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Abstract

In the past decade, with the prevalence of smart phones, the main use of cellphones has been

shifted from phone call to multimedia access. This paradigmshift has resulted in the demand for

higher and higher transmission rate. Many sophisticated physical layer techniques, such as IDMA

(interleave division multiple access), OFDM (orthogonal division multiple access), MIMO (multi-

ple input multiple output), IA (interference alignment) and massive MIMO) have been proposed to

cater for this demand. Meanwhile, cognitive radio networksand femtocell networks are proposed

to strengthen the cellular networks.

Given these new exciting techniques, how to incorporate them into current wireless networks

is one of the main issues need to be addressed. Moreover, taking a close look at these techniques,

how to manage interference so that the throughput can be enhanced is one of the most important

problems.

The first part of this dissertation investigates how to incorporate IDMA into two-tier femtocell

networks so that the throughput of femtocell networks can beenhanced. Based on the computa-

tional capability of the femtocells, three schemes are proposed for the femtocell networks.

The second part of this dissertation addresses the problem of incorporating interference align-

ment to OFDM and MIMO-OFDM system. We firstly prove the upper bound of the throughput

with an integer programming formulation. Then consideringpractical constraints of the (MIMO)

OFDM system, effective algorithms are proposed to approachthe theoretical bounds.

In the third part of this dissertation, how will the primary user and secondary users equipped

with multiple antennas behave in cognitive radio networks is studied. With a Stackelberg game for-

mulation, we derive the unique Stackelberg game equilibrium for the primary user and secondary

users. The proposed scheme is also shown to outperform the non-spectrum-leasing scheme and a

cooperative scheme in the literature.
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In the fourth part the this dissertation, the problem of incorporating massive MIMO to FDD

system is addressed. To reduce the cost of acquiring channelstate information, two-stage pre-

coding was proposed. The problems of user grouping and user scheduling thus arise. Three user

grouping schemes and a greedy user scheduling scheme are proposed and validated. The prob-

lem of load balancing when the number of user is small is studied as well. Effective algorithm is

proposed to solve this load balancing problem.

In summary, this dissertation aims to enhance the throughput of current or future wireless

systems by managing interferences among different data streams or different users or different

base stations. In-depth analysis and comprehensive results are also provided. Some of the findings

may shed light on how to put emerging techniques into real applications.
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Chapter 1

Introduction

The past decade has witnessed drastic increase of wireless data traffic, largely due to the so-

called “smart phone revolution.” As wireless data traffic isexplosively increasing, the capacity

of existing and future wireless networks will be greatly stressed. Many advanced physical layer

techniques have been designed and proposed such as IDMA (interleave division multiple access),

OFDM (orthogonal division multiple access), MIMO (multiple input multiple output), IA (inter-

ference alignment) and massive MIMO.

IDMA is essentially a multiple access scheme. Different from conventional TDMA (time

division multiple access) and FDMA (frequency division multiple access), IDMA uses different

interleaver to distinguish different users so that time andfrequency can be multiplexed. OFDM

divides the frequency band into small pieces of sub-bands, to combat the multi-path effect of the

time disperse wireless channel so that the system throughput can be enhanced. The key idea of

MIMO is to support multiple data streams while suppressing the interferences among different

streams. Interference alignment manages interference in adifferent perspective. It suppresses the

interferences into half of the signal space (or time, or frequency, et al.) of the receiver and keeps

the other half free from interference. The base station of massive MIMO system is equipped with

hundreds or even thousands of antennas. Users can be distinguished by their spatial locations.

With that many antennas, the system throughput can be roaringly boosted. We can see that the key

ideas of these transmission techniques to enhance system throughput is to support multiple data

streams while keeping interferences under control.

Meanwhile, due to the tremendous increase in wireless data,radio spectrum is quickly de-

pleted. However, according to the FCC report [1], while some licensed bands are overcrowded,

many others are underutilized. Under traditional fixed spectrum allocation policy, when licensed
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users (or,primary users) are not active, the channels assigned to them are wasted (termed asspec-

trum opportunities). Cognitive radio networks (CRN) are proposed as a new wirelessparadigm for

exploiting such spectrum opportunities, to enable flexibleand efficient access to radio spectrum. In

CRN, unlicensed users (or,secondary users) are allowed to access the licensed band opportunisti-

cally, while primary users gain by collecting revenue for spectrum leasing. Such a CR (cognitive

radio) paradigm has been shown to have high potentials to enhance spectrum efficiency [2].

Moreover, femtocell, which is also called home base station, has also been proposed. Femto-

cell typically serves as an access point for use in home or small business. It is usually installed by

wireless users for backhauling data to the service providerthrough a broadband gateway such as

digital subscriber line (DSL), cable, et al. The most prominent feature of femtocell is that the trans-

mission distances between wireless network infrastructure and users are greatly reduced, compared

with that in traditional cellular networks. This brings about many benefits such as enhanced link

quality, better signal to interference noise ratio (SINR), improved cellular capacity, and greatly

reduced transmission power, among others.

A huge amount of wireless access networks/base stations (BS)or Femtocell base stations

(FBS) are deployed every year to accommodate the compelling need for more capacity. Given

the increasing wireless data volume, the increasingly crowded BS deployment and the potential

interferences from the Secondary Users (SU) in CRN, interferences are becoming the major factor

that limits wireless network performance.

To study the interference and throughput issues of cellularor cognitive radio networks so that

the system throughput and the user experience can be enhanced are the main motivation of this

dissertation.

Main contributions of this dissertation are summarized as follows.

• Taking the computational capabilities of femtocell into consideration, this dissertation stud-

ies how to apply IDMA to two-tier femtocell networks so that all kinds of interference are

under well control. Three effective schemes are proposed toenhance the system throughput.

2



• Most of the existing works of interference alignment focus on structureless wireless chan-

nel. However, wireless channel with structure such as diagonal channel is very important.

This dissertation considers the problem of applying interference alignment to OFDM and

MIMO-OFDM system. Performance bounds for the multi-user (MIMO) OFDM system

with interference alignment are derived. Efficient algorithms are proposed to approach these

bounds for OFDM and MIMO-OFDM system.

• In future wireless systems, all the base stations and users will be equipped with multiple an-

tennas. With the development of MIMO and distributed interference alignment, how will the

primary users and secondary users behave is of great importance. By modeling the behaviors

of the primary user and secondary users using Stackelberg game theory, this dissertation de-

rives the unique Stackelberg Equilibrium and shows that theproposed scheme outperforms

the non-spectrum leasing scheme and a cooperative scheme inthe literature.

• To ultimately boost the system throughput, massive MIMO system would be adopted in

the near future, where many antennas are deployed at the basestation. Existing researches

mainly focus on the TDD (Time Division Duplex) system due to the advantage of exploiting

channel reciprocity. However, there are much more FDD (Frequency Division Duplex) sys-

tems deployed worldwide. This dissertation considers how to reduce the channel estimation

overhead and proposes effective schemes for enhancing system throughput. The problem

of load balancing in massive MIMO system is also investigated. An effective algorithm to

solve the optimization problem is proposed and validated.

• Besides massive MIMO system, in the future wireless systems,small cells such as femtocell

or picocell will be densely deployed. To investigate the user association problem in such

heterogeneous networks is of great importance for system throughput enhancement. From

the centralized and distributed perspective, this dissertation investigates how to obtain the

optimal user association scheme under different scenarios.
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Chapter 2

Applying IDMA to Two-Tier Femtocell Networks: the Uplink Case

2.1 Introduction

A recent study [3] shows that more than 50% of the voice trafficand more than 70% of the

data traffic are generated by indoor users. Considerable research efforts from both industry and

academia have been made to meet such compelling demands and provide satisfactory services to

end users. A number of novel technologies and network structures have been proposed, among

which femtocell is particularly a highly promising one under this context.

A femtocell is a user installed small base station at homes orsmall businesses, which are

connected to the service provider via broadband wireline connections. Licensed users of femtocell

could access the wireless network via the femtocell base station (FBS) directly, other than through

the remote cellular base station (BS). In this way, the distance between femtocell users and the core

wireless network is greatly reduced, which brings about numerous benefits including extended

cell coverage, reduced transmission, enhanced capacity, and reduced energy consumption, etc.

Although some of these benefits could be achieved by deploying more BS’s, deploying FBS is a

much more economical choice, especially for indoor users.

One of the technical challenges stands in the way of harvesting the envisioned benefits of

femtocells is how to manage all kinds of interferences [3] infemtocell networks. Here we consider

the uplink of a two-tier femtocell network consisting of onemacro base station (MBS) and multiple

FBS’s. An authorized user can connect to either the MBS (i.e., as a macrocell user) or a close-by

FBS (i.e, as a femtocell user). For the uplink in such a two-tier femtocell network, five types of

interference may exist.

1. A femtocell user’s signal may be interfered by a macrocelluser’s signal in the vicinity.
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2. The femtocell user’s signal may cause interference to themacrocell user’s signal when it is

close to the MBS.

3. A femtocell user’s signal in one femtocell may interfere the signals in neighboring femto-

cells.

4. Signals within a femtocell may interfere with each other due to multipath propagation or

carrier frequency offset.

5. Signals within a macrocell may interfere with each other due to multipath propagation or

carrier frequency offset.

The first two types of interference can be classified as cross-tier interference [4], while the last

three types of interference can be classified as intra-tier interference.

Existing researches for interference management in femtocell networks include [4–9]. Most

of these works focus on the cross-tier interference. Here weaddress the interference management

problem of femtocell from a multi-access and iterative multi-user detection perspective. In partic-

ular, we propose to adopt IDMA [10] for the uplink transmission of two-tier femtocell networks.

The main feature of IDMA is that it distinguishes users by assigning different interleavers to each

of them. So with IDMA, in the uplink, each user employs a unique interleaver to interleave its data

before transmission. The base stations receives the mixed signal from all the users and then uses

an iterative decoding and interference cancellation technique to separate and decode the signals

(more details in section 2.2.2).

Since for IDMA, most of the signal processing is conducted atthe receiver, the requirement of

the transmitter computational capability is very loose. Thus, the transmitter can be easily designed.

Moreover, IDMA is highly suitable for the uplink of the two-tier femtocell network, in which the

BS (with comparatively high computational capability) performs most of the computations and

users are thus relieved from this burden. Compared with traditional multiple access techniques

such as TDMA and FDMA, IDMA does not require precise time synchronization or frequency

calibration among the users [10]. Therefore the design of user device can be further simplified.
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IDMA also allows concurrent transmissions of multiple users, and does not require the use of

guard times to deal with different propagation delays of users. Therefore, higher utilization of

wireless resources can be achieved. Compared with code division multiple access (CDMA), IDMA

represents a new form of orthogonality that can be integrated with CDMA. For example, users can

be divided into groups, each sharing a CDMA spreading sequence; users within the same group are

then distinguished with unique interleavers. Thus the network capacity can be greatly enhanced.

In this chapter, we discuss how to adopt IDMA for the uplink oftwo-tier femtocell networks,

as motivated by the above observations. In particular, we propose three IDMA-based schemes: (i)

Femtocell Decode, where each FBS decodes the signals locallyfor the users within its coverage;

(ii) Femtocell Forward, where the FBS’s forward the receivedsignals to the MBS, which then

decodes the signals for all users; and (iii) Femtocell Select, where the FBS performs local decoding

if the number of users it serves does not exceed a threshold, and forwards received signals to the

MBS otherwise. We evaluate the performance of the proposed schemes, and compare them with

conventional TDMA and IDMA without the use of femtocells in simulations. We focus on the case

where all the users share a common spreading sequence (sincethe advantage of integrating IDMA

with CDMA is obvious). Our simulation study shows that the proposed IDMA-based schemes can

achieve considerable throughput gains over traditional schemes and are highly suited for the uplink

of two-tier femtocell networks.

The remainder of this chapter is organized as follows. Section 2.2 describes the background of

femtocell and the general principle of IDMA. We examine the use of IDMA in femtocell networks

and propose three schemes in Section 2.3. The proposed schemes are evaluated in Section 2.4. We

review related work in Section 2.5 and Section 2.6 concludesthe chapter.

2.2 Background and Preliminaries

2.2.1 Femtocell Networks

A femtocell, also called home base station, typically serves as an access point for use in home

or small business. It is usually installed by wireless usersfor backhauling data to the service
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provider through a broadband gateway such as digital subscriber line (DSL), cable, et al. The

most prominent feature of femtocell is that the transmission distances between wireless network

infrastructure and users are greatly reduced, compared with that in traditional cellular networks.

This brings about many benefits such as enhanced link quality, better signal to interference noise

ratio (SINR), improved cellular capacity, and greatly reduced transmission power, among others.

Despite of these envisioned advantages, there are many technical challenges need to be ad-

dressed, such as interference management and mitigation [3, 6]. For the uplink case, convention-

ally, Time Division Multiple Access (TDMA) or Frequency Division Multiple Access (FDMA)

are used to coordinate the transmissions of users. Under thepresence of multipath propagation or

carrier frequency offset, however, both intra-tier and cross-tier interferences exist. Moreover, by

using TDMA or FDMA, the precious time and frequency resources may not be fully exploited,

since only one user can transmit at a time or within a frequency band, and due to the use of guard

times or guard bands. Given these facts, it is natural to think about better ways for interference

mitigation in femtocell networks that can make more efficient use of wireless network resources.

We consider IDMA as one of such options in this chapter.

2.2.2 Interleave Division Multiple Access

The essence of IDMA is to distinguish signals from differentusers according to their unique

interleavers. IDMA represents a new form of orthogonality,such that multiple users can transmit

in the same time slot using the same frequency band. The transmitter and receiver architecture of

IDMA are shown in Fig. 2.1 [11]. We briefly review the operation of IDMA in this section.

For the uplink case, assume that there areK users in a cell. The signals of each user, i.e.,

d1, d2, · · · , dK , are coded, interleaved and then transmitted simultaneously to the BS. In IDMA,

each user employs a unique interleaver. Therefore, the users can transmit signals simultaneously,

occupy the same portion of spectrum, and employ the same coding scheme, in which ways the

traditional resources can be better utilized.
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Figure 2.1: The transmitter and receiver architecture of IDMA.

At the BS, the received signal is the superposition of the signals from all the users. The

BS then performs an iterative bit by bit decoding, as shown in Fig. 2.1. To simplify discussion,

synchronous BPSK system is considered. The channel is assumed to be time-invariant with only

one path. However, it is shown in [10] that the decoding algorithm can be extended to more

general cases, such as asynchronous system with high order constellation, or time-variant multi-

path channels.

At the BS, thei-th received signalr(i) is:

r(i) =
K∑

k=1

hkxk(i) + n(i), i = 1, 2, · · · , L, (2.1)

wherehk is the channel gain of thek-th user,xk(i) is thei-th transmitted signal from thek-th user,

n(i) is the zero mean additive white Gaussian noise with varianceσ2, andL is the coded length.

It is also assumed that the channel state information is known at the BS through some channel

estimation techniques. To examine the signal from thek-th user, we can rewrite (2.1) as:

r(i) = hkxk(i) + ξk(i), i = 1, 2, · · · , L. (2.2)
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In (2.2), ξk(i) represents the interference plus noise with respect to the signal of thek-th user,

which can be written as:

ξ(i) =
K∑

k′=1,k′ 6=k

hk′xk′(i) + n(i), i = 1, 2, · · · , L, (2.3)

or

ξ(i) = r(i)− hkxk(i), i = 1, 2, · · · , L. (2.4)

According to the Central Limit Theorem,ξk(i) in (2.3) can be approximated by a Gaussian

random variable whenK is sufficiently large, with mean

E(ξ(i)) = E(r(i))− hkE(xk(i)), i = 1, 2, · · · , L, (2.5)

and variance

Var(ξ(i)) = Var(r(i))− |hk|2Var(xk(i)), i = 1, 2, · · · , L, (2.6)

where 



E(r(i)) =
∑K

k=1 hkE(xk(i)), i = 1, 2, · · · , L

Var(r(i)) =
∑K

k=1 |hk|2Var(xk(i)) + σ2, i = 1, 2, · · · , L.
(2.7)

The Elementary Signal Estimator in Fig. 2.1 computes theLogarithm Likelihood Ratios (LLRs)of

each bit as [10]:

L(xk(i)) = log

(
p(r(i)|xk(i) = +1)

p(r(i)|xk(i) = −1)

)

=
2hk(r(i)− E(ξ(i)))

Var(ξ(i))
, for all i, k. (2.8)
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Figure 2.2: The uplink case in a two-tier femtocell network.

Then theLLRsare deinterleaved and decoded to produce estimationsd̂k(i) of the original

signals, for alli, k. To further mitigate the interferences between different users, the estimations

d̂k(i), for all i, k are then coded, and interleaved to update the E(xk) and Var(xk). Based on the

updated E(xk) and Var(xk), the Elementary Signal Estimator then recalculates theL(xk), and so

forth. This procedure is repeated for a prescribed number ofiterations. The estimationŝdk(i)’s

will be progressively improved and finally the BS can decode all the signals from all the users.

2.3 Adopting IDMA in Two-Tier Femtocell Networks

Figure 2.2 illustrates the uplink of a two-tier femtocell network, where an MBS can serve

users in the entire network and each FBS serves authorized users within its coverage. To simplify

the discussion, it is assumed that the femtocells are evenlydeployed. Using IDMA, users inside or

outside the femtocells simultaneously transmit signals tothe FBS or MBS, respectively, using the

same frequency band.

As discussed above, the greatest merit of femtocell is bringing users much closer to the wire-

less network infrastructure. Here we propose three IDMA-based schemes for the uplink of the

two-tier femtocell network.
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2.3.1 FBS Decode

The first scheme is that each FBS decodes the received signals locally, and then sends the

decision results to the MBS. We call this scheme FBS Decode for short. It is demonstrated in [12]

that the performance for each user depends on its Signal to Interference plus Noise Ratio (SINR)

sinrk, which can be written as:

sinrk =
pk|hk|2∑K

k′=1,k′ 6=k p
′
k|h′

k|2f(γ′
k) + σ2

, for all k, (2.9)

wherepk is the transmit power of each userk, andf(x) is a function representing the amount of

interference canceled at each decoding iteration, which has no close form expression but can be

obtained through Monte Carlo simulation [11].

If all the users transmit at the same power, since there are little differences in the channel gains

for all the users (i.e., due to closeness to the FBS), the sum ofthe SINR of all the users would be

quite high. That is to say, from the perspective of the systemperformance, this scheme is expected

to perform better than the other two schemes introduced later in this section. However, since the

user number served by each FBS may be large, this scheme may puta stringent requirement for

the computational capability of the FBS’s.

2.3.2 FBS Forward

If the computational capability of the FBS is not strong, the FBS could directly forward all

the received signals to the MBS. Then the MBS will decode the signals from all the users. We

call this scheme FBS Forward for short. Since the users servedby the FBS enjoy high quality

channels, while cell edge users suffer from the bad ones, in the light of (2.9), the SINR of an FBS

user is usually very high, but the SINR of an edge user is usually very low. The consequence is

that although the throughput of the FBS users could be high, the overall system throughput may be

degraded due to the bad performance of edge users.
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2.3.3 FBS Select

This is a hybrid scheme that provides a trade-off between FBS Decode and FBS Forward.

FBS Select is useful for the case when the computational capability of the FBS is not sufficiently

strong. In particular, an FBS can directly forward the received signals to the MBS, if the number

of users being served is greater than a predefined thresholdη. Otherwise, the FBS decodes the

signals locally and sends the decoded data to the MBS. We call this scheme FBS Select for short.

The performance of this scheme is expected to lie between those of FBS Decode and FBS Forward.

It will be shown in the next section that by applying IDMA to femtocell networks, consid-

erable throughput gains can be achieved at comparatively low cost over traditional TDMA and

IDMA schemes.

2.4 Performance Evaluation

We present our simulation study of the proposed IDMA-based schemes in this Section. In

the following, we first describe the simulation settings, and then present the simulation results and

discussions.

2.4.1 Simulation Settings

Monte Carlo simulations are conducted to evaluate the performance of the proposed schemes

and to verify the benefits brought about by adopting IDMA in the uplink of two-tier femtocell

networks. Since power consumption is a critical factor for battery life and CO2 emission, we focus

on the performance at the low power region. Since it is a general assumption that femtocells are

deployed at hotspots, 80% of the users are served by the femtocells in our simulation. For fair

comparison, we simply use spreading as the channel coding scheme, and all the users share the

same spreading sequence. Let the spreading sequence beg = {+1,−1, · · · }, with lengthG. Then
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it follows that [10]

d̂k(i) =
G∑

j=1

g(j)L(ck((i−1)×G+j)), i = 1, 2, · · · , L, (2.10)

Ext(ck(i)) = g(i)d̂k(i)− L(ck(i)), i = 1, 2, · · · , L. (2.11)

Thus the mean and variance ofxk(i) can be updated as [10,13]:

E(xk(i)) = tanh

(
Ext(xk(i))

2

)
, i = 1, 2, · · · , L (2.12)

Var(xk(i)) = 1− E2(xk(i)), i = 1, 2, · · · , L. (2.13)

The path gain is modeled as [14]:

hk = Ak/d
α
k , (2.14)

where theAk’s are all independent and identically distributed (i.i.d.) log-normal random variables

with 0 dB mean and 8 dB variance,dk is the distance between the user and the BS it connects to

(could be either the MBS or an FBS),α = 4 for outdoor users, andα = 2 for indoor users. When

dk approaches to 0,hk approaches to infinity, which is impossible in practical systems. We simply

let hk = 1 if dk ≤ 1. This can be interpreted as when the user is close enough to the MBS or an

FBS, the channel between them becomes perfect.

As for user locations, we first generate uniformly distributed random locations for 20% of

the users, which are served by the MBS. Considering the height of the MBS and its geographic

impact, these users are located outside the unit circle thatis centered at the MBS. Their locations

are uniformly distributed under the coverage of the MBS. Next, the remaining 80% users are ran-

domly scattered in the femtocells. Within the coverage of each femtocell, the users are uniformly

distributed. This user location generation process is performed 10,000 times in each simulation.

Each point in the figures is the average of 10,000 simulation results. Fig. 2.3 illustrates one of the

realizations of random user locations.
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Figure 2.3: Generation of random user locations.

Table 2.1: System Parameters Used in the Simulations of IDMAand Femtocell Networks
Description Value
Number of users 32
Number of femtocells 6
Coverage radius of MBS (normalized) 10
Coverage radius of FBS (normalized) 2
Distance between MBS and FBS (normalized) 6
Number of decoding iterations 5
FBS Select thresholdη 5

The proposed schemes are implemented with MATLAB. The systemparameters used in the

simulations are specified in Table 2.1. For comparison purpose, we also simulated the traditional

IDMA scheme without the use of femtocells (termed IDMA w/o Femtocells), where all the users

in the cell directly transmit to the MBS, and the signals are decoded at the MBS. In addition,

we also simulated the conventional TDMA scheme. With TDMA, each user is assigned with an

equal and non-overlapping portion of the total time for signal transmission. We assume perfect

synchronization for all the users with zero guard times, so as to obtain an upper bound on the

TDMA performance.
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Figure 2.4: Throughput of the five schemes vs. SNR.

2.4.2 Simulation Results and Discussions

We first compare the throughput performance of the five schemes under different signal-to-

noise-ratios (SNRs). The throughput is measured by the error-free bits received and normalized by

the bandwidth (B) and time slot duration (T ).

Fig. 2.4 shows the achieved throughput at different SNRs. It is obvious that by deploying

femtocells, considerable throughput gains can be achievedover the IDMA w/o Femtocells scheme.

It can also be observed that FBS Decode has the highest throughput performance among all the five

schemes. Under FBS Forward, the channel gain differences between the FBS users and the MBS

users are so large that the SINR of FBS users are extremely highwhile their MBS counterparts are

extremely low. Actually, it can be examined that the bit error rate (BER) of high quality channel

users is close to zero, while the BER of edge users is so high that the system performance is

greatly affected. As expected, FBS Select’s throughput performance lies in-between those of FBS

Decode and FBS Forward. It is important to note that both FBS Decode and FBS Select strictly

outperform TDMA, while the throughput of FBS Forward is closeto that of TDMA. The relatively

lower throughput of FBS Forward is due to the low quality channels of the edge users.
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Figure 2.5: Throughput of the five schemes vs. number of users.

We next compare the five schemes under different numbers of users. Most of the system

parameters are still the same as given in Table 2.1, except that the SNR is set to -10 dB and the user

number is varied. The simulation results are presented in Fig. 2.5. It can be observed that similar

conclusions drawn from Fig. 2.4 still hold true here. FBS Decode has the best performance; the

FBS Select outperforms TDMA when the user number is less than 90; and FBS Forward achieves

a performance close to that of TDMA.

From Figs. 2.4 and 2.5, we conclude that if the FBS has the capability of local decoding

for the signals from a certain amount of users, which is the usual case of femtocell applications,

considerable throughput gains can be achieved by adopting IDMA for the uplink of femtocell

networks. Even if the femtocell works in signal forwarding mode, the throughput performance is

still close to that of TDMA and better than that of IDMA w/o Femtocells.

Since IDMA adopts an iterative decoding procedure (see Fig.2.1), it would be interesting to

investigate how fast the decoding procedure converges under the uplink two-tier femtocell network

scenario. Our simulations show that the IDMA decoding algorithm can converge very fast. The

simulation results are presented in Fig. 2.6 for the three IDMA-based schemes. We still follow
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Figure 2.6: Throughput of the three IDMA-based schemes vs. number of iterations.

the system parameters given in Table 2.1, except that the SNRis fixed to 0 dB and the number of

iterations is varied. It can be observed that the FBS Decode scheme converges after two iterations,

FBS Forward converges after three iterations, and FBS Select converges after three iterations.

Therefore, the computational complexity and processing delay incurred from the turbo iterative

decoding algorithm are negligible; the throughput gains are achieved at relatively low cost.

2.5 Related Work

Femtocell is designed to cater for the ever-increasing demand of high speed wireless data

transmissions. By significantly reducing the distance between the service provider and the service

users, great capacity gain can be obtained. A comprehensivesurvey of femtocells is provided in [3].

Even though the femtocell has the great potential of creating dual benefits to both network operator

and users, there are many challenges to be addressed. It was pointed out in [3] that interference

management is one of the key factors for the success of femtocell. Considerable research have

been conducted in this problem area [4–9]. In [4], the authors studied the impact of the cross-tier
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interference on the system outage probability, analyzed the uplink capacity, and proposed an inter-

ference avoidance strategy. To suppress the cross-tier interference below an adaptive threshold and

compensate for the uplink throughput, open-loop and closed-loop interference mitigation strate-

gies were proposed in [6]. In [5], the authors considered thecochannel interference incurred by

frequency reuse, and proposed a femtocell based distributed antenna system for uplink interference

cancellation. In [7], the authors proposed a coordinated user scheduling combined with transmit

beamforming scheme to alleviate the inter-femtocell interference problem. We adopted successive

interference cancellation for downlink data multicast in two-tier femtocell networks in [9], and

examined medium grain scalable videos streaming over femtocell cognitive radio networks in [8].

However, the uplink case was not fully considered in these papers.

IDMA has been shown to support multiple transmissions at thesame time using the same

frequency [10]. The quality of service (QoS) issue in IDMA-based networks was examined in [15].

An IDMA QoS architecture and an interleave division slotted-ALOHA (IDSA) are proposed and

shown to be effective. Applying the large-system performance approximation and the extrinsic

information transfer (EXIT) chart, Li, Wang, and Li [11] analyzed and optimized the BER of

IDMA communication systems. From a game theoretical view, adecentralized power allocation

algorithm for the uplink IDMA system was proposed in [12]. The optimal transmission power

for the spread spectrum uplink IDMA channels was derived in [16]. In [17], a fully-analytical

approach was developed to predict the rate allocation scheme of IDMA system, and a modified

linear programming method is proposed to get the best rate profile.

It can be seen from the above discussions that the interference issue is of great importance for

femtocell networks, which needs to be addressed before we could fully harvest the potentially high

benefits of femtocells. To this end, an interference cancellation or mitigation approach provides

highly effective solutions. In this chapter, we address theinterference issue from an iterative multi-

user detection point of view, and introduce three IDMA-based schemes to enhance the system

throughput performance. The proposed schemes are shown to be quite effective and to achieve the

design goals.
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2.6 Conclusions

In this chapter, we investigated the problem of interference management in the uplink of

two-tier femtocell networks. To enhance the uplink throughput performance for low power trans-

missions, we introduced IDMA to allow concurrent transmissions from all users and cancel the

intra and cross-tier interference with iterative decodingand interference cancellation. We pro-

posed three IDMA-based schemes, namely, FBS Decode, FBS Forward, and FBS Select, for the

uplink of two-tier femtocell networks based on the processing capability of femtocells. Simulation

results demonstrated that considerable throughput gains can be achieved under FBS Decode and

FBS Select over conventional TDMA and IDMA schemes at comparatively low costs.
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Chapter 3

Interference Alignment Improves the Capacity of OFDM Systems

3.1 Introduction

Many advanced wireless communication technologies, such as Orthogonal Frequency Divi-

sion Multiplexing (OFDM) and Multiple Input Multiple Output (MIMO), are widely adopted to

enhance the system capacity, while a huge amount of wirelessaccess networks/base stations (BS)

are deployed every year to accommodate the compelling need for larger capacity. Given the in-

creasing wireless data volume and the more and more crowded BSdeployment, interference is

becoming the major factor that limits wireless network performance.

Traditionally, interference is considered harmful and often treated as background noise. As

the performance of point-to-point transmission techniques is approaching Shannon capacity, there

is now considerable interest on exploiting interference for further capacity gains. It is shown that

when interference is large, it can be decoded and canceled from the mixed signal (as in interference

cancellation), while when interference is comparable, interference alignment can be adopted to

enable concurrent transmissions. Although interference is harmful in many cases, it could be

beneficial for enhancing system throughput as long as the interference can be aligned. We call this

kind of interference beneficial interference.

Interference alignment was first proposed in [19], and the feasibility condition was investi-

gated in [20]. Since in a large network, there are many users but limited dimensionality, the au-

thors in [21] proposed the concept of “best-effort” interference alignment, and adopted an iterative

algorithm to optimize it. However, how to use interference alignment to enhance the throughput

in practical OFDM system was not fully considered. Shi et al.in [22] also considered the problem

of interference alignment in multi-carrier interference networks. But it is not clear if the approach

can be extended to the general case of a large number of subcarriers. In [25], the authors proposed
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two schemes to adopt interference alignment in multi-cell MIMO OFDM systems. In the first

scheme, interference alignment was used to remove the inter-cell interference, while zero-forcing

precoding was used to suppress the intra-cell interference. In the second scheme, interference

alignment was also used for inter-cell interference removal, while the OFDMA access scheme was

applied for intra-cell interference cancellation. However, the fundamental performance bound of

multi-user MIMO OFDM system with interference alignment has not been discussed. In [26], the

authors derived the necessary and sufficient conditions forthe three-user OFDM system with in-

terference alignment in the time domain. However, these conditions cannot be applied to system

with more users or under other conditions. Ayach et al. in [27] investigated the feasibility problem

MIMO-OFDM system with interference alignment over measured channels, while in this chapter,

we mainly concern about the theoretical bound when interference alignment is incorporated in the

OFDM system.

Interference alignment also finds many applications in practical wireless networks. In [28], a

cognitive interference alignment scheme was presented to suppress both cross-tier and co-tier in-

terferences in OFDM-based two-tier networks. In [29,30], the authors investigated the behaviors of

primary users and secondary users under a Stackelberg game theory framework, where distributed

interference alignment is adopted to enable spectrum leasing in the cognitive radio network. To

achieve better error rate performance, a novel interference alignment based precoder design was

presented in [31] for OFDM system.

There are also some existing studies that aim to adopt interference alignment in more ad-

vanced systems. In [32], the authors extended the traditional interference alignment scheme to a

general algorithm for multi-hop mesh networks. The authorsin [33] considered combining inter-

ference alignment and interference cancellation to further enhance the system throughput. In [34],

the authors proposed to use multimode MIMO antennas insteadof the typical omni-directional

antennas to improve the performance of MIMO OFDM system withinterference alignment, while

in [35], the impact of antenna spatial correlation on the performance of interference alignment

systems was investigated.
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As claimed in [36], there are not many studies about interference alignment with structured

channels. In [37], the authors aimed to show how interference alignment works in OFDM system

under practical constraints. To further address this problem, here in this chapter, we consider the

problem of incorporating interference alignment in multi-user (MIMO) OFDM systems. Specifi-

cally, we first examine the fundamental characteristics andpractical constraints on adopting inter-

ference alignment in a multi-user OFDM system. We show that,for aK userN subcarrier OFDM

system,KN/2 concurrent transmissions that is achievable for generic structureless channels [19],

cannot be achieved for a practical multi-user OFDM network with diagonal channels and a limited

number of subcarriers. We then investigate effective schemes to exploit interference in multi-user

OFDM systems. With an integer programming problem formulation, we derive the maximum effi-

ciency of the Multi-user OFDM/interference alignment system. We also show how to achieve the

maximum efficiency with a decomposition approach, and derive the closed-form precoding and

decoding matrices. Finally, we extend the above analysis tothe multiple antennas scenarios. All

the proposed schemes are evaluated with simulations and their superior performance is validated.

Notation: in this chapter, a capital bold symbol likeH denotes a matrix, a lower case symbol with

an arrow on top like~v denotes a vector, and a lower case letter likev denotes a scalar.[·]T means

transposeand[·]−1 meansinversion. Hij andhij are the channel gain matrix and channel gain from

the i-th transmitter to thej-th receiver, respectively.Vi is the precoding matrix for transmitteri;

~vji is thej-th column ofVi. Ui denotes the interference cancellation matrix for thei-th receiver,

while ~uj
i is thej-th column ofUi. Leth, v, u denote the entries ofH, V, andU, respectively.

Note that with these notations, the entries ofHij takes slightly different ordering from con-

ventional ones. For instance, if transmitter1 and receiver2 are both equipped withM antennas,

the channel gain is:

H12 =




h11 h21 · · · hM1

h12 h22 · · · hM2

...
...

.. .
...

h1M h2M · · · hMM




. (3.1)
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The rest of this chapter is organized as follows. Section 3.2describes the background and

preliminaries. Section 3.3 investigates how to adopt interference alignment in multi-user OFDM

system. Section 3.4 extends the analysis to the multiple antennas scenario. Simulation results are

presented in Section 3.5. Section 3.6 concludes the chapter.

3.2 Background and Preliminaries

3.2.1 Orthogonal Frequency Division Multiplexing

While higher data rates can be achieved by reducing symbol duration, severe inter-symbol-

interferences (ISI) will be caused over time dispersive channels. OFDM is an effective approach

to allow transmissions at a high data rate and combat the destructive effect of channel. By dividing

the channel into narrow bands, in which the signal experiences flat fading, OFDM can effectively

mitigate ISI and maintain high data rate transmissions. Interested reader are referred to [18,38,39]

and the references therein for details.

3.2.2 Multiple Input and Multiple Output

With the single antenna transmission technique being well developed, it is natural to extend to

multiple antenna systems. The MIMO transmission techniques have been evolving rapidly since

last decades. Generally speaking, multiple antennas or an antenna array can be used to attain

the diversity gain, multiplexing gain, or antenna gain, and thereby reduce the system error rate,

enhance the system throughput, or strengthen the signal to interference and noise ratio (SINR) [23].

GivenM1 transmitting antennas andM2 receiving antennas, the maximum multiplexing gain is

known to bemin{M1,M2}. Throughout this chapter, we assume that channel state information is

perfectly known at each transmitter and receiver as in priorworks [19]. For how to acquire channel

information, readers are referred to [40].
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Figure 3.1: Multi-user OFDM using interference alignment.

3.2.3 Interference Alignment

It is shown in [19] that in aK user wireless network, with(n + 1)q + nq symbol extensions,

totally K/2 normalizeddegrees of freedom(DoF) can be achieved using interference alignment,

whereq = (K − 1)(K − 2) − 1 andn ∈ N. In single antenna systems, the normalized DoF is

1. With interference alignment, the system throughput is enhanced by a factor ofK/2 for K ≥ 2.

Note that there is no interference if there is only one user occupying the time or frequency resource.

Observation 1: The system throughput could be improved if alignable interference is intro-

duced among users.

This observation is useful for OFDM systems, where the channel gain matrix is diagonal.

Since the gain of interference alignment is proportional toK, we should have more users transmit

at the same time slot or frequency band if the transmitted vectors can be aligned. That is why we

call this kind of interferencebeneficial interferencein this chapter.

3.3 Multi-user OFDM with Interference Alignment

In this section, we investigate the problem of interferencealignment in multi-user OFDM sys-

tems. We first examine fundamental characteristics and practical constraints, and then demonstrate

how to exploit interference in multi-user OFDM systems. We derive the maximum throughput
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when interference alignment is adopted, as well as closed-form precoding and decoding matrices

to achieve the maximum throughput.

3.3.1 Subcarriers versus Antennas

In traditional interference alignment, deploying multiple transmitting antennas allows us to

precode data packets and align them at the receiver. Deploying multiple receiving antennas pro-

vides multidimensional signal space, so that interferencecan be aligned into a sub signal space that

is orthogonal to the desired signal. Therefore, deploying multiple antennas can provide the needed

freedom in the signal space.

In OFDM, we observe that subcarriers can function in the sameway as antennas in MIMO/interference

alignment systems. To some extent, subcarriers can be regarded as a counterpart of antennas. How-

ever, there is a distinguishing difference between the two systems: there is no cross-talk among

different subcarriers in OFDM.

3.3.2 Precoding in OFDM

The main idea of interference alignment is to compress the interference space to no more than

half of the total received signal space at each receiver, leaving the remaining part of the space for

desired signals [19]. This goal is achieved through precoding at every transmitter and zero forcing

interference cancellation at every receiver.

In OFDM, data is transmitted on multiple carriers, as shown in Fig. 3.1. Suppose there areN

subcarriers. Ignoring noise, the received signal~y is anN × 1 vector given by:

~y = H~x, (3.2)

where~x is the desired signal in the form of anN × 1 vector, andH is theN × N channel gain

matrix between the transmitter and receiver. Since different subcarriers have different frequencies,

the channel gain matrix isdiagonalif there is no severe frequency shift. It can be seen from later
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discussions that this property makes interference alignment in OFDM system quite different from

the general channel case.

Going one step further, we can precode the data before transmission. If d packets are to be

transmitted in anN subcarrier OFDM system, anN × d precoding matrixV should be used. The

system equation is as follows.

~y = HV~x. (3.3)

If we let d = N andV = IN , whereIN is anN ×N identity matrix, (3.3) is reduced to (3.2).

In general, we could control what to be transmitted on the subcarriers by adjusting the pre-

coding vector accordingly. For a single user single antennaOFDM system withN subcarriers,

the maximum number of packets can be transmitted isN . Note that, hereN is normalized by

the QAM (Quadrature Amplitude Modulation) modulation level. However, inspired by the idea of

interference alignment, we show that a throughput higher thanN can be achieved in the following

subsections.

3.3.3 Interference Alignment in aK-User OFDM System

As discussed, we consider the problem of interference alignment in multiuser OFDM systems.

Basically, we aim to answer the following questions.

(i) What are the practical constraints for adopting interference alignment in such systems?

(ii) What is the maximum throughput that can be achieved?

(iii) How to achieve the maximum throughput (i.e., derivingclosed-form precoding and decoding

matrices)?
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Dependence of Precoding and Decoding Vectors in Diagonal Channels

In this section, we show the difference on applying interference alignment between a diagonal

channel and a general channel, as well as the challenges to adopt interference alignment in the

former case.

It was shown in [20] that givenM1 transmitting antennas andM2 receiving antennas in aK

user interference channel, the DoF for each user, denoted byd, must satisfy

d ≤ M1 +M2

K + 1
. (3.4)

For example, given two transmitting and receiving antennasin a three-user interference chan-

nel, (3.4) indicates that each user could transmit one packet simultaneously. With a generic struc-

tureless channel, the throughputKd = 3 can be achieved as follows.

At each receiver, we align the signals from the other two users. Recall the channel gain

matrices as defined in (3.1) and let the useri signal be~vi, i = 1, 2, 3. It follows that

H21~v2 = H31~v3 (3.5)

H12~v1 = H32~v3 (3.6)

H13~v1 = H23~v2. (3.7)

Solving (3.5), (3.6) and (3.7), we have

~v1 = eig(H−1
12 H32H−1

31 H21H−1
23 H13) (3.8)

~v2 = H−1
23 H13~v1 (3.9)

~v3 = H−1
32 H12~v1, (3.10)

where eig(A) stands for the eigenvector of matrixA.
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This scheme works well for generic structureless channels,but not for the case of diagonal

channels. For instance, if 2 subcarriers (instead of two antennas) are used in OFDM, all the channel

gain matrices in (3.8), (3.9) and (3.10) are diagonal. Sincethe product of diagonal matrices is still

diagonal, we have from (3.8) that

~v1 =



1

0


 or



0

1


 .

If ~v1 = [1, 0]T , we derive~v2 = [a, 0]T from (3.9) and~v3 = [b, 0]T from (3.10), wherea andb are

scalars. To cancel the interference at receiver1, thecancellation vector~u1 must be~u1 = [0, c]T ,

wherec is a scalar. However, the desired packet is also canceled since ~u1 is orthogonal to~v1.

Therefore, we cannot simultaneously transmit3 packets in this system.

The reason behind is that for a diagonal channel, its eigenvectors have only one nonzero entry.

If we align interferences at receiverr by lettingHjr~vj = · · · = Hir~vi, for j 6= · · · 6= i 6= r, the

precoding vectors are dependent to each other. Consequently, when interference is canceled at a

receiver, the desired packet will also be canceled.

Interference Alignment with Multi-user OFDM–Performance Bound

It is shown in [19] that in aK user system with(n+1)q + nq symbol extensions, totallyK/2

normalized DoF can be achieved using interference alignment, whereq = (K−1)(K−2)−1 and

n ∈ N. In light of this result, one may think thatKN/2 concurrent transmissions is achievable in

aK-User,N subcarrier OFDM system. However, we will show that this is unachievable for large

K in practical systems in the following.

It is worth noting that an assumption made in [19] is that the symbol extensions can be in-

finitely large. This assumption may not hold true in practical systems. Given a finite bandwidth,

the number of subcarriers is the bandwidth divided by the subcarrier spacing. Typically, the value

of subcarrier spacing is10 − 20 KHz. Then even for a 100 MHz bandwidth, we can have at most
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104 subcarriers. For instance, in 802.16m and LTE, the maximum number of IFFT is 2,048, and

maximum number of effective subcarriers is 1,200.

Therefore, the problem is to maximize system throughput given a finite number of subcarriers,

denoted byNmax. It is shown in [19] that with(n+1)q+nq symbol extensions, the total normalized

DoF is[(n+1)q + (K − 1)nq]/[(n+1)q + nq]. So we aim to maximize(n+1)q + (K − 1)nq and

have the following formulation.

max
n,K

(n+ 1)q + (K − 1)nq (3.11)

s.t. q = (K − 1)(K − 2)− 1 (3.12)

(n+ 1)q + nq ≤ Nmax, n ∈ N (3.13)

K ≥ 3, K ∈ N. (3.14)

In problem (3.11), all the variables are integers. Constraint (3.13) indicates that for practical sys-

tems, the number of subcarriersN = (n + 1)q + nq is upper bounded byNmax. Although this

integer programming problem is NP-hard, by careful inspection, we can find the solution under

practical constraints.

In particular, we find the feasible region is very small for practicalNmax values. Also the

objective value is monotone with respect to the two variablesn andK. In problem (3.11), assuming

K = 5, we haveq = 11 from (3.12). For each value ofn, we can derive the number of subcarriers

needed,Nmax, from (3.13) for the problem to be feasible, as well as the throughput of the system

(i.e., the objective value of (3.11)). The corresponding degree of freedom,d, is the ratio of the

throughput and the number of subcarriers required. These numbers are presented in Table 3.1.

Table 3.1 shows that if there areK = 5 users,2, 049 and179, 195 subcarriers are needed when

n = 1 andn = 2, respectively. As discussed, a practical system usually donot have more than104

subcarriers. Son can only be1 in this case, with efficiencydmax = 1.002. Therefore, interference

alignment is not useful in this case, since we can simply allow only one user to transmit over one

time-slot or a particular frequency band to getd = 1 (i.e., single user OFDM).
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Table 3.1: System Efficiency
WhenK = 5 andq = 11

n No. of subcarriers No. of packets Normalized DoFd
1 2,049 2,052 1.002
2 179,195 185,339 1.03

WhenK = 4 andq = 5
n No. of subcarriers No. of packets Normalized DoFd
1 33 35 1.06
2 275 339 1.23
3 1,267 1,753 1.38
4 4,149 6,197 1.49

WhenK = 3 andq = 1
n No. of subcarriers No. of packets Normalized DoFd
1 3 4 1.333
2 5 7 1.40
3 7 10 1.429
4 9 13 1.444

100 201 301 1.498
1000 2001 3001 1.4998

If there areK = 6 transmitters, we haveq = 19. Even ifn = 1, the number of subcarriers

needed is524, 289, which is not feasible for practical systems. Since the number of subcarriers

(n+ 1)(K−1)(K−2)−1 + n(K−1)(K−2)−1 grows exponentially with(K2 − 3K + 1), it can be readily

concluded thatK cannot be more than 4 for interference alignment to be beneficial in multi-user

OFDM systems.

Since the objective value of (3.11) is an monotone increasing function ofK, the maximum

feasible valueK = 4 is of particular interest. We haveq = 5 whenK = 4. Table 3.1 also shows

that under this condition, the maximum efficiency for practical system isdmax = 1.38 for the

practical case with at most2, 000 subcarriers. WhenK = 3, we haveq = 1. The objective function

(3.11) becomes3n+1, and the constraint (3.13) becomes2n+1 ≤ Nmax. If the maximum number

of subcarriers isNmax = 2, 001, the system achieves its maximum efficiencydmax = 1.4998.

The above analysis can be summarized as follows.
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Conjecture 3.3.1.For a practical multi-user OFDM system with number of subcarriers less than

2, 002, the maximum efficient isdmax = 1.4998, which is achieved when there areK = 3 users

usingN = 2, 001 subcarriers.

However, in the later discussions, we will show that this conjecture does not hold true.

Interference Alignment with Multi-user OFDM–Realization

It is shown in [19] how to design the precoding matrices to transmit 3n + 1 packets over

2n + 1 symbol extensions in a three-user interference channel (i.e., for a three-user system, we

haveq = 1 andN = (n + 1)q + nq = 2n + 1). We will derive the precoding/decoding procedure

for interference alignment with multi-user OFDM and prove its efficacy in this section.

The precoding matrices proposed in [19] for the case of threeusers are as follows.

V1 = A (3.15)

V2 = H−1
23 H13C (3.16)

V3 = H−1
32 H12B, (3.17)

where

A = [~w T ~w T2 ~w · · · Tn ~w] (3.18)

B = [T ~w T2 ~w · · · Tn ~w] (3.19)

C = [~w T ~w T2 ~w · · · Tn−1 ~w] (3.20)

T = H21H−1
12 H32H−1

23 H13H−1
31 (3.21)

~w = [1 1 · · · 1]T . (3.22)

Thus, the received signal at receiver1 is:

~y1 = H11V1~x1 + H21V2~x2 + H31V3~x3. (3.23)
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In the general case, since the data streams are independent of each other, the received mixed

signal spans3n + 1 dimensions of the space. In interference alignment with multi-user OFDM,

the received signal spans only2n + 1 dimensions of space. Solving these2n + 1 equations will

yield the desired packets. However, the challenge is, if2n + 1 is too large, we may not be able to

solve these equations efficiently (as can be seen from the later discussions). This problem can be

addressed with a decomposition approach as given in the following theorem.

Theorem 3.1.For anN subcarrier OFDM system, we can divide the subcarriers into⌊N/(2n+1)⌋

groups, wheren ∈ N, and precode and decode the groups separately to achieve theinterference

alignment gain.

Proof. Recall that the channel gain matrix in OFDM is diagonal. Generally, if every user tries to

transmitd packets over theN subcarriers, we have

HV =




h1 0 · · · 0

0 h2 · · · 0

...
...

. ..
...

0 0 · · · hN







v11 · · · v1d

v21 · · · v2d
...

.. .
...

vN1 · · · vNd




.

The precoding vectors must satisfy the conditions given in (3.15)-(3.22). Let the precoding matrix

assume the following form.

V =




Ṽ1 0 · · · 0

0 Ṽ2 · · · 0

...
...

.. .
...

0 0 · · · Ṽg




, (3.24)

whereg = N/(2n + 1) is the number of groups and̃Vi is the precoding matrix for groupi with

dimensions(2n+ 1)× (n+ 1) or (2n+ 1)× n (i.e., user 1 sends(n+ 1) packets, and each of the

other users sendsn packets over(2n + 1) subcarriers.) Without loss of generality, we assumeN

is dividable by2n + 1. RewritingH in the form of multiple diagonal sub-matrices with the same
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dimensions, we have

HV =




H̃1Ṽ1 0 · · · 0

0 H̃2Ṽ2 · · · 0

...
...

. . .
...

0 0 · · · H̃gṼg




. (3.25)

For instance, whenN = 6 andn = 1, we have for transmitter1

HV =




h1v11 h1v12 0 0

h2v21 h2v22 0 0

h3v31 h3v32 0 0

0 0 h4v41 h4v42

0 0 h5v51 h5v52

0 0 h6v61 h6v62




. (3.26)

If there are 3 users, we can letH21V2 = H31V3 at receiver1 to get




h
(1)
21 v

(1)
2 0 · · · 0

h
(2)
21 v

(2)
2 0 · · · 0

h
(3)
21 v

(3)
2 0 · · · 0

0 h
(4)
21 v

(4)
2 · · · 0

0 h
(5)
21 v

(5)
2 · · · 0

0 h
(6)
21 v

(6)
2 · · · 0

...
...

. ..
...

0 0 · · · h
(N−2)
21 v

(N−2)
2

0 0 · · · h
(N−1)
21 v

(N−1)
2

0 0 · · · h
(N)
21 v

(N)
2



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=




h
(1)
31 v

(1)
3 0 · · · 0

h
(2)
31 v

(2)
3 0 · · · 0

h
(3)
31 v

(3)
3 0 · · · 0

0 h
(4)
31 v

(4)
3 · · · 0

0 h
(5)
31 v

(5)
3 · · · 0

0 h
(6)
31 v

(6)
3 · · · 0

...
...

. ..
...

0 0 · · · h
(N−2)
31 v

(N−2)
3

0 0 · · · h
(N−1)
31 v

(N−1)
3

0 0 · · · h
(N)
31 v

(N)
3




,

which indicates:




h
(i)
21v

(i)
2

h
(i+1)
21 v

(i+1)
2

h
(i+2)
21 v

(i+2)
2




=




h
(i)
31v

(i)
3

h
(i+1)
31 v

(i+1)
3

h
(i+2)
31 v

(i+2)
3




, i = 1, 4, · · · , N − 2. (3.27)

Since the above conditions can also be obtained by separately encoding theN/(2n+1) groups

of subcarriers, we could decompose the problem into a numberof subproblems, one for each group,

and precode and decode the groups separately.

It remains to show how to decode the packets for this scheme. Without loss of generality,

we also assumeK = 3. If this scheme is adopted, each time we sequentially take out 2n + 1
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subcarriers. The received signal at receiver1 is:

~y1 = H11V1~x1 + H21V2~x2 + H31V3~x3

= H11V1~x1 + H21H−1
23 H13C~x2 + H31H−1

32 H12B~x3

= H11V1~x1 + H21H−1
23 H13C~x2 + H31H−1

32 H12TC~x3

= H11V1~x1 + H21H−1
23 H13C~x2 + H21H−1

23 H13C~x3

= H11V1~x1 + H21H−1
23 H13C(~x2 + ~x3)

= (H11V1 H21V2) ·
(
~x1 ~x2 + ~x3

)T

. (3.28)

Taking the inverse of matrix(H11V1 H21V2) and discard the packets from transmitters2 and3,

we can recover the desired packets~x1. Note that we exploit thecommutativeproperty of diagonal

matrices in (3.28).

At receiver2, the received signal is:

~y2 = H12V1~x1 + H22V2~x2 + H32V3~x3

= H12(~w B)~x1 + H22V2~x2 + H12B~x3

= H12 ~wx
(1)
1 + H22V2~x2 + H12B




x
(2)
1 + x

(1)
3

...

x
(n+1)
1 + x

(n)
3




= (H22V2 H12 ~w H12B) ·(
~x2, x

(1)
1 , x

(2)
1 + x

(1)
3 , · · · , x(n+1)

1 + x
(n)
3

)T

. (3.29)

Taking the inverse of matrix(H22V2 H12 ~w H12B), we get~x2.
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At receiver3, the received signal is:

~y3 = H13V1~x1 + H23V2~x2 + H33V3~x3

= H13(C Tn ~w)~x1 + H13C~x2 + H33V3~x3

= H13C




x
(1)
1 + x

(1)
2

...

x
(n)
1 + x

(n)
2




+ H13Tn ~wx
(n+1)
1 + H33V3~x3

= (H33V3 H13C H13Tn ~w) ·
(
~x3, x

(1)
1 + x

(1)
2 , · · · , x(n)

1 + x
(n)
2 , x

(n+1)
1

)T

. (3.30)

Taking the inverse of matrix(H33V3 H13C H13Tn ~w), we can decode~x3. After decoding each

group separately, we then combine the decoded data. The theorem is thus proved.

Note that the proof of Theorem 3.1 also leads to an algorithm to achieve interference align-

ment gains for any largeN ∈ N.

Practical Issue of Large Channel Variance

Here we examine another practical problem of adopting interference alignment for multi-user

OFDM.

A necessary condition to achieve interference alignment inOFDM is that the channel gain is

drawn from a continuous distribution. As a result, if the variance of the channel is large, some

of the channel gains can be very small in certain conditions,while some other channel gains can

be very large. When precoding over all the subcarriers, aftertaking the inverse of the channel

gain matrix, some entry of the precoding matrix could be104 times (or even more) larger than

some other ones. The result is that the power of one subcarrier could be108 times (or even more)

larger than that of another subcarrier. Given certain powerconstraints, the error performance of

the system will suffer from great degradation, which makes interference alignment less useful.
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In our proposed scheme, if the channel variance is large, there is also a certain chance that

some entries ofT can be much larger than the others, sinceT = H21H−1
12 H32H−1

23 H13H−1
31 =

H21H32H13H−1
12 H−1

23 H−1
31 . If we precode and decode over largen, since the last column ofV1,

V2 andV3 are all obtained by multiplyingTn, the situation could be further exacerbated. The

consequences are as follows.

(i) Since some of the entries can be extremely small, the decoding matrices can be close to

singular. Thus the desired signal cannot be decoded.

(ii) Even if the decoding matrices is invertible, due to the transmitter power constraint, the sys-

tem error performance could be rather poor.

In fact, even ifn = 1, there is still a chance that some matrices are not invertible. These are

the reasons why we cannot precode and decode for largeN . This issue also demonstrate the

importance of the proposed decomposition theorem (see Theorem 3.1).

Take V1 for instance. The constraint is the power on one subcarrier cannot be10a (e.g.,

a = 3) times larger than the power on another subcarrier. If the constraint is violated, the system

is considered to be in the outage state. Let

T =




t1 0 · · · 0

0 t2 · · · 0

...
...

. . .
...

0 0 · · · t2n+1




, (3.31)

whereti = h
(i)
21h

(i)
32h

(i)
13/(h

(i)
12h

(i)
23h

(i)
31 ), i = 1, 2, . . . , (2n + 1). t1, t2, . . . , t2n+1 can be regarded as

i.i.d (independent identically distributed) random variables.Let t denote the common distribution

of t1, t2, . . . , t2n+1. Definet(1), t(2), . . . , t(2n+1) be the order statistics oft1, t2, . . . , t2n+1 with t(1) =

mini ti, t(2n+1) = maxi ti.
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Let γ = t(2n+1)/t(1). From (3.15)-(3.22), we haveγ2n ≤ 10a, thus

γ ≤ 10a/(2n), (3.32)

which meanst(2n+1) cannot be10a/(2n) times larger thant(1).

On the other hand, sinceγmax = 10a/(2n), we have

1−
(
Pr

{
t ≥ t(2n+1)

10
a
2n

})2n+1

≤ Pr

{
t(1) ≤

t(2n+1)

γ

}
≤ 1. (3.33)

It can be seen thatPr
{
t ≥ t(2n+1)

10
a
2n

}
is a decreasing function ofn. With the power of2n + 1,

Pr
{
t(1) ≤ t(2n+1)/γ

}
will quickly converge to1. That means, with largen, P (t(2n+1) ≥ γt(1)) =

1. Therefore, with largen the constraint (3.32) will not be satisfied.

Next, we show how largen could be for given constraint (3.32). The joint probabilitydensity

function (PDF ) oft(1) andt(2n+1) is found as follows.

ft(1)t(2n+1)
(x, y) =

∂2Ft(1)t(2n+1)
(x, y)

∂x∂y
, (3.34)
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whereFt(1)t(2n+1)
(x, y) is the joint cumulative distribution function (CDF) oft(1) andt(2n+1). By

the definition of partial derivative, we have:

ft(1)t(2n+1)
(x, y)

=
∂

∂y
{ lim
∆x→0

[Ft(1)t(2n+1)
(x+∆x, y)−

Ft(1)t(2n+1)
(x, y)]/∆x}

= lim
∆x→0,∆y→0

[Ft(1)t(2n+1)
(x+∆x, y +∆y)−

Ft(1)t(2n+1)
(x, y +∆y)− Ft(1)t(2n+1)

(x+∆x, y)+

Ft(1)t(2n+1)
(x, y)]/(∆x∆y)

= lim
∆x→0,∆y→0

[Pr{x ≤ t(1) ≤ x+∆x, t(2n+1) ≤ y +∆y}−

Pr{x ≤ t(1) ≤ x+∆x, t(2n+1) ≤ y}]/(∆x∆y)

= lim
∆x→0,∆y→0

Pr{x ≤ t(1) ≤ x+∆x,

y ≤ t(2n+1) ≤ y +∆y)/(∆x∆y}. (3.35)

To calculate the probability of the last equality, for anyx < y, we can divide thex axis into

five disjoint intervals as:I1 = (−∞, x), I2 = (x, x + ∆x), I3 = (x + ∆x, y), I4 = (y, y + ∆y)

andI5 = (y + ∆y,∞). For eachti, the probability it falls into each interval can be calculated as

follows.

p1 = Pr{ti ∈ I1} = Ft(x) (3.36)

p2 = Pr{ti ∈ I2} = Ft(x+∆x)− Ft(x) (3.37)

p3 = Pr{ti ∈ I3} = Ft(y)− Ft(x+∆x) (3.38)

p4 = Pr{ti ∈ I4} = Ft(y +∆y)− Ft(y) (3.39)

p5 = Pr{ti ∈ I5} = 1− Ft(y +∆y). (3.40)
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To make(x ≤ t(1) ≤ x+∆x, y ≤ t(2n+1) ≤ y+∆y) happen, the statistics{t1, t2, . . . , t2n+1}

must have exactly1 sample falling into intervalI2, 1 falling into intervalI4, (2n − 1) falling into

intervalI3, and0 elsewhere, which is a multinomial problem. So we have:

Pr{x ≤ t(1) ≤ x+∆x, y ≤ t(2n+1) ≤ y +∆y} =
(

2n+ 1

0, 1, (2n− 1), 1, 0

)
p01p

1
2p

(2n−1)
3 p14p

0
5. (3.41)

It follows that

ft(1)t(2n+1)
(x, y)

= lim
∆x→0,∆y→0

{
(2n+ 1)!

(2n− 1)!

Ft(x+∆x)− Ft(x)

∆x
×

Ft(y +∆y)− Ft(y)

∆y
× [Ft(y)− Ft(x+∆x)]2n−1

}

= (2n+ 1)(2n)ft(x)ft(y)[Ft(y)− Ft(x)]
2n−1. (3.42)

Sinceti = h
(i)
21h

(i)
32h

(i)
13/(h

(i)
12h

(i)
23h

(i)
31 ), i = 1, 2, . . . , 2n + 1, and eachh(i) is a random vari-

able, the distribution ofti is difficult to be explicitly found. Here we continue our analysis by

approximatingti as a Uniform distributed or Rayleigh distributed random variable.

If ti is approximated as a Uniform distributed random variable and ti ∈ (0, 1), we have:

Pr

{
t(1) ≤

t(2n+1)

γ

}
(3.43)

=

∫ 1

0

∫ y
γ

0

(2n+ 1)(2n)(y − x)2n−1dxdy. (3.44)

=

[
1−

(
1− 1

γ

)2n
]

(3.45)

≥ 1− (1− 10−
a
2n )2n, (3.46)

where the last inequality is a direct result of (3.32). Taking derivative of (3.46), it can be found that

Poutage = Pr
{
t(1) ≤ t(2n+1)

γ

}
is an increasing function ofn. Fora = 3, if n = 1, Poutage = 0.0622;
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Figure 3.2: Probability of System Outage.

if n = 2, Poutage = 0.5431; and ifn = 3, Poutage = 0.8978. For a system with many subcarriers, it

indicates that we can only precode overn = 1.

If ti is approximated as a Rayleigh distributed random variable with PDFf(x | σ) = x
σ2 exp(− x2

2σ2 ), x ≥

0, then

ft(1)t(2n+1)
(x, y) = (2n+ 1)(2n)

xy

σ4
exp

(
−x2 + y2

2σ2

)
·

(
exp

(
− x2

2σ2

)
− exp

(
− y2

2σ2

))2n−1

. (3.47)

There’s no closed-form solution ofPr
{
t(1) ≤ t(2n+1)

γ

}
in this case. The numerical results are

shown in Fig. 3.2. It can be seen that the conclusion still holds, i.e., we can only precode over

n = 1.

Recall that Conjecture 3.3.1 tells usdmax = 1.4998 whenK = 3 andn = 1000. Here we can

see that this maximum DoF cannot be achieved under practicalsettings. So we have the following

theorem.

Theorem 3.2.For a practical multi-user OFDM system with number of subcarriers less than4149,

the maximum DoF isdmax = 1.33, which is achieved when there are three transmitter/receiver

pairs precoding over3 subcarriers each time.
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3.4 Multi-user MIMO OFDM with Interference Alignment

In previous sections, we have considered applying interference alignment to OFDM systems.

Since MIMO transmission technique can also be adopted to enhance the system throughput, we

consider incorporating interference alignment to MIMO-OFDM systems in this section.

Suppose we haveM antennas at both the transmitter and receiver sides, andN subcarriers in

total. The signals received at thei-th receiver on subcarriern can be represented as:

~yi(n) = Hii(n)Vi(n)~xi(n) +
∑

j 6=i

Hji(n)Vj(n)~xj(n), (3.48)

whereHij(n), Vi(n), and~xi(n) are the channel matrix from transmitteri to receiverj, precoding

matrix at transmitteri, and data at transmitteri, respectively; and all of them are at subcarrier

n. From (3.48), we can see that, the signals received can be represented as a matrix, with each

column being the signals received from each subcarrier, i.e., Yi = [~yi(1) ~yi(2) . . . ~yi(n)]. Or we

could vectorize this matrix so that we get the following simpler form.

~yi = HiiVi~xi +
∑

j 6=i

HjiVj~xj. (3.49)

Since each antenna pair could operate on any subcarrier and there is no crosstalk between sub-

carriers, the wireless channelHij between transmitteri and receiverj is of the form as shown

in (3.50).

Theorem 3.3.For a MIMO-OFDM system withN subcarriers andM antennas at each transmitter

and receiver side, we can divide the subcarriers into⌊N/(2n + 1)⌋ groups, wheren ∈ N, and

precode and decode the groups separately to achieve the interference alignment gain.

Proof. In Theorem 3.1, we have actually established that for a system of diagonal channels, we

could separately precode and decode each group of subcarriers. Now consider the case when all

the devices are equipped with multiple antennas. We can still divide the subcarriers into different
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Hij =



h1,1
ij 0 0 · · · hN+1,1

ij 0 · · · h
(M−1)N+1,1
ij 0 · · ·

0 h2,2
ij 0 · · · 0 hN+2,2

ij · · · 0 h
(M−1)N+2,2
ij · · ·

...
...

. ..
...

...
. . .

...
...

.. .
...


 . (3.50)

Hij =




h1,1
ij · · · hM,1

ij 0 · · · 0 · · · 0
...

.. .
... 0 · · · 0 · · · 0

h1,M
ij · · · hM,M

ij 0 · · · 0 · · · 0
...

...
...

. . . · · · ...
...

...

· · · · · · · · · · · · . .. · · · · · · · · ·
0 · · · · · · 0 · · · h

M(N−1)+1,M(N−1)+1
ij · · · h

MN,M(N−1)+1
ij

...
...

...
... · · · ...

. . .
...

0 · · · · · · 0 · · · h
M(N−1)+1,MN
ij · · · hMN,MN

ij




. (3.51)

groups, then precode and decode them separately, since we are able to distinguish the signals from

different antennas and different subcarriers. In other words, upon receiving a signal, the receiver

has the knowledge of from which antenna and which subcarrierit gets the signal. So by properly

adjusting the order of the data transmitted, the channel is essentially of the form in (3.51). We can

readily identify that (3.51) is actually in the block diagonal form with thei-th block corresponding

to the channels associated with thei-th subcarrier. Within each block, we have standard MIMO

channels. LettingV , with dimensionMN × d, assume the form of (3.24), by similar arguments

as in Theorem 3.1, we could precode and decode the groups separately to achieve the interference

alignment gain.

Lemma 1. All the channel matrices and matrixT are invertible.

Proof. As shown in (3.52), the inverse of a block matrix can be found by calculating the inverse of

each block. Since for each block, we have a standard MIMO channel matrix and each of its entry is

drawn from a continuous random distribution, each block is invertible with probability1. So each

channel matrix is invertible. Since the product of invertible matrices is still invertible, according to
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(3.21), matrixT is invertible.




B1 0 0

0 B2 0

0 0 B3




−1

=




B−1
1 0 0

0 B−1
2 0

0 0 B−1
3




. (3.52)

Theorem 3.4.For a MIMO-OFDM system withN subcarriers andM antennas at each transmitter

and receiver side, the maximum gain is4
3
M .

Proof. According to Theorem 3.3, we could precode and decode over groups of subcarrier. Also,

according to our previous results, we can only precode and decode over3 subcarriers. So subcarrier-

wise, the normalized DoF is4/3.

We next show that4
3
M is the maximum achievable DoF. Firstly, we notice that by dividing

the subcarriers into groups of3, takingH11 for instance, it is transformed from (3.53) to (3.54).

With the establishment of Lemma 1, following the proof of Theorem 3.1, and replacing the scalars

with blocks, we readily have the maximum gain of4
3
M .

H11 =




h11
11 0 0 h41

11 0 0

0 h22
11 0 0 h52

11 0

0 0 h33
11 0 0 h63

11

h14
11 0 0 h44

11 0 0

0 h25
11 0 0 h55

11 0

0 0 h36
11 0 0 h66

11




. (3.53)
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H11 =




h11
11 h21

11 0 0 0 0

h12
11 h22

11 0 0 0 0

0 0 h33
11 h44

11 0 0

0 0 h34
11 h44

11 0 0

0 0 0 0 h55
11 h65

11

0 0 0 0 h56
11 h66

11




. (3.54)

We next show how to achieve this gain. We designV1, V2, andV3 as follows.

V1 = A (3.55)

V2 = H−1
23 H13C (3.56)

V3 = H−1
32 H12B, (3.57)

where

A = [~w T ~w T2 ~w · · · T(n+1)M−1 ~w] (3.58)

B = [TM ~w TM+1 ~w · · · T(n+1)M−1 ~w] (3.59)

C = [TM−1 ~w TM ~w · · · T(n+1)M−2 ~w] (3.60)

T = H−1
12 H32H−1

31 H21H−1
23 H13 (3.61)

~w = [1 1 · · · 1]T . (3.62)

It can be observed that:

A = [~w T ~w · · · TM−1 ~w B] (3.63)

= [~w T ~w · · · TM−2 ~w C T(n+1)M−1 ~w]. (3.64)
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At receiver1, the received signals can be written as:

~y1 = H11V1~x1 + H21V2~x2 + H31V3~x3

= H11V1~x1 + H21H−1
23 H13C~x2 + H31H−1

32 H12B~x3

= H11V1~x1 + H21H−1
23 H13C~x2 + H31H−1

32 H12TC~x3

= H11V1~x1 + H21H−1
23 H13C~x2 + H21H−1

23 H13C~x3

= H11V1~x1 + H21H−1
23 H13C(~x2 + ~x3)

= (H11V1 H21V2) ·




~x1

~x2 + ~x3


. (3.65)
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For signals at receiver2, we have:

~y2 = H12V1~x1 + H22V2~x2 + H32V3~x3

= H12(~w T ~w · · · TM−1 ~w B)~x1 + H22V2~x2 + H12B~x3

= H12(~w T ~w · · · TM−1 ~w)




x
(1)
1

...

x
(M)
1




+ H12B




x
(M+1)
1

...

x
((n+1)M)
1




+ H22V2~x2 + H12B~x3

= (H22V2 H12(~w T ~w · · · TM−1 ~w) H12B) ·


~x2

x
(1)
1

...

x
(M)
1

x
(M+1)
1 + x

(1)
3

...

x
((n+1)M)
1 + x

(nM)
3




. (3.66)
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And similarly for signals at receiver3, we have:

~y3 = H13V1~x1 + H23V2~x2 + H33V3~x3

= H13(~w T ~w · · · TM−2 ~w C T(n+1)M−1 ~w)~x1

+ H13C~x2 + H33V3~x3

= H13(~w T ~w · · · TM−2 ~w)




x
(1)
1

...

x
(M−1)
1




+ H33V3~x3

+ H13C




x
(M)
1

...

x
((n+1)M−1)
1




+ H13C~x2

+ H13T(n+1)M−1 ~wx
(n+1)M
1

=




H33V3

H13C

H13(~w T ~w · · · TM−2 ~w)

H13T((n+1)M−1) ~w




T

·




~x3

x
(M)
1 + x

(1)
2

...

x
((n+1)M−1)
1 + x

(nM)
2

x
(1)
1

...

x
(M−1)
1

x
((n+1)M)
1




. (3.67)

From (3.65)–(3.67), we can see that the desired signals are all free from interferences.
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We can also calculate the probability of system outage when multiple antennas are deployed.

So we need to find the probability ofPr
{
t(1) ≤ t((2n+1)M)

γ

}
. With similar arguments, the joint PDF

of t(1) andt((2n+1)M) can be found as:

ft(1)t((2n+1)M)
(x, y)

= lim
∆x→0,∆y→0

P (x ≤ t(1) ≤ x+∆x,

y ≤ t((2n+1)M) ≤ y +∆y)/(∆x∆y)

=

(
(2n+ 1)M

0, 1, (2n+ 1)M − 2, 1, 0

)
p01p

1
2p

(2n+1)M−2
3 p14p

0
5. (3.68)

If ti is approximated as a Uniform distributed variable in the range of (0, 1), the probability

Pr
{
t(1) ≤ t((2n+1)M)

γ

}
can be found as follows.

Pr

{
t(1) ≤

t((2n+1)M)

γ

}
= (2nM +M − 1)· (3.69)

(2nM +M)

∫ 1

0

∫ y
γ

0

(y − x)2nM+M−2dxdy (3.70)

= 1−
(
1− 1

γ

)(2n+1)M−1

(3.71)

≥ 1−
(
1− 10−

a
2(n+1)M−2

)(2n+1)M−1

, (3.72)

If ti is approximated as a Rayleigh distributed variable, there isno closed-form solution for

probabilityPr
{
t(1) ≤ t((2n+1)M)

γ

}
. The joint PDF oft(1) andt((2n+1)M) can be derived as:

ft(1)t((2n+1)M)
(x, y) = ((2n+ 1)M)((2n+ 1)M − 1)

xy

σ4
·

exp

(
−x2 + y2

2σ2

)[
exp

(
− x2

2σ2

)
− exp

(
− y2

2σ2

)](2n+1)M−2

(3.73)

Figs. 3.3 and 3.4 illustrate the probabilities of system outage for Uniform and Rayleigh dis-

tributions whena = 3, respectively. We can see that forn = 1 andM = 2, the probabilities are
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Figure 3.3: Probability of System Outage with multiple antennas for Uniform distribution.
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Figure 3.4: Probability of System Outage with multiple antennas for Rayleigh distribution.

0.8505 and0.2758. Forn = 1 andM = 3, the probabilities are0.9962 and0.7937. Forn = 2 and

M = 2, the probabilities are0.9981 and0.9971.
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Figure 3.5: System throughput comparison when the channel variance is large.
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Figure 3.6: System throughput comparison when the channel variance is small.

3.5 Simulation

Simulations are conducted to evaluate the performance of the proposed schemes and verify

the benefits brought about by incorporating interference alignment in multi-user OFDM systems.

We consider the case of3 users. The number of subcarriers is255. Each transmitter precodes over

(2n + 1)M subcarriers. Block fading channels are used in the simulations, where channel gains
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are piece-wise constants for the duration of each time slot drawn from a certain distribution. BPSK

is used as the modulation scheme. So we transmit1 bit on each subcarrier and we measure how

many bits are successfully decoded at the receivers. In thisway, we are essentially calculating the

number of interference-free channels in the system (we callit unnormalized DoFhereafter).

Fig. 3.5 and Fig. 3.6 illustrate the performances of different schemes when the channel is

drawn from an uniform distribution on[0, 1] and[0.9, 1], respectively. Comparing these two figures,

we can see that when the channel variance is small, higher system throughput can be achieved. This

conforms to our discussions about the precoding matrix in Section 3.3.3. It can also be observed

that the trends and comparative relationships are similar in Fig. 5 and Fig. 6.

We can see from Fig. 3.6 that whenn = 1, multiuser OFDM with interference alignment can

achieve an unnormalized DoF of339.98. Compared to the highest throughput of single user OFDM

of 255, the DoF has been improved by a factor of approximately1.33 by incorporating interference

alignment. Whenn = 2, we can see from both figures that the throughput of multiuserOFDM

with interference alignment has degraded when the SNR is in the range[0, 78] dB. That verifies

our theorem that under certain power constraint, we can onlyprecode over3 subcarriers. Same

conclusions also hold forn = 3 of multiuser OFDM with interference alignment, which exhibits

poorer performance in the SNR range of[20, 100] dB.

For the case of multiuser MIMO OFDM with interference alignment, whenn = 1 with small

channel variance, the highest unnormalized DoF is622.7, which is2.44 times of the unnormalized

DoF of the single user OFDM system. The reason why it is slightly less than2.66 is also due to

the big differences among the elements of the precoding matrices. Forn = 2 andM = 2, we can

see that the performance is worse than that ofn = 1 andM = 2. When the devices are equipped

with 3 antennas, we letn = 1 and precode over3 subcarriers. The highest unnormalized DoFs

are671.2 and683.208 for large and small channel variance cases, respectively, which are2.63 and

2.68 times of that of the single user OFDM system. However, the maximum gain is suppose to be

4 times the single user OFDM system. The performance degradation is also due to big difference

among the elements of the precoding matrices.
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3.6 Conclusions

In this chapter, we investigated the problem of how to exploiting interference in OFDM sys-

tems. We provided an analysis and developed effective schemes on incorporating interference

alignment with multi-user (MIMO) OFDM to enhance system throughput. With an integer pro-

gramming formulation, we derived the maximum efficiency formulti-user (MIMO) OFDM/interference

alignment systems, and showed how to achieve the maximum efficiency under practical con-

straints. The performance of the proposed schemes were validated with simulations.
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Chapter 4

Stackelberg Game for Cognitive Radio Networks with MIMO and Distributed Interference

Alignment

4.1 Introduction

In the past decade, MIMO has evolved from a theoretic conceptto a technology that can be

widely used in practice [23]. It is desirable to exploit MIMOfor enhanced primary and secondary

transmissions.

Another physical layer technology calledinterference alignment, is a significant breakthrough

that exploits interference in interference limited wireless networks [19]. Traditionally, if interfer-

ence is small, it is simply treated as background noise; if interference is large, it can be decoded

first and then removed from the received signal (i.e., interference cancellation); if interference is

comparable to the desired signal, we usually try to avoid this case by orthogonalizing the channels.

Unlike traditional approaches, interference alignment casts interference to half of the received sig-

nal space to achieve a normalized Degree of Freedom (DoF) ofK/2, whereK is the number of

interfering users. Since an interference-free channel only has a normalized DoF of1, substantial

system throughput gain can be achieved with interference alignment whenK is large. For interfer-

ence alignment, a strong requirement is the availability ofglobal channel state information (CSI)

at every node. To relax this requirement, distributed interference alignment is investigated and an

iterative algorithm is proposed in [41] to achieve interference alignment with local CSI.

In this chapter, we investigate how to incorporate these twoadvanced physical layer technolo-

gies, i.e., MIMO and distributed interference alignment, in CR networks. The CR network consists

of a primary user and multiple secondary users, each withN antennas. Time is divided into equal

length time slots with a normalized length. The primary userhas some data to sent and requires
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a certain non-zero data rate in each time slot. It also leasesspectrum to secondary users for more

revenue. Secondary users pay the primary user for data transmission in the time slot.

A key observation is that the licensed users usually have finite packages to send. After a period

of high data rate transmission, they might be interested in leasing the spectrum to the unlicensed

users if they can be reimbursed. On the other hand, the unlicensed users desire the opportunities

for data transmission if the costs are acceptable. Therefore, in the proposed cooperative spectrum

leasing scheme, the primary user divides the time slot into three phases: (i) in Phase I, only the

primary user transmits with MIMO; (ii) in Phase II, the primary user and a selected set of sec-

ondary users transmit simultaneously using distributed interference alignment; (iii) in Phase III,

only selected secondary users transmit with distributed interference alignment. The primary user

decides the division of the three phases, selects the set of secondary users for spectrum leasing,

and collects a revenue from the selected secondary users proportional to their transmit powers (or,

data rates).

We find such a cooperative spectrum leasing framework fits well with the Stackelberg game

theory [42]. In the formulated Stackelberg game, the primary user is theleaderand the secondary

users arefollowers. The leader decides the division of a time slot into three phases and selec-

tion of followers, aiming to balance its own data transmission and revenue collection by leasing

spectrum. Once the leader decisions are made, a follower canchoose a transmit power (and the

corresponding data rate) based on how much it is willing to pay. We define theStackelberg Equi-

librium where neither the primary user nor any secondary user could gain by unilateral change of

strategy. We present a rigorous analysis with thebackward inductionmethod [42] and derive the

unique Stackelberg Equilibrium for the cooperative spectrum leasing game.

We find the most desirable scenario for secondary users is to have only Phase III in the time

slot with only3 players. The strategy for the primary user depends on the number of secondary

users. With more than2N − 2 secondary users, exactly2N − 2 secondary users will be selected,

each havingone interference free channel, and there will be only Phase II inthe time slot. With

fewer than2N − 2 secondary users,all secondary users will be selected and there will be only
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Phases II and III in the time slot. Therefore, spectrum leasing is always helpful for increasing the

utilities of both the primary and secondary users. In the simulation study, we first compare the

proposed scheme with a scheme without spectrum leasing to demonstrate the benefits of spectrum

leasing. We then compare the proposed scheme with the cooperative scheme presented in [47] to

demonstrate the efficacy of distributed interference alignment. Significant performance gains are

achieved by the proposed scheme in these simulations.

The remainder of this chapter is organized as follows. In Section 4.2, we present the prelim-

inaries and system model. We define the Stackelberg game in Section 4.3 and derive the unique

Stackelberg equilibrium in Section 4.4. Simulation results are presented in Section 4.5 and related

work is reviewed in Section 4.6. Section 4.7 concludes this chapter.

4.2 Preliminaries and System Model

4.2.1 MIMO and Distributed Interference Alignment

This chapter is closely related to MIMO and distributed interference alignment. We brief

review the preliminaries in this section. More details can be found in [23,41]. For recently devel-

opment of MIMO techniques, readers are referred to [55] [56][57].

MIMO Capacity Basics

With the advance of antenna technology, it is now feasible toequip wireless devices with mul-

tiple antennas. In general, three types of performance gains can be achieved with MIMO, namely,

diversity gain, multiplexing gain, andantenna gain. In this chapter, we focus on multiplexing gain,

namely, DoF. We assume that all transmitters and receivers have the same number of antennas.

For a MIMO system withN ≥ 2 antennas, assume that the CSIH is known at the transmitter.

Since the MIMO channel can be decomposed intod parallel channels, the channel capacity is given
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by [46]

C = max
pi:

∑

i pi≤P

d∑

i=1

log

(
1 +

σ2
i pi
N0

)
, (4.1)

whereP denotes the total transmitter power limit,pi is the power allocated to thei-th parallel

channel,σ2
i = λi andλi is the i-th largest eigenvalue of matrixHHH . Note that bandwidth is

normalized throughout this chapter.

In the high SNR region, equal power allocation is shown to be sub-optimal, but is easier

for mathematical modeling than water-filling. When the transmit power isP/d for each parallel

channel, the total capacity is

C ≈
d∑

i=1

log

(
1 +

Pσ2
i

dN0

)

≈
d∑

i=1

log

(
Pσ2

i

dN0

)

= d log(SNR) +
d∑

i=1

log

(
σ2
i

d

)
(4.2)

The second item in (4.2) is negligible when the SNR is high. Wethus ignore this term in the

following discussion. Thus, wireless channel is assumed tobe perfect throughout this chapter.

Distributed Interference Alignment

The basic idea of interference alignment is to cast the interference to no more than half of

the received signal space, and leave the other half clean andrecognizable. If there areK users,

totally K/2 normalized DoF could be achieved. The system throughput canbe greatly enhanced

whenK is large. ForK = 0 and1, there is no interference; forK = 2, the normalized DoF is

1, which is trivial. Therefore, we only consider the case where the number of interfering nodesK

satisfiesK ≥ 3. It is worth noting that, to align interference perfectly, global CSI is required at
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every participating node. To overcome this challenge, an iterative distributed interference align-

ment algorithm was proposed in [41], which only requires local CSI at each interfering node. By

utilizing the reciprocity of wireless networks, it works asfollows.

Firstly, compute the interference covariance at each receiver as:

Qk =
K∑

j=1,j 6=k

Pj

dj
HjkVjVH

j HH
jk, (4.3)

wherePj is the total transmitting power of userj, Vj is theprecoding matrixat transmitterj, Hjk

is the channel gain from transmitterj to receiverk.

Minimizing the interference leakage at each receiver, theinterference cancellation matrixUk

is given as:

~uki = νi[Qk], i = 1, . . . , d, (4.4)

where~uki is the i-th column ofUk, andνi[Qk] is the i-th smallest eigenvalue’s corresponding

eigenvector.

Then reverse the direction of communication and let
←−
V k = Uk. The interference at the reverse

link’s receiver is:

←−
Q k =

K∑

j=1,j 6=k

←−
Pj

dj

←−
H jk
←−
V j
←−
V H

j

←−
H H

jk. (4.5)

Minimizing the interference leakage at each receiver of thereverse link, the interference can-

cellation matrix is given as:

←−
~u ki = νi[

←−
Q k], i = 1, . . . , d. (4.6)

Then reverse the direction again, and letVk =
←−
U k. These steps are repeated until convergence

is achieved.
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Figure 4.1: The three-phase operation of the MIMO CR network with distributed IA.

The general feasibility condition for interference alignment is given by

UH
k HjkVj = 0, for j 6= k (4.7)

rank(UH
k HkkVk) = dk, for all k. (4.8)

In [20], a system is called to be proper if it satisfies the following condition:

d ≤ 2N

K + 1
. (4.9)

Since distributed interference alignment should also satisfy the conditions given in (4.7) and

(4.8), to simplify the discussion, we consider a proper system to be feasible for distributed inter-

ference alignment for simplicity.

4.2.2 System Model and Assumptions

The MIMO CR network is illustrated in Fig. 4.1. There are one primary user andKT sec-

ondary users sharing the licensed spectrum, each withN antennas. We consider a time-slotted

system, where each time slot is normalized to 1 unit in lengthand is divided into three phases, with

lengthsαβ, α(1− β), and(1− α), respectively, for fractions0 ≤ α ≤ 1 and0 ≤ β ≤ 1.
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In Phase I, the primary user transmits its packets at the highest rate using MIMO, and the

secondary users remain silent. The DoF for the primary user isdI = N . The achievable rate of the

primary user in Phase I is:

RI
P = dI log(SNR), (4.10)

where SNR is assumed to be constant during a time slot.

We assume that the primary user always has a finite amount of packets to send in each time

slot. After a period of high data rate transmission (with length αβ), the primary user has the in-

centive to lease the spectrum to secondary users to increaseits utility, by collecting revenue from

selected secondary users (but with a lower data rate for itself). In Phase II, the primary user and

K ∈ [0, KT ] selected secondary users transmit simultaneously usingdistributed interference align-

ment, with a DoF ofdII = ⌊ 2N
K+2
⌋. A selected secondary user makes payments that is proportional

to its transmit power (i.e., its data rate), and the primary user collects payments from all selected

secondary users. The achievable rate of the primary user in Phase II is

RII
P = dII log(SNR). (4.11)

The achievable rate of secondary userSi in Phase II is

RII
Si

= dII log(SNRi), (4.12)

whereSNRi = Pi/N0 is theSNR for each selected secondary user, which is assumed to be

constant in a time slot.

In Phase III, the primary user stops its transmission and leases the spectrum to selected sec-

ondary users, which transmit using distributed interference alignment withdIII =
⌊

2N
K+1

⌋
. In Phase
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III, the achievable rate of secondary userSi is

RIII
Si

= dIII log(SNRi). (4.13)

As in [54], we assume a common control channel for the primaryuser and secondary users to

exchange precoding and interference cancellation matrices, the weight factor information, and the

fractionsα andβ. Channel estimation is completed before data transmissions. Note that the DoFs

are integers.

4.3 Stackelberg Game Formulation

In the MIMO CR network, the primary user decides the division of a time slot into three

phases and selection of secondary users, while balancing its own data transmission and revenue

collection by leasing spectrum. Once the decisions are madeby the primary user, a secondary user

can choose a transmit power (and the corresponding data rate) based on how much it is willing to

pay. Such interactions fit perfectly with the Stackelberg game model [42].

4.3.1 Stackelberg Game Formulation

In this section, we formulate a Stackelberg game for the MIMOCR network with distributed

interference alignment. The primary user is theleaderand the secondary users arefollowers. The

strategyof the primary user is given by

SP = {α, β,K|0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 3 ≤ K ≤ KT}, (4.14)

whereKT is the total number of secondary user in system.

The secondary user strategy is to find a transmit powerPi, as

SSi
= {Pi|0 ≤ Pi ≤ Pmax}, ∀ i. (4.15)
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Here we assume thatPmax ≥ 2wSN/C0, whereC0 is unit price for secondary user transmit power

(see (4.16)) andwS is the weight factor for secondary user utility (see (4.17)).

The primary user transmits its data in Phases I and II, and collects revenue in Phases II and

III. The utility of the primary user is the sum of data transmitted and revenuecollected, as

UP = wPfP (RP ) +
K∑

k=1

C0Pi, (4.16)

whereRP = αβRI
P +α(1− β)RII

P is the amount of primary user data transmitted,wP is a weight

factor,C0 is the unit price for secondary user power, andfP (x) is the satisfaction function of the

primary user. Since the primary user always has some data to send, it requires a minimum data

rate. Naturally we choosefP (x) = ln(x), x ≥ 0. The negative value for very smallx serves as a

penalty that forces the primary user to achieve a minimum data rate. From the shape offP (x), we

know that at the beginning stage, the primary user is enthusiastic about data transmission. After

a period of transmission, even a great increase in the data transmission can only result in a small

increase in the satisfaction.

By definingfP (x) = ln(x), we actually also assume that the primary user always has some

packages to send. Since if the primary user has no package to send, it will provide all the time and

spectrum to the secondary users and merely collect revenues. In this way, the primary user is in fact

working as a network service provider not a service user. This case is not allowed. By adjusting

the parameterwP , the primary users is actually putting different weights onthe data transmission

and the revenues it will collect. This is also related to the content type that the primary user is

transmitting. If the primary user is transmitting high resolution video, it may assignwP a huge

number, say108. That is, the primary user currently values the data transmission much more than

the revenues collected. To maximizeUP , the primary user simply setsα = 1, β = 1. If the primary

user is surfing the internet and is tolerant of the delays, it may assignwP a small number, say0.01.

Revenue is more helpful to maximize theUP at this scenario. That means the revenue collected

becomes more important to the primary user now.
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Therefore, since the primary user is rational and selfish, itaims to maximizeUP by con-

trolling the lengths of the three phases and selecting secondary users to participate in the game.

By adjusting weightwP , the primary users can trade off between data transmission and revenue

collection.

Selected secondary users transmit their data during PhasesII and III and make a one-time

payment to the primary user. The utility of the secondary user is given by

USi
= wSfS(RSi

)− C0Pi. (4.17)

whereRSi
= α(1 − β)RII

Si
+ (1 − α)RIII

Si
, fS(x) is the satisfaction function of the secondary

user and thewS is the weight factor. As in [47], to simplify notation, we assume identicalwS

for all the secondary users. It could be easily extended to heterogeneous cases. Since the essence

of cognitive radio is to opportunistically exploit the spectrum, we choosefS(x) = x, indicating

that the secondary users operate in thebest effortsmanner. By assigning a big number towS,

the secondary users care more about the data transmission. On the contrary, if a small number is

assigned towS, the secondary users is more concerned about the payment. Thus, the weightwS

allows a secondary user to trade off between data transmission and payment.

Therefore we define a Stackelberg game, with players, their roles, strategies ((4.14) and

(4.15)), and utilities ((4.16) and (4.17)) specified. We provide a thorough analysis of the game

with respect to the existence and uniqueness of theStackelberg Equilibriumand optimal strategies

in Section 4.4.

4.3.2 Discussion

From the secondary users’ point of view, it wants to transmitmore data while keeping the

costs as low as possible. If there are fewer players, the DoF can be increased. Since the DoF is

a pre-log factor (see (4.12) and (4.13)), transmit more power when the DoF is high is definitely a

better choice. At the same time, since the primary user will not participate in the Phase III, with
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one less player, the DoF could be further increased. Since once the one-time payment is made, the

secondary users can transmit during Phase II and Phase III, the longer the Phase II or Phase III, the

better the secondary users will feel. To sum up, with the unitprice fixed, the secondary users favor

fewer players and longer duration of Phase II or Phase III, preferably Phase III.

Since the primary user is the leader, it has the advantages ofmaking trade-off between data

transmission and revenue collecting. In Phase I, the transmission rate is high. More primary user

data could be transmitted if Phase I is long. In Phase II, the primary user could collect revenue

while transmitting data, although at a lower data rate. Withmore secondary users selected, more

players are paying the primary user, which is helpful to maximize its utility. However, if too many

secondary users are selected, The DoF could even be0 with too many players. Under this situation,

there’s no revenue since no one could transmit and thus no onewould pay. Therefore,K should be

carefully decided. In summary, the primary user’s strategyshould consider the trade-off between

data transmission and revenue collection. Since in Phase II, the primary user can transmit while

collecting revenue, and the choices ofα. β, andK are dependent, the primary user decision is

highly complicated.

4.4 Performance Analysis and Solution Strategy

In this section, we analyze the formulated Stackelberg gameto find a strategy set, called the

equilibrium, for the primary user and secondary users such that no one could gain by unilateral

change of strategy.

Let ~P ∗ be the vector of secondary user powers and~P ∗
−i =

~P ∗\Pi. We first defineStackelberg

Equilibriumas follows.

Definition 1. (Stackelberg Equilibrium) A strategy set{α∗, β∗, K∗, ~P ∗} is a Stackelberg Equilib-

rium of the game defined in Section 4.3 if the following conditions are satisfied:

1. UP (α
∗, β∗, K∗, ~P ∗) ≥ UP (α, β,K, ~P ∗), for all α ∈ [0, 1], β ∈ [0, 1], andK ∈ [0, KT ].
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2. USi
(P ∗

i , ~P
∗
−i, α

∗, β∗, K∗) ≥ USi
(Pi, ~P

∗
−i, α

∗, β∗, K∗), for all α ∈ [0, 1], β ∈ [0, 1], K ∈

[0, KT ] andi ∈ [1, K].

Using thebackward inductionmethod [42], we prove the uniqueness of the Stackelberg Equi-

librium, and derive the unique Stackelberg Equilibrium (and the optimal strategy) for the game

defined in Section 4.3 in the remainder of this section.

4.4.1 Secondary User Utility Maximization

From (4.17), the utility of the secondary user is given by:

USi
(Pi) = wSfS(RSi

)− C0Pi

= wS[α(1− β)dII log(Pi/N0) + (1− α)×

dIII log(Pi/N0)]− C0Pi. (4.18)

To maximize the utility, the secondary user solves the following maximization problem.

max
0≤Pi≤Pmax

USi
(Pi) (4.19)

For givenα andβ, theUSi
(Pi) is a concave function ofPi. Setting

dUSi

dPi
= 0, we derive the unique

maximizer of (4.19), as

P ∗
i =

wSα(1− β)dII + wS(1− α)dIII
C0

. (4.20)

Since0 ≤ α ≤ 1, 0 ≤ β ≤ 1 anddII ≤ dIII ≤ 2N , we have

P ∗
i ≤ wSdIII/C0 ≤ 2wSN/C0 ≤ Pmax, (4.21)
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indicating that theP ∗
i given in (4.20) is a feasible solution. It follows that the maximum utility of

the secondary user is

U∗
Si

= Y log (Y/[2C0N0]) , i ∈ [1, K], (4.22)

whereY = wS[α(dII − dIII)− αβdII + dIII ].

SinceU∗
Si

is a monotone increasing function ofY , anddII ≤ dIII , it can be verified that

U∗
Si

is a monotone decreasing function ofα andβ. Sinceα(1 − β) ≥ 0 and(1 − α) ≥ 0, U∗
Si

is a monotone increasing function ofdII anddIII . From a secondary user’s perspective, the best

scenario isα = 0, β = 0, andK = 3, i.e., the entire time slot is Phase III with the minimum

number of followers. The selected secondary users enjoy thehighest data rate. The primary user

can only collect revenue from the three secondary users. This is consistent with our conjectures in

Section 4.3.2. However, that is the best case for the secondary users. From later discussions, we

can see that the primary user, who tries to maximize his utility, may in part but will not completely

set the parameters according to the secondary users’ wills.

4.4.2 Primary User Utility Maximization

Given the optimal strategies of all the secondary users, we substitutefP (RP ) andP ∗
i into

(4.16). It follows that

UP (α, β,K) = wP ln[αβRI
P + α(1− β)RII

P ] +

KwS[α(1− β)dII + (1− α)dIII ]. (4.23)

The primary user solves the following problem to maximize its utility.

max
0≤α≤1,0≤β≤1,3≤K≤KT

UP (α, β,K, ~P ∗). (4.24)
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Maximization of the primary user utility is more complicated. We examine the problem for

different parameter ranges and derive the local maximizer in each range. The global optimum is

found by comparing the local maximizers. This is similar to finding the maximum element in a

matrix: we first find the largest element in each column; then we compare these elements from

different columns to find the largest one in the matrix. Without loss of generality, we assume

wP = wS
1. The analysis can be easily extended to the casewP 6= wS.

Case I WhenKT ≥ (2N − 1)

When 3 ≤ K ≤ (2N − 1) First, let’s considerK ∈ [3, 2N − 1]. UP can be rewritten as follows.

UP = wP ln

{
log(SNR)

[
αβN + α(1− β)

⌊
2N

K + 2

⌋]}

+KwS

[
α(1− β)

⌊
2N

K + 2

⌋
+ (1− α)

⌊
2N

K + 1

⌋]
. (4.25)

Note thatK andβ are dependent variables. Ifβ = 1, there is no Phase II. We next consider

β = 1 andβ ∈ [0, 1).

Case (a):β = 1 We denote the utility of the primary user asU0
P in this case, which is given by

U0
P = wP ln(αN log(SNR)) +KwS(1− α)

⌊
2N

K + 1

⌋

≤ wP ln(αN log(SNR)) + wS(1− α)
2N

1 + 1
K

≤ wP ln(αN log(SNR)) + wS(1− α)(2N − 1). (4.26)

The two equalities hold true whenK = 2N−1. We then have the following optimization problem.

max
0≤α≤1

U0
P (α, 1, 2N − 1), (4.27)

1There are some special case ofwP andwS . For instance,wP =∞. Under this condition, to maximize the utility,
the primary user will not lease the spectrum to the secondaryusers, which is trivial. We focus on the generic case that
wP = wS in this chapter.
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whereU0
P (α, 1, 2N − 1) = wP ln(αN log(SNR)) + wS(2N − 1)(1 − α). SinceU0

P is concave

with respect toα, problem (4.27) can be solved with convex programming [45].U0
P achieves its

maximum whenα = 1
2N−1

, and its maximum is given by

U∗0
P

(
1

2N − 1
, 1, 2N − 1

)
= wP ln

(
N

2N − 1
log(SNR)

)

+wS(2N − 2). (4.28)

Case (b):β ∈ [0, 1) RelaxingK to a continuous variable and ignoring the floor functions, we

have

∂UP

∂K
= wP

{
− 2(1− β)

(K + 2)2β + 2(K + 2)(1− β)

+
4Nα(1− β)

(K + 2)2
+

2N(1− α)

(K + 1)2

}
.

The first item is irrelevant toα, while the last two items are linear inα. If for both α = 0 and

α = 1, ∂UP

∂K
≥ 0 holds true for anyβ, then for any0 ≤ α ≤ 1 and0 ≤ β < 1, ∂UP

∂K
≥ 0.

We prove this conjecture as follows. Whenα = 0,we have:

∂UP

∂K
=

2NwP

(K + 1)2
−
(

wP

K + 2

)(
2(1− β)

βK + 2

)

≥ 2NwP

(K + 1)2
− wP

K + 2
≥ wP

[
1

K + 1
− 1

K + 2

]
≥ 0.

The first inequality is becauseβ ≥ 0, such that2(1−β)
βK+2

≤ 1. The second inequality is due to the fact

that2N ≥ (K + 1).

Whenα = 1, we have

∂UP

∂K
= wP

(1− β)

(K + 2)2

[
4N − (K + 2)

2

βK + 2

]

≥ wP
(1− β)

(K + 2)2
[4N − (K + 2)] ≥ 0.
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The first inequality is due toβ ≥ 0, such that 2
βK+2

≤ 1. The second inequality is due to the fact

that2N ≥ (K + 1).

Therefore, if we treatK as a continuous variable and ignore the floor functions,UP is a

monotone increasing function ofK. To maximizeUP , we should haveK = 2N−1. Now consider

K as an integer and take the floor functions into account. We show we should haveK = 2N − 2

in this case.

If K = 2N − 1, denote the utility of primary user in this case asU1
P . Since⌊ 2N

K+2
⌋ = 0 and

⌊ 2N
K+1
⌋ = 1, we have:

U1
P = wP ln(αβN log(SNR)) + wS(2N − 1)(1− α). (4.29)

It can be verified thatU1
P is an increasing function ofβ for β ∈ [0, 1). Thus, we haveU1

P < U0
P . It

follows that

U∗1
P < U∗0

P . (4.30)

Given (4.30), we no longer need to examine the maximization of U1
P ; K = 2N−1 can be discarded

for β ∈ [0, 1). As a matter of fact, we could see from later discussion thatmaxα,β UP (α, β, 2N −

1) < maxα,β UP (α, β, 2N − 2).

SinceK = 2N − 1 is excluded, we only need to considerK ≤ 2N − 2. Rewrite (4.25) as

UP = wP ln

(
Nβ + (1− β)

⌊
2N

K + 2

⌋)
+

KwS

[
α(1− β)

⌊
2N

K + 2

⌋
+ (1− α)

⌊
2N

K + 1

⌋]

+wP ln(α log(SNR)). (4.31)

Definef1(K) = ln(Nβ + (1− β)⌊ 2N
K+2
⌋) andf2(K) = K[α(1− β)⌊ 2N

K+2
⌋+ (1− α)⌊ 2N

K+1
⌋]. We

have the following Lemma forf2(K).
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Lemma 2. argmaxK∈[3,2N−2]f2(K) = 2N − 2.

Proof. For the first item inf2(K), we have:

K

⌊
2N

K + 2

⌋
≤ K

2N

K + 2
≤ 2N − 4N

K + 2
≤ 2N − 2.

The equalities hold true only forK = 2N − 2. For the second item inf2(K), if there is no

constraint onK, K⌊ 2N
K+1
⌋ = 0 for K > 2N − 1. ForK ≤ 2N − 1, we have

K

⌊
2N

K + 1

⌋
≤ K

2N

K + 1
≤ 2N − 2N

K + 1
≤ 2N − 1.

The equalities hold true only forK = 2N − 1. When the constraintK ≤ 2N − 2 is enforced,

if K = 2N − 2, K⌊ 2N
K+1
⌋ = 2N − 2. SinceK⌊ 2N

K+1
⌋ can only be integers, and2N − 2 is only

1 less than2N − 1, 2N − 2 is the largest number we can have forK⌊ 2N
K+1
⌋ whenK ≤ 2N − 2.

Since bothK⌊ 2N
K+2
⌋ andK⌊ 2N

K+1
⌋ are maximized atK = 2N − 2, f2(K) attains its maximum at

K = 2N − 2.

Lemma 3. For K ′ ∈ (N − 2, 2N − 2), UP (α, β,K
′) < UP (α, β, 2N − 2).

Proof. ForK ′ ∈ (N − 2, 2N − 2), we always have⌊ 2N
K′+2
⌋ = 1. WhenK = 2N − 2, ⌊ 2N

K+2
⌋ =

1. Thus,f1(K ′) = f1(2N − 2). On the other hand,K ′⌊ 2N
K′+2
⌋ < (2N − 2)⌊ 2N

(2N−2)+2
⌋. For

K ′ ∈ (N − 2, 2N − 2), it can be verified thatK ′⌊ 2N
K′+1
⌋ ≤ (2N − 2)⌊ 2N

(2N−2)+1
⌋ for N ≥ 2.

We thus havef2(K ′) < f2(2N − 2). Summing upf1(K) andf2(K), we haveUP (α, β,K
′) <

UP (α, β, 2N − 2).

The insight from Lemma 3 is that, if2N is not divisible byK + 2, thisK value is not useful

for the optimization and can be safely discarded. We have thefollowing corollary.

Corollary 1. Assume2N is divisible by(K1 +2), (K2 +2), . . . ,(Kn +2), andK1 > K2 > . . . >

Kn, for anyK ′′ ∈ (K2, K1), . . . , K

n︷︸︸︷
′′ · · ·′ ∈ (Kn, Kn−1), we have:

UP (α, β,K

i︷︸︸︷
′′ · · ·′) < UP (α, β,Ki−1), ∀ i = 2, . . . , n. (4.32)
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According to Corollary 1, to find the value ofK that maximizesUP , we only need to consider

theK values such that2N is divisible byK + 2.

Lemma 4. If K0 = N − 2 is feasible, it follows thatUP (α, β, 2N − 2) > UP (α, β,N − 2).

Proof. K0 = N − 2 is feasible ifK0 ≥ 3. It follows thatN ≥ 5 in this case. Therefore, we have

⌊
2N

K0 + 1

⌋
=

⌊
2N

N − 1

⌋
= 2 +

⌊
2

N − 1

⌋
= 2.

It follows that

UP (2N − 2)− UP (N − 2)

= wP

[
ln

(
Nβ + (1− β)

Nβ + 2(1− β)

)
+ 2(1− αβ)

]

≥ wP

[
ln

(
Nβ + (1− β)

Nβ + 2(1− β)

)
+ 2(1− β)

]
.

The inequality is becauseUP (2N − 2) − UP (N − 2) is a monotone decreasing function ofα.

For β = 0, UP (2N − 2) − UP (N − 2) = wP [2 − ln(2)] > 0. For β ∈ (0, 1), definef3(N) =

ln( Nβ+(1−β)
Nβ+2(1−β)

), and treatN as a continuous variable. We have

∂f3(N)

∂N
=

β

Nβ + (1− β)
− β

Nβ + 2(1− β)
> 0,

which indicates thatf3(N) is a strictly monotone increasing function ofN . Since currentlyN ≥ 5,

we havef3(N) > f3(1) = − ln(2− β). That is:

UP (2N − 2)− UP (N − 2) > wP [− ln(2− β) + 2(1− β)].

Definef4(β) = − ln(2− β)+ 2(1− β). Since∂2f4
∂β2 = 1

(2−β)2
> 0, f4(β) is a convex function.

The domain{β|β ∈ (0, 1)} is also a convex set. Supposeβ can be equal to0 and1. Solving the
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following problem,

min
0≤β≤1

− ln(2− β) + 2(1− β),

we haveminβ∈[0,1] f4(β) = 0, and the minimum is achieved atβ = 1. We conclude thatf4(β) > 0

for β ∈ (0, 1).

It follows thatUP (α, β, 2N − 2)−UP (α, β,N − 2) ≥ wP [f3(N) + 2(1− β)] > wP [f3(1) +

2(1− β)] > 0. The proof is completed.

Lemma 5. ConsiderK1, K2, . . . ,Kn, such that2N is divisible byK1+2, K2+2, . . . , andKn+2,

and if 2N
K1+2

= 3, 2N
K2+2

= 4, . . . 2N
Kn+2

= N , it follows thatUP (α, β, 2N − 2) > UP (α, β,Ki),

i = 1, 2, · · · , n.

Proof. ForK1, we have:

UP (N − 2)− UP (K1)

= wP

[
ln

(
Nβ + 2(1− β)

Nβ + 3(1− β)

)
+ 2(1− αβ)

]

≥ wP

[
ln

(
Nβ + 2(1− β)

Nβ + 3(1− β)

)
+ 2(1− β)

]

> wP

[
ln

(
Nβ + (1− β)

Nβ + 2(1− β)

)
+ 2(1− β)

]
> 0.

The first inequality is due to the fact thatUP (N − 2)−UP (K1) is a monotone decreasing function

of α. The second inequality is due toln(Nβ+2(1−β)
Nβ+3(1−β)

) > ln( Nβ+(1−β)
Nβ+2(1−β)

) for β ∈ [0, 1), and the last

inequality is proved in Lemma 4. Thus, we have:

UP (2N − 2) > UP (N − 2) > UP (K1).
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ForK2, we have:

UP (K1)− UP (K2)

= wP

[
ln

(
Nβ + 3(1− β)

Nβ + 4(1− β)

)
+ 2(1− αβ)

]

≥ wP

[
ln

(
Nβ + 3(1− β)

Nβ + 4(1− β)

)
+ 2(1− β)

]

> wP

[
ln

(
Nβ + 2(1− β)

Nβ + 3(1− β)

)
+ 2(1− β)

]
> 0.

Repeat the above forK3, · · · , Kn. The proof is completed.

Theorem 4.1. WhenKT ≥ 2N − 1, 3 ≤ K ≤ 2N − 1 and0 ≤ β < 1, UP is maximized when

K = 2N − 2.

Proof. We have shown in Lemma 4 that, ifK0 exists,UP (2N − 2) > UP (K0). We have also

shown in Lemma 5 that, ifKi, i = 1, . . . , n exists,UP (2N − 2) > UP (Ki). Also considering

Corollary 1,K = 2N − 2 is the maximizer.

SubstituteK = 2N − 2 into (4.31), we have:

UP (2N − 2) = wP{ln[(α log(SNR))(Nβ + (1− β))]}

+wS(2N − 2)(1− αβ).

We next divide the range ofα into three ranges and examine each of them in the following.

Case (a):α ∈ [0, 1
2N

] Denoting the utility of the primary user in this case asU2
P , we have

∂U2
P

∂β
= wP

N − 1

Nβ + (1− β)
− wS(2N − 2)α

≥ wP

[
N − 1

(N − 1)β + 1
− N − 1

N

]

> wP

[
N − 1

(N − 1) + 1
− N − 1

N

]
= 0.
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The first inequality is because∂U
2
P

∂β
is a monotone decreasing function ofα, and the second in-

equality is due toβ < 1. SoUP is a monotone increasing function ofβ. For α ∈ [0, 1
2N

], we

haveU2
P < wP ln[Nα log(SNR)] + wS(2N − 2)(1 − α) < U0

P ≤ U∗0
P . This case can be safely

discarded.

Case (b):α ∈ [1
2
, 1] Denoting the utility of the primary user in this case asU3

P , we have

∂U3
P

∂β
= wP

N − 1

Nβ + (1− β)
− wS(2N − 2)α

≤ wP

[
N − 1

(N − 1)β + 1
− (N − 1)

]
≤ 0.

The first inequality is because∂U
3
P

∂β
is a monotone decreasing function ofα, and the second inequal-

ity is due toβ ≥ 0. SoUP is a non-increasing function ofβ. Lettingβ = 0, we have the following

maximization problem.

max
1
2
≤α≤1

U3
P = wP ln(α log(SNR)) + wS(2N − 2). (4.33)

SinceU3
P is now an monotone increasing function ofα, lettingα = 1, we have

U∗3
P (1, 0, 2N − 2) = wP ln(log(SNR)) + wS(2N − 2). (4.34)

ForN ≥ 2, we haveU∗3
P − U∗0

P = wP ln(2N−1
N

) > 0. Recall thatU∗1
P < U∗0

P , as stated previously.

It follows thatU∗1
P < U∗3

P . The case ofK = 2N − 1 can also be safely discarded.

Case (c):α ∈ ( 1
2N

, 1
2
) Denote the utility of the primary user in this case asU4

P . U4
P is a concave

function ofβ. Letting ∂U4
P

∂β
= 0, we haveβ̂ = ( 1

2α
− 1) 1

N−1
. Sinceα > 1

2N
, β̂ < 1. Sinceα < 1

2
,

β̂ > 0. Soβ̂ = ( 1
2α
− 1) 1

N−1
is feasible. Substitutêβ intoU4

P , we have

U4
P = wP ln

(
1

2
log(SNR)

)
+ wS(2N + 2α− 3).
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SinceU4
P is a monotone increasing function ofα,U∗4

P < wP ln(1
2
log(SNR))+wS(2N−2) <

U∗0
P < U∗3

P . Therefore, we have the following lemma.

Lemma 6. For KT ≥ 2N − 1 andK ≤ 2N − 1, UP achieves its maximum whenα = 1, β =

0, K = 2N − 2, and the maximum value is given by (4.34).

When K > (2N − 1) ForK > 2N − 1, we always have⌊ 2N
K+2
⌋=0 and⌊ 2N

K+1
⌋ = 0. Denote the

utility of the primary user in this case asU5
P , we have

U5
P = wP ln(Nαβ log(SNR)).

Obviously,U5
P is a monotone increasing function ofα andβ. So the maximum is achieved when

α = 1 andβ = 1.

U∗5
P = wP ln(N log(SNR)). (4.35)

Note that under this condition, there is no Phases II and III.There is no spectrum leasing and the

transmission rates of all the secondary users are0.

ComparingU∗5
P with U∗3

P , we have

U∗3
P − U∗5

P = −wP ln(N) + wS(2N − 2)

> wP [(2N − 2)−N ] ≥ 0. (4.36)

The first inequality is due toln(x) < x for x > 0 and the second inequality is due toN ≥ 2.

ThereforeU∗3
P > U∗5

P . The implication of (4.36) is that leasing spectrum to secondary users is

helpful to maximize the utility of the primary user2

Compared with Lemma 6, we summarize the above analysis as a Lemma as follows.

2One may note that ifwP >> wS , the inequality does not hold. However, as we noted before, we focus on the
generic case wherewP = wS .
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Lemma 7. For KT ≥ 2N − 1, UP achieves its maximum whenα = 1, β = 0, K = 2N − 2, and

the maximum ofUP is given in (4.34).

Case II WhenKT = (2N − 2)

It can be readily concluded that the conclusion given in Section 4.4.2 still holds. So we finally

have the following theorem.

Theorem 4.2.WhenKT ≥ 2N − 2, UP is maximized whenα = 1, β = 0, K = 2N − 2, and the

maximum ofUP is given in (4.34).

Note that whenK = 2N − 2, dII = 1, dIII = 1. Theorem 4.2 indicates that, when there

are plenty of secondary users, to maximize the primary user’s utility, we should select2N − 2

out of them so that each of the selected secondary user can have exactlyone interference free

channel. Sinceα = 1 andβ = 0, there is no Phase I and Phase III. To maximize the primary user

utility, there’s no need for the primary user to use MIMO transmission alone. Transmitting data

with distributed interference alignment while collectingrevenue from spectrum leasing is the best

strategy for the primary user.

Case III When 3 ≤ KT ≤ (2N − 3)

In this section, we consider the case when3 ≤ KT ≤ 2N − 3. So the number of antennas

must satisfy2N − 3 ≥ 3, which indicatesN ≥ 3.

For simplicity, we assume that2N is divisible by bothKT +2 andKT +1. That is⌊ 2N
KT+2

⌋ =
2N

KT+2
and⌊ 2N

KT+1
⌋ = 2N

KT+1
. Using similar arguments as in Section 4.4.2, to maximizeUP , we

should letK = KT .

Given the strategies of all the secondary users, the primaryuser tries to maximize its own

utility by solving the following problem.

max
0≤α≤1, 0≤β≤1

UP (α, β). (4.37)
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Plug inKT andP ∗
i , we have

UP (α, β) = wP ln[αβRI
P + α(1− β)RII

P ] +

KTwS[α(1− β)dII + (1− α)dIII ]

= wP ln{α[β(RI
P −RII

P ) +RII
P ]}+

KTwS{α[(1− β)dII − dIII ] + dIII}. (4.38)

We also assume thatwP = wS. To find the maximum, we divideα axis into three adjacent

intervals:[0, 1
2N

], [ 1
2N

, KT+2
4N

] and[KT+2
4N

, 1]. Note that forKT ≥ 3, 1
2N

< KT+2
4N

.

Case (a):0 ≤ α ≤ 1
2N

Denote the utility of the primary user asU6
P , we have

∂U6
P

∂β
= wP

RI
P −RII

P

βRI
P + (1− β)RII

P

−KTwSαdII

= wP [
dI − dII

βdI + (1− β)dII
−KTαdII ]

≥ wP [
dI − dII

dI
−KTαdII ]

= wP [
N − 2N

KT+2

N
−KTα

2N

KT + 2
]

= wP [
KT

KT + 2
−KTα

2N

KT + 2
] ≥ 0. (4.39)

where the first inequality is due tomaxβ∈[0,1] βdI + (1− β)dII = dI , and the second inequality is

due toα ≤ 1
2N

.

So for0 ≤ α ≤ 1
2N

, UP (α, β) is a monotone increasing function ofβ. That isUP (α, β) ≤

UP (α, 1). To maximize the utility, the primary user solves the following problem.

max
0≤α≤ 1

2N

U6
P (α, 1) = wP ln(αRI

P ) +KTwS(1− α)dIII . (4.40)
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Using convex programming, it can be found thatUP achieves its maximum whenα = 1
2N

. And

the maximum value is:

U∗6
P (

1

2N
, 1) = wP ln(

RI
P

2N
) +KTwS(

2N − 1

2N
)dIII

= wP ln(
log(SNR)

2
) +KTwS

2N − 1

KT + 1
. (4.41)

Case (b):KT+2
4N
≤ α ≤ 1 Denote the utility of the primary user asU7

P , we have

∂U7
P

∂β
= wP [

dI − dII
βdI + (1− β)dII

−KTαdII ]

≤ wP [
dI − dII

dII
−KTαdII ]

= wP [
KT

2
−KTα

2N

KT + 2
] ≤ 0. (4.42)

where the first inequality is due tominβ∈[0,1] βdI + (1− β)dII = dII , and the last inequality is due

to α ≥ KT+2
4N

.

Thus, forKT+2
4N
≤ α ≤ 1, U7

P (α, β) is a monotone decreasing function ofβ, which indicates

U7
P (α, β) ≤ U7

P (α, 0). To maximize the utility, the primary user solves the following problem.

max
KT+2

4N
≤α≤1

UP (α, 0) = wP ln(αR
II
P ) +

KTwS[αdII + (1− α)dIII ]. (4.43)

Using convex programming, it can be found thatUP achieves its maximum when

α =
(KT + 1)(KT + 2)

2NKT

. (4.44)

Notice that, since we assume that2N is divisible by bothKT + 1 andKT + 2, (KT+1)(KT+2)
2N

≤ 1.

That isα = (KT+1)(KT+2)
2NKT

< 1. On the other hand,(KT+1)(KT+2)
2NKT

> KT+2
4N

, so (KT+1)(KT+2)
2NKT

is a
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feasible point. The maximum value is given by:

U∗7
P (

(KT + 1)(KT + 2)

2NKT

, 0) (4.45)

= wP ln[log(SNR)
KT + 1

KT

] +KTwS(
2N

KT + 1
− 1

KT

).

Case (c): 1
2N
≤ α ≤ KT+2

4N
Denote the utility of the primary user asU8

P . For any fixedα,

U8
P is a concave function with respect toβ. We could maximizeU8

P by firstly maximizing it with

respect toβ then with respect toα. We have:

∂U8
P

∂β
= wP

RI −RII

βRI + (1− β)RII

−KTwSαdII (4.46)

Set ∂U
8
P

∂β
= 0 results in:

β =
1

KTαdII
− dII

dI − dII
(4.47)

Sinceα ≥ 1
2N

, β ≤ 1
KT

2N
KT+2

1
2N

−
2N

KT+2

N− 2N
KT+2

= 1; α ≤ KT+2
4N

, β ≥ 1

KT
2N

KT+2

KT+2

4N

− 2
KT

= 0. So the

value ofβ given by (4.47) is a feasible point. Under this condition, wehave:

U8
P = wP ln(

wP (R
I
P −RII

P )

KTwSdII
) +KTwS{dIII −

wP

KTwS

+α[(1 +
RII

RI −RII

)dII − dIII ]}

= wP ln(
log(SNR)

2
) + wPα

2N

(KT + 1)
− wP

+KTwPdIII . (4.48)
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which is monotone increasing function ofα. Whenα = KT+2
4N

, the maximum is attained. Plug the

value ofα into (4.47), we haveβ = 0. So the maximum value is given by:

U∗8
P (

KT + 2

4N
, 0)

= wP ln(
log(SNR)

2
) + wP

KT + 2

2(KT + 1)

−wP +KTwPdIII

= wP ln(
log(SNR)

2
) + wP

KT (4N − 1)

2(KT + 1)
. (4.49)

It can be readily concluded thatU∗6
P < U∗8

P , we only need to compareU∗7
P with U∗8

P , then we

could find the maximum value ofUP . We have:

U∗7
P − U∗8

P = wP [ln(2
KT + 1

KT

)− KT + 2

2(KT + 1)
]

= wP [ln(2 +
2

KT

)− 1

2
− 1

2(KT + 1)
]. (4.50)

Denotef5(KT ) = ln(2KT+1
KT

)− KT+2
2(KT+1)

. ConsiderKT as a continuous variable, we have:

∂f5
∂KT

=
−(KT + 2)

2KT (KT + 1)2
< 0. (4.51)

Sof5(KT ) is a monotone decreasing function ofKT , which meansf5(KT ) > f5(+∞). Therefore,

we have:

U∗7
P − U∗8

P = wP [ln(2 +
2

KT

)− 1

2
− 1

2(KT + 1)
]

> wP [ln(2)−
1

2
] = 0.193 > 0. (4.52)

SinceU∗7
P > U∗6

P andU∗7
P > U∗8

P , we readily have the following theorem.

Theorem 4.3.For KT ≤ 2N−3,UP achieves its maximum whenα = (KT+1)(KT+2)
2NKT

, β = 0, K =

KT , and the maximum ofUP is given by (4.45).

80



It would be still interesting to compare theU∗7
P with U∗5

P for which there is no spectrum

leasing. We have:

U∗7
P − U∗5

P

= wP ln[log(SNR)
KT + 1

KT

] +KTwS(
2N

KT + 1
− 1

KT

)

−wP ln(N log(SNR))

= wP [ln(
KT + 1

KT

) + 2N
KT

KT + 1
− 1− ln(N)]

> wP [2N
KT

KT + 1
− 1− ln(N)]

≥ wP [
3

2
N − 1− ln(N)]

> wP [
1

2
N − 1]

> 0, (4.53)

where the first inequality is due toln(1 + x) > 0 for x > 0, the second inequality is becauseKT

KT+1

is an monotone increasing function ofKT , the thrid inequality is due toln(x) < x for x > 0, and

the last inequality is due toN ≥ 3.

This indicates that even with an insufficient number of secondary users, leasing spectrum to

the secondary users is still beneficial for the primary user to increase its utility.

4.4.3 The Unique Stackelberg Equilibrium

We now summarize the analysis in Sections 4.4.1 and 4.4.2. The unique Stackelberg Equilib-

rium of the game defined in Section 4.3 is given in the following theorem.
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Theorem 4.4.The unique Stackelberg Equilibrium is given by:

(α∗, β∗, K∗) =



(1, 0, 2N − 2), if KT ≥ 2N − 2
(

(KT+1)(KT+2)
2NKT

, 0, KT

)
, if 3 ≤ KT ≤ 2N − 3

(4.54)

P ∗
i = [wSα

∗(1− β∗)dII + wS(1− α∗)dIII ]/C0, ∀ i. (4.55)

Since we can rewrite (4.55) asP ∗
i = wS[α(dII − dIII) − αβdII + dIII ]/C0 anddII ≥ dIII ,

P ∗
i is a monotone decreasing function ofα andβ. On the other hand,P ∗

i is a monotone increasing

function ofdII anddIII , indicating thatP ∗
i is a monotone decreasing function ofK. The secondary

users will adjust their transmitter power in light ofα, β andK. The best scenario for them isα = 0,

β = 0 andK = 3, for which there is only Phase III with the fewest players.

Knowing the optimal strategies of the secondary users, the primary user will setα = 1, β = 0,

andK = 2N − 2 when there are a sufficient number of secondary users. Each selected secondary

user has exactlyone interference free channel, and there is only Phase II in the time slot. In this

case, the primary user can collect as much revenue as possible while keeping a relatively low-

rate data transmission. The secondary users’ claim is satisfied in part. If there are not as many

secondary users as needed, the primary user will set the parameters carefully according to (4.54).

Under this condition, the primary user selectsall the secondary users, discards Phase I, and makes

a trade-off between Phase II and Phase III according to how many secondary users are there in the

system.

4.5 Simulation Study

Simulations are conducted to validate the performance of the proposed scheme. We first

compare the proposed scheme with a scheme without spectrum leasing to demonstrate the benefits

of spectrum leasing. We then compare the proposed scheme with the cooperative scheme presented

in [47] to demonstrate the efficacy of distributed interference alignment.
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Figure 4.2: Utility of the primary user in Log scale.

4.5.1 With or Without Spectrum Leasing

We first consider the case when there is a sufficient number of secondary users, i.e.,KT ≥

2N − 2, since in many real-world applications there are usually more secondary users than the

number of antennas at each node. In Fig. 4.2, we plot the primary user utility U∗
P versus the

number of antennasN and SNR. In the simulation, the weight factors arewP = wS = 0.8. The

noise spectral density isN0 = 0.1. The unit price isC0 = 0.001. Note that the maximum utility

of the primary user without spectrum leasing is given in (4.35). It can be seen from Fig. 4.2 that

there is a huge gap between the proposed scheme and the schemewithout spectrum leasing. Note

that the utility increase due toSNR is less obvious than that due toN , since the impact ofSNR

is diminished by the logarithms functions in (4.10) and (4.11). This clearly indicates that under

the same setting, leasing spectrum to secondary users can greatly improve the primary user utility.

Also note that, from (4.36), the utility of the proposed scheme is strictly larger than that of no

spectrum leasing, for any feasible values ofwP , N and SNR.

In Fig. 4.3, we examine the impact of weightwP on the primary user utilityU∗
P . We plot the

results with or without spectrum leasing, and forN = 2, 4, and6. It can be seen that whenwP is

increased, the gap between the proposed scheme and the scheme without spectrum leasing becomes
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Figure 4.4: Utility of the primary user whenKT ≤ 2N − 3.

larger. Although with increasedwP , the primary user emphasizes more on data transmission, the

revenue is still increased at a higher speed with spectrum leasing. The gap also becomes larger

when the number of antennas for each node is increased. This is also because the revenue increases

faster with spectrum leasing than the no leasing scheme asN is increased.

We then consider the case of an insufficient number of secondary users. In the simulation,

there areKT = 3 secondary users. The number of antennas isN = 20. We plot the primary
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Figure 4.5: Comparison of the proposed scheme with the cooperative scheme.

user utility for the proposed scheme and the no-spectrum-leasing scheme in Fig. 4.4. We find that

there’s also a big gain achieved by the proposed scheme. Thisis consistent with our previous

discussions. In this case, the primary user should still lease its spectrum to secondary users to

maximize it own utility.

4.5.2 With or Without Distributed Interference Alignment

Next, we compare our proposed scheme with cooperative scheme in [47]. To make fair com-

parisons, replace the satisfaction functionfP (RP ) =
1

1+e−a(RP−R0)
in [47] with fP (RP ) = ln(RP ).

We firstly derive a upper bound of the utility of the primary user (denoted asU9
P ) in [47] using our

notation. Then we compare our proposed scheme with the derived upper bound.

U9
P = wP ln(RP ) +

wS(1− α)(K − 1)∑
i(

1
RSi

)
. (4.56)
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whereRP = min{αβRPS, α(1− β)RSP}, RPS = log(1 +
mini |hPS,i|2P

N0
), RSP = log(1 + |hP |2P

N0
+

∑
i
mini |hSP,i|2P

N0
), RSi

= log(1 +
|hSi

|2P
N0

), and all theh are channel states. Since

RP = min{αβRPS, α(1− β)RSP}

≤ α
RPSRSP

RPS +RSP

< αRPS = α log(1 +
mini |hPS,i|2P

N0

)

≤ α log(1 +
P

N0

). (4.57)

and

RSi
≤ log(1 +

P

N0

), (4.58)

So we have:

U9
P = wP ln(RP ) +

wS(1− α)(K − 1)∑
i(

1
RSi

)

< wP ln[α log(1 + SNR)] +

wS(1− α)(K − 1)

K
log(1 + SNR). (4.59)

Denotef6(α) = ln[α log(1 + SNR)] + (1−α)(K−1)
K

log(1 + SNR). For SNR ≥ 3, f6(α) is

maximized at̂α = K
(K−1) log(1+SNR)

. Since we consider high SNR region, the condition ofSNR ≥

3 is easily satisfied. Plug in̂α, we have:

U9
P < wP ln(

K

K − 1
) + wS[

K − 1

K
log(1 + SNR)− 1], (4.60)

that means the utility of the cooperative scheme is upper bounded bywP ln( K
K−1

)+wS[
K−1
K

log(1+

SNR)− 1].
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Figure 4.6: Aggregated SU utility comparison of the proposed scheme with the cooperative
scheme.

In Fig. 4.5, we plot the simulation results for the proposed scheme, the cooperative scheme,

and the no-spectrum-leasing scheme. Since in [47], all the primary user and the secondary users are

equipped with single antenna, to make fair comparison, we chooseK, number of secondary users

selected as the variable in the simulation. In the simulations, since the number of antennas must

satisfy⌊ 2N
K+2
⌋ ≥ 1, as the number ofK varies, we setN = ⌈K+2

2
⌉. So we are actually comparing

the lower bound of our proposed scheme with the upper bound ofthe cooperative scheme. It

can be seen from Fig. 4.5 that both spectrum leasing schemes outperform the no-spectrum-leasing

scheme. Furthermore, the proposed scheme outperforms the cooperative scheme with considerable

gains. Such gains justify the efficacy of distributed interference alignment, which greatly enhance

the overall system capacity.

Finally, we compare our proposed scheme with the cooperative scheme in [47] in terms of

aggregate secondary user utility and average secondary users utility. We firstly derive an upper

bound of the secondary users’ utility in [47], then compare it to the secondary users’ utility in our

proposed scheme with the identical number of selected secondary users and identical transmission

power. Note that, under the scenario of no spectrum leasing,the secondary users utility is always

0. Thus, we do not include it in the comparison.
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Figure 4.7: Average SU utility comparison of the proposed scheme with the cooperative scheme.

From Theorem 4.4, we obtain the maximum utility for each secondary user as:

U∗
S Average 1 = wSlog(

wS

2C0N0

), (4.61)

and the aggregate maximum utility for all the secondary useras:

U∗
S Aggregate 1 = KwSlog(

wS

2C0N0

), (4.62)

The utility for each secondary user in [47] is given by:

max
ci

ui(ci) = max
ci
{wS(1− α)ciRi∑

j cj
− ci}, (4.63)

whereRi = log(1+
|hSi

|2PS

N0
). Since we assume perfect channel and consider high SNR,Ri ≈ R =

log(PS

N0
).
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The maximum is achieved at:

c∗i = wS(1− α)(K − 1)[
∑

j

1

Rj

− K − 1

Ri

]/(
∑

j

1

Rj

)2. (4.64)

DenoteXi = (K − 1)[
∑

j
1
Rj
− K−1

Ri
]/(
∑

j
1
Rj
)2, we havec∗i = wS(1− α)Xi. The maximum

aggregate secondary user utility denoted asU∗
S Aggregate 2 is derived as follows.

U∗
S Aggregate 2 =

∑

i

ui(c
∗
i )

= wS(1− α)

[∑
i XiRi

Xi

−
∑

i

Xi

]

≤ wS

[∑
i XiRi

Xi

−
∑

i

Xi

]

< wS

∑
i XiRi

Xi

≈ wSR = wS log(
PS

N0

), (4.65)

where the first inequality is due to0 ≤ α ≤ 1 and second inequality is due toXi > 0.

UsingP ∗
i from Theorem 4.4, we have:

U∗
S Aggregate 2 = wSlog(

wS

C0N0

), (4.66)

and

U∗
S Average 2 =

wS

K
log(

wS

C0N0

) ≤ wS

3
log(

wS

C0N0

), (4.67)

where the inequality is due toK ≥ 3.
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It can be readily seen from Fig. 4.6 and Fig. 4.7 that, the proposed scheme outperform the

cooperative scheme, no matter from the perspective of each secondary user or the whole group of

secondary user.

4.6 Related Work

This chapter is closely related to the research on CR networks. For a general survey of CRs,

interested readers are referred to [2]. In a CR network, the primary user is either aware or unaware

of the existence of the secondary users. This chapter falls into the first category. The primary user

is not only aware of the existence of the secondary user, but also knows the impact of the rules on

the secondary user behavior. Most of the previous work, suchas [47, 49–51, 54], only considered

the single antenna case, while we consider multiple antennas and exploit multiplexing gain in this

chapter.

This chapter is also related to the research on interferencealignment. In [19], the authors in-

troduced the interference alignment technique. The significance of their work is that, by adopting

interference alignment, the system is no longer interference limited. With symbol extension, the

system could achieve a normalized DoF ofK/2. Another important issue, the feasibility condi-

tion, was investigated in [20] for structureless generic wireless channels. For wireless channels

with a structure, such as diagonal channels, our recent chapter [48] investigated the application

of interference alignment in multi-user OFDM networks. To address the concern on the global

CSI requirement, a distributed interference alignment algorithm was proposed in [41], which only

requires local CSI. In [33], interference alignment and cancellation were integrated to achieve en-

hance the throughput of MIMO Wi-Fi networks. In [32], Li et al. proposed a general algorithm

for the multi-hop mesh networks. This work was motivated by these interesting papers. However,

many of the related work mainly focused on physical layer issues. This chapter considers how to

adopt distributed interference alignment in a MIMO CR network with a novel Stackelberg game

based approach.
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Recent work [52] and [53] considered incorporating IA in cognitive radio networks. However,

they do not take the fact that the primary user has finite packages to send into consideration. This

chapter mainly considers how to use interference alignmentin the network and has taken the finite

demand of primary users into consideration.

4.7 Conclusions

In this chapter, we investigated the behaviors of the primary user and secondary users in a

MIMO CR network. We proposed a three-phase cooperative spectrum leasing scheme with dis-

tributed interference alignment. The system was modeled asa Stackelberg game. With backward

induction, we derived the unique Stackelberg equilibrium.Through rigorous analysis, we found

the best strategies for the primary user and secondary usersunder a broad range of conditions and

parameters, and discussed practical implications. We alsofound that leasing spectrum to secondary

users is always helpful for enhancing the primary user utility. Simulation results demonstrated that

the proposed scheme outperformed a no-spectrum-leasing scheme and a cooperative scheme from

prior work.
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Chapter 5

User Grouping for Massive MIMO in FDD Systems: New Design Methods and Analysis

5.1 Introduction

Last decades have witnessed ever-increasing demand for higher data rates. To cater for this

demand, many advanced physical layer techniques have been developed, e.g., multiple input multi-

ple output with orthogonal frequency division multiplexing (MIMO-OFDM). However, with linear

throughput improvement but the exponential growth on the data traffic, the gap between the de-

mand and supply has widen more and more. To solve the issue, the next technology we could resort

to is massive MIMO, (or called large-scale MIMO, full-dimension MIMO, hyper MIMO, we will

use these terms interchangeably hereafter) which significantly increases the system throughput by

employing a large number of transmit antennas at the base station. As an emerging and promis-

ing technology, besides the throughput enhancement, large-scale MIMO also enjoys advantages of

low-power, robust transmissions, simplified transceiver,and simple multiple-access layer [58,59].

Recently, lab demo systems have demonstrated the benefits of the massive MIMO systems [60,61].

In general, equipped with more transmit antennas, more degrees of freedom the massive

MIMO system could provide, resulting in better reliabilityor higher throughput. So we expect

the massive MIMO system to boost up the system throughput tremendously by simultaneously

serving many users. However, due to the difficulties of acquiring channel state information at the

transmitter side (CSIT), it is challenging to simultaneously support a large number of users [59].

Most of the existing works on large scale MIMO systems consider time-division-duplexing (TDD)

mode [62–64], since by exploiting the channel reciprocity in the TDD system, the downlink chan-

nel can be estimated from the uplink training. However, the frequency-division-duplexing (FDD)

system does not have such privilege. Pilot based channel estimation and uplink channel feedback

are required, which consumes lots of spectrum resources.
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According to [65], there are much more FDD LTE licenses (≥ 300) than TDD (≤ 40) ones

worldwide. With so many FDD deployments worldwide, it is of great significance to investigate

the large-scale MIMO design for FDD systems. Recently, a two-stage precoding scheme has been

proposed in [66] to reduce pilot resources and the channel state information (CSI) feedback in

FDD systems. Firstly, the users in service are put into groups with each group of users having

similar second-order channel statistics, i.e., transmit correlation. The same pre-beamforming, or

the first-stage precoding, is then used for each group of users semi-statically. Then, with reduced

dimensions on the effective channel, simple channel feedback can be realized and the second-

stage dynamic precoding can be applied. Therefore, one important issue for such system design

is user grouping. In [67], a K-means clustering using chordal distance as the clustering metric is

introduced for the user grouping. In this chapter, instead of chordal distance, we propose three sim-

ilarity measures as the grouping metric, namely,weighted likelihood similarity measure, subspace

projection based similarity measure, andFubini-Study based similarity measure. We also propose

two clustering methods i.e.hierarchical clusteringmethod andK-medoids clusteringmethod, for

user grouping. Through theoretical analysis and simulations, we show that the weighted likelihood

similarity measure and hierarchical clustering could achieve higher throughput.

Given user grouping, another important issue is user scheduling, i.e., selecting users for trans-

mission based on instantaneous channel condition. We propose a dynamic user scheduling method

and derive a lower bound for its performance. If there are only a few active users, some groups

may barely have users while some other groups are overloaded. Therefore, we also consider the

load balancing problem and present an effective algorithm to solve it.

The remainder of this chapter is organized as follows. In Section 5.2, related works are

discussed. In Section 5.3, we present the system model and some preliminaries. We discuss

the user grouping and user scheduling problem in Section 5.4and Section 5.5, respectively. The

scheme for user grouping considering group load balancing is presented in Section 5.6. Simulation

studies are presented in Section 5.7. And Section 5.8 concludes this chapter.
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5.2 Related Works

As aforementioned, most of the existing works on massive MIMO focus on TDD systems. Al-

though TDD has the advantage of exploiting the channel reciprocity, pilot contamination remains

the biggest problem for TDD systems [58] [59] [62].

For FDD systems, the system bottleneck lies in the cost of acquiring CSIT. Broadly speaking

there are two types of transmission modes: open-loop and close loop, representing the system

without and with feedback, respectively. This chapter falls into the latter category.

Assuming that the base station and the users share a common set of training signals before-

hand, both open-loop and close-loop training frameworks are proposed in [69]. In the open-loop

mode, the base station transmits the training signal in a round-robin manner, so that the receivers

could estimate current channel using spatial or temporal correlations and previous channel estima-

tions. In the close-loop mode, users select the best training signal based on previously received

signals and send back the index of these training signals to the base station. During the next phase,

the base station sends the training signals according to thefeedback of previous phases.

In [70] the feedback rate has been taken into consideration.Since for fixed feedback rate per

antenna, channel quantization grew exponentially with thenumber of transmit antennas, a nonco-

herent trellis-coded quantization is proposed with complexity growing linearly with the number of

antennas.

Pilot pattern design for channel estimation is considered in [71]. Presuming wireless channel

to be a stationary Gauss-Markov random process, pilot pattern is then designed based on Kalman

filtering, spatial and temporal channel correlations. It isshown that the proposed scheme has low

complexity but better performance, especially for the one-ring channel model.

A codebook design method is presented in [72] with limited orextremely low feedback, which

could be considered as a open-loop approach. The compressive sensing technique is proposed

in [73] to reduce the training and feedback overhead for CSIT acquisition. Due to the hidden joint

sparsity structure of massive MIMO system, a distributed compressive CSIT estimation scheme

is proposed. The advantage of the proposed scheme is that compressed measurements are taken
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locally at users, while CSIT recovery is performed at the basestation jointly. The proposed scheme

has been shown to outperform five other algorithms in terms ofnormalized mean absolute error for

CSIT recovery and have close performance to a so-called genie-aided scheme.

Similar to [66,67], Chen and Lau [74] decomposed the overall precoder into an outer precoder

and inner precoder, where outer precoder suppresses the inter-cell or inter-cluster interference and

inner precoder is used for intra-cluster multiplexing. Thecontribution of [74] is that it reduces

the complexity of calculating outer precoder fromO(M3) toO(M2), and it is an online algorithm

which is suitable for time-varying channels.

We safely conclude that those papers have not considered theuser grouping and scheduling

problems in massive MIMO systems. Based on the framework of [67], our recent work in [68]

proposes an improved K-means clustering scheme and a dynamic user selection scheme. Another

problem considered in [68] is the load balancing problem, which is also addressed in [75]. How-

ever, the system considered in [75] is in the TDD mode.

In summary, the contribution of this chapter on massive MIMOin FDD systems over [67,68]

lies in three aspects: new user grouping schemes with new grouping metric, new user scheduling

schemes, and efficient load balancing design.

5.3 System Model and Preliminaries

We consider a downlink system withM antennas at base station (BS) and single antenna at

each user terminal (UT). The transmit antennas can have different geometries, e.g., being placed

along one axis to form uniform linear array (ULA), along a circle to form uniform circular array

(UCA), or in two or three dimensions. Denoteyk as the received signal at userk, k = 1, . . . , K.

The signals received by all UTsy can be written as

y = HHVd+ z, (5.1)
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where(·)H denotes the Hermitian of a matrix;H, of dimensionM × K, is the actual channel

between the BS and the users;V is the precoding matrix of dimensionM ×S; d is the data vector

of dimensionS; andz is the zero mean circulant symmetric complex Gaussian noisevector. Note

that throughout this chapter, we use bold upper (lower) caseletter to denote a matrix (vector), and

normal letter to denote a scalar.

Based on the two-stage precoding approach in [66], the precoding is formed as a multipli-

cation of two precoding matrices, i.e.,V = BP. The first partB of dimensionM × b is pre-

beamforming matrix, which is designed based on the second order channel statistics, or particu-

larly, the transmit spatial correlation. The same pre-beamforming matrix is semi-statically applied

to the users with the same or similar transmit correlation, which forms a user group. Therefore,

pre-beamforming matrix is designed to suppress the interferences among the groups. We can see

that the effective transmit size after the pre-beamformingis b, which is determined by dominant

eigenmodes of the average transmit correlation of user groups. The second partP of dimension

b× S, is designed to suppress the interferences within each group with dynamical channel condi-

tion. To findP, we can just apply conventional zero-forcing beamforming (ZFBF) or regularized

zero-forcing beamforming (RZFBF). Note that we haveS ≤ b as the second-stage precoding is

supposed to suppress the interference within the group.

DenoteH̃ = BHH as the effective channel after pre-beamforming. The signalmodel in (5.1)

can be rewritten as

y = HHBPd+ z = H̃HPd+ z. (5.2)

We adopt the one-ring channel model in [66, 68], in whichθ is the azimuth angle of the user

location,s is the distance between the BS and the user,r is the radius of the scattering ring, and∆

is the angle spread, which can be approximated as

∆ ≈ arctan(r/s). (5.3)
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DenoteR as the channel covariance matrix of the transmitter with the(m, p)-th entry given by

[R]m,p =
1

2∆

∫ ∆

−∆

ejk
T (α+θ)(um−up)dα, (5.4)

wherek(α) = −2π
λ
(cos(α), sin(α))T is the vector for a planar wave impinging with Angle of

Arrival (AoA) α, λ is the carrier wavelength,um andup are the position vectors of antennam,

p, and(·)T denotes the transpose operation. It can be verified thatR is a normal matrix. With

eigen-decomposition, we have

R = UΛUH , (5.5)

whereU is a unitary matrix comprising eigenvectors ofR andΛ is a diagonal matrix with eigenval-

ues ofR as the diagonal entries. Furthermore, the actual channel isgenerated using the following

model

h = UΛ
1
2w, (5.6)

wherew is a vector of complex random variables andw ∼ CN (0, I).

DenoteG as the number of groups. We then haveHg = [hg1 , . . . ,hgKg
], H = [H1, . . . ,HG],

B = [B1, . . . ,BG], andH̃g = BH
g Hg. The signal vector received by theg-th group of users is

then given by

yg = H̃H
g Pgdg +

∑

g′ 6=g

HH
g Bg′Pg′dg′ + zg, g = 1, . . . , G. (5.7)

From (5.7) we can see that the design ofBg is to achieve

HH
g Bg′ ≈ 0, ∀g′ 6= g. (5.8)

Generally speaking, there are three different approaches of obtainingBg, namelyEigen-

beamforming, Approximate Block Diagonalization (BD)andDFT Matrix Approximation.
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1) Eigen-beamforming: If the locations of all group members in a group are close, weassume

they have similar transmit correlations. We can designBg as

Bg = Vg, (5.9)

whereVg is the unitary matrix after eigen-decomposingRg, which is the average of the transmit

correlation matrices of users within the groupg and can be viewed as the group center.

2) Approximate Block Diagonalization (BD): Firstly, find the group center for all groups

{Rg}. Then we form

Ξg = [V1, . . . ,Vg−1,Vg+1, . . . ,VG]. (5.10)

Perform Singular Value Decompostion (SVD) toΞg to obtain[E(1)
g , E

(0)
g ], such that Span(E(0)

g ) =

Span⊥({Vg′ : g
′ 6= g}). Find

R̂g = (E(0)
g )HUgΛgU

H
g E

(0)
g . (5.11)

And perform SVD toR̂g, such that

R̂g = GgΦgG
H
g . (5.12)

Let Gg = [G
(1)
g ,G

(0)
g ], whereG(1)

g containsbg dominant eigenmodes of̂Rg. Finally, Bg can be

obtained as

Bg = E(0)
g G(1)

g . (5.13)

3) DFT Matrix Approximation: For large scale MIMO systems with ULA antennas, we have

lim
M→∞

1

M

∥∥UUH − FSF
H
S

∥∥2 = 0, (5.14)

whereFS is a submatrix of unitary DFT matrix whose(a, b)-th entry is given by[F]a,b = e−j2πab/M√
M

.

Thus, we can select certain columns of a DFT matrix to approximate the prebeamforming matrix.
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Figure 5.1: User grouping Scenario.

For the second stage precoding, we apply conventional zero-forcing beamforming (ZFBF) or

regularized zero-forcing beamforming (RZFBF). The precoding matrix is given by

Pg = H̃(H̃HH̃+ SgαISg)
−1, (5.15)

whereα can be set asα = 0 for ZFBF orα =
∑

g Sg

p
∑

g bg
for RZFBF,Sg is number of data streams in

theg-th group andp is the total transmit power of the BS.

5.4 User Grouping in Massive MIMO System

In order to suppress the inter-group interferences, the prebeamforming matrixBg for groupg

shall be carefully designed based on all the group centersRg, g = 1, . . . , G. Note that the group

center can be obtained by averaging the subspace of all the group members or assigning one of

the group members to be the group center. User grouping also has impacts on the user scheduling,

since for each prebeamforming group, only the users within its group can be scheduled. Therefore

it is important to design an effective user grouping method.
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The idea of user grouping is illustrated in Fig. 5.1. The big triangle in the middle represents

the massive MIMO base station. Other markers except the red-cross represent users. Users from

different groups are differentiated by different markers and colors. The red cross is the virtual

group center. The dashed lines indicate the connections between users and group centers.

For user grouping, we first need to obtain the similarities (or distances) among the users and

groups, and then group users based on a certain metric. Each user grouping scheme consists of two

parts, the similarity measure and clustering method. In this section, we first review the K-means

clustering method and the chordal distance as similarity measure presented in [67, 68]. Then we

propose new clustering methods and similarity measures as the grouping metric.

Most of the clustering schemes in the literature only handlematrix dataset, i.e., the whole

dataset is a matrix. However, for our case here, each data entry is a matrix. The whole dataset is

comprised of a large number of matrices. Thus, one of our contributions is to form efficient low-

complexity grouping methods for datasets with many matrices. Also note that different clustering

methods and similarity measures can be combined in various ways.

5.4.1 K-means User Grouping and Chordal Distance

In [67], aK-means clustering algorithm for user grouping is presented. The similarity mea-

sure of theK-means clustering algorithm to group users is the chordal distance between the eigen-

vectorsUk of user’s channel correlationRk and that of the group centerRg, given as

dc(Uk,Vg) =
∥∥UkU

H
k −VgV

H
g

∥∥2
F
, (5.16)

whereUk is the matrix of the eigen vectors ofRk, i.e.,Rk = UkΛkU
H
k . User grouping is then

formed via an iterative process. In each iteration, each user is assigned to the group with minimum

distance. Then the group center is updated using unitary matrix of users associated to the group as

Vg = Υ
{ 1

|Sg|
∑

k∈Sg

UkU
H
k

}
. (5.17)
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Note thatΥ(·) denotes the unitary matrix after eigen decomposition,Sg denotes the user set of

groupg, |Sg| denotes the size of groupg.

5.4.2 Weighted Likelihood Similarity Measure

Instead of chordal distance, we propose a weighted likelihood function as the similarity mea-

sure between a user and a group, which is defined as

L(Rk,Vg) ,
∥∥∥(UkΛ

1
2
k )

HVg

∥∥∥
2

F
. (5.18)

We can see that the proposed likelihood metric uses the projection of the eigenspaces of the

users to that of the group centers, so that users can be readily separated into different groups. For

instance, if userk is very close to group centerg, or Uk ≈ Vg, thenUH
k Vg would result in a

large value due to the property of unitary matrix. IfUk is much different fromVg, thenUH
k Vg

would produce a very small value due to the orthogonality of unitary matrices. The weighted

likelihood also takes into account the weights of differenteigenmodes so that the user’s group is

mainly determined by the dominant eigenmodes.

GivenL(Rk,Vg) for each user and each group, we assign each user to the group with maxi-

mum likelihood and update group center by

Vg = Υ
{ 1

|Sg|
∑

k∈Sg

Rk

}
. (5.19)

Notice that the updates of the group center and the total likelihood Ltot also consider the

weights of eigenmodes in the proposed algorithm. The reasonis that if a group has only one

user, the group center should be the user itself. So considering the weight of different eigenmodes

should help to enhance the system throughput.

With the weighted likelihood similarity measure, we now propose an improvedK-means

clustering algorithm, which is described in Algorithm 1. Note that in Algorithm 1,Uπ(g) is the
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Algorithm 1: ImprovedK-means Clustering Algorithm with Weighted Likelihood Simi-
larity Measure

1 Setn = 0, L(0)
tot = 1; Randomly chooseG different indices (denoted asπ(g), ∀g) from the set

{1, . . . ,K} and setV(n)
g = Uπ(g), ∀g;

2 n = 1, L(n)
tot = 0;

3 while
∣∣∣L(n)

tot − L
(n−1)
tot

∣∣∣ > ǫL
(n−1)
tot do

4 Let S(n)g = ∅, g = 1, · · · , G;
5 for k = 1, . . . ,K do
6 for g = 1, . . . , G do

7 ComputeL(Rk,V
(n−1)
g ) =

∥∥∥∥(UkΛ

1
2
k )

H
V

(n−1)
g

∥∥∥∥
2

F

8 end

9 Findg∗k = argmaxg′ L(Rk,V
(n−1)
g′ ) and letS(n)g∗k

= S(n)g∗k
∪ {k} ;

10 end
11 for g = 1, . . . , G do

12 V
(n)
g = Υ

{
1

∣

∣

∣
S(n)
g

∣

∣

∣

∑
k∈S(n)

g
Rk

}
;

13 end

14 ComputeL(n)
tot =

∑G
g=1

∑
k∈S(n)

g
L(Rk,V

(n)
g )

15 n = n+ 1 ;
16 end

17 AssignVg = V
(n)
g andSg = S(n)g .

unitary matrix of the user with indexπ(g) andǫ is a small number to control the convergence of

the algorithm.

5.4.3 Subspace Projection Based Similarity Measure

We now present another similarity measure, which is based onsubspace projection, given by

P(Uk,Vg) =
∥∥VgV

H
g Uk −Uk

∥∥2
F
. (5.20)

We can see from the above equation that we measure the similarity between userk and groupg by

firstly projecting userk to groupg, then calculating the distance between userk and its projection

on groupg. If userk is the group center or in close proximity to the group center,P(Uk,Vg)

would be zero.
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5.4.4 Fubini Study Based Similarity Measure

One last similarity measure we consider is Fubini-Study (FS) Based Similarity Measure. The

classic FS distance is given by

FS(Uk,Vg) = arccos
∣∣det (UH

k Vg)
∣∣. (5.21)

We can see that if userk is close to the group centerg, thenF(Uk,Vg) would be close to0.

Otherwise,F(Uk,Vg) would be larger if the user is farther from the group center. The FS distance

can then be another choice of the similarity measure for the user grouping.

5.4.5 Hierarchical User Grouping

We now propose a new user grouping scheme employing the agglomerative hierarchical clus-

tering method. Different from the K-means method, which essentially looks at all possible com-

binations of users and groups, the agglomerative hierarchical clustering method starts with each

individual user forming a user group, then proceeds by a series of successive mergers based on

certain criteria. Eventually, all users can form one singlegroup. We can terminate the iterations

when the desired number of groups is reached.

An example of agglomerative hierarchical clustering method is illustrated in Fig. 5.2. Initially,

there are20 users and thus20 groups. The distance between any two users (or two initial groups)

is calculated. At the first iteration, we find that the distance between user2 and9 is the smallest.

So user2 and9 are merged to a group as shown in Fig. 5.2. At the second iteration, the distance

between user4 and15 is found to be the smallest. So user4 and15 are merged as group. We iterate

such group merging process until the desired number of groups is reached.

One may notice in the example above, at one intermediate step, group comprised of user1

and20 is found to be close to the group comprised of user2, 9 and19. So one important issue in

hierarchical clustering is how to define the similarity measure or distance between existing groups

and newly defined groups (or called linkage methods). Typical linkage methods include: single
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Figure 5.2: Hierarchical clustering illustration.

linkage, complete linkage, average linkage, ward linkage,median linkage, and weighted average

linkage, which are explained as follows.

Since we only merge two groups at each step, we give the definition of linkage methods in an

inductive manner. Suppose we have merged groupvi andvj to get a new group(vivj) , vi
⋃
vj.

Now we need to define the distance between the remaining groups and the new group(vivj). Let

groupvq be one of the remaining groups. The distance between(vivj) andvq given by single

linkage method is

d(vivj),vq , min
{
dvi,vq , dvj ,vq

}
. (5.22)

That means the distance between group(vivj) andvq is the minimum of the two distancesdvi,vq

anddvj ,vq , where distancedvi,vq anddvj ,vq have been previously calculated in the same way.

Complete linkage defines the distance between(vivj) and vq as the maximum of the two

distancesdvi,vq anddvj ,vq , given by

d(vivj),vq , max
{
dvi,vq , dvj ,vq

}
. (5.23)
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Algorithm 2: Hierarchical Clustering Algorithm

1 Set the valueG. Start from the initial user setU = {1, 2, . . . ,K}. Each user forms a group, i.e.,
vq = {q}, q = 1, · · · ,K.

2 for k = 1, . . . ,K do
3 for k′ = 1, . . . ,K do
4 Calculate pair-wise similarity between users (or groups) using (5.16) or (5.18).
5 end
6 end
7 while The number of groups is greater thanG do
8 Search for and merge the groups with maximal similarity.
9 Calculate the pair-wise distance between user (or group) and updated group using one of the

linkage methods (5.22)-(5.27).
10 end

Average linkage defines the distance between(vivj) andvq as the average of all the pair-wise

distances, given by

dvivj ,vq =
|vi| dvi,vq + |vj| dvj ,vq

|(vivj)|
. (5.24)

Ward linkage defines the distance between(vivj) andvq as

d(vivj),vq ,
(|vi|+ |vq|)dvi,vq + (|vj|+ |vq|)dvj ,vq − |vq| dvi,vj

|vi|+ |vj|+ |vq|
. (5.25)

Median linkage defines the distance between(vivj) andvq as

d(vivj),vq ,
1

2
dvi,vq +

1

2
dvj ,vq −

1

4
dvi,vj . (5.26)

Weighted average linkage defines the distance between(vivj) andvq as:

d(vivj),vq ,
1

2
dvi,vq +

1

2
dvj ,vq . (5.27)

Given these definitions, we propose our hierarchical clustering algorithm shown in Algorithm

2.
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Next we present the complexity analysis for K-means clustering and hierarchical clustering

methods. Note that the framework of K-means is essentially similar to Algorithm 1.

Denote the complexity of computing similarities for all user-group (or group-group) pairs as

Cs−kmean for K-means clustering andCs−hier for hierarchical clustering; searching for the maximal

similarity pair and pairing them up asCm−kmean for K-means clustering andCm−hier for hierarchi-

cal clustering; and updating grouping center asCu−kmean for K-means clustering andCu−hier for

hierarchical clustering.

Proposition 1. The complexity of K-means clustering isO(GKCs−kmean). More specifically, it is

O(KG×(2M3+M2)) for K-means clustering with chordal distance andO(KG×[(r∗)3 + (Mr∗)2])

for K-means clustering with weighted likelihood similarity measure, wherer∗ is effective rank for

Rk, i.e. number of columns forUk.

Proof. Each iteration of K-means algorithm can be divided into3 consecutive steps:

1. CalculatingK ×G similarities;

2. Searching for the maximum similarity for each user;

3. Updating group center for each group.

So during each iteration of K-means algorithm, it takes the total of{Cs−kmean, Cm−kmean, Cu−kmean}

computations, where the one with the highest order determines the complexity of the whole al-

gorithm. The complexity of the first step depends on the choice of similarity measure. For

(5.16), the complexity isO(KG × (2M3 + M2)); while for (5.18), the complexity isO(KG ×

[(r∗)3 + (Mr∗)2]). The second step involves selecting maximum element from a sizeG array for

each user. So the complexity isO(KG). The complexity of the third step also depends on the spe-

cific scheme. For (5.17), it requiresΘ(KM3) computations. For (5.19), it only needsΘ(KM2)

computations. Thus, the one with the highest complexity order isCs−kmean for each iteration.

Since there areK users andG groups, in the worst case, it could takeGK iterations for the

algorithm to converge. Therefore, for the worst case analysis, the computational complexity of

K-means clustering algorithm isGKO(Cs−kmean).
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Figure 5.3: Complexity comparison.

For Algorithm 2 we have the following proposition.

Proposition 2. The complexity of hierarchical clustering isO(Cs−hier). More specifically, it is

O(K(K−1)
2

(2M3+M2)) for hierarchical clustering with chordal distance andO(K(K−1)
2

[(r∗)3 + (Mr∗)2])

for hierarchical clustering with weighted likelihood similarity measure.

Proof. Algorithm 2 firstly calculatesK(K − 1)/2 similarities, resulting in the complexity of

O(K(K−1)
2

(2M3 +M2)) orO(K(K−1)
2

[(r∗)3 + (Mr∗)2]).

The ‘while’ loop at step7 will be executed(K − G − 1) times. The total cost for step8

is K + (K − 1) + . . . + 2 = (K + 2)(K − 1)/2, and for step9 the worse-case total cost is

(K − 2) + (K − 3) + . . . + 1 + 0 = (K − 2)(K − 1)/2. Note that in step9, there are additional

constant costsO(1) for linkage updating. For instance, for weighted average the constant is2 (one

addition and one division). Constant is dropped for bigO complexity analysis.

Therefore, the complexity of Algorithm 2 is dominated byO(Cs−hier).

Table 5.1 is a summary of the complexity comparison. We can see that complexity relation-

ships depend on the number of usersK, the number of antennasM , the effective rankr∗, and
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Table 5.1: Complexity Comparison of Clustering Schemes

Chordal Distance Weighted Likelihood

K-means O(KG× (2M3 +M2)) O(KG× [(r∗)3 + (Mr∗)2])

Hierarchical O(K(K−1)
2

(2M3 +M2)) O(K(K−1)
2

[(r∗)3 + (Mr∗)2])

the choice of number of groupsG. If K is relatively small andG is relatively large, hierarchical

clustering is much more computationally efficient. However, if K is much large andG is small,

K-means clustering may be more computationally efficient. Figure 5.3 presents the complexity

comparison for an example case. In this simulation, we letM = 100, G = 6, andr∗ = 11.

Clearly there are two advantages of hierarchical clusteringcompared with K-means clustering.

• Hierarchical clustering does not rely on the initial choices of group center. For example,

given the users’ distributions, K-means clustering may endup with user groups shown in

Fig. 5.4. We can see that there are several crossing lines fordifferent groups, which suggests

possibly inappropriate user grouping. On the contrary, Fig. 5.5 shows the grouping results

obtained by hierarchical clustering, which is clearly a better grouping configuration. This

advantage is especially true when the number of users is small.

• According to Propositions 1 and 2, hierarchical clusteringis generally more computationally

efficient when the number of users is less than or equal to100.

5.4.6 K-medoids User Grouping

We also consider K-medoids clustering method. K-medoids clustering is similar to K-means

clustering. The difference lies in the approach of updatinggroup center. While K-means uses

the average of the group members (or called centroids), K-medoids tries every group member

(medoids) as the group center and uses the one which has the least within group residue sum

of squares (WGRSS). The user grouping algorithm based on the K-medoids clustering method is

described in Algorithm 3. Due to exhaustive search of group centers, the computational complexity

of K-medoids is lower bounded by the complexity of K-means, and hence comparably high.
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Figure 5.4: User Grouping with K-means Clustering.
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Figure 5.5: User grouping with Hierarchical Clustering.

5.5 User Scheduling in Massive MIMO System

After forming the user groups, we can obtain the prebeamforming matrixBg, ∀g. At a partic-

ular time slot, based on the instantaneous channel conditions of the users, we dynamically schedule

a subset of users in each group for the transmissions in this time slot.
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Algorithm 3: K-medoids Clustering Algorithm

1 Setn = 0, L(0)
tot = 1; Randomly chooseG different indices (denoted asπ(g), ∀g) from the set

{1, . . . ,K} and setV(n)
g = Uπ(g), ∀g;

2 n = 1, L(n)
tot = 0;

3 while
∣∣∣L(n)

tot − L
(n−1)
tot

∣∣∣ > ǫL
(n−1)
tot do

4 Let S(n)g = ∅, g = 1, · · · , G;
5 for k = 1, . . . ,K do
6 for g = 1, . . . , G do
7 Compute similarity measure using (5.16) or (5.18)
8 end

9 Findg∗k = argmaxg′ L(Rk,V
(n−1)
g′ ), or g∗k = argming′ dc(Uk,V

(n−1)
g′ ) and let

S(n)g∗k
= S(n)g∗k

∪ {k} ;

10 end
11 for g = 1, . . . , G do

12 for k ∈ S(n)g do

13 ComputeWGRSS(g)
(n)
k =

∑
k∈S(n)

g
L(Rk,Rk′) or

WGRSS(g)
(n)
k =

∑
k∈S(n)

g
dc(Uk,Uk′)

14 end

15 Findk∗ = argmaxk WGRSS(g)
(n)
k , letV(n)

g = Uk

16 end

17 ComputeL(n)
tot =

∑G
g=1WGRSS(g)

(n)
k∗

18 n = n+ 1 ;
19 end

20 AssignVg = V
(n)
g andSg = S(n)g .

In [67], a MAX and an ALL user scheduling algorithm are presented. The MAX user schedul-

ing is the scheduling based on only the feedback of beam indexwith max SINR, while the ALL

user scheduling is based on the user’s feedback of all beamforming SINRs, i.e., SINR for every

beam selection. The SINR can be computed as

SINRgk,m =

∣∣hH
gk
bgm
∣∣2

1
ρ
+
∑

n 6=m

∣∣hH
gk
bgn
∣∣2 +

∑
g′ 6=g

∥∥hH
gk
Bg′
∥∥2 (5.28)

Different from this approach, we propose a dynamic user scheduling algorithm which sched-

ules users in a greedy manner. In particular, at each step, the proposed algorithm only schedules
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the user which results in the largest system throughput improvement. The proposed method is

summarized in Algorithm 4.

Given the user grouping and scheduling, we can calculate theinstantaneous SINR,γgk , for

userk in groupg as

γgk =

p
∑

g Sg
ζ2g
∣∣hH

gk
BgPg(:, gk)

∣∣2

1 + Iin(g, k) + Iit(g, k)
,

Iin(g, k) =
p∑
g Sg

ζ2g
∑

j 6=k

∣∣hH
gk
BgPg(:, gj)

∣∣2 ,

Iit(g, k) =
p∑
g Sg

∑

g′ 6=g

ζ2g′
∑

j

∣∣hH
gk
Bg′Pg′(:, gj)

∣∣2 . (5.29)

whereIin denotes the inner group interferences,Iit denotes the inter group interferences,Pg(:, gk)

denotes the submatrix containing all the rows and thegk-th column ofPg andζ2g is the scaling

factor for satisfying certain power constraint, which can be obtained as

ζ2g =
Sg

tr(PH
g B

H
g BgPg)

. (5.30)

Then the rate for the scheduled usergk is given by

ηgk = log2(1 + γgk). (5.31)

System throughputrws is obtained asrws =
∑G

g=1

∑
k∈Kg

ηgk , whereKg is the scheduled user set

in thegth group. Obviously,rws is a function of{Kg} and precoding for all co-scheduled users,

denoted asrws({Kg}, {Bg}, {Pgk}).

In the following part of this section, we present a lower bound of the proposed greedy algo-

rithm for dynamic user selection.

Lemma 8. In Algorithm 4, the first user scheduled results in largest rate increase.

Proof. This is resulted from Step11 of Algorithm 4 and the fact that the first user scheduled has the

largest rate among all users without any interference. For each user scheduled in the subsequent

111



Algorithm 4: Greedy algorithm for dynamic user selection and beamforming with deter-
mined user grouping

1 User grouping{Sg} is given;
2 Initially setU = {1, . . . ,K}, the weighted sum raterws = 0 andKg = ∅ for g = 1, . . . , G ;
3 while Termination conditions (

∑
g |Kg| =

∑
g bg, κ(k∗, gk∗) = 0, or U = ∅) are not satisfieddo

4 for k ∈ U do
5 if |Kgk | < Sg then
6 SetK′

g = Kg ∪ {k} if k ∈ Sg, andK′
g′ = Kg′ , ∀g′ 6= g ;

7 Perform ZFBF or RZFBF based on{K′
g} and{Bg} ;

8 Compute the gainκ(k, g) = max
{
0, rws({K′

g}, {Bg})− rws({Kg}, {Bg})
}

;
9 end

10 end
11 Obtain(k∗, gk∗) = argmaxk∈U κ(k, g) ;
12 if (k∗, gk∗) > 0 then
13 Let U ← U\k∗ ;
14 LetKgk∗ ← Kgk∗ ∪ {k∗} ;
15 end
16 end

iterations, the resulting user rate is always smaller than the user rate evaluated in the first iteration

due to the intra- and inter-group interference from the users already scheduled and power splitting

among scheduled users. Therefore the rate increase in all other iterations is smaller that that of the

first iteration.

Denote the achievable rate of the first scheduled user asZ1, the system sum rate of Algorithm

4 asx, and the system sum rate of the optimal user scheduling asX . We have the following lemma.

Lemma 9. Z1 ≤ x ≤ |U|Z1.

Proof. Z1 ≤ x is trivial, since Algorithm 4 would schedule at least one user. Since there are|U|

users, from Lemma 8 we know that the achievable rates of them are all upper bounded byZ1,

x ≤ |U|Z1 thus holds.

Using similar arguments as the proof of Lemma 8, we can show that the following lemma

holds.

Lemma 10. X ≤ |U|Z1.
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Figure 5.6: Greedy algorithm and the Optimal Scheduling Algorithm’s Upper Bound.

From Lemma 9 and Lemma 10 we haveX|U| ≤ Z1 ≤ x ≤ |U|Z1. So we have the following

Theorem.

Theorem 5.1. The greedy algorithm for dynamic user selection can achievean objective value

which is at least 1|U| of the optimal user selection solution.

Lemma 10 and Theorem 5.1 not only give the lower and upper bounds of the greedy algorithm,

but also the optimal user scheduling scheme. Fig. 5.6 illustrates this bound of the optimal scheme.

For obvious reason, we letG = 1 here. We can see that when the number of users is not large,

our greedy user scheduling algorithm approaches the upper bound of the optimal user scheduling.

Note that as the number of users increases, the bound becomeslooser.

5.6 User grouping with joint group load balancing and precoding design

When the number of users is not too large, with the previously discussed grouping approaches,

some groups may end up with few users while some others may be overcrowded with users. This

situation clearly wastes the precious spectrum resources and affects the user fairness. We now form

a user grouping method considering group load balancing anduser proportional fairness. The user
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grouping with proportional fairness can be summarized as the following optimization problem.

max
xkg

J =
∑K

k=1

∑G
g=1 xkg log(

ηgk
∑

i xig
)

s.t.
∑

g xkg = 1, ∀k ∈ [1, K] , (5.32)

whereJ denotes the utility to optimize,ηgk is the average user throughput, i.e.,ηgk = log2(1+γgk
),

γgk
is the average SINR when userk is assigned to groupg, andxkg is the assignment indicator

defined as

xkg =





1, if userk is in groupg, ∀k, g;

0, otherwise.

(5.33)

Given constraint (5.33), we can see that the optimization problem (5.32) is combinatorial in

nature. If we apply exhaustive search for this problem, the complexity isΘ(GK). That means even

for a 100 GHz CPU1, it needs more than84 days2 to solve this optimization problem with just6

groups and20 users, which is obviously not an option for nowadays cellular system.

To make the problem tractable, we relax the variablexkg to be a real number in the range of

[0, 1]. So the optimization problem (5.32) can be rewritten as follows.

max
xkg

J =
∑K

k=1

∑G
g=1 xkg log(

ηgk
∑

i xig
)

s.t.
∑

g xkg = 1, ∀k ∈ [1, K]

0 ≤ xkg ≤ 1, ∀k ∈ [1, K] , g ∈ [1, G] . (5.34)

And we have the following Proposition.

1Typical base station processor has lower frequency than100 GHz. For instance, TCI6616from TI can deliver up
to 4.8 GHz processing. http://www.ti.com/lit/ml/sprt579/sprt579.pdf

2Given that modern processor typically needs about200 clock cycles to execute one computation step, a CPU
of 100 GHz (i.e. 1011 clock cycles per second), can carry out5 × 108 computation steps each second. So it needs
620/(5 ∗ 108)/86400 = 84.6333 days to solve this problem.
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Proposition 3. Even if we solve the optimization problem by relaxing the constraints, the optimal

user associations do not change.

Proof. Since we relax the variables from binary to real, the solutions to problem (5.34) actually

upper bound the problem of (5.32). However we can see from Algorithm 6 that the solutions to

problem (5.34) are integers other than fractions. So the solutions to problem (5.32) can be chosen

exactly the same as the solutions to problem (5.34). Since the solutions to problem (5.32) cannot

result in higher utility than the solutions to problem (5.34), the solutions to problem (5.34) are the

solutions to problem (5.32) as well. Thus, even though the constraints are relaxed, the optimal user

associations do not change.

We also have the following Proposition for the optimization.

Proposition 4. Problem (5.34) is a convex optimization problem.

Proof. The objective function of problem (5.34) can be representedas
∑

k

∑
g xkg log(ηgk) −

∑
k

∑
g xkg log(

∑
i xig). The first term is affine. The second term is basically two concate-

nated sums ofx log(x + a), where0 ≤ a ≤ (K − 1). The second derivative ofx log(x + a)

is 1
x+a

+ a
(x+a)2

, which is positive for0 ≤ a ≤ (K − 1). Sox log(x + a) is a convex function

and−∑k

∑
g xkg log(

∑
i xig) is concave due to negative sums. Therefore

∑
k

∑
g xkg log(ηgk)−

∑
k

∑
g xkg log(

∑
i xig) is concave.

Given Proposition 4, we could apply sophisticated convex optimization techniques to solve

problem (5.34). However, we can see that one of the importantissues is to obtain the average SINR

γgk
. The challenge is without user grouping and scheduling information, we cannot calculate the

exact SINR of each user. Moreover, over different time slots, different users will be scheduled

based on the user grouping and the instantaneous channels. Thus, in order to solve (5.32), we

need to find a way to approximate average SINR for each user in each group. Here we propose to

approximate the average SINR based on following assumptions.

(i) We assume conjugate precoding [76] [77] for the target user.
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(ii) There are no intra-group co-scheduled users.

(iii) Identity precoding for inter-group co-scheduled users is assumed.

We can obtain the SINR approximation as

γgk
=

p
∑

g bg

∣∣tr(BH
g RgkBg)

∣∣

1 + p
∑

g bg

∑
g′ 6=g

∣∣tr(BH
g′RgkBg′)

∣∣ . (5.35)

Due to the dynamic nature of the user scheduling and the objective of user group assignment itself,

it is difficult to obtain the average SINR presuming the multiuser MIMO scheduling. However,

as in [78], when we consider the load balancing problem, it isreasonable to consider the single

user resource allocation with user average SNR for the targeted cell. Therefore in our case, when

we compute the average SINR for a user, we assume in an instantaneous time slot, only the user

of interest is scheduled in its group. Moreover, we treat other groups as the virtual neighboring

cells and consider the identity precoding matrix for the interfering groups, which is a fairly good

approximation for the interference. With these assumptions, we assume the best resource allocation

for each user with average interference assumption, which we think is appropriate for studying the

user load balancing among groups. Otherwise it would be verydifficult to approximate the average

intra-group and inter-group interferences.

After obtaining average SINR, similar to [78], the procedures to solve the user grouping opti-

mization problem with load balancing in (5.32) are presented in Algorithm 6.

5.7 Simulation

More numerical simulations are performed to evaluate the proposed schemes. System config-

urations are provided in Table 5.2. In particular, we consider a120◦ sector. For each user drop, the

azimuth angleθk, angle spread∆k and distancesk for userk are randomly generated within the

interval [θmin, θmax], [∆min,∆max] and[smin, smax], respectively. We average over100 user drops

for the whole simulation. In each user drop, we evaluate the performance with200 channel real-

izations. We fix the number of groupsG = 6. For the antenna configuration, we consider the ULA
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Algorithm 5: User grouping with joint group load balancing and precodingdesign algo-
rithm
1 PerformK-means Clustering Algorithm or Algorithm 1 to obtain user group IDxij .
2 while J ∗(n−1) − J ∗(n−2) > ǫJ ∗(n−2) do
3 for g ∈ G do

4 FindV
∗(n)
g using (5.17) or the proposed weighted likelihood (5.19)

5 end
6 for g ∈ G do
7 FindBg using approximate BD approach
8 end
9 for k = 1, . . . ,K do

10 for g = 1, . . . , G do
11 Findγgk using (5.35)
12 end
13 end
14 Optimize (5.32) using Algorithm 6 ;
15 Updatexij andJ ∗(n) ;
16 end

Algorithm 6: Optimization Algorithm for (5.32)

1 n = 0, µ(1) = 0;
2 while the optimization has not convergeddo
3 n← n+ 1;
4 for k = 1, . . . ,K do
5 for g = 1, . . . , G do
6 Computeγgk andηgk ;
7 end

8 Assign userk to groupg∗ whereg∗ = argmaxg(log(ηgk)− µ
(n)
g ), and letx(n)kg∗ = 1,

x
(n)
kg = 0 for g 6= g∗ ;

9 end
10 for g = 1, . . . , G do

11 Each group chooses a step sizeδ(n) and computesK(n+1)
g = min{K, e(µ

(n)
g −1)},

µ
(n+1)
g = µ

(n)
g − δ(n)(K

(n)
g −∑k x

(n)
kg ).

12 end
13 end

case and place100 antennas along they-axis with spacing0.5λ. So from (5.4), the(m, p)-th entry

of the covariance matrix is given by

[R]m,p =
1

2∆

∫ ∆

−∆

e−j2πD(m−p) sin(α+θ)dα. (5.36)
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Table 5.2: System Configuration in the Simulations

Parameter Value Parameter Value

θmin −60◦ M 100
θmax 60◦ D 0.5
∆min 5◦ G 6
∆max 15◦ r∗g 11
smin 20 (m) ǫ 10−3

smax 100 (m) p 10, 20 dB

0 100 200 300 400 500
20

30

40

50

60

70

80

90

100

K

S
um

 r
at

e 
(b

its
/s

/H
z)

 

 

K−means, CHD, MAX
K−means, WLD, MAX
K−means, SSP, MAX
K−means, FSD, MAX

Figure 5.7: Similarity Measure Comparison.

Throughout the simulations, to find the first and second stageprecoding matrices, we adopt the

approximate BD approach and the regularized ZF precoding approach, respectively.

Fig. 5.7 gives a comparison of the similarity measures. For fair comparison, we use the same

clustering method K-means and user scheduling method MAX. Note that CHD stands for chordal

distance, which is (5.16); WLD stands for weighted likelihood, which is (5.18); SSP stands for

subspace projection, which is (5.20); FSD represents Fubini Study distance, which is (5.21). We

can see that WLD has slightly higher throughput than CHD, whichverifies the effectiveness of our

proposed scheme. However, the sum rates of EFS, FSD and SSP are lower than CHD. We thus

abandon them.
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Figure 5.8: Comparison of Linkage Methods for Hierarchical Clustering.

Fig. 5.8 provides a comparison among the linkage methods forhierarchical clustering. For

fair comparison, we use agglomerative hierarchical clustering, weighted likelihood similarity mea-

sure, and MAX user scheduling for all linkage methods. We cansee that as the number of users

increases, the sum rate of single linkage gradually drops. This is because that as the number of

users increases, the volume of each cluster expands. Using the distance between the nearest points

of two clusters to represent the distance between two clusters becomes inaccurate. We can also

observe that weighted average linkage has the highest throughput. Carefully looking into the defi-

nition of weighted average linkage, we can see that weightedaverage linkage puts higher weights

on the members who join the group late, which are less similarto other group members. For in-

stance, we have group1 − 5. Group1 and2 are firstly merged to form group〈1, 2〉. Then group

〈1, 2〉 and group3 are merged to form group〈12, 3〉. Now we need to find the distance between

group〈12, 3〉 and group4. In light of (5.27),d〈123〉,4 = 1
2
d〈12〉,4+

1
2
d〈3〉,4 =

1
4
d〈1〉,4+

1
4
d〈2〉,4+

1
2
d〈3〉,4.

Member3 joins the group late and is less similar to other group members (that is why it joins the

group late). Therefore, by putting higher weights on members who join the group late results in

better performance in our scheme. We thus use weighted average linkage method for hierarchical

clustering hereafter.
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Figure 5.9: Clustering Method Comparison.

Fig. 5.9 presents a comparison among the clustering methods. For fair comparison, we use

the same similarity measure CHD in (5.16) and MAX user scheduling. It can be observed that hier-

archical clustering has the highest throughput, K-medoidsclustering has the lowest throughput and

K-means has a throughput lying in between. Due to high computational complexity and inferior

performance, we abandon K-medoids clustering. However, the efficacy of agglomerative hierar-

chical clustering has been demonstrated. Moreover, hierarchical clustering also has the advantage

of lower computational complexity, which has been shown in Fig. 5.3.

Fig. 5.10 compares the user scheduling schemes. Also for fair comparison, we use the same

K-means clustering and CHD similarity measure. We readily observe that our proposed greedy

algorithm has the highest throughput. Although the proposed greedy algorithm is suboptimal, it

greatly enhances the system throughput. Note that since MAXhas better performance than ALL,

we only use MAX for comparison in later discussions.

Fig. 5.11 presents the sum rate comparison of our proposed effective schemes and the one

in [67]. We can see that all the proposed schemes outperform the scheme in [67]. In particu-

lar, hierarchical clustering greedy user selection with weighted likelihood has the highest system

throughput. Hierarchical clustering greedy user selection with chordal distance has slightly lower
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Figure 5.10: Scheduling Methods Comparison.

throughput than the highest one. Hierarchical clustering MAX user scheduling with weighted

likelihood and K-means clustering greedy user selection with chordal distance both have higher

throughput than the scheme in [67]. We could also observe that greedy user scheduling has greater

impact than the user grouping methods on the system throughput. This is because no matter how

the grouping is, greedy user scheduling has direct impact onthe throughput and could always select

the users who benefit the throughput most.

One last observation is that, as the number of users increases, for instance,K = 500, the

gap between K-means and hierarchical clustering narrows. This is because with that many users,

different grouping schemes tend to produce similar user grouping.

For user grouping with load balancing, we setp = 20 dB. Fig. 5.12 shows the resulting utility

metric of the optimization in (5.32) which is solved by Algorithm 5. Note that negative values of

utility are resulted from thelog function of achievable rate over the number of group members. We

can see that even the proposed scheme without iteration could greatly enhance the utility with user

fairness compared with the scheme without considering loadbalancing. The proposed iterative

load balancing scheme could achieve even higher utility.
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Figure 5.11: System sum rate Vs. number of users whenM = 100.

Having looked at the utility comparison, we are also interested in the number of users in each

group. Note that the average number of users in each group does not make sense, since in each

iteration, the number of users in each group is random. Averaging over these random numbers

is approximatelyK/G for every group. So we just look at one particular simulation, which is

depicted in Fig. 5.13. Total number of user isK = 40. We can see that the number of users is

{14, 3, 7, 10, 2, 4} for group1 − 6 without considering load balancing. However the number of

users is{11, 6, 7, 5, 4, 7} for the non-iterative load balancing scheme and{8, 9, 7, 5, 5, 6} for the

load balancing scheme carried out iteratively. So the difference between the most loaded group

and the least loaded group is7 for the proposed non-iterative scheme, only4 for the proposed

iterative scheme, but12 for the scheme without considering load balancing. Fig. 5.14 depicts the

maximum difference of number of users among all groups. The number of groupsG is prefixed

to be6. We can see that whenK = 10, the maximum differences are2.33, 2.11, and1.93 for

the scheme without load balancing, with load balancing but non-iterative, with load balancing and

iterative, respectively. WhenK = 40, the numbers become9.11, 4.24, and3.56. WhenK = 80,

the maximum differences are15.62, 8.07, and5.44. Therefore, the proposed scheme strikes a much

better balance as the users are comparatively evenly distributed among all the groups.
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Figure 5.12: User grouping with joint group load balancing and precoding design whenM = 100.
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Figure 5.13: Number of group members Vs. Group.

5.8 Conclusions

In this chapter, based on a two-stage precoding framework for massive MIMO systems with

FDD duplexing, we have studied the user grouping and scheduling problems. We have proposed

weighted likelihood similarity measure, subspace projection based similarity measure, Fubini

Study based similarity measure, hierarchical clustering,K-medoids clustering for user grouping.
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Figure 5.14: Maximum difference of number of users among groups Vs. Number of users.

We have also proposed a dynamic user scheduling scheme. Moreover, to achieve load balancing

and user fairness for massive MIMO system with few users, we have proposed a user grouping

algorithm considering loading balancing. All the theoretical analysis and simulation studies have

demonstrated the efficacy of the proposed schemes.
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Chapter 6

User Association in Massive MIMO with Small Cells

6.1 Introduction

MIMO (Multiple Input Multiple Ouput) has evolved from a puretheory to a practical tech-

nique over the last two decades, which has greatly enhanced the system capacity due to much more

degrees of freedoms provided. However, due to the so-called“smartphone” revolution, wireless

users demand higher and higher data rates for rich media applications. There have been tremen-

dous efforts trying to cater for this demand. Based on MIMO andOFDM, LTE-Advanced targets

at a peak rate of1 Gbps, but the average rate is less than100 Mbps. For the foreseeable future,

with more and more video related data traffic [79], these rates can hardly be satisfactory for the

data-hungry wireless users. To further boost up the data rate, two technologies have gained most

attractions from both industry and academia.

The first one is called massive MIMO (a.k.a. large-scale MIMO, full-dimension MIMO,

or hyper MIMO) [58] [59]. The idea of massive MIMO is to equip the base station (BS) with

hundreds, thousands or even tens of thousands of antennas, hereby providing unprecedented level

of degrees of freedom for wireless users. Demos of massive MIMO can be found in [60] [61].

The second technology is to deploy small cells. The greatestbenefits of deploying the small

cells is reducing the distance from the end user to the BS. Withthis benefit, transmission power

can be reduced and higher data rate can be achieved.

The trend of merging massive MIMO and small cell technologies to form HetNet (hetero-

geneous networks) has become more and more bright and clear.Many researchers and standard-

ization organizations have considered them as the core technologies for5G. [80] views massive

MIMO and small cell as two of the “big three” technologies for5G wireless communication sys-

tem.
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Given these envisioned benefits of massive MIMO and small cells, to combine these two

technologies, the first question would be how to associate the users and the BSs, so that the system

throughput or user experience can be ultimately enhanced. There are some existing works pushing

forward in this direction. [66] [67] [68] [81] considered the problem of user association in massive

MIMO system operated in FDD mode. But they didn’t take small cells into consideration. For the

problem of user association in massive MIMO system operatedin TDD mode, it was investigated

in [75]. However, it is worth pointing out that fractional user association is allowed in [75]. [82]

models the problem of user association in femtocell HetNet using a dynamic matching game and

finds the optimal user association. But massive MIMO is not considered in the system model.

[83] investigates the problem of cell association with conventional MIMO BS and propose simple

bias based selection criterion to approximate more complexselection rules. [84] considers the

problem of improving the energy efficiency without sacrificing the QoS(quality of service) of users

in massive MIMO and small cell networks.

Different from these works, this chapter considers the userassociation problems in TDD mas-

sive MIMO HetNet considering limited loading capacity of each BS without allowing fractional

user association. The main goal of these problems is maximizing system throughput. More specif-

ically, this chapter contains two parts: centralized user association and distributed user association.

For centralized user association, we investigate the problem of rate maximization, rate max-

imization with proportional fairness, and joint resource allocation and user association. We prove

the unimodularity of our problem and leverage the unimodularity to obtain optimal user association

to the problem of rate maximization and rate maximization with proportional fairness. We propose

a series of primal decomposition and dual decomposition algorithm to solve the joint resource

allocation and user association problem and prove the algorithm leads to optimal solution.

For distributed user association, we model the interactionbetween the service provider who

owns the BSs and users as repeated games. We consider all the possible cases: service provider sets

the price and users bid for the opportunity of connection. Weprove that in either case the repeated

game converges and propose algorithms to reach the Nash Equilibrium (NE) of each game.
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Figure 6.1: Illustration of Massive MIOM System with Small Cells.

The remainder of this chapter is organized as follows. Section 6.2 introduces the system

model and preliminaries. Optimal centralized and distributed user association are discussed in

Section 6.3 and Section 6.4, respectively. Section 6.5 presents the simulation studies. Conclusion

is drawn in Section 6.6.

6.2 System Model and Preliminaries

The system we consider includes a massive MIMO base stationsand many picocell base

stations (conventional MIMO) as illustrated in Fig. 6.1. Asstated in [85], picocells can benefit

from inter-cell interference coordination (ICIC). The channel model we consider is given as follows

[86].
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hj,k,n = gj,k,nlj,k, (6.1)

wherehj,k,n denotes the channel of then-th antenna of thej-th BS to userk, gj,k,n represents the

small scale fading coefficient between then-th antenna of thej-th BS and userk, andlj,k stands

for the large scale fading coefficient between thej-th base station and userk. Concatenating all the

channel coefficients from all the antennas of thej-th base station, we obtainhj,k. Thushj,k is the

channel vector from thej-th BS to userk. Putting the channels from all users along the column,

we denoteHj = [hj,1,hj,2, . . . ,hj,k] as the channel coefficient matrix for signals transmitted from

the j-th BS. We further denoteyj as the signals received by the users connecting to thej-th BS,

Vj as the precoding matrix of thej-th BS anddj as the data sent from thej-th BS. Then we have:

yj = HjVjdj + nj, (6.2)

wherenj is the zero mean circulant symmetric complex Gaussian noisevector. Note that through-

out this chapter, we use boldface upper (lower) case letter to denote a matrix (vector), and normal

letter to denote a scalar.

For users connecting to the massive MIMO BS, we could approximate their achievable rate

using the following deterministic rate [75].

Rkj = log

(
1 +

Mj − Lj + 1

Lj

Pjlj,k
1 +

∑
j′ 6=j Pj′lj′,k

)
, (6.3)

whereMj is the number of antenna at thej-th BS,Lj is the prefixed loading parameter of the

j-th BS indicating how many users it could serve, andPj is transmit power from thej-th BS.

Note that in (6.3), there is no small scale fading factor. This approximation has been proven to be

accurate [75].
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For a userk, who may or may not connect to the massive MIMO base station, denoting its

achievable rate regarding to thej-th BS asηkj , we readily have:

ηkj = xkjRkj , (6.4)

where

xkj =





1, if userk connected to BSj.

0, otherwise.

(6.5)

Denoteηk as the sum rate for userk, then we have:

ηk =
∑

j

ηkj , (6.6)

For the picocell BS with conventional MIMO, we assume that there are no interferences

among the small cell BSs, since transmission powers of these small cell BSs are typically low.

The achievable rate of the user connecting to these small cell base stations can be represented as

follows.

R̃kj = log

(
1 +

Pj

∣∣hH
j,kwj,k

∣∣2

1 +
∑

k′ 6=k Pj

∣∣hH
j,kwj,k′

∣∣2

)
, (6.7)

wherewj,k is thek-th column of thej-th BS’s precoding matrixWj. There are many precoding

designs for the conventional MIMO BSs.

Wj =
1√
ϕ
HH

j , (6.8)

Wj =
1√
ϕ
HH

j (H
T
j H

H
j )

−1, (6.9)

Wj =
1√
ϕ
HH

j (H
T
j H

H
j + δI)−1. (6.10)
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Above equations exhibit the precoding matrices for matchedfilter (MF) precoding, zero forcing

(ZF) precoding and regularized zero forcing (RZF) precoding[86], respectively. Note that hereϕ

is a power normalization factor.

Here we adopt MF precoding, then the signal received by all the users connecting to thej-th

BS can be rewritten as follows.

yj =




hH
j,1hj,1d1 + hH

j,1hj,2d2 + . . .+ hH
j,1hj,kdk

hH
j,2hj,1d1 + hH

j,2hj,2d2 + . . .+ hH
j,2hj,kdk

. . .

hH
j,khj,1d1 + hH

j,khj,2d2 + . . .+ hH
j,khj,kdk




. (6.11)

Thus, the achievable rate for userk regarding to a conventional BSj can be obtained as

follows.

ηkj = log


1 +

Pj

∣∣xkjh
H
j,khj,k

∣∣2

1 +
∑

k′ 6=k Pj

∣∣∣xk′j
hH
j,khj,k′

∣∣∣
2


 . (6.12)

6.3 Centralized User Association

In this section, we consider the problem of centralized userassociation. We assume that the

BSs have obtained all the channel state information (CSI) via uplink training. We define the utility

of each userU(ηk) based on its achievable rate as follows.

U(ηk) =





ηk, if α = 0,

log(ηk), if α = 1,

η1−α
k

1−α
, if α > 0, α 6= 1.

(6.13)

The implications behind (6.13) are as follows.

1. α = 0 yields the maximization of the sum rate (no fairness).
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2. α→∞ yields the maximization of the worst-case rate (max-min fairness).

3. α = 1 yields the maximization of the geometric mean rate (proportional fairness).

Our goal is to maximize the system utility by configuring the user-BS association. Typically,

we consider the cases whenα = 0 andα = 1. Note that ifα = 1, we defineU(ηk) = 0, if ηk = 0.

6.3.1 Maximizing Sum-rate

We firstly investigate the problem of maximizing the system sum rate, i.e.α = 0 in (6.13)

andU(ηk) = ηk. The problem is to maximize
∑

k Uk(z) given the system configuration and user

distribution, which is mathematically formulated as follows.

P1-1:max
xkj

K∑

k=1

ηk (6.14)

s.t.
∑

k

xkj ≤ Lj ≤Mj, j = 1, 2, . . . , J

∑

j

xkj ≤ 1, k = 1, 2, . . . , K

Constraints (6.3) (6.4) (6.5) (6.6) (6.12).

Note that the second constraint requires the number of usersconnecting to a base station to

be less than or equal to its prefixed loading parameter. And this parameter should be less than

or equal to the number of antennas it equips, since theoretically the BS can provide at mostMj

degrees of freedom. But constraintLj ≤ Mj should be satisfied by when configuring the system

parameters. So we could drop this constraint out of the optimization problem. The third constraint

simply claims that each user can at most connect to one base station.

A key observation is that we could rewrite (6.12) in the following way.

ηkj = xkj log


1 +

Pj

∣∣hH
j,khj,k

∣∣2

1 +
∑

k′ 6=k Pj

∣∣∣xk′j
hH
j,khj,k′

∣∣∣
2


 , (6.15)
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so that we could redefinẽRkj in (6.7) as:

R̃kj = log


1 +

Pj

∣∣hH
j,khj,k

∣∣2

1 +
∑

k′ 6=k Pj

∣∣∣xk′j
hH
j,khj,k′

∣∣∣
2


 . (6.16)

We can see from (6.16) that̃Rkj depends on other users’ choicesxk′j
. Here we use the worst-

case approximation. That is we assume that all users within the coverage of BSj (denoted asGj)

will connect to BSj and their channel links are perfect. In this way, (6.16) can be approximated

as:

R̃kj = log

(
1 +

Pj

∣∣hH
j,khj,k

∣∣2

1 + (|Gj| − 1)Pj

)
, (6.17)

where|·| for a set stands for the cardinality of a set.

Define auxiliary variablesckj as follows.

ckj =





Rkj in (6.3), BS j being massive mimo BS;

R̃kj in (6.17), BS j being small cell BS.

(6.18)

The optimization problem can be reformulated as:

P1-2:max
xkj

K∑

k=1

J∑

j=1

xkjckj (6.19)

s.t.
∑

k

xkj ≤ Lj, j = 1, 2, . . . , J

∑

j

xkj ≤ 1, k = 1, 2, . . . , K

Constraints (6.5) (6.18).

For the above optimization problem, since its variablexkj is binary, it falls into the category

of Multiple Knapsack Problem, which is one of the Karp’s21 NP-complete problems [87]. At this
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point, one may try to use a greedy algorithm to obtain sub-optimal solutions. However, by taking

advantage of the coefficients of the constraints, we could obtain the optimal solution.

LetX be a matrix with entriesxkj , k = 1, 2, . . . , K, j = 1, 2, . . . , J . We could convertX to a

vectorx by concatenating the rows ofX and taking a transpose. For instance, the following matrix

X =




x11 x21 . . . xK1

x12 x22 . . . xK2

. . . . . . . . . . . .

x1J x2J . . . xKJ




. (6.20)

is reshaped asx = [x11 x21 . . . xK1 . . . x1J . . . xKJ
]T . We further simply the notation asx =

[x1 x2 . . . xKJ
]T and apply the same conversion to the matrix comprisingckj and obtain vectorc.

Given these transformation, we rewrite our optimization problem as:

P1-3:max
x

cTx (6.21)

s.t.
K∑

k=1

x(j−1)K+k ≤ Lj, j = 1, 2, . . . , J

J∑

j=1

xk+(j−1)K ≤ 1, k = 1, 2, . . . , K

Constraints (6.5) (6.18).

Ignoring constraints (6.5) and (6.18), defineA as the constraint matrix with entries being

the coefficients of the first and second constraints. We next introduce an important definition and

derive a key lemma.

Definition 2. A matrixA is called totally unimodular if the determinant of every square submatrix

of A is either0, +1 or −1.

Lemma 11. The constraint matrixA is totally unimodular.
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Proof. To prove thatA is totally unimodular, we need to check if every square submatrix of A has

determinant either0, +1 or−1. Inspecting the constraints, we find thatA is of the following form.

A =




1 1 . . . 1 0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 1 1 . . . 1 0 0 . . . 0

...
...

...

0 0 . . . 0 0 0 . . . 0 1 1 . . . 1

1 0 . . . 0 1 0 . . . 0 1 0 . . . 0

0 1 . . . 0 0 1 . . . 0 0 1 . . . 0

.. . . . . .. .

0 0 . . . 1 0 0 . . . 1 0 0 . . . 1




(6.22)

We could divideA into blocks in the following form.

A =



A1 A2 . . . AJ

B1 B2 . . . BJ


 , (6.23)

where eachAj , j ∈ [1, J ] is a submatrix ofA of sizeJ × K; and eachBj, j =∈ [1, J ] is an

identity matrix of sizeK ×K.

Let Sn denotes any square submatrix of matrixA of sizen. For any submatrix ofA of size

1, it is trivial to see that the determinant of this submatrix is 0 or +1, since all of the entries of

the constraint matrix is either0 or +1. So we only need to consider the case where the size of the

square submatrix is greater than or equal to2, i.e.Sn with n ≥ 2.

Case 1:Sn is taken entirely from one of the submatricesAj orBj, j ∈ [1, J ].

We can see from the structure ofAj that at least one row ofAj is all zero. So if the square

submatrix is entirely taken fromAj, the determinant of the submatrix is zero. Since matrixBj , ∀j

is simply the identity matrix, it is straightforward that the determinant of any square submatrix of

Bj is either0 or+1.

Case 2:Sn is not entirely taken from any one of the submatricesAj orBj, j ∈ 1, . . . , J .
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In this case, the square submatrix must be taken from2n (n = 1, . . . , J) submatrices of the

submatrix set(Aj ∪ Bj, j ∈ 1, . . . , J). We next proceed with our proof by applying induction

method.

For the base casen = 1, the square submatrix to be examined is of size2. Since the entries

can only be0 or+1, the determinant of the square submatrix can only be0, +1 or−1.

Now assuming that any square submatrix of size(n − 1) has determinant0, +1 or −1, we

need to check if the same conclusion holds for any square submatrix of sizen.

We first notice that each column ofA has at exactly two+1s. Moreover, exactly one of them

is inAj, and another inBj. Let q∗ = argminq

∑
i Sni,q

, whereSni,q
is thei, q-th entry ofSn. That

is columnq∗ has the minimum number of1s among all the columns ofSn. Letζq∗ = minq

∑
i Sni,q

.

ζq∗ can only be0, 1, or 2.

If ζq∗ = 0, then all the entries of theq∗-th column ofSn are0, which results indet(Sn) = 0,

wheredet is short for determinant.

If ζq∗ = 1, then we could calculatedet(Sn) by expanding theq∗-th column and obtain

det(Sn) = det(S(n−1)). Sincedet(S(n−1)) is 0, 1 or −1 by our induction hypothesis, we con-

cludedet(Sn) is 0, 1 or−1.

If ζq∗ = 2, we could firstly negate all the entries taken fromBj, and then add all the rows in

Bj to any non-zero row inAj. After this procedure, if that non-zero row inAj is still non-zero,

add that row to any other non-zero row inAj. Repeat this process until we get a zero row inAj.

The reason why this process always give us a all-zero row is that we have equal number of+1s in

Aj andBj. Since any basic row operation does not change the determinant and we finally get a

all-zero row,det(Sn) = 0. That completes our induction steps.

To sum up, the determinant of any square submatrix is either0, +1 or−1.

Lemma 12. For a linear programming problem, if its constraint matrix satisfies totally unimodu-

larity, then its has all integral vertex solutions.

Proof of this lemma is skipped here. Interesting readers arereferred to [88].
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Lemma 13. For a linear programming problem, if it has feasible optimalsolutions, then at least

one of them occurs at a vertex of the polyhedron define by its constraints.

Proof. Linear programming inequality constraints are half-spaces and equality constraints are hy-

perplanes. So all these constraints together define a polyhedron. By the maximum principle of

convex functions [89], the optimal value can be obtained on the boundaries. Since the vertex is the

intersection of several constraints, the optimal solutioncan be found by checking the vertices.

Given these lemmas, we have the following theorem.

Theorem 6.1.The optimal solution ofP1 can be obtained by relaxing the constraintxkj to be real

values between[0, 1].

Proof.

NP1:max
x

cTx (6.24)

s.t.
K∑

k=1

x(j−1)K+k ≤ Lj, j = 1, 2, . . . , J

J∑

j=1

xk+(j−1)K ≤ 1, k = 1, 2, . . . , K

0 ≤ xk ≤ 1, k = 1, 2, . . . , K

Constraints (6.18).

ProblemNP1 is a relaxed of versionP1. We can see thatNP1 is a linear programming

problem. By Lemma 13, we know that at least one optimal solution of NP1 is the vertex solution.

Applying Lemma 11 and Lemma 12 toNP1, we know that the vertex solutions are integers. Since

the variablexk is restricted to the range of[0, 1], that means the optimal solutions ofNP1 are

binary. Since the optimal value ofP1 is upper bounded by the optimal value ofNP1, we could

attain the optimal value ofP1 by setting variables according to the solution ofNP1. That means

NP1andP1are equivalent. We could solveNP1 for P1.
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Given the above theorem, we could obtain the optimal solution of P1 by solvingNP1 using

common LP solvers.

6.3.2 Proportional Fairness

In this section, we take proportional fairness among user achievable rates into consideration.

Since a user’s achievable rate is the sum of rate from all the base stations, the problem can be

formulated as follows.

P2-1:max
xkj

K∑

k=1

log(
J∑

j=1

xkjckj) (6.25)

s.t.
K∑

k=1

xkj ≤ Lj, j = 1, 2, . . . , J

J∑

j=1

xkj ≤ 1, k = 1, 2, . . . , K

Constraints (6.5) (6.18).

ProblemP2-1 is a nonlinear integer programming problem, which is generally NP-complete

as well. To get a better understanding of the problemP2-1, we could investigate its equivalent

problem as follows.

P2-2:max
xkj

K∏

k=1

(
J∑

j=1

xkjckj) (6.26)

s.t.
K∑

k=1

xkj ≤ Lj, j = 1, 2, . . . , J

J∑

j=1

xkj ≤ 1, k = 1, 2, . . . , K

Constraints (6.5) (6.18).
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ProblemP2-2 is a geometric programming problem, with binary variables.The objective

function is a posynomial function withJK terms. Conventionally, to solve geometric programming

problem we need to introduce new variables such asy = log(x) so that geometric programming can

be solved via convex programming. However, herexkj is binary. Sincelog(0) = −∞, we could

not apply these techniques. Another heuristic scheme is to firstly sort theseJK coefficients, and

then findLj maximal coefficients for each base station. However, even sort theseJK coefficients

could be computationally prohibitive for a small area with just10 base stations and100 users, since

it requiresO(JK log(JK)) operations.

A key observation aboutlog() function is thatlog(
∑

i xi) ≤
∑

i log(xi), ∀xi ≥ 2. Therefore,

practical speaking1, the optimal value of problemP2-1 is upper bounded by the optimal value of

the following problem.

NP2:max
xkj

K∑

k=1

J∑

j=1

xkj log(ckj) (6.27)

s.t.
K∑

k=1

xkj ≤ Lj, j = 1, 2, . . . , J

J∑

j=1

xkj ≤ 1, k = 1, 2, . . . , K

Constraints (6.5) (6.18).

However, we have the following proposition.

Proposition 5. ProblemP2-1 andNP2 are equivalent.

Proof. Recall that ifηk = 0, we defineU(ηk) = log(ηk) = 0. The second constraint
∑J

j=1 xkj ≤ 1

imposes that each user could only connect to one base station. Consequently,
∑

j xkj log(ckj) =

log(
∑

j xkjckj). Furthermore,
∑

k

∑
j xkj log(ckj) =

∑
k log(

∑
j xkjckj).

1Remember thatckj
is the achievable rate of userk connecting to base stationj. ckj

≥ 2 is generally satisfied in
current wireless systems with large bandwidth and high transmission power.
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ComparingNP2 to P1-2, we find they are actually equivalent. That means we could obtain the

optimal value ofP2-1by applying the same technique used to solve problemNP1. An important

conclusion stated in Corollary 2 readily follows.

Corollary 2. Sum rate maximization in Section 6.3.1 also achieves proportional fairness.

Next we derive an upper bound of the optimal value of problemP2-1.

Proposition 6. The optimal value of problemP2-1 is upper bounded byUB1 =
∑K

k=1 maxj log2(ckj).

Proof. Denotem = max {ln(ck1), ln(ck2), . . . , ln(ckJ )}, we derive:

log2(
J∑

j=1

xkjckj) ≤ log2(
J∑

j=1

em

em
eln(ckj ))

= log2(e
m) + log2(

J∑

j=1

eln(ckj )−m)

≤ m log2(e) + log2(J) (6.28)

Note that first inequality is becausexkj ≤ 1. The second inequality above is due to the fact thatm

is the largest one among all thexkjckj andeln(xkj
ckj )−m ≤ 1.

On the other hand, by utilizing the constraint
∑J

j=1 xkj ≤ 1, we have:

log2(
J∑

j=1

xkjckj) ≤ log2(e
m) (6.29)

Since (6.29) is a better bound than (6.28), we haveUB1 =
∑K

k=1 maxj log2(ckj).

For the purpose of comparison, we propose two sub-optimal greedy algorithms, Algorithm 7

and Algorithm 8 as benchmarks.
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Algorithm 7: Greedy Algorithm for User Association

1 InitializeK = {1, 2, . . . ,K}, Lj , ∀j ∈ J andxkj to be an all-zero matrix;
2 for k = 1 toK do
3 for j = 1 to J do
4 Computeckj in (6.18) ;
5 end
6 end
7 while ∃j, Lj 6= 0 do
8 Find (k∗, j∗) = argmaxk,j ck,j ;
9 if Lj∗ 6= 0 then

10 xk∗
j∗

= 1 ;

11 Lj∗ = Lj∗ − 1 ;
12 K = K\k∗;
13 end
14 end

Algorithm 8: Greedy Algorithm for User Association

1 InitializeK = {1, 2, . . . ,K}, Lj , ∀j ∈ J andxkj to be an all-zero matrix;
2 for k = 1 toK do
3 for j = 1 to J do
4 Computeckj in (6.18) ;
5 end
6 end
7 for j = 1 to J do
8 while Lj 6= 0 do
9 Find (k∗, j) = argmaxk ck,j ;

10 xk∗j = 1 ;

11 Lj = Lj − 1 ;
12 K = K\k∗;
13 end
14 end

The above two greedy algorithms can be directly used for comparison with ProblemP1-1. To

compare with ProblemP2-1, for Algorithm 7, we need to change step7 and8 as “while ∃j, Lj 6= 0

& maxk,j log(ck,j) > 0 do” and “Find (k∗, j∗) = argmaxk,j log(ck,j)”.

For Algorithm 8, we need to change step8 and9 as “while Lj 6= 0 & maxk log(ck,j) > 0”

and “Find(k∗, j) = argmaxk log(ck,j)”
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6.3.3 Joint resource allocation and user association

In this subsection we take the resource allocation into account. Consider an massive MIMO

OFDMA HetNet. The system resources contain time and frequency. In OFDMA system, such

as LTE, time-frequency resource is divided into resource blocks (RB). Typical RB consists of12

subcarriers (180kHz) in the frequency domain and7 OFDMA symbols in the time domain(0.5 ms).

So the system may have up to several hundreds of RB. We normalizeit to be a unit number. Every

user connecting to a BS gets a portionβkj of the whole resources. The goal is to maximize the

system utility considering both resource allocation and user association. Note,log() rate utility is

considered here. And the problem is formulated as follows.

max
xkj

,βkj

K∑

k=1

log(
J∑

j=1

xkjckjβkj) (6.30)

s.t.
K∑

k=1

xkj ≤ Lj, j = 1, 2, . . . , J

J∑

j=1

xkj ≤ 1, k = 1, 2, . . . , K

∑

k∈Φj

βkj ≤ 1, j = 1, 2, . . . , J

Constraints (6.5) (6.18).

Note that in (6.30),Φj is the user set defined as:

Φj =
{
k|xkj = 1

}
. (6.31)

So problem (6.30) contains two levels of coupled question: (1) select users for each BS, (2)

allocate resources to the associated users. We next proposea series of primal decomposition and

dual decomposition to optimal solve it. It is worth pointingout that another possible formulation

of the problem is as follows.
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max
xkj

,βkj

K∑

k=1

log(
J∑

j=1

xkjckjβkj) (6.32)

s.t.
K∑

k=1

xkj ≤ Lj, j = 1, 2, . . . , J

J∑

j=1

xkj = 1, k = 1, 2, . . . , K

∑

k∈Φj

βkj ≤ 1, j = 1, 2, . . . , J

Constraints (6.5) (6.18).

Comparing these two formulations, we have following observations.

1. Problem (6.30) does not require every user must be connected. However, problem (6.32)

does require all the users to be connected even under unfavorable conditions.

2. Problem (6.32) has more stringent requirement than problem (6.30). So the optimal value of

problem (6.30) is upper bounded by the optimal value of problem (6.30).

3. Since problem (6.30) gives more choices of user association, problem (6.30) is slower in

convergence than problem (6.32).

We focus on the harder problem (6.30). Given the algorithm tosolve problem (6.30), the

solution to problem (6.32) is ready to obtain. Here variables xkj are integers, whileβkj are real

numbers. So problem (6.30) is a mixed integer programming problem, which is general NP-hard.

However, next we propose an algorithm to obtain its optimal solution.

We observe that sincexkj are binary numbers and
∑J

j=1 xkj ≤ 1, therefore we have:

K∑

k=1

log(
J∑

j=1

xkjckjβkj) =
K∑

k=1

J∑

j=1

xkj log(ckjβkj) (6.33)
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Notice that we also define that if
∑J

j=1 xkj = 0, the log utility is 0. Also note that the choices of

βkj rely on the values ofxkj . Thus problem (6.30) is in fact the following:

max
xkj

,βkj

K∑

k=1

J∑

j=1

xkj log(ckjβkj) (6.34)

s.t.
K∑

k=1

xkj ≤ Lj, j = 1, 2, . . . , J

J∑

j=1

xkj ≤ 1, k = 1, 2, . . . , K

∑

k∈Φj

βkj(xkj) ≤ 1, j = 1, 2, . . . , J

Constraints (6.5) (6.18).

Given these coupled variables, we firstly apply the Primal Decomposition method [90] to

decompose problem (6.34) to the following two levels of problem. Fixing variablesxkj , we have

the lower level problemas:

max
βkj

K∑

k=1

J∑

j=1

xkj log(ckjβkj) (6.35)

s.t.
∑

k∈Φj

βkj ≤ 1, j = 1, 2, . . . , J

And thehigher level problem(or calledmaster problem) is given by:

max
xkj

K∑

k=1

J∑

j=1

xkj log(ckjβkj) (6.36)

s.t.
K∑

k=1

xkj ≤ Lj, j = 1, 2, . . . , J

J∑

j=1

xkj ≤ 1, k = 1, 2, . . . , K

Constraints (6.5) (6.18).
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whereβkj are fixed.

Since there are no couplings among these subproblems, for the lower level problem (6.35),

we could further decompose it intoL subproblems as follows.

max
βkj

K∑

k=1

xkj log(ckjβkj) (6.37)

s.t.
K∑

k∈Φj

βkj ≤ 1, j = 1, 2, . . . , J

The Lagrange of problem (6.37) is:

L =
K∑

k=1

xkj log(ckjβkj) + λ(1−
K∑

k=1

βkj), (6.38)

whereλ is the Lagrange multiplier. Applying KKT conditions [45], the optimal solution can be

obtained:

βkj =
xkj∑K
k=1 xkj

. (6.39)

Plug inβkj to the master problem, we have

max
xkj

K∑

k=1

J∑

j=1

xkj log(
ckj∑K
k=1 xkj

) (6.40)

s.t.
K∑

k=1

xkj ≤ Lj, j = 1, 2, . . . , J

J∑

j=1

xkj ≤ 1, k = 1, 2, . . . , K

Constraints (6.5) (6.18).

Note that we have dropped onexkj term, since due to constraint (6.5),(xkj)
2 = xkj . Since

∑K
k=1 xkj is in the denominator, problem (6.40) has coupled objectives. The key idea of addressing

coupled objective is to introduce auxiliary variables and additional equality constraints so that the

coupling in the objective function is transferred to coupling in the constraint [90]. So we introduce

144



a new variable, which is defined as:

Ξj =
K∑

k=1

xkj . (6.41)

To solve the above problem, we relaxxkj to be a real number between0 and1. However, we

will show later that even if we have relaxed the variables, wecould still find the optimal solution

to the original problem. So the new problem we want to solve is:

max
xkj

K∑

k=1

J∑

j=1

xkj log(
ckj
Ξj

) (6.42)

s.t. Ξj ≤ Lj, j = 1, 2, . . . , J
J∑

j=1

xkj ≤ 1, k = 1, 2, . . . , K

0 ≤ xkj ≤ 1

Constraints (6.18) (6.41).

We propose Algorithm 9 to obtain the optimal solution of problem (6.42) [78] [68] [81]. Note

that in this algorithm,δ(t) is the step size at thet-th iteration, given by:

δ(t) =
ϑ

t+ γ
, (6.43)

whereϑ andγ are positive numbers.

Theorem 6.2.Algorithm 9 optimally solves problem (6.42).

Proof. Let x(t)
k denotes the solution produced by Algorithm 9 at stept. Let ∂U(x(t)

k ) denotes the

subgradient of the objective function in problem (6.42) at step t. We could easily verify that the

update direction in step13 of Algorithm 9 is the subgradient direction. SinceΞj is upper bounded

by Lj andK, and
∑K

k=1 xkj is upper bounded byK, ∂U(x(t)
k ) is bounded. Letκ be a positive

number which satisfiesκ ≤ inf
{
‖∂U(x(t)

k )‖
}

, ∀t.
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DenoteUa as the final result produced by Algorithm 9 andU∗ as the optimal solution of

problem (6.42). We prove the theorem by contradiction. Assume thatUa is not optimal. Then

there must exist anǫ > 0 such that

Ua + 2ǫ < U∗. (6.44)

Then there must be a solution̂xk so that

Ua + 2ǫ < U(x̂k). (6.45)

Let t0 be sufficiently large so that we have

U(x(t)
k ) ≤ Ua + ǫ. (6.46)

Combining (6.45) and (6.46), we have:

U(x(t)
k ) + ǫ < U(x(t)

k ). (6.47)
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Then we derive:

‖x(t+1)
k − x̂k‖2 (6.48)

= ‖x(t)
k − δ(t)∂U (t) − x̂k‖2

= ‖x(t)
k − x̂k‖2 + (δ(t))2‖∂U (t)‖2

−2δ(t)(∂U (t))H(x
(t)
k − x̂k)

≥ ‖x(t)
k − x̂k‖2 + (δ(t))2‖∂U (t)‖2 − 2δ(t)(U(x(t)

k )− U(x̂k))

≥ ‖x(t)
k − x̂k‖2 + (δ(t))2κ2 + 2δ(t)ǫ

≥ ‖x(t)
k − x̂k‖2 + 2δ(t)ǫ

≥ . . .

≥ ‖x(t0)
k − x̂k‖2 + 2ǫ

t∑

j=t0

δ(j)

Note that the first inequality is due the property of subgradient. So we finally have‖x(t+1)
k −x̂k‖2 ≥

‖x(t0)
k −x̂k‖2+2ǫ

∑t
j=t0

δ(j), which cannot hold for sufficiently larget. Thus Algorithm 9 optimally

solves problem (6.42).

Theorem 6.3. The optimal solution to the problem (6.42) is also feasible and optimal for the

problem (6.40).

Proof. From problem (6.42) to (6.40), we relax the variables from binary to real numbers and

introduce a equality constraint. The equality constraint is just another representation of the problem

and changes nothing. So the optimal values to problem (6.40)provides an upper bound to the

problem of (6.42). However it can be observed from Algorithm9 that the solutions to problem

(6.40) are integers rather than fractions. So we could set the solutions to problem (6.42) exactly

the same as the solutions to problem (6.40). Since the solutions to problem (6.42) cannot result

in higher optimal value than the solutions to problem (6.40), the solutions to problem (6.40) are
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Algorithm 9: Two Layer Dual Decomposition Algorithm for Optimization Problem (6.42)

1 t = 0, λ(1) = 0;
2 while the optimization has not convergeddo
3 t← t+ 1;
4 for k = 1, . . . ,K do
5 for j = 1, . . . , J do
6 Computeckj ;
7 end

8 Find j∗ = argmaxj

{
log(ckj − λ

(t)
j )
}

;

9 Let x(t)kj
= 0 for j 6= j∗ ;

10 Let x(t)k∗j
= 1, if log(ckj − λ

(t)
j ) ≥ 0; Otherwise,x(t)k∗j

= 0;

11 end
12 for j = 1, . . . , J do

13 Each BS chooses a step sizeδ(t) and computesΞ(t+1)
j = min{Lj , e

(λ
(t)
j −1)},

λ
(t+1)
j = λ

(t)
j − δ(t)(Ξ

(t)
j −

∑K
k=1 x

(t)
kj
).

14 end
15 end

Algorithm 10: Greedy Algorithm for Joint Resource Allocation and User Association

1 InitializeK = {1, 2, . . . ,K} andJ = {1, 2, . . . , J} xkj to be an all-zero matrix;
2 for k = 1 toK do
3 for j = 1 to J do
4 Computeckj in (6.18) ;
5 end
6 end
7 while maxk,j log(ck,j) > 0 do
8 Find (k∗, j∗) = argmaxk,j log(ck,j);
9 xk∗

j∗
= 1 ;

10 K = K\k∗;
11 J = J \J∗;
12 end

exactly the solutions to problem (6.42) as well. Henceforth, even though we transform problem

(6.42) to problem (6.40), the optimal solution does not change.

To sum up, optimal solution to the problem (6.40) can be find via Algorithm 9. For the purpose

of comparison, we propose two greedy algorithms as benchmark. The idea of them are first find a

most desirable user-BS pair, then allocation all the resources to that user. Repeat until converge.
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Algorithm 11: Greedy Algorithm for Joint Resource Allocation and User Association

1 InitializeK = {1, 2, . . . ,K}, J = {1, 2, . . . , J} andxkj to be an all-zero matrix;
2 for k = 1 toK do
3 for j = 1 to J do
4 Computeckj in (6.18) ;
5 end
6 end
7 for j = 1 to J do
8 if maxk log(ck,j) > 0 then
9 Find (k∗, j) = argmaxk ck,j ;

10 xk∗j = 1 ;

11 K = K\k∗;
12 end
13 end

6.4 Distributed User Association

In the previous section, we assume that there is a central controller which has global informa-

tion and assigns users to the BSs. In this section, we considerdistributed user association where

there is no central controller. However, the BSs still have all the CSI via uplink training. We fur-

ther assume that all the base stations including the massiveMIMO BS and small cell BS belong

to the service provider. And each user make its own decisionsbased on the broadcast and local

information.

We model the behaviors of the service provider and users using repeated game theory. The

first key problem is to determine whether the game will terminate. The second key problem is to

analyze whether both sides are satisfactory about the outcome of the game, i.e. Nash Equilibrium

exists.

Note that throughout this section, we also does not allow fractional connection. Constraint

(6.5) is dropped from the problem formuation, but it is enforced.

6.4.1 Service Provider Determines the Prices

In the first subsection, we consider the case that during eachround of the game, the service

provider determines the price. Users decide whether connect or not, and if connect, connect to
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which base station. So the players of the game include the service provider and the users. The

strategy of the service provide is to set the pricepkj of each BS for each user, while the strategy of

the userk is to determinexkj is 0 or 1 for j ∈ J .

The utility of the service provider is defined asUB =
∑K

k=1

∑J
j=1 xkjpkj . However, each

BS has its limited loading capacity. Therefore, the service provider tries to solve the following

problem:

max
pkj

UB =
K∑

k=1

J∑

j=1

xkjpkj (6.49)

s.t.
∑

k

xkj ≤ Lj

The utility of each user is the transmission rate achieved minus its payment. So each user tries

to solve the following problem.

max
xkj

Uk = max

{
wk log

(
J∑

j=1

xkjckj

)
−

J∑

j=1

xkjpjk , 0

}
(6.50)

s.t.
∑

j

xkj ≤ 1

Note thatlog() function represents the satisfaction of a user towards its achievable rate.wk

is a weight factor used for conversion between the rate satisfaction and monetary measurement.

We assume that the weightwk of each user is drawn from a finite setW with |W| members. This

assumption is true in real-world practice. For instance,$30 for a wireless service with60 Mbps

data rate is considered to be cheap.$45 is considered to be reasonable.$60 would be thought

as acceptable.$80 would be expensive for most people.$100 would be too expensive and$150

or above would not be an option for most people. So the weight of the users has generally finite

choices of values based on common sense, and is typically in arange= (0,WM), whereWM is

the maximum possible value forwk.
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Given the plays, their strategies and utilities, we define the NE of the game as: a strategy

set
{
p∗kj , x

∗
kj

}
, ∀k, ∀j is a NE of the repeated game ifUB(p∗kj , x∗

kj
) ≥ UB(pkj , x∗

kj
), ∀pkj and

Uk(p∗kj , x∗
kj
) ≥ Uk(p∗kj , xkj), ∀k, ∀xkj .

Due to the constraint that each user can only connect to one base station,wk log
(∑J

j=1 xkjckj

)
=

∑J
j=1 xkjwk log(ckj). So each user locally optimize the following problem.

max
xkj

Uk = max

{
J∑

j=1

xkjwk log(ckj)−
J∑

j=1

xkjpjk , 0

}
(6.51)

s.t.
∑

j

xkj ≤ 1

Note that the constraint of (6.51) is
∑

j xkj ≤ 1, which indicates that
∑

j xkj could be0, i.e.

a user may choose not to connect to any one of the base stations. On the other hand, if we restrict
∑

j xkj = 1, i.e., a user must connect to a base station, then even if the service provider sets the

prices to be infinity, each user will still connect to one of the base station, which is unreasonable.

The repeated game is playing as follows. Initially, the service provider sets a price for each

base station for each user. Knowing the prices, users will feedback the service provider their

choices based on their own calculations. Then the service provider updates the prices and broad-

casts them to all the users. Users again inform the service provider of their choices. The process is

repeated until the service provider and users are all satisfied by the price.

Give the utility function and constraint in (6.51). The optimal solution for each user can be

found as:

j∗ = argmax
j∈J

[
wk log(ckj)− pjk

]
, (6.52)

xkj =





1, if j = j∗ andwk log(ck∗j ) ≥ pj∗k .

0, otherwise.

(6.53)
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Users’ decision can be interpreted in this way. A user will select out the best connection based

on its own evaluation. If the user’s evaluation of the connection is greater than equal to the price,

then it will connect to this base station. Otherwise, the user will not connect.

For the service provider, it tries to solve (6.49). The variable it controls arepkj , for k =

1, 2, . . . , K andj = 1, 2, . . . , J . However, the constraint
∑

k xkj ≤ Lj implicitly contains variable

pkj , since according to the user’s choice,j∗ = argmaxj∈J
[
wk log(ckj)− pjk

]
.

max
pkj

UB =
K∑

k=1

J∑

j=1

xkjpkj (6.54)

s.t.
∑

k

xkj(pkj
)
≤ Lj

Thus, the optimization problem for the service provider is in fact (6.54), which is mixed

integer programming in nature and generally NP-hard to solve.

Since problem (6.54) has coupling constraints, one may try to introduce Lagrange multiplier

to the constraint and solve the resulting problem using dualdecomposition. However, sincepkj is

implicitly contained in the constraint, the gradient and subgradient are difficult to find. So we need

to resort to other ways. We propose Algorithm 12 for the service provider, and then prove that the

algorithm results optimal utility for the service providerand the users.

Proposition 7. If the service provider adopts Algorithm 12, the game converges and the NE can

be achieved.

Proof. We first notice that the service provider has priority over the wireless users. The users al-

ways make decisions based upon the service provider’s pricesetting. Basically, the service provider

controls when the repeated game terminates.

In Algorithm 12, the service provider tests out the weight ofeach user using binary search

with O(log2(|W|)) steps. Once the service provider has figured outwk, k = 1, 2, . . . , K of each

user, it can estimate the users’ price evaluation matrixV as follows.
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vkj = ckjwk, (6.55)

wherevkj is the entry of matrixV at j-th row andk-th column. Then the service provider is ready

to select users for the base stations by solving the following problem.

max
xkj

K∑

k=1

J∑

j=1

xkjvkj (6.56)

s.t.
∑

k

xkj ≤ Lj, j = 1, 2, . . . , J

∑

j

xkj ≤ 1, k = 1, 2, . . . , K

Constraints (6.5) (6.55).

The optimal solutionx∗
kj

to the above problem can be solved in similar way of solving problem

P1-2. Then the optimal price solution to the service provider canbe obtained as follows.

p∗kj =





vkj , if x∗
kj

= 1;

vkj + ǫ, otherwise,

(6.57)

whereǫ is any positive number.

So by adopting Algorithm 12, the optimal utility (highest) can be reached for the service

provider. Meanwhile, we could see that all the users’ utility must be0 due to the optimal price set-

ting. That means, all the users achieve the optimal utility given the price setting as well. Therefore,

the game converges and the NE is met.

Notice that it is highly possible that the optimal utility ofthe service provider will be lower

than the maximum utility during the game. That’s because during the game, the load capacity

condition is often violated.
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Algorithm 12: Algorithm for Service Provider

1 InitializewMAX , wMIN , t = 0;
2 for k = 1 toK do
3 for j = 1 to J do
4 Computeckj in (6.18) ;
5 end
6 end
7 for k = 1 toK do
8 wu

k (t) = wMAX ;
9 wl

k(t) = wMIN ;
10 end
11 while not convergeddo
12 for k = 1 toK do

13 ŵk(t) =
wu

k (t)+wl
k(t)

2 ;
14 for j = 1 to J do
15 pkj (t) = max

{
ŵk(t) log(ckj ), 0

}
;

16 end
17 end
18 t = t+ 1;
19 for k = 1 toK do
20 if |Fk| > 1 then
21 wu

k (t) = wu
k (t− 1);

22 wl
k(t) = wl

k(t− 1);
23 else if|Fk| = 1 then
24 wu

k (t) = wu
k (t− 1);

25 wl
k(t) = ŵk(t);

26 else
27 wu

k (t) = ŵk(t);
28 wl

k(t) = wl
k(t− 1);

29 end
30 end
31 end
32 for k = 1 toK do
33 for j = 1 to J do
34 Calculatevkj in (6.55) usingŵk;
35 end
36 end
37 Solve (6.56) and find optimal price in (6.57);

6.4.2 Users Bid

In this subsection, we consider the case that before service, users bid to the service provider

according to its predicted satisfaction towards each BS. Andservice provider determines whether
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or not accept a user’s bid and feedback the decisions to users. Then the users make another round of

bids according to its predicted satisfaction and the service provider’s decision history. The service

provider again decides whether or not accept a user’s bid andfeedback the decision.

Here we consider the users to be data-hungry and strive for ashigh data rate as possible.

Considering that a user will not bid to a BS with satisfaction less than0, each user solves the

following problem:

max
pkj

Uk = max

{
J∑

j=1

xkjwk log(ckj), 0

}
(6.58)

s.t.
∑

j

xkj(pkj )
≤ 1

On the other hand, the utility of the service provider is the total payment made by all the users.

So it tries to maximize:

max
xkj

UB =
K∑

k=1

J∑

j=1

xkjpkj (6.59)

s.t.
∑

k

xkj ≤ Lj

To sum up, the players of the game include the service provider and the users as well. The

strategy of the user is to make payment0 or the satisfactory level to a BS. The strategy of the

service provider is to determine whether or not accept a user’s bid. The utility of each user is given

in (6.58) and the utility of the service provider is given in (6.59).

We assume thatK ≥∑J
j=1 Lj. The optimal solution for each user is simple. In order to have

the greatest level of satisfaction, it makes highest possible payment. So the payment made by each

user is:

pkj = max

{
J∑

j=1

xkjwk log(ckj), 0

}
(6.60)

The optimal strategy for the service provider is summarizedin Algorithm .
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Algorithm 13: Algorithm for the Service Provider

1 while not convergeddo
2 for j = 1 to J do
3 if j is bidden by≤ Lj usersthen
4 Keep all the users in BSj’s waiting list;
5 else
6 KeepLj users with highest bids and reject other users;
7 end
8 end
9 end

At the first stage of the game, each user bids a price to its mostdesirable base station. Then

Algorithm 13 indicates if thej-th base station receives more thanLj bids, the service provider only

putsLj users on BS-j’s waiting list based on the prices the users offer, and rejects all other users.

If the j-th BS receives less than or equal toLj bids, the service provider puts all these users on its

waiting list.

At the second stage of the game, if a user gets a position in a BS’s waiting list in the previous

round, it will keep bidding the same BS with the same price to guarantee the highest utility. How-

ever, if a user gets rejected in the previous round, being selfish, it will exclude the base stations

which have rejected him before and bids a price to its most desirable base station among the re-

maining base stations. For the service provider, it adopts the same strategy. If the number of bids

received for a BS outnumbers the loading capacity of that BS, the service provider only keeps the

Lj most desirable users on the waiting list and reject the others. It keeps all users on the waiting

list if the number of bids received is less than a BS’s loading capacity.

Game repeats until it converges.

Lemma 14. The sequence of bidding made by a user is non-increasing in the user’s preference

list.

Proof. Before a user offers bidding, it will calculate the satisfaction of all the base stations and

have a preference list in its mind. Since a user tries to maximize its utility, it will firstly propose

to the base station with the highest satisfaction. If that base station rejects it, it will propose to the

base station with the second highest satisfaction. Note that even if a user may be put on the waiting

156



list of a base station, he may be removed from that waiting list later. If that happens, this user will

start bidding to other base station again. A user will repeatthis process until he is finally in a base

station’s serving list or he will be rejected by all base stations. So the sequence of bidding made

by a user is non-increasing in the user’s preference list.

Lemma 15. The sequence of bidding a base station put on the waiting list is non-decreasing in its

preference list.

Proof. Given the fact any base station has finite loading capacity and K ≥ ∑J
j=1 Lj, all the base

station will have at least one user bids to it at some stage of this game. Since a base station tries

to maximize its utility, it puts all the users who offer bids on the waiting list. On the condition that

there are too many users, it will reject the users who will never be served by it. In the next round

of game, the base station will often have more or at least the same amount of bids compared to

the size of its current waiting list. That means the base station has more choices. The base station

again only keeps the most profitable ones and reject or removethe others from the waiting list. So

the sequence of bidding a base station put on the list is non-decreasing in its preference list.

Theorem 6.4.The above repeated game converges.

Proof. Given observations inLemma 14 andLemma 15, we prove this theorem by contradiction.

Suppose that this repeated game does converge. Then there must be a stage of the game that there

is a userk and BSj pair so that userk is connected to another BSj′ or is not connected to any

BS, while userk prefers BSj to BSj′ or prefers BSj to be not connected; and BSj prefers user

k to a userk′ who is on its serving list. Let’s firstly consider userk is now served by BSj′. If this

happens, since the sequence of bidding a base station put on the list is non-decreasing in its base

station, it must be that userk has never bidden to BSj during the game. Because if userk has

bidden to BSj, BSj would not have ended up with choosingk′ overk. So userk must have never

bidden to BSj. In this case, userk would never have bidden to BSj′ either, since userk prefersj

to j′. However, userk is now served by BSj′, userk must have bidden to BSj′, which contradicts

that userk would never have bidden to BSj′. Same reasoning holds for the case under which user
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k is not connected to any base station. If BSj prefersk to k′ on the serving list, BSj would never

reject userk but meanwhile keep userk′.

Therefore, the repeated game must converge. And the game converges when every user is

either on a waiting list or has been rejected by every BS.

From the proof above, we can actually see that the game terminates when the least popular

base station becomes fully loaded.

Theorem 6.5. The outcome of the above repeated game is optimal for the users and service

provider.

Proof. Suppose that the outcome of the game is not optimal for a userk, who is connected to BS

j. Then there must be another BSj′, which has higher ranking than BSj in the preference list of

userk and has a serving list of user
{
j′1, j

′
2, . . . , j

′
Lj′

}
. Since BSj′ serves userj′1, j

′
2, . . . , j

′
Lj′

, that

means BSj′ prefer these users to userk and BSj′ is at the top of the preference list of these users.

If at some stage userk is or we insert userk by force to the waiting list of BSj′, the game must

have not terminated. Since userk is in the waiting list, then one of the final usersj′1, j
′
2, . . . , j

′
Lj′

must be currently off the list. Say userj′Lj′
is out of the list. Userj′Lj′

will immediately bids for

BS j′ since BSj′ is at the top of its preference list among the remaining base stations. And BSj′

will removek from the waiting list, since userk has lowest ranking in the preference list of BSj′.

Thus, when the repeated game terminates, the outcomes are optimal for each user. It is obvious

that the outcome is optimal for the service provider.

From Theorem 6.4 and Theorem 6.5, we know that the game converges and the NE is met

when the game terminates.

6.5 Simulation Study

In this section, we conduct numeric simulations to verify the efficacy of our proposed schemes.

Throughout the simulation, we assumelj,k = 1/(1+(
dj,k
40

)3.5) for the path loss between a user

and the massive MIMO BS, andlj,k = 1/(1 + (
dj,k
40

)4) for the path loss between a user and a small
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Table 6.1: System Configuration
Parameter Value Parameter Value
Mmassive 100 M 4
Lmassive 10 L 4
Pmassive 40 dBm P 40 dBm
Area 1000× 1000 J 11

cell BS [75]. For the small scale fading, we assume the power ofthe small scale fading following

a uniform distribution from[0.8, 1].

For the geometry of the base stations, we fix the location of the massive MIMO BS at the

center of the map. Other BSs are randomly placed across the map. Users are randomly dropped

across the map. More parameter settings are listed in Table 6.1.

Fig. 6.2 represents the comparison among the rate maximization of the optimal solution and

the two proposed greedy algorithms. Fig. 6.3 depicts the comparison among the rate maximization

considering proportional fairness of the optimal solutionand the two proposed greedy algorithms.

We can see from both figures that the optimal solution achieves the highest network utility. We

also notice that as the number of users increase, the gaps between the optimal utility and the greedy

solutions become more and more narrower. This is because that as there are more users, the user

diversity effect becomes stronger. So the greedy algorithmand the optimal user association tend

to produce similar solutions.

Throughout this chapter, the constraint for each user is
∑J

j=1 xkj ≤ 1. It should provides

upper bounds for the problem with the constraint
∑J

j=1 xkj = 1. Fig. 6.4 illustrates this compar-

ison. Here for fair comparison. We have exactly the same number of active users as the loading

capacity of all BSs. For instance, when the system loading capacity is250, we haveJ = 51 BSs

andK = 250. We can see that the inequality constraint problem indeed upper bounds the equality

constraint problem. This is because the inequality constraint problem could eliminate the users

whose rate is too low with negative utility.

Fig. 6.5 illustrates the comparison among the optimal jointresource allocation and user as-

sociation and two proposed greedy algorithms. We could see that the optimal scheme achieves
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Figure 6.2: Rate Maximization of Centralized Control.
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Figure 6.3: Log Rate Utility of Centralized Control.

the highest utility. Moreover, the gap between the optimal scheme and the greedy schemes is very

large. We also consider the equality constraint problem as abenchmark for comparison, which

is shown in Fig. 6.6 and Fig. 6.7. For fair comparison, we set the sum capacity of this system

being equal to the number of users. So there are totallyK = 50 users active in the system. Fig.

6.6 illustrates the optimal solution of problem (6.32), with optimal network utility as−59.8462.

Fig. 6.7 illustrates the optimal solution of problem (6.30), with optimal network utility as29.5433,
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Figure 6.4: Log Rate Utility of Centralized Control.
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Figure 6.5: Joint Resource Allocation and User Association.

which is much higher than−59.8462. We can also see that if we connect every user. Some edge

user with low rate will be harmful for the network utility.

Fig. 6.8 shows the utility of the service provider and all users when the service provider sets

the price. We could see that the repeated game converges after 8 round of games. It can also be

observed that the utility of all users is monotonically decreasing. That is because once a user’s
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Figure 6.6: Optimal joint resource allocation and user association with equality constraint.
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Figure 6.7: Optimal joint resource allocation and user association with inequality constraint.

evaluation is known to the service provider, the service provider will sets price for highest profit,

which results in0 utility for that user. As discussed before, the utility for the service provider is

not monotonically increasing, since during the game, the load capacity constraint may be violated.

Fig. 6.9 represents the utility of the service provider and users versus the number of users. We can

see that as the number of user increases, utility of the service providers increases, which is also
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Figure 6.8: Convergence of the repeated game when service provider sets the price andK = 100.
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Figure 6.9: Convergence of the repeated game when service provider sets the price andK = 100.

mainly due to multi-user diversity gain. We can also observethat the game terminates after about

8 round of games no matter how many users are active.

Fig. 6.10 depicts the process of the game when users bid for base stations. Here we deploy

J = 41 BSs in the system, equip the massive MIMO BS withMmassive = 400 antennas and drop

K = 350 users. The left axis represents the loading of these41 BSs. The right axis represents the
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Figure 6.10: Convergence of the repeated game when users bid.

utility of the service provider. We could see that the game converges about10 round of games. We

also note that the utility of the service provider is monotonically increasing as the game continues.

To encourage offloading, rate bias of the BS is considered here. We manually multiple the rate

of the massive MIMO BS by a factor of0.5. Fig. 6.11 shows the result. Here we set the parameters

according to Table 6.1. It can be observed that the utility ofrate bias is higher than the utility

without considering rate bias, which demonstrate the efficacy of rate bias and load balancing. We

could also see that the games terminate less than8 rounds of game.

6.6 Conclusions

In this chapter, we have investigated the user association problem in massive MIMO HetNet

from the centralized and distributed perspectives. Particularly, by leveraging totally unimodular-

ity we have obtained the optimal solution to the rate maximization and rate maximization with

proportional fairness problems. By applying primal decomposition and dual decomposition we

have obtained the optimal solution to the joint resource allocation and user association problem.

Modeling the behaviors of the service provider and users using repeated games, we have proven

that the games when the service provider sets the price or users bid for connection would converge
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Figure 6.11: Utility sum from all the BSs of the repeated game when users bid.

to the Nash Equilibrium. We have compared the proposed schemes to some heuristic schemes.

Simulation results verify the efficacy of our proposed schemes.
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Chapter 7

Conclusions

In this dissertation work, several advanced physical layertechniques (MIMO, massive MIMO,

OFDM, IA, IDMA) and novel network work level technology (femtocell and CRN), have been

reviewed. Overall speaking, all of these techniques are helpful for system throughput enhance-

ment. However, there are many technical challenges for incorporating these techniques to existing

wireless networks. For instance, how to adopt IDMA for femtocell network, how to incorporate

interference alignment in (MIMO) OFDM network, how will theprimary and secondary user be-

have in future wireless network, how to introduce massive MIMO in FDD systems. To address

these challenges motivates this dissertation work.

In Chapter 2, how to manage interference in the uplink of two-tier femtocell networks was

investigated. IDMA was adopted to allow concurrent transmissions from all users and cancel the

intra- and cross-tier interference with iterative decoding and interference cancellation, while utiliz-

ing all the time and frequency resources. Three IDMA based schemes were proposed considering

the processing capability of femtocells. Simulation results verified that considerable throughput

gains can be achieved at comparatively low costs.

In Chapter 3, how to exploit interferences in OFDM systems to enhance the system through-

put was discussed. Since the channel of OFDM system is highlystructured, the challenge is how

to overcome the difficulty of precoding over dependent subcarriers. With an integer programming

formulation, we derived the upper bounds for the multi-user(MIMO) OFDM interference align-

ment system, and proposed effective algorithms to approachthese bounds.

In Chapter 4, how will the primary user and secondary users behave in a MIMO CR net-

work was modeled and investigated. A three-phase cooperative spectrum leasing scheme with

distributed interference alignment was proposed. Given the framework, the system was analyzed
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using Stackelberg game theory. With backward induction, the unique Stackelberg equilibrium was

derived. Simulation results demonstrated that the proposed scheme outperformed a no-spectrum-

leasing scheme and a cooperative scheme from prior work. Through analysis, the best strategies for

the primary user and secondary users under different configurations were found. Another impor-

tant insight obtained was, leasing spectrum to secondary users was always helpful for enhancing

the primary user utility.

In Chapter 5, user grouping and scheduling problems were studied under the context of mas-

sive MIMO system operating in the FDD mode. Typically, weighted likelihood similarity measure,

subspace projection based similarity measure, Fubini Study based similarity measure, hierarchi-

cal clustering, and K-medoids clustering for user groupingwere investigated. A dynamic user

scheduling scheme was proposed as well. The load balancing problem when the number of users

was small was also investigated. Efficient algorithm for solving the load balancing problem was

proposed and validated.

In Chapter 6, user association problem in massive MIMO heterogeneous networks were stud-

ied from both centralized and distributed perspectives. Particularly, with a centralized perspective,

the rate maximization problem and rate maximization with proportional fairness problem were

optimally solved by leveraging totally unimodulairty. Through a series of primal and dual decom-

position, the optimal solution to the joint resource allocation and user association problem were

also obtained. With a distributed perspective, the behaviors of the service provider and the users

were firstly modeled as a repeated game. It was proved that thegame would converge and the Nash

Equilibrium was obtained.

Although considerable progresses have been made throughout this dissertation work, there

are many remaining open problems to explore. Some of them arelisted here.

1. The performance of IDMA system depends on the specific coding and decoding scheme. To

obtain analytical expressions for each scheme could enableoptimizations of throughput or

interference control for IDMA system.
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2. Joint design of IDMA, (massive) MIMO and OFDM has the potential of further enhance the

system throughput.

3. Contents related research could be conducted for CRN with distributed interference align-

ment. For instance, in the future, video transmissions would consume most of the bandwidth.

How to deliver high quality videos considering the QoE (quality of experience) of the pri-

mary and secondary user is of great significance.

4. Implementation of MIMO OFDM system with interference alignment could ultimately demon-

strate the benefits brought by interference alignment.

5. Investigate the system in which users are also equipped with multiple antennas for massive

MIMO system is of great importance, theoretically and practically.
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