

Algorithms for Optimal Construction and Training of Radial
Basis Function Neural Networks

by

Philip David Reiner

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
May 10, 2015

Keywords: Machine Learning, Radial Basis Functions, Artificial Neural Networks,
Optimization, Support Vector Machines

Copyright 2015 by Philip David Reiner

Approved by

Bogdan Wilamowski, Chair, Professor of Electrical and Computer Engineering
Michael Hamilton, Assistant Professor of Electrical and Computer Engineering
Thaddeus Roppel, Associate Professor of Electrical and Computer Engineering

Vitaly Vodyanoy, Professor of Anatomy, Physiology, and Pharmacy

Abstract

 Machine Learning and Computational Intelligence are rapidly growing fields of research

in both academia and industry. Artificial neural networks are at the heart of much of this

research. Efficiently constructing and training artificial neural networks is of utmost importance

to advancing the field. It has been shown that compact architectures show better generalization

performance to networks containing many computational nodes. Furthermore, special neurons

consisting of a Radial Basis Function can be used to improve local performance of ANNs. Many

algorithms such as Support Vector Regression, Error Backpropagation, and Extreme Learning

Machines can be used to train networks once an architecture is chosen. Other algorithms such as

RAN, MRAN, and GGAP can train networks as they are constructed. However, many of these

algorithms have limitations that lead to an excessive network size. Two new RBF network

construction algorithms are introduced with the aim of increasing error convergence rates with

fewer computational nodes. The first method is introduced in Chapter 3 and expands on the

popular Incremental Extreme Learning Machine algorithms by adding a Nelder-Mead simplex

optimization to the process. The second algorithm, described in Chapter 4, uses a Levenberg-

Marquardt algorithm to optimize the positions and heights of RBF units as they are added to a

network. These algorithms are compared to many state of the art algorithms on difficult

benchmarks and real-world problems. The results demonstrate that more compact networks with

superior error performance are created.

ii

Acknowledgements

 I must begin by thanking my advisor and mentor for the past several years, Prof. Bogdan

Wilamowski for his guidance and motivation during my studies. It has been an honor and a

privilege to work with him.

 I would like to thank each of my committee members for their time and guidance. It has

been a joy to learn from each of you during my studies at Auburn.

 I would also like to thank my wife Heather Reiner for standing by my side throughout the

entirety of my graduate career. Her patience has allowed me the opportunity to be the best that I

can be.

 iii

Table of Contents

Abstract ... ii

Acknowledgements .. iii

List of Tables .. vii

List of Figures .. viii

Chapter 1 Introduction ... 1

1.1 Artificial Neural Networks ... 3

1.1.1 Learning .. 5

1.1.2 Modelling Artificial Neural Networks .. 9

1.1.3 Radial Basis Function Networks ... 10

Chapter 2 Neural Network Training and Construction ... 16

2.1 Neural Network Architectures ... 16

2.2 Supervised Neural Network Training .. 21

2.2.1 Error Back Propagation and Gradient Descent ... 23

2.2.2 Newton’s Algorithm ... 26

2.2.3 Gauss-Newton Algorithm ... 28

2.2.4 Levenberg-Marquardt Algorithm.. 30

2.2.5 Improved Hessian Computation ... 32

 iv

2.3 Optimal Construction and Training.. 34

2.3.1 Resource Allocating Network (RAN and RANEKF) Algorithm 36

2.3.2 Generalized Growing and Pruning Algorithm .. 38

2.3.3 Support Vector Machines ... 39

2.4 Extreme Learning Machines .. 43

2.4.1 Incremental Extreme Learning Machine ... 49

2.4.2 Convex Incremental Extreme Learning Machine ... 51

2.4.3 Enhanced Random Search Incremental Extreme Learning Machine 53

Chapter 3 Nelder-Mead Enhanced Extreme Learning Machine ... 55

3.1 Nelder-Mead Simplex Method ... 55

3.1.1 Improved Nelder-Mead Simplex Method ... 59

3.2 Nelder-Mead Enhanced Extreme Learning Machine ... 61

3.3 Testing and Comparisons ... 67

3.3.1 Highly Nonlinear Benchmark: Peaks Problem ... 68

3.3.2 Real World Data ... 70

Chapter 4 Error Correction Algorithm .. 74

4.1 Levenberg-Marquardt Training for RBF Networks ... 74

4.1.1 ISO Deficiencies ... 75

4.2 Error Correction Algorithm .. 76

4.3 Testing and Comparisons ... 81

 v

4.3.1 Highly Nonlinear Benchmarks ... 82

4.3.2 Real-World Data ... 91

Chapter 5 Conclusions ... 98

References ... 100

Appendix ... 106

 vi

List of Tables

Table 1. ... 17

Table 2. ... 17

Table 3. ... 48

Table 4 .. 71

Table 5 .. 73

Table 6 .. 73

Table 7 .. 73

Table 8 .. 85

Table 9 .. 91

Table 10 .. 95

Table 11 .. 96

Table 12 .. 96

Table 13 .. 97

 vii

List of Figures

Figure 1.1-1. .. 5

Figure 1.1-2. .. 12

Figure 1.1-3. .. 13

Figure 2.1-1. .. 18

Figure 2.1-2. .. 19

Figure 2.1-3. .. 20

Figure 2.1-4. .. 21

Figure 2.2-1. .. 23

Figure 2.2-2. .. 34

Figure 2.4-1 ... 51

Figure 3.1-1. .. 58

Figure 3.1-2.. ... 58

Figure 3.2-1. .. 64

Figure 3.2-2. .. 65

Figure 3.2-3. .. 66

Figure 3.2-4. .. 67

Figure 3.3-1 ... 69

Figure 3.3-2. .. 70

Figure 3.3-3. .. 72

 viii

Figure 4.1-1. .. 76

Figure 4.2-1. .. 78

Figure 4.2-2. .. 79

Figure 4.2-3. .. 80

Figure 4.2-4. .. 81

Figure 4.3-1. .. 83

Figure 4.3-2. .. 84

Figure 4.3-3. .. 86

Figure 4.3-4. .. 87

Figure 4.3-5. .. 87

Figure 4.3-6. .. 88

Figure 4.3-7. .. 88

Figure 4.3-8. .. 90

Figure 4.3-9. .. 90

Figure 4.3-10. .. 91

Figure 4.3-11. .. 94

Figure 4.3-12. .. 95

 ix

Chapter 1 Introduction

In our modern society, computers are everywhere. From statistical modelling of complex

systems to turning on and off the lights, computers are used to solve problems in every aspect of

our lives. As technology becomes more advanced, the number of problems that can feasibly be

handled by software increases. However, there are some complex real-world problems that

cannot effectively be solved by traditional approaches such as first principles modeling or

explicit statistical modeling. Many of these problems are not considered to be mathematically

well-posed problems. However, nature often provides many examples of biological systems

exhibiting incredibly complex functions. For instance, the human body has 244 degrees of

freedom being controlled by 630 muscles [1], yet humans have little trouble executing target

movements. Furthermore, these controls must be able to be executed in the presence of

uncertainty, noise, and an ever-changing context.

The attempt to address complex real-world problems using nature-inspired computational

methodologies is often known as Computational Intelligence (CI). The characteristic of

“intelligence” is usually attributed to humans, but the field of CI attempts to use software to

imitate the abilities of humans to perform reasoning and decision making. For example, Fuzzy

Logic was introduced by Zadeh in 1965 as a tool to formalize and represent the reasoning

process. Fuzzy logic systems possess many characteristics attributed to intelligence by dealing

effectively with uncertainty that is common for human reasoning, perception, and inference,

while maintaining the formal mathematical backbone needed for computation [2]. Evolutionary

1

computation mimics the population based evolution through reproduction of generations and

genetics in so called genetic algorithms [3].

Another attribute of intelligence that CI attempts to mimic is learning, or the ability for a

system to change with respect to the data it receives rather than follow explicitly programmed

instructions. This field is called Machine Learning (ML) and shares its roots, along with CI, in

computer science and statistics. ML is also closely tied with optimization. In fact, many of the

learning algorithms can be thought of as optimizing a system relative to the problem to be

learned. As with other CI subfields, machine learning is employed in computing tasks where

designing and programming explicit rule-based algorithms is infeasible. ML is often used in real-

world tasks such as, spam filtering, optical character recognition (OCR), search engines, pattern

recognition, data mining, and computer vision [4].

ML tasks can be broken into several categories such as: supervised learning, unsupervised

learning, semi-supervised learning, and reinforcement learning. Supervised learning algorithms

are trained on labelled examples, data where the desired output is known for a specific input.

These algorithms attempt to generalize a function that maps inputs to outputs so that a previously

unseen input will generate an output. Unsupervised learning algorithms are trained on unlabeled

examples, where the data is examined to find an underlying structure. Semi-supervised learning

combines both labeled and unlabeled data to generate an appropriate function or mapping.

Reinforcement learning is concerned with how intelligent agents should act in an environment to

maximize some notion of reward or minimize a notion of cost. The agent performs a set of

actions which cause the observable state of the environment to change. By examining the

environment after each action, the agent attempts to gather knowledge about how the

 2

environment responds to its actions. The agent then attempts to perform actions that maximize a

reward or minimize a cost [5].

There are several approaches to solving an ML problem. These approaches include

algorithms such as: decision tree learning, association rule learning, artificial neural networks,

inductive logic programming, support vector machines, clustering, bayesian networks,

reinforcement learning, representation learning, similarity and metric learning, and sparse

dictionary learning. The focus here will be on developing Artificial Neural Networks (ANNs);

their architectures, feature mapping, and training algorithms. ANNs will be used to solve

supervised problems consisting of both classification and regression.

1.1 Artificial Neural Networks

In the field of machine learning, Artificial Neural Networks (ANNs) are computational

models designed to replicate the function of an animal’s central nervous system (CNS) to bring a

sense of intelligence to a software module. Computations in an ANN are structured in terms of

an interconnected group of artificial neurons, called a network. Modern neural networks are non-

linear statistical data modeling tools. These networks are designed to do popular tasks in

machine learning such as classification, regression, and pattern recognition. The idea of

intelligence in an ANN comes from the ability of the system to be changed by the data that is fed

through it. This ability is referred to as “learning.” There are several methods by which an ANN

learns. For instance, in unsupervised cases, the distance between separations in the data created

by the neural network is maximized, or in supervised cases, the difference between the ANN

output and the target output is minimized. Learning methods will be discussed in great detail

later.

 3

There is no single formal definition of what an artificial neural network is. However, a class

of computational models may be called “Neural” in current research literature if they possess the

following characteristics:

1. They consist of sets of adaptive (tunable) weights that affect the relative strength of

various inputs, and these weights are adjusted by a learning algorithm.

2. They are capable of approximating non-linear mappings of their inputs to an output.

The adaptive weights are conceptually connection strengths between neurons which are

activated as data is passed through the network for both training and prediction. In modern neural

networks, the similarities between ANNs and their biological counterparts is found mostly in the

implementation of the artificial neurons and their arrangement in parallel and local processing

paradigms and in their ability to adapt with new data.

The neurons used in ANNs are modelled after neurons found in biological systems. Each

neuron has a set of input connections (representing dendrites) and an output (representing the

neuron’s axon). The inputs are usually combined by a weighted sum and operated on by a

nonlinear function, known as the neuron’s activation function, to produce an output. This

activation function is the basis of how an ANN provides nonlinear mappings from inputs to

outputs. Traditionally, the activation function of a neuron is a simple threshold function causing

the output of each neuron to be one or zero. This corresponds to the all or nothing firing of a

biological neuron. However, continuous functions such as the sigmoid or logistic function are

used to provide a differentiable output while still providing a nearly all or nothing output. This

differentiability is important for many modern learning methods that will be discussed later. In

special cases, other activation functions are used for neurons to have specific effects on the

mapping of inputs to outputs. Figure 1.1-1An example of an artificial neuron, (a) and a

 4

collection of neurons, (b), known as an artificial neural network. Here xi is an input, h is the

activation function, and yn is equal to the weighted sum of neuron inputs: yn = x1w1,n +

x2w2,n … + xiwi,n.Figure 1.1-1 depicts a single neuron and a collection of neurons in a neural

network.

(a) (b)

Figure 1.1-1An example of an artificial neuron, (a) and a collection of neurons, (b), known as an

artificial neural network. Here 𝒙𝒙𝒊𝒊 is an input, 𝒉𝒉 is the activation function, and 𝒚𝒚𝒏𝒏 is equal to the

weighted sum of neuron inputs: 𝒚𝒚𝒏𝒏 = 𝒙𝒙𝟏𝟏𝒘𝒘𝟏𝟏,𝒏𝒏 + 𝒙𝒙𝟐𝟐𝒘𝒘𝟐𝟐,𝒏𝒏 … + 𝒙𝒙𝒊𝒊𝒘𝒘𝒊𝒊,𝒏𝒏.

1.1.1 Learning

The most interesting attribute of ANNs is the possibility of learning. Given a specific task to

solve, i. e. a set of data that needs to be classified or a function to be approximated, learning is

the ability of the ANN to solve the given task in some optimal sense. The optimality is defined as

minimizing a given cost function. For instance, given a set of data and the task to find a function

that approximates the characteristics of the data, the cost function would be some measure of

total error between the network output and the actual data.

The cost function is an important concept in learning, as it is the mechanism by which the

success of the network is measured. The cost function, 𝐶𝐶, is defined such that for the optimal

 5

solution, 𝑓𝑓∗, 𝐶𝐶(𝑓𝑓∗) ≤ 𝐶𝐶(𝑓𝑓)∀𝑓𝑓 ∈ 𝐹𝐹. Basically, no solution has a cost less than the cost of the

optimal solution. A particular learning algorithm is defined by the methods it uses to search

through the solution space to find a function that has the smallest possible cost. For problems

where the solution is dependent on some data, the cost must be a function of the observations. In

this case, the solution is an approximation of a statistic of the data. For instance, the problem of

finding a function, 𝑓𝑓, which minimizes 𝐶𝐶 = 1
𝑁𝑁
∑ (𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1 for 𝑁𝑁 data pairs (𝑥𝑥, 𝑦𝑦) drawn

from some distribution, 𝒟𝒟. In this case, the cost is minimized over a sample of the data in hopes

that the solution will adequately represent the entire data set. Online learning methods attempt to

address this problem when 𝑁𝑁 → ∞. In online learning, a portion of the cost is minimized as each

sample is shown to the network. In the end, the cost function will be chosen either based on its

desirable properties, such as convexity, or because it arises naturally from the problem to be

solved.

There are three major paradigms associated with learning tasks (not including the

combination of supervised and unsupervised learning, semi-supervised learning). These are

supervised learning, unsupervised learning, and reinforcement learning.

In supervised learning, a set of training data is given such that each sample is a (𝑥𝑥, 𝑦𝑦),𝑥𝑥 ∈

𝑋𝑋,𝑦𝑦 ∈ 𝑌𝑌 pair, and the goal of the learning is to find a function 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 in the set of functions

that matches the examples. In other words, we wish to infer the mapping implied by the data.

The cost function will then be a function of the errors between our mapping of the data and the

data itself. A commonly used cost for this type of problem is the mean-squared error which is the

squared difference between the network’s output, 𝑓𝑓(𝑥𝑥), and the training target, 𝑦𝑦, over all of the

training data. Gradient descent algorithms are commonly used to minimize this cost. Tasks that

fall under the umbrella of supervised learning are pattern recognition (classification) and

 6

regression (function approximation). In some cases, sequential data can be applied to the

supervised learning paradigm, i.e. speech and gesture recognition. In these problems, a function

representing feedback on the quality of the solutions obtained is given.

In unsupervised learning, some data, 𝑥𝑥, is given. The cost function to be minimized can then

be any function of the data and the network output, 𝑓𝑓. The cost function will be dependent on the

desired model and the a priori assumptions of the data. For example, if the model is simply a

constant, 𝑓𝑓(𝑥𝑥) = 𝑎𝑎, and the cost is the mean-squared error discussed earlier, minimizing the cost

will yield an 𝑎𝑎 equal to the mean of the data. Of course, the cost function is typically much more

complicated than that. For example, it could be related to the mutual information between 𝑥𝑥 and

𝑓𝑓(𝑥𝑥), or it could be related to the posterior probability of the model given the data. Machine

learning tasks that fall under the unsupervised learning paradigm include, clustering, statistical

distribution modelling, compression, and filtering.

Semi-supervised learning is a combination of both supervised and unsupervised paradigms.

Typically this paradigm is created as a series combination of supervised and unsupervised

networks. In some cases, the raw data itself may not be suitable for a supervised learning

approach, so an unsupervised approach is used to model some properties of the raw data. These

modelled properties are then treated as data and fed into a supervised learning structure. For

example, a set of data may be clustered by an unsupervised algorithm to determine a set of

categories for the data. Then that information is added to the data and passed to a function

approximation network that will treat a training sample differently based on the class to which it

belongs. This combination of paradigms is used often in the industry for many specific

applications such as, medical diagnosis, image processing, control systems, and many others.

 7

Reinforcement learning is the paradigm with which most people associate the idea of

“artificial intelligence.” In reinforcement learning, the data are usually not given explicitly, but

generated by an agent’s interactions with the environment. At each point in time, 𝑡𝑡, the agent

performs an action, 𝑦𝑦𝑡𝑡, and the interaction with the environment generates an observation, 𝑥𝑥𝑡𝑡,

and an instantaneous cost, 𝑐𝑐𝑡𝑡. The goal is then to discover a rule base for selecting actions that

minimizes a measure of the expected cumulative cost. The environment is often modelled as a

Markov Decision Process (MDP) with states 𝑠𝑠1, … , 𝑠𝑠𝑛𝑛 ∈ 𝑆𝑆, and actions, 𝑎𝑎1, … ,𝑎𝑎𝑚𝑚 ∈ 𝐴𝐴, with the

probability distributions pertaining to the instantaneous cost distribution, 𝑃𝑃(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡), the

observation distribution, 𝑃𝑃(𝑥𝑥𝑡𝑡|𝑠𝑠𝑡𝑡), and the transition distribution, 𝑃𝑃(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡). Then the rule

base, or policy, is defined as the conditional distribution over actions given the observations.

Taken together, the MDP and the policy are defined as a Markov Chain (MC). The goal is to

discover the MC for which the cost is minimal. Many times ANNs are used as a block in the

overall reinforcement learning algorithm, being coupled with other ideas such as Dynamic

programming or fuzzy systems. Specific problems that can be solved in this paradigm are,

intelligent vehicle routing, resource management, controls, and other sequential decision making

tasks.

There are many algorithms for learning. Most of them can be thought of as an optimization

algorithm that adjusts the relative strength of connections in a neural network in order to

minimize a cost function. This optimization of neural networks is the key concept that allows

them to be useful in many modern day applications where the problem is not easily solved using

direct analytical methods. Specifically, the ability to adjust neurons in a local sense is very

important in solving many problems that seem to be radially based such as, image processing,

clustering, and classification.

 8

1.1.2 Modelling Artificial Neural Networks

The term model in the context of an ANN can be used to describe a particular arrangement of

neurons in a network or a certain activation function for each neuron. These models are referring

to a series of mathematical models that define a mapping,𝑓𝑓:𝑋𝑋 → 𝑌𝑌, or a distribution over 𝑋𝑋 and

𝑌𝑌. Sometimes, models are also closely associated with a specific learning rule or training

algorithm.

For instance, many of today’s neural networks are built on sigmoidal or bipolar neurons.

These neurons are modelled as threshold neurons like the ones found in biology consisting of an

activation function that is either all the way on or all the way off such as: 𝑓𝑓(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

. Another

similar activation function is the bipolar activation function which has the same shape as a

sigmoidal function. This function however operates in the range (-1,1). Many times this function

is modelled as the tangent hyperbolic function: 𝑓𝑓(𝑥𝑥) = tanh (𝑥𝑥). These types of neurons are

generally thought of as having a global impact with relation to the input space. Algorithms such

as Error Backpropoagation (EBP) are generally designed to handle architectures consisting of

these neurons. In fact, the most commonly used network paradigms today consist of sigmoidal

neurons trained by the EBP algorithms. However, it will be investigated in subsequent sections

whether or not this is the most effective training paradigm. In some cases, the global nature of

the sigmoidal neurons can actually be a disadvantage to some systems. If a more local neuron

structure is needed, sigmoidal networks will require a far larger number of neurons than a local

paradigm such as Gaussian based neurons.

Neurons with locally tuned response characteristics can be found in many parts of biological

nervous systems, such as visual systems. These neurons are selective within a finite range of the

input space. The local characteristics of these neurons makes them suitable for problems in

 9

which there are strong spatial relationships. For example, the cochlear stereocilia cells of a

biological ear have a locally tuned response to the frequency of sound being sensed.

Additionally, much of the data obtained in the visual field has strong spatial relations, so it is no

surprise that neurons associated with the biological eye model signals locally. These

characteristics allow artificial locally tuned neural networks to be well suited to solving signal

processing and computer vision problems.

The activation functions of locally tuned neurons are often referred to as Radial Basis

Functions (RBF), and networks made out of locally tuned neurons are called RBF networks.

Most RBF network algorithms use a simple three layered architecture where only one hidden

layer of parallel units exists. This has the benefit of making the training problem much simpler as

well as eliminating the complexity of choosing an architecture (however more architectural

considerations for RBF networks will be discussed in Chapter 2). Radial Basis Functions also

have low sensitivity to noise in the data. This allows the adjustable parameters to converge to a

stable minimum during the training process. All of the aforementioned advantages of RBF

networks allow them to be tuned and examined to have good generalization performance. The

research proposed in this work will demonstrate the usefulness of RBF networks in solving real-

world data problems.

1.1.3 Radial Basis Function Networks

RBF networks can be made up of a variety of activation functions. The only requirement is

that the function value depends only on the distance from the inputs to an origin or center. This

allows the neurons to be trained so that inputs in different areas of the input space will have

 10

different effects on the outputs. Given a center, 𝑐𝑐 and radius, 𝜎𝜎, there are several functions that

are considered RBFs. A few popular examples are shown below:

Gaussian:

 𝒉𝒉(𝒙𝒙) = 𝒆𝒆−
‖𝒙𝒙−𝒄𝒄‖𝟐𝟐

𝝈𝝈𝟐𝟐

(1.1-1)

Multiquadric:

ℎ(𝑥𝑥) = �1 +
‖𝑥𝑥 − 𝑐𝑐‖2

𝜎𝜎2
 (1.1-2)

Inverse quadratic:

ℎ(𝑥𝑥) =
1

1 + ‖𝑥𝑥 − 𝑐𝑐‖2
𝜎𝜎2

 (1.1-3)

Inverse multiquadratic:

ℎ(𝑥𝑥) =
1

�1 + ‖𝑥𝑥 − 𝑐𝑐‖2
𝜎𝜎2

(1.1-4)

In a learning paradigm these functions will be optimized by adjusting the centers, radii, and

heights of each RBF.

The first use of RBF functions for mapping is found in T. M. Cover’s work in 1965. Cover’s

theorem on the pattern-separating capacity of hyperplanes asserts that a complex classification

problem is more likely to be linearly solvable if it is mapped nonlinearly into a high-dimensional

space [6]. This concept is also the motivation for the use of nonlinear kernel functions in Support

Vector Machines (SVM). Figure 1.1-2 depicts this concept.

 11

Most often, RBF networks consist of a single hidden layer with many RBF neurons in

parallel and an output layer that is a weighted sum of the hidden neurons. This is arrangement is

known as the Single-Layer Feedforward Network (SLFN). J. Moody and C. J. Darken first

proposed a network in the form of a SLFN with locally tuned processing units in 1988 [7]. An

example of a SLFN is shown in Figure 1.1-3. This network architecture is used extensively in

constructing RBF networks.

(a)

(b)

Figure 1.1-2 An illustration of Cover’s theorem. (a) A set of data that is not linearly separable in

1 dimension. (b) By mapping this data to 2-dimensional space using the nonlinear function:

(𝑥𝑥) = 𝑒𝑒−‖𝑥𝑥−0.5‖2 , the data is made linearly separable.

 12

Figure 1.1-3 An SLFN network like the one used by Moody and Darken. Here, 𝑦𝑦 is a function of

𝑥𝑥 and the network parameters: input weights, centers, widths, etc.

Many of the early implementations of the SLFN type of network set the network parameters

by first randomly choosing training data points as RBF centers then using singular-value

decomposition to solve for the weights (or heights) of the RBF neurons. T. Poggio and F. Girosi

created a method of selecting RBF centers using a gradient descent training approach. They

called their algorithm Generalized Radial Basis Function (GRBF) networks [8]. S. Chen, C. F. N.

Cowan, and P. M. Grant demonstrated that an orthogonal least squares learning method can be

used to select RBF centers in such a way that each RBF unit maximizes the variance of a desired

output. They demonstrated this method’s effectiveness on two signal processing applications [9].

Shortly afterwards, in 1992, D. Wettschereck and T. Dietterich demonstrated an effective

application of GRBF networks to the task of language pronunciation [10].

Selecting the appropriate number of RBF neurons to solve a given problem is a task as important

as selecting the proper RBF parameters. A resource allocating network (RAN) was proposed in

which a network learns by adjusting the parameters of existing neurons, then adding new

 13

neurons to compensate for poor performance on certain input patterns [11]. An improved version

of the RAN algorithm was proposed in which an extended Kalman filter (RANEKF) was used,

instead of a least-mean square algorithm, for updating the network parameters [12]. Further

improvement was made on the RAN algorithm by Yingwei et. al. [13]. This algorithm creates a

minimally sized network and is known as MRAN. It is very often used in current literature in

real-world applications [14]. A growing radial basis function network algorithm was proposed in

which, at first, a small number of RBF neurons are trained. During the training process, there is a

period called the “growing cycle” in which a neuron satisfying two splitting criteria is split into

two new neurons. The learning scheme provided a framework for incorporating existing

supervised and unsupervised training algorithms into the growing RBF network [15]. An

algorithm for growing and pruning RBF (GAP-RBF) networks was introduced by P.

Saratchandran and N. Sundararajan [16]. This algorithm evaluates the “significance” of each

neuron based on its contribution to the network output averaged over all the input data. After it is

evaluated, the neuron is either kept in the network or discarded. This process allows problems to

be solved with a greatly reduced network size and training time.

Two algorithms that further optimize the network construction process with the aim of

increasing error convergence rates of highly compact networks are introduced in this work. The

first method, Nelder-Mead Enhanced Extreme Learning Machine (NME-ELM) is introduced in

Chapter 3 and expands on the popular Incremental Extreme Learning Machine algorithms by

adding a Nelder-Mead simplex optimization to the process. The Error Correction (ErrCor)

algorithm, described in Chapter 4, uses a Levenberg-Marquardt algorithm to optimize the

positions and heights of RBF units as they are added to a network. These algorithms are

compared to many state of the art algorithms on difficult benchmarks and real-world problems.

 14

Currently RBF networks are used in many different areas of industry. For example, Sue Inn

Ch’ng et. a.l used an adaptive momentum Levenberg-Marquardt RBF for face recognition in

[17]. Like traditional ANNs RBF networks have also been developed to handle fault diagnosis

problems [19], adaptive control problems [20]–[24], image processing [25], [26], approximation

and interpolation [27], [28], and classification [18].

 15

Chapter 2 Neural Network Training and Construction

Once a network paradigm is chosen, the construction and training of an ANN is a non-trivial

process. There are many ways a network can be implemented. In general, two major

considerations must be made:

(1) What is the architecture of the network, and how many neurons will be in that

architecture?

(2) Which algorithm can be used to train the given network architecture to a desirable error

level?

These considerations are typically dependent on each other and on the knowledge of the creator

of the network. Many architectures and training algorithms were studied in the comparative work

[29]. These architectures and algorithms have different advantages and disadvantages for each

situation. They will be discussed more in depth in subsequent sections of this work.

2.1 Neural Network Architectures

One of the major difficulties facing researchers using ANNS is the decision of how many

neurons must be used to solve a given problem, and in which topology should these neurons be

arranged. Unfortunately, there is a nearly infinite number of combinations of networks that could

possibly solve a given problem. There are three major architectures that are used in the research

to solve many problems. These architectures are depicted in Figure 2.1-1, 2.1-2, 2.1-3, and 2.1-4

while their advantages and disadvantages are discussed in depth in the following paragraphs.

 16

The most common architectures are examined and compared in [30]. The problem on which

they are compared is the parity-N problem. This problem is essentially a mapping defined by 2𝑁𝑁

binary vectors that indicates whether the sum of the 𝑁𝑁 elements of every binary vector is odd or

even. In this problem, any pattern with the same sum as another pattern can be omitted from

training as it will have the exact same answer as another pattern. Therefore, a simplified set of

the original 2𝑁𝑁 patterns can be obtained which contains only 𝑁𝑁 + 1 patterns. This problem was

shown to be a suitable benchmark for comparison in [31]. Table 1 below shows the full parity-3

problem and table 2 depicts the reduced set of patterns.

Table 1 Parity-3 problem inputs and outputs.

Input Sum of Inputs Output
000 0 0
001 1 1
010 1 1
011 2 0
100 1 1
101 2 0
110 2 0
111 3 1

Table 2 Parity-3 problem using sum of inputs as simplified inputs.

Simplified Inputs Output
0 0
1 1
2 0
3 1

The most popular and simplest of the studied neural network architectures is the Multilayer

Perceptron architecture. This architecture can have any number of hidden layers with any

number of neurons, but the connections cannot go across layers. In a MLP network with a single

 17

hidden layer consisting of 𝑛𝑛 hidden neurons, the largest possible 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑁𝑁 problem that can be

solved is:

 𝑁𝑁 = 𝑛𝑛. (2.1-1)

Figure 2.1-1 depicts a typical single layer MLP. If a MLP network is restricted to a single

hidden layer, it is called a Single Layer Feedforward Network (SLFN).

Figure 2.1-1 A simple MLP architecture with a single hidden layer. The hidden neurons are the

neurons contained in the dashed rectangle. For this network, 𝑛𝑛 = 3 and the largest parity

problem that can be solved is parity-3.

If a MLP network is allowed to have connections across layers, then the network is called a

Bridged Multilayer Perceptron (BMLP). These networks have been shown to be more powerful

than traditional MLP networks [30], [31]. For a single layer BMLP network, like the one shown

in Figure 2.1-2, consisting of 𝑛𝑛 neurons the largest possible 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑁𝑁 problem that can be

solved is:

 𝑁𝑁 = 2𝑛𝑛 − 1. (2.1-2)

Of course, most designers of neural networks would like to have more than a single hidden

layer. Given a BMLP network with two hidden layers (like the one in Figure 2.1-3) where the

 18

number of neurons in the first layer is 𝑚𝑚 and the number of neurons in the second layer is 𝑛𝑛, the

largest possible 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑦𝑦 − 𝑁𝑁 problem that can be solved is:

𝑁𝑁 = 2(𝑚𝑚 + 1)(𝑛𝑛 + 1) − 1 (2.1-3)

 If this pattern is carried out further so that a BMLP network has 𝑘𝑘 hidden layers with each

layer containing a number of neurons 𝑛𝑛𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑘𝑘, then the largest 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑁𝑁 problem that

can be solved is:

 𝑁𝑁 = 2∏ (𝑛𝑛𝑖𝑖 + 1)𝑘𝑘
𝑖𝑖=1 − 1 (2.1-4)

Figure 2.1-2 A simple BMLP architecture. The “bridged” connections that distinguish this

network from the one shown in Figure 2.1-1 are highlighted in red.

 19

Figure 2.1-3 A fully bridged BMLP architecture with two hidden layers, 𝑛𝑛1 = 3,𝑛𝑛2 = 2. This

network is capable of solving a parity-23 problem.

A fully connected cascade (FCC) network is the third type of network investigated. This

network is a BMLP network created with the following constraints:

(1) All connections are bridged and connected to all subsequent layers.

(2) All hidden layers are restricted to having a single neuron apiece.

This network architecture is depicted in Figure 2.1-4. Intuitively, this architecture requires as

many hidden layers as there are neurons. This arrangement allows for a very powerful network to

be created without using a large number of neurons. Many networks called “deep networks” are

similar to the FCC network. The problem with these networks is that not many algorithms can

train them. However, recent research has been focused on solving this problem. The largest

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑁𝑁 problem that can be solved by a FCC network containing 𝑛𝑛 hidden neurons is:

 𝑁𝑁 = 2𝑛𝑛 − 1 (2.1-5)

 20

Figure 2.1-4 A FCC network with 3 neurons. This network is capable of solving the parity-7

problem.

It may seem obvious that the FCC architecture should be used to solve for every problem, but

the task of constructing an optimized network is not so simple. In most cases, a network is

designed with some predetermined architecture and then the weights on the connections between

neurons are optimized in an attempt to obtain error convergence. In some networks, the error will

never converge for a particular problem. One must still answer the question, “How will an

optimal network be built, so that the error for a particular problem will always converge?”

These neural network architectures offer an interesting set of solutions for solving a given

problem with ANNS. For RBF networks, the SLFN structure is commonly used. This structure is

similar to the MLP shown above. However, the output neuron of a RBF network is typically a

linear, or summing, neuron.

2.2 Supervised Neural Network Training

The ability for a network to change its parameters to solve a problem in some optimal sense

is what makes ANNS appealing. The algorithms used to optimize neural networks are

 21

collectively known as training algorithms. As is always the case with optimization, a cost

function must be defined. The cost function used in neural networks is known as the error,

meaning the difference between a desired output and the current network output for a given

pattern. This error function is a function of the data presented to the neural network and the

neural network parameters. This will allow the error to be minimized by tuning the parameters in

the neural network.

The data used for training neural networks in this document can be thought of as a set of

input, target pairs:

 ℵ = {(𝑥𝑥𝑖𝑖, 𝑡𝑡𝑖𝑖)|𝑥𝑥𝑖𝑖 ∈ ℝ𝑑𝑑 , 𝑡𝑡𝑖𝑖 ∈ ℝ𝑚𝑚, 𝑖𝑖 = 1, … ,𝑁𝑁} (2.2-1)

Where 𝑁𝑁 is the total number of patterns in the training set. For each input, the network will

have some output, 𝑜𝑜𝑖𝑖. The error for each pattern is then defined as the difference between

the target value and the network output for a specific pattern

𝑒𝑒𝑖𝑖 = 𝑡𝑡𝑖𝑖 − 𝑜𝑜𝑖𝑖 (2.2-2)

In order to have a single value to examine that gives a measure of the overall error of the

network, the sum square error (SSE) value is used.

𝑆𝑆𝑆𝑆𝑆𝑆 = �(𝑒𝑒𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 (2.2-3)

The relative strength of network connections can be adjusted to minimize the error. These

connections are collectively known as weights. However, in the case of RBF networks, the term

weights can also refer to the RBF parameters center and radius. In this document, the input

weights of an RBF unit are denoted as 𝑢𝑢𝑗𝑗,𝑖𝑖 where 𝑖𝑖 is the index of the input dimension and 𝑗𝑗 is the

index of the neuron in the hidden layer. The output weights will be denoted as 𝛽𝛽𝑗𝑗,𝑘𝑘 where 𝑗𝑗 is

again the index of the neuron in the hidden layer and 𝑘𝑘 is the index of the output. The RBF

 22

parameters, center and radius, will be denoted as 𝑐𝑐𝑗𝑗 and 𝜎𝜎𝑗𝑗 respectively. Again, 𝑗𝑗 is the index of

the neuron in the hidden layer. Figure 2.2-1 illustrates this notation.

Figure 2.2-1 A typical RBF network with input weights designated by their corresponding

neuron and input dimension, 𝑢𝑢𝑗𝑗,𝑖𝑖 and output weights designated by their corresponding neuron

and output, 𝛽𝛽𝑗𝑗,𝑘𝑘.

2.2.1 Error Back Propagation and Gradient Descent

The most popular training algorithm is Error Back Propagation (EBP). This algorithm is

based on a gradient descent technique, and has been very well used and well researched. Since

the original EBP algorithm was published, many improvements have been made [32]–[34].

These improvements include: the notion of momentum [35], flat spot elimination [36], a

 23

stochastic learning rate [37], the RPROP algorithm [38], and the QUICKPROP variation of EBP

[39].

The EBP algorithm is an integral part of the field of neural networks today. The algorithm

provides very stable training convergence, and provides the foundation on which many

optimization algorithms can be applied to neural networks. The original EBP algorithm uses a

first order steepest descent approach to minimizing the error of the network. Let us use the

notation presented previously to describe the EBP algorithm. In order to follow the gradient of

the error, the derivative of the error with respect to the network parameters must be found.

During each iteration, the vector of input parameters (input weights, biases, and output

weights) in a neural network, for iteration 𝑞𝑞 is denoted as ∆𝑞𝑞. For the purpose of

simplification, the parameters to be optimized may be referred to individually as ∆𝑞𝑞=

[∆𝑞𝑞,1,∆𝑞𝑞,2, … ,∆𝑞𝑞,𝑃𝑃], where 𝑃𝑃 is the number of parameters being optimized. The reader can

assume that if only one index is used, ∆𝑞𝑞 refers to the vector of all input parameters at the

𝑘𝑘𝑡𝑡ℎ iteration. Likewise, two indexes are used to refer to a single parameter, ∆𝑞𝑞,𝑖𝑖. The squared

error term is used as the cost function.

𝑬𝑬 =
1
2
���𝑡𝑡𝑖𝑖,𝑘𝑘 − 𝑜𝑜𝑖𝑖,𝑘𝑘�

2
𝑚𝑚

𝑘𝑘=1

𝑁𝑁

𝑖𝑖=1

=
1
2
��(𝑡𝑡𝑖𝑖,𝑘𝑘2 − 2𝑡𝑡𝑖𝑖,𝑘𝑘𝑜𝑜𝑖𝑖,𝑘𝑘 + 𝑜𝑜𝑖𝑖,𝑘𝑘2)

𝑚𝑚

𝑘𝑘=1

𝑁𝑁

𝑖𝑖=1

 (2.2-4)

Where 𝑜𝑜𝑖𝑖,𝑘𝑘 is a function of the input and the network parameters.

Then the gradient of the errors with respect to the network parameters is calculated.

𝒈𝒈 = 𝜕𝜕𝜕𝜕�𝑥𝑥,∆𝑞𝑞�
𝜕𝜕∆𝑞𝑞

= � 𝜕𝜕𝜕𝜕
𝜕𝜕∆𝑞𝑞,1

, 𝜕𝜕𝜕𝜕
𝜕𝜕∆𝑞𝑞,2

, … , 𝜕𝜕𝜕𝜕
𝜕𝜕∆𝑞𝑞,𝑃𝑃

�

(2.2-5)

The parameters are then updated according to the rule of steepest descent:

 24

∆𝑞𝑞+1= ∆𝑞𝑞 − 𝛼𝛼𝒈𝒈𝑞𝑞

(2.2-6)

Where 𝛼𝛼 is the learning constant, or step size. Assuming the network being trained is the one

shown in Figure 2.2-1, the first step is to calculate the outputs:

𝑜𝑜𝑘𝑘 = ∑ 𝛽𝛽𝑗𝑗,𝑘𝑘ℎ𝑗𝑗(𝑦𝑦𝑗𝑗)𝑁𝑁�
𝑗𝑗=1 ,𝑘𝑘 = 1, … ,𝑚𝑚 (2.2-7)

Here, 𝑦𝑦 is the net function, this is a function of the inputs and any adjustable parameters for

neuron 𝑗𝑗. Once the output and errors are calculated, the partial derivatives of the errors will be

calculated for each network parameter. The process of calculating the derivatives of parameters

backwards through the network is known as back-propagation. First the derivatives of the errors

are found for the output weights, 𝛽𝛽.

𝜕𝜕𝐸𝐸𝑖𝑖
𝜕𝜕𝛽𝛽𝑗𝑗,𝑘𝑘

= −�𝑡𝑡𝑖𝑖,𝑘𝑘 − 𝑜𝑜𝑖𝑖,𝑘𝑘�
𝜕𝜕𝑜𝑜𝑖𝑖,𝑘𝑘
𝜕𝜕𝛽𝛽𝑗𝑗,𝑘𝑘

= −𝑒𝑒𝑖𝑖
𝜕𝜕𝑜𝑜𝑖𝑖,𝑘𝑘
𝜕𝜕𝛽𝛽𝑗𝑗,𝑘𝑘

 (2.2-8)

𝜕𝜕𝑜𝑜𝑖𝑖,𝑘𝑘
𝜕𝜕𝛽𝛽𝑗𝑗,𝑘𝑘

= ℎ𝑗𝑗(𝑦𝑦𝑗𝑗)

(2.2-9)

𝜕𝜕𝐸𝐸𝑖𝑖,𝑘𝑘
𝜕𝜕𝛽𝛽𝑗𝑗,𝑘𝑘

= −𝑒𝑒𝑖𝑖,𝑘𝑘ℎ𝑗𝑗(𝑦𝑦𝑗𝑗)

(2.2-10)

Now the parameters for the previous layer can be calculated. Define a variable for the derivatives

of the errors with respect to the output weights.

δk=ei,khj(yj) (2.2-11)

𝜕𝜕𝐸𝐸𝑖𝑖
𝜕𝜕𝑦𝑦𝑗𝑗

= −�∑ 𝛿𝛿𝑘𝑘𝛽𝛽𝑗𝑗,𝑘𝑘
𝑚𝑚
𝑘𝑘=1 � 𝜕𝜕ℎ𝑗𝑗

𝜕𝜕𝑦𝑦𝑗𝑗
 (2.2-12)

𝜕𝜕𝐸𝐸𝑖𝑖
𝜕𝜕∆𝑞𝑞,𝑗𝑗

= −�∑ 𝛿𝛿𝑘𝑘𝛽𝛽𝑗𝑗,𝑘𝑘
𝑚𝑚
𝑘𝑘=1 � 𝜕𝜕ℎ𝑗𝑗

𝜕𝜕𝑦𝑦𝑗𝑗

𝜕𝜕𝑦𝑦𝑗𝑗
𝜕𝜕∆𝑞𝑞,𝑗𝑗

 (2.2-13)

Where 𝑦𝑦𝑗𝑗(𝑥𝑥𝑖𝑖 ,∆𝑞𝑞,𝑗𝑗) is a function of the inputs and network parameters. This step is where the

term backpropagation comes into play. The errors and the output weights are propagated back to

 25

the previous layers. Of course in a software environment, this can be done as a matrix

computation so that the gradients of all output weights are found at once. This leads to the

formation of a gradient matrix of first derivatives for each parameter with respect to the error.

For the sake of brevity, the next several algorithms are described using a single parameter

matrix, ∆𝑞𝑞.

The EBP algorithms will usually lead to small training error values, but these algorithms

have several drawbacks. The first drawback is that these algorithms still only use the first order

gradient and can therefore be trapped in local minima. Much better results can be obtained by

using a second-order computation to aid the search process. Second, the algorithms are only able

to handle MLP type of architectures [29]. Adding bridged connections to the network will cause

the gradient computations to change, and the algorithm will fail. Finally, the EBP algorithm

requires both a backwards and forwards pass through the network during each iteration. This

means that computation can become very expensive for a network of substantial size [40]. Many

of the currently used RBF paradigms are trained with a gradient descent algorithm like EBP.

2.2.2 Newton’s Algorithm

Let us consider each individual component of the gradient vector as a function of the network

parameters:

⎩
⎪
⎨

⎪
⎧𝑔𝑔1 = 𝐹𝐹1�∆𝑞𝑞,1,∆𝑞𝑞,2, … ,∆𝑞𝑞,𝑃𝑃�
𝑔𝑔2 = 𝐹𝐹2�∆𝑞𝑞,1,∆𝑞𝑞,2, … ,∆𝑞𝑞,𝑃𝑃�

⋮
𝑔𝑔𝑃𝑃 = 𝐹𝐹𝑝𝑝�∆𝑞𝑞,1,∆𝑞𝑞,2, … ,∆𝑞𝑞,𝑃𝑃�

(2.2-14)

 26

Finding the minimum of the error surface can be posed as finding the roots of the error

derivatives. Assuming the network parameters are linearly independent, Newton’s algorithm can

be used to find these roots. First, the gradients are set to zero:

⎩
⎪
⎨

⎪
⎧𝑔𝑔1 = 0 = 𝐹𝐹1�∆𝑞𝑞,1,∆𝑞𝑞,2, … ,∆𝑞𝑞,𝑃𝑃�
𝑔𝑔2 = 0 = 𝐹𝐹2�∆𝑞𝑞,1,∆𝑞𝑞,2, … ,∆𝑞𝑞,𝑃𝑃�

⋮
𝑔𝑔𝑃𝑃 = 0 = 𝐹𝐹𝑝𝑝�∆𝑞𝑞,1,∆𝑞𝑞,2, … ,∆𝑞𝑞,𝑃𝑃�

 (2.2-15)

Then the gradient functions can be approximated using the first two terms of a Taylor

expansion:

⎩
⎪
⎨

⎪
⎧ 𝑔𝑔1 = 0 ≈ 𝑔𝑔1,0 + 𝜕𝜕𝑔𝑔1

𝜕𝜕∆𝑞𝑞,1
�∆𝑞𝑞+1,1 − ∆𝑞𝑞,1� + 𝜕𝜕𝑔𝑔1

𝜕𝜕∆𝑞𝑞,2
�∆𝑞𝑞+1,2 − ∆𝑞𝑞,2� + ⋯+ 𝜕𝜕𝑔𝑔1

𝜕𝜕∆𝑞𝑞,2
�∆𝑞𝑞+1,𝑃𝑃 − ∆𝑞𝑞,𝑃𝑃�

𝑔𝑔2 = 0 ≈ 𝑔𝑔2,0 + 𝜕𝜕𝑔𝑔2
𝜕𝜕∆𝑞𝑞,2

�∆𝑞𝑞+1,1 − ∆𝑞𝑞,1� + 𝜕𝜕𝑔𝑔2
𝜕𝜕∆𝑞𝑞,2

�∆𝑞𝑞+1,2 − ∆𝑞𝑞,2� + ⋯+ 𝜕𝜕𝑔𝑔2
𝜕𝜕∆𝑞𝑞,2

�∆𝑞𝑞+1,𝑃𝑃 − ∆𝑞𝑞,𝑃𝑃�

⋮
𝑔𝑔𝑃𝑃 = 0 ≈ 𝑔𝑔𝑃𝑃,0 + 𝜕𝜕𝑔𝑔𝑃𝑃

𝜕𝜕∆𝑞𝑞,𝑃𝑃
�∆𝑞𝑞+1,1 − ∆𝑞𝑞,1� + 𝜕𝜕𝑔𝑔𝑃𝑃

𝜕𝜕∆𝑞𝑞,𝑃𝑃
�∆𝑞𝑞+1,2 − ∆𝑞𝑞,2� + ⋯+ 𝜕𝜕𝑔𝑔𝑃𝑃

𝜕𝜕∆𝑞𝑞,𝑃𝑃
�∆𝑞𝑞+1,𝑃𝑃 − ∆𝑞𝑞,𝑃𝑃�

 (2.2-16)

Using equation (2.2-5), the derivative of the gradient can be found:

𝜕𝜕𝑔𝑔𝑖𝑖
𝜕𝜕∆𝑞𝑞,𝑗𝑗

=
𝜕𝜕� 𝜕𝜕𝜕𝜕

𝜕𝜕∆𝑞𝑞,𝑗𝑗
�

𝜕𝜕∆𝑞𝑞,𝑖𝑖
= 𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑖𝑖𝜕𝜕∆𝑞𝑞,𝑗𝑗
 (2.2-17)

Substituting equation (2.2-17) into the taylor series expansion (2.2-16) yields the following:

⎩
⎪⎪
⎨

⎪⎪
⎧0 ≈ 𝜕𝜕𝜕𝜕

𝜕𝜕∆𝑞𝑞,1
+ 𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,1
2 �∆𝑞𝑞+1,1 − ∆𝑞𝑞,1� + 𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,1𝜕𝜕∆𝑞𝑞,2
�∆𝑞𝑞+1,2 − ∆𝑞𝑞,2� + ⋯+ 𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,1𝜕𝜕∆𝑞𝑞,𝑃𝑃
�∆𝑞𝑞+1,𝑃𝑃 − ∆𝑞𝑞,𝑃𝑃�

0 ≈ 𝜕𝜕𝜕𝜕
𝜕𝜕∆𝑞𝑞,2

+ 𝜕𝜕2𝐸𝐸
𝜕𝜕∆𝑞𝑞,2𝜕𝜕∆𝑞𝑞,1

�∆𝑞𝑞+1,1 − ∆𝑞𝑞,1� + 𝜕𝜕2𝐸𝐸
𝜕𝜕∆𝑞𝑞,2

2 �∆𝑞𝑞+1,2 − ∆𝑞𝑞,2� + ⋯+ 𝜕𝜕2𝐸𝐸
𝜕𝜕∆𝑞𝑞,2𝜕𝜕∆𝑞𝑞,𝑃𝑃

�∆𝑞𝑞+1,𝑃𝑃 − ∆𝑞𝑞,𝑃𝑃�

⋮
0 ≈ 𝜕𝜕𝜕𝜕

𝜕𝜕∆𝑞𝑞,𝑃𝑃
+ 𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃𝜕𝜕∆𝑞𝑞,1
�∆𝑞𝑞+1,1 − ∆𝑞𝑞,1� + 𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃𝜕𝜕∆𝑞𝑞,2
�∆𝑞𝑞+1,2 − ∆𝑞𝑞,2� + ⋯+ 𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃
2 �∆𝑞𝑞+1,𝑃𝑃 − ∆𝑞𝑞,𝑃𝑃�

 (2.2-18)

Then the system of equations can then be re-written as:

⎩
⎪⎪
⎨

⎪⎪
⎧−

𝜕𝜕𝜕𝜕
𝜕𝜕∆𝑞𝑞,1

≈ 𝜕𝜕2𝐸𝐸
𝜕𝜕∆𝑞𝑞,1

2 �∆𝑞𝑞+1,1 − ∆𝑞𝑞,1� + 𝜕𝜕2𝐸𝐸
𝜕𝜕∆𝑞𝑞,1𝜕𝜕∆𝑞𝑞,2

�∆𝑞𝑞+1,2 − ∆𝑞𝑞,2� + ⋯+ 𝜕𝜕2𝐸𝐸
𝜕𝜕∆𝑞𝑞,1𝜕𝜕∆𝑞𝑞,𝑃𝑃

�∆𝑞𝑞+1,𝑃𝑃 − ∆𝑞𝑞,𝑃𝑃�

− 𝜕𝜕𝜕𝜕
𝜕𝜕∆𝑞𝑞,2

≈ 𝜕𝜕2𝐸𝐸
𝜕𝜕∆𝑞𝑞,2𝜕𝜕∆𝑞𝑞,1

�∆𝑞𝑞+1,1 − ∆𝑞𝑞,1� + 𝜕𝜕2𝐸𝐸
𝜕𝜕∆𝑞𝑞,2

2 �∆𝑞𝑞+1,2 − ∆𝑞𝑞,2� + ⋯+ 𝜕𝜕2𝐸𝐸
𝜕𝜕∆𝑞𝑞,2𝜕𝜕∆𝑞𝑞,𝑃𝑃

�∆𝑞𝑞+1,𝑃𝑃 − ∆𝑞𝑞,𝑃𝑃�

⋮
− 𝜕𝜕𝜕𝜕

𝜕𝜕∆𝑞𝑞,𝑃𝑃
≈ 𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃𝜕𝜕∆𝑞𝑞,1
�∆𝑞𝑞+1,1 − ∆𝑞𝑞,1� + 𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃𝜕𝜕∆𝑞𝑞,2
�∆𝑞𝑞+1,2 − ∆𝑞𝑞,2� + ⋯+ 𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃
2 �∆𝑞𝑞+1,𝑃𝑃 − ∆𝑞𝑞,𝑃𝑃�

 (2.2-19)

 27

Notice that now it is possible to write the system of 𝑃𝑃 equations and 𝑃𝑃 unkowns as a solvable set

of matrix equations.

�

−𝑔𝑔1
−𝑔𝑔2
⋮

−𝑔𝑔𝑃𝑃

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,1
2

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,1𝜕𝜕∆𝑞𝑞,2
 ⋯

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,1𝜕𝜕∆𝑞𝑞,𝑃𝑃

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,2𝜕𝜕∆𝑞𝑞,1

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,2
2 ⋯

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,2𝜕𝜕∆𝑞𝑞,𝑃𝑃

⋮
𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃𝜕𝜕∆𝑞𝑞,1

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃𝜕𝜕∆𝑞𝑞,2
 ⋯

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃
2 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

×

⎣
⎢
⎢
⎢
⎢
⎡�∆𝑞𝑞+1,1 − ∆

𝑞𝑞,1
�

�∆𝑞𝑞+1,2 − ∆
𝑞𝑞,2
�

⋮

�∆𝑞𝑞+1,𝑃𝑃 − ∆
𝑞𝑞,𝑃𝑃
�⎦
⎥
⎥
⎥
⎥
⎤

 (2.2-20)

The square matrix of second derivatives is called the Hessian matrix:

𝐻𝐻 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,1
2

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,1𝜕𝜕∆𝑞𝑞,2
 ⋯

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,1𝜕𝜕∆𝑞𝑞,𝑃𝑃

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,2𝜕𝜕∆𝑞𝑞,1

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,2
2 ⋯

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,2𝜕𝜕∆𝑞𝑞,𝑃𝑃

⋮
𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃𝜕𝜕∆𝑞𝑞,1

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃𝜕𝜕∆𝑞𝑞,2
 ⋯

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃
2 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (2.2-21)

Assuming the Hessian is invertible, the equations above can be re-written in the form of the

update rule for the Newton algorithm:

∆𝑞𝑞+1= ∆𝑞𝑞 − 𝐻𝐻𝑞𝑞−1𝑔𝑔𝑘𝑘 (2.2-22)

It can be noticed from equations (2.2-6) and (2.2-22) that the Hessian matrix gives a good

approximation of the step size.

2.2.3 Gauss-Newton Algorithm

Let us again examine the equations pertaining to the error gradient. Combining equations

(2.2-4) and (2.2-5) gives:

𝑔𝑔𝑖𝑖 = 𝜕𝜕𝜕𝜕
𝜕𝜕∆𝑞𝑞,𝑖𝑖

= ∑ ∑ 𝜕𝜕𝑒𝑒𝑗𝑗,𝑘𝑘

𝜕𝜕∆𝑞𝑞,𝑖𝑖

𝑚𝑚
𝑘𝑘=1

𝑁𝑁
𝑗𝑗=1 𝑒𝑒𝑗𝑗,𝑘𝑘 (2.2-23)

 28

Let us define a matrix of derivatives of each error component with respect to each network

parameter called the Jacobian:

𝑱𝑱 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑒𝑒1,1
𝜕𝜕∆𝑞𝑞,1

, 𝜕𝜕𝑒𝑒1,1
𝜕𝜕∆𝑞𝑞,2

, … , 𝜕𝜕𝑒𝑒1,1
𝜕𝜕∆𝑞𝑞,𝑃𝑃

𝜕𝜕𝑒𝑒1,2
𝜕𝜕∆𝑞𝑞,1

, 𝜕𝜕𝑒𝑒1,2
𝜕𝜕∆𝑞𝑞,2

, … , 𝜕𝜕𝑒𝑒1,2
𝜕𝜕∆𝑞𝑞,𝑃𝑃

⋮
𝜕𝜕𝑒𝑒1,𝑚𝑚
𝜕𝜕∆𝑞𝑞,1

, 𝜕𝜕𝑒𝑒1,𝑚𝑚
𝜕𝜕∆𝑞𝑞,2

, … , 𝜕𝜕𝑒𝑒1,𝑚𝑚
𝜕𝜕∆𝑞𝑞,𝑃𝑃

⋮
𝜕𝜕𝑒𝑒𝑁𝑁,1
𝜕𝜕∆𝑞𝑞,1

, 𝜕𝜕𝑒𝑒𝑁𝑁,1
𝜕𝜕∆𝑞𝑞,2

, … , 𝜕𝜕𝑒𝑒𝑁𝑁,1
𝜕𝜕∆𝑞𝑞,𝑃𝑃

𝜕𝜕𝑒𝑒𝑁𝑁,2
𝜕𝜕∆𝑞𝑞,1

, 𝜕𝜕𝑒𝑒𝑁𝑁,2
𝜕𝜕∆𝑞𝑞,2

, … , 𝜕𝜕𝑒𝑒𝑁𝑁,2
𝜕𝜕∆𝑞𝑞,𝑃𝑃

⋮
𝜕𝜕𝑒𝑒𝑁𝑁,𝑚𝑚
𝜕𝜕∆𝑞𝑞,1

, 𝜕𝜕𝑒𝑒𝑁𝑁,𝑚𝑚
𝜕𝜕∆𝑞𝑞,2

, … , 𝜕𝜕𝑒𝑒𝑁𝑁,𝑚𝑚
𝜕𝜕∆𝑞𝑞,𝑃𝑃 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(2.2-24)

Let us arrange a matrix of individual errors:

𝑒𝑒 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑒𝑒1,1
𝑒𝑒1,2
⋮

𝑒𝑒1,𝑚𝑚
𝑒𝑒2,1
𝑒𝑒2,2
⋮

𝑒𝑒2,𝑚𝑚
⋮
𝑒𝑒𝑃𝑃,1
𝑒𝑒𝑃𝑃,2
⋮

𝑒𝑒𝑃𝑃,𝑚𝑚⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (2.2-25)

The gradient can then be written:

𝑔𝑔 = 𝐽𝐽𝐽𝐽 (2.2-26)

Similarly, inserting equation (2.2-4) into equation (2.2-21) the element of the 𝑖𝑖𝑡𝑡ℎ row and 𝑗𝑗𝑡𝑡ℎ

column of the Hessian matrix can be calculated:

 29

𝐻𝐻𝑖𝑖,𝑗𝑗 = ∑ ∑ �𝜕𝜕𝑒𝑒𝑝𝑝,𝑘𝑘

𝜕𝜕∆𝑞𝑞,𝑖𝑖

𝜕𝜕𝑒𝑒𝑝𝑝,𝑘𝑘

𝜕𝜕∆𝑞𝑞,𝑗𝑗
+ 𝜕𝜕2𝑒𝑒𝑝𝑝,𝑘𝑘

𝜕𝜕∆𝑞𝑞,𝑖𝑖𝜕𝜕∆𝑞𝑞,𝑗𝑗
𝑒𝑒𝑝𝑝,𝑘𝑘� 𝑚𝑚

𝑘𝑘=1
𝑃𝑃
𝑝𝑝=1 (2.2-27)

Ignoring the second derivative term, an approximation for the Hessian matrix can be written as:

𝐻𝐻 ≈ 𝐽𝐽𝑇𝑇𝐽𝐽 (2.2-28)

Finally, the update rule for Newton’s algorithm can be re-written as the rule for the Gauss-

Newton algorithm:

∆𝑞𝑞+1= ∆𝑞𝑞 − �𝐽𝐽𝑞𝑞𝑇𝑇𝐽𝐽𝑞𝑞�
−1
𝑔𝑔𝑞𝑞 (2.2-29)

This algorithm has the advantage of not needing to directly calculate the second derivatives of

the error function. However, there are still issues where the Hessian approximation is not

invertible.

2.2.4 Levenberg-Marquardt Algorithm

In order to ensure that the Hessian matrix is invertible, the Levenberg-Marquardt (LM)

algorithm introduces yet another modification to the Hessian approximation:

𝐻𝐻 ≈ 𝐽𝐽𝑇𝑇𝐽𝐽 + 𝜇𝜇𝜇𝜇 (2.2-30)

Where 𝜇𝜇 is an always positive parameter called the combination coefficient and 𝑰𝑰 is the

identity matrix. Substituting this approximation into equation (2.2-29) gives the update rule

for the LM algorithm:

∆𝑞𝑞+1= ∆𝑞𝑞 + �𝑯𝑯 + 𝝁𝝁𝑞𝑞𝑰𝑰�
−1
𝑱𝑱𝑞𝑞𝑇𝑇𝒆𝒆𝑞𝑞 (2.2-31)

The combination coefficient, 𝜇𝜇, is modified during each iteration. When an iteration

results in a decrease in sum squared error:

 30

 𝜇𝜇 = 𝜇𝜇
𝛾𝛾
 (2.2-32)

When an iteration results in an increase in SSE:

 𝜇𝜇 = 𝛾𝛾𝛾𝛾 (2.2-33)

 Typically 𝜇𝜇 = 0.01 and 𝛾𝛾 = 10 is the starting point for the algorithm. Notice that when

𝜇𝜇 is large, the parameters are adjusted according to the steepest descent algorithm. When 𝜇𝜇 is

small, the parameters are adjusted according to the Gauss-Newton algorithm. For this reason,

the Levenberg-Marquardt algorithm can be considered a trust region modification of the

Gauss-Newton method [41]. Below is a description of training with the Levenberg-

Marquardt Algorithm.

Levenberg-Marquardt Algorithm

Given the notations described above, a single iteration of the Levenberg-Marquardt

algorithm executes as follows.

Step 1. Initialization: Calculate the error 𝐸𝐸1. Set an initial value for the combination

coefficient, 𝜇𝜇. Set the tuning parameter, 𝛾𝛾. Choose an acceptable error threshold,

𝜀𝜀. Choose a maximum number of iterations, 𝑄𝑄. Initialize the input parameters, ∆1.

Set the iteration number, 𝑄𝑄 = 1.

Step 2. Optimization: While 𝐸𝐸𝑞𝑞 < 𝜀𝜀 or 𝑞𝑞 > 𝑄𝑄

(a) Calculate the Jacobian matrix, 𝐽𝐽, according to equation (2.2-24).

(b) Calculate the quasi-Hessian matrix according to equation (2.2-28).

(c) Adjust the parameters according to the LM update rule (2.2-29).

(d) Increment 𝑞𝑞.

(e) Calculate new error 𝐸𝐸𝑞𝑞.

(f) If 𝐸𝐸𝑞𝑞 < 𝐸𝐸𝑞𝑞+1

 31

i. Adjust 𝜇𝜇 according to equation (2.2-32).

(g) Else

i. Adjust 𝜇𝜇 according to equation (2.2-33).

End If

End While

Several second–order algorithms have been adopted for use in the neural network training

process. The most efficient of these is the Levenberg-Marquardt algorithm [42]. This algorithm

uses a Hessian matrix computation to gain information about the shape of the error surface, and

apply it to find the best search direction. This algorithm was shown to be very fast and efficient

for relatively small problems.

2.2.5 Improved Hessian Computation

It should also be noted that the computation of the Jacobian matrix is very expensive and

often leads to problems when the data set is very large. However, this problem can be mostly

eliminated by changing the way that the matrices are multiplied so that a large Jacobian

matrix (proportional in size to the size of the training data) is never computed and stored

[43].

Assuming the same notation as in the previous section, this modification is done by

changing the method of matrix multiplication when calculating the quasi-hessian matrix, 𝑯𝑯.

Instead of multiplying the Jacobian by its transpose in the traditional way, each row is

multiplied by itself to form a part of the Hessian matrix denoted as 𝒉𝒉. Then each 𝒉𝒉, is added

to create the full Hessian. The gradient can then also be computed in the same way. Figure

 32

2.2-2 shows the difference between the two multiplication approaches. More formally, the

specific computations required are shown below.

𝒋𝒋𝑖𝑖,𝑘𝑘 = �𝜕𝜕𝑒𝑒𝑖𝑖,𝑘𝑘
𝜕𝜕∆𝑞𝑞,1

, 𝜕𝜕𝑒𝑒𝑖𝑖,𝑘𝑘
𝜕𝜕∆𝑞𝑞,2

, … , 𝜕𝜕𝑒𝑒𝑖𝑖,𝑘𝑘
𝜕𝜕∆𝑞𝑞,𝑃𝑃

�

(2.2-34)

𝒉𝒉𝑖𝑖,𝑗𝑗 = 𝒋𝒋𝑖𝑖,𝑗𝑗𝑇𝑇 𝒋𝒋𝑖𝑖,𝑗𝑗

(2.2-35)

𝐻𝐻 = ��ℎ𝑖𝑖,𝑗𝑗

𝑚𝑚

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

(2.2-36)

𝒈𝒈 = 𝒋𝒋𝑖𝑖,𝑗𝑗𝑒𝑒𝑖𝑖,𝑗𝑗
 (2.2-37)

The 𝐻𝐻 calculated here is identical to the previously calculated matrix, but the Jacobian need

not be calculated and stored. Only a single row at a time is used.

The Hessian in the improved LM-Method is then calculated using the following algorithm.

Improved Hessian Computation

Step 1. Initialization: 𝑯𝑯 = 0,𝒈𝒈 = 0.

Step 2. Multiplication: For 𝑖𝑖 = 1,2, … ,𝑁𝑁

(a) For 𝑗𝑗 = 1,2, … ,𝑚𝑚

i. Calculate 𝒋𝒋𝑖𝑖,𝑚𝑚 using equation (2.2-34).

ii. Calculate 𝒉𝒉𝑖𝑖,𝑚𝑚 using equation (2.2-35).

iii. Calculate 𝒈𝒈𝑖𝑖,𝑚𝑚 using equation (2.2-37).

iv. 𝑯𝑯 = 𝑯𝑯 + 𝒉𝒉𝑖𝑖,𝑚𝑚

v. 𝒈𝒈 = 𝒈𝒈 + 𝒈𝒈𝑖𝑖,𝑚𝑚

(b) End for

Step 3. End For

 33

(a)

(b)

Figure 2.2-2 Illustration of the two ways of matrix multiplication. (a) The typically used method.

(b) The method requiring only one row to be computed.

This allows the Hessian to be computed without storing the entire Jacobian matrix. This

improved second-order (ISO) training method is the basis for the radial basis function training

algorithms described in Chapter 4.

2.3 Optimal Construction and Training

All of the algorithms discussed in section 2.2 are viable and commonly used in the industry

to train artificial neural networks. However, the ramifications of selecting different network

 34

architectures is largely un-addressed by these algorithms. Most of them assume a fixed

architecture that is chosen before the training process begins. In order to be as efficient as

possible, it is proposed that the neural networks be constructed in an optimal sense. Much of the

research is dedicated to training neural networks to reach very small errors on the training data

set. However, it is often the case that this is not the best measure for the effectiveness of the

neural network. For practical applications, the generalization ability of the network is far more

important than the training errors. For this reason many of the current publications are focusing

on minimizing the so called “testing errors”, errors of the network on patterns that were not seen

in training.

It can be readily seen that a neural network can be easily made to converge to nearly zero

training error with an excessive number of neurons and weights. This is commonly known as

overtraining and is akin to using a polynomial approximation with too many terms. The

comparative works [29] and [30] show that architectures with the smallest numbers of neurons

and weights often show the best performance on the testing sets. So, the motivation of new

algorithms is to find a way to construct a neural network architecture in such a way that the

number of neurons (and weights) can be minimized.

As discussed previously, RBF networks are often constructed in a simple three layer

architecture containing, an input layer, an output layer, and a single hidden layer of RBF

neurons. With this in mind, the problem of creating the smallest network possible is simplified to

minimizing the number of RBF neurons in the hidden layer. This means that an optimal

construction and training algorithm is one that allows each RBF neuron to have as much of an

effect as possible on the reduction of errors as possible while still providing good generalization

abilities. This is the guiding concept behind the algorithms presented in this work.

 35

There are many algorithms that attempt to find the best initializations of RBF neurons and

optimal sizes of the RBF networks [44]–[47]. The RAN algorithm adjusts parameters of an

existing network and adds new neurons to compensate for poor performance on certain input

data [11]. The RANEKF algorithm uses an extended kalman filter (EKF) procedure rather than

an LMS procedure to update the network parameters [12]. In this sequential learning method,

the network is initialized as a blank slate, no neurons have been allocated to store any input

patterns. Let us introduce the term 𝛿𝛿𝑖𝑖 to denote the distance between the nearest RBF center and

the 𝑖𝑖𝑡𝑡ℎ pattern.

𝛿𝛿 = ‖𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛‖ (2.3-1)

where 𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the center of the nearest existing neuron.

2.3.1 Resource Allocating Network (RAN and RANEKF) Algorithm

Given a training set as described in equation (2.2-1), an activation function, ℎ(𝑥𝑥), a

maximum number of hidden neurons 𝑁𝑁�, a required error threshold, 𝜀𝜀, a minimum nearest

distance, 𝑑𝑑, and RBF parameters center, 𝑐𝑐, radius 𝜎𝜎, and height, 𝛽𝛽.

Step 1. For each input, target pair, (𝑥𝑥𝑖𝑖, 𝑡𝑡𝑖𝑖).

(a) Evaluate the network output, 𝑜𝑜𝑖𝑖.

(b) Calculate the magnitude of the error |𝑒𝑒𝑖𝑖|.

(c) Calculate the distance between the new pattern and the nearest existing RBF

center, 𝛿𝛿.

(d) If ‖𝑒𝑒𝑖𝑖‖ > 𝜀𝜀 AND 𝛿𝛿 > 𝑑𝑑,

i. Create a new neuron with center at:

 𝑐𝑐𝑖𝑖 = 𝑥𝑥𝑖𝑖 . (2.3-2)

 36

ii. Set the output weight,

𝛽𝛽𝑖𝑖 = 𝑡𝑡𝑖𝑖 − 𝑜𝑜𝑖𝑖 (2.3-3)

iii. Set the radius of the unit proportionally to the distance between the

new center and the nearest existing center:

𝜎𝜎𝑖𝑖 = 𝑘𝑘‖𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛‖.

(2.3-4)

(e) Else, adjust the existing network parameters using the new pattern and the

LMS (or EKF) method.

End If

End For

Further improvement was made on the RAN algorithm by Yingwei et. al. [13]. This

algorithm creates a minimally sized network and is known as MRAN. The MRAN algorithm

removes neurons that have little significance on the error thus reducing the size of the network.

At the end of each training iteration of the RAN algorithm, the RMS value of the network error

is evaluated over a window for each neuron. If the neuron contributes to the reduction of the

error in a window centered on the neuron, it is kept in the network. Otherwise, it is discarded.

Huang et al. proposed a generalized growing and pruning (GGAP) algorithm to find the

proper sizes of RBF networks [16], [48]. Based on a measure of so called “significance” RBF

units are added one at a time with specified initial conditions. A detailed description of the

GGAP algorithm is given below.

 37

2.3.2 Generalized Growing and Pruning Algorithm

Given a training set as described in equation (2.2-1), an activation function, ℎ(𝑥𝑥), a

maximum number of hidden neurons 𝑁𝑁�, a minimum error threshold, 𝜀𝜀, a minimum distance

between new data and existing centers, 𝑑𝑑, and RBF parameters center, 𝑐𝑐, radius 𝜎𝜎, and

height, 𝛽𝛽.

Step 2. Initialization: Create a RBF SLFN with 𝑛𝑛 hidden neurons. Typically randomly

chosen neurons are used, but the network can be initialized in any way.

Step 3. Learning: For each input pattern and target pair, (𝑥𝑥𝑖𝑖, 𝑡𝑡𝑖𝑖)

(a) Evaluate the network output, 𝑜𝑜𝑖𝑖.

(b) Calculate the magnitude of the error, |𝑒𝑒𝑖𝑖|

(c) Calculate 𝛿𝛿 according to equation (2.3-1).

(d) Calculate the SSE according to equation (2.2-3).

(e) If the parameters calculated in b, c, and d are greater than the pre-set threshold

values, create a new RBF neuron centered at 𝑥𝑥𝑖𝑖.

(f) Else, adjust the network parameters using the EKF method.

(g) For each neuron,

i. evaluate the pruning criterion, significance:

 𝑠𝑠𝑖𝑖 = �1.8𝜎𝜎𝑖𝑖𝛽𝛽𝑖𝑖
𝑟𝑟

� (2.3-5)

ii. If 𝑠𝑠𝑖𝑖 < 𝑆𝑆, prune the neuron.

End For

End For

 38

Neurons that make little contribution to network performance (low significance) are

eliminated from the network and ignored. However, the GGAP algorithm has trouble with

problems with complex probability distributions and high dimensional data. However, the

Gaussian Mixture Model (GMM) was introduced to approximate the GGAP performance

evaluation formula [49]. This modification allows the GGAP-GMM algorithm to design even

more compact networks for the same tasks on which the original GGAP algorithm failed.

2.3.3 Support Vector Machines

 Support vector machine (SVM) learning attempts to minimize the number of

computational nodes required to solve a particular problem. This is done by selecting certain

patterns to be used as training data while the rest of the data is ignored. SVMs can use nonlinear

kernel functions to cast inputs into higher dimensional spaces. This concept was introduced by

Vladimir Vapnik in his book [50]. A description of SVMs used for the purpose of regression,

Support Vector Regression (SVR), is given below.

Given a training set as described in equation (2.2-1), we introduce the approximation:

𝑦𝑦𝑖𝑖 = 𝑤𝑤 ∙ 𝑥𝑥𝑖𝑖 + 𝑏𝑏 (2.3-6)

Where 𝑦𝑦𝑖𝑖 is the predicted output of the SVR.

The SVR will use a more sophisticated cost function than SSE. There will be no penalty

associated with predicted values that are within some maximum distance, 𝜖𝜖, of their associated

target values. Furthermore, two slack variables, 𝛾𝛾+ and 𝛾𝛾−, are assigned to vary the penalty

associated with predicted values that lie outside 𝜖𝜖. The conditions required are then written:

�
(𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑖𝑖) ≤ 𝜖𝜖 + 𝛾𝛾+, (𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑖𝑖) > 0

(𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑖𝑖) ≥ −𝜖𝜖 − 𝛾𝛾−, (𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑖𝑖) < 0 (2.3-7)

This leads to the cost function for SVR:

 39

𝐸𝐸 = 𝐶𝐶 ∑ (𝛾𝛾+ + 𝛾𝛾−)𝑁𝑁
𝑖𝑖=1 + 1

2
‖𝑤𝑤‖2 (2.3-8)

Where the constant 𝐶𝐶 > 0 determines the trade-off between the flatness of the approximation

and tolerance of errors larger than 𝜖𝜖.

Thus the SVR algorithm seeks to solve the minimization problem:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝐶𝐶�(𝛾𝛾+ + 𝛾𝛾−)
𝑁𝑁

𝑖𝑖=1

+
1
2
‖𝑤𝑤‖2

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡,

⎩
⎨

⎧
(𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑖𝑖) ≤ 𝜖𝜖 + 𝛾𝛾+

(𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑖𝑖) ≥ −𝜖𝜖 − 𝛾𝛾−

𝛾𝛾+ ≥ 0
𝛾𝛾− ≤ 0

(2.3-9)

Let us now find a dual set of variables by constructing a Lagrange function and the

corresponding constraints from the objective function (2.3-9). Let us introduce the Lagrange

multipliers, 𝜇𝜇𝑖𝑖+, 𝜇𝜇𝑖𝑖−,𝛼𝛼𝑖𝑖+,𝛼𝛼𝑖𝑖−. The Lagrange function is then:

𝐿𝐿 =
1
2
‖𝑤𝑤‖2 + 𝐶𝐶�(𝛾𝛾+ + 𝛾𝛾−)

𝑁𝑁

𝑖𝑖=1

−�(𝜇𝜇𝑖𝑖+𝛾𝛾+ + 𝜇𝜇𝑖𝑖−𝛾𝛾−)
𝑁𝑁

𝑖𝑖=1

−�𝛼𝛼𝑖𝑖+(𝜖𝜖 + 𝛾𝛾+ + 𝑦𝑦𝑖𝑖 − 𝑡𝑡𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

−�𝛼𝛼𝑖𝑖−(𝜖𝜖 + 𝛾𝛾− − 𝑦𝑦𝑖𝑖 + 𝑡𝑡𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

(2.3-10)

Where the Lagrange multipliers are positive values:

𝜇𝜇𝑖𝑖+,𝜇𝜇𝑖𝑖−,𝛼𝛼𝑖𝑖+,𝛼𝛼𝑖𝑖− ≥ 0 (2.3-11)

Because the formulation of the problem is quadratic, the min or max will be located where the

partial derivatives of the Lagrange function equal zero.

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= �(𝛼𝛼𝑖𝑖+ − 𝛼𝛼𝑖𝑖−) = 0
𝑁𝑁

𝑖𝑖=1

 (2.3-12)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑤𝑤 −�(𝛼𝛼𝑖𝑖+ − 𝛼𝛼𝑖𝑖−)𝑥𝑥𝑖𝑖 = 0
𝑁𝑁

𝑖𝑖=1

 (2.3-13)

 40

𝜕𝜕𝜕𝜕
𝜕𝜕𝛾𝛾+

= 𝐶𝐶 − (𝛼𝛼𝑖𝑖+ + 𝜇𝜇𝑖𝑖+) (2.3-14)

𝜕𝜕𝜕𝜕
𝜕𝜕𝛾𝛾−

= 𝐶𝐶 − (𝛼𝛼𝑖𝑖− + 𝜇𝜇𝑖𝑖−) (2.3-15)

Re-writing these equations and substituting them into the Lagrange function leads to the

formulation of the Lagrangian dual:

𝐿𝐿𝐷𝐷 =
1
2
��(𝛼𝛼𝑖𝑖+ − 𝛼𝛼𝑖𝑖−)(𝛼𝛼𝑗𝑗+ − 𝛼𝛼𝑗𝑗−)(𝒙𝒙𝑖𝑖 ∙ 𝒙𝒙𝑗𝑗)

𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

+ 𝜖𝜖�(𝛼𝛼𝑖𝑖+ − 𝛼𝛼𝑖𝑖−)
𝑁𝑁

𝑖𝑖=1

−�(𝛼𝛼𝑖𝑖+ − 𝛼𝛼𝑖𝑖−)𝑡𝑡𝑖𝑖

𝑁𝑁

𝑖𝑖=1

(2.3-16)

Notice that the dual variables 𝜇𝜇𝑖𝑖+ and 𝜇𝜇𝑖𝑖− were eliminated by solving equations (2.3-14) and

(2.3-15) for 𝛼𝛼𝑖𝑖+ and 𝛼𝛼𝑖𝑖−. Now, the problem in (2.3-9) can be re-formulated as maximizing the

negative of the Lagrange dual problem:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, −𝐿𝐿𝐷𝐷

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡, 0 ≤ 𝛼𝛼𝑖𝑖+ ≤ 𝐶𝐶, 0 ≤ 𝛼𝛼𝑖𝑖− ≤ 𝐶𝐶, 𝑎𝑎𝑎𝑎𝑎𝑎 �(𝛼𝛼𝑖𝑖+ − 𝛼𝛼𝑖𝑖−) = 0
𝑁𝑁

𝑖𝑖=1

 (2.3-17)

This is done using a quadratic programming algorithm. Predictions may then be made by

substituting (2.3-13) into (2.3-6).

𝑦𝑦𝑗𝑗 = �(𝛼𝛼𝑖𝑖+ − 𝛼𝛼𝑖𝑖−)(𝒙𝒙𝑖𝑖 ∙ 𝒙𝒙𝑗𝑗)
𝑁𝑁

𝑖𝑖=1

+ 𝑏𝑏 (2.3-18)

A set of support vectors 𝑆𝑆 can be created by finding the inputs that satisfy the following:

𝑥𝑥𝑠𝑠 ∈ 𝑆𝑆 iff 0 < 𝛼𝛼𝑖𝑖
± < 𝐶𝐶 and 𝛾𝛾𝑖𝑖

± = 0 (2.3-19)

The number of support vectors is then defined as 𝑁𝑁𝑠𝑠. This allows the bias to be calculated:

𝑏𝑏 =
1
𝑁𝑁𝑠𝑠
��𝑡𝑡𝑠𝑠 − 𝜖𝜖 −�(𝛼𝛼𝑘𝑘+ − 𝛼𝛼𝑘𝑘−)𝒙𝒙𝑘𝑘 ∙ 𝒙𝒙𝑠𝑠

𝑁𝑁𝑠𝑠

𝑘𝑘=1

�
𝑁𝑁𝑠𝑠

𝑠𝑠=1

 (2.3-20)

 41

In order to move to higher dimensional space, a kernel function 𝑘𝑘(𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗) is used. The kernel

function must be a function of the inner product between 𝒙𝒙𝑖𝑖 and 𝒙𝒙𝑗𝑗. The kernel must also satisfy

several other criteria explained in great detail in Alex Smola’s tutorial [51]. Popular kernels

include, polynomial kernels, RBF kernels, and sigmoidal kernels. For the purpose of this work,

the Gaussian kernel will be used in comparisons with other algorithms. Inserting a kernel into the

formulas derived above is as easy as substituting 𝑘𝑘(𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗) in place of 𝒙𝒙𝑖𝑖 ∙ 𝒙𝒙𝑗𝑗.

Given all of these considerations, let us outline the SVR algorithm:

Support Vector Regression Algorithm: Given a training set as described in equation

(2.2-1), a kernel function 𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗), an error significance 𝐶𝐶, and an error insensitivity

parameter 𝜖𝜖. For simplicity, let us denote the alpha parameters in the following way:

𝛼𝛼𝑖𝑖 = (𝛼𝛼𝑖𝑖+ − 𝛼𝛼𝑖𝑖−) (2.3-21)

Let us also denote the matrix of kernel function values in the following way:

𝐻𝐻 = �
𝐻𝐻1,1,𝐻𝐻1,2, … ,𝐻𝐻1,𝑁𝑁

⋮
𝐻𝐻𝑁𝑁,1,𝐻𝐻𝑁𝑁,2, … ,𝐻𝐻𝑁𝑁,𝑁𝑁

� = �
𝑘𝑘(𝑥𝑥1,𝑥𝑥1),𝑘𝑘(𝑥𝑥1, 𝑥𝑥2), … 𝑘𝑘(𝑥𝑥1, 𝑥𝑥𝑁𝑁)

⋮
𝑘𝑘(𝑥𝑥𝑁𝑁 ,𝑥𝑥1),𝑘𝑘(𝑥𝑥𝑁𝑁 ,𝑥𝑥2), … 𝑘𝑘(𝑥𝑥𝑁𝑁 , 𝑥𝑥𝑁𝑁)

� (2.3-22)

Step 1. Calculate 𝑯𝑯 according to equation (2.3-22).

Step 2. Us a Quadratic Programming algorithm to solve the dual problem:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖, �𝛼𝛼𝑖𝑖(𝑡𝑡𝑖𝑖 − 𝜖𝜖)
𝑁𝑁

𝑖𝑖=1

−
1
2
𝛼𝛼𝑇𝑇𝐻𝐻𝐻𝐻

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡,−𝐶𝐶 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶 ∀𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 �𝛼𝛼𝑖𝑖

𝑁𝑁

𝑖𝑖=1

= 0

(2.3-23)

Step 3. Calculate weights according to equation (2.3-13).

Step 4. Determine the set of support vectors as in equation (2.3-19).

Step 5. Calculate the bias with equation (2.3-20).

 42

Step 6. New data, 𝒙𝒙′ is processed using:

𝑦𝑦′ = �𝛼𝛼𝑖𝑖𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥′)
𝑁𝑁

𝑖𝑖=1

+ 𝑏𝑏 (2.3-24)

In terms of neural networks, SVMs can be viewed as a single hidden layer network with a

bias weight and activation functions equal to the kernel function. For instance, a sigmoidal kernel

will lead to a single layer MLP network.

2.4 Extreme Learning Machines

From the perspective of mathematics, the approximation capabilities of feed-forward

neural networks has been largely dedicated to two problems: universal approximation on

small input sets, and universal approximation over a finite set of training patterns. In fact,

much research has been done on the capabilities of a typical multilayer feed-forward

network. Hornik, [52], showed that neural networks can approximate continuous mappings

over compact input sets if the activation function is continuous, bounded and non-constant.

Further work on the subject has been done by Leshno, [53], who proved that feed-forward

networks with a non-polynomial activation function can approximate any continuous

function. Huang and Babri, [54] showed mathematical proof that a single-hidden layer feed-

forward neural network (SLFN) with N or fewer nodes can learn N distinct training patterns.

In all of these previous theoretical works, the network parameters, weights and biases,

need to be adjusted iteratively in order for the networks to learn the data. In most cases,

gradient descent-based optimization is the core of the learning algorithm. However, it has

been postulated that gradient descent-based algorithms have issues that reduce their

efficiency and desirability as learning algorithms. For instance, the size of the learning step

 43

must be chosen carefully or else the algorithm will converge slowly or converge to a local

minimum. Furthermore, it is often the case that many attempts need to be made in order to

obtain satisfactory learning performance. Huang showed in [55] that an SLFN with N hidden

nodes and randomly chosen input weights and biases can exactly learn N distinct training

patterns. This goes against the traditional thinking on the subject because it demonstrates

that the input weights may not always need to be adjusted. Actually, Huang et. Al, did some

simulations on artificial and real-world applications in [56], and found that learning with

random input weights and biases makes learning extremely fast and also produces good

generalization performance. The Extreme Learning Machine (ELM) algorithm was spawned

from this idea and was proposed in [57].

In [57] it is rigorously proven that the input weights and hidden layer biases of SLFNs

can be randomly assigned if the activation functions of neurons in the hidden layer are

infinitely differentiable. In other words:

Given a training set as described in equation (2.2-1), a SLFN with 𝑁𝑁� hidden nodes and

an activation function, ℎ(𝑥𝑥) is mathematically modeled as:

∑ 𝛽𝛽𝑖𝑖ℎ𝑖𝑖�𝑥𝑥𝑗𝑗� = ∑ 𝛽𝛽𝑖𝑖ℎ𝑖𝑖�𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑖𝑖� = 𝑜𝑜𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑁𝑁𝑁𝑁�
𝑖𝑖=1

𝑁𝑁�
𝑖𝑖=1 (2.4-1)

𝑤𝑤𝑖𝑖 = [𝑤𝑤𝑖𝑖,1,𝑤𝑤𝑖𝑖,2, … ,𝑤𝑤𝑖𝑖,𝑛𝑛] ∈ ℝ𝑛𝑛 (2.4-2)

𝛽𝛽𝑖𝑖 = [𝛽𝛽𝑖𝑖,1,𝛽𝛽𝑖𝑖,2, … ,𝛽𝛽𝑖𝑖,𝑚𝑚] ∈ ℝ𝑚𝑚 (2.4-3)

Where: 𝑤𝑤𝑖𝑖 is the weight vector that weights the connections between the 𝑖𝑖𝑡𝑡ℎ hidden node

and the inputs; 𝛽𝛽𝑖𝑖 is the weight vector that connects the outputs and the 𝑖𝑖𝑡𝑡ℎ hidden node; and

𝑏𝑏𝑖𝑖 is the bias of the 𝑖𝑖𝑡𝑡ℎ hidden node. The term, 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥𝑗𝑗 , is the inner product of 𝑤𝑤𝑖𝑖 and 𝑥𝑥𝑗𝑗.

Let us say that we wish for a standard SLFN with 𝑁𝑁� hidden nodes with activation

function ℎ(𝑥𝑥) to approximate the 𝑁𝑁 training samples with zero error. In other words:

 44

∑ �𝑜𝑜𝑗𝑗 − 𝑡𝑡𝑗𝑗�𝑁𝑁�
𝑗𝑗=1 = 0, (2.4-4)

This requires that ∃𝛽𝛽𝑖𝑖,𝑤𝑤𝑖𝑖, and 𝑏𝑏𝑖𝑖 such that:

∑ 𝛽𝛽𝑖𝑖ℎ𝑖𝑖�𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑖𝑖� = 𝑡𝑡𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑁𝑁𝑁𝑁�
𝑖𝑖=1 (2.4-5)

To use a more compact notation, the above 𝑁𝑁 equations can be re-written as:

𝐻𝐻𝐻𝐻 = 𝑇𝑇 (2.4-6)

𝐻𝐻(𝑤𝑤1, … ,𝑤𝑤𝑁𝑁� ,𝑏𝑏1, … , 𝑏𝑏𝑁𝑁� , 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁) =

�
ℎ(𝑤𝑤1 ∙ 𝑥𝑥1 + 𝑏𝑏1) ⋯ ℎ(𝑤𝑤𝑁𝑁� ∙ 𝑥𝑥1 + 𝑏𝑏𝑁𝑁�)

⋮ ⋯ ⋮
ℎ(𝑤𝑤1 ∙ 𝑥𝑥𝑁𝑁 + 𝑏𝑏1) ⋯ ℎ(𝑤𝑤𝑁𝑁� ∙ 𝑥𝑥𝑁𝑁 + 𝑏𝑏𝑁𝑁�)

�
(2.4-7)

𝛽𝛽 = �
𝛽𝛽1
⋮
𝛽𝛽𝑁𝑁�
� (2.4-8)

𝑇𝑇 = �
𝑡𝑡1
⋮
𝑡𝑡𝑁𝑁
� (2.4-9)

Where the size of 𝐻𝐻 is (𝑁𝑁 × 𝑁𝑁�), the size of 𝛽𝛽 is (𝑁𝑁� × 𝑚𝑚), and the size of 𝑇𝑇 is (𝑁𝑁𝑁𝑁𝑁𝑁).

From here forward, 𝐻𝐻 is called the hidden layer output matrix of the SLFN. The rows of 𝐻𝐻

correspond to the inputs while the columns of 𝐻𝐻 correspond to the hidden layer neurons

such that 𝐻𝐻𝑖𝑖𝑖𝑖 is equal to the output of the 𝑗𝑗𝑡𝑡ℎ neuron given the 𝑖𝑖𝑡𝑡ℎ input. Given this network,

it is proven in [57] that the required number of nodes 𝑁𝑁� ≤ 𝑁𝑁.

Notice that in a conventional neural network, 𝐻𝐻 is found by iteratively searching for the

minimum of ‖𝐻𝐻𝐻𝐻 − 𝑇𝑇‖ using a gradient-based learning algorithm. Recall from section 2.2

that the weights and biases are typically adjusted by the following formula:

𝑤𝑤𝑘𝑘 = 𝑤𝑤𝑘𝑘−1 − 𝛼𝛼 𝛿𝛿𝛿𝛿(𝑤𝑤)
𝛿𝛿𝛿𝛿

 (2.4-10)

This learning rule is generally implemented in the form of the back propagation (BP)

algorithm. Huang states that there are four problems with BP algorithms:

 45

(1) When the learning rate 𝛼𝛼 is too large, the algorithm becomes unstable and diverges.

However, when 𝛼𝛼 is too small, the algorithm converges very slowly and faces greater

risk of getting stuck in a local minimum.

(2) The presence of local minima can greatly affect performance of the learning

algorithm. Local minima are often traps where the learning algorithm will stop

before it reaches a global minima.

(3) The BP algorithms can lead to overtraining thereby hurting generalization

performance of the network. This gives rise to the necessity for complicated stopping

methods in the cost minimization algorithm.

(4) In most applications, gradient-based learning is very time consuming.

The ELM algorithm then proposes that the input weights and biases are allowed to be

random and unchanged and that a least squares solution, 𝛽̂𝛽, of the linear system from

equation (2.4-6) will yield a suitable approximation:

�𝐻𝐻(𝑤𝑤1, … ,𝑤𝑤𝑁𝑁� ,𝑏𝑏1, … , 𝑏𝑏𝑁𝑁�)𝛽̂𝛽 − 𝑇𝑇� = MIN𝛽𝛽‖𝐻𝐻(𝑤𝑤1, … ,𝑤𝑤𝑁𝑁� , 𝑏𝑏1, … , 𝑏𝑏𝑁𝑁�)𝛽𝛽 − 𝑇𝑇‖ (2.4-11)

Which is equivalent to minimizing the cost function:

𝐸𝐸 = ∑ �∑ 𝛽𝛽𝑖𝑖ℎ𝑖𝑖�𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑖𝑖� − 𝑡𝑡𝑗𝑗𝑁𝑁�
𝑖𝑖=1 �

2𝑁𝑁
𝑗𝑗=1 (2.4-12)

If the number of hidden neurons is equal to the number of training samples, then the matrix

𝐻𝐻 is square and invertible. The SLFN will approximate these training samples with zero

error. However, most of the time the number of neurons is far fewer than the number of

training samples and there may not exist a set of parameters such that equation (2.4-6) is

satisfied. In these cases, we must find the smallest norm least-squares solution by:

𝛽̂𝛽 = 𝐻𝐻†𝑇𝑇 (2.4-13)

Where 𝐻𝐻† is the Moore-Penrose generalized inverse of 𝐻𝐻.

 46

This gives the algorithm the following properties:

(1) Minimum Training Error: The special solution 𝛽̂𝛽 = 𝐻𝐻†𝑇𝑇 is a least squares solution of

the general linear system 𝐻𝐻𝐻𝐻 = 𝑇𝑇. This means that the smallest training error can be

reached by the special solution:

�𝐻𝐻𝛽̂𝛽 − 𝑇𝑇� = �𝐻𝐻𝐻𝐻†𝑇𝑇 − 𝑇𝑇� = 𝑚𝑚𝑚𝑚𝑚𝑚𝛽𝛽‖𝐻𝐻𝐻𝐻 − 𝑇𝑇‖ (2.4-14)

 Of course all learning algorithms attempt to reach the minimum training error,

however, many of them cannot reach it because of the problems discussed previously

or because it would require an infinite number of training iterations.

(2) Smallest Norm of Weights. The special solution 𝛽̂𝛽 = 𝐻𝐻†𝑇𝑇 has the smallest norm of all

the least-squares solutions of 𝐻𝐻𝐻𝐻 = 𝑇𝑇.

�𝛽̂𝛽� = �𝐻𝐻†𝑇𝑇� ≤ ‖𝛽𝛽‖, ∀𝛽𝛽 ∈ �𝛽𝛽: ‖𝐻𝐻𝐻𝐻 − 𝑇𝑇‖ ≤ ‖𝐻𝐻𝐻𝐻 − 𝑇𝑇‖,∀𝑧𝑧 ∈ ℝ𝑁𝑁�×𝑁𝑁� (2.4-15)

According to Bartlett, [58], the set of parameters with the smallest norm will provide

the best generalization performance.

(3) The minimum norm least-squares solution of 𝐻𝐻𝐻𝐻 = 𝑇𝑇 is unique.

Thus the ELM algorithm can be summarized as follows:

ELM Algorithm: Recall a training set as described in equation (2.2-1) has the form:

ℵ = {(𝑥𝑥𝑖𝑖, 𝑡𝑡𝑖𝑖)|𝑥𝑥𝑖𝑖 ∈ ℝ𝑛𝑛, 𝑡𝑡𝑖𝑖 ∈ ℝ𝑚𝑚, 𝑖𝑖 = 1, … ,𝑁𝑁} (2.4-16)

Step 1. Randomly assign input weight, 𝑤𝑤𝑖𝑖, and bias, 𝑏𝑏𝑖𝑖, for 𝑖𝑖 = 1, … ,𝑁𝑁�.

Step 2. Calculate the hidden layer output matrix, 𝐻𝐻.

Step 3. Calculate the output weights, 𝛽𝛽, using equation (2.4-13).

This algorithm was tested on several benchmarks and real-world problems in [57]. The

algorithm was also compared with two state of the art learning algorithms in the Levenberg-

Mardquardt BP algorithm and the Support Vector Machine algorithm. The simulations for

 47

the BP and ELM algorithms were carried out in MATLAB while the SVM algorithms were

run using the compiled C-coded package, LIBSVM. Though the ELM can be used on any

infinitely differentiable activation function, the simple sigmoidal function was used for both

the ELM and BP trials. The kernel function used for the SVM trials was a Gaussian radial

basis function. The inputs of the test data sets were normalized into the range, [0,1], while

the outputs were normalized into the range, [−1,1]. Table 1 summarizes the results found by

the experiments. It can be seen that the ELM algorithm performs very well in terms of

training time. It is also efficient in terms of network size and root mean square error

(RMSE) performance. The RMSE is defined as:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑁𝑁
∑ 𝑒𝑒𝑖𝑖2𝑁𝑁
𝑖𝑖=1 (2.4-17)

Table 3 ELM, SVR, and BP results on real world data sets.

Data Set
BP SVR ELM

Train
RMSE

Test
RMSE

Train
Time

Train
RMSE

Test
RMSE

Train
Time

Train
RMSE

Test
RMSE

Train
Time

Abalone 0.0785 0.0874 1.7562 0.0759 0.0784 1.6123 0.0803 0.0824 0.0125

Auto
Price 0.0443 0.1157 0.2456 0.0652 0.0937 0.0042 0.0754 0.0994 0.0016

Cal
Housing 0.1046 0.1285 6.532 0.1089 0.118 74.184 0.1217 0.1267 1.1177

Delta
Ailerons 0.0409 0.0481 2.7525 0.0418 0.0429 0.6726 0.0423 0.0431 0.0591

Delta
Elevators 0.0544 0.0592 1.1938 0.0534 0.054 1.121 0.0545 0.0568 0.2812

Machine
CPU 0.0352 0.0826 0.2354 0.0574 0.0811 0.0018 0.0332 0.0539 0.0015

 48

2.4.1 Incremental Extreme Learning Machine

Following the work done on the Extreme Learning Machine in [57] Huang et. al in [59]

extended those ideas to prove that given any bounded non-constant piecewise continuous

activation function, the network output, 𝑓𝑓𝑛𝑛, can converge to any continuous target function, 𝑓𝑓, by

only adjusting the output weights that connect the hidden layer to the output neurons and fixing

the hidden layer parameters to random values. This research showed that one could also choose

special neural network activation functions such as RBFs and still assign input parameters,

centers and widths in the case of RBF, randomly while maintaining good approximation

characteristics. Furthermore, they proposed a constructive algorithm known as the Incremental

Extreme Learning Machine (I-ELM) which is a very important algorithm related to the work

being done here. Like the ELM the I-ELM algorithm focuses on constructing SLFNs, but is

proven to work for Two Hidden Layer Feedforward Networks (TLFNs) as well. The I-ELM

algorithm works in the same way as the ELM algorithm with the exception that random neurons

are added to the network one at a time. Then the output weights of these neurons are adjusted

using the least squares solution with the current residual error as a target. Finally the newly

added neuron’s function is subtracted from the current residual error and the process repeats until

a desired level of total error or a maximum number of neurons is reached. A diagram detailing

the flow of this algorithm is shown in Figure 2.4-1 and a detailed description of the algorithm is

below:

I-ELM Algorithm: Given a training set as described in equation (2.4-16), an activation

function, ℎ(𝑥𝑥), a maximum number of hidden neurons 𝑁𝑁�, and a required learning accuracy,

𝜀𝜀.

 49

Step 1. Initialization: Let the number of hidden neurons and the residual error be

𝑛𝑛 = 0 and 𝐸𝐸 = 𝑇𝑇, where 𝑇𝑇 is the target vector.

Step 2. Learning: while 𝑛𝑛 < 𝑁𝑁� and ‖𝐸𝐸‖ < 𝜀𝜀

(h) Create a new neuron with random input parameters and increment 𝑛𝑛.

(i) Calculate the output weight,

 𝛽𝛽𝑛𝑛 = 𝐸𝐸∙𝐻𝐻𝑛𝑛𝑇𝑇

𝐻𝐻𝑛𝑛∙𝐻𝐻𝑛𝑛𝑇𝑇
 (2.4-18)

(j) Calculate the residual error after adding the new hidden node 𝑛𝑛.

𝐸𝐸 = 𝐸𝐸 − 𝛽𝛽𝑛𝑛 ∙ 𝐻𝐻𝑛𝑛 (2.4-19)

End While.

The main differences to notice between I-ELM and the previously examined ELM are:

(1) The network is constructed one node at a time with each new node being created with

random input parameters, weights and biases or centers and widths.

(2) The calculation for the output weights 𝛽𝛽 changes slightly. Since only one 𝛽𝛽 needs to be

found at a time, the least squares solution goes from (2.4-13), to what is shown in

equation (2.4-18).

The authors of the I-ELM algorithm also studied various ways of improving the algorithm.

These algorithms known as the Convex Incremental Extreme Learning Machine (CI-ELM) and

the Enhanced Random Search Based Incremental Extreme Learning Machine (EI-ELM) were

published in [60] and [61] respectively. Together these algorithms are known as extreme learning

machines. These algorithms are all built on the mathematics discussed in section 3.1. They are

used in comparison with the algorithms proposed in this work because they all follow similar

processes with regards to the incremental construction of RBF networks. These algorithms will

have very fast training times since there is only one calculation made per iteration and most

 50

environments allow the calculation of 𝛽𝛽 in matrix form to be very fast. The I-ELM algorithm

was compared on a range of real world data sets and is compared with the algorithms proposed

in this work in detail in section 3.3. The drawback to these algorithms is that only one of three

possible input parameters is optimized. This intuitively leaves room for some improvements that

will still maintain the integrity of the network being developed.

Figure 2.4-1 The I-ELM algorithm given a training set {(𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝)|𝑥𝑥𝑝𝑝 ∈ 𝑅𝑅𝐷𝐷 ,𝑦𝑦𝑝𝑝 ∈ 𝑅𝑅,𝑝𝑝 = [1 …𝑃𝑃]},

an activation function g(x), a maximum node number H, and an expected learning accuracy ε.

2.4.2 Convex Incremental Extreme Learning Machine

The CI-ELM algorithm is an attempt to improve upon the methods proposed in [57] and [59].

This algorithm functions almost identically to the I-ELM. The only difference is that the

solutions for 𝛽𝛽𝑛𝑛 and 𝛽𝛽 are found using Barron’s convex optimization learning method [62]. This

method first estimates the output weight of the newly added neuron using:

 51

𝛽𝛽𝑛𝑛 = 𝐸𝐸∙[𝐸𝐸−(𝐹𝐹−𝐻𝐻𝑛𝑛)]𝑇𝑇

[𝐸𝐸−(𝐹𝐹−𝐻𝐻𝑛𝑛)]∙[𝐸𝐸−(𝐹𝐹−𝐻𝐻𝑛𝑛)]𝑇𝑇 (2.4-20)

Where 𝐻𝐻𝑛𝑛is the vector containing the output of the new node for each input pattern, 𝐸𝐸 is the

residual error vector before the new node was added, and 𝐹𝐹 is the target vector containing each

target.

Then the algorithm adjusts all of the existing output weights as well using:

𝛽𝛽𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛 = (1 − 𝛽𝛽𝑛𝑛)𝛽𝛽𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛 − 1 (2.4-21)

Finally, the residual error is calculated again with the new node in the network using:

𝐸𝐸 = (1 − 𝛽𝛽𝑛𝑛)𝐸𝐸 + 𝛽𝛽𝑛𝑛(𝐹𝐹 − 𝐻𝐻𝑛𝑛) (2.4-22)

By using these equations to find 𝛽𝛽, the authors of the CI-ELM hoped to make use of more

information and therefore find a better approximation of the targets. The full description of the

CI-ELM algorithm is given below:

CI-ELM Algorithm: Given a training set as described in equation (2.4-16), an

activation function, ℎ(𝑥𝑥), a maximum number of hidden neurons 𝑁𝑁�, and a required learning

accuracy, 𝜀𝜀.

Step 1. Initialization: Let the number of hidden neurons and the residual error be

𝑛𝑛 = 0 and 𝐸𝐸 = 𝑇𝑇, where 𝑇𝑇 is the target vector.

Step 2. Learning: while 𝑛𝑛 < 𝑁𝑁� and ‖𝐸𝐸‖ < 𝜀𝜀

(k) Create a new neuron with random input parameters and increment 𝑛𝑛.

(l) Estimate the output weight, 𝛽𝛽𝑛𝑛, for the newly added hidden node according to

equation (2.4-20).

(m) If 𝑛𝑛 > 1, recalculate the output weight vectors for all previously existing hidden

neurons according to equation (2.4-21).

 52

(n) Re-calculate the residual error after the addition of the new hidden neuron according

to equation (2.4-22).

End While.

The CI-ELM was compared on a range of real world data sets and is compared with the

algorithms proposed in this work in detail in section 3.3.

2.4.3 Enhanced Random Search Incremental Extreme Learning Machine

The EI-ELM algorithm proposed in, [61] is an attempted improvement to the I-ELM

algorithm. This algorithm differs from I-ELM in that at each iteration, instead of a single random

node being created and added into the network, an array of random neurons of length 𝑘𝑘 is

created. Then the output weight for each neuron is calculated using the same equation used in I-

ELM equation (2.4-18). Then a vector of errors is calculated for each of the 𝑘𝑘 neurons. The

neuron which results in the smallest error value is then added to the network. A detailed

description of the algorithm is given below.

EI-ELM Algorithm: Given our typical training set from equation (2.4-16), an activation

function, ℎ(𝑥𝑥), a maximum number of hidden neurons 𝑁𝑁�, a maximum number of trials, 𝑘𝑘,

and a required learning accuracy, 𝜀𝜀.

Step 1. Initialization: Let the number of hidden neurons and the residual error be

𝑛𝑛 = 0 and 𝐸𝐸 = 𝑇𝑇, where 𝑇𝑇 is the target vector.

Step 2. Learning: While 𝑛𝑛 < 𝑁𝑁� and ‖𝐸𝐸‖ < 𝜀𝜀

(a) Increment 𝑛𝑛.

(b) For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘

i. Create a new neuron, 𝑛𝑛𝑖𝑖, with random input parameters.

 53

ii. Calculate the output weight using equation (2.4-18).

iii. Calculate the residual error after adding the new hidden neuron, 𝑛𝑛, using

equation (2.4-19).

End For

(c) Let:

 𝑖𝑖∗ = {𝑖𝑖| min1≤𝑖𝑖≤𝑘𝑘‖𝐸𝐸𝑖𝑖‖} (2.4-23)

(d) Set neuron, 𝑛𝑛 = 𝑛𝑛𝑖𝑖∗, output weight, 𝛽𝛽𝑛𝑛 = 𝛽𝛽𝑖𝑖∗, and residual error, 𝐸𝐸 = 𝐸𝐸𝑖𝑖∗ .

End While

The EI-ELM was compared on a range of real world data sets and is compared with the

algorithms proposed in this work in detail in section 3.3.

 54

Chapter 3 Nelder-Mead Enhanced Extreme Learning Machine

3.1 Nelder-Mead Simplex Method

The Nelder-Mead algorithm is an optimization algorithm that uses a quasi-gradient descent

method to find the minimum of a real valued function. It was originally published in [63]. Since

then it has been widely used in a myriad of applications. Its popularity stems from the fact that it

is unconstrained and does not require the computation of derivatives of the function to be

optimized. However, many studies such as what is presented in [64] show that the Nelder-Mead

algorithm has many inefficiencies. Some of these deficiencies were recently corrected in [65].

This algorithm will be used as a fast optimization method to improve the performance of the I-

ELM algorithm discussed in section 3.2.1.

The Nelder-Mead algorithm was proposed as a method for minimizing a real-valued function

𝑓𝑓(𝑥𝑥) for 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛. According to [63], four scalar parameters must be specified to define a

complete Nelder-Mead method: coefficients of reflection (𝜌𝜌), expansion (𝜒𝜒), contraction (𝛾𝛾),

and shrinkage (α). According to the original publication, these parameters should satisfy:

𝜌𝜌 > 0, 𝜒𝜒 > 1,𝜒𝜒 > 𝜌𝜌, 0 < 𝛾𝛾 < 1,𝑎𝑎𝑎𝑎𝑎𝑎 0 < 𝛼𝛼 < 1 (3.1-1)

In almost all cases (and in experiments conducted in section 3.3) these parameters are chosen

to be:

𝜌𝜌 = 1, 𝜒𝜒 = 2, 𝛾𝛾 =
1
2

 ,𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼 =
1
2

 (3.1-2)

 55

Nelder-Mead Simplex Algorithm

At the beginning of the 𝑘𝑘𝑡𝑡ℎ iteration, 𝑘𝑘 ≥ 0, a non-degenerate simplex 𝛥𝛥𝑘𝑘 is given, as well as

its 𝑛𝑛 + 1 vertices, each of which is a point in 𝑅𝑅𝑛𝑛. It is always assumed that iteration 𝑘𝑘 begins by

ordering and labeling these vertices as 𝑥𝑥1𝑘𝑘 , … , 𝑥𝑥𝑛𝑛+1𝑘𝑘 , such that 𝑓𝑓1𝑘𝑘 ≤ 𝑓𝑓2𝑘𝑘 ≤ ⋯ ≤ 𝑓𝑓𝑛𝑛+1𝑘𝑘 . Where 𝑓𝑓1𝑘𝑘

denotes 𝑓𝑓�𝑥𝑥1𝑘𝑘�. The 𝑘𝑘𝑡𝑡ℎ iteration generates a set of 𝑛𝑛 + 1 vertices that define a different simplex

for the next iteration. In terms of minimizing 𝑓𝑓, we refer to 𝑥𝑥1𝑘𝑘 as the best vertex and to 𝑥𝑥𝑛𝑛+1𝑘𝑘 as

the worst vertex.

The result of each iteration is one of two cases:

(1) A single new vertex – the accepted point – replaces the vertex, 𝑥𝑥𝑛𝑛+1 in the set of vertices

for the next iteration.

(2) A shrink is performed and a set of n new points is generated that, together with 𝑥𝑥1, form

the simplex at the next iteration.

For explanation purposes in this work, an iteration of the Nelder-Mead algorithm will be

described and the superscript 𝑘𝑘 will be omitted to avoid confusion. The algorithm explanation

shown in this work was extracted from the explanatory publication [63].

The steps of a single iteration of the Nelder-Mead Algorithm are:

Step 1. Order the n+1 vertices so that 𝑓𝑓(𝑥𝑥1) ≤ 𝑓𝑓(𝑥𝑥2) ≤ ⋯ ≤ 𝑓𝑓(𝑥𝑥𝑛𝑛+1).

Step 2. Reflection:

(a) Compute the reflection point 𝑥𝑥𝑟𝑟 from:

𝑥𝑥𝑟𝑟 = (1 + 𝜌𝜌)𝑥𝑥� − 𝜌𝜌𝑥𝑥𝑛𝑛+1 (3.1-3)

where 𝑥𝑥� = ∑ 𝑥𝑥𝑖𝑖/𝑛𝑛𝑛𝑛
𝑖𝑖=1 is the centroid of the 𝑛𝑛 best points.

(b) Evaluate:

 56

𝑓𝑓𝑟𝑟 = 𝑓𝑓(𝑥𝑥𝑟𝑟) (3.1-4)

(c) If 𝑓𝑓1 ≤ 𝑓𝑓𝑟𝑟 < 𝑓𝑓𝑛𝑛, accept the point and terminate the iteration.

Step 3. Expansion:

(a) If 𝑓𝑓𝑟𝑟 < 𝑓𝑓𝑛𝑛, calculate the expansion point 𝑥𝑥𝑒𝑒,

𝑥𝑥𝑒𝑒 = 𝑥𝑥� + 𝜒𝜒(𝑥𝑥𝑟𝑟 − 𝑥𝑥�) (3.1-5)

i. Evaluate 𝑓𝑓(𝑥𝑥𝑒𝑒)

ii. If 𝑓𝑓𝑒𝑒 < 𝑓𝑓𝑟𝑟, accept 𝑥𝑥𝑒𝑒 and terminate the iteration.

iii. Otherwise, accept 𝑥𝑥𝑟𝑟 and terminate the iteration.

(b) But if 𝑓𝑓𝑟𝑟 ≥ 𝑓𝑓𝑛𝑛, move to step 4.

Step 4. Contraction: Perform either and outside or inside contraction.

(a) If 𝑓𝑓𝑛𝑛 ≤ 𝑓𝑓𝑟𝑟 < 𝑓𝑓𝑛𝑛 + 1 , perform an outside contraction.

i. Calculate:

𝑥𝑥𝑐𝑐 = 𝛾𝛾(𝑥𝑥𝑟𝑟 − 𝑥𝑥�) + 𝑥𝑥� (3.1-6)

ii. Evaluate 𝑓𝑓(𝑥𝑥𝑐𝑐).

iii. If 𝑓𝑓(𝑥𝑥𝑐𝑐) < 𝑓𝑓𝑟𝑟 accept 𝑥𝑥𝑐𝑐 and terminate the iteration.

iv. Otherwise, go to step 5.

(b) If 𝑓𝑓𝑟𝑟 ≥ 𝑓𝑓𝑛𝑛 + 1, perform and inside contraction.

i. Calculate:

𝑥𝑥𝑐𝑐𝑐𝑐 = 𝛾𝛾(𝑥𝑥𝑛𝑛+1 − 𝑥𝑥�) + 𝑥𝑥� (3.1-7)

ii. Evaluate 𝑓𝑓(𝑥𝑥𝑐𝑐𝑐𝑐).

iii. If 𝑓𝑓(𝑥𝑥𝑐𝑐𝑐𝑐) < 𝑓𝑓𝑛𝑛 + 1, accept 𝑥𝑥𝑐𝑐𝑐𝑐 and terminate the iteration.

iv. Otherwise, go to step five.

Step 5. Shrink: Evaluate 𝑓𝑓 at the 𝑛𝑛 points:

 57

𝑣𝑣𝑖𝑖 = 𝑥𝑥1 + 𝛼𝛼(𝑥𝑥𝑖𝑖 – 𝑥𝑥1), 𝑖𝑖 = 2, … ,𝑛𝑛 + 1 (3.1-8)

The vertices of the simplex at the next iteration will consist of 𝑥𝑥1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛 + 1.

Terminate the iteration.

Typically this process only needs to be repeated 5-10 times for it to provide a very large

improvement over the starting point. Figure 3.1-1 Figure 3.1-2 depict the effects of each step in

two dimensions, where the simplex is a triangle. Both figures assume the values for the simplex

parameters to be equal to those given in equation (3.1-2).

Figure 3.1-1. Nelder-Mead simplices after a reflection (left) and an expansion (right). The

original simplex is shown with a dashed line.

Figure 3.1-2. Nelder-Mead simplices after an outside contraction (left), an inside contraction

(middle), and a shrink (right). The original simplex is shown with a dashed line.

 58

3.1.1 Improved Nelder-Mead Simplex Method

While widely considered simple and effective, the Nelder-Mead Simplex algorithm also has

its inefficiencies as studied in [64]. This study suggests that the NM algorithm fails to converge

on certain problems due to the fact that the search direction becomes increasingly orthogonal to

the steepest decent direction. The authors propose what they call a “Direct Search Algorithm” to

replace the NM algorithm. Fuchang Gao and Lixing Han proposed an improvement to the NM

algorithm in which the expansion, contraction, and shrinking parameters are adaptive with

respect to the dimensionality of the problem [66]. Finally, Nam Pham and Bogdan Wilamowski

improved the NM algorithm by adding a quasi-gradient calculation and selecting the new vertex

point in the direction of the estimated gradient [65]. This improvement showed much

improvement in convergence speeds and success rates of the algorithm. This improved algorithm

is as follows:

Improved Nelder-Mead Simplex Algorithm: At the beginning of the 𝑘𝑘𝑡𝑡ℎ iteration, 𝑘𝑘 ≥ 0, a

non-degenerate simplex 𝛥𝛥𝑘𝑘 is given, as well as its 𝑛𝑛 + 1 vertices, each of which is a point in 𝑅𝑅𝑛𝑛.

It is always assumed that iteration 𝑘𝑘 begins by ordering and labeling these vertices as

𝑥𝑥1𝑘𝑘 , … , 𝑥𝑥𝑛𝑛+1𝑘𝑘 , such that 𝑓𝑓1𝑘𝑘 ≤ 𝑓𝑓2𝑘𝑘 ≤ ⋯ ≤ 𝑓𝑓𝑛𝑛+1𝑘𝑘 . Where 𝑓𝑓1𝑘𝑘 denotes 𝑓𝑓�𝑥𝑥1𝑘𝑘�. The 𝑘𝑘𝑡𝑡ℎ iteration

generates a set of 𝑛𝑛 + 1 vertices that define a different simplex for the next iteration. In terms of

minimizing 𝑓𝑓, we refer to 𝑥𝑥1𝑘𝑘 as the best vertex and to 𝑥𝑥𝑛𝑛+1𝑘𝑘 as the worst vertex.

The result of each iteration is one of two cases:

(1) A single new vertex – the accepted point – replaces the vertex, 𝑥𝑥𝑛𝑛+1 in the set of vertices

for the next iteration.

(2) A shrink is performed and a set of n new points is generated that, together with 𝑥𝑥1, form

the simplex at the next iteration.

 59

As before, the description of the algorithm below is a description of a single iteration. The

algorithm was extracted from the paper [65].

The steps of a single Improved Nelder-Mead Simplex algorithm iteration are:

Step 1. Order the n+1 vertices so that 𝑓𝑓(𝒙𝒙1) ≤ 𝑓𝑓(𝒙𝒙2) ≤ ⋯ ≤ 𝑓𝑓(𝒙𝒙𝑛𝑛+1).

Step 2. Create an extra point 𝑥𝑥𝑠𝑠 with it’s coordinates composed of 𝑛𝑛 vertices in the

simplex such that the coordinates are each from a different vertex in the simplex.

For example, select 𝑥𝑥𝑠𝑠 such that:

 𝑥𝑥𝑠𝑠 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(�

𝑥𝑥1,1, 𝑥𝑥1,2, … , 𝑥𝑥1,𝑛𝑛
𝑥𝑥2,1, 𝑥𝑥2,2, … , 𝑥𝑥2,𝑛𝑛

⋮
𝑥𝑥𝑛𝑛,1, 𝑥𝑥𝑛𝑛,2, … , 𝑥𝑥𝑛𝑛,𝑛𝑛

�) (3.1-9)

Step 3. Calculate quasi-gradients,

𝒈𝒈 = [𝑔𝑔1,𝑔𝑔2, … ,𝑔𝑔𝑛𝑛], based on the extra point, 𝑥𝑥𝑠𝑠. (3.1-10)

Step 4. For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑛𝑛:

(a) If 𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 2 = 0,

𝑔𝑔𝑖𝑖 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

= 𝑓𝑓�𝑥𝑥𝑖𝑖−1,𝑖𝑖�−𝑓𝑓(𝑥𝑥𝑠𝑠𝑠𝑠)
𝑥𝑥𝑖𝑖−1,𝑖𝑖−𝑥𝑥𝑠𝑠𝑠𝑠

 (3.1-11)

(b) Otherwise,

𝑔𝑔𝑖𝑖 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

= 𝑓𝑓�𝑥𝑥𝑖𝑖+1,𝑖𝑖�−𝑓𝑓(𝑥𝑥𝑠𝑠𝑠𝑠)
𝑥𝑥𝑖𝑖+1,𝑖𝑖−𝑥𝑥𝑠𝑠𝑠𝑠

 (3.1-12)

(c) End Iteration

Step 5. Calculate the reflection point:

 𝑥𝑥𝑟𝑟 = 𝑥𝑥1 − 𝜌𝜌 ∗ 𝑔𝑔, where 𝜌𝜌 is a reflection coefficient. (3.1-13)

Step 6. Expansion:

a. If 𝑓𝑓𝑟𝑟 < 𝑓𝑓𝑛𝑛, calculate the expansion point:

 60

𝑥𝑥𝑒𝑒 = (1 − 𝜒𝜒) ∗ 𝑥𝑥1 + 𝜒𝜒 ∗ 𝑥𝑥𝑟𝑟 (3.1-14)

i. Evaluate 𝑓𝑓(𝑥𝑥𝑒𝑒).

ii. If 𝑓𝑓𝑒𝑒 < 𝑓𝑓𝑟𝑟, accept 𝑥𝑥𝑒𝑒 and terminate the iteration.

iii. Otherwise, accept 𝑥𝑥𝑟𝑟 and terminate the iteration.

End Iteration.

One may notice that this version of the NM algorithm does not require a contraction or shrink

step. This is because the quasi-gradient is calculated, so the so called reflected point, 𝑥𝑥𝑟𝑟, is going

to be in the correct direction. This algorithm does have an increased cost in each iteration due to

the calculation of the quasi-gradient, but the algorithm saves in the number of iterations needed

to converge [65].

3.2 Nelder-Mead Enhanced Extreme Learning Machine

The ELM family of algorithms boast very good training times and acceptable generalization

performance, but the network size is always very large. This is likely due to the fact that out of

three possible tunable parameters, the ELMs elect to only optimize one parameter. Let us think

in terms of a network of RBF neurons. Each neuron has 3 tunable parameters, the center, the

width, and the height. The height of each neuron is optimized by the ELM algorithms, but the

center, and width are not. However, the ELM algorithms omit these parameters in the interest of

training time. The goal of the algorithm presented here is to provide similarly fast training times

and errors, but to also provide a more compact network with better generalization properties.

This is done by adjusting the I-ELM algorithm so that it now optimizes the radii and the weights

of the RBF neurons while choosing the centers in a greedy fashion. These design choices will

 61

help us to construct as compact a network as possible. This work has been very recently

published in the Journal of Neurocomputing [67].

Keeping this in mind, the Nelder-Mead algorithm was chosen for the task of optimizing the

radius of each newly added node for the following reasons: the Nelder-Mead algorithm tends to

produce significant improvement over the first few iterations, the Nelder-Mead algorithm does

not require many calculations of derivatives only a few function values at each iteration, and

finally, it is easy to understand and explain [68]. All of these properties allow the algorithm to

be used to very quickly change the radius of each node so that the error is improved.

Furthermore, the improved version of the Nelder-Mead algorithm published by Pham in [65] was

used in the final version of this algorithm. In the initial iteration of the algorithm proposed here,

the original nelder-mead simplex algorithm as described in [63] was used, but better performance

was achieved using the improved version.

NME-ELM Algorithm: Given a training set as described in equation (2.4-16), an

activation function, ℎ(𝑥𝑥), a maximum number of hidden neurons 𝑁𝑁�, a maximum number of

Nelder-Mead iterations, 𝑘𝑘, and a required learning accuracy, 𝜀𝜀.

Step 1. Initialize: Let the number of nodes, n = 0 and the error, 𝐸𝐸 = 𝑡𝑡.

Step 2. Learning: While 𝑛𝑛 < 𝑁𝑁� and ‖𝐸𝐸‖ < 𝜀𝜀

(a) Increment 𝑛𝑛.

(b) Find the index,

 𝑖𝑖∗ = {𝑖𝑖| max1≤𝑖𝑖≤𝑘𝑘‖𝑒𝑒𝑖𝑖‖}. (3.2-1)

(c) Assign the center 𝑐𝑐𝑛𝑛, of the new node to be the input pattern 𝑥𝑥𝑖𝑖∗ .

(d) Assume the initial value of 𝛽𝛽𝑛𝑛 to be equal to 𝑒𝑒𝑖𝑖∗ .

(e) Initialize the Nelder-Mead Simplex [63] algorithm:

 62

i. Set the Simplex parameters according to the parameters defined Chapter 2:

𝜌𝜌 = 1, 𝜒𝜒 = 2, 𝛾𝛾 = 1
2

 , 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼 = 1
2
 (3.2-2)

ii. Choose some initial values for 𝜎𝜎𝑛𝑛.

iii. Calculate:

𝑆𝑆𝑆𝑆𝑆𝑆(𝜎𝜎𝑛𝑛,𝑗𝑗) = ∑ (𝑒𝑒𝑖𝑖 − 𝛽𝛽𝑛𝑛 ∗ 𝑔𝑔𝑛𝑛(𝑥𝑥𝑖𝑖))2𝑁𝑁
𝑖𝑖=1 (3.2-3)

For each 𝜎𝜎𝑛𝑛,𝑗𝑗.

The vector of 𝜎𝜎 values becomes the vector of vertices for a simplex. The vector of

SSE values becomes the vector of function values for the simplex.

iv. Perform 𝑘𝑘 iterations of the Simplex algorithm (𝑘𝑘 is typically 5-10). This step

results in an optimal 𝜎𝜎𝑛𝑛 value.

(f) Re-calculate 𝛽𝛽𝑛𝑛 using equation (2.4-18).

(g) Calculate the residual error as in equation (2.4-19).

End While Loop.

A flow chart of this algorithm is shown in Figure 3.2-1.

 63

Figure 3.2-1 The NME2-ELM algorithm given a training set {(𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝)|𝑥𝑥𝑝𝑝 ∈ 𝑅𝑅𝐷𝐷 ,𝑦𝑦𝑝𝑝 ∈ 𝑅𝑅,𝑝𝑝 =

[1 …𝑃𝑃]}, an activation function g(x), a maximum node number H, and an expected learning

accuracy ε.

In order to illustrate the intuitive process of this algorithm, the step by step network

construction process will be demonstrated on a simple problem. The network will be constructed

to approximate one period of a simple sine wave. The desired function is shown in Figure 3.2-2a.

 64

(a) (b)

Figure 3.2-2 An illustration of the first few iterations of the NME2-ELM algorithm. (a) Desired

sinusoidal function with the first center c1 shown by the black asterisk. (b) The output of one

node using NME2-ELM.

From the inputs and desired outputs, a new neuron is created and its center is chosen. For this

problem, the center c1 = 1.5678, and is shown in Figure 3.2-2 as the black asterisk. Then the

radius σ1 and the height 𝛽𝛽1 are optimized using the Nelder-Mead algorithm described previously.

This yields σ1 = 1.1429 and 𝛽𝛽1 = 1.0714. Figure 6b shows the results of this process.

The residual error is calculated using equation (2.4-19) and is used in the next iteration as a

second neuron is added. Figure 3.2-3a depicts the error surface (new desired curve) and the

second added center c2.

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

x

y

Sine Problem

Desired Function
Location of C1

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

1.5

x

y

Sine Problem

Desired Output
Location of C1
Actual Output

 65

(a) (b)

Figure 3.2-3 Step by step illustration for the second neuron. (a) The desired curve for the second

node and the center c2. (b) Desired surface and NME2-ELM output after 2 RBF units have been

added to the network. RMSE = 0.0627.

Continuing the algorithm to add a second neuron to the network, the resulting parameters are:

c2 = 4.7035, σ2 = 0.6797, and 𝛽𝛽2 = 1.0260. Figure 3.2-3b shows that after two RBF neurons are

added to the network, the NME2-ELM algorithm reaches a RMSE value of 0.0627. The RMSE

can be further reduced by adding more neurons to the network. If the algorithm is allowed to

continue to a total of five RBF units, the RMSE value is as low as 0.0162. The results after 10

neurons are added to the network are shown in Figure 3.2-4.

Intuitively, it can be seen that this algorithm makes choices that allow a network to reduce

error very significantly with the addition of each neuron. This algorithm was tested on several

bench mark problems including some real world problems from the UCI Machine Learning

Repository [69]. The next section presents the results from these tests and comparisons with the

ELM algorithms and SVR.

0 1 2 3 4 5 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

x

y

Sine Problem

Error Curve
Location of C2

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5

x

y

Sine Problem

Desired Output
Location of C2
Actual Output

 66

(a) (b)

Figure 3.2-4 Summary of results after ten neurons are used. (a) The sine problem after 10 RBF

neurons are added to the network. The RMSE = 0.0162. (b) The RMSE with respect to number

of neurons in the network.

3.3 Testing and Comparisons

In this section, the performance of the proposed NME-ELM algorithm is evaluated and

compared with other popular algorithms used to construct RBF networks. Algorithms such as the

various incremental ELM algorithms and the popular SVR algorithm are compared to the

proposed algorithm on several problems. The testing environment used is MATLAB with the

exception of SVR that was tested using the LIBSVM package [70]. The hardware consists of an

Intel i7-2600 CPU @ 3.4GHz with 8 GB of RAM on a 64 bit operating system.

The results seem to indicate that the NME-ELM algorithm performs as it is expected to

perform. The errors converge with very few neurons required, and generalization performance is

good. Another important thing to note is that there is no randomness in the NME-ELM approach.

This means that fewer trials are needed to reach an acceptable solution. In the case of the other

ELMs, a poor random selection of the input parameters can lead to the network never converging

0 1 2 3 4 5 6
-1

-0.5

0

0.5

1

1.5

x

y

Sine Problem

Desired Function
Actual Output

0 2 4 6 8 10
10

-2

10
-1

10
0 Error of Sine Problem

R
M

S
E

Number of Neurons

 67

to acceptable error levels. This requires that many trials be run and then the top few networks

selected for further analysis.

3.3.1 Highly Nonlinear Benchmark: Peaks Problem

In this section the NME-ELM algorithm is tested and compared on a highly nonlinear

problem called the peaks problem. This problem is designed to be used as a benchmark in testing

the robustness of the learning algorithm. The problem has 2-dimensional inputs from the range

[-1,1] and an output in the range [-1,1] can be described by the following equation:

𝑧𝑧(𝑥𝑥,𝑦𝑦) = −
1

30
exp(−1 − 6𝑥𝑥 − 9𝑥𝑥2 − 9𝑦𝑦2)

− (0.6𝑥𝑥 − 27𝑥𝑥3 − 243𝑦𝑦5) exp(−9𝑥𝑥2 − 9𝑦𝑦2)

+ (0.3 − 1.8𝑥𝑥 + 2.7𝑥𝑥2)exp (−1− 6𝑦𝑦 − 9𝑥𝑥2 − 9𝑦𝑦2)

(3.3-1)

In order to make this problem more “real” 500 training vectors with random coordinates (x,y)

were chosen in the range [-1,1]. Then the desired outputs were calculated using equation (3.3-

1). Then a Gaussian noise distribution with a standard deviation of 0.1 was added to the target

outputs to simulate imperfect data. For testing, an evenly spaced grid of x and y coordinates

consisting of 900 patterns was used. The parameters for each algorithm were optimized with

respect to testing RMSE using a grid search run 20 times (to help eliminate the randomness that

comes with ELM). For this particular problem the impact factor for the ELM algorithms was set

to 2.7583, and centers were chosen randomly from the input space. The radius of the RBF kernel

for SVR was set to 0.5 and the C parameter was varied between 20 and 210 (this is how we have

multiple points to plot for the SVR errors).

The desired testing surface of the peaks problem is shown in Figure 3.3-1. Figure 3.3-2a

shows the training errors of different algorithms with respect to the number of neurons (or

 68

support vectors) required. Figure 8b shows the corresponding testing errors for each algorithm

with respect to the number of neurons required. Each algorithm was run 20 times and the average

errors are presented. From these results, it can be seen that the proposed algorithm converges to

lower error with fewer neurons than the other algorithms and far outperforms the other

incrementally constructive algorithms of the ELM family. It should also be noticed that once the

algorithm reaches a certain training error (which is far below the level of the other algorithms),

the testing error does not improve. This is believed to be caused by overtraining or training to

noise rather than trends in the data.

Figure 3.3-1 Desired surface for the peaks problem.

-1

0

1

-1

0

1
-1

-0.5

0

0.5

1

Peaks Problem

 69

(a) (b)

Figure 3.3-2 Testing and training errors of various algorithms on the peaks problem. (a) Training

results on the peaks problem with different algorithms. It can be seen that the NME2-ELM

algorithm takes a very quick path to lower error. (b) Testing results on the peaks problem with

different algorithms. It can be seen that for NME2-ELM the network starts training to noise in

the data after ~40 neurons are added.

3.3.2 Real World Data

The proposed algorithm’s robustness is further demonstrated by testing it on high

dimensional real world data. The datasets used are taken from the UCI Repository of Machine

Learning Databases [69]. The testing errors obtained for the data sets and the generated network

sizes are then compared to other popular RBF algorithms such as the ELMs and SVR.

All of the inputs used in for the real world data sets were normalized to the range [-1, 1], and

the outputs were normalized to the range [0, 1]. Each of the data sets were randomly divided

into training data and testing data. In most cases, this was roughly %50 of the patterns for both

sets. For each data set, the training and testing sets were randomly generated and run 20 times.

The results presented are the averages of these trials. Table 4 shows the data sets used and the

10
0

10
1

10
2

10
-1

Number of Neurons/SVs

R
M

S
E

Training Error of Peaks Problem

NME2-ELM
I-ELM
EI-ELM
CI-ELM
SVR

10
0

10
1

10
2

10
-1

Number of Neurons/SVs

R
M

S
E

Testing Error of Peaks Problem

NME2-ELM
I-ELM
EI-ELM
CI-ELM
SVR

 70

way they were split apart for testing and training as well as the number of input dimensions.

Notice that for the ELM family of algorithms a somewhat arbitrary choice must be made to

select the number of hidden units, because the errors decrease slowly as the network size

increases (Figure 3.3-3b-d). However, it can be seen that in the case of NME2-ELM, an error

saturation is reached very early.

Table 4 Dataset Information

Problem #Training
Data

#Testing
Data

Attributes

Abalone 2000 2177 8
Auto Price 80 79 15
Boston Housing 250 256 13
Cal Housing 8000 12640 8
Delta Ailerons 3000 4129 5
Delta Elevators 4000 5517 6
Machine CPU 100 109 6

Figure 3.3-3a shows the testing results for the NME-ELM algorithm on several real world

datasets. It can be seen that the testing RMSE converges within 50 RBF units for each problem.

This RMSE is comparable to the RMSE obtained by the ELM algorithms, but in this case only 50

RBF nodes are used. Furthermore, Figure 3.3-3b-d shows a comparison between the ELM

algorithms, the proposed algorithm, and SVR. It can be seen that the proposed algorithm

converges to its minimum testing error very quickly, especially when compared to the other

Incremental ELMs.

The data presented in Table 5 shows that the NME-ELM algorithm performs very well in

terms of testing RMSE. Again, notice that the NME-ELM algorithm’s testing error is comparable

or better than the other algorithms despite using far fewer neurons. Table 6 Table 7 give a

comparison of training times and network size respectively. It can be seen that the NME2-ELM

 71

performs well as it constructs a smaller network than the Incremental ELMs, and is often able to

train faster as well.

(a) (b)

(c) (d)

Figure 3.3-3 (a) The NME2-ELM on various Real World Problems. (b) A comparison between

various algorithms on the Auto Price problem. (c) A comparison between various algorithms on

the Boston Housing problem. (d) A comparison between various algorithms and the Delta

Elevators problem.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

Number of Neurons

R
M

S
E

NME2-ELM Testing Errors

Abalone
Delta Ailerons
Auto Price
Boston Housing

0 20 40 60 80 100
0.1

0.15

0.2

0.25

0.3

0.35

Number of Neurons/SVs

R
M

S
E

Testing Errors on Auto Price Problem

NME2-ELM
I-ELM
EI-ELM
CI-ELM
SVR

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

Number of Neurons/SVs

R
M

S
E

Testing Errors on Boston Housing Problem

NME2-ELM
I-ELM
EI-ELM
CI-ELM
SVR

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

Number of Neurons/SVs

R
M

S
E

Testing Errors on Delta Elevators Problem

NME2-ELM
I-ELM
EI-ELM
CI-ELM
SVR

 72

Table 5 Average Testing Errors For Real World Problems

Problems NME2-ELM I-ELM EI-ELM CI-ELM SVR
RMSE RMSE RMSE RMSE (C,γ) RMSE

Abalone 0.0849 0.0938 0.0829 0.0858 (24, 2-6) 0.0846
Auto Price 0.1104 0.1222 0.1139 0.1197 (28, 2-5) 0.1052
Boston Housing 0.1124 0.1261 0.1281 0.1423 (24, 2-3) 0.1155
Cal Housing 0.1642 0.1691 0.1503 0.1756 (23, 21) 0.1311
Delta Ailerons 0.0413 0.0513 0.0448 0.0416 (23, 2-3) 0.0467
Delta Elevators 0.0557 0.0632 0.0575 0.0566 (20, 2-2) 0.0603
Machine CPU 0.0791 0.0674 0.0554 0.0675 (26, 2-4) 0.0620

Table 6 Training Times For Real World Problems

Problems NME2-ELM I-ELM EI-ELM CI-ELM SVR
Time (s) Time (s) Time (s) Time (s) (C,γ) Time (s)

Abalone 0.0944 0.5990 5.9603 0.6098 (24, 2-6) 0.2659
Auto Price 0.0064 0.0203 0.1777 0.0204 (28, 2-5) 0.0294
Boston Housing 0.0243 0.0822 0.6910 0.2237 (24, 2-3) 0.0461
Cal Housing 0.3746 1.8631 14.554 1.4608 (23, 21) 6.0684
Delta Ailerons 0.1587 0.5511 5.3020 0.5453 (23, 2-3) 0.2499
Delta Elevators 0.2399 0.8651 8.5861 0.8789 (20, 2-2) 1.0234
Machine CPU 0.0099 0.2549 0.3078 0.0353 (26, 2-4) 0.0265

Table 7 Network Size For Real World Problems

Problems NME2-ELM I-ELM EI-ELM CI-ELM SVR
Neurons # Neurons # Neurons # Neurons (C,γ) # Neurons

Abalone 100 200 200 200 (24, 2-6) 310
Auto Price 82 200 200 200 (28, 2-5) 96
Boston Housing 94 200 200 200 (24, 2-3) 22
Cal Housing 195 200 200 200 (23, 21) 47
Delta Ailerons 182 200 200 200 (23, 2-3) 2189
Delta Elevators 140 200 200 200 (20, 2-2) 83
Machine CPU 28 200 200 200 (26, 2-4) 261

 73

Chapter 4 Error Correction Algorithm

In this work it has been posited that being able to adjust more parameters leads to more

compact learning networks. In the case of classical neural networks, this is the way they have

always been constructed and trained. However, RBF neural networks are often constructed in

a different manner. Typically this is done by selecting the centers using a clustering

algorithm such as kohonen training. Then RBF neurons are created with fixed widths and the

heights are adjusted using any number of popular training techniques. The ability to move

RBF network centers to minimize the errors should allow for very compact networks with

good generalization abilities.

4.1 Levenberg-Marquardt Training for RBF Networks

It was proposed in [71] that a second order method be used to train RBF networks. The

method proposed is an adapted version of the Neuron by Neuron algorithm published in [72].

Furthermore, the Levenberg-Marquardt method was improved for computations with large

data sets in [43]. This allows for the Jacobian matrix needed for the second order

approximation to be efficiently stored for large networks and large data sets. A training

algorithm using this LM method was proposed in [71] that shows very good results;

however, there are some deficiencies that are addressed in the following section.

 74

4.1.1 ISO Deficiencies

The Improved Second-Order (ISO) algorithm for training radial basis function networks was

introduced in [71]. This algorithm uses the improved version of the Levenberg-Marquardt

algorithm to optimally adjust the parameters of a given RBF network. This algorithm requires

first that you have a network of RBF units with some initial parameters and an initial error state.

Then it uses the LM method as described earlier to adjust the parameters to find a minimum in

the error surface. The requirement for an initial state of a network is a dilemma however, because

one must still consider the non-trivial problem of choosing an appropriately sized network for the

problem. This coupled with the fact that the neurons are often initialized with random parameters

leads to the need for several trials before an optimum solution is found. The ErrCor algorithm

presented in the following section attempts to address these issues. In a single trial, a network is

both constructed and trained to a minimum error with zero random parameters and no initial

network. Figure 4.1-1 depicts the difference in error convergence over many trials with ISO and

a single trial of the new ErrCor algorithm.

 75

Figure 4.1-1 The ISO algorithm and the ErrCor algorithm on the Peaks problem using 5 RBF

units. Notice that the ISO algorithm errors vary greatly due to the random start points, while

ErrCor reaches small error with a single try.

4.2 Error Correction Algorithm

The Error Correction (ErrCor) algorithm described here is a greedy incremental network

construction algorithm [73]. This means that the algorithm starts from scratch and places each

RBF neuron into the network based on a heuristic measure. Basically the ErrCor algorithm

attempts to reduce the error as much as possible during each training step by adding an RBF

neuron located at the place with the highest peak in the error surface. Then the RBF parameters

are further optimized using the LM method described earlier. This algorithm has been shown to

have good training and generalization characteristics on benchmark problems and real world

datasets. A detailed description of the algorithm is given in this section, and experimental results

and comparisons are given in section 4.3.

0 5 10 15 20
10

-2

10
-1

10
0

10
1 Training Error for Peaks Problem

Number of Iterations

R
M

S
E

ErrCor
ISO

 76

Error Correction Algorithm: Recall that a typical training set is of the form:

ℵ = {(𝑥𝑥𝑖𝑖, 𝑡𝑡𝑖𝑖)|𝑥𝑥𝑖𝑖 ∈ ℝ𝑛𝑛, 𝑡𝑡𝑖𝑖 ∈ ℝ𝑚𝑚, 𝑖𝑖 = 1, … ,𝑁𝑁} (4.2-1)

Given the set described above, activation function, ℎ(𝑥𝑥), a maximum number of hidden

neurons 𝑁𝑁�, and a required learning accuracy, 𝜀𝜀.

Step 1. Initialization:

(a) Declare network output, 𝑜𝑜 = 0.

(b) Set LM training parameters the maximum iterations, Miter, the combination

coefficient, 𝜇𝜇, and the minimum error difference, 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.

Step 2. Learning:

(a) While 𝑛𝑛 < 𝑁𝑁� and 𝐸𝐸 > 𝜀𝜀

i. Increment 𝑛𝑛.

ii. calculate errors:

𝑬𝑬 = |𝑻𝑻 − 𝒐𝒐| = [𝑒𝑒1, 𝑒𝑒2, … 𝑒𝑒𝑁𝑁] (4.2-2)

iii. Find the index according to:

𝑖𝑖∗ = {𝑖𝑖| max1≤𝑖𝑖≤𝑘𝑘‖𝑒𝑒𝑖𝑖‖} (4.2-3)

iv. Create a new RBF unit with center equal to 𝑥𝑥𝑖𝑖∗.

v. Set output weight and width of new RBF unit to 1.

vi. if 𝑛𝑛 > 1,Initialize existing network to the training results of step 𝑛𝑛 − 1.

vii. Evaluate RMSE using equation (2.4-17):

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸1 = �∑ 𝑒𝑒𝑖𝑖2𝑁𝑁
𝑖𝑖=1 (4.2-4)

viii. Set the number of LM iterations, 𝑘𝑘 = 1.

ix. While 𝑘𝑘 < 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 1 and 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 < (𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑘𝑘 − 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑘𝑘+1)

 77

1. Calculate quasi-Hessian matrix, 𝑸𝑸𝒌𝒌 and gradient vector, 𝒈𝒈𝒌𝒌.

2. Update network parameters using the ISO update rule:

∆𝑘𝑘+1= ∆𝑘𝑘 − (𝑸𝑸𝑘𝑘 + 𝜇𝜇𝑘𝑘𝐼𝐼)−1𝒈𝒈𝒌𝒌 (4.2-5)

3. Compute output of network 𝒐𝒐;

4. Evaluate, 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑘𝑘+1

5. Increment 𝑘𝑘.

End While.

x. Calculate 𝑬𝑬.

 End While.

In order to illustrate the intuitive process of this algorithm, the step by step network

construction process will be demonstrated on a simple problem. The network will be constructed

to approximate one period of a simple sine wave. The desired function is shown in Figure 4.2-1a.

(a) (b)

Figure 4.2-1 An illustration of the first iteration of the Error Correction algorithm. (a) Desired

sinusoidal function with the first center c1 shown by the black asterisk. (b) The output of the

network created using ErrCor after one iteration.

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5
Sine Problem

x

y

Desired Function
Location of C1

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5
Sine Problem

x

y

Desired Function
Location of C1
Actual Output

 78

By going through the data of the curve in Figure 4.2-1a, the center location 𝑐𝑐1 = 4.7 and the

error height 𝛽𝛽1 = −1 corresponding to the highest magnitude point in the error surface are

chosen as the initial parameters of the first neuron. Then the neuron is trained by applying the

LM algorithm (section II.B) for parameter adjustment. The resulting network (a single neuron)

output is shown in Figure 4.2-1b. The RBF parameters after the LM training are: 𝑐𝑐1 = 4.722,

𝛽𝛽1 = −1.076, 𝜎𝜎1 = 1.560. Based on the training results, the outputs of the RBF network are

visualized in Figure 4.2-1b, and new error curve (Figure 4.2-2a) is obtained as the difference

between Figure 4.2-1a and Figure 4.2-1b. Comparing the error curves in Figure 4.2-1a and Fig.

14a, one may notice that, the lowest valley (marked as an asterisk) in Figure 4.2-1a has been

eliminated in Figure 4.2-2a. This results in an RMSE of 0.2000. This residual error is then used

to find the initial location of the next RBF neuron (see Figure 4.2-2).

(a) (b)

Figure 4.2-2 Illustration of the ErrCor algorithm during the second iteration. (a) The desired

curve for the second node and the center c2. (b) Desired surface and network output after 2 RBF

units have been added to the network. RMSE = 0.0025.

Continuing the algorithm to add a second neuron to the network, the resulting parameters are:

𝑐𝑐2 = −1.1, 𝛽𝛽2 = −0.5958, and 𝜎𝜎2 = 2.079. Figure 14b shows that after two RBF neurons

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5
Sine Problem

x

y

Error Surface
Location of C2

-1 0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5
Sine Problem

x

y

Desired Function
Location of Centers
Actual Output

 79

are added to the network, the ErrCor algorithm reaches a RMSE value of 0.025. The RMSE can

be further reduced by adding more neurons to the network. If the algorithm is allowed to

continue to a total of five RBF units, the RMSE value is as low as 0.000025. The results after 5

neurons are added to the network are shown in Figure 4.2-3.

(a) (b)

Figure 4.2-3 Summary of results of the ErrCor algorithm after five neurons are used. (a) The

sine problem after 5 RBF neurons are added to the network. The RMSE is effectively 0. (b) The

RMSE with respect to number of neurons in the network.

It is worth comparing the error convergence of this algorithm and the previously discussed

Nelder-Mead Enhanced Extreme Learning machine. Intuitively, it can be seen that this algorithm

makes choices that allow a network to reduce error very significantly with the addition of each

neuron even more so that the NME-ELM. This improvement is due to the fact that the centers are

not fixed once they are guessed to be the highest peak in the error surface. Figure 4.2-4 shows

the error rate for each added neuron for the two algorithms. Notice that ErrCor reaches a lower

error in fewer neurons. This algorithm was tested on several bench mark problems including

some real world problems from the UCI Machine Learning Repository [69]. The next section

presents the results from these tests and comparisons with the ELM algorithms and SVR.

0 1 2 3 4 5 6
-1.5

-1

-0.5

0

0.5

1

1.5
Sine Problem

x

y

Desired Function
Actual Output

1 2 3 4 5
10

-5

10
0

Error of Sine Problem (ErrCor)

Number of Neurons
R

M
S

E

 80

(a) (b)

Figure 4.2-4 Summary of results of the NME-ELM algorithm and the ErrCor algorithm after

several neurons are used. (a) The RMSE of the NME-ELM as it adds up to 10 neurons to the

network. (b) The RMSE of the ErrCor algorithm as it adds up to 5 neurons to the network.

4.3 Testing and Comparisons

In this section, the performance of the proposed ErrCor algorithm is evaluated and compared

with other popular algorithms used to construct RBF networks. These algorithms include the

popular GGAP, GGAP-GMM, RAN, MRAN, and RANEKF algorithms. These algorithms are

primarily designed as online algorithms while the algorithms proposed here are offline

algorithms. However, the aforementioned algorithms also work well as offline algorithms;

therefore, they are also compared with the proposed ErrCor algorithm. It is important to note that

the training time is a very important aspect of online algorithms because they are constantly

being retrained as new information is seen. However, offline algorithms such as the various

incremental ELM algorithms, the popular SVR algorithm, the new NME-ELM algorithm, and

the proposed ErrCor algorithm focus on execution times and generalization abilities. This keeps

the compactness of the networks and the testing RMSE at the forefront of the evaluation process.

0 2 4 6 8 10
10

-2

10
-1

10
0 Error of Sine Problem (NME-ELM)

R
M

S
E

Number of Neurons
1 2 3 4 5

10
-5

10
0

Error of Sine Problem (ErrCor)

Number of Neurons

R
M

S
E

 81

The testing environment used is MATLAB with the exception of SVR that was tested using

the LIBSVM package [70]. The hardware consists of an Intel i7-2600 CPU @ 3.4GHz with 8

GB of RAM on a 64 bit operating system. The results seem to indicate that the ErrCor algorithm

performs as it is expected to perform. The errors converge with very few neurons required, and

generalization performance is superior to all of the algorithms against which it is compared.

Another important thing to note is that there is no randomness in the ErrCor approach, not even

in the initialization process. This means that only a single trial is needed to reach an acceptable

solution. In the case of the other ELMs, a poor random selection of the input parameters can lead

to the network never converging to acceptable error levels. This requires that many trials be run

and then the top few networks selected for further analysis.

4.3.1 Highly Nonlinear Benchmarks

In the presented study, it was found that many of the real-world data sets are not highly

nonlinear and good results can be obtained with very few RBF neurons (see Table 11).

Therefore, in this section, the ErrCor algorithm is applied so some well-known nonlinear bench

tests to demonstrate in an easily visible manner the power and robustness of the algorithm. These

benchmark tests are organized as follow, Rapidly Changing Function, Peaks Problem, and Two

Spiral Problem.

4.3.1.1 Rapidly Changing Function

In this experiment, the proposed algorithm is applied to design RBF networks to approximate

the following rapidly changing function this is the same function used to test many popular

algorithms such as the GGAP-RBF algorithm shown in [16].

 82

The formula for this benchmark problem is the following:

𝑦𝑦(𝑥𝑥) = 0.8𝑒𝑒−0.2𝑥𝑥sin (10𝑥𝑥)

In this problem, there are 3000 training patterns with x-coordinates uniformly distributed in

range [0, 10]. The validation data set consists of 1500 patterns with x-coordinates randomly

generated in the same range [0, 10].

Figure 4.3-1 shows the testing results of the proposed ErrCor algorithm, with the number of

RBF units equal to 10 and 20 respectively. Figure 4.3-2 shows the training results of proposed

ErrCor algorithm and several other algorithms. One may notice that the proposed ErrCor

algorithm can reach a similar training/testing error level with a 3 to 30 times smaller network.

(a) (b)

Figure 4.3-1 Testing results of the ErrCor algorithm on the rapidly changing function. (a) The

results after 10 neurons are added to the network. The training and testing mean square errors are

7.846 × 10−3 and 7.516 × 10−3 respectively. (b) The results after 20 neurons are added to the

network. The training and testing mean square errors are 5.428 × 10−6 and 5.347 × 10−6

respectively.

 83

Figure 4.3-2 Function approximation problem: training/testing average sum square errors vs.

average number of RBF units.

Table 8 presents the comparison of average training time, training errors, testing time, and

testing error for each algorithm. For the proposed ErrCor algorithm, the computation time is

counted until the RBF network with 20 units (with smaller training/testing errors than other

algorithms) gets trained. For the ELM algorithms, the centers were generated from the input

range [0,10] while impact factors were from the range (0,0.5]. For GAP-RBF the parameters are

fixed at 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 = 1.15, 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 = 0.04, 𝜅𝜅 = 0.10,𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾 = 0.999. For the MRAN algorithm, the

threshold for growing and pruning was set as 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀 = 0.06, and the appropriate size of the sliding

window was chosen as 𝑀𝑀 = 100. The parameters for GGAP were 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝐺𝐺 = 0.00001. For SVR,

the parameter C was tuned to 1000 while γ was set at 1.

In order to provide a measure independent of physical CPU power, a normalized computation

time was used to determine the efficiency of the constructed networks. The normalization was

done by first testing two different data sets on networks of different sizes twenty times each. The

average computation time per RBF unit per testing input was 1.195μs.

10
0

10
1

10
2

10
3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

MRAN

GGAP

RAN

RANEKF

I-ELM

CI-ELM

EI-ELM

SVR

ErrCor

Function Approximation Problem

Number of Nodes

M
ea

n
Sq

ua
re

 E
rro

rs

Testing Error
Training Error

 84

Table 8 Comparison of training times/errors and validation times per pattern/errors for the

rapidly changing function problem

Algorithm Train
Time (s)

Train
RMSE

Test Time
(µs)

Test
RMSE

GGAP 24.808 0.0265 54.16 0.0265
MRAN 78.572 0.0458 52.15 0.0490
RANEKF 105.72 0.0265 106.8 0.0265
RAN 45.514 0.0671 112.2 0.0686
SVR 0.2552 0.0346 2496 0.0361
I-ELM 0.5509 0.0831 239.0 0.0843
CI-ELM 0.5597 0.1356 239.0 0.1378
EI-ELM 5.3991 0.0728 239.0 0.0755
NME-ELM 0.1725 0.0238 119.5 0.0303
ErrCor 48.530 0.0141 23.90 0.0141

4.3.1.2 Peaks Problem

The peaks problem is a problem with a two dimensional input that yields an output with

many peaks and valleys; the peaks problem provides a way to easily visualize the training

process of the various algorithms. In this experiment, the peaks problem consists of 2000

randomly generated patterns in the range (-1,+1) for both x and y directions using the formula

described in chapter 3 (3.3-1).

Once again the described function is shown in Figure 4.3-3. Another 1000 randomly

generated patterns were used for the validation.

 85

Figure 4.3-3 The desired output for the peaks problem.

As can be seen in Figure 4.3-4a, the major peaks and valleys of the desired output are

targeted by the ErrCor algorithm with only five RBF units. This compact network achieves a

validation RMSE of 0.031. As training continues, the error decreases steadily as units are added

until the RMSE reaches about 0.0003 with 20 units. As was expected, after five RBF units were

added to the network, the centers of the RBF units in the trained network are located

approximately in the centers of the highest peaks and valleys. What is interesting however, is

that after twenty RBF units were added, the centers had moved to completely different locations.

In comparison to the other algorithms, ErrCor was able to reach a much smaller RMSE with

much fewer RBF units. This demonstrates that the ErrCor algorithm is very efficient when

choosing heights, widths, and centers of the RBF units. The ELM family of algorithms was

tested on this problem and was able to achieve an RMSE of about 0.03 with one thousand RBF

units (See Figure 4.3-4d, Figure 4.3-5, and Figure 4.3-6). This error is still 100 times larger than

the error obtained with only 20 RBF units using the ErrCor algorithm (RMSE = 0.0003). The

SVR algorithm used thirty-six support vectors to achieve an RMSE of 0.031 (See Figure 4.3-7).

Still, this requires about seven times more units than ErrCor for the same error.

-1
-0.5

0
0.5

1

-1
-0.5

0

0.5
1

-0.5

0

0.5

 86

(a) (b)

(c) (d)

Figure 4.3-4 ErrCor output for the peaks problem. The yellow contour depicts the desired

surface, the purple contour depicts the network output, and the red asterisks show where the

centers of the RBF units are located.

(a) (b)

Figure 4.3-5 ErrCorr output using 10 nodes, (a) compared to ELM output using 1000 nodes, (b).

-1
-0.5

0
0.5

1

-1

0

1
-1

-0.5

0

0.5

1

ErrCor Algorithm with 10 RBF units

-1
-0.5

0
0.5

1

-1

0

1
-1

-0.5

0

0.5

1

I-ELM algorithmwith 1000 RBF units

 87

Figure 4.3-6 Comparison of the three ELM algorithms on the peaks problem. All three attain

similar errors. The random centers for the ELM algorithm were generated in the range of inputs

[-1,1] while the impact factors were in the range (0,0.5].

Figure 4.3-7 SVR output for the peaks problem. The yellow contour depicts the desired surface,

the purple contour depicts the algorithm output, and the red asterisks show where the support

vectors are located. The SVR parameters used were: G=0.3, Epsilon = 0.001, and C=10.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
SVR with 36 Support Vectors RMSE=0.0308

 88

4.3.1.3 Two Spiral Problem

The two-spiral problem is primarily used as a benchmark for pattern classification. It can also

be used as an approximation problem where patterns on one spiral should produce +1 outputs,

while patterns on the other spiral should produce -1 outputs.

This problem is widely used as a challenging benchmark to evaluate the efficiency of

learning algorithms and their network architectures. For the purpose of approximation the two-

spiral data set needs to be better defined, so in this work 388 patterns were used instead of the

typical 194 patterns.

The RBF-MLP networks proposed in [74] required at least 74 RBF units to solve the two-

spiral problem. It was reported in [75] that the two-spiral problem was solved using 70 hidden

RBF units. Using the ortho-normalization procedure in [76], the two-spiral problem can be

solved with at least 64 RBF kernel functions.

Applying the ErrCor algorithm, Figure 4.3-8 shows several steps in the training process. One

may notice that, each newly added RBF unit contributes the error reduction during the training

process. The ErrCorr algorithm constructs the network by adding one RBF unit at a time, and

with 22 RBF units the training error drops below 0.003 (Figure 4.3-9). The SVR algorithm was

tested using the LIBSVM package in [70]. SVR was trained to the two spiral problem using the

parameters, C=1, G=0.5, and epsilon = 0.01. This output can be seen in Figure 4.3-10.

 89

Figure 4.3-8 The ErrCor algorithm incrementally solves the two spiral problem. The two classes

of patterns are shown as blue and yellow asterisks, while the green contour shows the network

output. The red asterisks are the locations of the RBF centers.

Figure 4.3-9 The RMSE as the ErrCor algorithm adds neurons to solve the two spiral problem.

 90

Figure 4.3-10 The SVR algorithm solves the two spiral problem. 297 patterns were used as

support vectors to reach an RMSE of 0.003.

4.3.2 Real-World Data

This section compares ErrCor with well-known algorithms on traditional benchmarks from

various repositories, [69]. These are real life problems with many dimensions and with number

of patterns from hundreds to thousands. Table 9 depicts the specifications of the benchmark data

sets. In our experiments, all of the inputs have been normalized into the range [-1,1] while the

outputs have been normalized into [0,1].

Table 9 Real-World Dataset Information

Problem # Training
Data

Testing
Data

#Attributes

Abalone 2000 2177 8
Auto-MPG 320 78 7
Auto-Price 80 79 15

Bos Housing 250 256 13
Cal Housing 8000 12640 8

Delta-Ailerons 3000 4129 5
Delta-Elevators 4000 5517 6
Machine CPU 100 109 6

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

SVR

 91

In each benchmark samples are randomly divided into two categories: training samples and

validation samples. These experiments are repeated with 20 different random selections so the

average and standard deviation results can be evaluated. Table 10 and Table 11 and Figure

4.3-11and Figure 4.3-12 present more detailed comparisons on the Abalone and Auto-MPG

datasets. These comparisons are given to compare the behavior of the ErrCor algorithm with

other popular algorithms. Table 12 presents a comparison of validation errors and Table 13

presents a comparison of units required to reach the desired errors by currently popular

algorithms on all of the datasets.

The proposed algorithm was compared with other algorithms such as: GAP [16], GGAP [48],

GGAP-GMM [49], SVR [50], [51], I-ELM [59], CI-ELM [60], EI-ELM [61], MRAN [14],

RAN-EKF [12], RAN [11]. The parameters for these algorithms were set based on the data

presented in the aforementioned papers. For all data sets, the ELM algorithm parameters were

centers in the range of inputs, [-1,1], and impact factors in the range (0, 0.5]. For GAP-RBF the

parameters are fixed at 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 = 1.15, 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 = 0.04, 𝜅𝜅 = 0.10, 𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾 = 0.999. For the MRAN

algorithm, the threshold for growing and pruning was set as 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀 = 0.0001, and the appropriate

size of the sliding window was chosen as 𝑀𝑀 = 50. The parameters for GGAP were 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝐺𝐺 =

0.00008 and 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝐺𝐺 = 0.00007for Abalone and Auto-MPG respectively. For GGAP-GMM the

parameters for the significance threshold are 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚
𝑔𝑔𝑔𝑔𝑔𝑔 = 0.08, 𝜂𝜂 = 0.1 for Abalone and 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚

𝑔𝑔𝑔𝑔𝑔𝑔 =

0.11, 𝜂𝜂 = 0.06 for Auto-MPG. The DRNN algorithm used a parameter of A=2000 and A=40 for

the abalone and fuel consumption datasets respectively. The parameters for SVR are mentioned

in Table 12.

As before, the testing environment of the proposed algorithm consists of a Windows 7 64-bit

operating system, an Intel Core i7-2600 CPU @ 3.4 GHz processor, and 8GB RAM.

 92

It can be noticed from Figure 4.3-11 and Figure 4.3-12 that, the proposed ErrCor algorithm

reaches smaller training/testing errors with a more compact RBF architecture than the other

algorithms. Longer training with more than four RBF units leads to smaller training errors, but

greater validation errors due to over-fitting. One may notice that other offline algorithms such as

ELM, SVR, or DRNN give much worse results. DRNN was omitted from these figures because

the best case yielded a validation error of RMSE=0.34.

A comparison of training times for different algorithms on both the Abalone and the Fuel

Consumption data sets can be seen in Table 10. Again, the proposed ErrCor algorithm has a

larger training time than the SVR, I-ELM, and CI-ELM algorithms, but a faster training time

than the GGAP, MRAN, RANEKF, RAN, and EI-ELM algorithms. Notice that the SVR

algorithm may show a lower training error than ErrCor because ErrCor training was stopped

when a very small validation error was reached.

A more important comparison for the purpose at hand is that of validation times. This

comparison answers the question, “How efficient is the network once it has been trained?” In

general, for RBF networks, this will be determined by how many units are in the network. As in

section 4.3.1, a normalized computation time for RBF calculation was used to calculate the

testing time for each algorithm. A comparison of computation time for testing patterns is shown

in Table 11.

 93

Figure 4.3-11 Abalone age prediction problem: training/testing average sum square errors vs.

average number of RBF units.

10
0

10
1

10
2

10
3

10
-1

GAP

MRAN

RANEKF

RAN

SVR

GGAP

GGAP-GMM

ISO

ISO

EI-ELM

NME-ELM

NME-ELM

ErrCor

Number of Nodes

R
M

S
E

Abalone Age Prediction

Training Error
Testing Error

 94

Figure 4.3-12 Fuel consumption prediction problem: training/testing average sum square errors

vs. average number of RBF units.

Table 10 comparison between training times and training errors for abalone and fuel

consumption problem

 Abalone Fuel Consumption
Algorithm Time(s) RMSE Time(s) RMSE
GAP 14.28 0.0963 0.4524 0.1144
MRAN 255.8 0.0836 1.4644 0.1086
RANEKF 15480 0.0738 1.0103 0.1088
RAN 105.17 0.0931 0.8042 0.2923
SVR 0.4446 0.0706 0.0210 0.0465
I-ELM 0.5990 0.0920 0.0593 0.0949
CI-ELM 0.6635 0.0827 0.0612 0.0929
EI-ELM 5.732 0.0811 0.5638 0.0930
NME-ELM 0.0944 0.0597 0.0184 0.0724
DRNN 9.404 0.0820 0.0837 0.3506
ISO 8.497 0.0747 0.6657 0.0724
ErrCor 4.808 0.0758 0.5030 0.0671

10
0

10
1

10
2

10
-1

M
R

A
N

IS
O

IS
O

S
V

R

G
G

A
P

E
I-E

LM

N
M

E
-E

LM
ErrCor

Number of Nodes

R
M

S
E

Fuel Consumption Prediction

Training Error
Testing Error

 95

Table 11 comparison between validation times per pattern and validation errors for abalone and

fuel consumption problem

Algorithm Abalone Fuel Consumption
Time(s) RMSE Time(s) RMSE

GAP 2.82e-5 0.0966 3.73e-6 0.1404
MRAN 1.05e-4 0.0837 5.33e-6 0.1376
RANEKF 4.89e-4 0.0794 6.14e-6 0.1387
RAN 4.13e-4 0.0978 5.31e-6 0.3081
SVR 6.75e-4 0.0846 1.15e-4 0.0785
I-ELM 2.39e-4 0.0938 2.39e-4 0.0970
CI-ELM 2.39e-4 0.0857 2.39e-4 0.1105
EI-ELM 2.39e-4 0.0829 2.39e-4 0.0892
NME-ELM 1.20e-4 0.0849 8.37e-5 0.0861
DRNN 2.39e-3 0.3361 3.82e-4 0.3098
ISO 4.78e-6 0.0770 2.39e-6 0.1445
ErrCor 3.59e-6 0.0765 3.59e-6 0.0792

Table 12 comparison of most current algorithms in terms of testing RMSE on several real-world

benchmark problems

Real World
Problem I-ELM CI-ELM EI-ELM SVR

NME-
ELM ErrCor

RMSE (Test) RMSE C, γ RMSE RMSE
Abalone 0.0938 0.0827 0.0829 0.0846 (24, 2-6) 0.0849 0.0765
Auto-MPG 0.0970 0.0929 0.0892 0.0785 (20, 20) 0.0861 0.0792
Auto-Price 0.1261 0.1196 0.1139 0.1052 (28, 2-5) 0.1104 0.0909
Boston Housing 0.1320 0.1455 0.1077 0.1155 (24, 2-3) 0.1124 0.0989
California Housing 0.1731 0.1660 0.1503 0.1311 (23, 21) 0.1642 0.1223
Delta-Ailerons 0.0632 0.0494 0.0448 0.0467 (23, 2-3) 0.0413 0.0394
Delta-Elevators 0.0790 0.0622 0.0575 0.0603 (20, 2-2) 0.0557 0.0532
Machine CPU 0.0674 0.0589 0.0829 0.0846 (26, 2-4) 0.0791 0.0765

 96

Table 13 comparison of most current algorithms in terms of network size on several real-world

benchmark problems

Real World Problem ELMS SVR NME-ELM ErrCor
Abalone 200 310 100 4
Auto-MPG 200 96 73 3
Auto-Price 200 22 82 2
Boston Housing 200 47 94 4
California Housing 200 2189 195 10
Delta-Ailerons 200 83 182 3
Delta-Elevators 200 261 140 3
Machine CPU 200 8 28 1

 97

Chapter 5 Conclusions

Much of the appeal to modern day computing comes from the ability to solve difficult

problems without the use of a human. However, there are some complex real-world problems

that cannot effectively be solved by traditional approaches such as first principles modeling or

explicit statistical modeling. Many of these problems are not considered to be mathematically

well-posed problems. In many cases, nature is able to handle incredibly difficult problems in an

ever-changing context. In an attempt to imitate nature, a computational unit called a neuron is

used to provide a mapping from input data to an output. The construction of networks of these

computational units for the task of solving problems is a widely researched topic in the field of

computer engineering.

Artificial neural networks are used extensively in industry to solve important problems such

as, fault detection, adaptive control, and computer vision. However, many of the currently used

methods for obtaining a suitable ANN for a given problem could be improved. In some cases, it

may make more sense to use locally tuned units instead of the global units that are typically used.

It has been shown that locally tuned neurons have good performance in areas where spatial

relationships are important such as, computer vision and signal processing. Once the type of

neuron is chosen, there are still training and construction considerations that must be made.

Specifically addressing the questions: “How should I layout my neural network?” and “How can

I train this neural network to achieve acceptable performance?” is paramount to developing

optimally designed networks.

 98

Several attempts have been made at answering the questions posed above when building

RBF network systems. The RAN, RANEKF, and MRAN algorithms attempt to construct RBF

networks that use a minimal number of neurons to represent a large amount of data. The GGAP

and GGAP-GMM algorithms attempt to further minimize network sizes by pruning neurons that

do not adequately impact network outputs. The ELM family of algorithms addresses the question

of training. These algorithms focus on constructing networks to achieve acceptable error

performance as quickly as possible.

The algorithms presented in this work attempt to both construct minimally sized networks

and reach desirable error performance. The NME-ELM algorithm uses the concept of allocating

neurons to compensate for the largest value in the error function. Then it adjusts the radius of the

neurons using the Nelder-Mead Simplex method. This algorithm was shown to generate better

error performance and more compact networks than the ELM algorithms while still maintaining

a fast training time. The Error Correction algorithm also minimizes network size by allocating

neurons to compensate for large errors, then reaches incredibly low error levels by training the

neurons with a second-order training method. This algorithm was demonstrated to reach very

good error performance with extremely compact networks. These algorithms were compared

with many of the other state of the art approaches to constructing networks on several benchmark

tests and real-world data sets. The experimental results demonstrate effective construction of

compact and robust networks.

 99

References

[1] V. Zatsiorsky and B. Prilutsky, Biomechanics of Skeletal Muscles. Human Kinetics.

[2] L. A. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, pp. 338–353, Jun. 1965.

[3] L. Fogel, A. Owens, and M. Walsh, Artificial Intelligence through Simulated Evolution.

John Wiley, 1966.

[4] T. Mitchell, Machine Learning. Burr Ridge, IL: Mcgraw Hill, 1997.

[5] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine Learning. MIT

Press, 2012.

[6] T. M. Cover, “Geometrical and Statistical Properties of Systems of Linear Inequalities with

Applications in Pattern Recognition,” IEEE Trans. Electron. Comput., vol. EC-14, no. 3,
pp. 326–334, Jun. 1965.

[7] J. Moody and C. Darken, “Learning with localized receptive fields.” Yale Univ.,

Department of Computer Science, 1988.

[8] T. Poggio and F. Girosi, “A theory of networks for approximation and learning.”

Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab, 1989.

[9] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares learning algorithm for

radial basis function networks,” IEEE Trans. Neural Netw., vol. 2, no. 2, pp. 302–309, Mar.
1991.

[10] D. Wettschereck and T. Dietterich, “Improving the performance of radial basis function

networks by learning center locations,” Adv. Neural Inf. Process. Syst., vol. 4, pp. 1133–
1140, 1992.

[11] J. Platt, “A Resource-allocating Network for Function Interpolation,” Neural Comput, vol.

3, no. 2, pp. 213–225, Jun. 1991.

[12] V. Kadirkamanathan and M. Niranjan, “A Function Estimation Approach to Sequential

Learning with Neural Networks,” Neural Comput, vol. 5, no. 6, pp. 954–975, Nov. 1993.

 100

[13] L. Yingwei, N. Sundararajan, and P. Saratchandran, “A Sequential Learning Scheme for
Function Approximation Using Minimal Radial Basis Function Neural Networks,” Neural
Comput., vol. 9, no. 2, pp. 461–478, Feb. 1997.

[14] N. Sundararajan and P. Saratchandran, “Radial Basis Function Neural Networks With

Sequential Learning: MRAN and Its Applications,” Singapore: World Scientific, 1999.

[15] N. B. Karayiannis and G. W. Mi, “Growing radial basis neural networks: merging

supervised and unsupervised learning with network growth techniques,” IEEE Trans.
Neural Netw., vol. 8, no. 6, pp. 1492–1506, Nov. 1997.

[16] G.-B. Huang, P. Saratchandran, and N. Sundararajan, “An efficient sequential learning

algorithm for growing and pruning RBF (GAP-RBF) networks,” IEEE Trans. Syst. Man
Cybern. Part B Cybern., vol. 34, no. 6, pp. 2284–2292, Dec. 2004.

[17] S. I. Ch’ng, K. P. Seng, and L.-M. Ang, “Adaptive momentum Levenberg-Marquardt RBF

for face recognition,” in 2012 IEEE International Conference on Circuits and Systems
(ICCAS), 2012, pp. 126–131.

[18] K. Meng, Z.-Y. Dong, D. H. Wang, and K. P. Wong, “A Self-Adaptive RBF Neural

Network Classifier for Transformer Fault Analysis,” IEEE Trans. Power Syst., vol. 25, no.
3, pp. 1350–1360, Aug. 2010.

[19] S. Huang and K. K. Tan, “Fault Detection and Diagnosis Based on Modeling and

Estimation Methods,” IEEE Trans. Neural Netw., vol. 20, no. 5, pp. 872–881, May 2009.

[20] L. Cai, A. B. Rad, and W.-L. Chan, “An Intelligent Longitudinal Controller for Application

in Semiautonomous Vehicles,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1487–1497,
Apr. 2010.

[21] M. L. Corradini, V. Fossi, A. Giantomassi, G. Ippoliti, S. Longhi, and G. Orlando,

“Minimal Resource Allocating Networks for Discrete Time Sliding Mode Control of
Robotic Manipulators,” IEEE Trans. Ind. Inform., vol. 8, no. 4, pp. 733–745, Nov. 2012.

[22] S.-L. Dai, C. Wang, and F. Luo, “Identification and Learning Control of Ocean Surface

Ship Using Neural Networks,” IEEE Trans. Ind. Inform., vol. 8, no. 4, pp. 801–810, Nov.
2012.

[23] L. Guo and L. Parsa, “Model Reference Adaptive Control of Five-Phase IPM Motors Based

on Neural Network,” IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 1500–1508, Mar. 2012.

[24] F. F. M. El-Sousy, “Adaptive Dynamic Sliding-Mode Control System Using Recurrent

RBFN for High-Performance Induction Motor Servo Drive,” IEEE Trans. Ind. Inform., vol.
9, no. 4, pp. 1922–1936, Nov. 2013.

 101

[25] Y. J. Lee and J. Yoon, “Nonlinear Image Upsampling Method Based on Radial Basis
Function Interpolation,” IEEE Trans. Image Process., vol. 19, no. 10, pp. 2682–2692, Oct.
2010.

[26] H. Zhuang, K.-S. Low, and W.-Y. Yau, “Multichannel Pulse-Coupled-Neural-Network-

Based Color Image Segmentation for Object Detection,” IEEE Trans. Ind. Electron., vol.
59, no. 8, pp. 3299–3308, Aug. 2012.

[27] J. Park and I. W. Sandberg, “Universal approximation using radial-basis-function

networks,” Neural Comput, vol. 3, no. 2, pp. 246–257, Jun. 1991.

[28] M. J. D. Powell, “Algorithms for Approximation,” J. C. Mason and M. G. Cox, Eds. New

York, NY, USA: Clarendon Press, 1987, pp. 143–167.

[29] B. M. Wilamowski, “Neural network architectures and learning algorithms,” IEEE Ind.

Electron. Mag., vol. 3, no. 4, pp. 56–63, 2009.

[30] D. Hunter, H. Yu, M. S. Pukish, J. Kolbusz, and B. M. Wilamowski, “Selection of Proper

Neural Network Sizes and Architectures #x2014;A Comparative Study,” IEEE Trans. Ind.
Inform., vol. 8, no. 2, pp. 228–240, May 2012.

[31] B. M. Wilamowski, H. Yu, and K. T. Chung, “Parity-N problems as a vehicle to compare

efficiency of neural network architectures,” in Industrial Electronics Handbook, 2nd
Edition, vol. 5, CRC Press, 2011, pp. 10–1 to 10–8.

[32] S. Ferrari and M. Jensenius, “A Constrained Optimization Approach to Preserving Prior

Knowledge During Incremental Training,” IEEE Trans. Neural Netw., vol. 19, no. 6, pp.
996–1009, Jun. 2008.

[33] Q. Song, J. C. Spall, Y. C. Soh, and J. Ni, “Robust Neural Network Tracking Controller

Using Simultaneous Perturbation Stochastic Approximation,” IEEE Trans. Neural Netw.,
vol. 19, no. 5, pp. 817–835, May 2008.

[34] A. Slowik, “Application of an Adaptive Differential Evolution Algorithm With Multiple

Trial Vectors to Artificial Neural Network Training,” IEEE Trans. Ind. Electron., vol. 58,
no. 8, pp. 3160–3167, Aug. 2011.

[35] V. V. Phansalkar and P. S. Sastry, “Analysis of the back-propagation algorithm with

momentum,” IEEE Trans. Neural Netw., vol. 5, no. 3, pp. 505–506, May 1994.

[36] L. Torvik and B. Wilamowski, “Modification of gradient computation in the back-

propagation algorithm,” in ANNIE ’93 - Artificial Neural Networks in Engineering,
(Intelligent Engineering Systems Through Artificial Neural Networks), vol. 3, New York:
ASME PRESS, 1993, pp. 175–180.

 102

[37] A. Salvettit and B. Wilamowski, “Introducing stochastic processes within the
backpropagation algorithm for improved convergence,” in ANNIE’94 - Artificial Neural
Networks in Engineering, (Intelligent Engineering Systems Through Artificial Neural
Networks), vol. 4, New York: ASME PRESS, 1994, pp. 205–209.

[38] M. Riedmiller and H. Braun, “A direct adaptive method for faster backpropagation

learning: the RPROP algorithm,” in , IEEE International Conference on Neural Networks,
1993, 1993, pp. 586–591 vol.1.

[39] S. E. Fahlman, “An Empirical Study of Learning Speed in Backpropagation Networks.”

1988.

[40] B. M. Wilamowski, “Challenges in applications of computational intelligence in industrial

electronics,” in 2010 IEEE International Symposium on Industrial Electronics (ISIE), 2010,
pp. 15–22.

[41] R. Battiti, “First- and Second-order Methods for Learning: Between Steepest Descent and

Newton’s Method,” Neural Comput, vol. 4, no. 2, pp. 141–166, Mar. 1992.

[42] D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,” J. Soc.

Ind. Appl. Math., vol. 11, no. 2, pp. 431–441, 1963.

[43] B. M. Wilamowski and H. Yu, “Improved Computation for Levenberg #x2013;Marquardt

Training,” IEEE Trans. Neural Netw., vol. 21, no. 6, pp. 930–937, Jun. 2010.

[44] B. Fritzke, “Fast learning with incremental RBF Networks,” 1994, pp. 2–5.

[45] C. Constantinopoulos and A. Likas, “An incremental training method for the probabilistic

RBF network,” IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 966–974, July.

[46] L. H. Shenq Chen, “Symmetric complex-valued RBF receiver for multiple-antenna-aided

wireless systems.,” IEEE Trans. Neural Netw. Publ. IEEE Neural Netw. Counc., vol. 19,
no. 9, pp. 1659–65, 2008.

[47] M. L. Kothari, S. Madnani, and R. Segal, “Orthogonal least squares learning algorithm

based radial basis function (RBF) network adaptive power system stabilizer,” presented at
the , 1997 IEEE International Conference on Systems, Man, and Cybernetics, 1997.
Computational Cybernetics and Simulation, Oct, vol. 1, pp. 542–547 vol.1.

[48] G.-B. Huang, P. Saratchandran, and N. Sundararajan, “A generalized growing and pruning

RBF (GGAP-RBF) neural network for function approximation,” IEEE Trans. Neural Netw.,
vol. 16, no. 1, pp. 57–67, Jan. 2005.

[49] M. Bortman and M. Aladjem, “A Growing and Pruning Method for Radial Basis Function

Networks,” IEEE Trans. Neural Netw., vol. 20, no. 6, pp. 1039–1045, Jun. 2009.

 103

[50] V. N. Vapnik, Statistical Learning Theory, 1st ed. Wiley-Interscience, 1998.

[51] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Stat. Comput., vol.

14, no. 3, pp. 199–222, 2004.

[52] K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neural

Netw., vol. 4, no. 2, pp. 251–257, 1991.

[53] M. Leshno and S. Schocken, “Multilayer feedforward networks with a nonpolynomial

activation function can approximate any function,” Neural Netw., vol. 6, pp. 861–867,
1993.

[54] G.-B. Huang and H. A. Babri, “Upper bounds on the number of hidden neurons in

feedforward networks with arbitrary bounded nonlinear activation functions,” IEEE Trans.
Neural Netw., vol. 9, no. 1, pp. 224–229, Jan. 1998.

[55] G.-B. Huang, “Learning capability and storage capacity of two-hidden-layer feedforward

networks,” IEEE Trans. Neural Netw., vol. 14, no. 2, pp. 274–281, Mar. 2003.

[56] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Real-time learning capability of neural

networks,” IEEE Trans. Neural Netw., vol. 17, no. 4, pp. 863–878, Jul. 2006.

[57] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory and

applications,” Neurocomputing, vol. 70, no. 1–3, pp. 489–501, Dec. 2006.

[58] P. L. Bartlett, “The sample complexity of pattern classification with neural networks: the

size of the weights is more important than the size of the network,” IEEE Trans. Inf.
Theory, vol. 44, no. 2, pp. 525–536, Mar. 1998.

[59] G.-B. Huang, L. Chen, and C.-K. Siew, “Universal approximation using incremental

constructive feedforward networks with random hidden nodes,” IEEE Trans. Neural Netw.,
vol. 17, no. 4, pp. 879 – 892, Jul. 2006.

[60] G.-B. Huang and L. Chen, “Convex incremental extreme learning machine,”

Neurocomputing, vol. 70, no. 16–18, pp. 3056–3062, Oct. 2007.

[61] G.-B. Huang and L. Chen, “Enhanced random search based incremental extreme learning

machine,” Neurocomputing, vol. 71, no. 16–18, pp. 3460–3468, Oct. 2008.

[62] A. R. Barron, “Universal approximation bounds for superpositions of a sigmoidal

function,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp. 930–945, May 1993.

[63] J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” Comput. J.,

vol. 7, no. 4, pp. 308–313, Jan. 1965.

 104

[64] E. Boyd, K. W. Kennedy, R. A. Tapia, V. J. Torczon, and V. J. Torczon, “Multi-Directional
Search: A Direct Search Algorithm for Parallel Machines,” Rice University, 1989.

[65] N. Pham and B. M. Wilamowski, “Improved Nedler Mead’s Simplex Method and

Applications,” J. Comput., vol. 3, no. 3, pp. 55–63, Mar. 2011.

[66] F. Gao and L. Han, “Implementing the Nelder-Mead simplex algorithm with adaptive

parameters,” Comput. Optim. Appl., vol. 51, no. 1, pp. 259–277, Jan. 2012.

[67] P. Reiner and B. M. Wilamowski, “Efficient incremental construction of RBF networks

using quasi-gradient method,” Neurocomputing, vol. 150, Part B, pp. 349–356, Feb. 2015.

[68] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence Properties of the

Nelder-Mead Simplex Method in Low Dimensions,” SIAM J. Optim., vol. 9, pp. 112–147,
1998.

[69] A. Asuncion and A. Frank, “UCI Machine Learning Repository.” University of California,

Irvine, School of Information and Computer Sciences, 2010.

[70] C.-C. Chang and C.-J. Lin, “LIBSVM: a library for support vector machines.” ACM

Transactions on Intelligent Systems and Technology, 2011.

[71] T. Xie, H. Yu, J. Hewlett, P. Rozycki, and B. Wilamowski, “Fast and Efficient Second-

Order Method for Training Radial Basis Function Networks,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 23, no. 4, pp. 609–619, 2012.

[72] B. M. Wilamowski and H. Yu, “Neural Network Learning Without Backpropagation,”

IEEE Trans. Neural Netw., vol. 21, no. 11, pp. 1793–1803, Nov. 2010.

[73] H. Yu, P. D. Reiner, T. Xie, T. Bartczak, and B. M. Wilamowski, “An Incremental Design

of Radial Basis Function Networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. Early
Access Online, 2014.

[74] N. Chaiyaratana and A. M. S. Zalzala, “Evolving hybrid RBF-MLP networks using

combined genetic/unsupervised/supervised learning,” in Control ’98. UKACC International
Conference on (Conf. Publ. No. 455), 1998, vol. 1, pp. 330–335 vol.1.

[75] R. Neruda and P. Kudová, “Learning methods for radial basis function networks,” Future

Gener. Comput. Syst., vol. 21, no. 7, pp. 1131–1142, Jul. 2005.

[76] W. Kaminski and P. Strumillo, “Kernel orthonormalization in radial basis function neural

networks,” IEEE Trans. Neural Netw., vol. 8, no. 5, pp. 1177–1183, Sep. 1997.

 105

Appendix

Main Files:
Peaks_Test
%Benchmark Peaks Test for ELM, I-ELM, EI-ELM, CI-ELM, NME-ELM, ErrCor and SVR
format compact; clear all;
%create evenly spaced validation data
x=linspace(-1,1,30);
g=1;
for i=1:30
 for j=1:30
 in(g,:)=[x(i) x(j)];
 g=g+1;
 end
end
nts=size(in,1);
% use the peaks equation
y =(0.3-1.8*in(:,1)+2.7*in(:,1).^2).*exp(-1-6*in(:,2)-9*in(:,1).^2-9*in(:,2).^2) ...
 - (0.6*in(:,1)-27*in(:,1).^3-243*in(:,2).^5).*exp(-9*in(:,1).^2-9*in(:,2).^2) ...
 - 1/30*exp(-1-6*in(:,1)-9*in(:,1).^2-9*in(:,2).^2);
yn=awgn(y,15);
x1=reshape(in(:,1),30,30);y1=reshape(in(:,2),30,30);z1=reshape(y,30,30);zn=reshape(yn,30,30);
figure(2);clf;surf(x1,y1,zn);

% load randomly spaced training data
X=load('peaks500.dat');
[np,nd]=size(X);
trainx=X(:,1:nd-1);targets=X(:,nd);
targets=awgn(targets,20);
trIn=trainx; trOut=targets;
trSize=size(trIn,1);
tstIn=in;tstOut=y;
RMSEVN(1)=sqrt((y'*y)/900);
RMSEVE(1,:)=ones(1,20)*sqrt((y'*y)/900);
RMSEVI(1,:)=ones(1,20)*sqrt((y'*y)/900);
RMSEVEI(1,:)=ones(1,20)*sqrt((y'*y)/900);
RMSEVCI(1,:)=ones(1,20)*sqrt((y'*y)/900);
RMSEVSV(1,:)=sqrt((y'*y)/900);
rangesb=[-10 -5 -2 -1 0];
rangest=[0 1 2 5 10];
C=[2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8 2^9 2^10];
G=[0.1 0.5 1 1.5 2];
GE=linspace(0.1,3,25);
for j=1:100
 t=mod(j-1,5)+1;
 v=ceil(j/5);
 nodes=j;
 tic;
 [cent, weights, radius, mseTr]=NME_ELM3(trainx,targets,nodes);
 time1(j)=toc
 % E(3)=mseTr(nodes+1)
 figure(3);clf;plot(0:nodes,mseTr);
 O=calc_ELM_Out1(in,weights,cent,radius,nodes);
 er=y-O;SSEV=er'*er;RMSEVN(j+1)=sqrt(SSEV/nts)
 x1=reshape(in(:,1),30,30);y1=reshape(in(:,2),30,30);z1=reshape(O,30,30);
 figure(4);clf;surf(x1,y1,z1);
 wRange=[rangesb(t),rangest(v)];bRange=wRange;
 for i=1:20
 %Run Original ELM
 %train
 [inw outw bias O error]=ELMR(trainx,targets,2,GE(j),nodes);
 %verify
 O=calc_ELM_Out(tstIn,outw,inw,bias,nodes);

 106

 er=y-O;SSEV=er'*er;RMSEVE(j+1,i)=sqrt(SSEV/nts);
 %run I-ELMS
 %train
 tic;
 [cent, weights, radius, mseTr]=I_ELM(trIn,trOut,nodes,GE(j),2);
 timeE(j,i)=toc;
 %verify
 O=calc_ELM_Out(tstIn,weights,cent,radius,nodes);
 ver=tstOut-O;SSEV=ver'*ver;RMSEVI(j+1,i)=sqrt(SSEV/nts);
 %train
 tic;
 [cent, weights, radius, mseTr]=CI_ELM(trIn,trOut,nodes,GE(j),2);
 timeCI(j,i)=toc;
 %verify
 O=calc_ELM_Out(tstIn,weights,cent,radius,nodes);
 ver=tstOut-O;SSEV=ver'*ver;RMSEVCI(j+1,i)=sqrt(SSEV/nts);
 %train
 tic;
 [cent, weights, radius, mseTr]=EI_ELM(trIn,trOut,nodes,GE(j),2);
 timeEI(j,i)=toc;
 %verify
 O=calc_ELM_Out(tstIn,weights,cent,radius,nodes);
 ver=tstOut-O;SSEV=ver'*ver;RMSEVEI(j+1,i)=sqrt(SSEV/nts);

 tic;
 [weights_output, widths, weights_input,
centers]=ISO_RBF(nodes,trIn,trOut,stop,maximum_iteration)
 Time(4,i)=toc;
 O=verification(weights_input, weights_output, widths, centers, tstIn)
 ver=tstOut-O;SSEV=ver'*ver;RMSEV4(k)=sqrt(SSEV/nts);

 end

 tic;
 [weights_output, widths, cebters,
weights_input]=ErrCor(nodes,trIn,trOut,stop,maximum_iteration)
 Time(5,i)=toc;
 O=verification(weights_input, weights_output, widths, centers, tstIn)
 ver=tstOut-O;SSEV=ver'*ver;RMSEV5(k)=sqrt(SSEV/nts);

 % run SVR
 d=data(trIn,trOut);
 tic;
 [tr,a]=train(svr({kernel('rbf',0.5),'optimizer = "libsvm"',['C='
num2str(C(j))],'epsilon=0.1'}),d);
 timeSV(i)=toc;
 svs(j) = size(a.Xsv.X,1);
 sseTr = sum((trOut-tr.X).^2);
 mseTr = sseTr/trSize;
 rmseTr(i) = sqrt(mseTr);
 %test the svm
 d = data(tstIn);
 cost=test(a,d);
 sseTst = sum((tstOut-cost.X).^2);
 mseTst = sseTst/nts;
 rmseTst(j)= sqrt(mseTst);
end
RMSEVE=mean(RMSEVE,2);
RMSEVI=mean(RMSEVI,2);
RMSEVEI=mean(RMSEVEI,2);
RMSEVCI=mean(RMSEVCI,2);
RMSEVSV=[RMSEVSV;rmseTst'];
figure(1);clf;
plot(0:j,RMSEVN,'LineWidth',1.5);hold all;
plot(0:j,RMSEVE,'LineWidth',1.5);plot(0:j,RMSEVI,'LineWidth',1.5);plot(0:j,RMSEVEI,'LineWidth',1.
5);plot(0:j,RMSEVCI,'LineWidth',1.5);
plot(0:j,RMSEVSV,'LineWidth',1.5);
[sm,I1]=min(RMSEVE)
t=mod(I1-2,5)+1
v=ceil((I1-1)/5)

 107

[sm,I2]=min(RMSEVI)
t=mod(I2-1,5)+1
v=ceil(I2/5)
[sm,I3]=min(RMSEVEI)
t=mod(I3-1,5)+1
v=ceil(I3/5)
[sm,I4]=min(RMSEVCI)
t=mod(I4-1,5)+1
v=ceil(I4/5)
[sm,I5]=min(RMSEVSV)
t=mod(I5-2,5)+1
v=ceil((I5-1)/5)

Rapidly_Changing_Function_Test
format compact; clear all; clc; close all;
% Benchmark rapidly changing function Test for ELM, I-ELM, EI-ELM, CI-ELM, NME-ELM, ErrCor and
SVR

trIn=linspace(0,10,3000)';
trOut=0.8*exp(-0.2*inputs).*sin(10*inputs);
ver_inputs = 10*rand(1500,1);
nts=1500;
tstIn = sort(ver_inputs);
tstOut = 0.8*exp(-0.2*ver_inputs).*sin(10*ver_inputs);
RMSEVN(1)=sqrt((y'*y)/nts);
RMSEVE(1,:)=ones(1,20)*sqrt((y'*y)/nts);
RMSEVI(1,:)=ones(1,20)*sqrt((y'*y)/nts);
RMSEVEI(1,:)=ones(1,20)*sqrt((y'*y)/nts);
RMSEVCI(1,:)=ones(1,20)*sqrt((y'*y)/nts);
RMSEVSV(1,:)=sqrt((y'*y)/900);
rangesb=[-10 -5 -2 -1 0];
rangest=[0 1 2 5 10];
C=[2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8 2^9 2^10];
G=[0.1 0.5 1 1.5 2];
GE=linspace(0.1,3,25);
for j=1:100
 t=mod(j-1,5)+1;
 v=ceil(j/5);
 nodes=j;
 tic;
 [cent, weights, radius, mseTr]=NME_ELM3(trainx,targets,nodes);
 time1(j)=toc
 % E(3)=mseTr(nodes+1)
 figure(3);clf;plot(0:nodes,mseTr);
 O=calc_ELM_Out1(in,weights,cent,radius,nodes);
 er=y-O;SSEV=er'*er;RMSEVN(j+1)=sqrt(SSEV/nts)
 x1=reshape(in(:,1),30,30);y1=reshape(in(:,2),30,30);z1=reshape(O,30,30);
 figure(4);clf;surf(x1,y1,z1);
 wRange=[rangesb(t),rangest(v)];bRange=wRange;
 for i=1:20
 %Run Original ELM
 %train
 [inw outw bias O error]=ELMR(trainx,targets,2,GE(j),nodes);
 %verify
 O=calc_ELM_Out(tstIn,outw,inw,bias,nodes);
 er=y-O;SSEV=er'*er;RMSEVE(j+1,i)=sqrt(SSEV/nts);
 %run I-ELMS
 %train
 tic;
 [cent, weights, radius, mseTr]=I_ELM(trIn,trOut,nodes,GE(j),2);
 timeE(j,i)=toc;
 %verify
 O=calc_ELM_Out(tstIn,weights,cent,radius,nodes);
 ver=tstOut-O;SSEV=ver'*ver;RMSEVI(j+1,i)=sqrt(SSEV/nts);
 %train
 tic;
 [cent, weights, radius, mseTr]=CI_ELM(trIn,trOut,nodes,GE(j),2);
 timeCI(j,i)=toc;
 %verify
 O=calc_ELM_Out(tstIn,weights,cent,radius,nodes);

 108

 ver=tstOut-O;SSEV=ver'*ver;RMSEVCI(j+1,i)=sqrt(SSEV/nts);
 %train
 tic;
 [cent, weights, radius, mseTr]=EI_ELM(trIn,trOut,nodes,GE(j),2);
 timeEI(j,i)=toc;
 %verify
 O=calc_ELM_Out(tstIn,weights,cent,radius,nodes);
 ver=tstOut-O;SSEV=ver'*ver;RMSEVEI(j+1,i)=sqrt(SSEV/nts);

 tic;
 [weights_output, widths, weights_input,
centers]=ISO_RBF(nodes,trIn,trOut,stop,maximum_iteration)
 Time(4,i)=toc;
 O=verification(weights_input, weights_output, widths, centers, tstIn)
 ver=tstOut-O;SSEV=ver'*ver;RMSEV4(k)=sqrt(SSEV/nts);

 end

 tic;
 [weights_output, widths, cebters,
weights_input]=ErrCor(nodes,trIn,trOut,stop,maximum_iteration)
 Time(5,i)=toc;
 O=verification(weights_input, weights_output, widths, centers, tstIn)
 ver=tstOut-O;SSEV=ver'*ver;RMSEV5(k)=sqrt(SSEV/nts);

 % run SVR
 d=data(trIn,trOut);
 tic;
 [tr,a]=train(svr({kernel('rbf',0.5),'optimizer = "libsvm"',['C='
num2str(C(j))],'epsilon=0.1'}),d);
 timeSV(i)=toc;
 svs(j) = size(a.Xsv.X,1);
 sseTr = sum((trOut-tr.X).^2);
 mseTr = sseTr/trSize;
 rmseTr(i) = sqrt(mseTr);
 %test the svm
 d = data(tstIn);
 cost=test(a,d);
 sseTst = sum((tstOut-cost.X).^2);
 mseTst = sseTst/nts;
 rmseTst(j)= sqrt(mseTst);
end
RMSEVE=mean(RMSEVE,2);
RMSEVI=mean(RMSEVI,2);
RMSEVEI=mean(RMSEVEI,2);
RMSEVCI=mean(RMSEVCI,2);
RMSEVSV=[RMSEVSV;rmseTst'];
figure(1);clf;
plot(0:j,RMSEVN,'LineWidth',1.5);hold all;
plot(0:j,RMSEVE,'LineWidth',1.5);plot(0:j,RMSEVI,'LineWidth',1.5);plot(0:j,RMSEVEI,'LineWidth',1.
5);plot(0:j,RMSEVCI,'LineWidth',1.5);
plot(0:j,RMSEVSV,'LineWidth',1.5);
[sm,I1]=min(RMSEVE)
t=mod(I1-2,5)+1
v=ceil((I1-1)/5)
[sm,I2]=min(RMSEVI)
t=mod(I2-1,5)+1
v=ceil(I2/5)
[sm,I3]=min(RMSEVEI)
t=mod(I3-1,5)+1
v=ceil(I3/5)
[sm,I4]=min(RMSEVCI)
t=mod(I4-1,5)+1
v=ceil(I4/5)
[sm,I5]=min(RMSEVSV)
t=mod(I5-2,5)+1
v=ceil((I5-1)/5)

Real_Data_Test

 109

%Test the ELMs, SVR, ErrCor, and the NME_ELM on real-world data
format compact; clear all;
dat_name=('Abalone_Norm');
trSize=2000; C=2^4; G=2^-6;

% dat_name=('auto_MPG_N');
% trSize=320; C=2^0; G=2^0;
%
% dat_name=('Auto_Price_Norm');
% trSize=80; C=2^8; G=2^-5;
%
% dat_name=('Boston_Norm');
% trSize=250; C=2^4; G=2^-3;
%
% dat_name=('Cal_Norm');
% trSize=8000; C=2^3; G=2^1;
%
% dat_name=('Delta_Ailerons_Norm');
% trSize=3000; C=2^3; G=2^-3;
%
% dat_name=('Delta_Elevators_Norm');
% trSize=4000; C=2^0; G=2^-2;
%
% dat_name=('MachineCPU_Norm');
% trSize=100; C=2^6; G=2^-4;

X=load([dat_name,'.dat']);
[np,nd]=size(X); nts=np-trSize;
stop=0.001;

for j=1:200
 nodes=j;
 for i=1:20
 %Shuffle Data
 [trIn trOut tstIn tstOut]=RandomizeData(trSize,X);

 %NME-ELM
 tic;
 [cent, weights, radius, mseTr]=NME_ELM3(trIn,trOut,nodes);
 time(1,i)=toc;
 E(1)=mseTr(nodes+1)
 O=calc_ELM_Out(tstIn,weights,cent,radius,nodes);
 ver=tstOut-O;SSEV=ver'*ver;RMSEV(1,i)=sqrt(SSEV/nts);

 for k=1:20
 tic;
 [cent, weights, radius, mseTr]=I_ELM(trIn,trOut,nodes);
 time(2,i)=toc;
 E(2)=mseTr(nodes+1)
 O=calc_ELM_Out(tstIn,weights,cent,radius,nodes);
 ver=tstOut-O;SSEV=ver'*ver;RMSEV1(k)=sqrt(SSEV/nts);
 tic;
 [cent, weights, radius, mseTr]=EI_ELM(trIn,trOut,nodes);
 time(3,i)=toc;
 O=calc_ELM_Out(tstIn,weights,cent,radius,nodes);
 ver=tstOut-O;SSEV=ver'*ver;RMSEV2(k)=sqrt(SSEV/nts);
 E(3)=mseTr(nodes+1)

 tic;
 [cent, weights, radius, mseTr]=CI_ELM(trIn,trOut,nodes);
 time(3,i)=toc;
 O=calc_ELM_Out(tstIn,weights,cent,radius,nodes);
 ver=tstOut-O;SSEV=ver'*ver;RMSEV3(k)=sqrt(SSEV/nts);
 E(4)=mseTr(nodes+1)

 tic;
 [weights_output, widths, weights_input,
centers]=ISO_RBF(nodes,trIn,trOut,stop,maximum_iteration)
 Time(4,i)=toc;
 O=verification(weights_input, weights_output, widths, centers, tstIn)
 ver=tstOut-O;SSEV=ver'*ver;RMSEV4(k)=sqrt(SSEV/nts);

 110

 end

 tic;
 [weights_output, widths, cebters,
weights_input]=ErrCor(nodes,trIn,trOut,stop,maximum_iteration)
 Time(5,i)=toc;
 O=verification(weights_input, weights_output, widths, centers, tstIn)
 ver=tstOut-O;SSEV=ver'*ver;RMSEV5(k)=sqrt(SSEV/nts);

 RMSEV(2,i)=mean(RMSEV1,2);
 RMSEV(3,i)=mean(RMSEV2,2);
 RMSEV(4,i)=mean(RMSEV3,2);
 RMSEV(5,i)=mean(RMSEV4,2);
 RMSEV(6,i)=RMSEV5;

 %SVR
 d=data(trIn,trOut);
 tic;
 [tr,a]=train(svr({kernel('rbf',G),'optimizer = "libsvm"',['C='
num2str(C)],'epsilon=0.1'}),d);
 time(4,i)=toc;
 svs(j) = size(a.Xsv.X,1);
 sseTr = sum((trOut-tr.X).^2);
 mseTr = sseTr/trSize;
 rmseTr(i) = sqrt(mseTr);
 %test the svm
 d = data(tstIn);
 cost=test(a,d);
 sseTst = sum((tstOut-cost.X).^2);
 mseTst = sseTst/nts;
 RMSEV(5,i)= sqrt(mseTst);
 end
 RMSE(j,:)=mean(RMSEV,2)';
 SDEV(j,:)=std(RMSEV,0,2)';
 tavg(j,:)=mean(time,2)';
end
xlswrite(['ELMS_SVR_',dat_name,'.xls'],[RMSE SDEV tavg]);

Two_Spiral_Test
format compact; clear all; clc; close all;
% Benchmark Two-Spiral Test for ELM, I-ELM, EI-ELM, CI-ELM, NME-ELM, ErrCor and SVR
X=load('spiral4.dat');
[np,nd]=size(X);
inputs = X(1:361,1:nd-1);
outputs = X(1:361,nd);
trIn=inputs;
trOut=outputs;
tstIn=inputs;
tstOut=outputs;
nts=np;

RMSEVN(1)=sqrt((y'*y)/nts);
RMSEVE(1,:)=ones(1,20)*sqrt((y'*y)/nts);
RMSEVI(1,:)=ones(1,20)*sqrt((y'*y)/nts);
RMSEVEI(1,:)=ones(1,20)*sqrt((y'*y)/nts);
RMSEVCI(1,:)=ones(1,20)*sqrt((y'*y)/nts);
RMSEVSV(1,:)=sqrt((y'*y)/900);
rangesb=[-10 -5 -2 -1 0];
rangest=[0 1 2 5 10];
C=[2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8 2^9 2^10];
G=[0.1 0.5 1 1.5 2];
GE=linspace(0.1,3,25);
for j=1:100
 t=mod(j-1,5)+1;
 v=ceil(j/5);
 nodes=j;
 tic;
 [cent, weights, radius, mseTr]=NME_ELM3(trainx,targets,nodes);
 time1(j)=toc

 111

 % E(3)=mseTr(nodes+1)
 figure(3);clf;plot(0:nodes,mseTr);
 O=calc_ELM_Out1(in,weights,cent,radius,nodes);
 er=y-O;SSEV=er'*er;RMSEVN(j+1)=sqrt(SSEV/nts)
 x1=reshape(in(:,1),30,30);y1=reshape(in(:,2),30,30);z1=reshape(O,30,30);
 figure(4);clf;surf(x1,y1,z1);
 wRange=[rangesb(t),rangest(v)];bRange=wRange;
 for i=1:20
 %Run Original ELM
 %train
 [inw outw bias O error]=ELMR(trainx,targets,2,GE(j),nodes);
 %verify
 O=calc_ELM_Out(tstIn,outw,inw,bias,nodes);
 er=y-O;SSEV=er'*er;RMSEVE(j+1,i)=sqrt(SSEV/nts);
 %run I-ELMS
 %train
 tic;
 [cent, weights, radius, mseTr]=I_ELM(trIn,trOut,nodes,GE(j),2);
 timeE(j,i)=toc;
 %verify
 O=calc_ELM_Out(tstIn,weights,cent,radius,nodes);
 ver=tstOut-O;SSEV=ver'*ver;RMSEVI(j+1,i)=sqrt(SSEV/nts);
 %train
 tic;
 [cent, weights, radius, mseTr]=CI_ELM(trIn,trOut,nodes,GE(j),2);
 timeCI(j,i)=toc;
 %verify
 O=calc_ELM_Out(tstIn,weights,cent,radius,nodes);
 ver=tstOut-O;SSEV=ver'*ver;RMSEVCI(j+1,i)=sqrt(SSEV/nts);
 %train
 tic;
 [cent, weights, radius, mseTr]=EI_ELM(trIn,trOut,nodes,GE(j),2);
 timeEI(j,i)=toc;
 %verify
 O=calc_ELM_Out(tstIn,weights,cent,radius,nodes);
 ver=tstOut-O;SSEV=ver'*ver;RMSEVEI(j+1,i)=sqrt(SSEV/nts);

 tic;
 [weights_output, widths, weights_input,
centers]=ISO_RBF(nodes,trIn,trOut,stop,maximum_iteration)
 Time(4,i)=toc;
 O=verification(weights_input, weights_output, widths, centers, tstIn)
 ver=tstOut-O;SSEV=ver'*ver;RMSEV4(k)=sqrt(SSEV/nts);

 end

 tic;
 [weights_output, widths, cebters,
weights_input]=ErrCor(nodes,trIn,trOut,stop,maximum_iteration)
 Time(5,i)=toc;
 O=verification(weights_input, weights_output, widths, centers, tstIn)
 ver=tstOut-O;SSEV=ver'*ver;RMSEV5(k)=sqrt(SSEV/nts);

 % run SVR
 d=data(trIn,trOut);
 tic;
 [tr,a]=train(svr({kernel('rbf',0.5),'optimizer = "libsvm"',['C='
num2str(C(j))],'epsilon=0.1'}),d);
 timeSV(i)=toc;
 svs(j) = size(a.Xsv.X,1);
 sseTr = sum((trOut-tr.X).^2);
 mseTr = sseTr/trSize;
 rmseTr(i) = sqrt(mseTr);
 %test the svm
 d = data(tstIn);
 cost=test(a,d);
 sseTst = sum((tstOut-cost.X).^2);
 mseTst = sseTst/nts;
 rmseTst(j)= sqrt(mseTst);
end

 112

RMSEVE=mean(RMSEVE,2);
RMSEVI=mean(RMSEVI,2);
RMSEVEI=mean(RMSEVEI,2);
RMSEVCI=mean(RMSEVCI,2);
RMSEVSV=[RMSEVSV;rmseTst'];
figure(1);clf;
plot(0:j,RMSEVN,'LineWidth',1.5);hold all;
plot(0:j,RMSEVE,'LineWidth',1.5);plot(0:j,RMSEVI,'LineWidth',1.5);plot(0:j,RMSEVEI,'LineWidth',1.
5);plot(0:j,RMSEVCI,'LineWidth',1.5);
plot(0:j,RMSEVSV,'LineWidth',1.5);
[sm,I1]=min(RMSEVE)
t=mod(I1-2,5)+1
v=ceil((I1-1)/5)
[sm,I2]=min(RMSEVI)
t=mod(I2-1,5)+1
v=ceil(I2/5)
[sm,I3]=min(RMSEVEI)
t=mod(I3-1,5)+1
v=ceil(I3/5)
[sm,I4]=min(RMSEVCI)
t=mod(I4-1,5)+1
v=ceil(I4/5)
[sm,I5]=min(RMSEVSV)
t=mod(I5-2,5)+1
v=ceil((I5-1)/5)

Building Blocks:
Calculate_gradient
%--
%* METHOD - calculate_gradient
%--
%* Method calculates the gradients for an RBF network and returns the
%* gradient and quasi-hessian.
%*
%* INPUTS:
%* ww - the input weights
%* weights - the output weights of the network
%* widths - the widths of the neurons in the network
%* centers - the centers of the neurons in the network
%* inputs - the training inputs
%* outputs - the desired outputs
%*
%* OUTPUTS:
%* gradient - the gradient matrix used for parameter updates
%* hessian - the quasi-hessian matrix used for second order methods
function [gradient, hessian] = calculate_gradient(ww, weights, widths, centers, inputs, outputs)
[p1,p2] = size(weights);
[p3,p4] = size(centers);
[p5,p6] = size(widths);
[p7,p8] = size(ww);
g_weight = zeros(p1,p2);
g_center = zeros(p3,p4);
g_width = zeros(p5,p6);
g_ww = zeros(p7,p8);
gradient = zeros(1,p1*p2+p3*p4+p5*p6+p7*p8);
hessian = zeros(p1*p2+p3*p4+p5*p6+p7*p8,p1*p2+p3*p4+p5*p6+p7*p8);
% gradient = zeros(1,p1*p2+p3*p4+p7*p8);
% hessian = zeros(p1*p2+p3*p4+p7*p8,p1*p2+p3*p4+p7*p8);
[m,n] = size(inputs);
for i = 1:m
 net = weights(1);
 for j = 1:p3
 node(j) = exp(-sum((ww(j,:).*inputs(i,:)-centers(j,:)).^2)/widths(j));
 net = net + node(j)*weights(j+1);
 end;
 % for g_weight
 out = net;
 de = 1;
 err = outputs(i,1) - out;

 113

 J_weight(1) = -de;
 for j = 2:p2
 J_weight(j) = J_weight(1)*node(j-1);
 end;
 % for g_center
 for j = 1:p3
 J_center(j,:) = (-1)*weights(j+1)*node(j)*2*(ww(j,:).*inputs(i,:)-
centers(j,:))./widths(j);
 J_width(j) = (-1)*weights(j+1)*node(j)*sum((ww(j,:).*inputs(i,:)-
centers(j,:)).^2)/widths(j)^2;
 for k = 1:n
 J_ww(j,k) = (-1)*weights(j+1)*node(j)*(-1)/widths(j)*2*(ww(j,k)*inputs(i,k)-
centers(j,k))*inputs(i,k);
 end;
 end;
 J = parameter_combination(J_weight, J_width, J_ww, J_center);
 gradient = gradient + err*J;
 hessian = hessian + J'*J;
end;

Calculate_SSE
%--
%* METHOD - calculate_SSE
%--
%* Method calculates the SSE for a network
%*
%* INPUTS:
%* ww - the input weights
%* weights - the output weights of the network
%* widths - the widths of the neurons in the network
%* centers - the centers of the neurons in the network
%* inputs - the training inputs
%* outputs - the desired outputs
%* eps - the parameter for error forgiveness
%*
%* OUTPUTS:
%* SSE - the SSE for the network
function [SSE] = calculate_SSE(ww, weights,widths,centers,inputs,outputs,eps)
[m,n] = size(inputs);
[p,q] = size(centers);
SSE = 0;
for i = 1:m
 count = weights(1);
 for j = 1:p
 count = count + weights(j+1)*exp(-sum((ww(j,:).*inputs(i,:)-centers(j,:)).^2)/widths(j));
 end;
 SSE = SSE + (count - outputs(i,1))^2;
end;

Calc_ELM_Out1
% **
% Method: calc_ELM_Out1 - calculates output of any SLFN RBF network

% --------OUTPUTS-------
% output = the predicted output of the algorithm

% -------INPUTS--------
% inputs = the inputs to the datasat you would like to predict
% weights = the output weights produced by the training algorithm
% centers = the centers generated by the training algorithm
% radii = the random radii generated by the training algorithm
% nodes = the number of nodes used to train
%**************Copyright - Dr. Philip Reiner - 2015***********************

function [output]=calc_ELM_Out1(inputs,weights,centers,radii,nodes)
[ni,nd]=size(inputs);
for i=1:ni
 for j=1:nodes

 114

 h(j) = weights(j).*exp(-1*(1/radii(j)^2)*norm(inputs(i,:)-centers(j,:))^2);
 end
 output(i) = sum(h);
end
output = output';
end

CI-ELM
% ************************ Method - CI_ELM ************************
% This function is the CI_ELM function that randomly generates centers
% Radius for RBF functions and then weights the output of the functions.

% --------OUTPUTS-------
% centers = the generated centers for all of the nodes
% weights = the output weights generated for the nodes
% radii = the radii of all the rbf nodes
% rmse = the root mean square error after each generated node

% -------INPUTS--------
% inputs = the inputs to the datasat you would like to train
% outputs = the training outputs corresponding to the inputs
% nodes = the maximum number of nodes you would like your net to have
% 1/G = the maximum value allowed for your radius
% range = the maximum range of the inputs
%**************Copyright - Dr. Philip Reiner - 2015***********************

function [centers, weights, radii, mseTr]=CI_ELM(inputs,outputs,nodes,G,range)
[ni,nd] = size(inputs);
Er = outputs';
Do = outputs';
n=0;
mse = sum(Er.^2)/ni;
mseTr(1)=mse;
while (n < nodes)&&(mse > 10e-5)
 n = n+1;
 %assign random center and impact factor
 centers(n,:) = range.*rand(1,nd)-range/2;
 radii(n) = G*rand(1);
 %calculate output weights
 % weight B(N) = sum(error(p)*H(p))/sum(H(p)^2) for all p
 for i=1:ni,
 H(i) = exp(-1*radii(n)*norm(inputs(i,:)-centers(n,:))^2);
 end
 Beta = (Er*(Er-(Do-H))')/((Er-(Do-H))*(Er-(Do-H))');
 if n > 1
 weights = (1-Beta).*weights;
 end
 weights(n) = Beta;
 Er = (1-weights(n)).*Er+weights(n).*(Do-H); % remaining error surface
 mse = sum(Er.^2)/ni;
 mseTr(n+1) = mse;
 if sum(H)==0
 n=n-1;
 end
end
end

EffELM
%% Original ELM (not incremental ELM)
% Inputs ********************
% x are the training vectors
% y are the targets
% wRange is a 1x2 matrix containing the lower and upper bounds for the
% range of the input weights
% bRange is the same as wRange but pertaining to the input bias
% nodes is the number of nodes in the network
% output = sum of outw*g(inw*x+bias)
% Outputs ********************

 115

% inw - input weights
% outw - output weights
% bias - bias parameters
% outputs - network outputs
% error - errors
%**************Copyright - Dr. Philip Reiner - 2015***********************

function [inw outw bias outputs error]=EffELM(x,y,wRange,bRange,nodes)
[np,nd]=size(x);
inw=(wRange(2)-wRange(1))*rand(nodes,nd)+wRange(1);
bias=(bRange(2)-bRange(1))*rand(nodes,1)+bRange(1);
%Sort By affine Transformations
tempx=x;
for j=1:nd
 w(1,j)=1/max(abs(x(1:nodes,j)));
 tempx(1:nodes,j)=w(1,j)*tempx(1:nodes,j);
 for i=1:nodes-1
 tempy(i,j)=abs(tempx(i+1,j)-tempx(i,j));
 end
 del=log10(nd)+log10(2);
 n(j)=-log10(min(tempy(:,j)))+del;
 w(2,j)=w(1,j)*10*sum(n);
end
inw=w(2,:);
M=1; xo=0; alp=max([sqrt(abs(2*log(nodes))),1])+1;
dist=max([alp-xo,alp+xo]);
for i=2:nodes-1
 k=(2*dist)/(min([inw(1,:)*tempx(i+1,:)'-inw(1,:)*tempx(i,:)',inw(1,:)*tempx(i,:)'-
inw(1,:)*tempx(i-1,:)']));
 inw(i,:)=k*inw(1,:);
end
inw(1,:)=inw(2,:); inw(nodes,:)=inw(nodes-1,:);
for i=1:nodes
 bias(i)=xo-inw(i,:)*tempx(i,:)';
end

for i=1:nodes
 for j=1:np
 H(j,i)=1/(1+exp(-(inw(i,:)*tempx(j,:)'+bias(i))));
 end
end
%Calculate Moore-Penrose generalized inverse of H
Ht=pinv(H);
%Calculate output weights
outw=Ht*y;
outputs=(outw'*H')';
error=y-outputs;

EI_ELM
% **
% This function is the EI_ELM function that randomly generates centers
% Radius for RBF functions and then weights the output of the functions.

% --------OUTPUTS-------
% centers = the generated centers for all of the nodes
% weights = the output weights generated for the nodes
% radii = the radii of all the rbf nodes
% rmse = the root mean square error after each generated node

% -------INPUTS--------
% inputs = the inputs to the datasat you would like to train
% outputs = the training outputs corresponding to the inputs
% nodes = the maximum number of nodes you would like your net to have
% 1/G = the maximum value allowed for your radius
% range = the maximum range of the inputs
%**************Copyright - Dr. Philip Reiner - 2015***********************
function[centers, weights, radii, mseTr] = EI_ELM(inputs, outputs, nodes,G,range)
[ni,nd] = size(inputs);
Er = outputs';
n = 0;

 116

mse = sum(Er.^2)/ni;
mseTr(1) = mse;
while (n < nodes)&&(mse > 10e-5)
 n = n+1;
 for z=1:10
 %assign random center and impact factor
 a(z,:) = range.*rand(1,nd)-range/2;
 b(z) = G*rand(1);
 %calculate output weights
 % weight B(N) = sum(error(p)*H(p))/sum(H(p)^2) for all p
 for i=1:ni,
 H(i) = exp(-1*b(z)*norm(inputs(i,:)-a(z,:))^2);
 end
 B(z) = (Er*H')/(H*H');
 O = B(z).*H;
 IEr(z,:) = Er-O; % remaining error surface
 imse(z) = sum(Er.^2)/ni;
 end
 %choose best node
 [Y,I]=sort(imse);
 Er = IEr(I(1),:);
 centers(n,:) = a(I(1),:);
 radii(n) = b(I(1));
 weights(n) = B(I(1));
 mse = Y(1);
 mseTr(n+1) = mse;
end
 end

ErrCor
%--
%* METHOD - ErrCor
%--
%* Method constructs and trains an RBF network incrementally
%*
%* INPUTS:
%* nodes - the number of neurons in the network
%* inputs - training inputs
%* outputs - training outputs
%* stop - error stopping criterion
%* maximum_iteration - loop stopping criterion
%*
%* OUTPUTS:
%* weights_output - trained output weights of the network
%* widths - trained widths of the RBF neurons
%* weights_input - trained input weights of the network
%* centers - trained network centers

function [weights_output, widths, centers, weights_input] =
ErrCor(nodes,inputs,outputs,stop,maximum_iteration)
 Nmax=nodes;
[m,n] = size(inputs);
[np,nd]=size(inputs);

actual_output_ = zeros(size(outputs));
centers = [];
weights_input = [];
weights_output = 1;
widths = [];
number_of_hidden_unit = 0;
 tic;
 g=1;
 maximum_error = stop;
 mu = 100;
for kkk = 1:Nmax,
 [maxi_, index_1] = max(abs(outputs-actual_output_));
 number_of_hidden_unit = number_of_hidden_unit + 1;
 centers = [centers; inputs(index_1,:)];
 weights_input = [weights_input; ones(1,n)];
 weights_output = [weights_output, 1];

 117

 widths = [widths, 1];
 para_cur = parameter_combination(weights_output, widths, weights_input, centers);
 % para_cur = weights_output;
 I = eye(length(para_cur));
 % other parameters

 % training process
 [SSE(1)] = calculate_SSE(weights_input, weights_output,widths,centers,inputs,outputs);
 SSE2(g)=SSE(1);
 g=g+1;
 fprintf('Number of RBF units = %d, iteration = 1, SSE = %6.10f\n',kkk,SSE(1));
 for iter = 2:maximum_iteration
 jw = 0;
 [gradient, hessian] = calculate_gradient(weights_input, weights_output, widths, centers,
inputs, outputs);
 para_back = para_cur;
 while 1
 para_cur = para_back - (inv(hessian+mu*I)*gradient')';
 [weights_output, widths, wieghts_input, centers] =
parameter_divison(para_cur,number_of_hidden_unit,inputs);
 [SSE(iter)] = calculate_SSE(weights_input,
weights_output,widths,centers,inputs,outputs);
 SSE2(g)=SSE(iter);
 g=g+1;
 if SSE(iter) <= SSE(iter-1)
 if mu > 10^-20;
 mu = mu/10;
 end;
 break;
 end;
 if mu < 10^20
 mu = mu*10;
 end;
 jw = jw + 1;
 if jw > 20
 break;
 end;
 end;

 end;

end;

evalEr
%% Error Evaluation (SSE)
% inputs
% data - two column set where the first column is desired outputs and the
% second column is the current output
% outputs
% Er - the sum squared error Er = sum((data(:,1)-data(:,2)).^2)
%**************Copyright - Dr. Philip Reiner - 2015***********************
function SSE=evalEr(rad)
global inputs prevOut newCen w desired H;
H=funct(inputs,rad,newCen);
Er=desired-prevOut;
w=(H'*Er)/(H'*H);
Er=Er-w*H;
SSE=Er'*Er;

funct
%*********************** Method - funct ***********************************
%* method calculates the output of a RBF unit
%* INPUTS:
%* x - input data
%* radi - width of RBF unit
%* xo - center of RBF unit
%* OUTPUTS:
%* y - output for each data input

 118

%**************Copyright - Dr. Philip Reiner - 2015***********************

function y=funct(x,radi,xo)
[m,n]=size(x);
for q=1:m
 y(q)=exp(-sum((x(q,:)-xo).^2,2)/radi^2);
end
y=y';
return;

I-ELM
% **
% This function is the I_ELM function that randomly generates centers
% Radius for RBF functions and then weights the output of the functions.

% --------OUTPUTS-------
% centers = the generated centers for all of the nodes
% weights = the output weights generated for the nodes
% radii = the radii of all the rbf nodes
% rmse = the root mean square error after each generated node

% -------INPUTS--------
% inputs = the inputs to the datasat you would like to train
% outputs = the training outputs corresponding to the inputs
% nodes = the maximum number of nodes you would like your net to have
% 1/G = the maximum value allowed for your radius
% range = the maximum range of the inputs
%**************Copyright - Dr. Philip Reiner - 2015***********************

function [centers, weights, radii, mseTr]=I_ELM(inputs,outputs,nodes,G,range)
[ni,nd] = size(inputs);
Er = outputs';
n=0;
mse = sum(Er.^2)/ni;
mseTr(1) = mse;
while (n < nodes)&&(mse > 10e-5)
 n = n+1;
 %assign random center and impact factor
 centers(n,:) = range.*rand(1,nd)-range/2;
 radii(n) = G*rand(1);
 %calculate output weights
 % weight B(N) = sum(error(p)*H(p))/sum(H(p)^2) for all p
 for i=1:ni,
 H(i) = exp(-1*radii(n)*norm(inputs(i,:)-centers(n,:))^2);
 end
 weights(n) = (Er*H')/(H*H');
 O = weights(n).*H;
% figure(1); clf; mesh(reshape(O,30,30));
 Er = Er-O; % remaining error surface
% figure(2); clf; mesh(reshape(Er,30,30));
 mse = sum(Er.^2)/ni;
 mseTr(n+1) = mse;
 if sum(H)==0
 n=n-1;
 end
end
end

ISO_RBF
%--
%* METHOD - ISO_RBF
%--
%* Method creates a randomly initialized RBF network, and then trains it
%* using the Improved Second order training method.
%*
%* INPUTS:
%* nodes - the number of neurons in the network
%* trIn - training inputs

 119

%* trOut - training outputs
%* stop - error stopping criterion
%* maximum_iteration - loop stopping criterion
%*
%* OUTPUTS:
%* weights_output - trained output weights of the network
%* widths - trained widths of the RBF neurons
%* weights_input - trained input weights of the network
%* centers - trained network centers

function [weights_output, widths, weights_input,
centers]=ISO_RBF(nodes,trIn,trOut,stop,maximum_iteration)
 %% set the number of RBF units
 number_of_hidden_unit = nodes;
 %% initial parameter generation
 weights_input = rand(nodes,size(trIn,2)) ;
 weights_output = rand(nodes+1,size(trOut,2));
 widths = rand(nodes) ;
 centers = rand(nodes,size(trIn,2));
 binputs=trIn;
 boutputs=trOut;
 %% Run algorithm on the entire data set as a control
 [m,n] = size(binputs);
 %% combination of parameters
 para_cur = parameter_combination(weights_output, widths, weights_input, centers);
 %% other parameters
 I = eye(length(para_cur));
% maximum_iteration = 30;
 maximum_error = stop;
 mu = 1;
 %% training process
 [SSE(1)] = calculate_SSE(weights_input, weights_output,widths,centers,binputs,boutputs,eps);
 RMSE(1)=sqrt(SSE(1)/m);
 fprintf('iteration = 1, SSE = %6.10f\n',SSE(1));
 tic
 for iter = 2:maximum_iteration
 jw = 0;
 [gradient, hessian] = calculate_gradient(weights_input, weights_output, widths, centers,
binputs, boutputs);
 para_back = para_cur;
 while 1
 para_cur = para_back - ((hessian+mu*I)\gradient')';
 del(iter-1,:)=((hessian+mu*I)\gradient')';
 [weights_output, widths, weights_input, centers] =
parameter_divison(para_cur,number_of_hidden_unit,binputs);
 [SSE(iter)] = calculate_SSE(weights_input,
weights_output,widths,centers,binputs,boutputs,eps);
 if SSE(iter) <= SSE(iter-1)
 if mu > 10^-20;
 mu = mu/10;
 end;
 break;
 end;
 if mu < 10^20
 mu = mu*10;
 end;
 jw = jw + 1;
 if jw > 10
 break;
 end;
 end;
 RMSE(iter)=sqrt(SSE(iter)/m);
 fprintf('iteration = %d, RMSE = %6.10f\n',iter, RMSE(iter));
 if SSE(iter) < maximum_error
 break;
 end;
 end;

nelder_mead_ndmd2
function [f_BEST,BEST]=nelder_mead_ndmd2(obj,x0,d_SIM,df_min,ite_max,times)

 120

% INPUT ARGUMENTS:
% nelder_mead_ndmd2(@testf1,[100,100],1,1e-4,2e2,100)
% obj - Handle of objective function.
% x0 - Initial starting point.
% d_SIM - Size of initial simplex.
% df_min - Minimum improvement required for termination.
% ite_max - Desired number of iterations.

% OUTPUT ARGUMENTS:
% BEST - Location of baest solution.
% f_BEST - Best value of the objective found.
% SIMPLEX - Matrix conatining final simplex.
% f - Objective values for each point in the simplex.

format long;
tavg_ite=0;
tsecond=0;
second=0;
succ_time=0;
avg_ite=0;
avg_time=0;
avg_error=0;
average_min=0;
% Initialize parameters and create simplex
for itee=1:times, %training timesa=1;
 tic;
 alpha=1;
 a=1;
 b=2;
 c=0.5;
 n=length(x0);
 mo=zeros(1,n);
 mu=0.1;
 X0=ones(n,1)*x0;
 SIMPLEX=[X0+diag(d_SIM*(rand(1,n)));x0]; % create simplex vertices
 f(n+1)=0;
 f_mid(n)=0;
 mid=zeros(n);

 for init=1:n+1
 f(init)=feval(obj,SIMPLEX(init,:));
 end
 init=0;
 SIMPLEX(:,end+1)=f';
 SIMPLEX=sortrows(SIMPLEX,n+1); %sort row depending of value of f in ascending order;

 f=SIMPLEX(:,end)';
 SIMPLEX(:,end)=[];

 % Simplex Code
 for ite=1:ite_max,

 Pb=sum(SIMPLEX(1:n,:))/n; %calculate the centroid P_ of points with i#h
 Ps=(1+a)*Pb-a*SIMPLEX(end,:); %calculate reflection point of Ph:Ps
 f_Ps=feval(obj,Ps);
 Pss=(1-b)*Pb+b*Ps; %calculate P** by expansion
 f_Pss=feval(obj,Pss);

 if f_Ps>f(1)
 % using hyper plane equation
 I=SIMPLEX(:,1:n);
 A=ones(1,n+1)';
 A(:,2:n+1)=I;
 B=f';
 P=pinv(A)*B;
 grad=P';
 Gs=SIMPLEX(1,:)-alpha*grad(1,2:n+1);
 % Calculate reflected point
 P3=(1+a)*SIMPLEX(1,:)-SIMPLEX(end,:);
 P1=SIMPLEX(1,:);
 P2=Gs;

 121

 PP=(P3-P1).*(P2-P1);
 u=sum(PP)/sum((P2-P1).^2);
 Gs=P1+u*(P2-P1);
 f_Gs=feval(obj,Gs);

 if f_Gs<f_Ps
 Ps=Gs; %new reflected point
 f_Ps=f_Gs;
 Pb=SIMPLEX(1,:);
 Pss=(1-b)*SIMPLEX(1,:)+b*Ps; %calculate P** by expansion
 f_Pss=feval(obj,Pss);
 end

 end

 if f_Ps<f(1) %f(P*)<f(l)
 if f_Pss<f(1) %f(P**)<f(l)
 SIMPLEX(end,:)=Pss; %replace Ph by P**
 f(end)=f_Pss;
 else
 SIMPLEX(end,:)=Ps; %replace Ph by P*
 f(end)=f_Ps;
 end
 else
 check=0;
 for i=1:n,
 if f_Ps>f(i) % f_P*>f_i and i#h
 check=1;
 break;
 end
 end
 if check==0
 SIMPLEX(end,:)=Ps; %replace Ph by P*
 f(end)=f_Ps;
 else
 if f_Ps>f(end) %f_P*>f_h
 Pss=c*SIMPLEX(end,:)+(1-c)*Pb; %calculate P** by expansion
 f_Pss=feval(obj,Pss);
 if f_Pss>f(end) %f(P**)>f(h)
 for i=1:n+1
 SIMPLEX(i,:)=(SIMPLEX(i,:)+SIMPLEX(1,:))/2; %replace all Pi' by
(Pi+Pl)/2
 f(i)=feval(obj,SIMPLEX(i,:));
 end
 else
 SIMPLEX(end,:)=Pss; %replace Ph by P**
 f(end)=f_Pss;
 end
 else
 SIMPLEX(end,:)=Ps; %replace Ph by P*
 f(end)=f_Ps;
 end
 end
 end

 % reorder and display iteration output
 SIMPLEX(:,end+1)=f';
 SIMPLEX=sortrows(SIMPLEX,n+1);

 f=SIMPLEX(:,end)';
 SIMPLEX(:,end)=[];
 error(ite)=f(1);
 t(ite)=ite;

 % terminate condition3 for neural network training
 if f(1)<df_min,
 succ_time=succ_time+1;
 avg_ite=avg_ite+ite;
 avg_time=avg_time+1;
 avg_error=avg_error+f(1);
 second=second+toc;

 122

 break;
 end
 end;
 % display the result
 succ_rate=succ_time/times;
 BEST=SIMPLEX(1,:);
 f_BEST=f(1);
% average_min=average_min+f_BEST;
% tavg_ite=tavg_ite+ite;
% tsecond=tsecond+toc;
% disp(' ');
% disp(['Minimum value of f = ',num2str(f_BEST),])
% disp(['located at x = [',num2str(BEST),'].'])
% disp(['Success rate = [',num2str(succ_rate),'].'])
% % plot
% semilogy(t,error,'b');
% xlabel('Iterations')
% ylabel('Error')
% hold on;
end
% avg_iteration=avg_ite/avg_time;
% avg_errors=avg_error/avg_time;
% avg_second=second/avg_time;
% tavg_iteration=tavg_ite/times;
% avg_minimum=average_min/times;
% avg_tsecond=tsecond/times;
% disp(['Average Iteration = ',num2str(avg_iteration),])
% disp(['Average Error = ',num2str(avg_errors),])
% disp(['Average second = ',num2str(avg_second),])
% disp(['tAverage Iteration = ',num2str(tavg_iteration),])
% disp(['tAverage Minimum = ',num2str(avg_minimum),])
% disp(['tAverage second = ',num2str(avg_tsecond),])
return

NME-ELM
%************************** METHOD - NME-ELM ******************************
%* INPUTS:
%* in - the input pairs for training NxD
%* outputs - training target values Nxm
%* Nodes - the maximum number of neurons
%* eps - the error criterion
%* OUTPUTS:
%* cent - the resulting network centers N~xD
%* weights - the resulting network output weights
%* radius - the widths of the resulting network
%* mseTr - the mean squared error for each added neuron
%**************Copyright - Dr. Philip Reiner - 2015***********************

function [cent, weights, radius, mseTr]=NME_ELM3(in,outputs,Nodes,eps)
%alpha, beta, and gamma are simplex parameters
% figure(6);clf;
global inputs prevOut newCen w desired np nd H;
inputs=in;
[np,nd]=size(inputs);
desired = outputs;
prevOut=zeros(np,1);
Er=outputs;
mseTr(1)=(Er'*Er)/np;
j=1;
while j<=Nodes
 %% Initialize each node
 [big I]=max(abs(Er));
 cent(j,:)=inputs(I(1),:);
 newCen=cent(j,:);
 % find the radiusssssssssssssssssssssssss
 figure(1);clf;
 [f_BEST,BEST]=nelder_mead_ndmd2(@evalEr,1,4,1e-5,10,1);
 %% Calculate Final weight
 weights(j)=w;
 Er=Er-weights(j)*H;

 123

 radius(j)=BEST;
 mseTr(j+1)=(Er'*Er)/np;
 prevOut=prevOut+w*H;
 % x1=reshape(in(:,1),30,30);y1=reshape(in(:,2),30,30);z1=reshape(prevOut,30,30);
 % figure(4);clf;surf(x1,y1,z1);
 % % title('Desired Curve');xlabel('x');ylabel('y');
 % plot(inputs,w(j)*H(:,j),'r','LineWidth',2.5);
 % legend('Desired','C1','NME-ELM Out');
 j=j+1;
end

Parameter_combination
%--
%* METHOD - parameter_combination
%--
%* Method calculates the SSE for a network
%*
%* INPUTS:
%* weights_input - the input weights
%* weights_output - the output weights of the network
%* widths - the widths of the neurons in the network
%* centers - the centers of the neurons in the network
%*
%* OUTPUTS:
%* vector - a vector of all the network parameters in a single row
function [vector] = parameter_combination(weights_output, widths, weights_input, centers)
[p1,p2] = size(weights_input);
[p3,p4] = size(centers);
vector = [weights_output widths reshape(weights_input',1,p1*p2) reshape(centers',1,p3*p4)];

Parameter_division
%--
%* METHOD - parameter_division
%--
%* Method calculates the SSE for a network
%*
%* INPUTS:
%* vector - a vector of all the network parameters in a single row
%* num - number of nodes in the network
%* data - the input data for training
%*
%* OUTPUTS:
%* weights_input - the input weights
%* weights_output - the output weights of the network
%* widths - the widths of the neurons in the network
%* centers - the centers of the neurons in the network

function [weights_output, widths, weights_input, centers] = parameter_divison(vector, num, data)
[row, col] = size(data);
for i = 1:(num+1)
 weights_output(1,i) = vector(1,i);
end;
for i = 1:num
 widths(1,i) = vector(1, num+1+i);
end;
for i = 1:num
 for j = 1:col
 weights_input(i,j) = vector(1,2*num+1+(i-1)*col+j);
 % weights_input(i,j) = vector(1,num+1+(i-1)*col+j);
 end;
end;
for i = 1:num
 for j = 1:col
 centers(i,j) = vector(1,2*num+1+num*col+(i-1)*col+j);
 % centers(i,j) = vector(1,num+1+num*col+(i-1)*col+j);
 end;
end;

 124

verification
%--
%* METHOD - Verification
%--
%* Method calculates outputs generated by a network
%*
%* INPUTS:
%* weights_input - the input weights
%* weights_output - the output weights of the network
%* widths - the widths of the neurons in the network
%* centers - the centers of the neurons in the network
%* testing_input - the test data for the network to process
%*
%* OUTPUTS:
%* output - network outputs for each entry in the testing inputs

function [output] = verification(weights_input, weights_output, widths, centers, testing_input)
%% verification process
[m,n] = size(testing_input);
[p,q] = size(centers);
for i = 1:m
 count = weights_output(1);
 for j = 1:p
 count = count + weights_output(j+1)*exp(-sum((weights_input(j,:).*testing_input(i,:)-
centers(j,:)).^2)/widths(j));
 end;
 output(i,1) = count;
end;

 125

	Chapter 1 Introduction
	1.1 Artificial Neural Networks
	1.1.1 Learning
	1.1.2 Modelling Artificial Neural Networks
	1.1.3 Radial Basis Function Networks

	Chapter 2 Neural Network Training and Construction
	2.1 Neural Network Architectures
	2.2 Supervised Neural Network Training
	2.2.1 Error Back Propagation and Gradient Descent
	2.2.2 Newton’s Algorithm
	2.2.3 Gauss-Newton Algorithm
	2.2.4 Levenberg-Marquardt Algorithm
	2.2.5 Improved Hessian Computation

	2.3 Optimal Construction and Training
	2.3.1 Resource Allocating Network (RAN and RANEKF) Algorithm
	2.3.2 Generalized Growing and Pruning Algorithm
	2.3.3 Support Vector Machines

	2.4 Extreme Learning Machines
	2.4.1 Incremental Extreme Learning Machine
	2.4.2 Convex Incremental Extreme Learning Machine
	2.4.3 Enhanced Random Search Incremental Extreme Learning Machine

	Chapter 3 Nelder-Mead Enhanced Extreme Learning Machine
	3.1 Nelder-Mead Simplex Method
	3.1.1 Improved Nelder-Mead Simplex Method

	3.2 Nelder-Mead Enhanced Extreme Learning Machine
	3.3 Testing and Comparisons
	3.3.1 Highly Nonlinear Benchmark: Peaks Problem
	3.3.2 Real World Data

	Chapter 4 Error Correction Algorithm
	4.1 Levenberg-Marquardt Training for RBF Networks
	4.1.1 ISO Deficiencies

	4.2 Error Correction Algorithm
	4.3 Testing and Comparisons
	4.3.1 Highly Nonlinear Benchmarks
	4.3.1.1 Rapidly Changing Function
	4.3.1.2 Peaks Problem
	4.3.1.3 Two Spiral Problem

	4.3.2 Real-World Data

	Chapter 5 Conclusions

