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Abstract

A countable dense homogeneous space, in a general sense, is a topological space in which

any two countable dense subsets of the space are “dispersed” the same way. In this thesis,

we will show that some very well-known topological spaces, such as n-dimensional Euclidean

space Rn and the n-sphere Sn for all natural numbers n is countable dense homogeneous.

ii



Acknowledgments

I would like to thank God, for without divine intervention I would have never discovered

the beauty that is mathematics. I would like to thank my entire family, for without their

tireless efforts in raising me, I would have ended up in a terrible situation and gone nowhere

fast. I would like to thank all of my friends, for without them my life and success would

have no meaning. Finally, I would like to thank Charlotte, for she is the love of my life.

iii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Preliminary Definition and Result . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Countable Dense Homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 R is Countable Dense Homogeneous . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Q is not Countable Dense Homogeneous . . . . . . . . . . . . . . . . . . . . 7

2.3 R2 is Countable Dense Homogeneous . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Rn is Countable Dense Homogeneous . . . . . . . . . . . . . . . . . . . . . . 11

2.5 The n-sphere Sn is Countable Dense Homogeneous . . . . . . . . . . . . . . 14

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

iv



Chapter 1

Preliminary Definition and Result

First, a definition and a lemma that we will use later.

Definition 1.1. Let f : A → B and g : X → Y be functions. The cartesian product of

functions f × g : A×X → B × Y is defined by (f × g)(a, x) = (f(a), g(x)). For a collection

{fα}α∈Λ of functions, let
∏
α∈Λ

fα denote their cartesian product.

Lemma 1.2. Let Λ be an indexing set and fα : Xα → Yα be a homeomorphism for all α ∈ Λ.

Then f =
∏
α∈Λ

fα :
∏
α∈Λ

Xα →
∏
α∈Λ

Yα is a homeomorphism.

Proof. Let U ⊂
∏

α∈Λ Yα be an open set and ~x ∈ f−1(U) = (
∏

α∈Λ fα)−1(U) = (
∏

α∈Λ f
−1
α )(U).

Then there is a basic open set
∏

α∈Λ Uα in
∏

α∈Λ Yα lying in U and containing f(~x). Thus

~x ∈ f−1(
∏

α∈Λ Uα) =
∏

α∈Λ f
−1
α (Uα) ⊂ f−1(U), where f−1

α (Uα) is open for all α ∈ Λ since fα

is continuous for all α ∈ Λ. Therefore, f−1(U) is open. Hence f is continuous. By a similar

argument, f−1 is continuous.

We show injectivity. Let ~x, ~y ∈
∏

α∈ΛXα such that f(~x) = f(~y). Then f((xα)α∈Λ) =

f((yα)α∈Λ), which implies (fα(xα))α∈Λ = (fα(yα))α∈Λ. Thus fα(xα) = fα(yα) for all α ∈ Λ.

Then fα being injective for all α ∈ Λ implies xα = yα for all α ∈ Λ. Thus (xα)α∈Λ = (yα)α∈Λ,

or ~x = ~y. This shows that f is injective.
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Now, let ~y = (yα)α∈Λ ∈
∏

α∈Λ Yα. Then yα ∈ Yα for all α ∈ Λ, and since fα is surjective

for all α ∈ Λ, there exists an xα ∈ Xα such that fα(xα) = yα. It follows that there exists an

~x = (xα)α∈Λ ∈
∏

α∈ΛXα such that f(~x) = f((xα)α∈Λ) = (fα(xα))α∈Λ = (yα)α∈Λ = ~y.
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Chapter 2

Countable Dense Homogeneity

Definition 2.1. A separable space X is said to be countable dense homogeneous if, given

any two countable dense sets C,D ⊂ X, there exists an autohomeomorphism f of X such

that f(C) = D. For brevity, we will occasionally abbreviate “countable dense homogeneous”

with CDH.

2.1 R is Countable Dense Homogeneous

First, an important lemma.

Lemma 2.2. Let f : R→ R be a strictly increasing surjection. Then f is continuous.

Proof. Suppose f is discontinuous. Then there is an a ∈ R at which f is discontinuous. We

have three cases for a discontinuity at a:

(i) Suppose L = lim
x→a−

f(x) = lim
x→a+

f(x), but f(a) 6= L. Assume f(a) < L. Since

lim
x→a−

f(x) = L > f(a), there is a neighborhood of L that contains an f(x) for x < a

for which f(x) > f(a). This is a contradiction to f being strictly increasing.

The proof when assuming f(a) > L is similar.

(ii) Suppose L = lim
x→a−

f(x) 6= lim
x→a+

f(x) = R. Since f is surjective, for every y ∈ [L,R]

there exists an xy ∈ R such that y = f(xy). It follows that there exists some (and in

fact, infinitely many) y ∈ [L,R] such that xy < a or a < xy. Suppose xy < a. Since f

is strictly increasing, for every neighborhood N of a and every x ∈ N such that x < a,

f(x) < L. However, xy < a, but f(xy) = y ≥ L, a contradiction.
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The proof when assuming a < xy is similar.

(iii) Suppose one of the limits, say L = lim
x→a−

f(x), does not exist or is infinite. If it is not

infinite, then the set {f(x) | x < a} is bounded above. However, since f is strictly

increasing, there must be a limit. This is a contradiction. Therefore, we suppose L is

infinite. If L =∞, then for any x > a, there will exist an x′ < a such that f(x′) > f(x),

contradicting f being strictly increasing. Clearly, L 6= −∞, for then that would say

that f were decreasing.

The proof when assuming R = lim
x→a+

f(x) does not exist or is infinite is similar.

Thus the set of discontinuities of f is empty. Therefore, f is continuous.

Theorem 2.3. R is countable dense homogeneous.

Proof. Let C = {ci}i∈N and D = {di}i∈N be countable dense subsets of R. We will re-order

the elements of C and D in the following manner:

Set c′0 = c0, and set Γ0 = R\{c′0}. For i ∈ N, we call the connected components of

Γi = R\{c′j}ij=0 “cells” for brevity. Then for i ≥ 0, we recursively define c′i+1, c
′
i+2, . . . , c

′
2(i+1)

for each of the cells Ci+1, Ci+2, . . . , C2(i+1), respectively, of Γi = R\{c′j}ij=0:

For i = 0, we have Γ0 = R\{c′0} = (−∞, c′0) ∪ (c′0,∞), so we can say, for example, that

C1 = (−∞, c′0) and C2 = (c′0,∞) (Note that we could have interchanged them.). Then c1

belongs to either C1 or C2. If the former occurs, then we set c′1 = c1. Otherwise, we set

c′1 = cm, where m = min{k ∈ N | ck ∈ C1}, and c′2 = c1, etc.

For i ≥ 0, suppose Γi has been defined. Let Cn, i + 1 ≤ n ≤ 2(i + 1), be the cell of Γi

in which we intend to place c′n. Let ∗ : C → C be defined by ∗(c′n) = cm ⇔ c′n = cm, where

m = min{k ∈ N | ck ∈ Cn}.

We claim that ∗ is a bijection.

4



Suppose c′m 6= c′n. Then either m < n or m > n, so assume m < n. It’s obvious that

c′n ∈ Γm, so that ∗(c′n) 6= ∗(c′m). Thus ∗ is injective.

Now, let cm ∈ C. Clearly, for someN < m, m = min{k ∈ N | ck ∈ C, C is some cell of ΓN},

in which case there exists an n ∈ N such that ∗(c′n) = cm. Thus ∗ is surjective, and this

proves the claim.

We do the same for D and impart on it the same ordering scheme used to order the c′is.

That is, for i, j ∈ N, if Ci and Cj are cells of Γn for some n ∈ N with c′i ∈ Ci and c′j ∈ Cj such

that Ci < Cj, then the cells Di and Dj in which we intend to place d′i and d′j, respectively, of

∆n = R\{d′k}nk=0 also satisfy Di < Dj.

Therefore, we conclude that if

c′0

c′1 < c′0 < c′2

c′3 < c′1 < c′4 < c′0 < c′5 < c′2 < c′6

...

was the ordering scheme used to order the c′is, then we should (and do) also obtain

d′0

d′1 < d′0 < d′2

d′3 < d′1 < d′4 < d′0 < d′5 < d′2 < d′6 .

...

Then it is immediate that c′i < c′j ⇔ d′i < d′j.

Now, due to readability, we shall revert to the original notation used for the elements

of C and D, i.e. c′i → ci and d′i → di for all i.
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There is some element cm of C that is greater than x and so bounds the set {ci | ci < x}.

Then by the construction dm is an upper bound of the set {di | ci < x} and so it has a

supremum. Therefore, we define a function f : R→ R by

f(x) = sup{di | ci < x}.

We want to show that f is a homeomorphism.

Claim: f is strictly increasing.

Let x, y ∈ R. Suppose x < y. Then f(x) = sup{di | ci < x} and f(y) = sup{di | ci < y}.

Since x < y, {di | ci < x} ( {di | ci < y}. Furthermore, since D is dense, there is a

d ∈ D ∩ (x, y), and thus it follows that d ∈ {di | ci < y} but d /∈ {di | ci < x}. Therefore,

d is an upper bound for {di | ci < x} but not an upper bound for {di | ci < y}. Thus

f(x) = sup{di | ci < x} < sup{di | ci < y} = f(y).

This proves the claim, and it also implies f is injective.

Claim: f is surjective.

Let y ∈ R. Then y is an upper bound for the set D′ = {di | di < y}. Let y∗ ∈ R such that

di ≤ y∗ for all di ∈ D′. That is, let y∗ be an upper bound forD′. Suppose y∗ < y. Then (y∗, y)

is open and thus contains an element d of D due to the denseness of D. Moreover, d < y,

implying d ∈ D′ and showing that y∗ < d ∈ D′, a contradiction. Therefore, y∗ ≥ y, implying

y = supD′. Set x = sup{ci | di < y}. It follows that y = supD′ = sup{di | ci < x} = f(x).

This proves the claim and furthermore shows that f is a bijection.
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By the previous lemma, since f is a strictly increasing surjection from R to R, f is

continuous.

Moreover, since f is a bijection, it has an inverse. We claim that

g(y) = sup{cj | dj < y}

is this inverse.

Let y ∈ R. Let D∗ = {di | ci < sup{cj | dj < y}}. Then y is an upper bound of D∗. Let

y∗ ∈ R be an upper bound of D∗. Suppose y∗ < y. Then (y∗, y) is open and thus contains

an element dk of D due to the denseness of D. Moreover, since dk < y, ck ∈ {cj | dj < y},

implying ck < sup{cj | dj < y} by considering the open interval (dk, y) and another element

dn of D such that dk < dn < y, i.e. ck < cn ∈ {cj | dj < y}. Thus dk ∈ D∗. However,

this says that y∗ < dk ∈ D∗, which is a contradiction to y∗ being an upper bound of D∗.

Therefore, y∗ ≥ y, implying y = supD∗. Thus

f(g(y)) = f(sup{cj | dj < y}) = sup{di | ci < sup{cj | dj < y}} = supD∗ = y,

which shows that g = f−1. Clearly g is continuous by the same reasoning that f is continuous.

Furthermore, it’s readily seen that for any cj ∈ C, f(cj) = sup{di | ci < cj} = dj.

Similarly, for any di ∈ D, f−1(di) = ci. Therefore, we have f(C) ⊂ D and C ⊃ f−1(D),

respectively, so we have f(C) ⊂ D and f(C) ⊃ f(f−1(D)) = D. Hence f(C) = D.

Therefore, f is a homeomorphism such that f(C) = D. We conclude that R is countable

dense homogeneous.

2.2 Q is not Countable Dense Homogeneous

We will show that Q is not countable dense homogeneous, but first, we will show the

more general result that countable dense spaces are not countable dense homogeneous.
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Theorem 2.4. Countable dense spaces are not countable dense homogeneous.

Proof. Let X be a countable dense space, and let x ∈ X. Suppose X is CDH. Then since

X and X\{x} are countable dense subsets of X, there exists a homeomorphism f : X → X

such that f(X\{x}) = X. Thus there exists an x′ ∈ X\{x} such that f(x) = f(x′), a

contradiction to f being injective. Thus X is not CDH.

Corollary 2.5. Q is not CDH.

2.3 R2 is Countable Dense Homogeneous

Theorem 2.6. R2 is countable dense homogeneous.

Proof. Let C,D ⊂ R2 be countable dense. One can check that for a, b ∈ R2, the set

Ri(a, b) = {ρ : ρ is a rotation of Rn such that πi(ρ(a)) = πi(ρ(b))} is countable. Thus⋃
x,y∈C

Ri(x, y) and
⋃

w,z∈D

Ri(w, z) are countable for i = 1, 2 since C and D are countable.

Then
(⋃2

i=1

⋃
x,y∈C R

i(x, y)
)
∪
(⋃2

i=1

⋃
w,z∈D R

i(w, z)
)

is also countable being a countable

union of countable sets. Since there are uncountably many rotations of R2, there exists a

rotation R of R2 that is different from any of these rotations so that πi(R(x)) 6= πi(R(y)),

πi(R(w)) 6= πi(R(z)) for any 1 ≤ i ≤ 2 and for all x, y ∈ C and w, z ∈ D. It follows that no

vertical or horizontal line intersects R(C) or R(D) at more than one point. Moreover, since

R is a homeomorphism, R(C) and R(D) are countable dense. We set R(C) = {(ai, bi)}∞i=0

and R(D) = {(ri, si)}∞i=0.

Now, for (x1, x2) ∈ R2, let Vx1 and Hx2 be the vertical and horizontal lines in the plane

through (x1, x2), respectively. Set (a′0, b
′
0) = (a0, b0) and (a′1, b

′
1) = (a1, b1). For n ∈ N,

R2\{Va′n ∪ Hb′n} = C1
n ∪ C2

n ∪ C3
n ∪ C4

n, where C1
n = {(x, y) | x > a′n, y > b′n}, C2

n = {(x, y) |

x < a′n, y > b′n}, C3
n = {(x, y) | x < a′n, y < b′n}, and C4

n = {(x, y) | x > a′n, y < b′n}. Set

(r′0, s
′
0) = (r0, s0). For n ∈ N, R2\{Vr′n∪Hs′n} = D1

n∪D2
n∪D3

n∪D4
n, where the Djn are defined

similar to the Cjn.
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,

Then (a′1, b
′
1) ∈ Cn0

0 for some 1 ≤ n0 ≤ 4, and consequently, we set (r′1, s
′
1) = (rd1 , sd1),

where d1 = min{m ∈ N | (rm, sm) ∈ Dn0
0 }. Set (r′2, s

′
2) = (rd2 , sd2), where d2 = min{m ∈

N | (rm, sm) 6= (r′j, s
′
j) for any j < 2}. Then there exist n0, n1 ∈ {1, 2, 3, 4} such that

(r′2, s
′
2) ∈ Dn0

0 ∩Dn1
1 . Set (a′2, b

′
2) = (ac2 , bc2), where c2 = min{m ∈ N | (am, bm) ∈ Cn0

0 ∩ Cn1
1 }.

After this, set (a′3, b
′
3) = (ac3 , bc3), where c3 = min{m ∈ N | (am, bm) 6= (a′j, b

′
j) for any j < 3}.

Observe by this construction that (a′i, b
′
i) ∈

⋂i−1
k=0 C

nk
k if and only if (r′i, s

′
i) ∈

⋂i−1
k=0D

nk
k . By

the construction, we see that for any i, j ∈ {0, 1, 2}, a′i < a′j ⇔ r′i < r′j and b′i < b′j ⇔ s′i < s′j.

and

gives
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We continue the process above and assume that for some odd i > 0, (a′0, b
′
0), (a′1, b

′
1),

. . . , (a′i, b
′
i) and (r′0, s

′
0), . . . , (r′i−1, s

′
i−1) have been defined as above. Then there exist

n0, n1, . . . , ni−1 ∈ {1, 2, 3, 4} such that (a′i, b
′
i) ∈

⋂i−1
j=0 C

nj

j . Set (r′i, s
′
i) = (rdi , sdi), where

di = min{m ∈ N | (rm, sm) ∈
⋂i−1
j=0D

nj

j }. After this, set (r′i+1, s
′
i+1) = (rdi+1

, sdi+1
), where

di+1 = min{m ∈ N | (rm, sm) 6= (r′j, s
′
j) for any j < i + 1}. Then there exist n0, n1, . . . , ni ∈

{1, 2, 3, 4} such that (r′i+1, s
′
i+1) ∈

⋂i
j=0D

nj

j . Then set (a′i+1, b
′
i+1) = (aci+1

, bci+1
), where

ci+1 = min{m ∈ N | (am, bm) ∈
⋂i
j=0 C

nj

j }. After this, set (a′i+2, b
′
i+2) = (aci+2

, bci+2
),

where ci+2 = min{m ∈ N | (am, bm) 6= (a′j, b
′
j) for any j < i + 2}. Thus (a′0, b

′
0), (a′1, b

′
1),

. . . , (a′i, b
′
i), (a

′
i+1, b

′
i+1), (a′i+2, b

′
i+2) and (r′0, s

′
0), . . . , (r′i−1, s

′
i−1), (r′i, s

′
i), (r

′
i+1, s

′
i+1) have been

defined, so we continue repeating this process and proceed by induction to define (a′j, b
′
j) and

(r′j, s
′
j) for all j ∈ N.

Clearly the above assignment is a bijection on R(C) and R(D). Moreover, we claim

that, for i, j ∈ N, a′i < a′j ⇔ r′i < r′j and b′i < b′j ⇔ s′i < s′j. To that end, we assume i > j

and suppose that for (a′i, b
′
i), (a

′
j, b
′
j) ∈ R(C) and (r′i, s

′
i), (r

′
j, s
′
j) ∈ R(D), a′i < a′j and b′i < b′j.

Then (a′i, b
′
i) ∈ C3

j . Thus (r′i, s
′
i) ∈ D3

j by the construction above, showing r′i < r′j and s′i < s′j.

The rest of the proof is done similarly. Hence the claim is true.

Due to readability, we shall revert to the original notation used for the elements of R(C)

and R(D). I.e., (a′i, b
′
i)→ (ai, bi) and (r′i, s

′
i)→ (ri, si) for all i.
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Set Cn := πnR(C) and Dn := πnR(D) for 1 ≤ n ≤ 2. Then Cn and Dn are countable

dense subsets of R since πn is a continuous surjection for 1 ≤ n ≤ 2. For i, j ∈ N, ai <

aj ⇔ ri < rj. Let f1 : R → R be defined by f1(x) = sup{rm | am < x}. Then f1 is

a homeomorphism such that f1(C1) = D1. More importantly, f1(ai) = ri for all i ∈ N.

Similarly, f2 : R → R defined by f2(y) = sup{sm | bm < y} is a homeomorphism such that

f2(C2) = D2 with f2(bi) = si for all i ∈ N.

Define f : R2 → R2 by f(x, y) = (f1(x), f2(y)). Then f is a homeomorphism by a

previous theorem. We claim that f(R(C)) = R(D). Clearly f(R(C)) ⊂ R(D). Now, for

(ri, si) ∈ R(D), since ri = f1(ai) and si = f2(bi), (ri, si) = (f1(ai), f2(bi)) = f(ai, bi). Thus

f(R(C)) ⊃ R(D), proving the claim. Therefore, R−1fR(C) = R−1R(D) = D. Since R−1fR

is a homeomorphism, R2 is countable dense homogeneous.

2.4 Rn is Countable Dense Homogeneous

For the following proof, it is necessary that we define some terminology.

Definition 2.7. By a hyperplane of Rn we mean a set of the form S + x, where S is a

subspace of Rn of dimension n− 1 and x ∈ Rn.

Definition 2.8. By the ith hyperplane axis A of Rn we mean the set A = {(x1, x2, . . . , xn) |

xi = 0}.

Definition 2.9. Let H be a hyperplane parallel to a hyperplane axis in Rn. By a half-space

of H we mean one of the two open sets whose union is Rn\H.

11



Definition 2.10. By an n-orthant of the point ~x ∈ Rn we mean the nonempty intersection of

a collection of n half-spaces that do not contain ~x. An orthant of ~x ∈ Rn is thus necessarily

open being a finite intersection of open sets. Let Oi~x denote the ith orthant of ~x. It follows

that there are 2n orthants for each ~x ∈ Rn.

Theorem 2.11. Rn is countable dense homogeneous.

Proof. We’ve already shown that R and R2 are CDH, so the cases n = 1 and n = 2 are

done. We now prove that Rn for n > 2 is CDH by using a generalization of our argument

for R2. To that end, assume n > 2. Let C,D ⊂ Rn be countable dense. Let ~x denote the

point (xj)
n
j=1 ∈ Rn. For 1 ≤ i ≤ n, define pi : Rn → Rn by pi(~x) = (qi(xj))

n
j=1, where

qi(xj) = xj for i 6= j and qi(xj) = 0 for i = j. That is, pi (1 ≤ i ≤ n) projects Rn onto the

(n− 1)-dimensional subspace {~y ∈ Rn | πi(~y) = 0} of Rn, which is homeomorphic to Rn−1.

We now repeat the procedure in the previous proof. For each pair ~x, ~y ∈ Rn and 1 ≤ i ≤

n, the set Ri(~x, ~y) = {ρ : ρ is a rotation of Rn such that pi(ρ(~x)) = pi(ρ(~y))} is countable.

Therefore
⋃n
i=1

⋃
~x,~y∈C R

i(~x, ~y) and
⋃n
i=1

⋃
~w,~z∈D R

i(~w, ~z) are countable since C and D are

countable. Thus
(⋃n

i=1

⋃
~x,~y∈C P

i(~x, ~y)
)
∪
(⋃n

i=1

⋃
~w,~z∈D P

i(~w, ~z)
)

is also countable. Since

there are uncountably many rotations of Rn, there exists a rotation R of Rn that is different

from any of these rotations so that pi(R(~x)) 6= pi(R(~y)) and pi(R(~w)) 6= pi(R(~z)) for all

1 ≤ i ≤ n, ~x, ~y ∈ C and ~w, ~z ∈ D. It follows that no hyperplane parallel to any hyperplane

axis intersectsR(C) orR(D) at more than one point. Moreover, sinceR is a homeomorphism,

R(C) and R(D) are countable dense. We set R(C) = {~am}∞m=0 and R(D) = {~bm}∞m=0.

Now, for ~x ∈ Rn, let H~x be the union of all hyperplanes containing ~x that are parallel

to a hyperplane axis. Then Rn\H~x =
⋃2n

k=1Ok~x, where Ok~x is the kth n-orthant of ~x. Set

~a′0 = ~a0,~a
′
1 = ~a1, and ~b′0 = ~b0. Then ~a′1 ∈ O

n0

~a′0
for some 1 ≤ n0 ≤ 2n, and consequently, we

set ~b′1 = ~bd1 , where d1 = min{m ∈ N | ~bm ∈ On0

~b′0
}. Set ~b′2 = ~bd2 , where d2 = min{m ∈ N |

~bm 6= ~b′` for any ` < 2}. Then there exist n0, n1 ∈ {1, . . . , 2n} such that ~b′2 ∈ O
n0

~b′0
∩ On1

~b′1
.

Set ~a′2 = ~ac2 , where c2 = min{m ∈ N | ~am ∈ On0

~a′0
∩ On1

~a′1
}. After this, set ~a′3 = ~ac3 , where

c3 = min{m ∈ N | ~am 6= ~a′` for any ` < 3}. By this construction, observe that for any
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1 ≤ i ≤ n, 0 ≤ j ≤ 2, and 1 ≤ k ≤ 2n−1, pi(~a
′
j) ∈ Okpi(~a′`) if and only if pi(~b

′
j) ∈ Okpi(~b′`)

for

some `, where Okpi(~a′`) and Ok
pi(~b′`)

are the kth orthants of the points pi(~a
′
`) and pi(~b

′
`) in Rn−1.

Also by the construction, we see that ~a′m ∈
⋂

i∈I⊂N

Oki~a′i if and only if ~b′m ∈
⋂

i∈I⊂N

Oki~b′i
.

As in the previous proof, we can continue the process above and assume that for some

odd i > 0, ~a′0,~a
′
1, . . . ,~a

′
i and~b′0, . . . ,

~b′i−1 have been defined as above. By a similar proof to the

previous proof at this stage, we see that ~a′0,~a
′
1, . . . ,~a

′
i,~a
′
i+1,~a

′
i+2 and ~b′0, . . . ,

~b′i−1,
~b′i,
~b′i+1 can

be defined, so we continue repeating this process and proceed by induction to define ~a′m and

~b′m for all m ∈ N. By similar proofs to the ones for R and R2 being CDH, this assignment is

a bijection on R(C) and R(D). Due to readability, we shall revert to the original notation

used for the elements of R(C) and R(D). I.e., ~a′m → ~am and ~b′m → ~bm for all m.

Set Ci := piR(C) and Di := piR(D) (1 ≤ i ≤ n). Then for 1 ≤ i ≤ n, Ci and Di are

countable dense subsets of Rn−1 since pi is a continuous surjection onto Rn−1. By induction,

Rn−1 is CDH, so for each i (1 ≤ i ≤ n) there exists a homeomorphism f i : Rn−1 → Rn−1

such that f i(Ci) = Di. Pick f 1 to be one of these. It is defined inductively by f 1((xj)
n−1
j=1 ) =

(fj(xj))
n−1
j=1 , where fj : R → R is defined by fj(xj) = sup{πj(~bm) | πj(~am) < xj} for

1 ≤ j ≤ n− 1 is a homeomorphism. Define f : Rn → Rn by f(~x) = (f 1((xj)
n−1
j=1 ), fn(xn)) =

((fj(xj))
n−1
j=1 , fn(xn)), where fn : R → R is defined by fn(xn) = sup{πn(~bm) | πn(~am) < xn}.

Then fn is a homeomorphism by a previous proof, so f is a homeomorphism by a previous

proof. Moreover, fn(πn(~ai)) = πn(~bi) for all i ∈ N.

We claim that f(R(C)) = R(D). Let ~ai ∈ R(C). Then f(~ai) = ((fj(πj(~ai)))
n−1
j=1 , fn(πn(~ai)))

= ((πj(~bi))
n−1
j=1 , πn(~bi)) = ~bi ∈ R(D). Thus f(R(C)) ⊆ R(D). Also, for ~bi ∈ R(D), since

πj(~bi) = fj(πj(~ai)) for all j,

~bi = (πj(~bi))
n
j=1 = (fj(πj(~ai)))

n
j=1 = ((fj(πj(~ai)))

n−1
j=1 , fn(πn(~ai)))

= (f 1((πj(~ai))
n−1
j=1 ), fn(πn(~ai))) = f(~ai).
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Thus f(R(C)) ⊃ R(D), proving the claim. Therefore, R−1fR(C) = D. Since R−1fR is a

homeomorphism, Rn is countable dense homogeneous.

2.5 The n-sphere Sn is Countable Dense Homogeneous

Lemma 2.12. Let X be CDH. Then any space Y homeomorphic to X is also CDH. (I.e.,

CDH is a topological property.)

Proof. Let Y be a space homeomorphic to X. Then there is a homeomorphism f : Y → X.

Let C and D be countable dense subsets of Y . Then f(C) and f(D) are countable dense

subsets of X. Since X is CDH, there is a homeomorphism g : X → X such that g(f(C)) =

f(D). Then f−1gf ∈ H(Y ), and

(f−1gf)(C) = f−1(g(f(C))) = f−1(f(D)) = D,

showing Y is CDH.

Theorem 2.13. Sn is CDH.

Proof. Since Rn is separable and Sn is homeomorphic to the one-point compactification of

Rn, Sn is separable. Denote by ∞ this extra point that we are adjoining to Rn.

Let C = {~ci}i∈N and D = {~di}i∈N be countable dense subsets of Sn. If C,D ⊂ Sn\{∞},

then we’re done by the previous proof since Sn\{∞} ∼= Rn. If both C and D contain ∞,

then set ~c′0 = ∞ = ~d′0, and for i > 0, set ~c′i = ~ci−1 and ~d′i = ~di−1. Then, let f : Sn → Sn be

defined by

f(~x) = (f1(x1), f2(x2), . . . , fn(xn)), and f(∞) =∞ (∗)

where fi(xi) = sup{πi( ~d′n) | πi(~c′n) < xi} for all 1 ≤ i ≤ n.

By a previous proof, f is an autohomeomorphism of Rn with f(C\{∞}) = D\{∞}.

It’s clear that f is also an autohomeomorphism of Sn with f(C) = D.
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Now, suppose ∞ ∈ C but ∞ /∈ D. Set ~c′0 =∞ and ~c′i = ~ci−1 for all i. Let r : Sn → Sn

be a rotation of Sn such that r(~d0) = ∞. Then set ~d′0 = r(~d0) = ∞, and for ~di ∈ D\{∞},

set ~d′i = r(~di). Let f : Sn → Sn be defined by (∗) above.

Then r(D) is countable dense since r is a homeomorphism, so by the previous argument,

f is a homeomorphism such that f(C) = r(D). Thus r−1f is a homeomorphism, and

(r−1f)(C) = r−1(f(C)) = r−1(r(D)) = D.

Hence Sn is CDH.
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