analysis of the profits in the market by changing 

the ratio of unit costs βvc (τ = 0.9) 
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 The (inverse) product differentiation τ 

A parameter of the (inverse) product differentiation τ indicates whether goods i and 

j are substituted or independent, and to what degree (Motta, 2004).  Based on Chevalier-

Roignant and Trigeorgis (2011), the reaction functions of duopolists in quantity 

competition are downward sloping, i.e., they decrease the rival’s capacity-setting action.  

As shown in equation (4.19) in Appendix A, the reaction functions of Firm i and j can be 

written as shown in equation (4.29).  Hence, Fig. 4.20 illustrates the reaction functions in 

an asymmetric Cournot quantity competition at the status of “22” in the binomial demand 

lattice, in which all the parameters are set as the defaults from previous sections.  As the 

reaction slope of Firm i is steeper than that of Firm j with the x-axial of Firm i’s quantity 

(Motta, 2004), the figure demonstrates the stability of the equilibrium.   
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                                                     (29) 

In addition, I can further study the quantity competition from the reaction functions 

with the parameter of the (inverse) product differentiation τ, as shown in Fig. 4.21.  When 

the (inverse) product differentiation is changed, the resulting equilibrium quantity of Firm 

i is the same. The main reason is that the setting of Firm i is endogenous in the target 

market, where the (inverse) product differentiation is a parameter to define its rival’s 

product.  However, the (inverse) product differentiation of Firm j is an exogenous setting.  

When the (inverse) product differentiation is higher (close to 1), the products of Firm i 

and j are high substitutes, resulting in a lower equilibrium quantity of Firm j.  In other 

words, Firms i and j are competing for exactly the same target market when the (inverse) 
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product differentiation τ is 1.  As long as the (inverse) product differentiation τ is less 

than 1 but greater than 0, then Firm j’s target market becomes the intersection area of 

Firm i’s target market. 

 

 

Fig. 4.20 Downward-sloping reaction functions in an asymmetric Cournot  

quantity competition 

 

 Limitations and possible extensions 

In this chapter, I analyze a compound option specifically during the development 

stages under the twice repeated game (Fig. 4.3) with one strategic variable (i.e., quantity), 

considering the degree of (inverse) product differentiation between the products of Firm i 

and its rival.  So far, this model only takes into account the market risk from the demand 

side.  I have not yet considered multiple qualitative and quantitative factors such as 

technical risks, multiple strategic variables, multi-stage game competitions, etc., so these 

may become possible extensions of this research.  As the gate-criteria for projects are 
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multidimensional in an NPD process (Cooper, 2008), different scorecards and criteria 

may be evaluated in different stages of the NPD process (Ronkainen, 1985).  Hence, 

firms may make a number of decisions that affect their costs and their products according 

to the purpose of each decision point, such as entry decision, price decision, investment 

decision, etc. As Anderson (2008) pointed out, product portfolio management is one of 

the common areas of weakness in NPD management; therefore, further research in this 

area is required.  Most importantly, portfolio management can be used in conjunction 

with other supportive methods in industry management (Cooper et al., 2001).  

Principally, it must be an integral part of the organization’s culture and management 

practices. 

 

 

Fig. 4.21 Sensitivity analysis of reaction functions by changing the (inverse) product 

differentiation τ 
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4.5 Summary and Conclusion 

In this chapter, I propose an option-game valuation framework that explicitly 

incorporates statistical decision theory in the form of Bayesian analysis in an NPD 

project.  Specifically, I introduce this approach as a gate-criterion to evaluate a new 

project at the gate of go-to-development and the sub-gates of the development stages in 

an NPD process.   

At the outset of the development stages, the target market has uncertain demand and 

the customers do not necessarily know their product requirements and preferences.  The 

common financial gate-criterion, the NPV method (benchmark A), is insufficient when a 

project’s success is uncertain, so that this method may result in killing the potential 

projects in the early stages or in not changing decisions later in the process.  When the 

project is accepted at the gate of go-to-development, additional market research may be 

needed.  Since customer requirements and preferences are an important indicator to 

estimate target markets (with known mean and unknown variance), with actual collected 

samples, they can be updated by Bayesian analysis.  Accordingly, the high volatility in 

the initially uncertain market can be diminished via updated information about customer 

requirements and preferences.  On the other hand, a parameter of (inverse) product 

differentiation is included in the option-game mechanism to describe the degree that a 

product from a potential competitor is related to the product in development.  Until the 

first sub-gate of the development stages is reached, new information about a potential 

rival’s product with its parameter of the (inverse) product differentiation becomes clearer.  

However, the real-option valuation (benchmark B) is inadequate when resolving an 

asymmetric duopoly game in which strategic interactions involve a firm’s own quantity 
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choice as well as its rival’s.  The results of sensitivity analyses of the option premium 

imply that the dimensions and characteristics in the buckets of asymmetric costs and 

uncertain-market projects have positive influences on the option premium.  In addition, 

the results also show that the real-option valuation may overestimate or underestimate the 

SNPV when the project is not under monopolistic product development.  As a result, the 

option-game approach not only evaluates managerial flexibility in a project at the gate of 

go-to-development, but also provides a rigorous evaluation method at the first sub-gate of 

the development stages after updating the information about demand by Bayesian 

analysis. 

I develop the formal mathematical option-game framework in the discrete-time 

analysis of an NPD project with a finite project life.  In particular, I analyze a compound 

option specifically during the development stages under the twice repeated game with 

one strategic variable (i.e., quantity).  The approach can be applied to different degrees of 

(inverse) product differentiation in a competition game.  Through an information update 

with Bayesian analysis, the volatility of the uncertain market is reduced.  With dynamic 

settings, this approach can provide a rigorous evaluation method at the gate and the sub-

gates of the development stages. 

The strategic buckets approach in the early stages of the NPD process links the 

business’s strategy and its portfolios (Cooper et al., 1997).  The dynamic option-game 

framework as a gate-criterion of the development stages implements further evaluations 

of the individual projects in the development process.  As product portfolio management 

is one of the common areas of weakness in NPD management (Anderson, 2008), further 

research in this area is needed.  However, its most important benefit is that it can be used 
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in conjunction with other supportive methods in industry management (Cooper et al., 

2001).  Principally, it must be combined with current corporate culture and management 

practices. 
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Chapter 5 Assessing Managerial Flexibility in a New Product  

Development Project: An Option-Game Approach 

in an Oligopoly with Bayesian Analysis 
 

 

 

 

Abstract 

 

 

Gate-criteria have been identified as critical drivers of the success of the new 

product development (NPD) process.  The proposed gate-criterion of the real-option 

valuation is inadequate when project success is affected by the actions of competitors.  In 

this chapter, I will extend the option-game valuation framework with Bayesian analysis 

discussed in the previous chapter by explicitly involving technical risk and the 3-player-

game in an NPD project.  Volatilities from the initially uncertain market are diminished 

by updated information about customer requirements and preferences, while the technical 

risk is diminished by updated information about product performance.  In addition, the 

distribution of product correction is used to describe the level of additional correction 

costs in a project.  I introduce this approach as a gate-criterion to evaluate a new project 

at the gate and sub-gates of the development stages in the NPD process.  The results have 

important implications: when demand is high, the project initiates “go” action if at least 

one competitor has a high unit variable cost in competing with a highly comparable 

product or simply if the target market is highly uncertain.  When demand is low, the 

project may initiate “go” action only if the firm has the cost advantage.  Using this 
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approach, industry players can make strategic decisions in assessing a project at the 

decision points of the development stages.    

Keywords: option-game, oligopoly competition, product differentiation, gate-

criteria, new product development, Bayesian analysis, technical risk 

 

 

 

 

5.1 Background 

New product development (NPD) is commonly regarded as a central source of 

competitive advantage (Bessant & Francis, 1997), and gate-criteria are critically 

important for the success of the NPD process (Carbonell-Foulquié et al., 2004; Agan, 

2010).  However, gate-criteria are rated as one of the weakest areas in product 

development (Cooper, 2008; Cooper & Edgett, 2012; Cooper, Edgett, & Kleinschmidt, 

2002, 2005).   

5.1.1 Problem statement 

The stage-gate NPD process is very similar to that of buying a series of options on 

an investment (Cooper, 2008), allowing developers to build real-option into product 

development for decision-making under uncertainty (Mun, 2006).  Huchzermeier and 

Loch (2001) demonstrated the managerial flexibility of real-option and introduced an 

improvement option to take corrective actions during the NPD process to improve 

product performance.  Instead of taking the traditional view that reducing uncertainty in 

real-option theory is a passive process, Artmann (2009) extended Huchzermeier and 

Loch’s (2001) work by deriving the Bayesian update formulation for market requirement 

distribution and integrating this mechanism into a real-option framework.  However, 

since “similar product developments exist in greater or lesser degree in almost all product 
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areas” (Smith, 1995), real-option valuation methods fall short of resolving the dilemma 

when the moves of competitors are involved (Ferreira et al., 2009).  In the previous 

chapter, I developed an improved discrete option-game valuation framework that 

explicitly incorporates statistical decision theory in the form of Bayesian analysis, 

particularly involving new information about one competitor’s actions and considering 

customer requirements and preferences.   

Nevertheless, technical risks from the supply side could influence the project values 

and option values, so the operational sources of uncertainty should be incorporated with 

real-option values of managerial flexibility (Huchzermeier & Loch, 2001; Artmann, 

2009).  Moreover, instead of a duopoly competition game, several players could compete 

in similar projects at the same time.   

5.1.2 The scope of this chapter 

In this chapter, I extend the previous model by relaxing some assumptions from 

chapter 4. In contrast to the assumptions in chapter 4, I consider that the technical risk 

from the supply side influences expected product performance and that the differences 

between the expected product performance and customer requirements and preferences 

could lead to additional correction costs.  I assume that a new project is competing with 

two latent competitors in certain degrees of (inverse) product differentiation (the 3-

player-game) in a target market, where the information might be unknown or uncertain at 

the outset of the development stages. 

Because strategic fit determines the success of an NPD process (Cooper, 2008; 

Anderson, 2008), I assume, explicitly, the strategic buckets method of initial project 

screenings with the following dimensions and characteristics: high variability in the 
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initial market, a high-risk product development technique, and uncertainty about whether 

the two latent rivals will produce similar and competitive products in the future.  As time 

progresses toward development stages, variations in predicted demand are diminished by 

effective means of updating information about customer requirements and preferences, 

and variations in product performance are reduced by updated information about product 

development techniques.  In addition, I consider managerial flexibility when two latent 

competitors in certain degrees of (inverse) product differentiation may be present in 

future competing markets.  Consequently, with the above two factors, I extend the 

discrete option-game valuation framework incorporated with Bayesian analysis in an 

NPD project by explicitly involving technical risk and the 3-player-game.  Jenner (2007) 

points out that projects are rarely killed at gates after the idea screening stage.  Therefore, 

I introduce this approach as a rigorous gate-criterion to evaluate a new project during the 

stages of development.   

The remaining chapter is organized as follows.  In section 5.2, I develop this work 

by defining the model description and using an extended version of chapter 4 for my 

valuation model.  The theory of Bayesian analysis is integrated into a valuation model 

that allows updating the variability of the target market and expected product 

performance.  In addition, two latent rivals’ product developments in certain degrees of 

(inverse) product differentiation are considered in the option-game approach.  In section 

5.3, I provide a case study to demonstrate the model and compare the results with two 

benchmarks.  Benchmark A is the NPV method, used to represent the actions of “go/kill” 

at the gate of go-to-development and of “go/continue” later in the NPD process to 

highlight many industrial problems.  Benchmark B is based on the concept of Artmann’s 
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study (2009), in which a real-option framework is incorporated with Bayesian analysis 

and product performance.  In section 5.4, I further discuss the strategic decisions of my 

valuation model against benchmark B.  Section 5.5 summarizes the results and concludes 

the chapter. 

5.2 Model Development 

As indicated in the preceding section, this model builds upon an extended version 

of the work in chapter 4.  I start with a brief description of the extended model.  Section 

5.2.1 illustrates the evolution of demand by a basic binomial lattice combined with the 

concept of a product life cycle (as shown in chapter 3).  The linkage of market demand 

and the distribution of customer requirements and preferences have been defined in 

chapter 4.  Moreover, I define the distribution of product performance.  Hence, these 

settings are the basis of the NPV method, benchmark A, taking the actions of “go/kill” at 

the gate of go-to-development and of “go/continue” for the later process.  In section 

5.2.2, I demonstrate how new information on customer requirements and preferences and 

product performance can be updated over time until the first sub-gate of the development 

stages using statistical decision theory in the form of Bayesian analysis.  Therefore, these 

settings define the real-option framework with Bayesian analysis, benchmark B, taking 

the actions of go/kill at the first sub-gate.  Section 5.2.3 considers managerial flexibility 

with two latent rivals in certain degrees of (inverse) product differentiation, representing 

a discrete option-game valuation framework in the 3-player-game.  Finally, I compare 

this approach to two basic benchmarks in section 5.3 and further discuss the results in 

section 5.4. 
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Suppose that projects are initially screened and selected through the strategic 

buckets approach in the early stages of the NPD process.  As described in previous 

chapters, I focus on individual project assessment at the gate of go-to-development and 

sub-gates of the development stages, assuming projects with the following 

characteristics: managerial flexibility, a short product life cycle, and high variability in 

the target market segment.  Additionally, I focus on evaluating the buckets of projects by 

relaxing the assumptions of chapter 4 and assuming instead that (1) Firm i has two 

potential competing products from rivals j and k in certain degrees of (inverse) product 

differentiation τj, τk and (2) the technical risk for the product performance of Firm i is 

considered.  

Fig. 5.1 shows the basic concept and scope of the NPD process as explored in this 

chapter.  The gate of go-to-development with an initial development cost (I0) is the 

starting point (t = 0) in cash flow.  Next is the development stage, consisting of multiple 

sub-gates for product prototype development.  To simplify the prototype process, I set 

two sub-gates during the development stage (Fig. 5.1) with the first and second advanced 

development costs (I1 and I2).   

In the remainder of this chapter, the term “development stages” will refer to this 

entire step of the development process, including the two sub-gates.  Following the 

development stages, the next two stages of testing/validation and production/launch have 

a testing cost (I3) and a launch investment cost (I4), respectively.  Thereafter, products are 

sold to market, and the annual profit occurs one period after launch with N periods of 

project service life.  To simplify the symbols of the model, I demonstrate that the time 

intervals of the cash flows are equivalent in the time horizon (Fig. 5.1).  Note that 
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different time intervals of the cash flows will be demonstrated in the next section with a 

case study. 

 

 

Fig. 5.1 Product development process and the corresponding cash flows (from Fig. 4.2) 

 

5.2.1 Demand evolution and the probabilities of upward in demand 

A binomial lattice framework is used to represent the market demand uncertainty 

(Q) within four periods as shown in Fig. 5.2.  The binomial model is multiplicative in 

nature, and thus demand is always positive.  Since the percentage changes in the demand 

(y) over short intervals of time are normally distributed (Luenberger, 1998; Park, 2011), I 

can define the normal random variable y with expected yearly growth rate g and volatility 

with yearly growth rate σ, i.e., 
2~ ( , )y N g  .  The parameters of a binomial lattice from 

Luenberger (1998) are shown in equation (5.1). 
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Fig. 5.2 Demand binomial lattice and decision gate and sub-gates (from Fig. 4.4) 
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Suppose the market research contains information on market performance 

requirements and customer requirements and preferences.  As shown in chapter 4, the 

random variable of customer requirements and preferences x is normally distributed with 

mean x and variance
2

x , i.e., 2~ ( , )x xx N   .  Since the factor of customer requirements 

and preferences x plays a key role on the demand side (Smith, 1995), I defined a positive 

correlation between customer requirements and preferences x and the percentage changes 
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in the demand y in chapter 4, as expressed in equation (5.2), in which the correlation 

coefficient γ is estimated by the weighted ratios of the factors that affect demand. 

2 2( , )x xy x N                                                        (5.2) 

2

2

where : the percentage changes in the demand, ( , );

: the correlation coefficient,  0 1;

: customer requirements and preferences, ( , )x x

y y N g

x x N



 

 



 



 

To determine the market-clearing price and the firm profits, industry structure 

models commonly assume a linear (inverse) demand function (Chevalier-Roignant & 

Trigeorgis, 2011).  Suppose that in the discrete-time model of Smit and Trigeorgis (2004) 

and Chevalier-Roignant and Trigeorgis (2011), the demand intercept in the linear market 

demand function follows a multiplicative binomial process as shown in equation (5.3).  

  t   t bQ   ( )t i j kb q q q                                          (5.3) 

        , : constant parameters, , 0,t tb a b  4;t 

: the total quantity will be supplied in the market;Q

, , : product quantities of Firms ,  ,  and ;i j kq q q i j k

   follows a multiplicative binomial processt

 

The intercept of demand function     is followed by a stochastic binomial as shown 

in Fig. 5.3 for four periods: at each up move,     is multiplied by u, while at each down 

move it is multiplied by d from equation (5.1).  When     goes to time 1, it is noted as    , 

which indicates it could be either      or     .  Similarly, when     goes to time 2, it is 

noted as    , which indicates it could be     ,     , or     .  The same concepts are used for 

the notations at times 3 and 4. 
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Fig. 5.3 Multiplicative binomial process followed by the intercept of demand      
at time t ( 4t  ) (from Fig. 4.5) 

 

The expected intercept of demand at time 2,     , can be computed by the intercepts 

of demand at time 4, multiplying by the corresponding cumulative probabilities from 

equation (5.1).  Similarly, the expected intercept of demand at time 0,     , can be 

obtained by the same procedures as shown in equation (5.4). 
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                              (5.4) 

Suppose three firms are competing in the target marketplace and that the unit 

variable costs (ci, cj, and ck) of Firm i and its rivals, Firms j and k, are constant                   

( , , 0i j kc c c  ).  Hence, the project values at time 4 (Fig. 5.2) can be computed from the 

future expected cash flows.  The market-clearing price is calculated based on a linear 

(inverse) demand function with an average unit variable cost in the different statuses of 
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the binomial lattice.  As shown in Fig. 5.2, suppose the product is planned to be launched 

at time 5 with a project service life of N years.  The demand after time 4 in the binomial 

lattice will correspond to the annual expected growth rates according to the product life 

cycle.  The annual profit after time 4 in the binomial lattice grows at an annual expected 

growth rate g4+m at time 4+m (m = 1,2,…,N) with a risk-adjusted discount rate r ( 4 mr g 

).  Hence, based on chapter 3, the total future growth of the project value at time 4, G4, 

can be as expressed as shown in equation (5.5).   

5 5 6 5 4
4 2

1 (1 )(1 ) (1 )...(1 )
...

1 (1 ) (1 )

N

N

g g g g g
G

r r r

    
   

  
                          (5.5) 

 The product performance of Firm i 

On the other hand, suppose that the technical risk of Firm i as the product 

performance s is normally distributed (Artmann, 2009) with mean s and variance 2

s , 

i.e., 2~ ( , )s ss N   .  Hence, there is an additional correction cost for Firm i from the 

parameter of product correction l, where product correction is defined by the difference 

(x-s) between customer requirements and preferences x and product performance s.  

Therefore, with the parameter of product correction, the unit of additional correction cost 

of Firm i can be defined by cil = cil, where l is normally distributed with mean l and 

variance 2

l , i.e., 2 2 2~ ( , ) ( , )l l x s x sl N N        .   

 The first benchmark: the NPV method (benchmark A) 

Therefore, with these settings, the profit function of Firm i by benchmark A at the 

second sub-gate (time 2) in Fig. 5.2 can be expressed as shown in equation (5.6) (also 

shown in Appendix A). 



134 

 

 
 
 

 
   A 24

2 2 2
[

(1 )
i S i il

G
I bQ c Q c Q

r


      


   2 ]  Q if 0l 

  A 24
2 2 2

[
(1 )

i S i

G
I bQ c Q

r


     


   2 ]  Q           if 0l 

                        (5.6) 

3 4
2 2 1 2

2 3 4

2

where : Firm 's market share; , : interest rate,
(1 ) (1 )

: second advanced development cost, : testing cost, : launch investment cost;

: unit correction variable cost ; ~ ( , )

S

il i l l

I I
i I I r

r r

I I I

c c l l N



 

  
 



 

The profit function of Firm i by benchmark A in equation (5.6) is computed by an 

absolute fraction of all sales in the market, where the estimated market share ω represents 

the degree of dominance that Firm i has in the total product quantity within the particular 

market.  Based on the possible factors that determine the estimated market share in 

Harper (2011), I define the estimated market share by the unit variable costs (ci, cj, and 

ck) and the parameters of the (inverse) product differentiation (τj and τk) from two 

competitors, expressing the definition in equation (5.7) and Appendix A.  As I assume 

that there are two competitors, the rivals’ unit variable costs directly influence Firm i’s 

market share.  The two parameters of the (inverse) product differentiation (τj and τk) 

consists of product functions and positions, Harper’s (2011) comparative dominance of 

the developer’s brand over competitors, comparative performance of the developer’s 

product over competitors, and historical values for the developer’s comparable products.  

If (τj or τk) = 0, then product j or k is independent of Firm i’s product.  If (τj or τk) = 1, 

then product j or k can be viewed as a homogenous product to Firm i’s product, as shown 

in equation (5.7).   

' '

1
j j k k

total

c c

c

 



                                                      (5.7) 
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where 0 , 1; ;

, : the degrees of (inverse) product differentiation of Firms , 

j k total i j k

j k

c c c c

j k

 

 
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Consequently, the profit function of Firm i by benchmark A at the gate of go-to-

development in Fig. 5.2 can be calculated by moving equation (5.6) forward with two 

periods, as expressed in equation (5.8). 
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: first advanced development cost, : initial development cost

SI I
I I
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Under these settings in benchmark A, the profit of Firm i is based on its market 

share by overall product quantity in the target market.  To earn the maximum overall 

profit, the industry chooses to produce the output that equals their average marginal cost 

to marginal revenue (Chevalier-Roignant & Trigeorgis, 2011).  Therefore, the equilibrium 

quantity produced in the industry is shown in equation (5.9) and Appendix A. 
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Finally, the resulting equilibrium profit of Firm i by benchmark A can be expressed 

as shown in equation (5.10) and Appendix A. 
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5.2.2 Demand mean and variance update: Bayesian analysis 

Both the new information about customer requirements and preferences and the 

new information about product performance are updated with statistical decision theory 

in the form of Bayesian analysis.   

 The update of customer requirements and preferences 

New information about customer requirements and preferences is updated in order 

to update the mean and variation of market demand at the first sub-gate of the 

development stages.  Hence, suppose that the firms are uncertain about the true mean and 

true variance of customer requirements and preferences.  As defined in section 5.2.1, 

customer requirements and preferences x follows a normal distribution with unknown 

mean μx (μx ϵ R) and unknown variance 2

x  (ξx > 0).  Since μx and 2

x  are unknown, 

suppose further that the joint prior distribution of the mean and the variance is f(μx, 
2

x ) = 

f1(μx|
2

x )f2(
2

x ), where f1(μx|
2

x ) is a  N(θ, 2

x ) density (θ ϵ R, ρ > 0) and f2(
2

x ) is 

inverse gamma distributed IG(α,β) density (α > 0, β > 0).  According to Artmann’s (2009) 

proof, therefore, customer requirements and preferences x at time 0, based on the prior 

information, is t distribution, as expressed in equation (5.11). 

1
( ) ( , ,2 )m x St x


 
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                                             (5.11) 

2

with ( )  and 

2 1 1
( ) ( ) ( )

(2 2) ( 1) ( 1)
x x

E x

Var x Var E



 
 

     




    

  

 

      In order to determine the posterior predictive distribution of the customer 

requirements and preferences (x’), I need to first determine the joint posterior distribution 

of the unknown mean μx and variance 2

x  based on sample observations.   
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      As shown in Raiffa and Schlaifer (1961) and Artmann (2009), after the update with 

actual data z = x1,…, xnx, which denotes a random sample from nx independent 

observations of customer requirements and preferences, the joint posterior distribution of 

μx and 2

x  given sample data z = x1,…, xnx is then expressed in equation (5.12). 

2 2 2

1 2( , ) ( , ) ( )x x x x xf z f z f z                                              (5.12) 
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      According to Artmann (2009), while the determination of this conditional distribution 

is generally very difficult, it is much easier to estimate the key moments of the 

corresponding marginal distribution and then derive the key parameters of the conditional 

distribution, where the marginal probability density function of μx has the form of 

equation (5.13). 

( ) ( , ,2 ) xf St


  
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                                               (5.13) 

where ( )  and ( )
( 1)
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 


 

      Hence, replacing the posterior parameter values of θ’, ρ’, α’, and β’ from equation 

(5.12), the posterior marginal distribution of μx and 2

x  are t distribution and inverse 

gamma distribution in the form of equations (5.14) and (5.15), respectively. 

' ' 1

1

1
( ) ( ,[( )( ) ] ,2 )

2
x x x x

n
f z St n n     



                             (5.14) 

'

1

2

2
with ( )  and ( )

(2 2)( )( ) 'x

x
x x n

x x

n
E z Var z

n n


  

   


 

   
 



138 

 

2 2 '

2 ( ) ( , )
2

x
x x

n
f z IG                                               (5.15) 

2 2

' ' '2 ' 2 '

1 1
with ( )  and ( )

( 1) ( 1) ( 2)
x xE z Var z 

    
 

  
 

      With the update to the posterior marginal distribution of μx and 2

x , given the actual 

sample data z = x1,x2,…, xnx, based on Artmann’s (2009) proof, customer requirements 

and preferences x’ is then t distributed with degree of freedom 2α+nx as expressed in 

equation (5.16).   
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As the number of degrees of freedom grows, the t-distribution approaches normal 

distribution.  Hence, with the constant correlation coefficient γ, the percentage changes in 

the demand y from equation (5.2) can be updated as expressed in equation (5.17) and 

shown in Appendix A.   

' ' ' 2 2'( , )x xy x N                                                 (5.17) 

' ' ' 2'

' ' 2'

where : the updated percentage changes in the demand, ( , );

: the updated customer requirements and preferences ( , ) w/ 2 30x x x

y y N g

x N n



  



  
 

Therefore, as the expected yearly growth rate and the volatility of yearly growth 

rate are updated to g’ and σ
2
’, the demand binomial lattice is re-structured after first 
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period by recalculating the new parameters of the binomial lattice as shown in equation 

(5.18). 

' ' ' '

'

'

' '

'
'
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 The update of product performance 

On the other hand, estimated product performance s is updated in order to diminish 

the variation in the technical risks of Firm i at the first sub-gate of the development 

stages.  Hence, suppose the initial product technique has a specified value of mean, while 

Firm i is uncertain about the true variance of its product performance.   

Given that product performance s (defined in section 5.2.1) follows a normal 

distribution with known mean μs (μs ϵ R) and unknown variance 2

s  ( 2

s > 0), i.e., f(s|μs) = 

N(μs, 
2

s ), and since 2

s  is unknown, suppose that the prior distribution of 2

s , i.e., g( 2

s ), 

is inverse gamma distributed, IG(αs,βs) (αs,βs > 0).  According to Artmann’s (2009) proof, 

therefore, product performance at time 0, based on the prior information, is t distribution 

noted as m(s) = St (s|μs,(αsβs)
-1

,2αs). 

In order to determine the posterior predictive distribution of the product 

performance (s’), I need to first determine the posterior distribution of the unknown 

variance 2

s  based on sample observations.  As shown in Raiffa and Schlaifer (1961) and 
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Artmann (2009), after the update with actual data zs = s1,…, sns, which denotes a random 

sample from ns independent observations of product performance, the posterior 

distribution of 2

s  is given by g( 2

s |zs) = IG( 2

s |αs’, βs’).  The values of αs’, βs’ are shown 

in equation (5.19). 

' ' 2 1

1

1 1
 and [ ( ) ]

2 2

sn

s
s s s i s

is

n
s   







                              (5.19) 

: number of the random samples of product performancesn  

With the update to the posterior distribution of 2

s , given the actual sample data zs = 

s1,s2,…,sns, based on Artmann (2009), the product performance s’ is then t distributed, 

i.e., m(s|zs) = St(s|μs,(αs’βs’)
-1

,2αs+ns) with degree of freedom 2αs+ns.  As the number of 

degrees of freedom grows, the t-distribution approaches normal distribution.  As a result, 

with the update of customer requirements and preferences x and product performance s, 

the unit additional correction cost of Firm i can be updated as ' '

il ic c l

' ' 2 ' 2'where ~ ( , )x s x sl N      . 

 The second benchmark: the real-option valuation (benchmark B) 

The second benchmark (benchmark B), the real-option framework with Bayesian 

analysis, is used to consider the actions of go/kill at the first sub-gate.  Under these 

settings, the payoff functions of benchmark B at the second sub-gate can be written from 

equation (5.6) with the above new parameters as expressed in equation (5.20).  

Accordingly, the resulting equilibrium profit at the second sub-gate can be written as 

shown in equation (5.21). 
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Finally, with the new information updated by Bayesian analysis, the strategic net 

present value (SNPV) of benchmark B at the first sub-gates of up and down statuses can 

be written as shown in equation (5.22). 

 
 
 

 
 B'

11SNPVi   B'

11i 

' max[0,rq   
B' '

22] (1 )max[0,i rq    
B'

21]i

1 fr

B'

10SNPVi   B'

10i 

' max[0,rq   
B' '

21] (1 )max[0,i rq    
B'

20 ]i

1 fr

                       (5.22) 

5.2.3 Discrete option-game valuation 

At the starting point (the gate of go-to-development), I consider managerial 

flexibility with two latent rivals with certain degrees of (inverse) product differentiation 

in the following periods of the two sub-gates, representing two potential competitors’ 

involvements in the target market.  The parameters τj, τk have been defined as the degrees 

of (inverse) product differentiation between Firm i and the two latent competitors, Firms j 

and k.  From the first-order conditions of the consumer problem in the linear demand 

model (Motta, 2004), a linear (inverse) demand function with parameters τj, τk can be 
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written as shown in in equation (5.23).  If τj or τk = 0, then qi and (qj or qk) are 

independent; the products have maximum differentiation.  If 0 < τj, τk < 1, then qi and (qj 

or qk) are substitutes.  If τj or τk = 1, then qi and (qj or qk) are perfect substitutes 

(homogenous products). 

  4   4 ( )i j j k kbq b q q                                            (5.23) 

        
4 , , ; , , : unit variable costs of Firms ,  ,  and i j k i j kc c c c c c i j k  

Suppose that these three firms face the same interest rate r and risk free rate rf.  

Consider that the three firms compete in quantities after product launch (i.e., Cournot 

competition), choosing qi, qj, and qk so as to maximize their profits.  The profit function 

of Firm i at the second sub-gate can be expressed as shown in equation (5.24) and 

Appendix A. 

 
 
 

 
   C 24

2 2 2
[ (

(1 )
i S i

G
I bq

r
    


   

2 (1 )] }i i j j k kc l q b q b q       if 0l 

  C 24
2 2 2

[ (
(1 )

i S i

G
I bq

r
    


   

2 ) ]i i j j k kc q b q b q                if 0l 

         (5.24) 

where C:Cournot competition  

By substituting the three reaction functions, Firm i’s equilibrium quantity with the 

two competitors can be written as shown in equation (5.25) (provided in Appendix A).  

Hence, Firm i’s resulting profit with two competitors at the second sub-gate is derived as 

shown in Appendix A and equation (5.26). 
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On the other hand, if Firm i has a monopoly, the linear (inverse) demand function 

from equation (5.23) is rewritten as   4   4 ibq    Hence, based on Chevalier-Roignant 

and Trigeorgis (2011), Firm i’s equilibrium quantity and profit in monopoly at the second 

sub-gate can be expressed as shown in equations (5.27) and (5.28), respectively, where M 

is the symbol of monopoly. 
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Alternatively, if Firm i competes with either Firm j or k (one player does not 

invest), then Firm i’s equilibrium quantity and profit at the second sub-gate will be 

defined by the duopoly game (as shown in chapter 4).  As demonstrated in chapter 4, the 

2-player payoff matrix at the second sub-gate and their resulting equilibrium outcome can 

be written as shown in equation (5.29). 
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Therefore, the resulting equilibrium outcome in each status at the second sub-gate 

can be obtained from the 3-player payoff matrix by applying the Nash equilibrium 

concept, in which the 3-player competitive outcomes in each status are noted 

as    *

2 ,i
  *

2 ,j   *

2k
 .  The 3-player payoff matrices and their resulting equilibrium 

outcomes at the second sub-gate can be written as shown in equation (5.30).  

Accordingly, the strategic value of the option-game at the first sub-gate of Firm i can be 

obtained by the Nash equilibrium with the best response analysis, as expressed in 

equation (5.31), where OG is the symbol of option-game. 
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Finally, the strategic value of the option-game approach at the gate of go-to-

development of Firm i can be obtained from the 3-player payoff matrix by the Nash 

equilibrium with the best response analysis, as expressed in equation (5.32). 

OG *

00 00 0SNPVi iX I                                                 (5.32) 
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As time goes to the first sub-gate, suppose that the customer requirements and 

preferences have been updated with collected data (section 5.2.2).  The new strategic 

value of the option-game approach at the first sub-gate of Firm i can then be obtained 

from the updated 3-player payoff matrices by the Nash equilibrium with the best response 

analysis as shown in equation (5.33). 

 

OG'

11SNPVi   OG'

11i   *'

11 1i I

OG'

10SNPVi   OG'

10i   *'

10 1i I

                                            (5.33) 

        *'

2 ,i
  *'

1: the updated competitive outcomes of Firm  at time 2 and 1; i i

   *'

1,i
  *'

1,j   *'

1)k   
   C'

1 ,i
  C'

1,j   C'

1k
    C'

1 ,0,i
  C'

1k
    C'

1 ,i
  C'

1,0j     M'

1 ,0,0i
 

 0,  C'

1,j   C'

1k
  0,0,  M'

1k
     0,  M'

1 ,0j        0,0,0  
 ;

  C'

11i 

' (rq   *' '

22) (1 )(i rq    *'

21)i

1 fr
1I ;  C'

10i 

' (rq   *' '

21) (1 )(i rq    *'

20 )i

1 fr
1I

 

 

5.3 Case Study 

In this section, I demonstrate a numerical example by analyzing and comparing a 

project.  At the starting point (the gate of go-to-development), Firm i considers 

managerial flexibility with two latent rivals with certain degrees of (inverse) product 

differentiation τj, τk at the future sub-gates of the development stages.  In section 5.3.1, I 

compare this approach to benchmark A, the NPV method, which is the most widely used 

conventional financial method in gate-criterion, and observe the strategic decisions and 
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present payoff values resulting from both approaches at the starting point.  Section 5.3.2 

illustrates the update of customer requirements and preferences with collected sample 

data, accordingly updating the demand when the market demand follows a binomial 

lattice with a product life cycle.  In addition, I compute the update of product 

performance with collected sample data to diminish the variance of technical risk of Firm 

i.  I compare my approach to benchmark B, the real-option approach with Bayesian 

analysis, and observe the strategic decisions and payoffs at the first sub-gate of the 

development stages resulting from both approaches.  Finally, I summarize the case study 

in section 5.3.3. 

Suppose that Firm i is assessing an individual project in the NPD process and that 

all the individual projects have been screened and preliminarily investigated through the 

strategic buckets approach in the early stages.  Some portions of the buckets are the 

projects with the specific dimensions of uncertain market, high technical risks, short life 

cycles, two potential competitors, and rapidly changing environments.  Firm i will need 

to evaluate these categories of projects at the gate of go-to-development and the sub-gates 

during the development stages as shown in Fig. 5.4.  The questions for Firm i are how to 

evaluate this project at these gate-decisions when there might be two latent competitive 

products at the next decision point, and, should this project proceed to the next stage, how 

different approaches change the decisions at the sub-gates when additional sample 

information is collected and when the technical risk of Firm i is considered. 

Fig. 5.4 shows this project’s current and remaining gates and stages in the NPD 

process in the following sequence: the gate of go-to-development, the first and second 

sub-gates of development, the stage of testing and validation, and the stage of production 
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and launch, with the corresponding costs of an initial development cost (I0 = $4,500), the 

first advanced development cost (IS1 = $6,000), the second advanced development cost 

(Ia), the testing cost (Ib), and the launch investment cost (Ic).  Assume that the sum of the 

value for the last three fixed costs is given at the second sub-gate as IS2 = $25,000 

(assuming the rivals have the same fixed costs).  Firm i and two rivals (Firms j and k) 

may share an option to invest and manage the similar NPD projects with initial 

parameters of the (inverse) product differentiation τj = 0.95, τk = 0.9.  The option will 

expire in six months (T = 2/4), which is at the second sub-gate of the development stages.  

The project will operate for a finite service life of N = 4 years after product launch with 

the same interest rate r = 12% and risk free rate rf = 5%.   

 

 

Fig. 5.4 Cash flows in this numerical example (from Fig. 4.6) 

 

Based on the initial market research and past experience, assume that customer 

requirements and preferences x is normally distributed with mean μx = 2% and standard 
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deviation ξx = 62.5%.  The current demand is given as Q00 = 750.  With the estimated 

correlation coefficient γ = 0.8 and ε = 6.4%, an expected yearly growth rate of g = 8% in 

demand and the expected standard deviation of σ = 50% are obtained.  Firm i’s unit 

variable cost is ci = $10 and Firm j’s and k’s unit variable costs are cj = $12 and ck = $13, 

respectively.  The product performance s of Firm i is normally distributed with mean μs = 

0 and standard deviation ξs = 45%.  Hence, the product correction distribution l is 

normally distributed with computed mean μl = 2% and standard deviation ξl = 77.01%.  

The current (inverse) demand function is given as 0 68 0.05p Q  .       

5.3.1 Strategic decisions at the starting point (the gate of go-to-development) 

With the above information (g = 8%, σ = 50%, rf  = 5%, T = 2/4, Δt = 1/4), I can 

calculate the parameters of the binomial lattice from equation (5.1) and obtain the 

following: u = 1.2840, d = 0.7788, qr = 0.5368, 1-qr = 0.4632, P = 0.54, and 1-P = 0.46.   

Appendix B shows the details of the calculations and Table 5.1 summarizes the 

current payoffs at the starting point (the gate of go-to-development).  Based on the 

expected value of product correction distribution, while the NPV method suggests the 

action of “kill” with a negative payoff value of $135.05, the option-game approach 

instead obtains a positive payoff value of $8,918.17.  Since the initial development cost is 

$4,500, the option-game approach will suggest an opposite action of “go.”     

As the product correction distribution l is normally distributed with the computed 

mean μl = 2% and standard deviation ξl = 77.01%, the strategic decisions of Firm i can be 

obtained with the x-axial of 3l l   as shown in Fig. 5.5.  If the product correction is 

more than one standard deviation, the correction cost for the project of Firm i is too high, 



149 

 

and the option-game approach will suggest that Firm i kill the project.  Otherwise, the 

project will initiate an action of “go” via the option-game approach. 

 

Table 5.1 Current payoffs (gate of go-to-development) of Firm i by benchmark A and  

my model 

 

 benchmark A: NPV method OG: Option-game 

Current payoff π 00NPV $135.05i    OG

00SNPV $8,918.17i   

Action taken kill go 

 

 

Fig. 5.5 The strategic decisions of Firm i in the distribution of product correction  

at time 0 

 

5.3.2 Strategic decisions at the sub-gates with Bayesian analysis 

Suppose that if the project has taken the action of “go” at the gate of go-to-

development, the developer will collect actual samples for the customer requirements and 

preferences.  Suppose the firms have some uncertainty about both the true mean and the 
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true variance of customer requirements and preferences x prior to starting a development 

project in this market.  The customer requirements and preferences are normally 

distributed with the prior mean following a normal and prior variance following an 

inverse gamma distribution.  The estimated mean and variance of the two conjugate prior 

distributions of customer requirements and preferences x are summarized in Table 5.2.   

 

Table 5.2 Estimated moments of prior distribution of customer requirements  

and preferences 

 

Unknown parameter Moment Value 

Mean μx ( )xE   0.0200 

 ( )xVar   0.1953 

Variance 
2

x  
2( )xE   0.1953 

 2( )xVar   0.0214 

 

 

Assume now that the firms conduct an additional market study to update the initial 

estimates.  Thus, the marketing department interviewed nx = 6 potential key customers 

and experts on the product.  The results of the study reveal that on average, the samples 

show 0.05x  with
26

1
( ) 0.125ii
x x


  .  Hence, the values of the corresponding prior 

and posterior parameters are calculated in Appendix B.  The prior and posterior 

distributions of customer requirements and preferences x are shown in Fig. 5.6.     

Suppose further that the product technique of Firm i has the known mean μs = 0, but 

the variance of product performance ξs is unknown.  The parameters of prior distribution 

are given in Table 5.3.   
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Fig. 5.6 Prior and posterior distributions of customer requirements and preferences x 

 

Table 5.3 Parameters of prior distribution of product performance s 

Parameter Value 

αs 15.0025 

βs 0.3527 

μs 0.0000 

 

Suppose that Firm i makes sample inspections with ns = 8 random samples in the 

products.  The results show the samples with a spread of 
8

2

1

( 0) 0.125i

i

s


  .  Appendix 

B shows the details of calculations for Bayesian analysis, and Table 5.4 summaries the 

parameters of posterior distribution.  The posterior product performance is then t 

distribution, i.e., m(s|zs) = St(s|0,0.1525,38.005) with an expected value of E(s|zs) = 0 and 

the variance of Var(s|zs) = 0.161.  Fig. 5.7 shows prior and posterior density distribution 

and Appendix B provides density distributions for mean and variance of product 

performance. 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

m
(x

)

Customer requirement and preference x

 

 

Prior of x

Posterior of x
( )m x z  

( )m x  



152 

 

Table 5.4 Parameters of posterior distribution of product performance 

Parameter Value 

αs’ 19.0025 

βs’ 0.3450 

ξs’ 0.4012 

 

 

 

Fig. 5.7 Prior and posterior distributions of product performance s 

 

In addition, parameters of the (inverse) product differentiation are updated and 

given as τj’ = 1, τk’ = 0.9.  Therefore, with the updated information (σ’ = 34.72%), I can 

also update the parameters of the binomial lattice from equation (5.18) and obtain the 

following: u’ = 1.1896, d’ = 0.8406, qr’ = 0.6, 1-qr’ = 0.4, P’ = 0.5724, and 1-P’ = 

0.4276.  The binomial tree in demand at launch stage (at time 1 in Fig. 5.4) can be 

described as a lognormal distribution.  Based on Park (2011), I can determine the mean 

and variance of the demand distribution at t = 1.  Hence, the posterior demand is 

lognormal distribution with an expected value of E(Q1|z) = 829.38 and the variance of 
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Var(Q1|z) = 88,125.5.  Fig. 5.8 shows prior and posterior density distribution and 

Appendix B shows density distributions for mean and variance for this example. 

 

 

Fig. 5.8 Prior and posterior of demand at product launch phase Q1 (at time 1) 

 

Appendix B shows the details of calculations after information is updated and Table 

5.5 summarizes the SNPVs at the first sub-gates of development.  Based on the expected 

value of product correction distribution for the sub-gate at the status of “11,” the SNPVs 

by benchmark B and my approach are $32,798.69 and $12,547.47, respectively.  Since 

the first advanced development cost IS1 is $6,000, benchmark B will suggest the action of 

“go.”  However, the option-game approach will take the action of “go/kill,” since these 

three firms face a Prisoner’s Dilemma, meaning that the maximum payoff for each firm is 

obtained only when two of them invest and one of them does not.  Hence, at this point, 

Firm i takes this project under further investigation and may re-evaluate it later by 

carefully observing its rivals’ actions, meanwhile looking for possibilities to lower costs.  
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For the sub-gate at the status of “10,” benchmark B suggests an action of “kill.”  On the 

contrary, the option-game approach suggests the opposite action of “go.”  Since Firm i 

has the cost advantage compared to Firms j and k, Firm i may take the monopolistic profit 

when the demand is low. 

 

Table 5.5 The SNPVs (first sub-gate of development) of Firm i by benchmark B and  

my approach after Bayesian analysis 

 

 benchmark B: Real-option OG: Option-game 

Up status payoff π 
B'

11SNPV $32,798.69i   
'

11SNPV $12,547.47OG

i   

Action taken go go/kill 

Down status payoff π 
B'

10SNPV $4,887.45i   
'

10SNPV $6,574.79OG

i   

Action taken kill go 

 

 

As the updated product correction distribution l’ is normally distributed with the 

computed mean μl’ = 4.57% and standard deviation ξl’ = 59.1%, the strategic decisions of 

up and down statuses at the first sub-gate of development of Firm i can be obtained with 

the x-axial of ' '3l l   , as shown in Figs. 5.9 and 5.10.  At the status of “11,” benchmark 

B suggests the action of “go,” regardless of the distribution of product correction.  In 

contrast, the strategic decisions of the option-game approach will differ depending on the 

distribution of product correction.  If the product correction is close to or more than one 

standard deviation, the correction cost for the project is too high, and the option-game 

approach will suggest that Firm i kill the project.  Otherwise, the project will initiate the 

action of “go.”   

At the status of “10,” benchmark B suggests the action of “kill,” regardless of the 

distribution of product correction.  In contrast, the strategic decisions of the option-game 
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approach will differ based on the distribution of product correction.  If the product 

correction is more than its expected value, the option-game approach will suggest that 

Firm i kill the project.  Otherwise, the project will initiate the action of “go,” meaning 

that Firm i may take the monopolistic profit when the demand is low, since Firm i has the 

cost advantage compared to Firms j and k. 

 

 

Fig. 5.9 The strategic decisions of Firm i in the distribution of product correction  

at the status of “11” 

 

As a result, with the updated information with Bayesian analysis, the variability in 

customer requirements and preferences, market demands, and product performance is 

reduced.  Thus, the payoff values at the sub-gates of development by both approaches 

become smaller compared to those without an information update.  With additional 

information about the latent competing products with the parameters of the (inverse) 
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product differentiation τj’ = 1 and τk’ = 0.9, I can observe that the rivals’ actions influence 

Firm i’s strategic decisions. 

 

 

Fig. 5.10 The strategic decisions of Firm i in the distribution of product correction  

at the status of “10” 

 

5.3.3 Interpretation of the results 

The option-game framework with Bayesian analysis is demonstrated as a criterion 

at the gate of go-to-development and sub-gates of the development stages in the NPD 

process.  First of all, I evaluate a project at the starting point (the gate of go-to-

development).  Benchmark A, the NPV method, assesses a project based on the 

assumption that decisions will not change in the future if the project is undertaken.  In 

contrast, the option-game approach not only evaluates managerial flexibility but also 

considers two potential competitors’ actions in the future.   

When a project at the gate of go-to-development is allowed to proceed, additional 

market research may be needed to update information about customer requirements and 
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preferences.  As customer requirements and preferences are an important indicator for 

estimating the target market, suppose that the mean and variance are unknown.  Using 

actual collected samples, customer requirements and preferences are updated by Bayesian 

analysis (Fig. 5.6).  Accordingly, the mean and volatility of the yearly growth rate in the 

demand and the parameters of the demand binomial lattice are successively updated.  

Hence, the structure of demand binomial lattice is re-calculated, reducing variability 

compared to the initial estimator (Fig. 5.8).  On the other hand, suppose that the product 

technique of Firm i has a known mean and unknown variance.  Using actual collected 

samples, product performance is also updated by Bayesian analysis (Fig. 5.7).  

The updated demand lattice is done by the first sub-gate of development.  As time 

goes to the first sub-gate decision point, the demand either goes up or down.  Hence, the 

payoff value at the up sub-gate of development is reduced compared to the value without 

an information update.  Until the first sub-gate, new information about the two potential 

rivals’ products and their parameters of (inverse) product differentiations can be updated.  

By considering these updated factors, the SNPVs of benchmark B and the option-game 

approach can be recalculated (Table 5.5).  In addition, by considering product correction 

distribution, the strategic decisions of Firm i may be influenced by the changes of the 

corresponding correction costs (Figs. 5.5, 5.9, and 5.10).  This case study shows that the 

option-game approach not only evaluates managerial flexibility in a project at the gate of 

go-to-development, but also provides a rigorous evaluation method at the first sub-gate of 

development after updating the information about demand and the product performance 

of Firm i by Bayesian analysis.  As a case study cannot generalize the results, I further 

discuss the results in the next section. 
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5.4 Model Properties 

Some model properties have been analyzed and discussed in chapter 4 and section 

5.3.  I verify the value of managerial flexibility in a project by using the strategic present 

value of the option-game approach to incorporate potential flexibility, a factor which 

benchmark A (the NPV method) does not consider.  In chapter 4, I use the option 

premium to represent the option value of the option-game approach in assessing an 

individual project at the decision points during the development stages in the NPD 

process.  In addition, in chapter 4, I validate the SNPVs given by benchmark B and my 

approach at the first sub-gate of the development stages after the new information is 

updated by Bayesian analysis.  The analysis illustrates that when a project of Firm i is not 

a monopolistic product, benchmark B may overestimate or underestimate the profit 

functions, which are based on the relationships between the market-clearing price and 

unit variable costs. It also demonstrates that benchmark B is not capable of depicting the 

outcomes of strategic interactions between each firm and the other firms in the industry. 

Moreover, the value of information in the option-game approach is demonstrated in 

chapter 4 by the project value of the optimal managerial response to the posterior 

information, deducing the project value as prior managerial policy.  Furthermore, the 

distribution of product correction l directly influences the unit additional correction cost 

of Firm i.  In section 5.3, I observe how the product correction distribution l affects NPV 

and SNPVs, as shown in Figs. 5.5, 5.9, and 5.10.  When the product correction is less 

than or equal to zero, the product technique of Firm i meets customer requirements; 

hence, Firm i does not spend any additional correction costs for its product development.  

Otherwise, Firm i may have a higher additional correction cost, leading to lower values of 
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NPV or SNPVs.  In the following section, I mainly focus on the strategic decisions at the 

first sub-gate of development of Firm i by benchmark B and the option-game approach in 

the 3-player competition. 

5.4.1 Strategic decisions at the first sub-gate of development  

To further analyze the strategic decisions of Firm i, I consider the changes of these 

five parameters simultaneously: (1) the expected standard deviation of demand σ at three 

levels (low = 0.25, medium = 0.45, and high = 0.75), (2) the two parameters of the 

(inverse) product differentiation τj and τk at two levels of each (low = 0.25 and high = 1), 

and (3) the two ratios of unit costs βvc1 and βvc2 at two levels of each (low = 0.5 and high 

= 1.5), where
1 2/ , /vc j i vc k ic c c c   .  Hence, there are 48 combinations at each status 

of the first sub-gate.   

However, except for the above parameters, the other settings for both competitors 

are identical.  Hence, the 48 combinations can be reduced because of the duplicated 

settings.  For example, the setting of 
1 21, 0.5, 0.25, 1.5,j vc k vc        will get the 

same result as the setting of
1 20.25, 1.5, 1, 0.5.j vc k vc        From Firm i’s point of 

view, these two settings represent the same situation: one competitor has a high (inverse) 

product differentiation but a low unit cost, while the other has a low (inverse) product 

differentiation but a high unit cost.  Therefore, the combinations can be reduced to 30 at 

each status.  All other parameters are set as the defaults from previous sections, and all 

the analyses are on the side of Firm i.  As a result, based on the expected value of the 

product correction, the strategic decisions of Firm i according to these settings are shown 

in Tables 5.6 and 5.7. 
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Table 5.6 Strategic decisions at the status of “11” of Firm i when σ = 0.25, 0.45, and 0.75 

At the status of “11” σ = 0.25 σ = 0.45 σ = 0.75 

 τj βvc1 τk βvc2 OG11 RO11 OG11 RO11 OG11 RO11 

s1 L L L L Kill Go Kill Go Go Go 

s2 L L L H Kill Go Kill Go Go Go 

s3 L L H L Kill Go Kill Go Go Go 

s4 L H H L Kill Go Kill Go Go Go 

s5 H L H L Kill Go Kill Go Go Go 

s6 L H L H Kill Go Go Go Go Go 

s7 L L H H Go Go Go Go Go Go 

s8 L H H H Go Go Go Go Go Go 

s9 H L H H Go Go Go Go Go Go 

s10 H H H H Go Go Go Go Go Go 

 

Based on the results shown in Table 5.6, benchmark B suggests the action of “go” 

when the demand goes up to the status of “11” at the first sub-gate of development.  

However, the strategic decisions of the option-game approach will be influenced by the 

settings in the parameters of the two rivals’ unit variable costs, the (inverse) product 

differentiation, and the expected standard deviation in demand.  If we take the bold set 

when σ = 0.25 in Table 5.6 as an example, Firm i will kill the project from series 1 to 6.  

When one of the competitors has the setting of a high unit variable cost and a high 

(inverse) product differentiation (from series 7 to 9), Firm i will take the action of “go” in 

the duopoly competition.  When both competitors have the setting of high unit variable 

costs and high (inverse) product differentiations (series 10), Firm i will take the action of 

“go” and gain the monopolistic profit (Fig. 5.11).  Increasing the expected standard 

deviation in demand creates more series of the settings to take the action of “go.”  Until σ 

= 0.75, all ten of these series will take the action of “go” by the option-game approach 

(Table 5.6). 
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On the other hand, based on the results shown in Table 5.7, benchmark B suggests 

the action of “go” to more than half of the combinations when the demand goes down to 

the status of “10” at the first sub-gate of development.  As the strategic decisions of the 

option-game approach are sensitive to the conditions of the considered parameters, most 

cases are killed by the option-game approach when the demand is low at the first sub-gate 

of development.  However, when both competitors have the setting of high unit variable 

costs and high (inverse) product differentiations (series 10), Firm i will instead take the 

action of “go” and gain the monopolistic profit. 

 

Table 5.7 Strategic decisions at the status of “10” of Firm i when σ = 0.25, 0.45, and 0.75 

At the status of “10” σ = 0.25 σ = 0.45 σ = 0.75 

 τj βvc1 τk βvc2 OG10 RO10 OG10 RO10 OG10 RO10 

s1 L L L L Kill Go Kill Go Kill Go 

s2 L L L H Kill Go Kill Go Kill Go 

s3 L L H L Kill Go Kill Go Kill Kill 

s4 L H H L Kill Go Kill Kill Kill Kill 

s5 H L H L Kill Kill Kill Kill Kill Kill 

s6 L H L H Kill Go Kill Go Kill Go 

s7 L L H H Kill Go Kill Go Kill Go 

s8 L H H H Kill Go Kill Go Kill Kill 

s9 H L H H Kill Kill Kill Kill Kill Kill 

s10 H H H H Go Go Go Kill Go Kill 
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Fig. 5.11 The SNPVs from Table 5.6 when σ is low (σ = 0.25) 

 

The complete sets of combinations are summarized in Figs. 5.12 to 5.14.  Figs. 5.12 

to 5.14 illustrate the strategic decisions of Firm i at the status of “11,” based on the two 

parameters of the (inverse) product differentiation τj and τk, at two levels of each (low = 

0.25, and high = 1) and the two ratios of unit costs βvc1 and βvc2, at two levels of each (low 

= 0.5, and high = 1.5), when the expected standard deviation of demand σ changes at 

three levels (low = 0.25, medium = 0.45, and high = 0.75).  Since the strategic decisions 

of Firm i with different settings of the expected standard deviation of demand at the 

status of “10” are the same, I only show them in Fig. 5.15. 
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Fig. 5.12 Strategic decisions at the status of “11” of Firm i when σ is low (σ = 0.25) 
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Fig. 5.13 Strategic decisions at the status of “11” of Firm i when σ is medium (σ = 0.45) 
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Fig. 5.14 Strategic decisions at the status of “11” of Firm i when σ is high (σ = 0.75) 
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Fig. 5.15 Strategic decisions at the status of “10” of Firm i when σ = 0.25, 0.45, or 0.75 

 

Even though the strategic decision could also be influenced by fixed investment 

costs, the results still provide the possible trends and allow decision makers to understand 

the impacts of the parameters.  Generally, based on the expected value of the product 

correction, if the demand goes up to the status of “11,” Firm i will initiate the action of 

“go” when at least one competitor has a high unit variable cost and competes with a 

highly comparable product, or simply when Firm i’s target market has high uncertainty.  

5.4.2 Limitations and possible extensions 

In this chapter, I analyze a compound option specifically during the development 

stages under the twice repeated game (Fig. 5.2) with one strategic variable (i.e., quantity), 

where the degrees of (inverse) product differentiation are considered for Firm i’s products 

compared to its rivals’.  So far, my model assumes that the unit variable costs of Firm i 

and its competitors are constant.  Clearly, in reality, firms can adjust their unit costs in 

different periods.  When the information about customer requirements and preferences 

and Firm i’s product performance is updated, unit variable costs can also be updated by 

simply extending this model.  In addition, this model only takes into account the market 
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risk from the demand side and the technical risk of Firm i.  Multiple qualitative and 

quantitative factors, such as technical risks from the rivals, several strategic variables, 

multi-stage game competitions, etc., are not yet contained, so these factors may become 

extensions of this research.  Since the gate-criteria for projects are multidimensional in 

the NPD process (Cooper, 2008), different scorecards and criteria may be evaluated at 

different stages of the NPD process (Ronkainen, 1985).  Hence, firms make a number of 

decisions that affect their costs and their products according to the purpose of each 

decision point, such as entry decision, price decision, investment decision, etc.  As 

Anderson (2008) points out, product portfolio management is one of the common areas of 

weakness in NPD management.  Therefore, further research on these factors of portfolio 

management is needed.  Most importantly, this approach can be used in conjunction with 

other supportive methods in industry management (Cooper et al., 2001).  Principally, this 

approach must be an integral part of the organization’s culture and management 

practices. 

5.5 Summary and Conclusion 

In this chapter, I extend the option-game valuation framework with Bayesian 

analysis from chapter 4 by explicitly involving technical risk and the 3-player-game in an 

NPD project.  Specifically, I introduce this approach as a gate-criterion to evaluate a new 

project at the gate of go-to-development and sub-gates of the development stages in NPD 

process.   

At the outset of the development stages, the initial market demand is uncertain, and 

customers do not necessarily know their product requirements and preferences.  The 

common financial gate-criterion, the NPV method (benchmark A), is inadequate when a 
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project involves uncertainty, resulting in firms’ killing potential projects unnecessarily in 

the early stages or not changing decisions in the later stages of the process.  When a 

project at the gate of go-to-development is allowed to proceed, additional market research 

may be needed.  As customer requirements and preferences are an important indicator to 

estimate the target market (with an unknown mean and unknown variance), information 

about customer requirements and preferences can be updated by Bayesian analysis based 

on actual collected samples, thus diminishing the high volatility in an initial uncertain 

market.  Furthermore, product performance is included in the option-game mechanism to 

describe the distribution of Firm i’s technical risk in a project.  New information on 

product performance can be updated over time until the first sub-gate, directly 

influencing the firm’s additional correction costs. The results show that the real-option 

valuation (benchmark B) is insufficient when interacting with competitors in an 

asymmetric competition game, in which strategic interactions should involve a firm’s 

own quantity choice as well as its rivals’.   

From the results of strategic decisions at the first sub-gate of development, based on 

the expected value of product correction, if the demand goes up to the status of “11,” 

Firm i will take the action of “go” when at least one competitor has a high unit variable 

cost in competing with a highly comparable product, or simply when Firm i’s target 

market has high uncertainty.  If the demand goes down to the status of “10,” the option-

game approach will kill the project unless both competitors have high unit variable costs 

and high (inverse) product differentiations.  In that case, Firm i will instead take the 

action of “go” and gain the monopolistic profit.  The results of the strategic decisions can 

also be further analyzed with the distribution of product correction.  The option-game 
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approach not only evaluates managerial flexibility in a project but also provides a 

rigorous evaluation method which considers competitors’ interactions after updating the 

information about the demand and product performance by Bayesian analysis. 

I analyze a compound option specifically during the development stages under the 

twice repeated game with one strategic variable (i.e., quantity).  In particular, I develop 

the formal mathematical option-game framework in the discrete-time analysis of an NPD 

project by the extending the results discussed in chapter 4 by adding technical risk and 

the 3-player-game.  Through the information update with Bayesian analysis, both the 

volatilities of an uncertain market and technical risk are reduced.  With dynamic settings, 

this approach can provide a rigorous evaluation method at the gate of go-to-development 

and sub-gates of the development stages. 

The strategic buckets approach in the early stages of the NPD process links 

business strategy and portfolios (Cooper et al., 1997).  When used as a gate-criterion of 

the development stages, the dynamic option-game framework implements further 

evaluations of the individual projects of development process.  Since product portfolio 

management is one of the common areas of weakness in NPD management (Anderson, 

2008), further research on this approach is needed.  Most importantly, this approach can 

be used in conjunction with other supportive methods in industry management (Cooper et 

al., 2001).  Principally, however, it must be combined with the corporate culture at 

management level. 
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Chapter 6 Summary and Conclusions 

This study proposes a decision model for the gate criteria in an NPD project by 

deriving the option-game approach.  The approach also allows for updating information 

about uncertain market demand via Bayesian analysis and incorporating this information 

into option-game valuation models.  

In chapter 3, I develop an option-game framework as a gate-criterion for a project in 

the NPD process for which the market demand is uncertain and the product life cycle is 

short.  I integrate product adoption rates (Rogers, 1995; Bollen, 1999) into the option-

game framework for evaluating an NPD project, considering both simultaneous and 

sequential investment decisions in each scenario of the duopolistic game.  The common 

conventional financial method in a gate-criterion, the NPV method, is inadequate when 

projects face uncertainty.  But while the NPV criterion offers a go/kill decision, the 

option-game approach instead provides a go/wait decision.  The decision to wait adds 

flexibility, allowing firms to use a passive wait-and-see strategy or an active market 

research strategy while delaying.  Predominantly, high risk and uncertain projects have a 

higher value of flexibility. 

In chapter 4, I propose an option-game valuation framework that explicitly 

incorporates statistical decision theory in the form of Bayesian analysis into an NPD 

project.  In chapter 5, I extend the option-game valuation framework with Bayesian 

analysis from chapter 4 by explicitly involving technical risk and the 3-player-game in an 

NPD project.  Specifically, I introduce this approach as a gate-criterion to evaluate a new 



169 

 

project at the gate of go-to-development and sub-gates of the development stages in the 

NPD process.     

At the outset of development stages, the level of demand in the target market is 

uncertain and the customers do not necessarily know their product requirements and 

preferences.  The common financial gate-criterion, the NPV method (benchmark A), is 

inadequate when a project involves uncertainty, so that potential projects may be killed in 

the early stages or decisions may remain unchanged at later stages.  When a project at the 

gate of go-to-development is allowed to proceed, additional market research may be 

needed.  Since customer requirements and preferences are an important indicator to 

estimate target markets (with an unknown mean and unknown variance), they can be 

updated by Bayesian analysis based on actual collected samples.  Accordingly, the high 

volatility in the initially uncertain market can be diminished via updated information 

about customer requirements and preferences.  In addition, product performance is 

included in the option-game mechanism to describe the distribution of Firm i’s technical 

risk in a project.  Until the first sub-gate of development, Firm i can also update 

information about product performance, information which directly influences its 

additional correction costs.  Moreover, the option-game mechanism also includes the 

parameters of (inverse) product differentiation to describe the degree of similarity of 

potential competitors’ related products.   Based on the results of this research, the real-

option valuation (benchmark B) is insufficient for interacting with competitors in an 

asymmetric competition game, in which strategic interactions should involve a 

company’s own quantity choice as well as its rivals’.   
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 Chapter 5 shows the results of the strategic decisions at the first sub-gate of 

development based on the expected value of product correction: when the demand goes 

up to the status of “11,” Firm i should initiate the action of “go” if at least one competitor 

has a high unit variable cost in competing in a highly comparable product, or simply if 

Firm i’s target market has a high uncertainty.  When the demand goes down to the status 

of “10,” the option-game approach will kill the project, except when both competitors 

have high unit variable costs and high (inverse) product differentiations.  In that case, 

Firm i, instead, may take the action of “go” and gain the monopolistic profit.  The results 

of the strategic decisions can be further analyzed with the distribution of product 

correction.  The option-game approach not only evaluates the managerial flexibility in a 

project but also provides a rigorous evaluation method which considers competitors’ 

interactions after updating the information in the demand and product performance by 

Bayesian analysis. 

The strategic buckets approach in the early stages of the NPD process links a 

business’s strategy with its portfolios (Cooper et al., 1997).  By using the dynamic 

option-game framework as a gate-criterion of the development stages, managers can 

implement further evaluations of the individual projects in the development process.  

Overall, this research provides a practical and quantitative tool to help a product 

development team make development decisions.   

In this research, I analyze a compound option specifically during the development 

stages in twice repeated games with one strategic variable (i.e., quantity), considering the 

degrees of (inverse) product differentiation between Firm i’s products and its rivals’.  

Various extensions of the model are possible.  So far, the model assumes that the unit 
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variable costs of Firm i and its competitors are constant.  Clearly, in reality, firms can 

adjust their unit costs in different periods.  When information about customer 

requirements and preferences and Firm i’s product performance is updated, unit variable 

costs can be updated with a simple extension of the model.  In addition, the model only 

takes into account the market risk from the demand side and the technical risk of Firm i.  

Multiple qualitative and quantitative factors that are not yet contained, such as technical 

risks from the rivals, multiple strategic variables, multi-stage game competitions, etc., 

may become extensions of my model.  Since the gate-criteria for projects are 

multidimensional in the NPD process (Cooper, 2008), different scorecards and criteria 

may be evaluated in the different stages of the NPD process (Ronkainen, 1985).  Hence, 

firms make a number of decisions that affect their costs and their products according to 

the purpose of each decision point, such as entry decision, price decision, investment 

decision, etc.  Because product portfolio management is one of the common areas of 

weakness in NPD management (Anderson, 2008), further research on this approach is 

needed.  Most importantly, this approach can be used in conjunction with other 

supportive methods in industry management (Cooper et al., 2001).  Principally, it must be 

an integral part of the organization’s culture and management practices. 
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Appendix A: Strategic Outcomes and Derivation of Equations 

A.1 Strategic Outcomes of Nash Equilibrium  

A.1.1 Profit maximization of scenario 1 

From equation (3.10), the first-order condition for Firm h’s profit maximization yields 

(Firm h and the rival Firm h’), where h=Firm i or j 
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A.1.2 Profit maximization of scenario 2 

Case 1: From equation (3.11) and (3.12), the first-order condition for both firms’ profit 

maximizations yields  
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Case 2: From equation (3.13), the first-order condition for Firm i’s profit maximization 

yields  
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Case 3: From equation (3.14) and (3.15), the first-order condition for both firms’ profit 

maximizations yields  
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Finally, the profit maximization of scenario 2 can be obtained by 
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A.1.3 Profit maximization of scenario 3 

Similarly, scenario 3 is the same concept as scenario 2 but with the firms playing 

opposite roles.  Hence, Firm j has only one move, so the payoff functions of scenario 3 

will thus mainly depend on Firm i’s decision.   

** * *
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A.1.4 Profit maximization of scenario 4 

(1) The payoff matrix at time 2 (terminal statuses) 

 Both invest at time 2 (Cournot competition) from equation (3.18); the first-order 

condition for both firms’ profit maximizations yields 
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 Firm i invests and Firm j abandons the project at time 2 (monopoly of Firm i) 

from equation (3.19); the first-order condition for Firm i’s profit maximization 

yields 
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 Firm j invests and Firm i abandons the project at time 2 (monopoly of Firm j) 

from equation (3.19); the first-order condition for Firm j’s profit maximization 

yields 
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 If both abandon the project at time 2, then the payoff is zero. 

Hence, applying the Nash equilibrium with the best response analysis, the competitive 

outcomes    * *

2 ( , ),i i jq q   * *

2 ( , )j i jq q   at terminal statuses can be obtained from the payoff 

matrices of time 2. 

(2) The payoff matrix at time 1 (intermediate statuses) 

 Both invest at time 1 (Cournot competition) from equation (3.20); the first-order 

condition for both firms’ profit maximizations yields 
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 Firm i invests and Firm j waits at time 1 from equation (3.21) 

o Firm i invests at time 1 and Firm j invests at time 2 (sequential 

investment).  The first-order condition for Firm i’s profit maximization 

yields 
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o Firm i invests at time 1 and Firm j abandons at time 2 (monopoly of Firm 

i).  The first-order condition for Firm i’s profit maximization yields 
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 Firm j invests and Firm i waits at time 1 from equation (3.21) 

The same procedures are used as in the previous case (Firm i invests and Firm j waits at 

time 1). 

o Firm j invests at time 1 and Firm i invests at time 2 (sequential investment) 
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o Firm j invests at time 1, and Firm i abandons at time 2 (monopoly of Firm 

j) 
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 Both wait at time 1 from equation (3.22) 

If both firms wait at time 1 at the same time, the result will be the option value from the 

optimal matrix outcome of time 2. 
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Hence, the payoff functions of scenario 4 are the competitive outcomes at intermediate 

statuses obtained from the payoff matrices of time 1    *
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equilibrium concept. 
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Finally, the resulting equilibrium for the gate decision of the development stage can be 

obtained from the payoff matrix at time t = 0 (Fig. 3.7) by applying the Nash equilibrium 

with the best response analysis, where the competitive outcomes are noted as 

* * * *[ ( , ), ( , )]i i j j i jX q q X q q .  

A.1.5 The equilibrium quantity in the overall industry by the NPV approach: 
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A.1.6 The equilibrium result of Firm i by the NPV approach in equation (3.26): 
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A.2 Derivation of Equations 

A.2.1 Equation (4.6) 

Payoffs at the three statuses of the second sub-gate:
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(1 )
The quantity in demand of Firm : ( ) (1 ) [ ]

(1 )
The market share of Firm :  as shown in equation (4.7)
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A.2.3 Equation (4.9) and (5.9) 
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A.2.4 Equation (4.10) 
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A.2.5 Equation (4.12) 
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[Note] Before update with Bayesian analysis 
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A.2.6 Equation (4.18) 

The payoff function of Firm i at the up sub-gate under Cournot competition is 
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43 (1 )P    42 ]
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i ic q P P     2
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i ic q P     42 ) ]C

i ic q

2 2 2
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22 (1 )[ (iP P bq     2 2

43 ) ] (1 ) [ (j i i ib q c q P bq        42 ) ]}j i ib q c q 
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2 22 (1 ) (1 ) 1P P P P      
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From equation (4.4),    2

22 =P   44 2 (1 )P P    2

43 (1 )P    42

  C 2 2

22 2 4(1 ) [ (i S iI r G bq         22 ) ] same procedures fori i j ic q bq q     C

21,i   C

20i

   C 24
2 2 2

[ (
(1 )

i S i

G
I bq

r
    


   2 ) ]  as shown in equation (4.18)i i j ic q bq q 

 

A.2.7 Equation (4.19) 

From the first-order profit-maximizing condition, Firm i’s and j’s reaction functions are 

   
C

2i

 iq
2 (i jbq b q       2 ) 0ic           ;

   
C

2j

 jq
2 (j ibq bq       2 ) 0jc            

1
From (4.19b), we can get 

2
j iq q


  

   2 jc

2b
,  bringing into (4.19a)

1
2 (

2
i ibq b q


   

   2 jc

2b
) (    2 jc ) 0 4 i ibq bq      2 2jc     2 2 0ic 

3 ibq     C

2 2 i j ic c q   
   2 2 i jc c 

3b
as shown in equation (4.19) 

 

Hence, it represents the same structure of equilibrium quantity in the case of cost 

asymmetric Cournot competition in homogeneous goods, where C
2

3

i j

i

a c c
q

b

 
  (in 

Chevalier-Roignant, & Trigeorgis, 2011). 

A.2.8 Equation (4.20): Firm i’s resulting profit 

From (4.18), I can write payoff functions as 

  C 24
2 2 2

[ (
(1 )

i S i

G
I bq

r
    


   2 ) ]i i j ic q bq q 

2Let = (iV bq     2 )i i j ic q bq q 

 

Given equation (4.19) iq 
   2 2 i jc c 

3b
,and jq 

   2 2 j ic c 

3 b
putting into V

 

(V b  
   2 2 i jc c 

3b

2) (    2 )(ic
   2 2 i jc c 

3b
) (b

   2 2 j ic c 

3 b
)(
   2 2 i jc c 

3b
)  
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(
   2 2 i jc c 

3b
)[

(    2 2 ) 3(i jc c      2 ) (ic     2 2 )j ic c 

3
]  

V 
(    2

2 2 )i jc c 

9b
bringing back into equation (4.18)

  C 4
2 2 2

[
(1 )

i S

G
I

r
  



(    2

2 2 )i jc c 

9b
as shown in equation (4.20)

 

A.2.9 Equation (5.6) 

Payoffs at the three statuses of the second sub-gate:

 
 
 

 
   

A 1 2 2 2

22 2 3 4(1 ) (1 ) (1 ) [i I r I r I r P            44 2 (1 )P P    2

43 (1 )P    42 ]

  A 1 2 2 2
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  A 1 2 2 2

20 2 3 4(1 ) (1 ) (1 ) [i I r I r I r P            42 2 (1 )P P    2

41 (1 )P    40 ]

        
 

3 4
2 2 1 2
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S

I I
I I

r r
  

 
  4 (   4 4) (i il ic c q G     4 4) , andi il ibQ c c q G    

=  ( : market share of Firm ), rewrite (5.6 ) asiq Q i a   

  A 2 24
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G
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      
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  44 2 (1 )P P    2

43 (1 )P    42 ] }Q         

From equation (5.4),    2

22 P   44 2 (1 )P P    2

43 (1 )P    42  rewrite (5.6 ) asb  

  A 24
22 2 2

[
(1 )

i S i il

G
I bQ c Q c Q

r


      


   22 ],  the same procedures forQ   A

21,i
  A

20 ,i
 

 
 
 

 
   A 24

2 2 2
[

(1 )
i S i il

G
I bQ c Q c Q

r


      


   2 ]Q   if 0l 

  A 24
2 2 2

[
(1 )

i S i

G
I bQ c Q

r


     


   2 ]Q              if 0l 

as shown in equation (5.6)   

A.2.10 Equation (5.7) 

Given 0 , 1, total quantity is ,

Firm  has two competitors in the target market; totally there are three products.

The three firms are ordered in the ascending sequence according to their unit vari

j k Q

i

  

able costs.
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' '

' '

The fraction of all sales of Firm  or  is 

the numerator as a given ,  to the denominator as total variable costs ,

where the unit cost ,  to Firm  or  is given 

in the descending s

j k i j k

j k

j k

c c c c c

c c j k

 

equence to their unit variable costs.

 

' '

The quantity in demand of Firm  or : ( )  or ( )
j k

j k

i j k i j k

c c
j k Q Q

c c c c c c
 

   
 

' '

' ' ''

' '

The quantity in demand of Firm : 

( ) ( )

(1 ) (1 )

The market share of Firm : 1  as shown in equation (

j k
j k

i j k i j k

j j j j k kk k

i j k i j k i j k

j j k k
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i

c c
Q Q Q
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Q Q

c c c c c c c c c

c c
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 
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 
   


    

     


   5.7)

  

A.2.11 Equation (5.10) 

00

A 24
0000 4

00 00 00 0024
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4

00 004
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4

Given equation (5.9)   into equation (5.8)
2
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as shown in equation (5.10)
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A.2.12 Equation (5.17) 

1
' 1 '2

1

1

1

2

1
'

1

2

Customer requirements and preferences  is updated as

( )( ) '
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Hence, the percentage changes in the demand  is updated as
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A.2.13 Equation (5.24) 

The payoff function of Firm i at the up sub-gate under Cournot competition is 

3 4
2 2 1 2

Let ,
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  C

22 2i SI  
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From equation (5.4),    2
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as shown in equation (5.24)  

A.2.14 Equation (5.25) 

From the first-order profit-maximizing condition, Firms i’s, j’s and k’s reaction functions 

are 
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Bringing (5.25c) into (5.25b), 
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 as shown in equation (5.25)  

A.2.15 Equation (5.26): Firm i’s resulting profit 
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Appendix B: Case Study 

B.1 Section 3.3 

B.1.1 Demand structure patterns with product diffusion 

 Demand structure pattern 2: if the project is first invested at time 1 

 

Fig. B1 The binomial lattice with product diffusion of N = 4 years product life cycle  

(The second demand structure pattern: if the project is first invested at time 1) 
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Fig. B2 Demand distribution at T = 2  

(The second demand structure pattern: if the project is first invested at time 1) 

 

 Demand structure pattern 3: if the project is first invested at time 2 

 

Fig. B3 The binomial lattice with product diffusion of N = 4 years product life cycle  

(The third demand structure pattern: if the project is first invested at time 2) 
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Fig. B4 Demand distribution at T = 2  

(The third demand structure pattern: if the project is first invested at time 2) 

 

B.1.2 Competitive outcome of the payoff matrix at time t = 0 

 Scenario 1: Both invest 

C 2

C

C 2

C

( , ) 34,500 178.5426 0.1373 0.1373

( , )
178.5426 0.2746 0.1373 0,   650.17 0.5

( , ) 34,500 164.8122 0.1373 0.1373

( , )
164.8122 0.2746 0.137

i i j i i i j

i i j

i j i j

i

j i j j j i j

j i j

j

j

q q q q q q

q q
q q q q

q

q q q q q q

q q
q

q









    


      



    


  



* * * *

3 0,   600.17 0.5

( , ) (466.78,366.78) ( , ) ( 4,583.59, 16,028.75)

i j i

i j i j

q q q

q q  

   

    

 

 Scenario 2: Firm i invests now and Firm j waits 

o Case 1: Firm i invests now and Firm j invests at year 2 

L 2

C

F 2

(2)

F

(2)

( , ) 34,500 168.5407 0.1373 0.0528

( , )
168.5407 0.2746 0.0528 0,   613.7476 0.1923

( , ) 24926.3 67.2943 0.0528 0.0528

( , )
67.2943 0.10

i i j i i i j

i i j

i j i j

i

j i j j j i j

j i j

j

q q q q q q

q q
q q q q

q

q q q q q q

q q

q









    


      



    


 



* * L* F*

(2)

56 0.0528 0,   637.2322 0.5

( , ) (543.47,365.50) ( , ) (6,054.15, 17,872.51)

j i j i

i j i j

q q q q

q q  

    

   
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o Case 2: Firm i invests now and Firm j abandons at time 2 

M 2

C

* M*

( , ) 34,500 168.5407 0.1373

( , )
168.5407 0.2746 0,   613.7476

( ,0) (613.75,0) ( ,0) (17,220.72,0)

i i j i i

i i j

i i

i

i i

q q q q

q q
q q

q

q







   


    



  

 

o Case 3: Firm i invests now and Firm j invests at time 1 

L 2

L

F 2

(1)

F

(1)

( , ) 34,500 168.5407 0.1373 0.0927

( , )
168.5407 0.2746 0.0927 0,   613.7476 0.3374

( , ) 29325 118.0941 0.0926 0.0926

( , )
118.0941 0.18

i i j i i i j

i i j

i j i j

i

j i j j j i j

j i j

j

q q q q q q

q q
q q q q

q

q q q q q q

q q

q









    


      



    


 



* * L* F*

(1)

53 0.0927 0,   637.2322 0.5

( , ) (479.65,397.41) ( , ) ( 2,911.15, 14,690.70)

j i j i

i j i j

q q q q

q q  

    

    

 

F ** F * F *

(2) (1)

L F **

Firm : ( , ) max[ ( , ), ( , ),0] 0

Firm : ( ( , )) 17,220.72

j i j j i j j i j

i j i j

j q q q q q q

i q q

  

 

  
 



   (Case 2 is selected) 

 Scenario 3: Firm j invests now and Firm i waits 

Scenario 3 is the same concept as shown in scenario 2, hence,  

F ** F * F *

(2) (1)

L F **

* *

Firm i : ( , ) max[ ( , ), ( , ),0] 0

Firm : ( ( , )) 9,136.95

( , ) (0,563.75) 

(Case 2 is selected: Firm  invests now and Firm  abandons at 2)

i i j i i j i i j

j i i j

i j

q q q q q q

j q q

q q

j i t

  

 

  




 



 

 Scenario 4: Both wait 

o At time 2 (the UU status) 

(1) Both invest at time 2 
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C 2

2

C

2

( , ) 24,926.3 429.6777 0.1706 0.1706

( , )
429.6777 0.3412 0.1706 0,   1,259.14 0.5

i i j i i i j

i i j

i j i j

i

q q q q q q

q q
q q q q

q





    


      



 

C 2

2

C

2

* * C* C*

2 2

( , ) 24926.3 412.6154 0.1706 0.1706

( , )
412.6154 0.3412 0.1706 0,   1,209.141 0.5

( , ) (872.76,772.76) ( , ) (105,039.45,76,963.02)

j i j j j i j

j i j

j i j i

j

i j i j

q q q q q q

q q
q q q q

q

q q





 

    


      



  

 

(2) Firm i invests and Firm j abandons at time 2 

M 2

2

M

2

* * M*

2

( , ) 24,926.3 429.6777 0.1706

( , )
429.6777 0.3412 0, 1,259.14

( , ) (1,259.14,0) ( ,0) (245,586.14,0)

i i j i i

i i j

i i

i

i j i

q q q q

q q
q q

q

q q







   


    



  

 

(3) Firm j invests and Firm i abandons at time 2 

M 2

2

M

2

* * M*

2

( , ) 24,926.3 412.6154 0.1706

( , )
412.6054 0.3412 0, 1,209.14

( , ) (0,1,209.14) (0, ) (0,224,528.81)

j i j j j

j i j

j j

j

i j j

q q q q

q q
q q

q

q q







   


    



  

 

(4) Both abandon at time 2 with values (0,0)  

Therefore, the payoff matrix of the status UU at time 2 is summarized as  

πi, πj 
Firm j 

Invest Wait 

Firm i 
Invest 105,039.45 76,963.02 245,586.14 0.00 

Wait 0.00 224,528.81 0.00 0.00 

o At time 2 (the UD status) 

The procedure is the same as above.  The payoff matrix of the status UD at time 2 is 

shown as  
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πi, πj 
Firm j 

Invest Wait 

Firm i 
Invest -9,570.15 -18,101.32 2,373.49 0.00 

Wait 0.00 -4,024.89 0.00 0.00 

o At time 2 (the DD status) 

The payoff matrix of the status DD at time 2 is summarized as  

πi, πj 
Firm j 

Invest Wait 

Firm i 
Invest -23,565.82 -24,906.69 -23,724.06 0.00 

Wait 0.00 -24,729.71 0.00 0.00 

o At time 1 (the U status) 

The payoff matrix of the status U at time 1 is summarized as  

πi, πj 
Firm j 

Invest Wait 

Firm i 
Invest 41,091.46 22,572.19 66,065.14 4,092.79 

Wait 14,448.09 48,220.87 43,866.24 31,189.56 

o At year 1 (the D status) 

The payoff matrix of the status D at time 1 is summarized as  

πi, πj 
Firm j 

Invest Wait 

Firm i 
Invest -20,571.08 -25,094.71 -15,918.36 0.00 

Wait 0.00 -19,913.80 961.86 0.00 

 

B.1.3 The NPV approach 

The demand has an expected yearly growth rate of g = 8% based on the past project 

experience and experts’ market observation.  The current (inverse) demand function is 

given as 0 050 0.05p Q  .  Firm i has a cost advantage where Firm i’s unit variable cost 

(ci = $10) is less than Firm j’s (cj = $15).  Assume that demand and supply are equivalent.  

The capacity of Firm i can be defined by the number of competitors and the unit variable 
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costs.  Hence, the capacity of Firm i is
15

( ) 0.6
10 15

iq Q Q 


.  The current fixed 

investment cost is given as I0 = $34,500.  The project will operate for a finite service life 

of N = 4 years with the interest rate r = 12%.  Therefore, with the above information, I 

can compute from equations (3.24) to (3.26) and get 

4
0

1

10 1 0.08 10 15
0.6, 375, ( ) 3.6554, 12.5

10 15 2 1 0.12 2

(50 12.5)(50 12.5 20)(0.6)(3.6554)
NPV 34,500 17,022.6 with 225

4(0.05)

m

m

i i

a c
Q G c

b

q




  
       

 

  
      



 

Finally, NPV is calculated as -$17,022.6 with an average annual planned capacity of 225 

units. 

B.1.4 Sensitivity analyses 

Table B1 shows the payoffs and option values in each scenario when the expected 

growth rate decreases as 5% and increases as 11%.  All other parameters are the defaults.  

Table B1 shows that the payoffs and option values of Firm i will increase when the 

expected growth rates increase.  

 

Table B1 Sensitivity of project and option value to expected growth rate g 

Scenario 1 

Firm i g = 0.05 0.08 0.11 Firm j g = 0.05 0.08 0.11 

Payoff -6,213.7 -4,583.8 -2,871.6 Payoff -17,258.0 -16,028.8 -14,728.9 

Scenario 2 

Firm i g = 0.05 0.08 0.11 Firm j g = 0.05 0.08 0.11 

Payoff 12,179.4 17,220.7 22,721.9 Option value 0.0 0.0 0.0 

Scenario 3 is the same concept as scenario 2 

Scenario 4 

Firm i g = 0.05 0.08 0.11 Firm j g = 0.05 0.08 0.11 

Option value 15,756.6 17,178.7 18,652.9 Option value 8,158.7 9,147.5 10,176.2 
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Table B2 shows the payoffs and option values in each scenario when the expected 

standard deviation decreases as 25% and extends as 75%.  All other parameters are the 

defaults.  In most cases, the payoffs and option values will increase when the expected 

standard deviation is higher.  In scenario 2, Firm i’s payoffs at σ = 0.5 and 0.75 are 

$17,220.7 and $11,554.7, a result which does not raise Firm i’s payoff with a higher 

standard deviation.  The main reason for this result is that the higher standard deviation 

increases Firm j’s option value, an increase which makes Firm j invest the project at time 

1 instead of abandoning the project as in the default setting.  Hence, with the growing 

standard deviation in scenario 2, Firm i may gain a lower payoff from the next period of 

competitive outcome at time 1, since Firm j may change its investment decision due to 

the increasing option value. 

 

Table B2 Sensitivity of project and option value to expected standard deviation σ 

 

Table B3 shows the payoffs and option values in each scenario when unit variable 

costs are either close as (12, 13), or diverged as (8, 17).  All other parameters are the 

defaults.  Overall, the payoffs and option values would increase for Firm i and decrease 

for Firm j when the unit variable costs are greatly varied. 

Scenario 1 

Firm i σ = 0.25 0.5 0.75 Firm j σ = 0.25 0.5 0.75 

Payoff -14,278.7 -4,583.8 15,976.4 Payoff -23,692.7 -16,028.8 1,126.2 

Scenario 2 

Firm i σ = 0.25 0.5 0.75 Firm j σ = 0.25 0.5 0.75 

Payoff 3,011.3 17,220.7 11,554.7 Option value 0.0 0.0 4,620.1 

Scenario 3 is the same concept as scenario 2 

Scenario 4 

Firm i σ = 0.25 0.5 0.75 Firm j σ = 0.25 0.5 0.75 

Option  value 6,225.82 17,178.7 45,132.3 Option value 1,142.98 9,147.5 35,237.9 
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Table B3   Sensitivity of project and option value to unit variable costs (ci, cj) 

 

Table B4 shows the payoffs and option values in each scenario when product 

service life is reduced as two years and extended as six years.  All other parameters are 

the defaults.  Overall, the payoffs and option values of Firm i and j will increase when the 

product service life is longer.  In scenario 2, Firm i’s payoffs at N = 4 and 6 are 

$17,220.7 and $2,792.5, a result which does not raise Firm i’s payoff with a longer 

service life.  The main reason for this result is that the longer service life increases Firm 

j’s option value, an increase which makes Firm j invest the project at time 1 instead of 

abandoning the project as in the default setting.  Hence, with the longer service life in 

scenario 2, Firm i may gain lower payoff from the next period of competitive outcome at 

time 1, since Firm j may change its investment decision due to the increasing option 

value. 

 

Table B4 Sensitivity of project and option value to project service life N 

Scenario 1 

Firm i ci,cj 12,13 10,15 8,17 Firm j ci,cj 12,13 10,15 8,17 

Payoff -9,491.2 -4,583.8 763.4 Payoff -11,780.2 -16,028.8 -19,837.9 

Scenario 2 

Firm i ci,cj 12,13 10,15 8,17 Firm j ci,cj 12,13 10,15 8,17 

Payoff 13,904.8 17,220.7 19,790.2 Option value 0.0 0.0 0.0 

Scenario 3 is the same concept as scenario 2 

Scenario 4 

Firm i ci,cj 12,13 10,15 8,17 Firm j ci,cj 12,13 10,15 8,17 

Option  value 13,449.4 17,178.7 21,121.2 Option value 12,012.3 9,147.5 6,465.5 

Scenario 1 

Firm i N = 2 4 6 Firm j N = 2 4 6 

Payoff -24,714.0 -4,583.8 14,144.6 Payoff -29,628.9 -16,028.8 -3,373.8 

Scenario 2 
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B.2 Section 4.3 

B.2.1 For section 4.3.1 

The summation of growth after product launch is obtained as 

4 2 3 4

1 0.21 (1.21)(1 0.04) (1.21)(1.04)(1 0.13) (1.21)(1.04)(0.87)(1 0.21)

1.12 (1.12) (1.12) (1.12)

3.4125

G
   

   



 

The values of                         are 

       
2 20.54 (149.51) 2(0.54)(0.46)(90.68) (0.46) (55) 100.28  

       
2 20.54 (90.68) 2(0.54)(0.46)(55) (0.46) (33.36) 60.83  

       
2 20.54 (55) 2(0.54)(0.46)(33.36) (0.46) (20.23) 36.89  

2 2
00 =0.54 (100.28) 2(0.54)(0.46)(60.83) (0.46) (36.89) 67.27a   

 

00 00
4

00 4

1

From equation (4.10),

( )( 2 )
NPV

(1 ) 4

3.41(0.6591) (67.27 11)(67.27 11 20)
33,955.2 1,036.61

1.12 4(0.05)

NPV (benchmark A) has a payoff value of -$1,036.61, taking an action of

i

i

a c a c cG
I

r b

   
  



  
    

  "kill" .

 

From equations (4.20), the profit functions of Firm i at the second sub-gates are 

  C

22i 
2

2/4

3.41 [100.28 2(10) 12]
25,000 36,023.17

1.12 9(0.05)

 
    

  
2

C

21 2/4

3.41 [60.83 2(10) 12]
25,000 5,004.79

1.12 9(0.05)
i

 
      

Firm i N = 2 4 6 Firm j N = 2 4 6 

Payoff -8,352.4 17,220.7 2,792.5 Option value 0.0 0.0 3,783.3 

Scenario 3 is the same concept as scenario 2 

Scenario 4 

Firm i N = 2 4 6 Firm j N = 2 4 6 

Option  value 5,614.9 17,178.7 34,197.1 Option value 4,315.9 9,147.5 19,399.1 
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2

C

20 2/4

3.41 [36.89 2(10) 12]
25,000 19,018.50

1.12 9(0.05)
i

 
      

The payoff matrices at statuses 22, 21, and 20: 

At status 22 j go j kill 

i go 36,023.17 46,128.04 106,415.29 0 

i kill 0 142,543.3 0 0 

At status 21 j go j kill 

i go -5,004.79 -4,052.07 16,647.04 0.00 

i kill 0 26,245.13 0 0 

At status 20 j go j kill 

i go -19,018.52 -19,993.2 -13,340.42 0 

i kill 0 -11,680.3 0 0 

 

The payoff matrices at statuses 11, 10, and 00 can be computed from equation (4.23) and 

(4.24) as 

At status 11 j go j kill 

i go 16,911.22 24,465.67 58,047.68 0 

i kill 0 81,597.71 0 0 

At status 10 j go j kill 

i go -1586.1894 958.6563 2,827.621 0 

i kill 0 7,917.313 0 0 

At status 00 j go j kill 

i go 4,467.71 12,096.62 27,575.52 0 

i kill 0 42,392.69 0 0 

 

Option game has SNPV of $8,967.71(=4,467.71+4,500), Firm  takes an action of "go."i  

 

B.2.2 For section 4.3.2: Bayesian analysis 

8
2

1

8
2 1

1

Given Table 4.2 and the sample collection of ( 0.02) 0.30,

From equation (4.11), we can compute

8 1 1
' 19.028 23.028 and ' [ ( 0.02) ] 0.139

2 0.142 2

Hence, the updated customer requireme

i

i

i

i

x

x 







 

      





1

nt and preference  is then  distributed as

m(x ) [ 0.02, (23.028 0.139) ,46.056]

x t

z St x  
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146.056(23.028 0.139)
with mean ( ) 0.02, ( )= 0.3265

46.056 2

' 0.5714

From equation (4.12), we can obtain '=0.4571

E x z Var x z






 



   

 

Summary of prior and posterior distributions: 

 

 Prior Posterior 

g(ξx) (19.028,0.142)IG  (23.028,0.139)IG  

m(x) ( 0.02,0.37,38.056)St x  

( ) 0.02, ( ) 0.39052E x Var x   

( 0.02,0.3124,46.056)St x

( ) 0.02, ( ) 0.3265E x Var x   

w(y) 2(0.08,0.5 )N  2(0.08,0.4571 )N  

f(Q1) lognormal distribution

2

0.08

1

2 2(0.08) 0.5

1

( ) 750( ) 812.465

( ) 750 ( 1)

187485

E Q e

Var Q e e

 

  



 

lognormal distribution

2

0.08

1

2 2(0.08) 0.4571

1

( ) 750( ) 812.465

( ) 750 ( 1)

153388.43

E Q e

Var Q e e

 

  



 

 

 

Hence, the summation of the growth after launch is updated and obtained as 

4 2 3

4

1 0.1954 (1.1954)(1 0.04) (1.1954)(1.04)(1 0.1154)
'

1.12 (1.12) (1.12)

(1.196)(1.04)(0.8846)(1 0.1886)
3.4083

(1.12)

G
  

  


 

 

I can update the values of       
       

           
  as 

     
 2 2=0.5438 (140.19) 2(0.5438)(0.4562)(88.76) (0.4562) (56.19) 77.09  

     
 2 2=0.5438 (88.76) 2(0.5438)(0.4562)(56.19) (0.4562) (35.58) 48.81  

     
 2 2=0.5438 (56.19) 2(0.5438)(0.4562)(35.58) (0.4562) (21.58) 30.70  

 

 

(Benchmark B) 

  B'

22 2/4

3.4083(0.591) (77.09 11)(77.09 11 20)
25,000 17,823.88

(1.12) 4(0.05)
i

  
   

  B'

21 2/4

3.4083(0.591) (48.81 11)(48.81 11 20)
25,000 10,678.90

(1.12) 4(0.05)
i

  
    

  B'

20 2/4

3.4083(0.591) (30.70 11)(30.70 11 20)
25,000 20,930.90

(1.12) 4(0.05)
i

  
    

 



212 

 

B'

11 1/4

B'

10 1/4

(0.5515) max[17,823.88,0] (0.4485) max[ 10,678.9,0]
$9,711.4 (go)

(1 0.05)

(0.5515) max[ 10,678.9,0] (0.4485) max[ 20,930.9,0]
$0 (kill) 

(1 0.05)

i

i

SNPV

SNPV

 
  


    

 

 

 

The profit functions of Firm i by the option-game approach for the up and down at the 

first sub-gates of the development stages are: 

  
2

C'

22 2/4

3.4083 [77.09 2(10) 12]
25,000 9,165.90

(1.12) 9(0.05)
i

 
   

  
2

C'

21 2/4

3.4083 [48.81 2(10) 12]
25,000 13,081.90

(1.12) 9(0.05)
i

 
    

  
2

C'

20 2/4

3.4083 [30.7 2(10) 12]
25,000 21,311

(1.12) 9(0.05)
i

 
    

 

The updated payoff matrix at statuses 22, 21, and 20 

At status 22 j go j kill 

i go 9,165.902 6,655.196 47,487.29 0 

i kill 0 50,811.24 0 0 

At status 21 j go j kill 

i go -13,081.9 -15,365.4 -748.256 0 

i kill 0 -759.464 0 0 

At status 20 j go j kill 

i go -21,311 -22,781.3 -18,097.7 0 

i kill 0 -18,740.9 0 0 

 

The updated payoff matrix at statuses 11 and 10 can be computed from equation (4.26) as 

At status 11 j go j kill 

i go -1,005.93 -2,373.9 19,873.59 0 

i kill 0 21,684.66 0 0 

At status 10 j go j kill 

i go -6,000 -6,000 -6,000 0 

i kill 0 -6,000 0 0 

At the status of "11": the option-game approach has SNPV of $12,936.8

[=(19,873.59+6,000) 0.5], 

Firm  takes an action of "go/kill," a Prisoner's Dilemma. 

At the status of "10": the option-game approa

i





ch has SNPV of $0, 

Firm  takes an action of "kill."i
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B.3 Section 5.3 

B.3.1 For section 5.3.1 

The summation of growth after product launch is obtained as 

4 2 3 4

1 0.21 (1.21)(1 0.04) (1.21)(1.04)(1 0.13) (1.21)(1.04)(0.87)(1 0.21)

1.12 (1.12) (1.12) (1.12)

3.4125

G
   

   



 

The values of                         are 

       
2 20.54 (184.84) 2(0.54)(0.46)(112.11) (0.46) (68) 123.99  

       
2 20.54 (112.11) 2(0.54)(0.46)(68) (0.46) (41.24) 75.20  

       
2 20.54 (68) 2(0.54)(0.46)(41.24) (0.46) (25.02) 45.61  

2 2
00 =0.54 (123.99) 2(0.54)(0.46)(75.20) (0.46) (45.61) 83.17a   

 

12(0.95) 10(0.9)
From equation (5.7), 1 0.4171

10 12 13



  

 
 

1

1
10 12 13

11.67
3

n

i jkk
c c

c
n




  

  


 

00 004
00 1

1

From equation (5.10),

( )( 2 2 )
NPV

(1 ) 4

3.41(0.4171) (83.17 11.67)[83.17 11.67 2(10) 2(0.2)]
33,955.2 135.05

(1.12) 4(0.05)

The NPV method has payoff value of -$135.05, takin

i il
i

a c a c c cG
I

r b

    
  



   
    

 g an action of "kill".

 

From equation (5.26), the profit functions of Firm i in the 3-player Cournot competition 

at the second sub-gates are 

  C

22i 
2

2/4 2

3.41 [123.99 3(10)(1.02) 25]
25,000 31,490.61

(1.12) 4 (0.05)

 
  

  
2

C

21 2/4 2

3.41 [75.10 3(10)(1.02) 25]
25,000 5,474.12

(1.12) 4 (0.05)
i

 
    

 



214 

 

  
2

C

20 2/4 2

3.41 [45.61 3(10)(1.02) 25]
25,000 18,547.1

(1.12) 4 (0.05)
i

 
      

By applying Nash equilibrium with the best response analysis, the payoff matrices at 

statuses of “22,” “21,” and “20” are as follows: 

“22” i j go k go i j kill  k go i j go k kill i j kill k kill 

i go 31491 27451 26453 72397 0 68187 70733 66576 0 183744 0 0 

i kill 0 71290 71313 0 0 195663 0 187833 0 0 0 0 

“21” i j go k go i j kill  k go i j go k kill i j kill k kill 

i go -5474 -8479 -9725 7940 0 3093 6976 3437 0 43121 0 0 

i kill 0 6090 4822 0 0 44310 0 42790 0 0 0 0 

“20” i j go k go i j kill  k go i j go k kill i j kill k kill 

i go -18547 -20432 -21282 -14537 0 -17924 -15078 -17367 0 -4782 0 0 

i kill 0 -15964 -17044 0 0 -5948 0 -5827 0 0 0 0 

 

By applying Nash equilibrium with the best response analysis, the payoff matrices at the 

statuses of “11” and “10” are as follows: 

 “11” i j go k go i j kill  k go i j go k kill i j kill k kill 

i go 12974 10010 9235 36024 0 31574 34701 30877 0 111168 0 0 

i kill 0 34590 34022 0 0 118032 0 113185 0 0 0 0 

“10” i j go k go i j kill  k go i j go k kill i j kill k kill 

i go -3363 -4316 -4601 -1789 0 -4360 -2301 -4177 0 16866 0 0 

i kill 0 -2771 -3443 0 0 17497 0 16691 0 0 0 0 

 

By applying Nash equilibrium with the best response analysis, the payoff matrix at time 0 

is: 

“00” i j go k go i j kill k go i j go k kill i j kill k kill 

i go 4418 3031 2818 18462 0 16246 17760 15692 0 62168 0 0 

i kill 0 15754 15708 0 0 66097 0 63157 0 0 0 0 

The option-game has the SNPV of $8,918.17(=4,418.17+4,500), 

taking an action of "go" for Firm .i


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B.3.2 For section 5.3.2: Determination of parameters (θ,ρ,α,β) in the prior  

distribution of customer requirements and preferences x 

2

2

2 2

1
( ) 0.1953

( 1)
15.1524, 0.3618

1
( ) 0.0029

( 1) ( 2)

x

x

E

Var


 

 


  


  

  
  
  

 

( ) 0.02

( ) 0.1953 1
( 1) 14.1524(0.3618)

x

x

E

Var

 

 
 

 

 



     

 

1
( ) ( , ,2 ) ( 0.02,0.3648,30.3)

2
with ( ) 0.02,and ( ) 0.3906

14.1524(0.3618)

m x St x St x

E x Var x


 




  

  

 

 Determination of parameters (θ’,ρ’,α’,β’) in the posterior distribution 

Given the sample distribution
26

1
6, 0.05, ( ) 0.125ii

n x x x


    , 

2
6 2 1

1

6
' 15.1524 18.1524

2 2

1 1 ( )
' [ ( ) ] 0.3537

2 2(1 )

0.02 6(0.05)
' 0.0457, ' 0.1429

1 6 1 1

ii

n

n x
x x

n

n x

n n

 




 

  
 

 





    


    



 
    

  

  

Unknown parameters Moment Value 

Mean μx E(μx|z)  0.0457  

 Var(μx|z)  0.0235 

Variance ξx
2
 E(ξx

2
|z)  0.1648 

 Var(ξx
2
|z)  0.0017 

 

1
' 12

1

1
'

1

2

( )( ) '
( ) ( ,[ ] , 2 ) ( 0.0457,0.1780,36.3)

1

1
with ( ) 0.0457,and ( ) 0.1884

( 1)( ) '

n

n

n
m x z St x n St x

n

n
E x z Var x z

n

  
 






  










 
   

 

 
   

  
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' ' ' 2 2' 2

' 2' 2

( , ) [0.8(0.0457) 0.064,0.8 (0.1884)]

0.1006, 0.3472

x xy x N N

g

     



      

  
 

lnN(6.72,0.3472)  
2

0.1006

1

2 2(0.1006) 0.3472

1

( ) 750( ) 829.38

( ) 750 ( 1) 88125.4951

E Q e

Var Q e e

  


   

 

 Bayesian analysis for product performance s 

8
' ' 2 1

1

1

From equation (5.19), we can compute

8 1 1
15.0025 19.0025 and [ ( 0) ] 0.345

2 0.3527 2

Hence, product perfprmance ' is then  distributed as

( ) [ 0, (19.0025 0.345) ,38.005]

with mean

s s i

i

s

s

s t

m s z St s

  





      

 



1

' '

38.005(19.0025 0.345)
 ( ) 0, ( ) 0.161

38.005 2

' 0.4012, 0.0457, 0.591s l l

E s Var s

  


  



    

 

 

 Hence, the summation of growth after launch is updated and obtained as 

4 2 3

4

1 0.1683 (1.1683)(1 0.0503) (1.1683)(1 0.0503)(1 0.0678)
'

1.12 (1.12) (1.12)

(1.1683)(1 0.0503)(1 0.0678)(1 0.1233)
3.473

(1.12)

G
   

  

  
 

 

I can update the values of       
       

           
  as 

     
 2 2=0.5724 (146.98) 2(0.5724)(0.4276)(103.87) (0.4276) (73.4) 90.68  

     
 2 2=0.5724 (103.87) 2(0.5724)(0.4276)(73.4) (0.4276) (51.87) 64.08  

     
 2 2=0.5724 (73.4) 2(0.5724)(0.4276)(51.87) (0.4276) (31.46) 44.34  

 

(Benchmark B) 

  B'

22 2/4

3.473(0.4) (90.68 11.67)[90.68 11.67 2(10) 2(0.0457)]
25,000 49,838.25

(1.12) 4(0.05)
i

   
   

  B'

21 2/4

3.473(0.4) (64.08 11.67)[64.08 11.67 2(10) 2(0.0457)]
25,000 8,245.72

(1.12) 4(0.05)
i

   
   
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  B'

20 2/4

3.473(0.4) (44.34 11.67)[44.34 11.67 2(10) 2(0.0457)]
25,000 11,866.71

(1.12) 4(0.05)
i

   
      

 

B'

11 1/4

B'

10 1/4

(0.6) max[49,838.25,0] (0.4) max[8,245.72,0]
$32,798.69 $6,000 (go)

(1 0.05)

(0.6) max[8,245.72,0] (0.4) max[ 11,866.71,0]
$4,887.45 $6,000 (kill) 

(1 0.05)

i

i

SNPV

SNPV


   


    

 

 

In equations (5.26), the profit functions of Firm i by option-game approach for the up and 

down at the first sub-gates are as follows: 

  
2

C'

22 2/4 2

3.473 [90.68 3(10)(1 0.0457) 25]
25,000 4,159.15

(1.12) 0.05(3 1)
i

  
   



  
2

C'

21 2/4 2

3.473 [64.08 3(10)(1 0.0457) 25]
25,000 11,337.8

(1.12) 0.05(3 1)
i

  
    



  
2

C'

20 2/4 2

3.473 [44.34 3(10)(1 0.0457) 25]
25,000 19,087.8

(1.12) 0.05(3 1)
i

  
    



 

By applying Nash equilibrium with the best response analysis, the updated payoff 

matrices at the statuses of “22,” “21,” and “20” are as follows: 

“22” i j go k go i j kill  k go i j go k kill i j kill k kill 

i go 4159 47 53 24959 0 20749 23759 18395 0 80606 0 0 

i kill 0 21303 22647 0 0 85020 0 76583 0 0 0 0 

“21” i j go k go i j kill  k go i j go k kill i j kill k kill 

i go -11338 -14104 -14699 -1993 0 -5909 -2805 -6373 0 22185 0 0 

i kill 0 -4451 -4676 0 0 22573 0 19509 0 0 0 0 

“20” i j go k go i j kill  k go i j go k kill i j kill k kill 

i go -19088 -20854 -21479 -15326 0 -18283 -15850 -18085 0 -6168 0 0 

i kill 0 -16896 -17543 0 0 -7098 0 -7844 0 0 0.00 0 

 

 

By applying Nash equilibrium with the best response analysis, the updated payoff 

matrices at the statuses of “11” and “10” are as follows: 

 “11” i j go k go i j kill  k go i j go k kill i j kill k kill 

i go -613 -3403 -2995 13177 0 10758 12466 8758 0 46896 0 0 

i kill 0 14336 7423 0 0 49414 0 43538 0 0 0 0 
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“10” i j go k go i j kill  k go i j go k kill i j kill k kill 

i go -1617 -2146 -1540 575 0 690 575 -218 0 5764 0 0 

i kill 0 -218 690 0 0 5970 0 4345 0 0 0 0 

 

At the status of "11": the option-game has SNPV of $12,547.47

[=(13,176.81+6,000+12,645+6,000+0) / 3], taking the actions of "go/kill"  for Firm .

At the status of "10": the option-game has SNPV of $6,5

i



74.79(=574.79+6,000), 

taking an action of "go"  for Firm .i
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Appendix C Validation 

C.1 Firm i’s Equilibrium Profit of the Asymmetric Cournot 

From equation (3.18), I have 

2

2( , ) [ (iuu i j iC q q I bq       
2) ]uu j i ibq c q G 

( , )
2 (

iuu i j

i

i

C q q
bq G

q


  


  

2) 0  uu j ibq c G  

1

2
i jq q


  

  uu ic

2b

 

                            
1

2
j iq q


 

  
uu jc

2b

1 1
(

2 2
i iq q

 
  

  
uu jc

2b
) 

  
uu jc

2b

  2uu i jc c 

3b

jq 
  2uu j ic c 

3b

 

Putting them to Firm i’s payoff function, 

 2( , ) {[ (iuu i jC q q I b   
  2uu i jc c 

3b

2)

[   (uu b
  2uu j ic c 

3b
) ](ic

  2uu i jc c 

3b
2)}G

2I  
(   2 4uu   2uu ic    2 2

24 4 )uu j i j i jc c c c c G  

9b

2I  
(   2

22 )uu i jc c G 

9b
 as shown in equation (3.27)
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C.2 Firm i’s Equilibrium Profit of Monopoly 

From equation (3.19), I have 

2

2( , ) [ (iud i j iM q q I bq       
2) ]ud i ic q G

2

( , )
2 (

iud i j

i

i

M q q
bq G

q


  


  2) 0,ud ic G 

iq 
(   )ud ic

2b

 

Putting it to Firm i’s payoff function, 

 
2( , ) [ (iud i jM q q I b   

  ud ic

2b

2) (   )(ud ic
  ud ic

2b
2)]G

2I  
(   2

2)ud ic G

4b
  as shown in equation (3.28)

 

C.3 Option Premium 

00SNPVi 
  2 2iuu rq    (1 )iud r rq q

2(1 )fr

2

2( ) [
1

r

f

q
I

r
  



(   2

22 )uu i jc c G 

9b
22

2 (1 )
] [

(1 )

r r

f

q q
I

r


  



(   2

2)ud ic G

4b
]

 

Let , 1j vc i vcc c    


2

00 2SNPV ( ) {
1

r
i

f

q
I

r
  



[   2

2( 2) ]uu vc ic G 

9b
22

2 (1 )
} [

(1 )

r r

f

q q
I

r


  



(   2

2)ud ic G

4b
]  

From equation (3.26), 

0 0

00 0

( )( 2 )
NPV

4

i

i

G a c a c c
I

b

   
    

Finally, the option premium can be obtained as 
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00 00SNPV NPVi i  

 2

2( ) {
1

r

f

q
I

r
 



[   2

2( 2) ]uu vc ic G 

9b
22

2 (1 )
} [

(1 )

r r

f

q q
I

r


  



(   2

2)ud ic G

4b
]

0 0

0

( )( 2 )

4

i
G a c a c c

I
b

   
 

 

 
  2 2iuu rq    (1 )iud r rq q

2(1 )fr

0 0

0

( )( 2 )

4

i
G a c a c c

I
b

   
   as shown in equation (3.30)  

 

 


