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Abstract

In the past decade, with the prevalence of smart phones, aihveuse of cellphones has been
shifted from phone call to multimedia access. This paradsbift has resulted in the demand for
higher and higher transmission rate. Many sophisticatggipal layer techniques, such as IDMA
(interleave division multiple access), OFDM (orthogonialgion multiple access), MIMO (multi-
ple input multiple output), IA (interference alignment)damassive MIMO) have been proposed to
cater for this demand. Meanwhile, cognitive radio netwakd femtocell networks are proposed
to strengthen the cellular networks.

Given these new exciting techniques, how to incorporatmtimo current wireless networks
is one of the main issues need to be addressed. Moreovergtakilose look at these techniques,
how to manage interference so that the throughput can beneetias one of the most important
problems.

The first part of this dissertation investigates how to ipooate IDMA into two-tier femtocell
networks so that the throughput of femtocell networks caeriganced. Based on the computa-
tional capability of the femtocells, three schemes are @sed for the femtocell networks.

The second part of this dissertation addresses the prolflemoasporating interference align-
ment to OFDM and MIMO-OFDM system. We firstly prove the uppeuibd of the throughput
with an integer programming formulation. Then considengctical constraints of the (MIMO)
OFDM system, effective algorithms are proposed to apprdaeiheoretical bounds.

In the third part of this dissertation, how will the primargar and secondary users equipped
with multiple antennas behave in cognitive radio netwoskstudied. With a Stackelberg game for-
mulation, we derive the unique Stackelberg game equilibriior the primary user and secondary
users. The proposed scheme is also shown to outperform thepextrum-leasing scheme and a

cooperative scheme in the literature.



In the fourth part the this dissertation, the problem of mpooating massive MIMO to FDD
system is addressed. To reduce the cost of acquiring chatatel information, two-stage pre-
coding was proposed. The problems of user grouping and akedsling thus arise. Three user
grouping schemes and a greedy user scheduling scheme asedoand validated. The prob-
lem of load balancing when the number of user is small is sthids well. Effective algorithm is
proposed to solve this load balancing problem.

In summary, this dissertation aims to enhance the througbipaurrent or future wireless
systems by managing interferences among different datarass or different users or different
base stations. In-depth analysis and comprehensivesesalalso provided. Some of the findings

may shed light on how to put emerging techniques into rediempns.
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Chapter 1

Introduction

The past decade has witnessed drastic increase of wirdessrdffic, largely due to the so-
called “smart phone revolution.” As wireless data traffieiglosively increasing, the capacity
of existing and future wireless networks will be greatlyessed. Many advanced physical layer
techniques have been designed and proposed such as IDMAldaxte division multiple access),
OFDM (orthogonal division multiple access), MIMO (multgpinput multiple output), IA (inter-
ference alignment) and massive MIMO.

IDMA is essentially a multiple access scheme. Differentrfroonventional TDMA (time
division multiple access) and FDMA (frequency division tple access), IDMA uses different
interleaver to distinguish different users so that time &ivquency can be multiplexed. OFDM
divides the frequency band into small pieces of sub-bamdspmbat the multi-path effect of the
time disperse wireless channel so that the system throagiapube enhanced. The key idea of
MIMO is to support multiple data streams while suppressimg interferences among different
streams. Interference alignment manages interferencéiffeaent perspective. It suppresses the
interferences into half of the signal space (or time, ordewy, et al.) of the receiver and keeps
the other half free from interference. The base station cfsma MIMO system is equipped with
hundreds or even thousands of antennas. Users can be dislied by their spatial locations.
With that many antennas, the system throughput can be ghaboosted. We can see that the key
ideas of these transmission techniques to enhance systeagliput is to support multiple data
streams while keeping interferences under control.

Meanwhile, due to the tremendous increase in wireless dadiiy spectrum is quickly de-
pleted. However, according to the FCC report [1], while soioenised bands are overcrowded,

many others are underutilized. Under traditional fixed spec allocation policy, when licensed



users (orprimary user$ are not active, the channels assigned to them are wastetefeaspec-
trum opportunities Cognitive radio networks (CRN) are proposed as a new wirg@iassligm for
exploiting such spectrum opportunities, to enable flexdlld efficient access to radio spectrum. In
CRN, unlicensed users (@econdary usejsare allowed to access the licensed band opportunisti-
cally, while primary users gain by collecting revenue foecpum leasing. Such a CR (cognitive
radio) paradigm has been shown to have high potentials tareehspectrum efficiency [2].

Moreover, femtocell, which is also called home base statias also been proposed. Femto-
cell typically serves as an access point for use in home oll dunginess. It is usually installed by
wireless users for backhauling data to the service provttteugh a broadband gateway such as
digital subscriber line (DSL), cable, et al. The most proamitfeature of femtocell is that the trans-
mission distances between wireless network infrastreand users are greatly reduced, compared
with that in traditional cellular networks. This brings athanany benefits such as enhanced link
guality, better signal to interference noise ratio (SINR)proved cellular capacity, and greatly
reduced transmission power, among others.

A huge amount of wireless access networks/base stationsdBBgmtocell base stations
(FBS) are deployed every year to accommodate the compeléed for more capacity. Given
the increasing wireless data volume, the increasingly desivBS deployment and the potential
interferences from the Secondary Users (SU) in CRN, intanfesg are becoming the major factor
that limits wireless network performance.

To study the interference and throughput issues of celarlangnitive radio networks so that
the system throughput and the user experience can be ewmhareéhe main motivation of this
dissertation.

Main contributions of this dissertation are summarizedodiews.

e Taking the computational capabilities of femtocell intmsmleration, this dissertation stud-
ies how to apply IDMA to two-tier femtocell networks so thditlkands of interference are

under well control. Three effective schemes are proposedhance the system throughput.



e Most of the existing works of interference alignment focusstructureless wireless chan-
nel. However, wireless channel with structure such as dialgchannel is very important.
This dissertation considers the problem of applying imtenfice alignment to OFDM and
MIMO-OFDM system. Performance bounds for the multi-usediNI®) OFDM system
with interference alignment are derived. Efficient aldumt are proposed to approach these

bounds for OFDM and MIMO-OFDM system.

e In future wireless systems, all the base stations and uskiserequipped with multiple an-
tennas. With the development of MIMO and distributed irgezhce alignment, how will the
primary users and secondary users behave is of great impertBy modeling the behaviors
of the primary user and secondary users using Stackelberg teeory, this dissertation de-
rives the unique Stackelberg Equilibrium and shows thaptieposed scheme outperforms

the non-spectrum leasing scheme and a cooperative scheheeliterature.

e To ultimately boost the system throughput, massive MIMOteayswould be adopted in
the near future, where many antennas are deployed at thestadi®®. Existing researches
mainly focus on the TDD (Time Division Duplex) system duelte aidvantage of exploiting
channel reciprocity. However, there are much more FDD (freaqy Division Duplex) sys-
tems deployed worldwide. This dissertation considers lwmeduce the channel estimation
overhead and proposes effective schemes for enhancingnsystoughput. The problem
of load balancing in massive MIMO system is also investidatén effective algorithm to

solve the optimization problem is proposed and validated.

e Besides massive MIMO system, in the future wireless systemall cells such as femtocell
or picocell will be densely deployed. To investigate therwsssociation problem in such
heterogeneous networks is of great importance for systeonghput enhancement. From
the centralized and distributed perspective, this diasiert investigates how to obtain the

optimal user association scheme under different scenarios



Chapter 2
Applying IDMA to Two-Tier Femtocell Networks: the Uplink Cas

2.1 Introduction

A recent study [3] shows that more than 50% of the voice traffid more than 70% of the
data traffic are generated by indoor users. Considerablarasefforts from both industry and
academia have been made to meet such compelling demandsoardesatisfactory services to
end users. A number of novel technologies and network stresthave been proposed, among
which femtocell is particularly a highly promising one undi@s context.

A femtocell is a user installed small base station at homeshall businesses, which are
connected to the service provider via broadband wirelimmeotions. Licensed users of femtocell
could access the wireless network via the femtocell basestdBS) directly, other than through
the remote cellular base station (BS). In this way, the degtdretween femtocell users and the core
wireless network is greatly reduced, which brings about enams benefits including extended
cell coverage, reduced transmission, enhanced capaniyremluced energy consumption, etc.
Although some of these benefits could be achieved by degayiore BS’s, deploying FBS is a
much more economical choice, especially for indoor users.

One of the technical challenges stands in the way of hangesiie envisioned benefits of
femtocells is how to manage all kinds of interferences [3emtocell networks. Here we consider
the uplink of a two-tier femtocell network consisting of anacro base station (MBS) and multiple
FBS’s. An authorized user can connect to either the MBS (iseg, macrocell user) or a close-by
FBS (i.e, as a femtocell user). For the uplink in such a twofgentocell network, five types of

interference may exist.

1. A femtocell user’s signal may be interfered by a macraegdir’s signal in the vicinity.



2. The femtocell user’s signal may cause interference taortaerocell user’s signal when it is

close to the MBS.

3. A femtocell user’s signal in one femtocell may interfene signals in neighboring femto-

cells.

4. Signals within a femtocell may interfere with each othee do multipath propagation or

carrier frequency offset.

5. Signals within a macrocell may interfere with each othee tb multipath propagation or

carrier frequency offset.

The first two types of interference can be classified as diessaterference [4], while the last
three types of interference can be classified as intrartterference.

Existing researches for interference management in festitoetworks include [4-9]. Most
of these works focus on the cross-tier interference. Heradaeess the interference management
problem of femtocell from a multi-access and iterative mudter detection perspective. In partic-
ular, we propose to adopt IDMA [10] for the uplink transmassiof two-tier femtocell networks.
The main feature of IDMA is that it distinguishes users byigraag different interleavers to each
of them. So with IDMA, in the uplink, each user employs a umitnterleaver to interleave its data
before transmission. The base stations receives the migedl$rom all the users and then uses
an iterative decoding and interference cancellation tieglento separate and decode the signals
(more details in section 2.2.2).

Since for IDMA, most of the signal processing is conductethateceiver, the requirement of
the transmitter computational capability is very looseud ithe transmitter can be easily designed.
Moreover, IDMA is highly suitable for the uplink of the twaet femtocell network, in which the
BS (with comparatively high computational capability) merhs most of the computations and
users are thus relieved from this burden. Compared withtioadil multiple access techniques
such as TDMA and FDMA, IDMA does not require precise time $yoaization or frequency

calibration among the users [10]. Therefore the design ef device can be further simplified.
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IDMA also allows concurrent transmissions of multiple seand does not require the use of
guard times to deal with different propagation delays ofrsisél herefore, higher utilization of
wireless resources can be achieved. Compared with codediwsiltiple access (CDMA), IDMA
represents a new form of orthogonality that can be integnatth CDMA. For example, users can
be divided into groups, each sharing a CDMA spreading se@esers within the same group are
then distinguished with unique interleavers. Thus the ngtwapacity can be greatly enhanced.

In this chapter, we discuss how to adopt IDMA for the uplinkwb-tier femtocell networks,
as motivated by the above observations. In particular, wpgse three IDMA-based schemes: (i)
Femtocell Decode, where each FBS decodes the signals |doalye users within its coverage;
(i) Femtocell Forward, where the FBS’s forward the receiggghals to the MBS, which then
decodes the signals for all users; and (iii) Femtocell $ebdrere the FBS performs local decoding
if the number of users it serves does not exceed a threshuldpavards received signals to the
MBS otherwise. We evaluate the performance of the propodsehses, and compare them with
conventional TDMA and IDMA without the use of femtocells imsilations. We focus on the case
where all the users share a common spreading sequencet(erm#vantage of integrating IDMA
with CDMA is obvious). Our simulation study shows that thegmsed IDMA-based schemes can
achieve considerable throughput gains over traditiorfeises and are highly suited for the uplink
of two-tier femtocell networks.

The remainder of this chapter is organized as follows. 8e&i2 describes the background of
femtocell and the general principle of IDMA. We examine tise of IDMA in femtocell networks
and propose three schemes in Section 2.3. The proposedesheeevaluated in Section 2.4. We

review related work in Section 2.5 and Section 2.6 conclukdeghapter.

2.2 Background and Preliminaries

2.2.1 Femtocell Networks

A femtocell, also called home base station, typically sem&an access point for use in home

or small business. It is usually installed by wireless ugersbackhauling data to the service
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provider through a broadband gateway such as digital siesdine (DSL), cable, et al. The
most prominent feature of femtocell is that the transmissistances between wireless network
infrastructure and users are greatly reduced, comparddthat in traditional cellular networks.
This brings about many benefits such as enhanced link quiaditier signal to interference noise
ratio (SINR), improved cellular capacity, and greatly regllitransmission power, among others.
Despite of these envisioned advantages, there are manyidatbhallenges need to be ad-
dressed, such as interference management and mitigati6h [Bor the uplink case, convention-
ally, Time Division Multiple Access (TDMA) or Frequency Dsron Multiple Access (FDMA)
are used to coordinate the transmissions of users. Underdisence of multipath propagation or
carrier frequency offset, however, both intra-tier andssrter interferences exist. Moreover, by
using TDMA or FDMA, the precious time and frequency resosarogy not be fully exploited,
since only one user can transmit at a time or within a frequéand, and due to the use of guard
times or guard bands. Given these facts, it is natural tktabout better ways for interference
mitigation in femtocell networks that can make more effitiese of wireless network resources.

We consider IDMA as one of such options in this chapter.

2.2.2 Interleave Division Multiple Access

The essence of IDMA is to distinguish signals from differasérs according to their unique
interleavers. IDMA represents a new form of orthogonastych that multiple users can transmit
in the same time slot using the same frequency band. Thentreaesand receiver architecture of
IDMA are shown in Fig. 2.1 [11]. We briefly review the operatiof IDMA in this section.

For the uplink case, assume that there &reisers in a cell. The signals of each user, i.e.,
dy, ds, -+, dg, are coded, interleaved and then transmitted simultahetushe BS. In IDMA,
each user employs a unique interleaver. Therefore, the gaartransmit signals simultaneously,
occupy the same portion of spectrum, and employ the samagadheme, in which ways the

traditional resources can be better utilized.
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Figure 2.1: The transmitter and receiver architecture &ifD

At the BS, the received signal is the superposition of theagfrom all the users. The
BS then performs an iterative bit by bit decoding, as shownign Z1. To simplify discussion,
synchronous BPSK system is considered. The channel is adgorbe time-invariant with only
one path. However, it is shown in [10] that the decoding atgor can be extended to more
general cases, such as asynchronous system with high andstetiation, or time-variant multi-
path channels.

At the BS, thei-th received signat(:) is

K

r(i) =Y k() +n(i), i=1,2,--- L, (2.1)

k=1

whereh,, is the channel gain of thieth user;z(7) is thei-th transmitted signal from thieth user,
n(7) is the zero mean additive white Gaussian noise with variadcand L is the coded length.
It is also assumed that the channel state information is knaitthe BS through some channel

estimation techniques. To examine the signal frométhie user, we can rewrite (2.1) as:

r(i) = hpag(i) + (i), i=1,2,--- L. (2.2)



In (2.2), £ (i) represents the interference plus noise with respect toigimalsof the k-th user,

which can be written as:

K
i)=Y hwap(i)+nli), i=1,2-- L, (2.3)
k'=1k'£k
or
(i) = r(i) — hywp(i), i=1,2,---,L. (2.4)

According to the Central Limit Theoreng,(:) in (2.3) can be approximated by a Gaussian

random variable whe is sufficiently large, with mean

E(£(i)) = E(r(i)) — hE(zp(3)), i=1,2,--- L, (2.5)
and variance
Var(é(i)) = Var(r(i)) — |he|*Var(z (7)), i=1,2,---,L, (2.6)
where
E(r(i)) = Y, heE(x(4)), i=1,2,--,L @)

Var(r(i)) = Yopy [he[*Var(zy (i) + 02, i=1,2,-- L.

The Elementary Signal Estimator in Fig. 2.1 computed thgarithm Likelihood Ratios (LLR®f
each bit as [10]:

= , , forall i, k. (2.8)



@ Femtocell User

Figure 2.2: The uplink case in a two-tier femtocell network.

Then theLLRsare deinterleaved and decoded to produce estimatipfis of the original
signals, for alli, k. To further mitigate the interferences between differesgrg, the estimations
di(i), for all i, k are then coded, and interleaved to update the, Eand Varz;). Based on the
updated Ez;) and Valzy), the Elementary Signal Estimator then recalculatestthg,), and so
forth. This procedure is repeated for a prescribed numbéewftions. The estimations;(i)'s

will be progressively improved and finally the BS can decodiéhal signals from all the users.

2.3 Adopting IDMA in Two-Tier Femtocell Networks

Figure 2.2 illustrates the uplink of a two-tier femtocelltwerk, where an MBS can serve
users in the entire network and each FBS serves authorizeslw#hkin its coverage. To simplify
the discussion, it is assumed that the femtocells are edipyed. Using IDMA, users inside or
outside the femtocells simultaneously transmit signathéo~BS or MBS, respectively, using the
same frequency band.

As discussed above, the greatest merit of femtocell is brghgsers much closer to the wire-
less network infrastructure. Here we propose three IDMAelaschemes for the uplink of the

two-tier femtocell network.
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2.3.1 FBS Decode

The first scheme is that each FBS decodes the received sigaly] and then sends the
decision results to the MBS. We call this scheme FBS Decodéhfwt.slt is demonstrated in [12]
that the performance for each user depends on its Signatéddrence plus Noise Ratio (SINR)

sinry, which can be written as:

Pl ?

7 PP > for all &, (2.9
D=1k Pulbi P f () + o

sinry =

wherepy, is the transmit power of each userand f(x) is a function representing the amount of
interference canceled at each decoding iteration, whishnieaclose form expression but can be
obtained through Monte Carlo simulation [11].

If all the users transmit at the same power, since therettieedifferences in the channel gains
for all the users (i.e., due to closeness to the FBS), the suhedsINR of all the users would be
quite high. That is to say, from the perspective of the sygieformance, this scheme is expected
to perform better than the other two schemes introduced ilatthis section. However, since the
user number served by each FBS may be large, this scheme mayspirigent requirement for

the computational capability of the FBS's.

2.3.2 FBS Forward

If the computational capability of the FBS is not strong, ti&SFcould directly forward all
the received signals to the MBS. Then the MBS will decode theatggfrom all the users. We
call this scheme FBS Forward for short. Since the users sdoydtle FBS enjoy high quality
channels, while cell edge users suffer from the bad onebgitight of (2.9), the SINR of an FBS
user is usually very high, but the SINR of an edge user is lsuaty low. The consequence is
that although the throughput of the FBS users could be highgtkrall system throughput may be

degraded due to the bad performance of edge users.
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2.3.3 FBS Select

This is a hybrid scheme that provides a trade-off between FB&®e and FBS Forward.
FBS Select is useful for the case when the computational déapadb the FBS is not sufficiently
strong. In particular, an FBS can directly forward the reedigignals to the MBS, if the number
of users being served is greater than a predefined threghaltherwise, the FBS decodes the
signals locally and sends the decoded data to the MBS. Wehtslb¢heme FBS Select for short.

The performance of this scheme is expected to lie betweee thid-BS Decode and FBS Forward.

It will be shown in the next section that by applying IDMA tonféocell networks, consid-
erable throughput gains can be achieved at comparativelyctst over traditional TDMA and

IDMA schemes.

2.4 Performance Evaluation

We present our simulation study of the proposed IDMA-basdgties in this Section. In
the following, we first describe the simulation settingg] #men present the simulation results and

discussions.

2.4.1 Simulation Settings

Monte Carlo simulations are conducted to evaluate the paegnce of the proposed schemes
and to verify the benefits brought about by adopting IDMA ie tplink of two-tier femtocell
networks. Since power consumption is a critical factor faitéry life and CQ@ emission, we focus
on the performance at the low power region. Since it is a gerssumption that femtocells are
deployed at hotspots, 80% of the users are served by the deltstan our simulation. For fair
comparison, we simply use spreading as the channel codivegrsx; and all the users share the

same spreading sequence. Let the spreading sequepce be-1, —1,--- }, with lengthG. Then
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it follows that [10]

G
dAk(Z) = ZQO)L(CI{((Z_D XG+j))7 i1=1,2,--- L, (2.10)
Ext(cp(i)) = g(i)dp(i) — L(cx(i)), i =1,2,--- , L. (2.11)

Thus the mean and variancexgf(i) can be updated as [10, 13]:

E(zx (7)) = tanh (w) ,i=1,2,--- L (2.12)
Var(zy(i)) = 1 — E*(z(4)), i = 1,2,--- , L. (2.13)

The path gain is modeled as [14]:

b = Ay /ds, (2.14)

where theA,’s are all independent and identically distributed (i)ildg-normal random variables
with 0 dB mean and 8 dB variance, is the distance between the user and the BS it connects to
(could be either the MBS or an FBS),= 4 for outdoor users, and = 2 for indoor users. When

d, approaches to @, approaches to infinity, which is impossible in practicalteyss. We simply

let h, = 1if di, < 1. This can be interpreted as when the user is close enougke tdB%s or an
FBS, the channel between them becomes perfect.

As for user locations, we first generate uniformly distrdmitandom locations for 20% of
the users, which are served by the MBS. Considering the hefghedVBS and its geographic
impact, these users are located outside the unit circlaglwantered at the MBS. Their locations
are uniformly distributed under the coverage of the MBS. Nt remaining 80% users are ran-
domly scattered in the femtocells. Within the coverage ehdamtocell, the users are uniformly
distributed. This user location generation process isoperéd 10,000 times in each simulation.
Each point in the figures is the average of 10,000 simulagsnlts. Fig. 2.3 illustrates one of the

realizations of random user locations.
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Figure 2.3: Generation of random user locations.

Table 2.1: System Parameters Used in the Simulations of IRM&Femtocell Networks

Description Value
Number of users 32
Number of femtocells 6
Coverage radius of MBS (normalized) 10
Coverage radius of FBS (normalized) 2
Distance between MBS and FBS (normalized) 6
Number of decoding iterations 5
FBS Select thresholqg 5

The proposed schemes are implemented with MATLAB. The sys@mmeters used in the
simulations are specified in Table 2.1. For comparison mepae also simulated the traditional
IDMA scheme without the use of femtocells (termed IDMA w/aitecells), where all the users
in the cell directly transmit to the MBS, and the signals areoded at the MBS. In addition,
we also simulated the conventional TDMA scheme. With TDMAgH user is assigned with an
equal and non-overlapping portion of the total time for siginansmission. We assume perfect
synchronization for all the users with zero guard times, stoaobtain an upper bound on the

TDMA performance.
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Figure 2.4: Throughput of the five schemes vs. SNR.

2.4.2 Simulation Results and Discussions

We first compare the throughput performance of the five sckamder different signal-to-
noise-ratios (SNRs). The throughput is measured by the-&gebits received and normalized by
the bandwidth B) and time slot durationi().

Fig. 2.4 shows the achieved throughput at different SNRss dthvious that by deploying
femtocells, considerable throughput gains can be achieweithe IDMA w/o Femtocells scheme.
It can also be observed that FBS Decode has the highest thpouggrformance among all the five
schemes. Under FBS Forward, the channel gain differencesebatthe FBS users and the MBS
users are so large that the SINR of FBS users are extremelyhidgntheir MBS counterparts are
extremely low. Actually, it can be examined that the bit emate (BER) of high quality channel
users is close to zero, while the BER of edge users is so highthtkasystem performance is
greatly affected. As expected, FBS Select’s throughpubpednce lies in-between those of FBS
Decode and FBS Forward. It is important to note that both FBSBeand FBS Select strictly
outperform TDMA, while the throughput of FBS Forward is clégehat of TDMA. The relatively

lower throughput of FBS Forward is due to the low quality clelsmmf the edge users.
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Figure 2.5: Throughput of the five schemes vs. number of users

We next compare the five schemes under different numberses$.usviost of the system
parameters are still the same as given in Table 2.1, excaiphia SNR is set to -10 dB and the user
number is varied. The simulation results are presentedgnZb. It can be observed that similar
conclusions drawn from Fig. 2.4 still hold true here. FBS DiEcbas the best performance; the
FBS Select outperforms TDMA when the user number is less thaartd FBS Forward achieves
a performance close to that of TDMA.

From Figs. 2.4 and 2.5, we conclude that if the FBS has the dapadf local decoding
for the signals from a certain amount of users, which is theausase of femtocell applications,
considerable throughput gains can be achieved by adoddiMpal for the uplink of femtocell
networks. Even if the femtocell works in signal forwardingae, the throughput performance is
still close to that of TDMA and better than that of IDMA w/o Feouells.

Since IDMA adopts an iterative decoding procedure (seeZi, it would be interesting to
investigate how fast the decoding procedure converges tineleplink two-tier femtocell network
scenario. Our simulations show that the IDMA decoding atbor can converge very fast. The

simulation results are presented in Fig. 2.6 for the thredAEbased schemes. We still follow
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Figure 2.6: Throughput of the three IDMA-based schemes wsber of iterations.

the system parameters given in Table 2.1, except that theiSKbed to 0 dB and the number of
iterations is varied. It can be observed that the FBS Decduense converges after two iterations,
FBS Forward converges after three iterations, and FBS Setenterges after three iterations.
Therefore, the computational complexity and processingydecurred from the turbo iterative

decoding algorithm are negligible; the throughput gairsaahieved at relatively low cost.

2.5 Related Work

Femtocell is designed to cater for the ever-increasing denad high speed wireless data
transmissions. By significantly reducing the distance betwle service provider and the service
users, great capacity gain can be obtained. A comprehesgivey of femtocells is provided in [3].
Even though the femtocell has the great potential of crgatiral benefits to both network operator
and users, there are many challenges to be addressed. lowdsdpout in [3] that interference
management is one of the key factors for the success of fethtdConsiderable research have

been conducted in this problem area [4-9]. In [4], the awtistudied the impact of the cross-tier

17



interference on the system outage probability, analyzedithnk capacity, and proposed an inter-
ference avoidance strategy. To suppress the cross-tefarénce below an adaptive threshold and
compensate for the uplink throughput, open-loop and ckdseg interference mitigation strate-
gies were proposed in [6]. In [5], the authors consideredctiehannel interference incurred by
frequency reuse, and proposed a femtocell based distibntenna system for uplink interference
cancellation. In [7], the authors proposed a coordinated ssheduling combined with transmit
beamforming scheme to alleviate the inter-femtocell fietence problem. We adopted successive
interference cancellation for downlink data multicastwo#ttier femtocell networks in [9], and
examined medium grain scalable videos streaming over fegtitcognitive radio networks in [8].
However, the uplink case was not fully considered in thepem

IDMA has been shown to support multiple transmissions atsdmae time using the same
frequency [10]. The quality of service (QoS) issue in IDMAsed networks was examined in [15].
An IDMA QoS architecture and an interleave division slottddOHA (IDSA) are proposed and
shown to be effective. Applying the large-system perforogaapproximation and the extrinsic
information transfer (EXIT) chart, Li, Wang, and Li [11] dyaed and optimized the BER of
IDMA communication systems. From a game theoretical viedeeentralized power allocation
algorithm for the uplink IDMA system was proposed in [12]. eTbptimal transmission power
for the spread spectrum uplink IDMA channels was derivedli].[ In [17], a fully-analytical
approach was developed to predict the rate allocation sefignDMA system, and a modified
linear programming method is proposed to get the best raféepr

It can be seen from the above discussions that the intedelisaue is of great importance for
femtocell networks, which needs to be addressed before wid tudly harvest the potentially high
benefits of femtocells. To this end, an interference caateil or mitigation approach provides
highly effective solutions. In this chapter, we addressrierference issue from an iterative multi-
user detection point of view, and introduce three IDMA-lthsehemes to enhance the system
throughput performance. The proposed schemes are showerguate effective and to achieve the

design goals.
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2.6 Conclusions

In this chapter, we investigated the problem of interfeeentanagement in the uplink of
two-tier femtocell networks. To enhance the uplink thromgthperformance for low power trans-
missions, we introduced IDMA to allow concurrent transnuss from all users and cancel the
intra and cross-tier interference with iterative decodamgl interference cancellation. We pro-
posed three IDMA-based schemes, namely, FBS Decode, FBS iihraval FBS Select, for the
uplink of two-tier femtocell networks based on the procegsiapability of femtocells. Simulation
results demonstrated that considerable throughput gam$e achieved under FBS Decode and

FBS Select over conventional TDMA and IDMA schemes at contpeslst low costs.
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Chapter 3

Interference Alignment Improves the Capacity of OFDM System

3.1 Introduction

Many advanced wireless communication technologies, sadbrthogonal Frequency Divi-
sion Multiplexing (OFDM) and Multiple Input Multiple OutgyMIMO), are widely adopted to
enhance the system capacity, while a huge amount of wiratesss networks/base stations (BS)
are deployed every year to accommodate the compelling reeddrfer capacity. Given the in-
creasing wireless data volume and the more and more crowdedkBiByment, interference is
becoming the major factor that limits wireless network parfance.

Traditionally, interference is considered harmful ancepftreated as background noise. As
the performance of point-to-point transmission technsggeapproaching Shannon capacity, there
is now considerable interest on exploiting interferenaddiother capacity gains. It is shown that
when interference is large, it can be decoded and cance@etthre mixed signal (as in interference
cancellation), while when interference is comparablegrierence alignment can be adopted to
enable concurrent transmissions. Although interferesclearmful in many cases, it could be
beneficial for enhancing system throughput as long as tee@nence can be aligned. We call this
kind of interference beneficial interference.

Interference alignment was first proposed in [19], and tlsifelity condition was investi-
gated in [20]. Since in a large network, there are many usarsirbited dimensionality, the au-
thors in [21] proposed the concept of “best-effort” inteeiece alignment, and adopted an iterative
algorithm to optimize it. However, how to use interferentigranent to enhance the throughput
in practical OFDM system was not fully considered. Shi etra[22] also considered the problem
of interference alignment in multi-carrier interferenagwiorks. But it is not clear if the approach

can be extended to the general case of a large number of siebgain [25], the authors proposed
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two schemes to adopt interference alignment in multi-cdlV@ OFDM systems. In the first
scheme, interference alignment was used to remove thedellenterference, while zero-forcing
precoding was used to suppress the intra-cell interferefrceéhe second scheme, interference
alignment was also used for inter-cell interference rerhoviaile the OFDMA access scheme was
applied for intra-cell interference cancellation. Howetbke fundamental performance bound of
multi-user MIMO OFDM system with interference alignmensheot been discussed. In [26], the
authors derived the necessary and sufficient conditionthéthree-user OFDM system with in-
terference alignment in the time domain. However, theseitions cannot be applied to system
with more users or under other conditions. Ayach et al. ifj [@7estigated the feasibility problem
MIMO-OFDM system with interference alignment over measichannels, while in this chapter,
we mainly concern about the theoretical bound when interfeg alignment is incorporated in the
OFDM system.

Interference alignment also finds many applications intgrakwireless networks. In [28], a
cognitive interference alignment scheme was presentegjoress both cross-tier and co-tier in-
terferences in OFDM-based two-tier networks. In [29,3@,authors investigated the behaviors of
primary users and secondary users under a Stackelberg baorg framework, where distributed
interference alignment is adopted to enable spectrumngasithe cognitive radio network. To
achieve better error rate performance, a novel interferetignment based precoder design was
presented in [31] for OFDM system.

There are also some existing studies that aim to adopt émerée alignment in more ad-
vanced systems. In [32], the authors extended the traditioterference alignment scheme to a
general algorithm for multi-hop mesh networks. The autmoi83] considered combining inter-
ference alignment and interference cancellation to furtinaance the system throughput. In [34],
the authors proposed to use multimode MIMO antennas insie#ue typical omni-directional
antennas to improve the performance of MIMO OFDM system witérference alignment, while
in [35], the impact of antenna spatial correlation on thefqgrarance of interference alignment

systems was investigated.
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As claimed in [36], there are not many studies about interfee alignment with structured
channels. In [37], the authors aimed to show how interfexexiignment works in OFDM system
under practical constraints. To further address this grbhere in this chapter, we consider the
problem of incorporating interference alignment in mukier (MIMO) OFDM systems. Specifi-
cally, we first examine the fundamental characteristics@adtical constraints on adopting inter-
ference alignment in a multi-user OFDM system. We show tbag K user/N subcarrier OFDM
system,K' N/2 concurrent transmissions that is achievable for genenicsireless channels [19],
cannot be achieved for a practical multi-user OFDM netwoitk Wiagonal channels and a limited
number of subcarriers. We then investigate effective sesaim exploit interference in multi-user
OFDM systems. With an integer programming problem formargtwe derive the maximum effi-
ciency of the Multi-user OFDM/interference alignment gyst We also show how to achieve the
maximum efficiency with a decomposition approach, and éettie closed-form precoding and
decoding matrices. Finally, we extend the above analysiseganultiple antennas scenarios. All

the proposed schemes are evaluated with simulations amétiperior performance is validated.

Notation in this chapter, a capital bold symbol likédenotes a matrix, a lower case symbol with
an arrow on top likef denotes a vector, and a lower case letter likdenotes a scalaf:]” means
transposeand|-]~! meansnversion H,; andh;; are the channel gain matrix and channel gain from
the i-th transmitter to the-th receiver, respectivelyv; is the precoding matrix for transmitter

Uf is the j-th column ofV;. U, denotes the interference cancellation matrix fortlle receiver,
while ﬁj is thej-th column ofU,. Leth, v, u denote the entries &1, V, andU, respectively.

Note that with these notations, the entriedHf takes slightly different ordering from con-

ventional ones. For instance, if transmitleand receive® are both equipped withh/ antennas,

the channel gain is:

hll h21 e hMl
h12 h22 e hMQ
th hQM Tt hM]M
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The rest of this chapter is organized as follows. Sectiond@stribes the background and
preliminaries. Section 3.3 investigates how to adopt fatence alignment in multi-user OFDM
system. Section 3.4 extends the analysis to the multipknaas scenario. Simulation results are

presented in Section 3.5. Section 3.6 concludes the chapter

3.2 Background and Preliminaries

3.2.1 Orthogonal Frequency Division Multiplexing

While higher data rates can be achieved by reducing symbatidar severe inter-symbol-
interferences (ISI) will be caused over time dispersivencieds. OFDM is an effective approach
to allow transmissions at a high data rate and combat theud#ise effect of channel. By dividing
the channel into narrow bands, in which the signal expeésfiat fading, OFDM can effectively
mitigate ISI and maintain high data rate transmissiongrésted reader are referred to [18, 38, 39]

and the references therein for details.

3.2.2 Multiple Input and Multiple Output

With the single antenna transmission technique being vesttbped, it is natural to extend to
multiple antenna systems. The MIMO transmission techrsdwe/e been evolving rapidly since
last decades. Generally speaking, multiple antennas ontemma array can be used to attain
the diversity gain multiplexing gain or antenna gainand thereby reduce the system error rate,
enhance the system throughput, or strengthen the sigmdétdéarence and noise ratio (SINR) [23].
Given M, transmitting antennas and, receiving antennas, the maximum multiplexing gain is
known to bemin{ M/, M,}. Throughout this chapter, we assume that channel statemafmn is
perfectly known at each transmitter and receiver as in pvarks [19]. For how to acquire channel

information, readers are referred to [40].
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Figure 3.1: Multi-user OFDM using interference alignment.

3.2.3 Interference Alignment

It is shown in [19] that in & user wireless network, wittn + 1)? + n? symbol extensions,
totally K/2 normalizeddegrees of freedorfDoF) can be achieved using interference alignment,
whereq = (K — 1)(K — 2) — 1 andn € N. In single antenna systems, the normalized DoF is
1. With interference alignment, the system throughput lsaeed by a factor ok’ /2 for K > 2.
Note that there is no interference if there is only one useupyging the time or frequency resource.

Observation 1 The system throughput could be improved if alignable fiete@nce is intro-
duced among users.

This observation is useful for OFDM systems, where the cbehgain matrix is diagonal.
Since the gain of interference alignment is proportionatonve should have more users transmit
at the same time slot or frequency band if the transmittetbvecan be aligned. That is why we

call this kind of interferenceeneficial interferencen this chapter.

3.3 Multi-user OFDM with Interference Alignment

In this section, we investigate the problem of interferesdgment in multi-user OFDM sys-
tems. We first examine fundamental characteristics andipahconstraints, and then demonstrate

how to exploit interference in multi-user OFDM systems. Wik the maximum throughput
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when interference alignment is adopted, as well as cloged-precoding and decoding matrices

to achieve the maximum throughput.

3.3.1 Subcarriers versus Antennas

In traditional interference alignment, deploying muliigtansmitting antennas allows us to
precode data packets and align them at the receiver. Degloyultiple receiving antennas pro-
vides multidimensional signal space, so that interfereacebe aligned into a sub signal space that
is orthogonal to the desired signal. Therefore, deployindfipie antennas can provide the needed
freedom in the signal space.

In OFDM, we observe that subcarriers can function in the saayeas antennas in MIMO/interference
alignment systems. To some extent, subcarriers can balesjas a counterpart of antennas. How-
ever, there is a distinguishing difference between the tygtesns: there is no cross-talk among

different subcarriers in OFDM.

3.3.2 Precoding in OFDM

The main idea of interference alignment is to compress tteeference space to no more than
half of the total received signal space at each receiverinigdahe remaining part of the space for
desired signals [19]. This goal is achieved through praapdi every transmitter and zero forcing
interference cancellation at every receiver.

In OFDM, data is transmitted on multiple carriers, as shawhig. 3.1. Suppose there ake

subcarriers. Ignoring noise, the received sighislan N x 1 vector given by:

(3.2)

<y
I
T

=l

whereZ is the desired signal in the form of aW x 1 vector, andH is the N x N channel gain
matrix between the transmitter and receiver. Since diffesabcarriers have different frequencies,

the channel gain matrix idiagonalif there is no severe frequency shift. It can be seen front late

25



discussions that this property makes interference aligiimeOFDM system quite different from
the general channel case.

Going one step further, we can precode the data before tissiom If d packets are to be
transmitted in anV subcarrier OFDM system, aN x d precoding matrix/ should be used. The

system equation is as follows.

7= HV{. (3.3)

If we letd = N andV = | 5, wherel y isanN x N identity matrix, (3.3) is reduced to (3.2).

In general, we could control what to be transmitted on thecarriers by adjusting the pre-
coding vector accordingly. For a single user single ant€dRBM system withV' subcarriers,
the maximum number of packets can be transmittedy isNote that, hereV is normalized by
the QAM (Quadrature Amplitude Modulation) modulation Ievdowever, inspired by the idea of
interference alignment, we show that a throughput highen th can be achieved in the following

subsections.

3.3.3 Interference Alignment in aK-User OFDM System

As discussed, we consider the problem of interference ralggr in multiuser OFDM systems.

Basically, we aim to answer the following questions.
(i) What are the practical constraints for adopting intesfexe alignment in such systems?
(i) What is the maximum throughput that can be achieved?

(iif) How to achieve the maximum throughput (i.e., derivicigsed-form precoding and decoding

matrices)?
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Dependence of Precoding and Decoding Vectors in Diagonal @hnels

In this section, we show the difference on applying intenfee alignment between a diagonal
channel and a general channel, as well as the challenge®p aderference alignment in the
former case.

It was shown in [20] that giverd/; transmitting antennas and, receiving antennas in &

user interference channel, the DoF for each user, denotédrbyst satisfy

My + M,
< —F. A4
ds K+1 (34)

For example, given two transmitting and receiving anterinas three-user interference chan-
nel, (3.4) indicates that each user could transmit one paok®iltaneously. With a generic struc-
tureless channel, the throughpkitl = 3 can be achieved as follows.

At each receiver, we align the signals from the other two sisd®ecall the channel gain

matrices as defined in (3.1) and let the ussignal bev;, : = 1, 2, 3. It follows that

Hoith = Hz103 (3.5)
Hipth = Hats (3.6)
Hizth = Hasths. (3.7)

Solving (3.5), (3.6) and (3.7), we have

171 = eig(Hl_21H32H3_11H21H2_31H13) (38)
Uy = HyHist (3.9)
U3 = HzHpb, (3.10)

where eigA) stands for the eigenvector of matix
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This scheme works well for generic structureless chanmeisnot for the case of diagonal
channels. For instance, if 2 subcarriers (instead of tweraras) are used in OFDM, all the channel
gain matrices in (3.8), (3.9) and (3.10) are diagonal. Sithegroduct of diagonal matrices is still

diagonal, we have from (3.8) that

If o, = [1,0]", we derived, = [a,0]" from (3.9) andvz = [b,0]” from (3.10), where: andb are
scalars. To cancel the interference at recelvethe cancellation vectoi; must bei; = [0, |7,
wherec is a scalar. However, the desired packet is also canceleé ginis orthogonal tov;.
Therefore, we cannot simultaneously transtriackets in this system.

The reason behind is that for a diagonal channel, its eigorsehave only one nonzero entry.
If we align interferences at receiverby lettingH;,v; = --- = H;,v;, forj # --- # i # r, the
precoding vectors are dependent to each other. Consequ&hdyn interference is canceled at a

receiver, the desired packet will also be canceled.

Interference Alignment with Multi-user OFDM-Performance Bound

Itis shown in [19] that in & user system witlin + 1)? + n? symbol extensions, totallix /2
normalized DoF can be achieved using interference alighmévereq = (K —1)(K —2) — 1 and
n € N. In light of this result, one may think thdt V/2 concurrent transmissions is achievable in
a K-User, N subcarrier OFDM system. However, we will show that this iachievable for large
K in practical systems in the following.

It is worth noting that an assumption made in [19] is that thalsol extensions can be in-
finitely large. This assumption may not hold true in pradigystems. Given a finite bandwidth,
the number of subcarriers is the bandwidth divided by theauker spacing. Typically, the value

of subcarrier spacing is0 — 20 KHz. Then even for a 100 MHz bandwidth, we can have at most
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10* subcarriers. For instance, in 802.16m and LTE, the maximumber of IFFT is 2,048, and
maximum number of effective subcarriers is 1,200.

Therefore, the problem is to maximize system throughpwrga/finite number of subcarriers,
denoted byV,,,.. Itis shown in [19] that with{n+1)?+n? symbol extensions, the total normalized
DoFis[(n+ 1)+ (K — 1)n?/[(n+ 1)?+ n?. So we aim to maximizén + 1)+ (K — 1)n? and

have the following formulation.

max (n+1)7+ (K —1)n? (3.11)
st. q=(K-1)(K-2)-1 (3.12)
(n+1)7+n? < Npoe,n €N (3.13)

K>3 KEeN. (3.14)

In problem (3.11), all the variables are integers. Consti@ir13) indicates that for practical sys-
tems, the number of subcarrie’s = (n + 1)? + n? is upper bounded by,,... Although this
integer programming problem is NP-hard, by careful inspectwe can find the solution under
practical constraints.

In particular, we find the feasible region is very small foagtcal N,,.. values. Also the
objective value is monotone with respect to the two varsblend K. In problem (3.11), assuming
K =5, we havey = 11 from (3.12). For each value of, we can derive the number of subcarriers
neededN,,..., from (3.13) for the problem to be feasible, as well as theughput of the system
(i.e., the objective value of (3.11)). The correspondingrde of freedomg, is the ratio of the
throughput and the number of subcarriers required. Thesdars are presented in Table 3.1.

Table 3.1 shows that if there afé = 5 usersp2, 049 and179, 195 subcarriers are needed when
n = 1 andn = 2, respectively. As discussed, a practical system usuallyotave more thah0*
subcarriers. Sa can only bel in this case, with efficiency,,.. = 1.002. Therefore, interference
alignment is not useful in this case, since we can simplyaaflaly one user to transmit over one

time-slot or a particular frequency band to get 1 (i.e., single user OFDM).
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Table 3.1: System Efficiency
WhenK = 5andg = 11

n | No. of subcarriers No. of packets Normalized DoRl

1 2,049 2,052 1.002

2 179,195 185,339 1.03
WhenK =4 andg =5

n | No. of subcarriers No. of packets Normalized DoRl

1 33 35 1.06

2 275 339 1.23

3 1,267 1,753 1.38

4 4,149 6,197 1.49
WhenK =3 andg =1

n | No. of subcarriers No. of packets Normalized DoRl

1 3 4 1.333

2 5 7 1.40

3 7 10 1.429

4 9 13 1.444

100 201 301 1.498

1000 2001 3001 1.4998

If there areK = 6 transmitters, we have = 19. Even ifn = 1, the number of subcarriers
needed i$24, 289, which is not feasible for practical systems. Since the nemab subcarriers
(n + 1)E-DE=2-1 4 ,(K-D)(E-2)-1 grows exponentially witff K2 — 3K + 1), it can be readily
concluded thatf< cannot be more than 4 for interference alignment to be beakficmulti-user
OFDM systems.

Since the objective value of (3.11) is an monotone incrggkinction of K, the maximum
feasible valugk = 4 is of particular interest. We have= 5 when K = 4. Table 3.1 also shows
that under this condition, the maximum efficiency for preatisystem isi, ., = 1.38 for the
practical case with at mo3t 000 subcarriers. Whe/i = 3, we have; = 1. The objective function
(3.11) becomedn + 1, and the constraint (3.13) becon®st 1 < N,,... If the maximum number
of subcarriers isV,,,.. = 2,001, the system achieves its maximum efficiengy,, = 1.4998.

The above analysis can be summarized as follows.

30



Conjecture 3.3.1.For a practical multi-user OFDM system with number of subgans less than
2,002, the maximum efficient i$,,,, = 1.4998, which is achieved when there afé = 3 users

using N = 2,001 subcarriers.

However, in the later discussions, we will show that thisjeoture does not hold true.

Interference Alignment with Multi-user OFDM-Realization

It is shown in [19] how to design the precoding matrices tmgrait 3n + 1 packets over
2n + 1 symbol extensions in a three-user interference chanme] far a three-user system, we
haveq = 1 andN = (n + 1)? + n? = 2n + 1). We will derive the precoding/decoding procedure
for interference alignment with multi-user OFDM and protgedfficacy in this section.

The precoding matrices proposed in [19] for the case of thsees are as follows.

Vi=A (3.15)
Vy = Hy'Hi3C (3.16)
V3 = H3,'H 1B, (3.17)
where

A=[0GTw TG --- T (3.18)
B=[TwT%& - T (3.19)
C=[@Tw T - T" "] (3.20)
T — H21HI21H32H531H13H§11 (321)
w=[11--- 17, (3.22)

Thus, the received signal at receives:
1 = Hiu Vi@ + Ho VoZs + Hi3 Vi@, (3.23)
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In the general case, since the data streams are indeperigsaoother, the received mixed
signal spansn + 1 dimensions of the space. In interference alignment withtinasker OFDM,
the received signal spans orily + 1 dimensions of space. Solving theze + 1 equations will
yield the desired packets. However, the challenge &, if- 1 is too large, we may not be able to
solve these equations efficiently (as can be seen from teedacussions). This problem can be

addressed with a decomposition approach as given in theioldy theorem.

Theorem 3.1.For an N subcarrier OFDM system, we can divide the subcarriers [/ (2n+1) |
groups, wheren € N, and precode and decode the groups separately to achievietéhréerence

alignment gain.

Proof. Recall that the channel gain matrix in OFDM is diagonal. Galherif every user tries to

transmitd packets over thé/ subcarriers, we have

hiy 0 -+ 0 Vi1 v Vid
e 0 hy -~ 0 Voy  ee Uog
0 0 - hy) \uyi - Ung

The precoding vectors must satisfy the conditions giver3ihg)-(3.22). Let the precoding matrix

assume the following form.

Vi 0 - 0
0 Vy --- 0

V = , (3.24)
O 0 .- \79

whereg = N/(2n + 1) is the number of groups and; is the precoding matrix for groupwith
dimensiong2n+ 1) x (n+1) or(2n+ 1) x n (i.e., user 1 sends: + 1) packets, and each of the
other users sends packets ove(2n + 1) subcarriers.) Without loss of generality, we assuke

is dividable by2n + 1. RewritingH in the form of multiple diagonal sub-matrices with the same
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dimensions, we have

HV =

HV, 0
0  H,V,
0 0

(3.25)

For instance, wheV = 6 andn = 1, we have for transmitter

HV =

hyvy
havay
h3vs1

0

0

0

hivig
hovao

hsvsa

0 hyon

0 hsvs

0 heve1

havas
hsvso

heve2

(3.26)

If there are 3 users, we can ldt;V, = H3;V; at receiverl to get

1 1
)

2) (2
g

3 3
D

o o O

o o O

4) (4
g

5) (5
)

6) (6
P

RN

21

hSy~

21

hgllv)v
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2
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he 0 0

o 0 - 0
K0 0 0
0 hie - 0
0 hgi)vf) 0
I I A CRC I 0 7

0 0 o hgzlv_z)vézv_m
0 0 o hgll\ffl)véNfl)
0 0 . hgfl\f)véN)
which indicates:
) )
hgi1+1)véi+1) = h:())z'lﬂ)véiﬂ) ci=1,4,--- N -2 (3.27)
héi1+2)véi+2) hz(’)zi+2)vz(si+2)

Since the above conditions can also be obtained by sepaeatebding theV/(2n+1) groups
of subcarriers, we could decompose the problem into a nuoiflseibproblems, one for each group,
and precode and decode the groups separately.

It remains to show how to decode the packets for this schem#&oW loss of generality,

we also assumé&” = 3. If this scheme is adopted, each time we sequentially takeou- 1
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subcarriers. The received signal at receives:

Hi1 V1% + HoVaZs + H3i V3

H11 V1% + Hao Hod Hi3Ciy + Ha Hay HioB T
H11 V1% + Ho Hod HisCity + Ha Hapy Hio TC T
H11 Vi@ + HoHod HisCty + HopHog Hi3C s
H11V1Z) + HaHyy HisC(Z + T)

T
(Hi1V1 Ha1 Vo) - (:E'l Lo + fg) ~ (3.28)

Taking the inverse of matrixH,,;V; Hy,Vs) and discard the packets from transmitterand 3,

we can recover the desired packeéts Note that we exploit theommutativegoroperty of diagonal

matrices in (3.28).

At receiver2, the received signal is:

H1oV1 %1 + HooVads + Hso V3@

x(12) + xgl)
H12IUI§1) + HooVods + HioB
I‘YH_D +$:(3n)
(HaeVy Higw H15B) -
T
(00002 a0 a0 (329)

Taking the inverse of matrigH,,Vs Hi2w Hi9B), we getrs.
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At receiver3, the received signal is:

v = Hi3ViT + HasVaZs + HisV3is
= Hy3(CT"W)# + H13CZ2 + HisVsds
oD+ ofp
— HuC :  H Tz 4 Hy Vs
) 4l
— (HgsVs HisC HygT"a)

2\
T
<fs, P SR L O xgw)) . (3.30)

Taking the inverse of matrixHs3V3 H13C Hi3T™W), we can decodé&’;. After decoding each

group separately, we then combine the decoded data. Theethe®thus proved. n

Note that the proof of Theorem 3.1 also leads to an algorithichieve interference align-

ment gains for any larg& € N.

Practical Issue of Large Channel Variance

Here we examine another practical problem of adoptingfetence alignment for multi-user
OFDM.

A necessary condition to achieve interference alignme@iDM is that the channel gain is
drawn from a continuous distribution. As a result, if theigace of the channel is large, some
of the channel gains can be very small in certain conditiauisle some other channel gains can
be very large. When precoding over all the subcarriers, &idng the inverse of the channel
gain matrix, some entry of the precoding matrix could16é times (or even more) larger than
some other ones. The result is that the power of one subcaaigd bel0® times (or even more)
larger than that of another subcarrier. Given certain paweistraints, the error performance of

the system will suffer from great degradation, which makesrference alignment less useful.
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In our proposed scheme, if the channel variance is largee tisealso a certain chance that
some entries off can be much larger than the others, sifice= Hy H ) HaoHo HisHS! =
HoiHsoH 1sH G Ho Ha . If we precode and decode over largesince the last column of ;,

V, andV; are all obtained by multiplying ™, the situation could be further exacerbated. The

consequences are as follows.

(i) Since some of the entries can be extremely small, thedliegamatrices can be close to

singular. Thus the desired signal cannot be decoded.

(i) Even if the decoding matrices is invertible, due to thensmitter power constraint, the sys-

tem error performance could be rather poor.

In fact, even ifn = 1, there is still a chance that some matrices are not invertiilhese are
the reasons why we cannot precode and decode for I&rgelrhis issue also demonstrate the
importance of the proposed decomposition theorem (seeréhmed.1).

Take V, for instance. The constraint is the power on one subcareanat bel0* (e.g.,
a = 3) times larger than the power on another subcarrier. If thestaint is violated, the system

is considered to be in the outage state. Let

tt 0 -~ 0
0 ty --- 0

T— , (3.31)
0 0 - topps

wheret; = KRR /(RORIRS)), i = 1,2,...,(2n + 1). t1,ts, ... tanss can be regarded as
1.1.d (independent identically distributed) random variable=t.t denote the common distribution
of t1,tg,. .., tans1. DEfin€t(1y, 11y, ..., t2n+1) D€ the order statistics of, to, . . ., to, 1 With (1) =

mini ti1 t(2n+1) = max; tl
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Lety = tn+1)/ta). From (3.15)-(3.22), we have™ < 10%, thus
v < 10%C), (3.32)

which means,,,;1, cannot bet0%/*" times larger than,;).

On the other hand, sineg,.., = 10%®", we have

¢ 2n+1 ¢
1— (prie> -2l <Pritg < Bt <, (3.33)
102n Y

It can be seen thdtr {t > tfo"—;)} is a decreasing function of. With the power on + 1,
Pr {t) < t2n+1)/7} Will quickly converge tol. That means, with large, P(tn+1) > i) =
1. Therefore, with large the constraint (3.32) will not be satisfied.

Next, we show how large could be for given constraint (3.32). The joint probabitignsity
function (PDF ) oft(;) andt, 1) is found as follows.

aQE(l)t(2n+1) <I7 y)

ft(l)t(2n+1> (x’ y) = axay ) (334)
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WhereFt(l)t(QnH)(:c,y) is the joint cumulative distribution function (CDF) ofi) andt(s,,1). By

the definition of partial derivative, we have:

ft(l)t(2n+1) ('x7 y)

a ..
:a_y{AlnlnIBO[Ft(l)t(QnJA) (x + Az, y)—

Ft(1)t(2n+1) (z,y)]/Ax}

- Ax—}(iJfIAly—)O[Ft(l)t(2n+l) (z+ Az,y + Ay)—

Ft<1)t(2n+1) (-’B? ) + Ay) — Ft(1>t(2n+1) (.ZE + Al', y)+

Ft(l)t(2n+1) (z,9)]/(ArAy)

e 1 < < < -
Az—}(l)%y—)()[Pr{x — t(l) =7 + Ax’ t(2”+1) =Y + Ay}

Pr{z <tn) <z + Az, to.) < y}/(AzAy)

= lim Pr{z <ty <o+ A,
Az—0,Ay—0

Y < tonyy <y + Ay)/(AzAy}. (3.35)

To calculate the probability of the last equality, for any y, we can divide the: axis into
five disjoint intervals asl; = (—oo,z), I, = (z,z + Az), Is = (v + Az, y), Iy = (y,y + Ay)
and/; = (y + Ay, 00). For each;, the probability it falls into each interval can be calcethbs

follows.

py = Pr{t; € I} = F,(x) (3.36)
pr = Pr{t; € L} = Fy(z + Az) — Fy(a) (3.37)
ps = Pr{t; € I} = Fy(y) — Fi(z + Ax) (3.38)
ps=Pr{t; € L} = F(y + Ay) — Fi(y) (3.39)
ps=Prit, € I} =1 — F(y + Ay). (3.40)
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Tomake(z < tq) <z + Az, y < tonsr) < y+ Ay) happen, the statistigs:, s, . . ., toni1}
must have exactly sample falling into interval,, 1 falling into intervall,, (2n — 1) falling into

interval I3, and0 elsewhere, which is a multinomial problem. So we have:

Pr{z <tq)y <2+ Ax,y <ton) <y+ Ay} =

: 3.41
(07 1,(2n —1), 1,0>p1p2p3 DP4Ps (3.41)

It follows that

ft(l)t(2n+1> (':137 y)
, (2n+ 1)! Fy(x + Az) — Fy(x)
lim
Az—0,Ay—0 | (2n — 1)! Ax
Fi(y + Ay) — F _
t(y Ay; t(y) % [Ft(y) —Ft(x—l-AiE)]Qn 1}

= (2n+1)2n)fu(2) fi(y)[Fiy) — Fu(x)]" (3.42)

X

Sincet; = KRR /(WORSR), i = 1,2,...,2n + 1, and eachh® is a random vari-
able, the distribution of; is difficult to be explicitly found. Here we continue our aysik by
approximating; as a Uniform distributed or Rayleigh distributed randomalalie.

If ¢; is approximated as a Uniform distributed random variabtar (0, 1), we have:

- { o < t<2n+1>} (3.43)
v
- /o /0 (20 4+ 1)(2n)(y — 2)** 'dady. (3.44)
1 2n
_ [1 _ (1 _ _> ] (3.45)
v
S (110 Eyn, (3.46)

where the last inequality is a direct result of (3.32). Talilerivative of (3.46), it can be found that

Putaoe = Prit < tentn | g gn increasing function of. Fora = 3,if n = 1, P45 = 0.0622;
g (1) p g
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Figure 3.2: Probability of System Outage.
if n =2, Pouage = 0.5431; and ifn = 3, P,,tq0e = 0.8978. For a system with many subcarriers, it
indicates that we can only precode ovet 1.

If t; is approximated as a Rayleigh distributed random variatleRDF f (z | 0) = % exp(—%), x>

0, then

2 2
Y x4y
Fiytianin (€,y) = (20 +1)(2n) =7 exp (_ 202 ) '
$2 y2 2n—1
(exp (_Tﬂ) oo (‘272)) ~ (3.47)

There’s no closed-form solution dfr {t(l) < t@T“’} in this case. The numerical results are
shown in Fig. 3.2. It can be seen that the conclusion stilti§oi.e., we can only precode over
n=1.

Recall that Conjecture 3.3.1 tells ds,, = 1.4998 whenK = 3 andn = 1000. Here we can
see that this maximum DoF cannot be achieved under prasgtitigs. So we have the following

theorem.

Theorem 3.2.For a practical multi-user OFDM system with number of subcans less thar 149,
the maximum DoF ig,,,, = 1.33, which is achieved when there are three transmitter/receiver

pairs precoding oveB subcarriers each time.
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3.4 Multi-user MIMO OFDM with Interference Alignment

In previous sections, we have considered applying inteniee alignment to OFDM systems.
Since MIMO transmission technique can also be adopted tareghthe system throughput, we
consider incorporating interference alignment to MIMOMF systems in this section.

Suppose we havé/ antennas at both the transmitter and receiver sidesNasubcarriers in

total. The signals received at tix¢h receiver on subcarrier can be represented as:

7:(n) = Hia(n)Vi(n)Zi(n) + Y Hji(n)V;(n);(n), (3.48)
J#i
whereH;;(n), V;(n), andZ;(n) are the channel matrix from transmitteto receiver;j, precoding
matrix at transmitter, and data at transmittér respectively; and all of them are at subcarrier
n. From (3.48), we can see that, the signals received can lbesesgged as a matrix, with each
column being the signals received from each subcarrierM;e= [vi(1) %:(2) ... g;(n)]. Or we

could vectorize this matrix so that we get the following skengorm.

i = HiVad; + Y HyV,a; (3.49)
j#i
Since each antenna pair could operate on any subcarriethanel is no crosstalk between sub-
carriers, the wireless channidl; between transmitter and receiver; is of the form as shown

in (3.50).

Theorem 3.3.For a MIMO-OFDM system witlV subcarriers and\/ antennas at each transmitter
and receiver side, we can divide the subcarriers indd/(2n + 1)] groups, where: € N, and

precode and decode the groups separately to achieve théargece alignment gain.

Proof. In Theorem 3.1, we have actually established that for a systediagonal channels, we
could separately precode and decode each group of sulbssafew consider the case when all

the devices are equipped with multiple antennas. We cdrdsfitle the subcarriers into different
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R (R 0

v v

T T O T T I L ICES
hit e R0 0 0
S : 0 0 0
1,M MM

e : : : . (351)
0 - e 0 - hﬁ;f(Nfl)HvM(N*l)H . hilbe,M(Nfl)+1
6 . . . 0 . h?;-[(N_i)H’MN ] hﬁ\J/'[]\.f,]V[N

groups, then precode and decode them separately, sincewablarto distinguish the signals from
different antennas and different subcarriers. In otherd&oupon receiving a signal, the receiver
has the knowledge of from which antenna and which subcatmgts the signal. So by properly
adjusting the order of the data transmitted, the channelserdially of the form in (3.51). We can
readily identify that (3.51) is actually in the block diagdform with thei-th block corresponding
to the channels associated with thth subcarrier. Within each block, we have standard MIMO
channels. Letting/, with dimensionM N x d, assume the form of (3.24), by similar arguments
as in Theorem 3.1, we could precode and decode the groupsisgpdo achieve the interference

alignment gain. n
Lemma 1. All the channel matrices and matrix are invertible.

Proof. As shown in (3.52), the inverse of a block matrix can be foupdddculating the inverse of
each block. Since for each block, we have a standard MIMOra#lanatrix and each of its entry is
drawn from a continuous random distribution, each blockvgitible with probabilityl. So each

channel matrix is invertible. Since the product of invadinatrices is still invertible, according to
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(3.21), matrix7 is invertible.

-1

B, 0 0 B 0 0
0 By 0 =1 0 By 0 |- (3.52)
0 0 Bs 0 0 Bt

Theorem 3.4.For a MIMO-OFDM system witliv subcarriers andV/ antennas at each transmitter

and receiver side, the maximum gairgiM.

Proof. According to Theorem 3.3, we could precode and decode oweipgrof subcarrier. Also,
according to our previous results, we can only precode aood#eoveB subcarriers. So subcarrier-
wise, the normalized DoF i&/3.

We next show thagM Is the maximum achievable DoF. Firstly, we notice that byding
the subcarriers into groups 8f takingH;; for instance, it is transformed from (3.53) to (3.54).
With the establishment of Lemma 1, following the proof of ©hem 3.1, and replacing the scalars

with blocks, we readily have the maximum gaing‘dw.

Moo 0 B o0 0
0 K2 0 0 A2 0
0 0 % 0 0 A%
Hyy — 1 . (3.53)
Mt 0 0 R 0 0

0 KE 0 0 KB 0

0 0 K% 0 0 K
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H11:

We next show how to achieve this gain. We designV,, andV; as follows.

where

It can be observed that:

11
hll
12
hll

0

0
0
0

I

B2
0 &
0 A
0 0
0 0

V,=A

0 0 0

0 0 0
M0 0
M0 0

0 HE
0 K

Vy = HyHi3C

V3 = Hz HioB,

A =[5 Td T2 - TN

B=[T"a TV -

C

[TM=1y Ty

T(n+1)M—1

... T+1)M—2

T — HI21H32H§11H21H531H13

=[11--- 1"
[ Tw -~ TM 1 B]
[ T - TM =2 C TOHIM =Ly,
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]

]

(3.54)

(3.55)
(3.56)

(3.57)

(3.58)
(3.59)
(3.60)
(3.61)

(3.62)

(3.63)

(3.64)



At receiverl, the received signals can be written as:

Hi1 V1% + H2VaZs + H3i V3

H11 V1% + HoHo Hi3Ciy + Ha Hay HioB T3
H11 V1% + HoHod HisCity + Ha Hay Hio TC T
H11 Vi@ + HaoHod HisCy + HopHog Hi3C s
H11V1iZ) + HaoHyg HisC(Z + T)

X1

(H 11V1 H21V2) . . (365)
Ty + T3
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For signals at receive, we have:

H1oV1Z1 + HoVoZs + HsoVs@s

Hio( Tw -+ TM 55 B)Z) + HyVoZs + HioBZs

)

Hip(@ T - TV ')
0
ZMD
Hi.B : + HVoTsy + HyoBrs
2D

(HyoVo Hyg (W T -+ - TM=145) Hy5B) -

ng\/[—i_l) + -Tz(),l)
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And similarly for signals at receive}, we have:

H13V1Z1 + HasVoZs 4+ H33Vsds
Hys(@ Tad --- TM 25 C T DM =15) 2

H 13sz + H33V3f3

Hys(@0 Tw -+ TM20) : + H33V3 75

A
H.3C : + H,3C%s

xg(n+1)Mfl)

H 13T(n+1)M_1lﬁl'§n+l)M

Hs3Vs3
H.3C

Hys(@ T -~ TM20)

H 13T((n+l)M—l)u—J’

—

€3

ng) + :Lél)

(n+1)M—-1) (nM)

xg + x5 (3.67)

o

From (3.65)—(3.67), we can see that the desired signaldldreeafrom interferences.
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We can also calculate the probability of system outage whaltipte antennas are deployed.
So we need to find the probability B {t(l) < M} With similar arguments, the joint PDF

of t(1) andt((2n+1)ar) can be found as:

ft(l)t((2n+1)1\l) (ZL’, y)

= lm Pl <ty <o+ Az,
Axz—0,Ay—0

Y <t < Y+ Ay)/(AzAy)

(2n+1)M 2n+1)M—2
:<o 1,(2n+1)M —2,1,0 T S (3.68)

If ¢; is approximated as a Uniform distributed variable in thegeaof (0, 1), the probability

Pr {t(l) < W%} can be found as follows.

t(2n
Pr {t( ) < M} (2nM + M —1)- (3.69)
(2nM + M) / / x)? MM =2 g dy (3.70)
1 (2n+1)M -1
—1- <1 - —) (3.71)
Y

(2n+1)M—1
) , (3.72)

21—(1—10‘W‘>M4

If ¢; is approximated as a Rayleigh distributed variable, thermislosed-form solution for

probability Pr {t(l) < W%} The joint PDF oft ;) and¢(2,+1)a) can be derived as:

Fryttampnn (@:9) = (2n+ DM)((2n+ )M = 1=

22+ y? 22 2 (2n+1)M—2
exp (— = ) [exp (_Tﬂ) — exp (_Tt?)] (3.73)

Figs. 3.3 and 3.4 illustrate the probabilities of systenmagatfor Uniform and Rayleigh dis-

tributions wheru = 3, respectively. We can see that for= 1 and M = 2, the probabilities are
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Figure 3.3: Probability of System Outage with multiple amtas for Uniform distribution.

Probability of Outage

Figure 3.4: Probability of System Outage with multiple amtas for Rayleigh distribution.

0.8505 and0.2758. Forn = 1 andM = 3, the probabilities ar6.9962 and0.7937. Forn = 2 and

M = 2, the probabilities ar6.9981 and0.9971.
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Figure 3.5: System throughput comparison when the chammence is large.
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Figure 3.6: System throughput comparison when the chammelnce is small.

3.5 Simulation

51

Simulations are conducted to evaluate the performanceeoptbposed schemes and verify
the benefits brought about by incorporating interferengmaient in multi-user OFDM systems.
We consider the case 8fusers. The number of subcarrier2i$. Each transmitter precodes over

(2n + 1)M subcarriers. Block fading channels are used in the simuisitivhere channel gains



are piece-wise constants for the duration of each time stéotigifrom a certain distribution. BPSK
is used as the modulation scheme. So we transiit on each subcarrier and we measure how
many bits are successfully decoded at the receivers. Imidyswe are essentially calculating the
number of interference-free channels in the system (weataatinormalized DoFhereafter).

Fig. 3.5 and Fig. 3.6 illustrate the performances of diifeérechemes when the channel is
drawn from an uniform distribution 0, 1] and[0.9, 1], respectively. Comparing these two figures,
we can see that when the channel variance is small, hightemsysroughput can be achieved. This
conforms to our discussions about the precoding matrix oti@® 3.3.3. It can also be observed
that the trends and comparative relationships are simmlgrg. 5 and Fig. 6.

We can see from Fig. 3.6 that when= 1, multiuser OFDM with interference alignment can
achieve an unnormalized DoF 8#9.98. Compared to the highest throughput of single user OFDM
of 255, the DoF has been improved by a factor of approximatel$ by incorporating interference
alignment. Whem = 2, we can see from both figures that the throughput of multiG¥edM
with interference alignment has degraded when the SNR isanang€0, 78] dB. That verifies
our theorem that under certain power constraint, we can prdgode oveB subcarriers. Same
conclusions also hold fat = 3 of multiuser OFDM with interference alignment, which exksb
poorer performance in the SNR rang€2ff, 100] dB.

For the case of multiuser MIMO OFDM with interference aligemt, when, = 1 with small
channel variance, the highest unnormalized DdR2i57, which is2.44 times of the unnormalized
DoF of the single user OFDM system. The reason why it is diyggkss thar2.66 is also due to
the big differences among the elements of the precodingeeatrForn = 2 andM = 2, we can
see that the performance is worse than that ef 1 andM = 2. When the devices are equipped
with 3 antennas, we let = 1 and precode oved subcarriers. The highest unnormalized DoFs
are671.2 and683.208 for large and small channel variance cases, respectiviighmare2.63 and
2.68 times of that of the single user OFDM system. However, theimam gain is suppose to be
4 times the single user OFDM system. The performance degada also due to big difference

among the elements of the precoding matrices.
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3.6 Conclusions

In this chapter, we investigated the problem of how to exigiinterference in OFDM sys-
tems. We provided an analysis and developed effective sek@m incorporating interference
alignment with multi-user (MIMO) OFDM to enhance systemotighput. With an integer pro-
gramming formulation, we derived the maximum efficiencyrfarti-user (MIMO) OFDM/interference
alignment systems, and showed how to achieve the maximugieeify under practical con-

straints. The performance of the proposed schemes wedatedi with simulations.
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Chapter 4
Stackelberg Game for Cognitive Radio Networks with MIMO andtBbuted Interference

Alignment
4.1 Introduction

In the past decade, MIMO has evolved from a theoretic contwepttechnology that can be
widely used in practice [23]. It is desirable to exploit MIMGr enhanced primary and secondary
transmissions.

Another physical layer technology callederference alignments a significant breakthrough
that exploits interference in interference limited wisdenetworks [19]. Traditionally, if interfer-
ence is small, it is simply treated as background noise;térfarence is large, it can be decoded
first and then removed from the received signal (i.e., ieterice cancellation); if interference is
comparable to the desired signal, we usually try to avogl¢hse by orthogonalizing the channels.
Unlike traditional approaches, interference alignmestsanterference to half of the received sig-
nal space to achieve a normalized Degree of Freedom (DoKR)/2f where K is the number of
interfering users. Since an interference-free channegl lbas a normalized DoF df, substantial
system throughput gain can be achieved with interferengaerakent wherk is large. For interfer-
ence alignment, a strong requirement is the availabilitylobal channel state information (CSlI)
at every node. To relax this requirement, distributed fetence alignment is investigated and an
iterative algorithm is proposed in [41] to achieve integfgre alignment with local CSI.

In this chapter, we investigate how to incorporate thesedasivanced physical layer technolo-
gies, i.e., MIMO and distributed interference alignmeniCR networks. The CR network consists
of a primary user and multiple secondary users, each Witntennas. Time is divided into equal

length time slots with a normalized length. The primary Uses some data to sent and requires
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a certain non-zero data rate in each time slot. It also legsestrum to secondary users for more
revenue. Secondary users pay the primary user for datartrsgien in the time slot.

A key observation is that the licensed users usually have figickages to send. After a period
of high data rate transmission, they might be interestedasihg the spectrum to the unlicensed
users if they can be reimbursed. On the other hand, the uskckusers desire the opportunities
for data transmission if the costs are acceptable. Thergiimthe proposed cooperative spectrum
leasing scheme, the primary user divides the time slot imeet phases: (i) in Phase I, only the
primary user transmits with MIMO,; (ii) in Phase II, the prirgauser and a selected set of sec-
ondary users transmit simultaneously using distributéerierence alignment; (iii) in Phase I,
only selected secondary users transmit with distributegtfierence alignment. The primary user
decides the division of the three phases, selects the setcohdary users for spectrum leasing,
and collects a revenue from the selected secondary usgrsrpomal to their transmit powers (or,
data rates).

We find such a cooperative spectrum leasing framework fitwith the Stackelberg game
theory [42]. In the formulated Stackelberg game, the prymeser is thdeaderand the secondary
users ardollowers The leader decides the division of a time slot into threesphaand selec-
tion of followers, aiming to balance its own data transnugsand revenue collection by leasing
spectrum. Once the leader decisions are made, a followecloawse a transmit power (and the
corresponding data rate) based on how much it is willing % p¥e define theéStackelberg Equi-
librium where neither the primary user nor any secondary user c@itdy unilateral change of
strategy. We present a rigorous analysis withiithekward inductiormethod [42] and derive the
unique Stackelberg Equilibrium for the cooperative speutteasing game.

We find the most desirable scenario for secondary users iavi® ¢tnly Phase Il in the time
slot with only 3 players. The strategy for the primary user depends on thébauof secondary
users. With more thaR/N — 2 secondary users, exacthyv — 2 secondary users will be selected,
each havingneinterference free channel, and there will be only Phase théntime slot. With

fewer than2 N — 2 secondary users|ll secondary users will be selected and there will be only
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Phases Il and 111 in the time slot. Therefore, spectrum teass always helpful for increasing the
utilities of both the primary and secondary users. In theutation study, we first compare the
proposed scheme with a scheme without spectrum leasingriortrate the benefits of spectrum
leasing. We then compare the proposed scheme with the @iweescheme presented in [47] to
demonstrate the efficacy of distributed interference atignt. Significant performance gains are
achieved by the proposed scheme in these simulations.
The remainder of this chapter is organized as follows. IrtiSeel.2, we present the prelim-

inaries and system model. We define the Stackelberg gamectiod.3 and derive the unique
Stackelberg equilibrium in Section 4.4. Simulation resalte presented in Section 4.5 and related

work is reviewed in Section 4.6. Section 4.7 concludes thapter.

4.2 Preliminaries and System Model

4.2.1 MIMO and Distributed Interference Alignment

This chapter is closely related to MIMO and distributed ifégeence alignment. We brief
review the preliminaries in this section. More details carfdund in [23,41]. For recently devel-

opment of MIMO techniques, readers are referred to [55] [58].

MIMO Capacity Basics

With the advance of antenna technology, it is now feasibéjtdp wireless devices with mul-
tiple antennas. In general, three types of performancesgain be achieved with MIMO, namely,
diversity gain multiplexing gainandantenna gainlIn this chapter, we focus on multiplexing gain,
namely, DoF. We assume that all transmitters and receiaes thhe same number of antennas.

For a MIMO system withV > 2 antennas, assume that the ESik known at the transmitter.

Since the MIMO channel can be decomposed iiparallel channels, the channel capacity is given
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by [46]

pz
= max log [ 1+ =& 4.1
Pity; p1<PZ & ( ) (4.1)

where P denotes the total transmitter power limit, is the power allocated to theth parallel
channel,c? = )\; and ), is thei-th largest eigenvalue of matridH”. Note that bandwidth is
normalized throughout this chapter.

In the high SNR region, equal power allocation is shown to lle-@gptimal, but is easier
for mathematical modeling than water-filling. When the traitpower isP/d for each parallel

channel, the total capacity is

4
E
o
aQ
-
23
N—

d 2
= dlog(SNR) + Y log (%) (4.2)

The second item in (4.2) is negligible when the SNR is high. ttNes ignore this term in the

following discussion. Thus, wireless channel is assumdxktperfect throughout this chapter.

Distributed Interference Alignment

The basic idea of interference alignment is to cast theference to no more than half of
the received signal space, and leave the other half cleamemodnizable. If there ar& users,
totally K'/2 normalized DoF could be achieved. The system throughpubeagreatly enhanced
when K is large. ForK = 0 and1, there is no interference; fak = 2, the normalized DoF is
1, which is trivial. Therefore, we only consider the case vettbie number of interfering nodés

satisfiesk’ > 3. It is worth noting that, to align interference perfectlyplgal CSl is required at
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every participating node. To overcome this challenge, emiive distributed interference align-
ment algorithm was proposed in [41], which only requiresald€SI at each interfering node. By
utilizing the reciprocity of wireless networks, it works fadlows.

Firstly, compute the interference covariance at eachveces:

K
PA
Q= >, gﬂﬁ@@VfHﬁ, (4.3)

j=lj#k 7

whereP; is the total transmitting power of usgrV; is theprecoding matrixat transmitter, H ;.
is the channel gain from transmittgto receiverk.
Minimizing the interference leakage at each receiverjrtexference cancellation matriy,,

is given as:
ﬁki :Vl[Qk]7Z: 17"'7d7 (44)

where iy, is thei-th column ofU,, and;|Q,] is thei-th smallest eigenvalue’s corresponding
eigenvector.
Then reverse the direction of communication an(ﬁe;t: U,. The interference at the reverse

link’s receiver is:
Q= ZH,V,VIHL (4.5)

Minimizing the interference leakage at each receiver ofdéverse link, the interference can-

cellation matrix is given as:

Th = ulQui=1,....d (4.6)

Then reverse the direction again, andMet= ﬁk These steps are repeated until convergence

is achieved.
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Figure 4.1: The three-phase operation of the MIMO CR netwatk distributed IA.
The general feasibility condition for interference aligemhis given by
Uijij = 0, forj # k (47)
rankU7H .V, = dy, forall k. (4.8)
In [20], a system is called to be proper if it satisfies thedwihg condition:

2N

T (4.9)

d<

Since distributed interference alignment should alssBathe conditions given in (4.7) and

(4.8), to simplify the discussion, we consider a properaysto be feasible for distributed inter-

ference alignment for simplicity.

4.2.2 System Model and Assumptions

The MIMO CR network is illustrated in Fig. 4.1. There are onanary user and< sec-

ondary users sharing the licensed spectrum, each Widntennas. We consider a time-slotted

system, where each time slot is normalized to 1 unit in leagttis divided into three phases, with

lengthsa s, a(1 — /3), and(1 — «), respectively, for fraction8 < o < 1and0 < g < 1.
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In Phase I, the primary user transmits its packets at theekigtate using MIMO, and the
secondary users remain silent. The DoF for the primary gsgr+ N. The achievable rate of the

primary user in Phase | is:

R = d;log(SNR), (4.10)

where SNR is assumed to be constant during a time slot.

We assume that the primary user always has a finite amount&étsato send in each time
slot. After a period of high data rate transmission (withgiin5), the primary user has the in-
centive to lease the spectrum to secondary users to indteagdity, by collecting revenue from
selected secondary users (but with a lower data rate fdf)it$e Phase II, the primary user and

K € [0, K7| selected secondary users transmit simultaneously dsstriputed interference align-

2N

ment with a DoF ofd;; = | 235

|. A selected secondary user makes payments that is propartio
to its transmit power (i.e., its data rate), and the primagricollects payments from all selected

secondary users. The achievable rate of the primary usdrasdl is

RY = d;1log(SNR). (4.11)

The achievable rate of secondary uSem Phase Il is

Ry =dirlog(SNRy), (4.12)

where SNR; = P,/N, is the SNR for each selected secondary user, which is assumed to be
constant in a time slot.
In Phase lllI, the primary user stops its transmission angeleghe spectrum to selected sec-
2N

ondary users, which transmit using distributed interfeessignment withi;;; = LK—HJ In Phase
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lll, the achievable rate of secondary usgis
R = drrrlog(SNR,). (4.13)

As in [54], we assume a common control channel for the primiger and secondary users to
exchange precoding and interference cancellation mafribe weight factor information, and the
fractionsa and5. Channel estimation is completed before data transmissidoie that the DoFs

are integers.

4.3 Stackelberg Game Formulation

In the MIMO CR network, the primary user decides the divisidradime slot into three
phases and selection of secondary users, while balansirmyvit data transmission and revenue
collection by leasing spectrum. Once the decisions are rioptlee primary user, a secondary user
can choose a transmit power (and the corresponding dajebeed on how much it is willing to

pay. Such interactions fit perfectly with the Stackelbengpnganodel [42].

4.3.1 Stackelberg Game Formulation

In this section, we formulate a Stackelberg game for the MI®Rnetwork with distributed
interference alignment. The primary user is lsa@derand the secondary users #odowers The

strategyof the primary user is given by
Sp={a,8,K|0<a<1,0<<1,3<K < Kr}, (4.14)

where K is the total number of secondary user in system.

The secondary user strategy is to find a transmit pdweas

SSi = {R|O <P < Pma;r}a Vi (415)
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Here we assume th#,,.. > 2wsN/Cy, whereCy is unit price for secondary user transmit power
(see (4.16)) ands is the weight factor for secondary user utility (see (4.17))
The primary user transmits its data in Phases | and I, anldatslrevenue in Phases Il and

l1l. The utility of the primary user is the sum of data transmitted and reveallected, as

K

Up =wpfp(Rp)+ Z Co P, (4.16)

k=1

whereRp = a3RL + a1 — B)RY is the amount of primary user data transmitteg,is a weight
factor, Cy is the unit price for secondary user power, gidzx) is the satisfaction function of the
primary user. Since the primary user always has some datnth & requires a minimum data
rate. Naturally we choosgr(z) = In(z), x > 0. The negative value for very smallserves as a
penalty that forces the primary user to achieve a minimura gde. From the shape ¢f(x), we
know that at the beginning stage, the primary user is erditisiabout data transmission. After
a period of transmission, even a great increase in the datartission can only result in a small
increase in the satisfaction.

By defining fr(x) = In(z), we actually also assume that the primary user always has som
packages to send. Since if the primary user has no packagedoiswill provide all the time and
spectrum to the secondary users and merely collect revehutss way, the primary user is in fact
working as a network service provider not a service users €hse is not allowed. By adjusting
the parametewp, the primary users is actually putting different weightstioa data transmission
and the revenues it will collect. This is also related to tbatent type that the primary user is
transmitting. If the primary user is transmitting high riegmn video, it may assigmwp a huge
number, sayl0®. That is, the primary user currently values the data trassimm much more than
the revenues collected. To maximiZe, the primary user simply sets= 1, § = 1. If the primary
user is surfing the internet and is tolerant of the delaysai assignup a small number, say.01.
Revenue is more helpful to maximize thg at this scenario. That means the revenue collected

becomes more important to the primary user now.
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Therefore, since the primary user is rational and selfishjnits to maximizel/» by con-
trolling the lengths of the three phases and selecting skrgrusers to participate in the game.
By adjusting weightwp, the primary users can trade off between data transmissionevenue
collection.

Selected secondary users transmit their data during Phiaged Ill and make a one-time

payment to the primary user. The utility of the secondary issgiven by

Us, = ws fs(Rs,) — CoP;. (4.17)

whereRs, = a(l — B)RY + (1 — a)RY!, fs(x) is the satisfaction function of the secondary
user and thevs is the weight factor. As in [47], to simplify notation, we asse identicahug
for all the secondary users. It could be easily extended tterbgeneous cases. Since the essence
of cognitive radio is to opportunistically exploit the spren, we choosgs(z) = =z, indicating
that the secondary users operate in blest effortsmanner. By assigning a big number ig,
the secondary users care more about the data transmisamtie@ontrary, if a small number is
assigned tavg, the secondary users is more concerned about the paymems, thie weightuvg
allows a secondary user to trade off between data transmiasid payment.

Therefore we define a Stackelberg game, with players, tlod#sy strategies ((4.14) and
(4.15)), and utilities ((4.16) and (4.17)) specified. Wevle a thorough analysis of the game
with respect to the existence and uniqueness o$taekelberg Equilibriunand optimal strategies

in Section 4.4.

4.3.2 Discussion

From the secondary users’ point of view, it wants to transnotre data while keeping the
costs as low as possible. If there are fewer players, the BoFoe increased. Since the DoF is
a pre-log factor (see (4.12) and (4.13)), transmit more pawen the DoF is high is definitely a

better choice. At the same time, since the primary user willparticipate in the Phase llI, with
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one less player, the DoF could be further increased. Since tve one-time payment is made, the
secondary users can transmit during Phase Il and Phadweellbriger the Phase Il or Phase lll, the
better the secondary users will feel. To sum up, with the pride fixed, the secondary users favor
fewer players and longer duration of Phase Il or Phase iéfgpably Phase llI.

Since the primary user is the leader, it has the advantageskihg trade-off between data
transmission and revenue collecting. In Phase I, the tressson rate is high. More primary user
data could be transmitted if Phase | is long. In Phase II, tiragry user could collect revenue
while transmitting data, although at a lower data rate. Withre secondary users selected, more
players are paying the primary user, which is helpful to maze its utility. However, if too many
secondary users are selected, The DoF could evemitth too many players. Under this situation,
there’s no revenue since no one could transmit and thus nwoulel pay. Thereforel should be
carefully decided. In summary, the primary user’s stratggyuld consider the trade-off between
data transmission and revenue collection. Since in Phasieellprimary user can transmit while
collecting revenue, and the choicesaaf 5, and K are dependent, the primary user decision is

highly complicated.

4.4 Performance Analysis and Solution Strategy

In this section, we analyze the formulated Stackelberg ganfied a strategy set, called the
equilibrium, for the primary user and secondary users shahro one could gain by unilateral
change of strategy.

Let P+ be the vector of secondary user powers &tig= P*\ P,. We first defineStackelberg

Equilibrium as follows.

Definition 1. (Stackelberg Equilibrium) A strategy sgt*, 8*, K*, ]3*} is a Stackelberg Equilib-

rium of the game defined in Section 4.3 if the following coodgiare satisfied:

1. Up(a*, 8%, K*, P*) > Up(a, 8, K, P*), forall o € [0,1], 3 € [0,1], and K € [0, K7).
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2. Us, (P, P, 3* K*) > Us. (P, P*, 0", 8", K*), forall a € [0,1], 8 € [0,1], K €
0, Kr]andi € [1, K.

Using thebackward inductiormethod [42], we prove the uniqueness of the Stackelberg-Equi
librium, and derive the unique Stackelberg Equilibriumddhe optimal strategy) for the game

defined in Section 4.3 in the remainder of this section.

4.4.1 Secondary User Utility Maximization

From (4.17), the utility of the secondary user is given by:

Us,(P) = wsfs(Rs,) — CoP;

= wsla(l — B)dirlog(F;/No) + (1 — a) x

dirrlog(Pi/No)| — Co ;. (4.18)
To maximize the utility, the secondary user solves the Yalhg maximization problem.

max Ug,(P;) (4.19)

ngigpmaw

For givena and 3, theUsg, (P;) is a concave function aP,. Settingdggi = 0, we derive the unique

maximizer of (4.19), as

_ ws()é(l — ﬂ)d{] -+ ws(l — a)d]H

p* 4.20
, = (4.20
Since0 <a<1,0< ﬂ <1 andd[[ <drir <2N,we have

P <wgdr/Co < 2wsN/Cy < P, (4.21)
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indicating that theP* given in (4.20) is a feasible solution. It follows that theximaum utility of

the secondary user is
Us, =Ylog (Y/[2CoNo]) , i € [1, K], (4.22)

whereY = wg|a(dr — dyr) — afdrr + dig).

SinceU;i is @ monotone increasing function &f, andd;; < d;;;, it can be verified that
U is a monotone decreasing function®fand 3. Sincea(l — ) > 0 and(1 — «) > 0, Ug,
is a monotone increasing function @f; andd;;;. From a secondary user’s perspective, the best
scenario isx = 0, 8 = 0, and K = 3, i.e., the entire time slot is Phase Ill with the minimum
number of followers. The selected secondary users enjoliitieest data rate. The primary user
can only collect revenue from the three secondary users.i§lsonsistent with our conjectures in
Section 4.3.2. However, that is the best case for the secpndars. From later discussions, we
can see that the primary user, who tries to maximize higytiiay in part but will not completely

set the parameters according to the secondary users’ wills.

4.4.2 Primary User Utility Maximization

Given the optimal strategies of all the secondary users, ubstiute f»(Rp) and P into

(4.16). It follows that

Up(a, 8, K) = wp InfafRp + (1 — B)RY] +

Kwgla(l = B)dr + (1 — a)dpg]. (4.23)
The primary user solves the following problem to maximizeutility.

max Up(a, B, K, P*). (4.24)

G xLVSP 490>
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Maximization of the primary user utility is more complicdteWWe examine the problem for
different parameter ranges and derive the local maximizeach range. The global optimum is
found by comparing the local maximizers. This is similar twdfng the maximum element in a
matrix: we first find the largest element in each column; thencempare these elements from
different columns to find the largest one in the matrix. Withtoss of generality, we assume

wp = wg L. The analysis can be easily extended to the agse: wy.

Case | WhenKr > (2N — 1)

When3 < K < (2N —1) First, let's considefx” € [3,2N — 1]. Up can be rewritten as follows.

Up=wpln {log(SNR) {aﬁNJFO‘(l - LKQ—LH}

+Kws [aa _8) L;—LJ +(1—a) L{Q—]LH | (4.25)

Note thatK andp are dependent variables. Af= 1, there is no Phase Il. We next consider

g =1andg €0,1).

| Case (a)3 = 1| We denote the utility of the primary user & in this case, which is given by

Up = wpIn(aN log(SNR)) + Kws(1 — «) {KQ—]—}\—[J
2N
<wpln(aNlog(SNR)) +ws(l — a)~——r
1+ 7
<wpln(aNlog(SNR)) + ws(l — a)(2N —1). (4.26)

The two equalities hold true wheiki = 2N — 1. We then have the following optimization problem.

max Ub(a,1,2N — 1), (4.27)

0<a<l

1There are some special caseugf andwg. For instancewp = co. Under this condition, to maximize the utility,
the primary user will not lease the spectrum to the secongseys, which is trivial. We focus on the generic case that
wp = wg in this chapter.
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whereU(a, 1,2N — 1) = wpIn(aN log(SNR)) + ws(2N — 1)(1 — «). SinceU} is concave

with respect tax, problem (4.27) can be solved with convex programming [45}.achieves its

1

maximum when = SN

and its maximum is given by

1 N
«*0( _ - - —
Up (2N—1’172N 1) wp In (QN—llOg(SNR)>

+wg(2N — 2). (4.28)

Case (b):5 € [0,1) | Relaxing K to a continuous variable and ignoring the floor functions, we

have

e _ {_ 2(1-8)

oK T (K+228+2(K+2)(1-p)
4Na(1 — ) 2N(1—a)}
(K +2)? (K+1)? [

The first item is irrelevant tar, while the last two items are linear . If for both« = 0 and

a =1, 22 > 0 holds true for any3, then for any0 < o < 1and0 < 8 < 1, 22 > 0.

We prove this conjecture as follows. When= 0,we have:

Up  2Nwp wp 2(1 — )

9K (K+1)2_(K+2)<5K+2)
2pr_wp>w[1_1}

= (K+12 K427 "|K+1 K+2

>0

The first inequality is becauge> 0, such thal%(}(%@ < 1. The second inequality is due to the fact

that2N > (K +1).

Whena = 1, we have

oup  (1-p) 2
K~ Urrgoe [T 5
(1-5)
= meHN—(K-FQ)] > 0.
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The first inequality is due t¢ > 0, such that-=— < 1. The second inequality is due to the fact

5K+2
that2N > (K + 1).

Therefore, if we treat’ as a continuous variable and ignore the floor functidis,is a
monotone increasing function &f. To maximizel/p, we should havél = 2N — 1. Now consider

K as an integer and take the floor functions into account. Wy st®should have( = 2NV — 2

in this case.
If K =2N — 1, denote the utility of primary user in this caselas. SinceLK”J = 0 and
LKHJ = 1, we have:
Up = wpIn(aBNlog(SNR)) + ws(2N — 1)(1 — a). (4.29)

It can be verified thal/}; is an increasing function of for 5 € [0, 1). Thus, we havé/}, < U. It

follows that
Uyt < U, (4.30)

Given (4.30), we no longer need to examine the maximizatidito X = 2N —1 can be discarded
for 5 € [0,1). As a matter of fact, we could see from later discussionihat, s Up(a, 8,2N —
1) < max, g Up(a, 5,2N — 2).

SinceK = 2N — 1 is excluded, we only need to consider< 2N — 2. Rewrite (4.25) as

Up = wpln (Nﬁ+(1_5) LﬂD N

K +2
2N 2N
Kwg {a(l —5) LK——FQJ +(1—a) {K—HH
+wp In(alog(SNR)). (4.31)
Define f1(K) = In(NB + (1 — 8)[5]) and fo(K) = Kla(1 - 8)| 5] + (1 — o) [ Z5]]- We

have the following Lemma fof(K).
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Lemma 2. arg maz gefson—g.f2(K) = 2N — 2.

Proof. For the first item infy(K), we have:

2N 2N AN
K K—" <9N - <2N -2
{K+2J K+2~ K+2~

The equalities hold true only foK* = 2N — 2. For the second item ify(K), if there is no

constraint onk’, K| 0for K >2N — 1. ForK <2N — 1, we have

il =

2N 2N 2N
K| | <K= <aN-— <2N - 1.
LK%—lJ_ K+1°~ K+1°~

The equalities hold true only fak' = 2N — 1. When the constraink’ < 2N — 2 is enforced,

if K =2N -2, K|-2-| = 2N — 2. SinceK| can only be integers, aritiV — 2 is only

K+1 K+1J

1 less thare N — 1, 2N — 2 is the largest number we can have fﬁltK_HJ whenK < 2N — 2.

Since bothK | and K| are maximized ak’ = 2N — 2, f(K) attains its maximum at

K+2J K+1J

K =2N —2. O
Lemma 3. For K’ € (N —2,2N — 2), Up(a, B, K') < Up(a, B,2N — 2).

Proof. For K" € (N — 2,2N — 2), we always hav¢K,+2j = 1. WhenK = 2N — 2, LKHJ =

1. Thus, fi(K') = fi(2N — 2). On the other handk” (2N — 2)| For

(2N— 2)+2J

for N > 2.

K/+2J <
(2N —2)|

K' € (N —2,2N — 2), it can be verified thaf|

K’+1J (2N 2 +1J

We thus havefy(K') < f2(2N — 2). Summing upfi(K) and fo(K), we haveUp(a, 8, K') <
Up(Oé,B,QN—2). ]

The insight from Lemma 3 is that, #V is not divisible byK + 2, this K value is not useful

for the optimization and can be safely discarded. We havéotlaving corollary.
Corollary 1. AssumeN is divisible by(K; +2), (Ko +2), ..., (K, +2),andK; > Ky > ... >

~
K,,foranyK"” € (K3, Ky),...,K"--" € (K,, K,_1), we have:

~
UP(Oé,ﬁ,K”' : '/) < Up(Oé,B,KZ‘_l), Vi=2,...,n. (432)
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According to Corollary 1, to find the value &f that maximized/p, we only need to consider

the K values such thaN is divisible by K + 2.
Lemma 4. If K, = N — 2 is feasible, it follows that/p(«a, 5,2N — 2) > Up(a, 5, N — 2).

Proof. K, = N — 2 s feasible if K, > 3. It follows that N > 5 in this case. Therefore, we have

]| -

It follows that

Up(2N — 2) — Up(N — 2)

- o (¥ran ) 0]

() ]

The inequality is becausép(2N — 2) — Up(N — 2) is a monotone decreasing function @f
Fors =0, Up(2N —2) — Up(N — 2) = wp[2 —In(2)] > 0. Forp € (0,1), definef3(N) =

In({ 51503, and treatV as a continuous variable. We have

Ofs(N) _ f B 8
ON NB+(1—-8) NB+2(1-0)

> 0,

which indicates thaf; (V) is a strictly monotone increasing function®t Since currentlyV > 5,

we havef;(N) > f5(1) = —In(2 — ). That s:
Up(2N —2) — Up(N — 2) > wp|—In(2 — 8) + 2(1 — 3)).

Definef4(8) = —In(2 — 5) + 2(1 — j). Since%Q—gQ4 = ﬁ > 0, f4(B) is a convex function.

The domain{g|3 € (0,1)} is also a convex set. Supposean be equal to6 and1. Solving the
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following problem,

min —1In(2 — 3) +2(1 — f),

0<8<1

we havemingep 1) f1(f8) = 0, and the minimum is achieved at= 1. We conclude thaf,(3) > 0
for 8 € (0,1).

It follows thatUp(«, 8,2N — 2) — Up(a, B, N — 2) > wp[f3(N) +2(1 — )] > wp[f3(1) +
2(1 — B)] > 0. The proof is completed. O

Lemma 5. Considerk, Ko, ..., K,, suchthat N is divisible byK; +2, Ky +2, ..., andK,, +2,

R 2N
and if Xz = 3

s = 4 .25 = N, itfollows thatUp(a, 8,2N — 2) > Up(a, 8, K),

i=1,2,-,n

Proof. For K, we have:

Up(N —2) — Up(k)
- () -
- (33 o)
> wp :ln (]ifvgjz((ll__@)) +2(1— 5)1 > 0.

The first inequality is due to the fact thidl (N — 2) — Up(K;) is @ monotone decreasing function

of a. The second inequality is due Im(]]\\;gig—(g)) > ln(]f,\ij—) for 5 € [0,1), and the last

inequality is proved in Lemma 4. Thus, we have:

Up(2N —2) > Up(N —2) > Up(K;).
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For K5, we have:

Up(Ky) — Up(K>)

o (B2 -]
oo (2 0
o () -]
Repeat the above fdts, - - - , K,,. The proof is completed. [

Theorem 4.1. WhenK > 2N — 1,3 < K < 2N —1and0 < g8 < 1, Up is maximized when

K =2N —2.

Proof. We have shown in Lemma 4 that, K, exists,Up(2N — 2) > Up(K,). We have also
shown in Lemma 5 that, if(;, i = 1,...,n exists,Up(2N — 2) > Up(K;). Also considering

Corollary 1,K = 2N — 2 is the maximizer. O

SubstituteK' = 2N — 2 into (4.31), we have:

Up(2N =2) = wp{ln[(alog(SNR))(Nf + (1 - 5))}

Hwg(2N — 2)(1 — af).

We next divide the range aef into three ranges and examine each of them in the following.

Case (a)ux € [0, ﬁ Denoting the utility of the primary user in this caselds we have

—

g _ o N1
a6~ "NB+(1-p)
N -1 N -1
wp[(N—l)ﬁ+1_ N ]
N -1 N -1

~ wP[(N—l)Jrl N ]:0'

—wg(2N — 2)a

Vv
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The first inequality is becaus‘agljﬁ—% is a monotone decreasing function @f and the second in-

equality is due tg3 < 1. SoUp is a monotone increasing function gf Fora € [0 we

ond
72N 1Y
haveU2 < wpIn[Nalog(SNR)] + ws(2N — 2)(1 — o) < US < U. This case can be safely

discarded.

Case (b)« € [1, 1] | Denoting the utility of the primary user in this caselgs we have

vy N-1
S R () B
N -1

< wp[—(N—l)ﬁ—i—l_(N—l) <0.

The first inequality is becausaéﬁé is a monotone decreasing functioncgfand the second inequal-
ity is due tog > 0. SoUp is a non-increasing function gf. Letting 3 = 0, we have the following

maximization problem.
max Up = wpIn(alog(SNR)) + ws(2N — 2). (4.33)
1<a<1
SinceU3} is now an monotone increasing functionaflettinga = 1, we have

Ur(1,0,2N —2) = wpIn(log(SNR)) + ws(2N — 2). (4.34)

For N > 2, we havelUs* — U; = wp In(#21) > 0. Recall that/;! < U}, as stated previously.

It follows thatU;' < Uj3. The case of{ = 2N — 1 can also be safely discarded.

Case (C)« € (5%, 5) | Denote the utility of the primary user in this caselgs U} is a concave

function of 3. Letting% = 0, we have3 = (50 — 1)3—. Sincea > 4, B < 1. Sincea < 2,

B >0.S083 = (5~ — 1)L is feasible. Substituté into U}, we have

1
Up =wpln <§ log(SNR)> + ws(2N + 2a — 3).
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SinceU} is a monotone increasing function®@f U < wp In(5 log(SNR))+ws(2N —2) <

U < U;3. Therefore, we have the following lemma.

Lemma 6. For K > 2N — 1 and K < 2N — 1, Up achieves its maximum when= 1, g =

0, K = 2N — 2, and the maximum value is given by (4.34).

When K > (2N — 1) ForK > 2N — 1, we always have 225 |=0 and| 25 | = 0. Denote the

utility of the primary user in this case 88, we have

Up = wpIn(NaBlog(SNR)).

Obviously,U? is a monotone increasing function efand 3. So the maximum is achieved when

a=1lands = 1.

Ury> = wpIn(N log(SNR)). (4.35)

Note that under this condition, there is no Phases Il and’ Here is no spectrum leasing and the
transmission rates of all the secondary usergare

ComparingU;’ with U3}, we have

U —Up = —wpIn(N)+wg(2N —2)

> wp[(2N —2) = N] > 0. (4.36)

The first inequality is due tin(xz) < « for x > 0 and the second inequality is due A > 2.
ThereforeU* > U;’. The implication of (4.36) is that leasing spectrum to seleon users is
helpful to maximize the utility of the primary usér

Compared with Lemma 6, we summarize the above analysis as mae® follows.

20ne may note that ifop >> wg, the inequality does not hold. However, as we noted befoesfosus on the
generic case wherep = wg.
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Lemma 7. For K+ > 2N — 1, Up achieves its maximumwhen=1, 5§ =0, K = 2N — 2, and

the maximum o/ is given in (4.34).

Case Il When K = (2N — 2)

It can be readily concluded that the conclusion given inigeet.4.2 still holds. So we finally

have the following theorem.

Theorem 4.2.WhenKr > 2N — 2, Up is maximizedwhea =1, 3 =0, K = 2N — 2, and the

maximum ol/p is given in (4.34).

Note that whenk = 2N — 2, d;; = 1, d;;r = 1. Theorem 4.2 indicates that, when there
are plenty of secondary users, to maximize the primary sisdility, we should selec2N — 2
out of them so that each of the selected secondary user caneixactlyone interference free
channel. Sincee = 1 andj = 0, there is no Phase | and Phase Ill. To maximize the primany use
utility, there’s no need for the primary user to use MIMO sanssion alone. Transmitting data
with distributed interference alignment while collectirgyenue from spectrum leasing is the best

strategy for the primary user.

Case lll When 3 < Ky < (2N — 3)

In this section, we consider the case wiler Kr < 2N — 3. So the number of antennas
must satish2 N — 3 > 3, which indicatesV > 3.

For simplicity, we assume thaiV is divisible by bothK'; +2 and K7 + 1. Thatis| 227

o) and LKTHJ = %o Using similar arguments as in Section 4.4.2, to maxiniize we

should letK = K.

Given the strategies of all the secondary users, the primsey tries to maximize its own

utility by solving the following problem.

max  Up(a, f). (4.37)

G x4, US>
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Plug in K7 and P, we have

Up(a,3) = wpn[aBRL + a(l — B)RY] +
KTUJS[O(<1 — 5)d}] + (1 — Oz)d][[]
= wpln{a[3(Rp — RY) + RY} +

KTwS{oz[(l — ﬁ)d]] — d]]]} + d][[}. (438)

We also assume thatp = wg. To find the maximum, we divide axis into three adjacent

intervals: [0, 5%, [5k, £52] and[2232 1] Note that fork > 3, ;L < £2£2,

Case (@) <a < ﬁ Denote the utility of the primary user &%, we have

ous, RL — RU
— = w — Krwgad
o "BRL+(1—-pRE T
dr —dpr
_ — Krad
wP[ﬁd1+(1 —B)dn TN H]
dr —d
> wp| ! a4 &l — Kradj]
N — 2% 2N
K12
— wp[— K2
we| N TOZKT+2}
Kr
= ’wp[KT o — TOCKT+2] > 0. (439)

where the first inequality is due t0axgc( 1 8d; + (1 — 8)d;; = d;, and the second inequality is
due toor < 5.
Sofor) < a < ﬁ Up(a, ) is @a monotone increasing function 6f That isUp(«, 5) <

Up(a, 1). To maximize the utility, the primary user solves the follog/problem.

max  US(a,1) = wpIn(aRL) + Krws(1 — a)dpy;. (4.40)

1
0<asszy
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Using convex programming, it can be found tlhat achieves its maximum whem = ﬁ And

the maximum value is:

1 RI 2N —1
U;;G(ﬁ,l) = wpln(2N)+KTw5( 2N )d]]]
log(SNR 2N —1
= wp ln(¥) + KTwSK 1 (4.41)
T
Case (b):£LE2 < o < 1|Denote the utility of the primary user &§,, we have
ou} dr —dy
il — Krad
op wP[ﬁdI + (1= B)dir rodsi]
dr —d
< wp| IdH n_ Kradp]
Kr 2N
= —_— — < 0. .
U}p[ 9 KTO[KT+2} _0 (4 42)

where the first inequality is due t0ingcp 1 d; + (1 — 3)d;;r = d;;, and the last inequality is due
toa > Ktz
Thus, for% < a <1, UL(a, B) is a monotone decreasing functiongfwhich indicates

Ub(a, B) < UL(a,0). To maximize the utility, the primary user solves the follog/problem.

max Up(a,0) = wpln(aRY) +

KT+2 <a<l1

KTwS[Oéd[[ + (1 — Oé)d[][]. (443)

Using convex programming, it can be found that achieves its maximum when

_ (Kr+)(Kr+2)

4.44
2NKrp ( )

Notice that, since we assume tha¥ is divisible by bothKr + 1 and K + 2, FrrUErd2) < g

That isa = % < 1. On the other hand(KT;}\;%KT“) > K2 50 (KT;;%;T“) is a
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feasible point. The maximum value is given by:

(Kr +1)(Kr +2)

*7
Up'( QNKT ,0) (4.45)
+1 2N 1
= mllog(SNR) 2T K — ).
wp In[log(SNR) e ]+ TwS(KT 1 KT)

Case (C):5i- sy S a < KT“ Denote the utility of the primary user d&. For any fixeda,

U8 is a concave function with respect o We could maximizd/$ by firstly maximizing it with

respect tos then with respect ta.. We have:

ouUs Rr— Ry
— = - K d 4.46
8,6 wPﬁRI T (1 — 5)311 TWsary ( )
SetaUP = ( results in:
= — 4.47
P Krad;p  dp —dpg ( )
1 1 KQ*N Kr+2 2
+2 =
Sincea 2 v 0 < g T~ vy, ~ e SV A2 e — x; = (- Sothe

value of 3 given by (4.47) is a feasible point. Under this condition,vese:

wp(RL — RY) wp
U = l K drrr —
P we n( KTde[[ ) + TwS{ Hi KTwS

+of(1+ R~ Ry RH)dH drrr]}

log(SNR) 2N
p— 1 ——e _— —
wp In( 5 )+ wp &(KT“‘l) wp
+Krwpdsgg. (448)

79



Kp+2

- the maximum is attained. Plug the

which is monotone increasing function @f Whena =

value of«a into (4.47), we haveg = 0. So the maximum value is given by:

Kr+2
*8 T
log(SNR) Kpr+2
_ ALY, _BrTe
R A Ty ey
—wp + Krwpdr
log(SNR) Kr(4N —1)
= In(———~ _ 4.4
wp In( 5 ) +wp 2Ky +1) (4.49)

It can be readily concluded th&t® < U;®, we only need to compart&;y’ with U, then we

could find the maximum value @fp,. We have:

Kr+1 Kpr+2
*7  77*8 — In(2 T o
2 1 1
= wp[ln(2+—)— = — ]. (4.50)

Ky 2 2(Kp+1)

Denotefs(Kr) = 1n(2KIT(;1) - 25@121). ConsiderK 7 as a continuous variable, we have:

ofs  —(Kr+2)
oKy 2Rp(ky+12 =V (4.51)

So f5( K1) is a monotone decreasing function/éf-, which meangs(Kr) > f5(4+o0). Therefore,

we have:

2 1 1

U*?_U*S — 1 2 = -
PP wrlh+ 1) =5~ 3 m

}

> wp[In(2) — %] = 0.193 > 0. (4.52)

SinceU;" > Uyt andU;" > U2, we readily have the following theorem.

Theorem 4.3.For K7 < 2N — 3, Up achieves its maximum when= W, B=0, K=

K, and the maximum df is given by (4.45).
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It would be still interesting to compare thés” with U> for which there is no spectrum

leasing. We have:

Uyl — U
Kp+ L IN 1
Kr

—wpIn(Nlog(SNR))
Kr+1
Kr

Ky
2N

> wePN
3

> ’LUP[§N — 1 —In(N)]
> wp[%zv )

> 0, (4.53)

= wpIn[log(SNR)

Kr
Kr+1

—1—In(N)]

= wp|ln( )+ 2N —1—In(N)]

where the first inequality is due ta(1 + x) > 0 for x > 0, the second inequality is becauﬁ%
is an monotone increasing function 8%, the thrid inequality is due tth(z) < z for z > 0, and
the last inequality is due t&y > 3.

This indicates that even with an insufficient number of seleoy users, leasing spectrum to

the secondary users is still beneficial for the primary uséndrease its utility.

4.4.3 The Unique Stackelberg Equilibrium

We now summarize the analysis in Sections 4.4.1 and 4.42umlgue Stackelberg Equilib-

rium of the game defined in Section 4.3 is given in the follayviheorem.
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Theorem 4.4. The unique Stackelberg Equilibrium is given by:

(o, 8", K*) =
(1,0,2N — 2), if Kp > 2N — 2
(4.54)
<(KT;1V>§<I;T+2)7O’KT> , if3< Kp <2N -3
P’ = [wsa™(1 — ")d;; + ws(1 — a™)dy ]/ Co, Vi (4.55)

Since we can rewrite (4.55) &% = wg|a(d;; — dyrr) — afdr + dpgr]/Co andd;; > dppy,

P is a monotone decreasing functionconds. On the other hand?; is a monotone increasing
function ofd;; andd,,;, indicating thatP; is a monotone decreasing function/of The secondary
users will adjust their transmitter power in light®f 5 and K. The best scenario for themds= 0,

g =0andK = 3, for which there is only Phase Il with the fewest players.

Knowing the optimal strategies of the secondary users,riheapy user will setv = 1, 5 = 0,
and K = 2N — 2 when there are a sufficient number of secondary users. E&dtestsecondary
user has exactlgneinterference free channel, and there is only Phase Il inithe $lot. In this
case, the primary user can collect as much revenue as posgdiile keeping a relatively low-
rate data transmission. The secondary users’ claim idisdti® part. If there are not as many
secondary users as needed, the primary user will set thenptees carefully according to (4.54).
Under this condition, the primary user selealisthe secondary users, discards Phase |, and makes
a trade-off between Phase Il and Phase Ill according to homyrs@condary users are there in the

system.

4.5 Simulation Study

Simulations are conducted to validate the performance @fpttoposed scheme. We first
compare the proposed scheme with a scheme without spe@asing to demonstrate the benefits
of spectrum leasing. We then compare the proposed scheiméhwitooperative scheme presented

in [47] to demonstrate the efficacy of distributed interfere alignment.

82



|:| Proposed Scheme when K_>=2N-2
- Scheme w/o Spectrum Leasing

20

10

25 5
SNR (dB) 20 o N

Figure 4.2: Utility of the primary user in Log scale.

4.5.1 With or Without Spectrum Leasing

We first consider the case when there is a sufficient numbesafrelary users, i.ef; >
2N — 2, since in many real-world applications there are usuallyarsecondary users than the
number of antennas at each node. In Fig. 4.2, we plot the pyimser utility U}, versus the
number of antennad and SNR. In the simulation, the weight factors are = wg = 0.8. The
noise spectral density 8, = 0.1. The unit price iC, = 0.001. Note that the maximum utility
of the primary user without spectrum leasing is given in %3t can be seen from Fig. 4.2 that
there is a huge gap between the proposed scheme and the sghlibg spectrum leasing. Note
that the utility increase due t8/NV R is less obvious than that due 6, since the impact of VR
is diminished by the logarithms functions in (4.10) and {4.1This clearly indicates that under
the same setting, leasing spectrum to secondary userseattygmprove the primary user utility.
Also note that, from (4.36), the utility of the proposed suoleeis strictly larger than that of no
spectrum leasing, for any feasible valueswgf, V and SNR.

In Fig. 4.3, we examine the impact of weight- on the primary user utility/;;. We plot the
results with or without spectrum leasing, and fér= 2, 4, and6. It can be seen that wheny is

increased, the gap between the proposed scheme and theesgftbout spectrum leasing becomes
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Scheme w/o spectrum leasing, N=2
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100l = Proposed Scheme, N=6 e |
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Figure 4.4: Utility of the primary user wheli < 2N — 3.

larger. Although with increasedp, the primary user emphasizes more on data transmission, the
revenue is still increased at a higher speed with spectrasirig. The gap also becomes larger
when the number of antennas for each node is increased.sldisoi because the revenue increases
faster with spectrum leasing than the no leasing scheméiasncreased.

We then consider the case of an insufficient number of secgndzrs. In the simulation,

there areK; = 3 secondary users. The number of antenna¥ is- 20. We plot the primary
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Figure 4.5: Comparison of the proposed scheme with the catpeischeme.

user utility for the proposed scheme and the no-spectrasing scheme in Fig. 4.4. We find that
there’s also a big gain achieved by the proposed scheme. iFb@nsistent with our previous
discussions. In this case, the primary user should stifdats spectrum to secondary users to

maximize it own utility.

4.5.2 With or Without Distributed Interference Alignment

Next, we compare our proposed scheme with cooperative sehrefd7]. To make fair com-

parisons, replace the satisfaction functign Rp) = m in [47] with fp(Rp) = In(Rp).

+
We firstly derive a upper bound of the utility of the primaneu¢denoted a&'2) in [47] using our

notation. Then we compare our proposed scheme with theedkuipper bound.

ws(l —a)(K —1)
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whereRp = min{afRps, a(l — f)Rsp}, Rps = log(1 + " lesilly Ry — log(1 4 120 4

Zi%i”m}) Rs, —log(1+| ' ), and all theh are channel states. Since

Rp = min{afBRps,a(l — 3)Rsp}
N RpsRsp
Rps + Rsp

)

No
P
< alog(l+ —). (4.57)
No
and
P
Rs, <log(1+ ), (4.58)
No
So we have:

wg(l —a)(K —1)
=)
< wplnfalog(l+ SNR)] +
ws(l —a)(K -1
K

Up = wpln(Rp) +

) log(1 + SNR). (4.59)

Denote fs(a) = Infalog(l + SNR)] + W=D jo0(1 + SNR). For SNR > 3, fg(a) is

maximized atv = (Kfl)logHSNR). Since we consider high SNR region, the conditioibof R >

3 is easily satisfied. Plug ifi, we have:

U < wpIn( )+ wS[K —1 log(14+ SNR) — 1], (4.60)

K—-1

that means the utility of the cooperative scheme is uppendied byw » In(L= ) +ws[E=L log(1+

SNR) - 1].
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Figure 4.6: Aggregated SU utility comparison of the progbseheme with the cooperative
scheme.

In Fig. 4.5, we plot the simulation results for the proposeldesne, the cooperative scheme,
and the no-spectrum-leasing scheme. Since in [47], alliinggpy user and the secondary users are
equipped with single antenna, to make fair comparison, ve@sf/<, number of secondary users
selected as the variable in the simulation. In the simutatisince the number of antennas must
satisfy[lg—fQJ > 1, as the number ok varies, we sefV = [£+2]. So we are actually comparing
the lower bound of our proposed scheme with the upper bourtdbeotooperative scheme. It
can be seen from Fig. 4.5 that both spectrum leasing schaumtgsrtorm the no-spectrum-leasing
scheme. Furthermore, the proposed scheme outperformgdperative scheme with considerable
gains. Such gains justify the efficacy of distributed irgeghce alignment, which greatly enhance
the overall system capacity.

Finally, we compare our proposed scheme with the cooperatiheme in [47] in terms of
aggregate secondary user utility and average secondary uislity. We firstly derive an upper
bound of the secondary users’ utility in [47], then compate the secondary users’ utility in our
proposed scheme with the identical number of selected sacpuisers and identical transmission

power. Note that, under the scenario of no spectrum leatiegsecondary users utility is always

0. Thus, we do not include it in the comparison.
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Figure 4.7: Average SU utility comparison of the proposdtesee with the cooperative scheme.

From Theorem 4.4, we obtain the maximum utility for each seleoy user as:

Ug,Average,l = ’LUSlOg( )7 (461)

Wg
2CON0

and the aggregate maximum utility for all the secondary aser

x Ws
U&Aggregate,l = nglog( 2C, N, )7 (462)
The utility for each secondary user in [47] is given by:
1— R,
max u;(¢;) = max{ ws(l — a)eilly it (4.63)
Cq Ci Zj Cj

whereR; = log(1+ %) Since we assume perfect channel and consider high \NR,R =

log ().

88



The maximum is achieved at:

¢ = ws(1 - a)(K U (4.64)
DenoteX; = (K — 1)[23 ol K;]/(Z] 7 2-)2, we haver; = wg(1 — a)X;. The maximum

aggregate secondary user utility denoted’as, ... .+ - iS derived as follows.

* — .
US,Aggregate,Q - § U; (C
i

= ws(l —a)

>, XiR; XR ZX]
e

> Xili
X

IA

< Wg

Ps
No) (4.65)

Q

wgR = wg log(

where the first inequality is due tb< a < 1 and second inequality is due 16 > 0.

Using P from Theorem 4.4, we have:

* Wgs
US,AggTegatej = wslog( CONO )7 (466)
and
i log(—2-) < “Elog(—2 (4.67)

Ug,Average,Q = 7[09( COND) = ?lOg( CONO )7

where the inequality is due t& > 3.
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It can be readily seen from Fig. 4.6 and Fig. 4.7 that, the gsed scheme outperform the
cooperative scheme, no matter from the perspective of esxdndary user or the whole group of

secondary user.

4.6 Related Work

This chapter is closely related to the research on CR netwéidisa general survey of CRs,
interested readers are referred to [2]. In a CR network, timeguy user is either aware or unaware
of the existence of the secondary users. This chapter fatighe first category. The primary user
is not only aware of the existence of the secondary user,|otkaows the impact of the rules on
the secondary user behavior. Most of the previous work, sasdd7,49-51, 54], only considered
the single antenna case, while we consider multiple anteand exploit multiplexing gain in this
chapter.

This chapter is also related to the research on interferaigement. In [19], the authors in-
troduced the interference alignment technique. The s@amtie of their work is that, by adopting
interference alignment, the system is no longer interig@dimited. With symbol extension, the
system could achieve a normalized DoF/of2. Another important issue, the feasibility condi-
tion, was investigated in [20] for structureless genericel@ss channels. For wireless channels
with a structure, such as diagonal channels, our recent@hp8] investigated the application
of interference alignment in multi-user OFDM networks. Tdeess the concern on the global
CSI requirement, a distributed interference alignmentritlym was proposed in [41], which only
requires local CSlI. In [33], interference alignment and edlation were integrated to achieve en-
hance the throughput of MIMO Wi-Fi networks. In [32], Li et giroposed a general algorithm
for the multi-hop mesh networks. This work was motivatedhmse interesting papers. However,
many of the related work mainly focused on physical layeuass This chapter considers how to
adopt distributed interference alignment in a MIMO CR netwaith a novel Stackelberg game

based approach.
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Recent work [52] and [53] considered incorporating IA in citiga radio networks. However,
they do not take the fact that the primary user has finite ppekéo send into consideration. This
chapter mainly considers how to use interference aligninehe network and has taken the finite

demand of primary users into consideration.

4.7 Conclusions

In this chapter, we investigated the behaviors of the piymeer and secondary users in a
MIMO CR network. We proposed a three-phase cooperative pedeasing scheme with dis-
tributed interference alignment. The system was modeled@tackelberg game. With backward
induction, we derived the unique Stackelberg equilibriubhrough rigorous analysis, we found
the best strategies for the primary user and secondary usdes a broad range of conditions and
parameters, and discussed practical implications. Wealswl that leasing spectrum to secondary
users is always helpful for enhancing the primary userntuti®imulation results demonstrated that
the proposed scheme outperformed a no-spectrum-leasiegiecand a cooperative scheme from

prior work.
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Chapter 5
User Grouping for Massive MIMO in FDD Systems: New Design Mets and Analysis

5.1 Introduction

Last decades have witnessed ever-increasing demand fogrtdgta rates. To cater for this
demand, many advanced physical layer techniques have beeloged, e.g., multiple input multi-
ple output with orthogonal frequency division multiplegiMIMO-OFDM). However, with linear
throughput improvement but the exponential growth on the ttaffic, the gap between the de-
mand and supply has widen more and more. To solve the issueeitt technology we could resort
to is massive MIMO, (or called large-scale MIMO, full-dimgan MIMO, hyper MIMO, we will
use these terms interchangeably hereafter) which significencreases the system throughput by
employing a large number of transmit antennas at the baserstaAs an emerging and promis-
ing technology, besides the throughput enhancement -targie MIMO also enjoys advantages of
low-power, robust transmissions, simplified transceiaad simple multiple-access layer [58, 59].
Recently, lab demo systems have demonstrated the benefismogissive MIMO systems [60,61].

In general, equipped with more transmit antennas, moreedsgof freedom the massive
MIMO system could provide, resulting in better reliabiliby higher throughput. So we expect
the massive MIMO system to boost up the system throughpuotetnelously by simultaneously
serving many users. However, due to the difficulties of awggichannel state information at the
transmitter side (CSIT), it is challenging to simultaneguslpport a large number of users [59].
Most of the existing works on large scale MIMO systems cossitine-division-duplexing (TDD)
mode [62—-64], since by exploiting the channel reciproaityhie TDD system, the downlink chan-
nel can be estimated from the uplink training. However, tegdency-division-duplexing (FDD)
system does not have such privilege. Pilot based channelagsin and uplink channel feedback

are required, which consumes lots of spectrum resources.

92



According to [65], there are much more FDD LTE licenses300) than TDD K 40) ones
worldwide. With so many FDD deployments worldwide, it is &gt significance to investigate
the large-scale MIMO design for FDD systems. Recently, astage precoding scheme has been
proposed in [66] to reduce pilot resources and the chanat# gtformation (CSI) feedback in
FDD systems. Firstly, the users in service are put into gsouiph each group of users having
similar second-order channel statistics, i.e., transwonitetation. The same pre-beamforming, or
the first-stage precoding, is then used for each group o&wssami-statically. Then, with reduced
dimensions on the effective channel, simple channel feddban be realized and the second-
stage dynamic precoding can be applied. Therefore, onertargdssue for such system design
is user grouping. In [67], a K-means clustering using chiodikiance as the clustering metric is
introduced for the user grouping. In this chapter, instdadhordal distance, we propose three sim-
ilarity measures as the grouping metric, namefgighted likelihood similarity measuyrsubspace
projection based similarity measyrandFubini-Study based similarity measui&/e also propose
two clustering methods i.énierarchical clusteringnethod and-medoids clusteringnethod, for
user grouping. Through theoretical analysis and simulatiove show that the weighted likelihood
similarity measure and hierarchical clustering could eehihigher throughput.

Given user grouping, another important issue is user sdinggue., selecting users for trans-
mission based on instantaneous channel condition. We peaggdynamic user scheduling method
and derive a lower bound for its performance. If there arg anfew active users, some groups
may barely have users while some other groups are overloddeztefore, we also consider the
load balancing problem and present an effective algorithsotve it.

The remainder of this chapter is organized as follows. Inti8ed.2, related works are
discussed. In Section 5.3, we present the system model and peeliminaries. We discuss
the user grouping and user scheduling problem in Sectioatd4Section 5.5, respectively. The
scheme for user grouping considering group load balansipggsented in Section 5.6. Simulation

studies are presented in Section 5.7. And Section 5.8 coeslihis chapter.
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5.2 Related Works

As aforementioned, most of the existing works on massive Mifdcus on TDD systems. Al-
though TDD has the advantage of exploiting the channel recity, pilot contamination remains
the biggest problem for TDD systems [58] [59] [62].

For FDD systems, the system bottleneck lies in the cost afieiog CSIT. Broadly speaking
there are two types of transmission modes: open-loop arse dwp, representing the system
without and with feedback, respectively. This chaptesfaito the latter category.

Assuming that the base station and the users share a cominointisening signals before-
hand, both open-loop and close-loop training frameworkspaoposed in [69]. In the open-loop
mode, the base station transmits the training signal in adgabin manner, so that the receivers
could estimate current channel using spatial or temporaéions and previous channel estima-
tions. In the close-loop mode, users select the best tiasignal based on previously received
signals and send back the index of these training signaletbdse station. During the next phase,
the base station sends the training signals according tie#aack of previous phases.

In [70] the feedback rate has been taken into considera8orte for fixed feedback rate per
antenna, channel quantization grew exponentially withniln@ber of transmit antennas, a nonco-
herent trellis-coded quantization is proposed with coxiplegrowing linearly with the number of
antennas.

Pilot pattern design for channel estimation is considendd@1]. Presuming wireless channel
to be a stationary Gauss-Markov random process, pilotipaeghen designed based on Kalman
filtering, spatial and temporal channel correlations. Bhswn that the proposed scheme has low
complexity but better performance, especially for the ang-channel model.

A codebook design method is presented in [72] with limiteebdremely low feedback, which
could be considered as a open-loop approach. The compres=nsing technique is proposed
in [73] to reduce the training and feedback overhead for C8fusition. Due to the hidden joint
sparsity structure of massive MIMO system, a distributeshp@essive CSIT estimation scheme

is proposed. The advantage of the proposed scheme is tharessed measurements are taken
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locally at users, while CSIT recovery is performed at the Is¢éeon jointly. The proposed scheme
has been shown to outperform five other algorithms in ternrmoohalized mean absolute error for
CSIT recovery and have close performance to a so-called-géseel scheme.

Similar to [66,67], Chen and Lau [74] decomposed the overatt@der into an outer precoder
and inner precoder, where outer precoder suppresses éneealit or inter-cluster interference and
inner precoder is used for intra-cluster multiplexing. Twomtribution of [74] is that it reduces
the complexity of calculating outer precoder fr@i1/3) to O(M?), and it is an online algorithm
which is suitable for time-varying channels.

We safely conclude that those papers have not consideradséregrouping and scheduling
problems in massive MIMO systems. Based on the framework @f [@ur recent work in [68]
proposes an improved K-means clustering scheme and a dynaer selection scheme. Another
problem considered in [68] is the load balancing problemictvirs also addressed in [75]. How-
ever, the system considered in [75] is in the TDD mode.

In summary, the contribution of this chapter on massive MIM®GDD systems over [67,68]
lies in three aspects: new user grouping schemes with newpong metric, new user scheduling

schemes, and efficient load balancing design.

5.3 System Model and Preliminaries

We consider a downlink system witlf antennas at base station (BS) and single antenna at
each user terminal (UT). The transmit antennas can hawereliff geometries, e.g., being placed
along one axis to form uniform linear array (ULA), along actérto form uniform circular array
(UCA), or in two or three dimensions. Denajg as the received signal at userk = 1, ..., K.

The signals received by all UTiscan be written as

y = HVd + z, (5.1)
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where (-)# denotes the Hermitian of a matri¥{, of dimensionM x K, is the actual channel
between the BS and the use¥sjs the precoding matrix of dimensia” x S; d is the data vector
of dimensionS; andz is the zero mean circulant symmetric complex Gaussian veiser. Note
that throughout this chapter, we use bold upper (lower) =t to denote a matrix (vector), and
normal letter to denote a scalar.

Based on the two-stage precoding approach in [66], the pmegasl formed as a multipli-
cation of two precoding matrices, i.&V; = BP. The first partB of dimensionM x b is pre-
beamforming matrix, which is designed based on the secael @hannel statistics, or particu-
larly, the transmit spatial correlation. The same pre-ldeaming matrix is semi-statically applied
to the users with the same or similar transmit correlationictv forms a user group. Therefore,
pre-beamforming matrix is designed to suppress the imaré®s among the groups. We can see
that the effective transmit size after the pre-beamfornmsng which is determined by dominant
eigenmodes of the average transmit correlation of usermgrolihe second paR of dimension
b x S, is designed to suppress the interferences within eactpgrithh dynamical channel condi-
tion. To find P, we can just apply conventional zero-forcing beamformifiggF) or regularized
zero-forcing beamforming (RZFBF). Note that we have< b as the second-stage precoding is
supposed to suppress the interference within the group.

DenoteH = B H as the effective channel after pre-beamforming. The sigwalel in (5.1)
can be rewritten as

y =H"BPd + z=H"Pd + z. (5.2)

We adopt the one-ring channel model in [66, 68], in whidk the azimuth angle of the user
location,s is the distance between the BS and the usirthe radius of the scattering ring, aid

is the angle spread, which can be approximated as

A = arctan(r/s). (5.3)
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DenoteR as the channel covariance matrix of the transmitter with(thgp)-th entry given by
L% (@) amu)
[R]mJ, = E . € P dOé, (54)

wherek(o) = —2(cos(a),sin())” is the vector for a planar wave impinging with Angle of
Arrival (AoA) «, A is the carrier wavelengthy,, andu, are the position vectors of antenna

p, and(-)T denotes the transpose operation. It can be verifiedRhit a normal matrix. With
eigen-decomposition, we have

R = UAU”, (5.5)

whereU is a unitary matrix comprising eigenvectorskfandA is a diagonal matrix with eigenval-
ues ofR as the diagonal entries. Furthermore, the actual changehisrated using the following
model

h=UA2w, (5.6)

wherew is a vector of complex random variables amd~ CN (0, 1).

DenoteG as the number of groups. We then h#llg= [h,,, ... ,thg], H=[H,,...,Hg],
B = [By,...,Bg], andf{g = Bng. The signal vector received by theth group of users is
then given by

v, =HIP,d, + Y HIB,P,dy+2z,9=1,....G. (5.7)
g'#9

From (5.7) we can see that the desigmfis to achieve
HI'B, ~0,Vg #g. (5.8)

Generally speaking, there are three different approachedbtaining B,, namely Eigen-

beamformingApproximate Block Diagonalization (BRNdDFT Matrix Approximation
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1) Eigen-beamforminglf the locations of all group members in a group are closeasgime

they have similar transmit correlations. We can dedigras
B,=V,, (5.9)

whereV, is the unitary matrix after eigen-decomposiRg, which is the average of the transmit
correlation matrices of users within the growpnd can be viewed as the group center.
2) Approximate Block Diagonalization (BDJFirstly, find the group center for all groups
{R,}. Then we form
2, =[V1,..., V1, Vyri,..., Val. (5.10)

Perform Singular Value Decompostion (SVD)& to obtain[Egl), Ego)], such that Spa(lEgo)) =
Spart ({V, : ¢ # g}). Find
R, = (E")"U,A,UIE(. (5.11)

And perform SVD taR,, such that
R, = G,®,G. (5.12)

Let G, =[G, G{”], whereG!" containsh, dominant eigenmodes at,. Finally, B, can be
obtained as

B, = EOGW. (5.13)

3) DFT Matrix Approximation For large scale MIMO systems with ULA antennas, we have

1
lim — [UU" —FsFY|" = 0, (5.14)

M—o0

e—J2mab/M

VM
Thus, we can select certain columns of a DFT matrix to appnaie the prebeamforming matrix.

whereF g is a submatrix of unitary DFT matrix whose, b)-th entry is given byF], , =
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Figure 5.1: User grouping Scenario.

For the second stage precoding, we apply conventionalfpecoig beamforming (ZFBF) or

regularized zero-forcing beamforming (RZFBF). The precgdiratrix is given by

P, =HMH"H + S,als,) ", (5.15)

2295
ng by

the g-th group andg is the total transmit power of the BS.

wherea can be set as = 0 for ZFBF ora =

for RZFBF, S, is number of data streams in

5.4 User Grouping in Massive MIMO System

In order to suppress the inter-group interferences, thiegan@forming matrixB,, for groupg
shall be carefully designed based on all the group ceiRgrg = 1,...,G. Note that the group
center can be obtained by averaging the subspace of all thgp gnembers or assigning one of
the group members to be the group center. User grouping atsortpacts on the user scheduling,
since for each prebeamforming group, only the users witkigroup can be scheduled. Therefore

it is important to design an effective user grouping method.
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The idea of user grouping is illustrated in Fig. 5.1. The bigrgle in the middle represents
the massive MIMO base station. Other markers except theness represent users. Users from
different groups are differentiated by different markensl @olors. The red cross is the virtual
group center. The dashed lines indicate the connectiomsbatusers and group centers.

For user grouping, we first need to obtain the similaritiesdfstances) among the users and
groups, and then group users based on a certain metric. Bacgnouping scheme consists of two
parts, the similarity measure and clustering method. Is gliction, we first review the K-means
clustering method and the chordal distance as similaritgsuee presented in [67,68]. Then we
propose new clustering methods and similarity measurdseagrouping metric.

Most of the clustering schemes in the literature only hamalégrix dataset, i.e., the whole
dataset is a matrix. However, for our case here, each dataisrg matrix. The whole dataset is
comprised of a large number of matrices. Thus, one of ouritanions is to form efficient low-
complexity grouping methods for datasets with many madriédso note that different clustering

methods and similarity measures can be combined in variays.w

5.4.1 K-means User Grouping and Chordal Distance

In [67], a K-means clustering algorithm for user grouping is preseniée similarity mea-
sure of the/\-means clustering algorithm to group users is the chordéhdce between the eigen-

vectorsU,, of user’s channel correlatidR,, and that of the group cent&,, given as
d.(U},, V,) = |U, U — v, VE|" (5.16)

whereUy, is the matrix of the eigen vectors &, i.e., Ry = U,A, UY. User grouping is then
formed via an iterative process. In each iteration, eachigsessigned to the group with minimum

distance. Then the group center i