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Abstract 
 

 
 Machine Learning and Computational Intelligence are rapidly growing fields of research 

in both academia and industry. Artificial neural networks are at the heart of much of this 

research. Efficiently constructing and training artificial neural networks is of utmost importance 

to advancing the field. It has been shown that compact architectures show better generalization 

performance to networks containing many computational nodes. Furthermore, special neurons 

consisting of a Radial Basis Function can be used to improve local performance of ANNs. Many 

algorithms such as Support Vector Regression, Error Backpropagation, and Extreme Learning 

Machines can be used to train networks once an architecture is chosen. Other algorithms such as 

RAN, MRAN, and GGAP can train networks as they are constructed. However, many of these 

algorithms have limitations that lead to an excessive network size. Two new RBF network 

construction algorithms are introduced with the aim of increasing error convergence rates with 

fewer computational nodes. The first method is introduced in Chapter 3 and expands on the 

popular Incremental Extreme Learning Machine algorithms by adding a Nelder-Mead simplex 

optimization to the process. The second algorithm, described in Chapter 4, uses a Levenberg-

Marquardt algorithm to optimize the positions and heights of RBF units as they are added to a 

network. These algorithms are compared to many state of the art algorithms on difficult 

benchmarks and real-world problems. The results demonstrate that more compact networks with 

superior error performance are created. 
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Chapter 1 Introduction 

 

In our modern society, computers are everywhere. From statistical modelling of complex 

systems to turning on and off the lights, computers are used to solve problems in every aspect of 

our lives. As technology becomes more advanced, the number of problems that can feasibly be 

handled by software increases. However, there are some complex real-world problems that 

cannot effectively be solved by traditional approaches such as first principles modeling or 

explicit statistical modeling. Many of these problems are not considered to be mathematically 

well-posed problems. However, nature often provides many examples of biological systems 

exhibiting incredibly complex functions. For instance, the human body has 244 degrees of 

freedom being controlled by 630 muscles [1], yet humans have little trouble executing target 

movements. Furthermore, these controls must be able to be executed in the presence of 

uncertainty, noise, and an ever-changing context. 

The attempt to address complex real-world problems using nature-inspired computational 

methodologies is often known as Computational Intelligence (CI). The characteristic of 

“intelligence” is usually attributed to humans, but the field of CI attempts to use software to 

imitate the abilities of humans to perform reasoning and decision making. For example, Fuzzy 

Logic was introduced by Zadeh in 1965 as a tool to formalize and represent the reasoning 

process. Fuzzy logic systems possess many characteristics attributed to intelligence by dealing 

effectively with uncertainty that is common for human reasoning, perception, and inference, 

while maintaining the formal mathematical backbone needed for computation [2]. Evolutionary 
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computation mimics the population based evolution through reproduction of generations and 

genetics in so called genetic algorithms [3]. 

Another attribute of intelligence that CI attempts to mimic is learning, or the ability for a 

system to change with respect to the data it receives rather than follow explicitly programmed 

instructions. This field is called Machine Learning (ML) and shares its roots, along with CI, in 

computer science and statistics. ML is also closely tied with optimization. In fact, many of the 

learning algorithms can be thought of as optimizing a system relative to the problem to be 

learned. As with other CI subfields, machine learning is employed in computing tasks where 

designing and programming explicit rule-based algorithms is infeasible. ML is often used in real-

world tasks such as, spam filtering, optical character recognition (OCR), search engines, pattern 

recognition, data mining, and computer vision [4]. 

ML tasks can be broken into several categories such as: supervised learning, unsupervised 

learning, semi-supervised learning, and reinforcement learning. Supervised learning algorithms 

are trained on labelled examples, data where the desired output is known for a specific input. 

These algorithms attempt to generalize a function that maps inputs to outputs so that a previously 

unseen input will generate an output. Unsupervised learning algorithms are trained on unlabeled 

examples, where the data is examined to find an underlying structure. Semi-supervised learning 

combines both labeled and unlabeled data to generate an appropriate function or mapping. 

Reinforcement learning is concerned with how intelligent agents should act in an environment to 

maximize some notion of reward or minimize a notion of cost. The agent performs a set of 

actions which cause the observable state of the environment to change. By examining the 

environment after each action, the agent attempts to gather knowledge about how the 
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environment responds to its actions. The agent then attempts to perform actions that maximize a 

reward or minimize a cost [5]. 

There are several approaches to solving an ML problem. These approaches include 

algorithms such as: decision tree learning, association rule learning, artificial neural networks, 

inductive logic programming, support vector machines, clustering, bayesian networks, 

reinforcement learning, representation learning, similarity and metric learning, and sparse 

dictionary learning. The focus here will be on developing Artificial Neural Networks (ANNs); 

their architectures, feature mapping, and training algorithms. ANNs will be used to solve 

supervised problems consisting of both classification and regression.  

 

1.1 Artificial Neural Networks 

In the field of machine learning, Artificial Neural Networks (ANNs) are computational 

models designed to replicate the function of an animal’s central nervous system (CNS) to bring a 

sense of intelligence to a software module. Computations in an ANN are structured in terms of 

an interconnected group of artificial neurons, called a network. Modern neural networks are non-

linear statistical data modeling tools. These networks are designed to do popular tasks in 

machine learning such as classification, regression, and pattern recognition. The idea of 

intelligence in an ANN comes from the ability of the system to be changed by the data that is fed 

through it. This ability is referred to as “learning.” There are several methods by which an ANN 

learns. For instance, in unsupervised cases, the distance between separations in the data created 

by the neural network is maximized, or in supervised cases, the difference between the ANN 

output and the target output is minimized. Learning methods will be discussed in great detail 

later. 
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There is no single formal definition of what an artificial neural network is. However, a class 

of computational models may be called “Neural” in current research literature if they possess the 

following characteristics: 

1. They consist of sets of adaptive (tunable) weights that affect the relative strength of 

various inputs, and these weights are adjusted by a learning algorithm. 

2. They are capable of approximating non-linear mappings of their inputs to an output. 

The adaptive weights are conceptually connection strengths between neurons which are 

activated as data is passed through the network for both training and prediction. In modern neural 

networks, the similarities between ANNs and their biological counterparts is found mostly in the 

implementation of the artificial neurons and their arrangement in parallel and local processing 

paradigms and in their ability to adapt with new data. 

The neurons used in ANNs are modelled after neurons found in biological systems. Each 

neuron has a set of input connections (representing dendrites) and an output (representing the 

neuron’s axon). The inputs are usually combined by a weighted sum and operated on by a 

nonlinear function, known as the neuron’s activation function, to produce an output. This 

activation function is the basis of how an ANN provides nonlinear mappings from inputs to 

outputs. Traditionally, the activation function of a neuron is a simple threshold function causing 

the output of each neuron to be one or zero. This corresponds to the all or nothing firing of a 

biological neuron. However, continuous functions such as the sigmoid or logistic function are 

used to provide a differentiable output while still providing a nearly all or nothing output. This 

differentiability is important for many modern learning methods that will be discussed later. In 

special cases, other activation functions are used for neurons to have specific effects on the 

mapping of inputs to outputs. Figure 1.1-1An example of an artificial neuron, (a) and a 
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collection of neurons, (b), known as an artificial neural network. Here xi is an input, h is the 

activation function, and yn is equal to the weighted sum of neuron inputs: yn = x1w1,n +

x2w2,n … + xiwi,n.Figure 1.1-1 depicts a single neuron and a collection of neurons in a neural 

network. 

 

 

(a) (b) 

Figure 1.1-1An example of an artificial neuron, (a) and a collection of neurons, (b), known as an 

artificial neural network. Here 𝒙𝒙𝒊𝒊 is an input, 𝒉𝒉 is the activation function, and 𝒚𝒚𝒏𝒏 is equal to the 

weighted sum of neuron inputs: 𝒚𝒚𝒏𝒏 = 𝒙𝒙𝟏𝟏𝒘𝒘𝟏𝟏,𝒏𝒏 + 𝒙𝒙𝟐𝟐𝒘𝒘𝟐𝟐,𝒏𝒏 … + 𝒙𝒙𝒊𝒊𝒘𝒘𝒊𝒊,𝒏𝒏. 

 
1.1.1 Learning 

The most interesting attribute of ANNs is the possibility of learning. Given a specific task to 

solve, i. e. a set of data that needs to be classified or a function to be approximated, learning is 

the ability of the ANN to solve the given task in some optimal sense. The optimality is defined as 

minimizing a given cost function. For instance, given a set of data and the task to find a function 

that approximates the characteristics of the data, the cost function would be some measure of 

total error between the network output and the actual data. 

The cost function is an important concept in learning, as it is the mechanism by which the 

success of the network is measured. The cost function, 𝐶𝐶, is defined such that for the optimal 
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solution, 𝑓𝑓∗, 𝐶𝐶(𝑓𝑓∗) ≤ 𝐶𝐶(𝑓𝑓)∀𝑓𝑓 ∈ 𝐹𝐹. Basically, no solution has a cost less than the cost of the 

optimal solution. A particular learning algorithm is defined by the methods it uses to search 

through the solution space to find a function that has the smallest possible cost. For problems 

where the solution is dependent on some data, the cost must be a function of the observations. In 

this case, the solution is an approximation of a statistic of the data. For instance, the problem of 

finding a function, 𝑓𝑓, which minimizes 𝐶𝐶 = 1
𝑁𝑁
∑ (𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖)2𝑁𝑁
𝑖𝑖=1  for 𝑁𝑁 data pairs (𝑥𝑥, 𝑦𝑦) drawn 

from some distribution, 𝒟𝒟. In this case, the cost is minimized over a sample of the data in hopes 

that the solution will adequately represent the entire data set. Online learning methods attempt to 

address this problem when 𝑁𝑁 → ∞. In online learning, a portion of the cost is minimized as each 

sample is shown to the network. In the end, the cost function will be chosen either based on its 

desirable properties, such as convexity, or because it arises naturally from the problem to be 

solved. 

There are three major paradigms associated with learning tasks (not including the 

combination of supervised and unsupervised learning, semi-supervised learning). These are 

supervised learning, unsupervised learning, and reinforcement learning.  

In supervised learning, a set of training data is given such that each sample is a (𝑥𝑥, 𝑦𝑦),𝑥𝑥 ∈

𝑋𝑋,𝑦𝑦 ∈ 𝑌𝑌 pair, and the goal of the learning is to find a function 𝑓𝑓:𝑋𝑋 → 𝑌𝑌 in the set of functions 

that matches the examples. In other words, we wish to infer the mapping implied by the data. 

The cost function will then be a function of the errors between our mapping of the data and the 

data itself. A commonly used cost for this type of problem is the mean-squared error which is the 

squared difference between the network’s output, 𝑓𝑓(𝑥𝑥), and the training target, 𝑦𝑦, over all of the 

training data. Gradient descent algorithms are commonly used to minimize this cost. Tasks that 

fall under the umbrella of supervised learning are pattern recognition (classification) and 
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regression (function approximation). In some cases, sequential data can be applied to the 

supervised learning paradigm, i.e. speech and gesture recognition. In these problems, a function 

representing feedback on the quality of the solutions obtained is given. 

In unsupervised learning, some data, 𝑥𝑥, is given. The cost function to be minimized can then 

be any function of the data and the network output, 𝑓𝑓. The cost function will be dependent on the 

desired model and the a priori assumptions of the data. For example, if the model is simply a 

constant, 𝑓𝑓(𝑥𝑥) = 𝑎𝑎, and the cost is the mean-squared error discussed earlier, minimizing the cost 

will yield an 𝑎𝑎 equal to the mean of the data. Of course, the cost function is typically much more 

complicated than that. For example, it could be related to the mutual information between 𝑥𝑥 and 

𝑓𝑓(𝑥𝑥), or it could be related to the posterior probability of the model given the data. Machine 

learning tasks that fall under the unsupervised learning paradigm include, clustering, statistical 

distribution modelling, compression, and filtering. 

Semi-supervised learning is a combination of both supervised and unsupervised paradigms. 

Typically this paradigm is created as a series combination of supervised and unsupervised 

networks. In some cases, the raw data itself may not be suitable for a supervised learning 

approach, so an unsupervised approach is used to model some properties of the raw data. These 

modelled properties are then treated as data and fed into a supervised learning structure. For 

example, a set of data may be clustered by an unsupervised algorithm to determine a set of 

categories for the data. Then that information is added to the data and passed to a function 

approximation network that will treat a training sample differently based on the class to which it 

belongs. This combination of paradigms is used often in the industry for many specific 

applications such as, medical diagnosis, image processing, control systems, and many others. 
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Reinforcement learning is the paradigm with which most people associate the idea of 

“artificial intelligence.” In reinforcement learning, the data are usually not given explicitly, but 

generated by an agent’s interactions with the environment. At each point in time, 𝑡𝑡, the agent 

performs an action, 𝑦𝑦𝑡𝑡, and the interaction with the environment generates an observation, 𝑥𝑥𝑡𝑡, 

and an instantaneous cost, 𝑐𝑐𝑡𝑡. The goal is then to discover a rule base for selecting actions that 

minimizes a measure of the expected cumulative cost. The environment is often modelled as a 

Markov Decision Process (MDP) with states 𝑠𝑠1, … , 𝑠𝑠𝑛𝑛 ∈ 𝑆𝑆, and actions, 𝑎𝑎1, … ,𝑎𝑎𝑚𝑚 ∈ 𝐴𝐴, with the 

probability distributions pertaining to the instantaneous cost distribution, 𝑃𝑃(𝑐𝑐𝑡𝑡|𝑠𝑠𝑡𝑡), the 

observation distribution, 𝑃𝑃(𝑥𝑥𝑡𝑡|𝑠𝑠𝑡𝑡), and the transition distribution, 𝑃𝑃(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡). Then the rule 

base, or policy, is defined as the conditional distribution over actions given the observations. 

Taken together, the MDP and the policy are defined as a Markov Chain (MC). The goal is to 

discover the MC for which the cost is minimal. Many times ANNs are used as a block in the 

overall reinforcement learning algorithm, being coupled with other ideas such as Dynamic 

programming or fuzzy systems. Specific problems that can be solved in this paradigm are, 

intelligent vehicle routing, resource management, controls, and other sequential decision making 

tasks.  

There are many algorithms for learning. Most of them can be thought of as an optimization 

algorithm that adjusts the relative strength of connections in a neural network in order to 

minimize a cost function. This optimization of neural networks is the key concept that allows 

them to be useful in many modern day applications where the problem is not easily solved using 

direct analytical methods. Specifically, the ability to adjust neurons in a local sense is very 

important in solving many problems that seem to be radially based such as, image processing, 

clustering, and classification. 
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1.1.2 Modelling Artificial Neural Networks 

The term model in the context of an ANN can be used to describe a particular arrangement of 

neurons in a network or a certain activation function for each neuron. These models are referring 

to a series of mathematical models that define a mapping,𝑓𝑓:𝑋𝑋 → 𝑌𝑌, or a distribution over 𝑋𝑋 and 

𝑌𝑌. Sometimes, models are also closely associated with a specific learning rule or training 

algorithm.  

For instance, many of today’s neural networks are built on sigmoidal or bipolar neurons. 

These neurons are modelled as threshold neurons like the ones found in biology consisting of an 

activation function that is either all the way on or all the way off such as: 𝑓𝑓(𝑥𝑥) = 1
1+𝑒𝑒−𝑥𝑥

. Another 

similar activation function is the bipolar activation function which has the same shape as a 

sigmoidal function. This function however operates in the range (-1,1). Many times this function 

is modelled as the tangent hyperbolic function: 𝑓𝑓(𝑥𝑥) = tanh (𝑥𝑥). These types of neurons are 

generally thought of as having a global impact with relation to the input space. Algorithms such 

as Error Backpropoagation (EBP) are generally designed to handle architectures consisting of 

these neurons. In fact, the most commonly used network paradigms today consist of sigmoidal 

neurons trained by the EBP algorithms. However, it will be investigated in subsequent sections 

whether or not this is the most effective training paradigm. In some cases, the global nature of 

the sigmoidal neurons can actually be a disadvantage to some systems. If a more local neuron 

structure is needed, sigmoidal networks will require a far larger number of neurons than a local 

paradigm such as Gaussian based neurons. 

Neurons with locally tuned response characteristics can be found in many parts of biological 

nervous systems, such as visual systems. These neurons are selective within a finite range of the 

input space. The local characteristics of these neurons makes them suitable for problems in 

 9 



which there are strong spatial relationships. For example, the cochlear stereocilia cells of a 

biological ear have a locally tuned response to the frequency of sound being sensed. 

Additionally, much of the data obtained in the visual field has strong spatial relations, so it is no 

surprise that neurons associated with the biological eye model signals locally. These 

characteristics allow artificial locally tuned neural networks to be well suited to solving signal 

processing and computer vision problems. 

The activation functions of locally tuned neurons are often referred to as Radial Basis 

Functions (RBF), and networks made out of locally tuned neurons are called RBF networks. 

Most RBF network algorithms use a simple three layered architecture where only one hidden 

layer of parallel units exists. This has the benefit of making the training problem much simpler as 

well as eliminating the complexity of choosing an architecture (however more architectural 

considerations for RBF networks will be discussed in Chapter 2). Radial Basis Functions also 

have low sensitivity to noise in the data. This allows the adjustable parameters to converge to a 

stable minimum during the training process. All of the aforementioned advantages of RBF 

networks allow them to be tuned and examined to have good generalization performance. The 

research proposed in this work will demonstrate the usefulness of RBF networks in solving real-

world data problems. 

 

1.1.3 Radial Basis Function Networks 

RBF networks can be made up of a variety of activation functions. The only requirement is 

that the function value depends only on the distance from the inputs to an origin or center. This 

allows the neurons to be trained so that inputs in different areas of the input space will have 
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different effects on the outputs. Given a center, 𝑐𝑐 and radius, 𝜎𝜎, there are several functions that 

are considered RBFs. A few popular examples are shown below: 

Gaussian: 

 𝒉𝒉(𝒙𝒙) = 𝒆𝒆−
‖𝒙𝒙−𝒄𝒄‖𝟐𝟐

𝝈𝝈𝟐𝟐  
 

(1.1-1) 

Multiquadric: 

ℎ(𝑥𝑥) = �1 +
‖𝑥𝑥 − 𝑐𝑐‖2

𝜎𝜎2
 (1.1-2) 

 

Inverse quadratic: 

ℎ(𝑥𝑥) =
1

1 + ‖𝑥𝑥 − 𝑐𝑐‖2
𝜎𝜎2

 (1.1-3) 

 

Inverse multiquadratic: 

ℎ(𝑥𝑥) =
1

�1 + ‖𝑥𝑥 − 𝑐𝑐‖2
𝜎𝜎2

 

 

(1.1-4) 

In a learning paradigm these functions will be optimized by adjusting the centers, radii, and 

heights of each RBF.  

The first use of RBF functions for mapping is found in T. M. Cover’s work in 1965. Cover’s 

theorem on the pattern-separating capacity of hyperplanes asserts that a complex classification 

problem is more likely to be linearly solvable if it is mapped nonlinearly into a high-dimensional 

space [6]. This concept is also the motivation for the use of nonlinear kernel functions in Support 

Vector Machines (SVM). Figure 1.1-2 depicts this concept. 
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Most often, RBF networks consist of a single hidden layer with many RBF neurons in 

parallel and an output layer that is a weighted sum of the hidden neurons. This is arrangement is 

known as the Single-Layer Feedforward Network (SLFN). J. Moody and C. J. Darken first 

proposed a network in the form of a SLFN with locally tuned processing units in 1988 [7].  An 

example of a SLFN is shown in Figure 1.1-3. This network architecture is used extensively in 

constructing RBF networks.  

 

 

 
(a) 

 
 

 
(b) 

 
Figure 1.1-2 An illustration of Cover’s theorem. (a) A set of data that is not linearly separable in 

1 dimension. (b) By mapping this data to 2-dimensional space using the nonlinear function: 

(𝑥𝑥) = 𝑒𝑒−‖𝑥𝑥−0.5‖2 , the data is made linearly separable. 
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Figure 1.1-3 An SLFN network like the one used by Moody and Darken. Here, 𝑦𝑦 is a function of 

𝑥𝑥 and the network parameters: input weights, centers, widths, etc. 

 
Many of the early implementations of the SLFN type of network set the network parameters 

by first randomly choosing training data points as RBF centers then using singular-value 

decomposition to solve for the weights (or heights) of the RBF neurons. T. Poggio and F. Girosi 

created a method of selecting RBF centers using a gradient descent training approach. They 

called their algorithm Generalized Radial Basis Function (GRBF) networks [8]. S. Chen, C. F. N. 

Cowan, and P. M. Grant demonstrated that an orthogonal least squares learning method can be 

used to select RBF centers in such a way that each RBF unit maximizes the variance of a desired 

output. They demonstrated this method’s effectiveness on two signal processing applications [9]. 

Shortly afterwards, in 1992, D. Wettschereck and T. Dietterich demonstrated an effective 

application of GRBF networks to the task of language pronunciation [10].  

Selecting the appropriate number of RBF neurons to solve a given problem is a task as important 

as selecting the proper RBF parameters. A resource allocating network (RAN) was proposed in 

which a network learns by adjusting the parameters of existing neurons, then adding new 
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neurons to compensate for poor performance on certain input patterns [11]. An improved version 

of the RAN algorithm was proposed in which an extended Kalman filter (RANEKF) was used, 

instead of a least-mean square algorithm, for updating the network parameters [12]. Further 

improvement was made on the RAN algorithm by Yingwei et. al. [13]. This algorithm creates a 

minimally sized network and is known as MRAN. It is very often used in current literature in 

real-world applications [14]. A growing radial basis function network algorithm was proposed in 

which, at first, a small number of RBF neurons are trained. During the training process, there is a 

period called the “growing cycle” in which a neuron satisfying two splitting criteria is split into 

two new neurons. The learning scheme provided a framework for incorporating existing 

supervised and unsupervised training algorithms into the growing RBF network [15]. An 

algorithm for growing and pruning RBF (GAP-RBF) networks was introduced by P. 

Saratchandran and N. Sundararajan [16]. This algorithm evaluates the “significance” of each 

neuron based on its contribution to the network output averaged over all the input data. After it is 

evaluated, the neuron is either kept in the network or discarded. This process allows problems to 

be solved with a greatly reduced network size and training time.  

Two algorithms that further optimize the network construction process with the aim of 

increasing error convergence rates of highly compact networks are introduced in this work. The 

first method, Nelder-Mead Enhanced Extreme Learning Machine (NME-ELM) is introduced in 

Chapter 3 and expands on the popular Incremental Extreme Learning Machine algorithms by 

adding a Nelder-Mead simplex optimization to the process. The Error Correction (ErrCor) 

algorithm, described in Chapter 4, uses a Levenberg-Marquardt algorithm to optimize the 

positions and heights of RBF units as they are added to a network. These algorithms are 

compared to many state of the art algorithms on difficult benchmarks and real-world problems.  
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Currently RBF networks are used in many different areas of industry. For example, Sue Inn 

Ch’ng et. a.l used an adaptive momentum Levenberg-Marquardt RBF for face recognition in 

[17]. Like traditional ANNs RBF networks have also been developed to handle fault diagnosis 

problems [19], adaptive control problems [20]–[24], image processing [25], [26], approximation 

and interpolation [27], [28], and classification [18].   
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Chapter 2 Neural Network Training and Construction 

 
Once a network paradigm is chosen, the construction and training of an ANN is a non-trivial 

process. There are many ways a network can be implemented. In general, two major 

considerations must be made: 

(1) What is the architecture of the network, and how many neurons will be in that 

architecture? 

(2) Which algorithm can be used to train the given network architecture to a desirable error 

level? 

These considerations are typically dependent on each other and on the knowledge of the creator 

of the network. Many architectures and training algorithms were studied in the comparative work 

[29]. These architectures and algorithms have different advantages and disadvantages for each 

situation. They will be discussed more in depth in subsequent sections of this work.  

 

2.1 Neural Network Architectures 

One of the major difficulties facing researchers using ANNS is the decision of how many 

neurons must be used to solve a given problem, and in which topology should these neurons be 

arranged. Unfortunately, there is a nearly infinite number of combinations of networks that could 

possibly solve a given problem. There are three major architectures that are used in the research 

to solve many problems. These architectures are depicted in Figure 2.1-1, 2.1-2, 2.1-3, and 2.1-4 

while their advantages and disadvantages are discussed in depth in the following paragraphs.  
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The most common architectures are examined and compared in [30]. The problem on which 

they are compared is the parity-N problem. This problem is essentially a mapping defined by 2𝑁𝑁 

binary vectors that indicates whether the sum of the 𝑁𝑁 elements of every binary vector is odd or 

even. In this problem, any pattern with the same sum as another pattern can be omitted from 

training as it will have the exact same answer as another pattern. Therefore, a simplified set of 

the original 2𝑁𝑁 patterns can be obtained which contains only 𝑁𝑁 + 1 patterns. This problem was 

shown to be a suitable benchmark for comparison in [31]. Table 1 below shows the full parity-3 

problem and table 2 depicts the reduced set of patterns. 

 

Table 1 Parity-3 problem inputs and outputs. 

Input Sum of Inputs Output 
000 0 0 
001 1 1 
010 1 1 
011 2 0 
100 1 1 
101 2 0 
110 2 0 
111 3 1 
 

Table 2 Parity-3 problem using sum of inputs as simplified inputs. 

Simplified Inputs Output 
0 0 
1 1 
2 0 
3 1 

 

The most popular and simplest of the studied neural network architectures is the Multilayer 

Perceptron architecture. This architecture can have any number of hidden layers with any 

number of neurons, but the connections cannot go across layers. In a MLP network with a single 
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hidden layer consisting of 𝑛𝑛 hidden neurons, the largest possible 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑁𝑁 problem that can be 

solved is: 

 𝑁𝑁 = 𝑛𝑛.  (2.1-1) 
 

Figure 2.1-1 depicts a typical single layer MLP. If a MLP network is restricted to a single 

hidden layer, it is called a Single Layer Feedforward Network (SLFN).  

 

Figure 2.1-1 A simple MLP architecture with a single hidden layer. The hidden neurons are the 

neurons contained in the dashed rectangle. For this network, 𝑛𝑛 = 3 and the largest parity 

problem that can be solved is parity-3. 

If a MLP network is allowed to have connections across layers, then the network is called a 

Bridged Multilayer Perceptron (BMLP). These networks have been shown to be more powerful 

than traditional MLP networks [30], [31]. For a single layer BMLP network, like the one shown 

in Figure 2.1-2, consisting of 𝑛𝑛 neurons the largest possible 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑁𝑁 problem that can be 

solved is: 

  𝑁𝑁 = 2𝑛𝑛 − 1.  (2.1-2) 

Of course, most designers of neural networks would like to have more than a single hidden 

layer. Given a BMLP network with two hidden layers (like the one in Figure 2.1-3) where the 
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number of neurons in the first layer is 𝑚𝑚 and the number of neurons in the second layer is 𝑛𝑛, the 

largest possible 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡𝑦𝑦 − 𝑁𝑁 problem that can be solved is: 

𝑁𝑁 = 2(𝑚𝑚 + 1)(𝑛𝑛 + 1) − 1 (2.1-3) 

 If this pattern is carried out further so that a BMLP network has 𝑘𝑘 hidden layers with each 

layer containing a number of neurons 𝑛𝑛𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑘𝑘, then the largest 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑁𝑁 problem that 

can be solved is: 

 𝑁𝑁 = 2∏ (𝑛𝑛𝑖𝑖 + 1)𝑘𝑘
𝑖𝑖=1 − 1 (2.1-4) 

 

 

Figure 2.1-2 A simple BMLP architecture. The “bridged” connections that distinguish this 

network from the one shown in Figure 2.1-1 are highlighted in red. 
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Figure 2.1-3 A fully bridged BMLP architecture with two hidden layers, 𝑛𝑛1 = 3,𝑛𝑛2 = 2. This 

network is capable of solving a parity-23 problem. 

 
A fully connected cascade (FCC) network is the third type of network investigated. This 

network is a BMLP network created with the following constraints:  

(1) All connections are bridged and connected to all subsequent layers. 

(2) All hidden layers are restricted to having a single neuron apiece.  

This network architecture is depicted in Figure 2.1-4. Intuitively, this architecture requires as 

many hidden layers as there are neurons. This arrangement allows for a very powerful network to 

be created without using a large number of neurons. Many networks called “deep networks” are 

similar to the FCC network. The problem with these networks is that not many algorithms can 

train them. However, recent research has been focused on solving this problem. The largest 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑁𝑁 problem that can be solved by a FCC network containing 𝑛𝑛 hidden neurons is: 

  𝑁𝑁 = 2𝑛𝑛 − 1 (2.1-5) 
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Figure 2.1-4 A FCC network with 3 neurons. This network is capable of solving the parity-7 

problem. 

It may seem obvious that the FCC architecture should be used to solve for every problem, but 

the task of constructing an optimized network is not so simple. In most cases, a network is 

designed with some predetermined architecture and then the weights on the connections between 

neurons are optimized in an attempt to obtain error convergence. In some networks, the error will 

never converge for a particular problem. One must still answer the question, “How will an 

optimal network be built, so that the error for a particular problem will always converge?”  

These neural network architectures offer an interesting set of solutions for solving a given 

problem with ANNS. For RBF networks, the SLFN structure is commonly used. This structure is 

similar to the MLP shown above. However, the output neuron of a RBF network is typically a 

linear, or summing, neuron.  

 

2.2 Supervised Neural Network Training 

The ability for a network to change its parameters to solve a problem in some optimal sense 

is what makes ANNS appealing. The algorithms used to optimize neural networks are 
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collectively known as training algorithms. As is always the case with optimization, a cost 

function must be defined. The cost function used in neural networks is known as the error, 

meaning the difference between a desired output and the current network output for a given 

pattern. This error function is a function of the data presented to the neural network and the 

neural network parameters. This will allow the error to be minimized by tuning the parameters in 

the neural network.  

The data used for training neural networks in this document can be thought of as a set of 

input, target pairs: 

 ℵ = {(𝑥𝑥𝑖𝑖, 𝑡𝑡𝑖𝑖)|𝑥𝑥𝑖𝑖 ∈ ℝ𝑑𝑑 , 𝑡𝑡𝑖𝑖 ∈ ℝ𝑚𝑚, 𝑖𝑖 = 1, … ,𝑁𝑁} (2.2-1) 
 
Where 𝑁𝑁 is the total number of patterns in the training set. For each input, the network will 

have some output, 𝑜𝑜𝑖𝑖. The error for each pattern is then defined as the difference between 

the target value and the network output for a specific pattern  

𝑒𝑒𝑖𝑖 = 𝑡𝑡𝑖𝑖 − 𝑜𝑜𝑖𝑖 (2.2-2) 
 
In order to have a single value to examine that gives a measure of the overall error of the 

network, the sum square error (SSE) value is used. 

𝑆𝑆𝑆𝑆𝑆𝑆 = �(𝑒𝑒𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 (2.2-3) 

The relative strength of network connections can be adjusted to minimize the error. These 

connections are collectively known as weights. However, in the case of RBF networks, the term 

weights can also refer to the RBF parameters center and radius. In this document, the input 

weights of an RBF unit are denoted as 𝑢𝑢𝑗𝑗,𝑖𝑖 where 𝑖𝑖 is the index of the input dimension and 𝑗𝑗 is the 

index of the neuron in the hidden layer. The output weights will be denoted as 𝛽𝛽𝑗𝑗,𝑘𝑘 where 𝑗𝑗 is 

again the index of the neuron in the hidden layer and 𝑘𝑘 is the index of the output. The RBF 
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parameters, center and radius, will be denoted as 𝑐𝑐𝑗𝑗 and 𝜎𝜎𝑗𝑗 respectively. Again, 𝑗𝑗 is the index of 

the neuron in the hidden layer. Figure 2.2-1 illustrates this notation. 

 

Figure 2.2-1 A typical RBF network with input weights designated by their corresponding 

neuron and input dimension, 𝑢𝑢𝑗𝑗,𝑖𝑖 and output weights designated by their corresponding neuron 

and output, 𝛽𝛽𝑗𝑗,𝑘𝑘. 

 
2.2.1 Error Back Propagation and Gradient Descent 

The most popular training algorithm is Error Back Propagation (EBP). This algorithm is 

based on a gradient descent technique, and has been very well used and well researched. Since 

the original EBP algorithm was published, many improvements have been made [32]–[34]. 

These improvements include: the notion of momentum [35], flat spot elimination [36], a 
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stochastic learning rate [37], the RPROP algorithm [38], and the QUICKPROP variation of EBP 

[39].  

The EBP algorithm is an integral part of the field of neural networks today. The algorithm 

provides very stable training convergence, and provides the foundation on which many 

optimization algorithms can be applied to neural networks. The original EBP algorithm uses a 

first order steepest descent approach to minimizing the error of the network. Let us use the 

notation presented previously to describe the EBP algorithm. In order to follow the gradient of 

the error, the derivative of the error with respect to the network parameters must be found. 

During each iteration, the vector of input parameters (input weights, biases, and output 

weights) in a neural network, for iteration 𝑞𝑞 is denoted as ∆𝑞𝑞. For the purpose of 

simplification, the parameters to be optimized may be referred to individually as ∆𝑞𝑞=

[∆𝑞𝑞,1,∆𝑞𝑞,2, … ,∆𝑞𝑞,𝑃𝑃], where 𝑃𝑃 is the number of parameters being optimized. The reader can 

assume that if only one index is used, ∆𝑞𝑞 refers to the vector of all input parameters at the 

𝑘𝑘𝑡𝑡ℎ iteration. Likewise, two indexes are used to refer to a single parameter, ∆𝑞𝑞,𝑖𝑖. The squared 

error term is used as the cost function.  

𝑬𝑬 =
1
2
���𝑡𝑡𝑖𝑖,𝑘𝑘 − 𝑜𝑜𝑖𝑖,𝑘𝑘�

2
𝑚𝑚

𝑘𝑘=1

𝑁𝑁

𝑖𝑖=1

=
1
2
��(𝑡𝑡𝑖𝑖,𝑘𝑘2 − 2𝑡𝑡𝑖𝑖,𝑘𝑘𝑜𝑜𝑖𝑖,𝑘𝑘 + 𝑜𝑜𝑖𝑖,𝑘𝑘2 )

𝑚𝑚

𝑘𝑘=1

𝑁𝑁

𝑖𝑖=1

 (2.2-4) 

 

Where 𝑜𝑜𝑖𝑖,𝑘𝑘 is a function of the input and the network parameters. 

Then the gradient of the errors with respect to the network parameters is calculated. 

𝒈𝒈 = 𝜕𝜕𝜕𝜕�𝑥𝑥,∆𝑞𝑞�
𝜕𝜕∆𝑞𝑞

= � 𝜕𝜕𝜕𝜕
𝜕𝜕∆𝑞𝑞,1

, 𝜕𝜕𝜕𝜕
𝜕𝜕∆𝑞𝑞,2

, … , 𝜕𝜕𝜕𝜕
𝜕𝜕∆𝑞𝑞,𝑃𝑃

�    

 

(2.2-5) 

The parameters are then updated according to the rule of steepest descent: 
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∆𝑞𝑞+1= ∆𝑞𝑞 − 𝛼𝛼𝒈𝒈𝑞𝑞  

 
(2.2-6) 

Where 𝛼𝛼 is the learning constant, or step size. Assuming the network being trained is the one 

shown in Figure 2.2-1, the first step is to calculate the outputs: 

𝑜𝑜𝑘𝑘 = ∑ 𝛽𝛽𝑗𝑗,𝑘𝑘ℎ𝑗𝑗(𝑦𝑦𝑗𝑗)𝑁𝑁�
𝑗𝑗=1 ,𝑘𝑘 = 1, … ,𝑚𝑚  (2.2-7) 

 

Here, 𝑦𝑦 is the net function, this is a function of the inputs and any adjustable parameters for 

neuron 𝑗𝑗. Once the output and errors are calculated, the partial derivatives of the errors will be 

calculated for each network parameter. The process of calculating the derivatives of parameters 

backwards through the network is known as back-propagation. First the derivatives of the errors 

are found for the output weights, 𝛽𝛽.  

𝜕𝜕𝐸𝐸𝑖𝑖
𝜕𝜕𝛽𝛽𝑗𝑗,𝑘𝑘

= −�𝑡𝑡𝑖𝑖,𝑘𝑘 − 𝑜𝑜𝑖𝑖,𝑘𝑘�
𝜕𝜕𝑜𝑜𝑖𝑖,𝑘𝑘
𝜕𝜕𝛽𝛽𝑗𝑗,𝑘𝑘

= −𝑒𝑒𝑖𝑖
𝜕𝜕𝑜𝑜𝑖𝑖,𝑘𝑘
𝜕𝜕𝛽𝛽𝑗𝑗,𝑘𝑘

 (2.2-8) 

  
𝜕𝜕𝑜𝑜𝑖𝑖,𝑘𝑘
𝜕𝜕𝛽𝛽𝑗𝑗,𝑘𝑘

= ℎ𝑗𝑗(𝑦𝑦𝑗𝑗)  
 

(2.2-9) 

𝜕𝜕𝐸𝐸𝑖𝑖,𝑘𝑘
𝜕𝜕𝛽𝛽𝑗𝑗,𝑘𝑘

= −𝑒𝑒𝑖𝑖,𝑘𝑘ℎ𝑗𝑗(𝑦𝑦𝑗𝑗)  
 

(2.2-10) 

Now the parameters for the previous layer can be calculated. Define a variable for the derivatives 

of the errors with respect to the output weights. 

δk=ei,khj(yj)  (2.2-11) 
 
𝜕𝜕𝐸𝐸𝑖𝑖
𝜕𝜕𝑦𝑦𝑗𝑗

= −�∑ 𝛿𝛿𝑘𝑘𝛽𝛽𝑗𝑗,𝑘𝑘
𝑚𝑚
𝑘𝑘=1 � 𝜕𝜕ℎ𝑗𝑗

𝜕𝜕𝑦𝑦𝑗𝑗
   (2.2-12) 

 
𝜕𝜕𝐸𝐸𝑖𝑖
𝜕𝜕∆𝑞𝑞,𝑗𝑗

= −�∑ 𝛿𝛿𝑘𝑘𝛽𝛽𝑗𝑗,𝑘𝑘
𝑚𝑚
𝑘𝑘=1 � 𝜕𝜕ℎ𝑗𝑗

𝜕𝜕𝑦𝑦𝑗𝑗

𝜕𝜕𝑦𝑦𝑗𝑗
𝜕𝜕∆𝑞𝑞,𝑗𝑗

  (2.2-13) 
 

Where 𝑦𝑦𝑗𝑗(𝑥𝑥𝑖𝑖 ,∆𝑞𝑞,𝑗𝑗) is a function of the inputs and network parameters. This step is where the 

term backpropagation comes into play. The errors and the output weights are propagated back to 
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the previous layers. Of course in a software environment, this can be done as a matrix 

computation so that the gradients of all output weights are found at once. This leads to the 

formation of a gradient matrix of first derivatives for each parameter with respect to the error. 

For the sake of brevity, the next several algorithms are described using a single parameter 

matrix, ∆𝑞𝑞. 

The EBP algorithms will usually lead to small training error values, but these algorithms 

have several drawbacks. The first drawback is that these algorithms still only use the first order 

gradient and can therefore be trapped in local minima. Much better results can be obtained by 

using a second-order computation to aid the search process. Second, the algorithms are only able 

to handle MLP type of architectures [29]. Adding bridged connections to the network will cause 

the gradient computations to change, and the algorithm will fail. Finally, the EBP algorithm 

requires both a backwards and forwards pass through the network during each iteration. This 

means that computation can become very expensive for a network of substantial size [40]. Many 

of the currently used RBF paradigms are trained with a gradient descent algorithm like EBP.  

 

2.2.2 Newton’s Algorithm 

Let us consider each individual component of the gradient vector as a function of the network 

parameters: 

⎩
⎪
⎨

⎪
⎧𝑔𝑔1 = 𝐹𝐹1�∆𝑞𝑞,1,∆𝑞𝑞,2, … ,∆𝑞𝑞,𝑃𝑃�
𝑔𝑔2 = 𝐹𝐹2�∆𝑞𝑞,1,∆𝑞𝑞,2, … ,∆𝑞𝑞,𝑃𝑃�

⋮
𝑔𝑔𝑃𝑃 = 𝐹𝐹𝑝𝑝�∆𝑞𝑞,1,∆𝑞𝑞,2, … ,∆𝑞𝑞,𝑃𝑃�

   

 

(2.2-14) 
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Finding the minimum of the error surface can be posed as finding the roots of the error 

derivatives. Assuming the network parameters are linearly independent, Newton’s algorithm can 

be used to find these roots. First, the gradients are set to zero: 

⎩
⎪
⎨

⎪
⎧𝑔𝑔1 = 0 = 𝐹𝐹1�∆𝑞𝑞,1,∆𝑞𝑞,2, … ,∆𝑞𝑞,𝑃𝑃�
𝑔𝑔2 = 0 = 𝐹𝐹2�∆𝑞𝑞,1,∆𝑞𝑞,2, … ,∆𝑞𝑞,𝑃𝑃�

⋮
𝑔𝑔𝑃𝑃 = 0 = 𝐹𝐹𝑝𝑝�∆𝑞𝑞,1,∆𝑞𝑞,2, … ,∆𝑞𝑞,𝑃𝑃�

   (2.2-15) 

Then the gradient functions can be approximated using the first two terms of a Taylor 

expansion: 

⎩
⎪
⎨

⎪
⎧ 𝑔𝑔1 = 0 ≈ 𝑔𝑔1,0 + 𝜕𝜕𝑔𝑔1

𝜕𝜕∆𝑞𝑞,1
�∆𝑞𝑞+1,1 − ∆𝑞𝑞,1� + 𝜕𝜕𝑔𝑔1

𝜕𝜕∆𝑞𝑞,2
�∆𝑞𝑞+1,2 − ∆𝑞𝑞,2� + ⋯+ 𝜕𝜕𝑔𝑔1

𝜕𝜕∆𝑞𝑞,2
�∆𝑞𝑞+1,𝑃𝑃 − ∆𝑞𝑞,𝑃𝑃�

𝑔𝑔2 = 0 ≈ 𝑔𝑔2,0 + 𝜕𝜕𝑔𝑔2
𝜕𝜕∆𝑞𝑞,2

�∆𝑞𝑞+1,1 − ∆𝑞𝑞,1� + 𝜕𝜕𝑔𝑔2
𝜕𝜕∆𝑞𝑞,2

�∆𝑞𝑞+1,2 − ∆𝑞𝑞,2� + ⋯+ 𝜕𝜕𝑔𝑔2
𝜕𝜕∆𝑞𝑞,2

�∆𝑞𝑞+1,𝑃𝑃 − ∆𝑞𝑞,𝑃𝑃�

⋮
𝑔𝑔𝑃𝑃 = 0 ≈ 𝑔𝑔𝑃𝑃,0 + 𝜕𝜕𝑔𝑔𝑃𝑃

𝜕𝜕∆𝑞𝑞,𝑃𝑃
�∆𝑞𝑞+1,1 − ∆𝑞𝑞,1� + 𝜕𝜕𝑔𝑔𝑃𝑃

𝜕𝜕∆𝑞𝑞,𝑃𝑃
�∆𝑞𝑞+1,2 − ∆𝑞𝑞,2� + ⋯+ 𝜕𝜕𝑔𝑔𝑃𝑃

𝜕𝜕∆𝑞𝑞,𝑃𝑃
�∆𝑞𝑞+1,𝑃𝑃 − ∆𝑞𝑞,𝑃𝑃�

    (2.2-16) 

 

Using equation (2.2-5), the derivative of the gradient can be found: 

𝜕𝜕𝑔𝑔𝑖𝑖
𝜕𝜕∆𝑞𝑞,𝑗𝑗

=
𝜕𝜕� 𝜕𝜕𝜕𝜕

𝜕𝜕∆𝑞𝑞,𝑗𝑗
�

𝜕𝜕∆𝑞𝑞,𝑖𝑖
= 𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑖𝑖𝜕𝜕∆𝑞𝑞,𝑗𝑗
  (2.2-17) 

 

Substituting equation (2.2-17) into the taylor series expansion (2.2-16) yields the following: 

⎩
⎪⎪
⎨

⎪⎪
⎧0 ≈ 𝜕𝜕𝜕𝜕

𝜕𝜕∆𝑞𝑞,1
+ 𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,1
2 �∆𝑞𝑞+1,1 − ∆𝑞𝑞,1� + 𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,1𝜕𝜕∆𝑞𝑞,2
�∆𝑞𝑞+1,2 − ∆𝑞𝑞,2� + ⋯+ 𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,1𝜕𝜕∆𝑞𝑞,𝑃𝑃
�∆𝑞𝑞+1,𝑃𝑃 − ∆𝑞𝑞,𝑃𝑃�

0 ≈ 𝜕𝜕𝜕𝜕
𝜕𝜕∆𝑞𝑞,2

+ 𝜕𝜕2𝐸𝐸
𝜕𝜕∆𝑞𝑞,2𝜕𝜕∆𝑞𝑞,1

�∆𝑞𝑞+1,1 − ∆𝑞𝑞,1� + 𝜕𝜕2𝐸𝐸
𝜕𝜕∆𝑞𝑞,2

2 �∆𝑞𝑞+1,2 − ∆𝑞𝑞,2� + ⋯+ 𝜕𝜕2𝐸𝐸
𝜕𝜕∆𝑞𝑞,2𝜕𝜕∆𝑞𝑞,𝑃𝑃

�∆𝑞𝑞+1,𝑃𝑃 − ∆𝑞𝑞,𝑃𝑃�

⋮
0 ≈ 𝜕𝜕𝜕𝜕

𝜕𝜕∆𝑞𝑞,𝑃𝑃
+ 𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃𝜕𝜕∆𝑞𝑞,1
�∆𝑞𝑞+1,1 − ∆𝑞𝑞,1� + 𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃𝜕𝜕∆𝑞𝑞,2
�∆𝑞𝑞+1,2 − ∆𝑞𝑞,2� + ⋯+ 𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃
2 �∆𝑞𝑞+1,𝑃𝑃 − ∆𝑞𝑞,𝑃𝑃�

   (2.2-18) 

 

Then the system of equations can then be re-written as: 

⎩
⎪⎪
⎨

⎪⎪
⎧−

𝜕𝜕𝜕𝜕
𝜕𝜕∆𝑞𝑞,1

≈ 𝜕𝜕2𝐸𝐸
𝜕𝜕∆𝑞𝑞,1

2 �∆𝑞𝑞+1,1 − ∆𝑞𝑞,1� + 𝜕𝜕2𝐸𝐸
𝜕𝜕∆𝑞𝑞,1𝜕𝜕∆𝑞𝑞,2

�∆𝑞𝑞+1,2 − ∆𝑞𝑞,2� + ⋯+ 𝜕𝜕2𝐸𝐸
𝜕𝜕∆𝑞𝑞,1𝜕𝜕∆𝑞𝑞,𝑃𝑃

�∆𝑞𝑞+1,𝑃𝑃 − ∆𝑞𝑞,𝑃𝑃�

− 𝜕𝜕𝜕𝜕
𝜕𝜕∆𝑞𝑞,2

≈ 𝜕𝜕2𝐸𝐸
𝜕𝜕∆𝑞𝑞,2𝜕𝜕∆𝑞𝑞,1

�∆𝑞𝑞+1,1 − ∆𝑞𝑞,1� + 𝜕𝜕2𝐸𝐸
𝜕𝜕∆𝑞𝑞,2

2 �∆𝑞𝑞+1,2 − ∆𝑞𝑞,2� + ⋯+ 𝜕𝜕2𝐸𝐸
𝜕𝜕∆𝑞𝑞,2𝜕𝜕∆𝑞𝑞,𝑃𝑃

�∆𝑞𝑞+1,𝑃𝑃 − ∆𝑞𝑞,𝑃𝑃�

⋮
− 𝜕𝜕𝜕𝜕

𝜕𝜕∆𝑞𝑞,𝑃𝑃
≈ 𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃𝜕𝜕∆𝑞𝑞,1
�∆𝑞𝑞+1,1 − ∆𝑞𝑞,1� + 𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃𝜕𝜕∆𝑞𝑞,2
�∆𝑞𝑞+1,2 − ∆𝑞𝑞,2� + ⋯+ 𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃
2 �∆𝑞𝑞+1,𝑃𝑃 − ∆𝑞𝑞,𝑃𝑃�

    (2.2-19) 
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Notice that now it is possible to write the system of 𝑃𝑃 equations and 𝑃𝑃 unkowns as a solvable set 

of matrix equations. 

�

−𝑔𝑔1
−𝑔𝑔2
⋮

−𝑔𝑔𝑃𝑃

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,1
2  

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,1𝜕𝜕∆𝑞𝑞,2
 ⋯  

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,1𝜕𝜕∆𝑞𝑞,𝑃𝑃

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,2𝜕𝜕∆𝑞𝑞,1
 
𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,2
2  ⋯  

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,2𝜕𝜕∆𝑞𝑞,𝑃𝑃

⋮
𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃𝜕𝜕∆𝑞𝑞,1
 

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃𝜕𝜕∆𝑞𝑞,2
 ⋯

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃
2  ⎦
⎥
⎥
⎥
⎥
⎥
⎤

×

⎣
⎢
⎢
⎢
⎢
⎡�∆𝑞𝑞+1,1 − ∆

𝑞𝑞,1
�

�∆𝑞𝑞+1,2 − ∆
𝑞𝑞,2
�

⋮

�∆𝑞𝑞+1,𝑃𝑃 − ∆
𝑞𝑞,𝑃𝑃
�⎦
⎥
⎥
⎥
⎥
⎤

  (2.2-20) 

 

The square matrix of second derivatives is called the Hessian matrix: 

𝐻𝐻 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,1
2  

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,1𝜕𝜕∆𝑞𝑞,2
 ⋯  

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,1𝜕𝜕∆𝑞𝑞,𝑃𝑃

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,2𝜕𝜕∆𝑞𝑞,1
 
𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,2
2  ⋯  

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,2𝜕𝜕∆𝑞𝑞,𝑃𝑃

⋮
𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃𝜕𝜕∆𝑞𝑞,1
 

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃𝜕𝜕∆𝑞𝑞,2
 ⋯

𝜕𝜕2𝐸𝐸

𝜕𝜕∆𝑞𝑞,𝑃𝑃
2  ⎦
⎥
⎥
⎥
⎥
⎥
⎤

  (2.2-21) 

 

Assuming the Hessian is invertible, the equations above can be re-written in the form of the 

update rule for the Newton algorithm: 

∆𝑞𝑞+1= ∆𝑞𝑞 − 𝐻𝐻𝑞𝑞−1𝑔𝑔𝑘𝑘 (2.2-22) 
  

It can be noticed from equations (2.2-6) and (2.2-22) that the Hessian matrix gives a good 

approximation of the step size. 

 

2.2.3 Gauss-Newton Algorithm 

Let us again examine the equations pertaining to the error gradient. Combining equations 

(2.2-4) and (2.2-5) gives: 

𝑔𝑔𝑖𝑖 = 𝜕𝜕𝜕𝜕
𝜕𝜕∆𝑞𝑞,𝑖𝑖

= ∑ ∑ 𝜕𝜕𝑒𝑒𝑗𝑗,𝑘𝑘

𝜕𝜕∆𝑞𝑞,𝑖𝑖

𝑚𝑚
𝑘𝑘=1

𝑁𝑁
𝑗𝑗=1 𝑒𝑒𝑗𝑗,𝑘𝑘  (2.2-23) 
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Let us define a matrix of derivatives of each error component with respect to each network 

parameter called the Jacobian: 

𝑱𝑱 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝑒𝑒1,1
𝜕𝜕∆𝑞𝑞,1

, 𝜕𝜕𝑒𝑒1,1
𝜕𝜕∆𝑞𝑞,2

, … , 𝜕𝜕𝑒𝑒1,1
𝜕𝜕∆𝑞𝑞,𝑃𝑃

𝜕𝜕𝑒𝑒1,2
𝜕𝜕∆𝑞𝑞,1

, 𝜕𝜕𝑒𝑒1,2
𝜕𝜕∆𝑞𝑞,2

, … , 𝜕𝜕𝑒𝑒1,2
𝜕𝜕∆𝑞𝑞,𝑃𝑃

⋮
𝜕𝜕𝑒𝑒1,𝑚𝑚
𝜕𝜕∆𝑞𝑞,1

, 𝜕𝜕𝑒𝑒1,𝑚𝑚
𝜕𝜕∆𝑞𝑞,2

, … , 𝜕𝜕𝑒𝑒1,𝑚𝑚
𝜕𝜕∆𝑞𝑞,𝑃𝑃

⋮
𝜕𝜕𝑒𝑒𝑁𝑁,1
𝜕𝜕∆𝑞𝑞,1

, 𝜕𝜕𝑒𝑒𝑁𝑁,1
𝜕𝜕∆𝑞𝑞,2

, … , 𝜕𝜕𝑒𝑒𝑁𝑁,1
𝜕𝜕∆𝑞𝑞,𝑃𝑃

𝜕𝜕𝑒𝑒𝑁𝑁,2
𝜕𝜕∆𝑞𝑞,1

, 𝜕𝜕𝑒𝑒𝑁𝑁,2
𝜕𝜕∆𝑞𝑞,2

, … , 𝜕𝜕𝑒𝑒𝑁𝑁,2
𝜕𝜕∆𝑞𝑞,𝑃𝑃

⋮
𝜕𝜕𝑒𝑒𝑁𝑁,𝑚𝑚
𝜕𝜕∆𝑞𝑞,1

, 𝜕𝜕𝑒𝑒𝑁𝑁,𝑚𝑚
𝜕𝜕∆𝑞𝑞,2

, … , 𝜕𝜕𝑒𝑒𝑁𝑁,𝑚𝑚
𝜕𝜕∆𝑞𝑞,𝑃𝑃 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  

 

(2.2-24) 

Let us arrange a matrix of individual errors: 

𝑒𝑒 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝑒𝑒1,1
𝑒𝑒1,2
⋮

𝑒𝑒1,𝑚𝑚
𝑒𝑒2,1
𝑒𝑒2,2
⋮

𝑒𝑒2,𝑚𝑚
⋮
𝑒𝑒𝑃𝑃,1
𝑒𝑒𝑃𝑃,2
⋮

𝑒𝑒𝑃𝑃,𝑚𝑚⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (2.2-25) 

 

The gradient can then be written: 

𝑔𝑔 = 𝐽𝐽𝐽𝐽  (2.2-26) 
 

Similarly, inserting equation (2.2-4) into equation (2.2-21) the element of the 𝑖𝑖𝑡𝑡ℎ row and 𝑗𝑗𝑡𝑡ℎ 

column of the Hessian matrix can be calculated: 
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𝐻𝐻𝑖𝑖,𝑗𝑗 = ∑ ∑ �𝜕𝜕𝑒𝑒𝑝𝑝,𝑘𝑘

𝜕𝜕∆𝑞𝑞,𝑖𝑖

𝜕𝜕𝑒𝑒𝑝𝑝,𝑘𝑘

𝜕𝜕∆𝑞𝑞,𝑗𝑗
+ 𝜕𝜕2𝑒𝑒𝑝𝑝,𝑘𝑘

𝜕𝜕∆𝑞𝑞,𝑖𝑖𝜕𝜕∆𝑞𝑞,𝑗𝑗
𝑒𝑒𝑝𝑝,𝑘𝑘� 𝑚𝑚

𝑘𝑘=1
𝑃𝑃
𝑝𝑝=1   (2.2-27) 

 

Ignoring the second derivative term, an approximation for the Hessian matrix can be written as: 

𝐻𝐻 ≈ 𝐽𝐽𝑇𝑇𝐽𝐽  (2.2-28) 
 

Finally, the update rule for Newton’s algorithm can be re-written as the rule for the Gauss-

Newton algorithm: 

∆𝑞𝑞+1= ∆𝑞𝑞 − �𝐽𝐽𝑞𝑞𝑇𝑇𝐽𝐽𝑞𝑞�
−1
𝑔𝑔𝑞𝑞 (2.2-29) 

 

This algorithm has the advantage of not needing to directly calculate the second derivatives of 

the error function. However, there are still issues where the Hessian approximation is not 

invertible. 

 

2.2.4 Levenberg-Marquardt Algorithm 

In order to ensure that the Hessian matrix is invertible, the Levenberg-Marquardt (LM) 

algorithm introduces yet another modification to the Hessian approximation: 

𝐻𝐻 ≈ 𝐽𝐽𝑇𝑇𝐽𝐽 + 𝜇𝜇𝜇𝜇 (2.2-30) 

Where 𝜇𝜇 is an always positive parameter called the combination coefficient and 𝑰𝑰 is the 

identity matrix. Substituting this approximation into equation (2.2-29) gives the update rule 

for the LM algorithm: 

∆𝑞𝑞+1= ∆𝑞𝑞 + �𝑯𝑯 + 𝝁𝝁𝑞𝑞𝑰𝑰�
−1
𝑱𝑱𝑞𝑞𝑇𝑇𝒆𝒆𝑞𝑞 (2.2-31) 

 

The combination coefficient, 𝜇𝜇, is modified during each iteration. When an iteration 

results in a decrease in sum squared error: 
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 𝜇𝜇 = 𝜇𝜇
𝛾𝛾
  (2.2-32) 

When an iteration results in an increase in SSE: 

 𝜇𝜇 = 𝛾𝛾𝛾𝛾 (2.2-33) 

 Typically 𝜇𝜇 = 0.01 and 𝛾𝛾 = 10 is the starting point for the algorithm. Notice that when 

𝜇𝜇 is large, the parameters are adjusted according to the steepest descent algorithm. When 𝜇𝜇 is 

small, the parameters are adjusted according to the Gauss-Newton algorithm. For this reason, 

the Levenberg-Marquardt algorithm can be considered a trust region modification of the 

Gauss-Newton method [41]. Below is a description of training with the Levenberg-

Marquardt Algorithm. 

Levenberg-Marquardt Algorithm 

Given the notations described above, a single iteration of the Levenberg-Marquardt 

algorithm executes as follows. 

Step 1. Initialization: Calculate the error 𝐸𝐸1. Set an initial value for the combination 

coefficient, 𝜇𝜇. Set the tuning parameter, 𝛾𝛾. Choose an acceptable error threshold, 

𝜀𝜀. Choose a maximum number of iterations, 𝑄𝑄. Initialize the input parameters, ∆1. 

Set the iteration number, 𝑄𝑄 = 1. 

Step 2. Optimization: While 𝐸𝐸𝑞𝑞 <  𝜀𝜀 or 𝑞𝑞 > 𝑄𝑄 

(a) Calculate the Jacobian matrix, 𝐽𝐽, according to equation (2.2-24). 

(b) Calculate the quasi-Hessian matrix according to equation (2.2-28). 

(c) Adjust the parameters according to the LM update rule (2.2-29).   

(d) Increment 𝑞𝑞. 

(e) Calculate new error 𝐸𝐸𝑞𝑞. 

(f) If 𝐸𝐸𝑞𝑞 < 𝐸𝐸𝑞𝑞+1 
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i. Adjust 𝜇𝜇 according to equation (2.2-32). 

(g) Else 

i. Adjust 𝜇𝜇 according to equation (2.2-33). 

End If 

End While 

Several second–order algorithms have been adopted for use in the neural network training 

process. The most efficient of these is the Levenberg-Marquardt algorithm [42]. This algorithm 

uses a Hessian matrix computation to gain information about the shape of the error surface, and 

apply it to find the best search direction. This algorithm was shown to be very fast and efficient 

for relatively small problems.   

 

2.2.5 Improved Hessian Computation 

It should also be noted that the computation of the Jacobian matrix is very expensive and 

often leads to problems when the data set is very large. However, this problem can be mostly 

eliminated by changing the way that the matrices are multiplied so that a large Jacobian 

matrix (proportional in size to the size of the training data) is never computed and stored 

[43].  

Assuming the same notation as in the previous section, this modification is done by 

changing the method of matrix multiplication when calculating the quasi-hessian matrix, 𝑯𝑯. 

Instead of multiplying the Jacobian by its transpose in the traditional way, each row is 

multiplied by itself to form a part of the Hessian matrix denoted as 𝒉𝒉. Then each 𝒉𝒉, is added 

to create the full Hessian. The gradient can then also be computed in the same way. Figure 
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2.2-2 shows the difference between the two multiplication approaches. More formally, the 

specific computations required are shown below. 

𝒋𝒋𝑖𝑖,𝑘𝑘 = �𝜕𝜕𝑒𝑒𝑖𝑖,𝑘𝑘
𝜕𝜕∆𝑞𝑞,1

, 𝜕𝜕𝑒𝑒𝑖𝑖,𝑘𝑘
𝜕𝜕∆𝑞𝑞,2

, … , 𝜕𝜕𝑒𝑒𝑖𝑖,𝑘𝑘
𝜕𝜕∆𝑞𝑞,𝑃𝑃

�  
 

(2.2-34) 

𝒉𝒉𝑖𝑖,𝑗𝑗 = 𝒋𝒋𝑖𝑖,𝑗𝑗𝑇𝑇 𝒋𝒋𝑖𝑖,𝑗𝑗  
 

(2.2-35) 

𝐻𝐻 = ��ℎ𝑖𝑖,𝑗𝑗

𝑚𝑚

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

 

 

(2.2-36) 

𝒈𝒈 = 𝒋𝒋𝑖𝑖,𝑗𝑗𝑒𝑒𝑖𝑖,𝑗𝑗  
 (2.2-37) 

 

The 𝐻𝐻 calculated here is identical to the previously calculated matrix, but the Jacobian need 

not be calculated and stored. Only a single row at a time is used. 

The Hessian in the improved LM-Method is then calculated using the following algorithm. 

Improved Hessian Computation 

Step 1. Initialization: 𝑯𝑯 = 0,𝒈𝒈 = 0. 

Step 2. Multiplication: For 𝑖𝑖 = 1,2, … ,𝑁𝑁 

(a) For 𝑗𝑗 = 1,2, … ,𝑚𝑚 

i. Calculate 𝒋𝒋𝑖𝑖,𝑚𝑚 using equation (2.2-34). 

ii. Calculate 𝒉𝒉𝑖𝑖,𝑚𝑚 using equation (2.2-35). 

iii. Calculate 𝒈𝒈𝑖𝑖,𝑚𝑚 using equation (2.2-37). 

iv. 𝑯𝑯 = 𝑯𝑯 + 𝒉𝒉𝑖𝑖,𝑚𝑚 

v. 𝒈𝒈 = 𝒈𝒈 + 𝒈𝒈𝑖𝑖,𝑚𝑚 

(b) End for 

Step 3. End For 
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(a) 

 

 
(b) 

 
Figure 2.2-2 Illustration of the two ways of matrix multiplication. (a) The typically used method. 

(b) The method requiring only one row to be computed. 

This allows the Hessian to be computed without storing the entire Jacobian matrix. This 

improved second-order (ISO) training method is the basis for the radial basis function training 

algorithms described in Chapter 4. 

 

2.3 Optimal Construction and Training   

All of the algorithms discussed in section 2.2 are viable and commonly used in the industry 

to train artificial neural networks. However, the ramifications of selecting different network 
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architectures is largely un-addressed by these algorithms. Most of them assume a fixed 

architecture that is chosen before the training process begins. In order to be as efficient as 

possible, it is proposed that the neural networks be constructed in an optimal sense. Much of the 

research is dedicated to training neural networks to reach very small errors on the training data 

set. However, it is often the case that this is not the best measure for the effectiveness of the 

neural network. For practical applications, the generalization ability of the network is far more 

important than the training errors. For this reason many of the current publications are focusing 

on minimizing the so called “testing errors”, errors of the network on patterns that were not seen 

in training.  

It can be readily seen that a neural network can be easily made to converge to nearly zero 

training error with an excessive number of neurons and weights. This is commonly known as 

overtraining and is akin to using a polynomial approximation with too many terms. The 

comparative works [29] and [30] show that architectures with the smallest numbers of neurons 

and weights often show the best performance on the testing sets. So, the motivation of new 

algorithms is to find a way to construct a neural network architecture in such a way that the 

number of neurons (and weights) can be minimized.  

As discussed previously, RBF networks are often constructed in a simple three layer 

architecture containing, an input layer, an output layer, and a single hidden layer of RBF 

neurons. With this in mind, the problem of creating the smallest network possible is simplified to 

minimizing the number of RBF neurons in the hidden layer. This means that an optimal 

construction and training algorithm is one that allows each RBF neuron to have as much of an 

effect as possible on the reduction of errors as possible while still providing good generalization 

abilities. This is the guiding concept behind the algorithms presented in this work.  
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There are many algorithms that attempt to find the best initializations of RBF neurons and 

optimal sizes of the RBF networks  [44]–[47]. The RAN algorithm adjusts parameters of an 

existing network and adds new neurons to compensate for poor performance on certain input 

data [11]. The RANEKF algorithm uses an extended kalman filter (EKF) procedure rather than 

an LMS procedure to update the network parameters [12].  In this sequential learning method, 

the network is initialized as a blank slate, no neurons have been allocated to store any input 

patterns. Let us introduce the term 𝛿𝛿𝑖𝑖 to denote the distance between the nearest RBF center and 

the 𝑖𝑖𝑡𝑡ℎ pattern. 

𝛿𝛿 = ‖𝑥𝑥𝑖𝑖 − 𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛‖ (2.3-1) 

where 𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the center of the nearest existing neuron. 

 

2.3.1 Resource Allocating Network (RAN and RANEKF) Algorithm 

Given a training set as described in equation (2.2-1), an activation function, ℎ(𝑥𝑥), a 

maximum number of hidden neurons 𝑁𝑁�, a required error threshold, 𝜀𝜀, a minimum nearest 

distance, 𝑑𝑑, and RBF parameters center, 𝑐𝑐, radius 𝜎𝜎, and height, 𝛽𝛽. 

Step 1. For each input, target pair, (𝑥𝑥𝑖𝑖, 𝑡𝑡𝑖𝑖). 

(a) Evaluate the network output, 𝑜𝑜𝑖𝑖. 

(b) Calculate the magnitude of the error |𝑒𝑒𝑖𝑖|. 

(c) Calculate the distance between the new pattern and the nearest existing RBF 

center, 𝛿𝛿. 

(d) If ‖𝑒𝑒𝑖𝑖‖ > 𝜀𝜀 AND 𝛿𝛿 > 𝑑𝑑,  

i. Create a new neuron with center at: 

 𝑐𝑐𝑖𝑖 = 𝑥𝑥𝑖𝑖 . (2.3-2) 
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ii. Set the output weight, 

𝛽𝛽𝑖𝑖 = 𝑡𝑡𝑖𝑖 − 𝑜𝑜𝑖𝑖 (2.3-3) 

iii. Set the radius of the unit proportionally to the distance between the 

new center and the nearest existing center: 

𝜎𝜎𝑖𝑖 = 𝑘𝑘‖𝑐𝑐𝑖𝑖 − 𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛‖. 

 
(2.3-4) 

(e) Else, adjust the existing network parameters using the new pattern and the 

LMS (or EKF) method. 

End If 

End For 

Further improvement was made on the RAN algorithm by Yingwei et. al. [13]. This 

algorithm creates a minimally sized network and is known as MRAN. The MRAN algorithm 

removes neurons that have little significance on the error thus reducing the size of the network. 

At the end of each training iteration of the RAN algorithm, the RMS value of the network error 

is evaluated over a window for each neuron. If the neuron contributes to the reduction of the 

error in a window centered on the neuron, it is kept in the network. Otherwise, it is discarded.  

Huang et al. proposed a generalized growing and pruning (GGAP) algorithm to find the 

proper sizes of RBF networks [16], [48]. Based on a measure of so called “significance” RBF 

units are added one at a time with specified initial conditions. A detailed description of the 

GGAP algorithm is given below. 
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2.3.2 Generalized Growing and Pruning Algorithm 

Given a training set as described in equation (2.2-1), an activation function, ℎ(𝑥𝑥), a 

maximum number of hidden neurons 𝑁𝑁�, a minimum error threshold, 𝜀𝜀, a minimum distance 

between new data and existing centers, 𝑑𝑑, and RBF parameters center, 𝑐𝑐, radius 𝜎𝜎, and 

height, 𝛽𝛽. 

Step 2. Initialization: Create a RBF SLFN with 𝑛𝑛 hidden neurons. Typically randomly 

chosen neurons are used, but the network can be initialized in any way. 

Step 3. Learning: For each input pattern and target pair,  (𝑥𝑥𝑖𝑖, 𝑡𝑡𝑖𝑖) 

(a) Evaluate the network output, 𝑜𝑜𝑖𝑖. 

(b)  Calculate the magnitude of the error, |𝑒𝑒𝑖𝑖| 

(c) Calculate 𝛿𝛿 according to equation (2.3-1). 

(d) Calculate the SSE according to equation (2.2-3). 

(e) If the parameters calculated in b, c, and d are greater than the pre-set threshold 

values, create a new RBF neuron centered at 𝑥𝑥𝑖𝑖. 

(f) Else, adjust the network parameters using the EKF method. 

(g) For each neuron,  

i. evaluate the pruning criterion, significance: 

 𝑠𝑠𝑖𝑖 = �1.8𝜎𝜎𝑖𝑖𝛽𝛽𝑖𝑖
𝑟𝑟

� (2.3-5) 

ii. If 𝑠𝑠𝑖𝑖 < 𝑆𝑆, prune the neuron. 

End For 

End For 
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Neurons that make little contribution to network performance (low significance) are 

eliminated from the network and ignored. However, the GGAP algorithm has trouble with 

problems with complex probability distributions and high dimensional data. However, the 

Gaussian Mixture Model (GMM) was introduced to approximate the GGAP performance 

evaluation formula [49]. This modification allows the GGAP-GMM algorithm to design even 

more compact networks for the same tasks on which the original GGAP algorithm failed. 

  

2.3.3 Support Vector Machines 

 Support vector machine (SVM) learning attempts to minimize the number of 

computational nodes required to solve a particular problem. This is done by selecting certain 

patterns to be used as training data while the rest of the data is ignored. SVMs can use nonlinear 

kernel functions to cast inputs into higher dimensional spaces. This concept was introduced by 

Vladimir Vapnik in his book [50]. A description of SVMs used for the purpose of regression, 

Support Vector Regression (SVR), is given below. 

Given a training set as described in equation (2.2-1), we introduce the approximation: 

𝑦𝑦𝑖𝑖 = 𝑤𝑤 ∙ 𝑥𝑥𝑖𝑖 + 𝑏𝑏 (2.3-6) 
 
Where 𝑦𝑦𝑖𝑖 is the predicted output of the SVR. 

The SVR will use a more sophisticated cost function than SSE. There will be no penalty 

associated with predicted values that are within some maximum distance, 𝜖𝜖, of their associated 

target values. Furthermore, two slack variables, 𝛾𝛾+ and 𝛾𝛾−, are assigned to vary the penalty 

associated with predicted values that lie outside 𝜖𝜖. The conditions required are then written: 

�
(𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑖𝑖) ≤ 𝜖𝜖 + 𝛾𝛾+, (𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑖𝑖) > 0

(𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑖𝑖) ≥ −𝜖𝜖 − 𝛾𝛾−, (𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑖𝑖) < 0 (2.3-7) 

 
This leads to the cost function for SVR: 
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𝐸𝐸 = 𝐶𝐶 ∑ (𝛾𝛾+ + 𝛾𝛾−)𝑁𝑁
𝑖𝑖=1 + 1

2
‖𝑤𝑤‖2  (2.3-8) 

 
Where the constant 𝐶𝐶 > 0 determines the trade-off between the flatness of the approximation 

and tolerance of errors larger than 𝜖𝜖. 

Thus the SVR algorithm seeks to solve the minimization problem: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, 𝐶𝐶�(𝛾𝛾+ + 𝛾𝛾−)
𝑁𝑁

𝑖𝑖=1

+
1
2
‖𝑤𝑤‖2 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡,

⎩
⎨

⎧
(𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑖𝑖) ≤ 𝜖𝜖 + 𝛾𝛾+

(𝑡𝑡𝑖𝑖 − 𝑦𝑦𝑖𝑖) ≥ −𝜖𝜖 − 𝛾𝛾−

𝛾𝛾+ ≥ 0
𝛾𝛾− ≤ 0

 

 

(2.3-9) 

Let us now find a dual set of variables by constructing a Lagrange function and the 

corresponding constraints from the objective function (2.3-9). Let us introduce the Lagrange 

multipliers, 𝜇𝜇𝑖𝑖+, 𝜇𝜇𝑖𝑖−,𝛼𝛼𝑖𝑖+,𝛼𝛼𝑖𝑖−. The Lagrange function is then: 

𝐿𝐿 =
1
2
‖𝑤𝑤‖2 + 𝐶𝐶�(𝛾𝛾+ + 𝛾𝛾−)

𝑁𝑁

𝑖𝑖=1

−�(𝜇𝜇𝑖𝑖+𝛾𝛾+ + 𝜇𝜇𝑖𝑖−𝛾𝛾−)
𝑁𝑁

𝑖𝑖=1

−�𝛼𝛼𝑖𝑖+(𝜖𝜖 + 𝛾𝛾+ + 𝑦𝑦𝑖𝑖 − 𝑡𝑡𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

−�𝛼𝛼𝑖𝑖−(𝜖𝜖 + 𝛾𝛾− − 𝑦𝑦𝑖𝑖 + 𝑡𝑡𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 

(2.3-10) 

 

Where the Lagrange multipliers are positive values: 

𝜇𝜇𝑖𝑖+,𝜇𝜇𝑖𝑖−,𝛼𝛼𝑖𝑖+,𝛼𝛼𝑖𝑖− ≥ 0 (2.3-11) 
 
Because the formulation of the problem is quadratic, the min or max will be located where the 

partial derivatives of the Lagrange function equal zero. 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= �(𝛼𝛼𝑖𝑖+ − 𝛼𝛼𝑖𝑖−) = 0
𝑁𝑁

𝑖𝑖=1

 (2.3-12) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑤𝑤 −�(𝛼𝛼𝑖𝑖+ − 𝛼𝛼𝑖𝑖−)𝑥𝑥𝑖𝑖 = 0
𝑁𝑁

𝑖𝑖=1

 (2.3-13) 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝛾𝛾+

= 𝐶𝐶 − (𝛼𝛼𝑖𝑖+ + 𝜇𝜇𝑖𝑖+) (2.3-14) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝛾𝛾−

= 𝐶𝐶 − (𝛼𝛼𝑖𝑖− + 𝜇𝜇𝑖𝑖−) (2.3-15) 

Re-writing these equations and substituting them into the Lagrange function leads to the 

formulation of the Lagrangian dual: 

𝐿𝐿𝐷𝐷 =
1
2
��(𝛼𝛼𝑖𝑖+ − 𝛼𝛼𝑖𝑖−)(𝛼𝛼𝑗𝑗+ − 𝛼𝛼𝑗𝑗−)(𝒙𝒙𝑖𝑖 ∙ 𝒙𝒙𝑗𝑗)

𝑁𝑁

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

+ 𝜖𝜖�(𝛼𝛼𝑖𝑖+ − 𝛼𝛼𝑖𝑖−)
𝑁𝑁

𝑖𝑖=1

−�(𝛼𝛼𝑖𝑖+ − 𝛼𝛼𝑖𝑖−)𝑡𝑡𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

(2.3-16) 

 

Notice that the dual variables 𝜇𝜇𝑖𝑖+ and 𝜇𝜇𝑖𝑖− were eliminated by solving equations (2.3-14) and 

(2.3-15) for 𝛼𝛼𝑖𝑖+ and 𝛼𝛼𝑖𝑖−. Now, the problem in (2.3-9) can be re-formulated as maximizing the 

negative of the Lagrange dual problem: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, −𝐿𝐿𝐷𝐷 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡, 0 ≤ 𝛼𝛼𝑖𝑖+ ≤ 𝐶𝐶, 0 ≤ 𝛼𝛼𝑖𝑖− ≤ 𝐶𝐶, 𝑎𝑎𝑎𝑎𝑎𝑎 �(𝛼𝛼𝑖𝑖+ − 𝛼𝛼𝑖𝑖−) = 0
𝑁𝑁

𝑖𝑖=1

 (2.3-17) 

This is done using a quadratic programming algorithm. Predictions may then be made by 

substituting (2.3-13) into (2.3-6). 

𝑦𝑦𝑗𝑗 = �(𝛼𝛼𝑖𝑖+ − 𝛼𝛼𝑖𝑖−)(𝒙𝒙𝑖𝑖 ∙ 𝒙𝒙𝑗𝑗)
𝑁𝑁

𝑖𝑖=1

+ 𝑏𝑏 (2.3-18) 

 

A set of support vectors 𝑆𝑆 can be created by finding the inputs that satisfy the following: 

𝑥𝑥𝑠𝑠 ∈ 𝑆𝑆 iff 0 < 𝛼𝛼𝑖𝑖
± < 𝐶𝐶 and 𝛾𝛾𝑖𝑖

± = 0  (2.3-19) 
 
The number of support vectors is then defined as 𝑁𝑁𝑠𝑠. This allows the bias to be calculated: 

𝑏𝑏 =
1
𝑁𝑁𝑠𝑠
��𝑡𝑡𝑠𝑠 − 𝜖𝜖 −�(𝛼𝛼𝑘𝑘+ − 𝛼𝛼𝑘𝑘−)𝒙𝒙𝑘𝑘 ∙ 𝒙𝒙𝑠𝑠

𝑁𝑁𝑠𝑠

𝑘𝑘=1

�
𝑁𝑁𝑠𝑠

𝑠𝑠=1

 (2.3-20) 
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In order to move to higher dimensional space, a kernel function 𝑘𝑘(𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗) is used. The kernel 

function must be a function of the inner product between 𝒙𝒙𝑖𝑖 and 𝒙𝒙𝑗𝑗. The kernel must also satisfy 

several other criteria explained in great detail in Alex Smola’s tutorial [51]. Popular kernels 

include, polynomial kernels, RBF kernels, and sigmoidal kernels. For the purpose of this work, 

the Gaussian kernel will be used in comparisons with other algorithms. Inserting a kernel into the 

formulas derived above is as easy as substituting 𝑘𝑘(𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗) in place of 𝒙𝒙𝑖𝑖 ∙ 𝒙𝒙𝑗𝑗. 

Given all of these considerations, let us outline the SVR algorithm: 

Support Vector Regression Algorithm: Given a training set as described in equation 

(2.2-1), a kernel function 𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑗𝑗), an error significance 𝐶𝐶, and an error insensitivity 

parameter 𝜖𝜖. For simplicity, let us denote the alpha parameters in the following way: 

𝛼𝛼𝑖𝑖 = (𝛼𝛼𝑖𝑖+ − 𝛼𝛼𝑖𝑖−) (2.3-21) 
 

Let us also denote the matrix of kernel function values in the following way: 

𝐻𝐻 = �
𝐻𝐻1,1,𝐻𝐻1,2, … ,𝐻𝐻1,𝑁𝑁

⋮
𝐻𝐻𝑁𝑁,1,𝐻𝐻𝑁𝑁,2, … ,𝐻𝐻𝑁𝑁,𝑁𝑁

� = �
𝑘𝑘(𝑥𝑥1,𝑥𝑥1),𝑘𝑘(𝑥𝑥1, 𝑥𝑥2), … 𝑘𝑘(𝑥𝑥1, 𝑥𝑥𝑁𝑁)

⋮
𝑘𝑘(𝑥𝑥𝑁𝑁 ,𝑥𝑥1),𝑘𝑘(𝑥𝑥𝑁𝑁 ,𝑥𝑥2), … 𝑘𝑘(𝑥𝑥𝑁𝑁 , 𝑥𝑥𝑁𝑁)

� (2.3-22) 

 

Step 1. Calculate 𝑯𝑯 according to equation (2.3-22). 

Step 2. Us a Quadratic Programming algorithm to solve the dual problem: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖, �𝛼𝛼𝑖𝑖(𝑡𝑡𝑖𝑖 − 𝜖𝜖)
𝑁𝑁

𝑖𝑖=1

−
1
2
𝛼𝛼𝑇𝑇𝐻𝐻𝐻𝐻 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡,−𝐶𝐶 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶 ∀𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 �𝛼𝛼𝑖𝑖

𝑁𝑁

𝑖𝑖=1

= 0 

(2.3-23) 

Step 3. Calculate weights according to equation (2.3-13). 

Step 4. Determine the set of support vectors as in equation (2.3-19). 

Step 5. Calculate the bias with equation (2.3-20). 
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Step 6. New data, 𝒙𝒙′ is processed using: 

𝑦𝑦′ = �𝛼𝛼𝑖𝑖𝑘𝑘(𝑥𝑥𝑖𝑖, 𝑥𝑥′)
𝑁𝑁

𝑖𝑖=1

+ 𝑏𝑏 (2.3-24) 

  

In terms of neural networks, SVMs can be viewed as a single hidden layer network with a 

bias weight and activation functions equal to the kernel function. For instance, a sigmoidal kernel 

will lead to a single layer MLP network. 

 

2.4 Extreme Learning Machines   

From the perspective of mathematics, the approximation capabilities of feed-forward 

neural networks has been largely dedicated to two problems: universal approximation on 

small input sets, and universal approximation over a finite set of training patterns. In fact, 

much research has been done on the capabilities of a typical multilayer feed-forward 

network. Hornik, [52], showed that neural networks can approximate continuous mappings 

over compact input sets if the activation function is continuous, bounded and non-constant. 

Further work on the subject has been done by Leshno, [53], who proved that feed-forward 

networks with a non-polynomial activation function can approximate any continuous 

function. Huang and Babri, [54] showed mathematical proof that a single-hidden layer feed-

forward neural network (SLFN) with N or fewer nodes can learn N distinct training patterns. 

In all of these previous theoretical works, the network parameters, weights and biases, 

need to be adjusted iteratively in order for the networks to learn the data. In most cases, 

gradient descent-based optimization is the core of the learning algorithm. However, it has 

been postulated that gradient descent-based algorithms have issues that reduce their 

efficiency and desirability as learning algorithms. For instance, the size of the learning step 
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must be chosen carefully or else the algorithm will converge slowly or converge to a local 

minimum. Furthermore, it is often the case that many attempts need to be made in order to 

obtain satisfactory learning performance. Huang showed in [55] that an SLFN with N hidden 

nodes and randomly chosen input weights and biases can exactly learn N distinct training 

patterns. This goes against the traditional thinking on the subject because it demonstrates 

that the input weights may not always need to be adjusted. Actually, Huang et. Al, did some 

simulations on artificial and real-world applications in [56], and found that learning with 

random input weights and biases makes learning extremely fast and also produces good 

generalization performance. The Extreme Learning Machine (ELM) algorithm was spawned 

from this idea and was proposed in [57]. 

In [57] it is rigorously proven that the input weights and hidden layer biases of SLFNs 

can be randomly assigned if the activation functions of neurons in the hidden layer are 

infinitely differentiable. In other words:  

Given a training set as described in equation (2.2-1), a SLFN with 𝑁𝑁� hidden nodes and 

an activation function, ℎ(𝑥𝑥) is mathematically modeled as: 

∑ 𝛽𝛽𝑖𝑖ℎ𝑖𝑖�𝑥𝑥𝑗𝑗� = ∑ 𝛽𝛽𝑖𝑖ℎ𝑖𝑖�𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑖𝑖� = 𝑜𝑜𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑁𝑁𝑁𝑁�
𝑖𝑖=1

𝑁𝑁�
𝑖𝑖=1   (2.4-1) 

𝑤𝑤𝑖𝑖 = [𝑤𝑤𝑖𝑖,1,𝑤𝑤𝑖𝑖,2, … ,𝑤𝑤𝑖𝑖,𝑛𝑛] ∈ ℝ𝑛𝑛  (2.4-2) 

𝛽𝛽𝑖𝑖 = [𝛽𝛽𝑖𝑖,1,𝛽𝛽𝑖𝑖,2, … ,𝛽𝛽𝑖𝑖,𝑚𝑚] ∈ ℝ𝑚𝑚  (2.4-3) 

Where: 𝑤𝑤𝑖𝑖 is the weight vector that weights the connections between the 𝑖𝑖𝑡𝑡ℎ hidden node 

and the inputs; 𝛽𝛽𝑖𝑖 is the weight vector that connects the outputs and the 𝑖𝑖𝑡𝑡ℎ hidden node; and 

𝑏𝑏𝑖𝑖 is the bias of the 𝑖𝑖𝑡𝑡ℎ hidden node. The term, 𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥𝑗𝑗 , is the inner product of 𝑤𝑤𝑖𝑖 and 𝑥𝑥𝑗𝑗.  

Let us say that we wish for a standard SLFN with 𝑁𝑁� hidden nodes with activation 

function ℎ(𝑥𝑥) to approximate the 𝑁𝑁 training samples with zero error. In other words:  
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∑ �𝑜𝑜𝑗𝑗 − 𝑡𝑡𝑗𝑗�𝑁𝑁�
𝑗𝑗=1 = 0, (2.4-4) 

This requires that ∃𝛽𝛽𝑖𝑖,𝑤𝑤𝑖𝑖, and 𝑏𝑏𝑖𝑖 such that: 

∑ 𝛽𝛽𝑖𝑖ℎ𝑖𝑖�𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑖𝑖� = 𝑡𝑡𝑗𝑗 , 𝑗𝑗 = 1, … ,𝑁𝑁𝑁𝑁�
𝑖𝑖=1   (2.4-5) 

To use a more compact notation, the above 𝑁𝑁 equations can be re-written as: 

𝐻𝐻𝐻𝐻 = 𝑇𝑇 (2.4-6) 

𝐻𝐻(𝑤𝑤1, … ,𝑤𝑤𝑁𝑁� ,𝑏𝑏1, … , 𝑏𝑏𝑁𝑁� , 𝑥𝑥1, … , 𝑥𝑥𝑁𝑁) =

�
ℎ(𝑤𝑤1 ∙ 𝑥𝑥1 + 𝑏𝑏1) ⋯  ℎ(𝑤𝑤𝑁𝑁� ∙ 𝑥𝑥1 + 𝑏𝑏𝑁𝑁�)

⋮              ⋯                ⋮
ℎ(𝑤𝑤1 ∙ 𝑥𝑥𝑁𝑁 + 𝑏𝑏1) ⋯  ℎ(𝑤𝑤𝑁𝑁� ∙ 𝑥𝑥𝑁𝑁 + 𝑏𝑏𝑁𝑁�)

�  
(2.4-7) 

𝛽𝛽 = �
𝛽𝛽1
⋮
𝛽𝛽𝑁𝑁�
�  (2.4-8) 

𝑇𝑇 = �
𝑡𝑡1
⋮
𝑡𝑡𝑁𝑁
�  (2.4-9) 

Where the size of 𝐻𝐻 is (𝑁𝑁 × 𝑁𝑁�), the size of 𝛽𝛽 is (𝑁𝑁� × 𝑚𝑚), and the size of 𝑇𝑇 is (𝑁𝑁𝑁𝑁𝑁𝑁). 

From here forward, 𝐻𝐻 is called the hidden layer output matrix of the SLFN. The rows of 𝐻𝐻 

correspond to the inputs while the columns of 𝐻𝐻 correspond to the hidden layer neurons 

such that 𝐻𝐻𝑖𝑖𝑖𝑖 is equal to the output of the 𝑗𝑗𝑡𝑡ℎ neuron given the 𝑖𝑖𝑡𝑡ℎ input. Given this network, 

it is proven in [57] that the required number of nodes 𝑁𝑁� ≤ 𝑁𝑁. 

Notice that in a conventional neural network, 𝐻𝐻 is found by iteratively searching for the 

minimum of ‖𝐻𝐻𝐻𝐻 − 𝑇𝑇‖ using a gradient-based learning algorithm. Recall from section 2.2 

that the weights and biases are typically adjusted by the following formula: 

𝑤𝑤𝑘𝑘 = 𝑤𝑤𝑘𝑘−1 − 𝛼𝛼 𝛿𝛿𝛿𝛿(𝑤𝑤)
𝛿𝛿𝛿𝛿

  (2.4-10) 

This learning rule is generally implemented in the form of the back propagation (BP) 

algorithm. Huang states that there are four problems with BP algorithms: 
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(1) When the learning rate 𝛼𝛼 is too large, the algorithm becomes unstable and diverges. 

However, when 𝛼𝛼 is too small, the algorithm converges very slowly and faces greater 

risk of getting stuck in a local minimum. 

(2) The presence of local minima can greatly affect performance of the learning 

algorithm. Local minima are often traps where the learning algorithm will stop 

before it reaches a global minima. 

(3) The BP algorithms can lead to overtraining thereby hurting generalization 

performance of the network. This gives rise to the necessity for complicated stopping 

methods in the cost minimization algorithm. 

(4) In most applications, gradient-based learning is very time consuming. 

The ELM algorithm then proposes that the input weights and biases are allowed to be 

random and unchanged and that a least squares solution, 𝛽̂𝛽, of the linear system from 

equation (2.4-6) will yield a suitable approximation:  

�𝐻𝐻(𝑤𝑤1, … ,𝑤𝑤𝑁𝑁� ,𝑏𝑏1, … , 𝑏𝑏𝑁𝑁�)𝛽̂𝛽 − 𝑇𝑇� = MIN𝛽𝛽‖𝐻𝐻(𝑤𝑤1, … ,𝑤𝑤𝑁𝑁� , 𝑏𝑏1, … , 𝑏𝑏𝑁𝑁�)𝛽𝛽 − 𝑇𝑇‖  (2.4-11) 

Which is equivalent to minimizing the cost function:  

𝐸𝐸 = ∑ �∑ 𝛽𝛽𝑖𝑖ℎ𝑖𝑖�𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑖𝑖� − 𝑡𝑡𝑗𝑗𝑁𝑁�
𝑖𝑖=1 �

2𝑁𝑁
𝑗𝑗=1   (2.4-12) 

If the number of hidden neurons is equal to the number of training samples, then the matrix 

𝐻𝐻 is square and invertible. The SLFN will approximate these training samples with zero 

error. However, most of the time the number of neurons is far fewer than the number of 

training samples and there may not exist a set of parameters such that equation (2.4-6) is 

satisfied. In these cases, we must find the smallest norm least-squares solution by: 

𝛽̂𝛽 = 𝐻𝐻†𝑇𝑇  (2.4-13) 

Where 𝐻𝐻† is the Moore-Penrose generalized inverse of 𝐻𝐻.  
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This gives the algorithm the following properties: 

(1) Minimum Training Error: The special solution 𝛽̂𝛽 = 𝐻𝐻†𝑇𝑇 is a least squares solution of 

the general linear system 𝐻𝐻𝐻𝐻 = 𝑇𝑇. This means that the smallest training error can be 

reached by the special solution: 

�𝐻𝐻𝛽̂𝛽 − 𝑇𝑇� =  �𝐻𝐻𝐻𝐻†𝑇𝑇 − 𝑇𝑇� = 𝑚𝑚𝑚𝑚𝑚𝑚𝛽𝛽‖𝐻𝐻𝐻𝐻 − 𝑇𝑇‖  (2.4-14) 

 Of course all learning algorithms attempt to reach the minimum training error, 

however, many of them cannot reach it because of the problems discussed previously 

or because it would require an infinite number of training iterations. 

(2) Smallest Norm of Weights. The special solution 𝛽̂𝛽 = 𝐻𝐻†𝑇𝑇 has the smallest norm of all 

the least-squares solutions of 𝐻𝐻𝐻𝐻 = 𝑇𝑇.  

�𝛽̂𝛽� = �𝐻𝐻†𝑇𝑇� ≤ ‖𝛽𝛽‖, ∀𝛽𝛽 ∈ �𝛽𝛽: ‖𝐻𝐻𝐻𝐻 − 𝑇𝑇‖ ≤ ‖𝐻𝐻𝐻𝐻 − 𝑇𝑇‖,∀𝑧𝑧 ∈ ℝ𝑁𝑁�×𝑁𝑁� (2.4-15) 

According to Bartlett, [58], the set of parameters with the smallest norm will provide 

the best generalization performance. 

(3) The minimum norm least-squares solution of 𝐻𝐻𝐻𝐻 = 𝑇𝑇 is unique. 

Thus the ELM algorithm can be summarized as follows:  

ELM Algorithm: Recall a training set as described in equation (2.2-1) has the form: 

ℵ = {(𝑥𝑥𝑖𝑖, 𝑡𝑡𝑖𝑖)|𝑥𝑥𝑖𝑖 ∈ ℝ𝑛𝑛, 𝑡𝑡𝑖𝑖 ∈ ℝ𝑚𝑚, 𝑖𝑖 = 1, … ,𝑁𝑁} (2.4-16) 

Step 1. Randomly assign input weight, 𝑤𝑤𝑖𝑖, and bias, 𝑏𝑏𝑖𝑖, for 𝑖𝑖 = 1, … ,𝑁𝑁�. 

Step 2. Calculate the hidden layer output matrix, 𝐻𝐻. 

Step 3. Calculate the output weights, 𝛽𝛽, using equation (2.4-13). 

This algorithm was tested on several benchmarks and real-world problems in [57]. The 

algorithm was also compared with two state of the art learning algorithms in the Levenberg-

Mardquardt BP algorithm and the Support Vector Machine algorithm. The simulations for 
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the BP and ELM algorithms were carried out in MATLAB while the SVM algorithms were 

run using the compiled C-coded package, LIBSVM. Though the ELM can be used on any 

infinitely differentiable activation function, the simple sigmoidal function was used for both 

the ELM and BP trials. The kernel function used for the SVM trials was a Gaussian radial 

basis function. The inputs of the test data sets were normalized into the range, [0,1], while 

the outputs were normalized into the range, [−1,1]. Table 1 summarizes the results found by 

the experiments. It can be seen that the ELM algorithm performs very well in terms of 

training time. It is also efficient in terms of network size and root mean square error 

(RMSE) performance. The RMSE is defined as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑁𝑁
∑ 𝑒𝑒𝑖𝑖2𝑁𝑁
𝑖𝑖=1   (2.4-17) 

 
Table 3 ELM, SVR, and BP results on real world data sets. 

Data Set 
BP SVR ELM 

Train 
RMSE 

Test 
RMSE 

Train 
Time 

Train 
RMSE 

Test 
RMSE 

Train 
Time 

Train 
RMSE 

Test 
RMSE 

Train 
Time 

Abalone 0.0785 0.0874 1.7562 0.0759 0.0784 1.6123 0.0803 0.0824 0.0125 

Auto 
Price 0.0443 0.1157 0.2456 0.0652 0.0937 0.0042 0.0754 0.0994 0.0016 

Cal 
Housing 0.1046 0.1285 6.532 0.1089 0.118 74.184 0.1217 0.1267 1.1177 

Delta 
Ailerons 0.0409 0.0481 2.7525 0.0418 0.0429 0.6726 0.0423 0.0431 0.0591 

Delta 
Elevators 0.0544 0.0592 1.1938 0.0534 0.054 1.121 0.0545 0.0568 0.2812 

Machine 
CPU 0.0352 0.0826 0.2354 0.0574 0.0811 0.0018 0.0332 0.0539 0.0015 
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2.4.1 Incremental Extreme Learning Machine 

Following the work done on the Extreme Learning Machine in [57] Huang et. al in [59] 

extended those ideas to prove that given any bounded non-constant piecewise continuous 

activation function, the network output, 𝑓𝑓𝑛𝑛, can converge to any continuous target function, 𝑓𝑓, by 

only adjusting the output weights that connect the hidden layer to the output neurons and fixing 

the hidden layer parameters to random values. This research showed that one could also choose 

special neural network activation functions such as RBFs and still assign input parameters, 

centers and widths in the case of RBF, randomly while maintaining good approximation 

characteristics. Furthermore, they proposed a constructive algorithm known as the Incremental 

Extreme Learning Machine (I-ELM) which is a very important algorithm related to the work 

being done here. Like the ELM the I-ELM algorithm focuses on constructing SLFNs, but is 

proven to work for Two Hidden Layer Feedforward Networks (TLFNs) as well. The I-ELM 

algorithm works in the same way as the ELM algorithm with the exception that random neurons 

are added to the network one at a time. Then the output weights of these neurons are adjusted 

using the least squares solution with the current residual error as a target. Finally the newly 

added neuron’s function is subtracted from the current residual error and the process repeats until 

a desired level of total error or a maximum number of neurons is reached. A diagram detailing 

the flow of this algorithm is shown in Figure 2.4-1 and a detailed description of the algorithm is 

below: 

I-ELM Algorithm: Given a training set as described in equation (2.4-16), an activation 

function, ℎ(𝑥𝑥), a maximum number of hidden neurons 𝑁𝑁�, and a required learning accuracy, 

𝜀𝜀. 
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Step 1. Initialization: Let the number of hidden neurons and the residual error be 

𝑛𝑛 = 0 and 𝐸𝐸 = 𝑇𝑇, where 𝑇𝑇 is the target vector. 

Step 2. Learning: while 𝑛𝑛 < 𝑁𝑁� and ‖𝐸𝐸‖ < 𝜀𝜀  

(h) Create a new neuron with random input parameters and increment 𝑛𝑛. 

(i) Calculate the output weight, 

 𝛽𝛽𝑛𝑛 = 𝐸𝐸∙𝐻𝐻𝑛𝑛𝑇𝑇

𝐻𝐻𝑛𝑛∙𝐻𝐻𝑛𝑛𝑇𝑇
  (2.4-18) 

(j) Calculate the residual error after adding the new hidden node 𝑛𝑛. 

𝐸𝐸 = 𝐸𝐸 − 𝛽𝛽𝑛𝑛 ∙ 𝐻𝐻𝑛𝑛  (2.4-19) 

End While. 

The main differences to notice between I-ELM and the previously examined ELM are: 

(1) The network is constructed one node at a time with each new node being created with 

random input parameters, weights and biases or centers and widths.  

(2) The calculation for the output weights 𝛽𝛽 changes slightly. Since only one 𝛽𝛽 needs to be 

found at a time, the least squares solution goes from (2.4-13), to what is shown in 

equation (2.4-18). 

The authors of the I-ELM algorithm also studied various ways of improving the algorithm. 

These algorithms known as the Convex Incremental Extreme Learning Machine (CI-ELM) and 

the Enhanced Random Search Based Incremental Extreme Learning Machine (EI-ELM)  were 

published in [60] and [61] respectively. Together these algorithms are known as extreme learning 

machines. These algorithms are all built on the mathematics discussed in section 3.1. They are 

used in comparison with the algorithms proposed in this work because they all follow similar 

processes with regards to the incremental construction of RBF networks. These algorithms will 

have very fast training times since there is only one calculation made per iteration and most 
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environments allow the calculation of 𝛽𝛽 in matrix form to be very fast. The I-ELM algorithm 

was compared on a range of real world data sets and is compared with the algorithms proposed 

in this work in detail in section 3.3. The drawback to these algorithms is that only one of three 

possible input parameters is optimized. This intuitively leaves room for some improvements that 

will still maintain the integrity of the network being developed. 

 
Figure 2.4-1 The I-ELM algorithm given a training set {(𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝)|𝑥𝑥𝑝𝑝 ∈ 𝑅𝑅𝐷𝐷 ,𝑦𝑦𝑝𝑝 ∈ 𝑅𝑅,𝑝𝑝 = [1 …𝑃𝑃]}, 

an activation function g(x), a maximum node number H, and an expected learning accuracy ε. 

 
2.4.2 Convex Incremental Extreme Learning Machine 

The CI-ELM algorithm is an attempt to improve upon the methods proposed in [57] and [59]. 

This algorithm functions almost identically to the I-ELM. The only difference is that the 

solutions for 𝛽𝛽𝑛𝑛 and 𝛽𝛽 are found using Barron’s convex optimization learning method [62]. This 

method first estimates the output weight of the newly added neuron using: 
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𝛽𝛽𝑛𝑛 = 𝐸𝐸∙[𝐸𝐸−(𝐹𝐹−𝐻𝐻𝑛𝑛)]𝑇𝑇

[𝐸𝐸−(𝐹𝐹−𝐻𝐻𝑛𝑛)]∙[𝐸𝐸−(𝐹𝐹−𝐻𝐻𝑛𝑛)]𝑇𝑇  (2.4-20) 

Where 𝐻𝐻𝑛𝑛is the vector containing the output of the new node for each input pattern, 𝐸𝐸 is the 

residual error vector before the new node was added, and 𝐹𝐹 is the target vector containing each 

target. 

Then the algorithm adjusts all of the existing output weights as well using: 

𝛽𝛽𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛 = (1 − 𝛽𝛽𝑛𝑛)𝛽𝛽𝑖𝑖,     𝑖𝑖 = 1, … ,𝑛𝑛 − 1  (2.4-21) 

Finally, the residual error is calculated again with the new node in the network using: 

𝐸𝐸 = (1 − 𝛽𝛽𝑛𝑛)𝐸𝐸 + 𝛽𝛽𝑛𝑛(𝐹𝐹 − 𝐻𝐻𝑛𝑛)  (2.4-22) 

By using these equations to find 𝛽𝛽, the authors of the CI-ELM hoped to make use of more 

information and therefore find a better approximation of the targets. The full description of the 

CI-ELM algorithm is given below:  

CI-ELM Algorithm: Given a training set as described in equation (2.4-16), an 

activation function, ℎ(𝑥𝑥), a maximum number of hidden neurons 𝑁𝑁�, and a required learning 

accuracy, 𝜀𝜀. 

Step 1. Initialization: Let the number of hidden neurons and the residual error be 

𝑛𝑛 = 0 and 𝐸𝐸 = 𝑇𝑇, where 𝑇𝑇 is the target vector. 

Step 2. Learning: while 𝑛𝑛 < 𝑁𝑁� and ‖𝐸𝐸‖ < 𝜀𝜀  

(k) Create a new neuron with random input parameters and increment 𝑛𝑛. 

(l) Estimate the output weight, 𝛽𝛽𝑛𝑛, for the newly added hidden node according to 

equation (2.4-20). 

(m) If 𝑛𝑛 > 1, recalculate the output weight vectors for all previously existing hidden 

neurons according to equation (2.4-21). 
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(n) Re-calculate the residual error after the addition of the new hidden neuron according 

to equation (2.4-22). 

End While. 

The CI-ELM was compared on a range of real world data sets and is compared with the 

algorithms proposed in this work in detail in section 3.3. 

 

2.4.3 Enhanced Random Search Incremental Extreme Learning Machine 

The EI-ELM algorithm proposed in, [61] is an attempted improvement to the I-ELM 

algorithm. This algorithm differs from I-ELM in that at each iteration, instead of a single random 

node being created and added into the network, an array of random neurons of length 𝑘𝑘 is 

created. Then the output weight for each neuron is calculated using the same equation used in I-

ELM equation (2.4-18). Then a vector of errors is calculated for each of the 𝑘𝑘 neurons. The 

neuron which results in the smallest error value is then added to the network. A detailed 

description of the algorithm is given below. 

EI-ELM Algorithm: Given our typical training set from equation (2.4-16), an activation 

function, ℎ(𝑥𝑥), a maximum number of hidden neurons 𝑁𝑁�, a maximum number of trials, 𝑘𝑘, 

and a required learning accuracy, 𝜀𝜀.  

Step 1. Initialization: Let the number of hidden neurons and the residual error be 

𝑛𝑛 = 0 and 𝐸𝐸 = 𝑇𝑇, where 𝑇𝑇 is the target vector. 

Step 2. Learning: While 𝑛𝑛 < 𝑁𝑁� and ‖𝐸𝐸‖ < 𝜀𝜀 

(a) Increment 𝑛𝑛. 

(b) For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑘𝑘 

i. Create a new neuron, 𝑛𝑛𝑖𝑖, with random input parameters. 
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ii. Calculate the output weight using equation (2.4-18). 

iii. Calculate the residual error after adding the new hidden neuron, 𝑛𝑛, using 

equation (2.4-19). 

End For 

(c) Let: 

 𝑖𝑖∗ = {𝑖𝑖| min1≤𝑖𝑖≤𝑘𝑘‖𝐸𝐸𝑖𝑖‖}  (2.4-23) 

(d) Set neuron, 𝑛𝑛 = 𝑛𝑛𝑖𝑖∗, output weight, 𝛽𝛽𝑛𝑛 = 𝛽𝛽𝑖𝑖∗, and residual error, 𝐸𝐸 = 𝐸𝐸𝑖𝑖∗ . 

End While 

The EI-ELM was compared on a range of real world data sets and is compared with the 

algorithms proposed in this work in detail in section 3.3. 
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Chapter 3 Nelder-Mead Enhanced Extreme Learning Machine 

 
3.1 Nelder-Mead Simplex Method 

The Nelder-Mead algorithm is an optimization algorithm that uses a quasi-gradient descent 

method to find the minimum of a real valued function. It was originally published in [63]. Since 

then it has been widely used in a myriad of applications.  Its popularity stems from the fact that it 

is unconstrained and does not require the computation of derivatives of the function to be 

optimized. However, many studies such as what is presented in [64] show that the Nelder-Mead 

algorithm has many inefficiencies.  Some of these deficiencies were recently corrected in [65]. 

This algorithm will be used as a fast optimization method to improve the performance of the I-

ELM algorithm discussed in section 3.2.1. 

The Nelder-Mead algorithm was proposed as a method for minimizing a real-valued function 

𝑓𝑓(𝑥𝑥) for 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛.   According to [63], four scalar parameters must be specified to define a 

complete Nelder-Mead method: coefficients of reflection (𝜌𝜌), expansion (𝜒𝜒), contraction (𝛾𝛾), 

and shrinkage (α). According to the original publication, these parameters should satisfy: 

𝜌𝜌 > 0, 𝜒𝜒 > 1,𝜒𝜒 > 𝜌𝜌, 0 < 𝛾𝛾 < 1,𝑎𝑎𝑎𝑎𝑎𝑎 0 < 𝛼𝛼 < 1  (3.1-1) 

In almost all cases (and in experiments conducted in section 3.3) these parameters are chosen 

to be: 

𝜌𝜌 = 1,    𝜒𝜒 = 2,    𝛾𝛾 =
1
2

 ,𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼 =
1
2

 (3.1-2) 
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Nelder-Mead Simplex Algorithm 

At the beginning of the 𝑘𝑘𝑡𝑡ℎ iteration, 𝑘𝑘 ≥ 0, a non-degenerate simplex 𝛥𝛥𝑘𝑘 is given, as well as 

its 𝑛𝑛 + 1 vertices, each of which is a point in  𝑅𝑅𝑛𝑛.  It is always assumed that iteration 𝑘𝑘 begins by 

ordering and labeling these vertices as 𝑥𝑥1𝑘𝑘 , … , 𝑥𝑥𝑛𝑛+1𝑘𝑘 , such that 𝑓𝑓1𝑘𝑘 ≤ 𝑓𝑓2𝑘𝑘 ≤ ⋯ ≤ 𝑓𝑓𝑛𝑛+1𝑘𝑘 . Where 𝑓𝑓1𝑘𝑘 

denotes 𝑓𝑓�𝑥𝑥1𝑘𝑘�. The 𝑘𝑘𝑡𝑡ℎ iteration generates a set of 𝑛𝑛 + 1 vertices that define a different simplex 

for the next iteration. In terms of minimizing 𝑓𝑓, we refer to 𝑥𝑥1𝑘𝑘 as the best vertex and to 𝑥𝑥𝑛𝑛+1𝑘𝑘  as 

the worst vertex. 

The result of each iteration is one of two cases: 

(1) A single new vertex – the accepted point – replaces the vertex, 𝑥𝑥𝑛𝑛+1 in the set of vertices 

for the next iteration. 

(2) A shrink is performed and a set of n new points is generated that, together with 𝑥𝑥1, form 

the simplex at the next iteration. 

For explanation purposes in this work, an iteration of the Nelder-Mead algorithm will be 

described and the superscript 𝑘𝑘 will be omitted to avoid confusion.  The algorithm explanation 

shown in this work was extracted from the explanatory publication [63]. 

The steps of a single iteration of the Nelder-Mead Algorithm are: 

Step 1. Order the n+1 vertices so that 𝑓𝑓(𝑥𝑥1) ≤ 𝑓𝑓(𝑥𝑥2) ≤ ⋯ ≤  𝑓𝑓(𝑥𝑥𝑛𝑛+1). 

Step 2. Reflection:   

(a) Compute the reflection point 𝑥𝑥𝑟𝑟 from: 

𝑥𝑥𝑟𝑟 = (1 + 𝜌𝜌)𝑥𝑥� − 𝜌𝜌𝑥𝑥𝑛𝑛+1 (3.1-3) 

where 𝑥𝑥� = ∑ 𝑥𝑥𝑖𝑖/𝑛𝑛𝑛𝑛
𝑖𝑖=1  is the centroid of the 𝑛𝑛 best points.  

(b) Evaluate: 
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𝑓𝑓𝑟𝑟 = 𝑓𝑓(𝑥𝑥𝑟𝑟) (3.1-4) 

(c) If 𝑓𝑓1  ≤  𝑓𝑓𝑟𝑟  <  𝑓𝑓𝑛𝑛, accept the point and terminate the iteration. 

Step 3. Expansion:   

(a) If 𝑓𝑓𝑟𝑟  <  𝑓𝑓𝑛𝑛, calculate the expansion point 𝑥𝑥𝑒𝑒,  

𝑥𝑥𝑒𝑒 = 𝑥𝑥� +  𝜒𝜒(𝑥𝑥𝑟𝑟 − 𝑥𝑥�) (3.1-5) 

i. Evaluate 𝑓𝑓(𝑥𝑥𝑒𝑒) 

ii. If 𝑓𝑓𝑒𝑒  <  𝑓𝑓𝑟𝑟, accept 𝑥𝑥𝑒𝑒 and terminate the iteration.  

iii. Otherwise, accept 𝑥𝑥𝑟𝑟 and terminate the iteration.  

(b) But if 𝑓𝑓𝑟𝑟  ≥  𝑓𝑓𝑛𝑛, move to step 4. 

Step 4. Contraction:  Perform either and outside or inside contraction. 

(a) If 𝑓𝑓𝑛𝑛  ≤  𝑓𝑓𝑟𝑟  <  𝑓𝑓𝑛𝑛 + 1 , perform an outside contraction.   

i. Calculate: 

𝑥𝑥𝑐𝑐 = 𝛾𝛾(𝑥𝑥𝑟𝑟 − 𝑥𝑥�) + 𝑥𝑥� (3.1-6) 

ii. Evaluate 𝑓𝑓(𝑥𝑥𝑐𝑐).  

iii. If 𝑓𝑓(𝑥𝑥𝑐𝑐)  <  𝑓𝑓𝑟𝑟 accept 𝑥𝑥𝑐𝑐 and terminate the iteration.  

iv. Otherwise, go to step 5. 

(b) If 𝑓𝑓𝑟𝑟  ≥  𝑓𝑓𝑛𝑛 + 1, perform and inside contraction.   

i. Calculate: 

𝑥𝑥𝑐𝑐𝑐𝑐 = 𝛾𝛾(𝑥𝑥𝑛𝑛+1 − 𝑥𝑥�) + 𝑥𝑥� (3.1-7) 

ii. Evaluate 𝑓𝑓(𝑥𝑥𝑐𝑐𝑐𝑐).   

iii. If 𝑓𝑓(𝑥𝑥𝑐𝑐𝑐𝑐)  <  𝑓𝑓𝑛𝑛 + 1, accept 𝑥𝑥𝑐𝑐𝑐𝑐 and terminate the iteration.   

iv. Otherwise, go to step five. 

Step 5. Shrink:  Evaluate 𝑓𝑓 at the 𝑛𝑛 points: 
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𝑣𝑣𝑖𝑖   =  𝑥𝑥1   +  𝛼𝛼(𝑥𝑥𝑖𝑖   – 𝑥𝑥1), 𝑖𝑖 =  2, … ,𝑛𝑛 + 1  (3.1-8) 

The vertices of the simplex at the next iteration will consist of 𝑥𝑥1, 𝑣𝑣2, … , 𝑣𝑣𝑛𝑛 + 1.  

Terminate the iteration. 

Typically this process only needs to be repeated 5-10 times for it to provide a very large 

improvement over the starting point.  Figure 3.1-1 Figure 3.1-2 depict the effects of each step in 

two dimensions, where the simplex is a triangle.  Both figures assume the values for the simplex 

parameters to be equal to those given in equation (3.1-2).   

 

Figure 3.1-1. Nelder-Mead simplices after a reflection (left) and an expansion (right).  The 

original simplex is shown with a dashed line. 

 

 

Figure 3.1-2. Nelder-Mead simplices after an outside contraction (left), an inside contraction 

(middle), and a shrink (right).  The original simplex is shown with a dashed line. 
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3.1.1 Improved Nelder-Mead Simplex Method 

While widely considered simple and effective, the Nelder-Mead Simplex algorithm also has 

its inefficiencies as studied in [64]. This study suggests that the NM algorithm fails to converge 

on certain problems due to the fact that the search direction becomes increasingly orthogonal to 

the steepest decent direction. The authors propose what they call a “Direct Search Algorithm” to 

replace the NM algorithm. Fuchang Gao and Lixing Han proposed an improvement to the NM 

algorithm in which the expansion, contraction, and shrinking parameters are adaptive with 

respect to the dimensionality of the problem [66]. Finally, Nam Pham and Bogdan Wilamowski 

improved the NM algorithm by adding a quasi-gradient calculation and selecting the new vertex 

point in the direction of the estimated gradient [65]. This improvement showed much 

improvement in convergence speeds and success rates of the algorithm. This improved algorithm 

is as follows: 

Improved Nelder-Mead Simplex Algorithm: At the beginning of the 𝑘𝑘𝑡𝑡ℎ iteration, 𝑘𝑘 ≥ 0, a 

non-degenerate simplex 𝛥𝛥𝑘𝑘 is given, as well as its 𝑛𝑛 + 1 vertices, each of which is a point in  𝑅𝑅𝑛𝑛.  

It is always assumed that iteration 𝑘𝑘 begins by ordering and labeling these vertices as 

𝑥𝑥1𝑘𝑘 , … , 𝑥𝑥𝑛𝑛+1𝑘𝑘 , such that 𝑓𝑓1𝑘𝑘 ≤ 𝑓𝑓2𝑘𝑘 ≤ ⋯ ≤ 𝑓𝑓𝑛𝑛+1𝑘𝑘 . Where 𝑓𝑓1𝑘𝑘 denotes 𝑓𝑓�𝑥𝑥1𝑘𝑘�. The 𝑘𝑘𝑡𝑡ℎ iteration 

generates a set of 𝑛𝑛 + 1 vertices that define a different simplex for the next iteration. In terms of 

minimizing 𝑓𝑓, we refer to 𝑥𝑥1𝑘𝑘 as the best vertex and to 𝑥𝑥𝑛𝑛+1𝑘𝑘  as the worst vertex. 

The result of each iteration is one of two cases: 

(1) A single new vertex – the accepted point – replaces the vertex, 𝑥𝑥𝑛𝑛+1 in the set of vertices 

for the next iteration. 

(2) A shrink is performed and a set of n new points is generated that, together with 𝑥𝑥1, form 

the simplex at the next iteration. 
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As before, the description of the algorithm below is a description of a single iteration. The 

algorithm was extracted from the paper [65]. 

The steps of a single Improved Nelder-Mead Simplex algorithm iteration are: 

Step 1. Order the n+1 vertices so that 𝑓𝑓(𝒙𝒙1) ≤ 𝑓𝑓(𝒙𝒙2) ≤ ⋯ ≤  𝑓𝑓(𝒙𝒙𝑛𝑛+1). 

Step 2. Create an extra point 𝑥𝑥𝑠𝑠 with it’s coordinates composed of 𝑛𝑛 vertices in the 

simplex such that the coordinates are each from a different vertex in the simplex. 

For example, select 𝑥𝑥𝑠𝑠 such that: 

 𝑥𝑥𝑠𝑠 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(�

𝑥𝑥1,1, 𝑥𝑥1,2, … , 𝑥𝑥1,𝑛𝑛
𝑥𝑥2,1, 𝑥𝑥2,2, … , 𝑥𝑥2,𝑛𝑛

⋮
𝑥𝑥𝑛𝑛,1, 𝑥𝑥𝑛𝑛,2, … , 𝑥𝑥𝑛𝑛,𝑛𝑛

�) (3.1-9) 

Step 3. Calculate quasi-gradients, 

𝒈𝒈 = [𝑔𝑔1,𝑔𝑔2, … ,𝑔𝑔𝑛𝑛], based on the extra point, 𝑥𝑥𝑠𝑠.  (3.1-10) 

Step 4. For 𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 𝑛𝑛: 

(a) If 𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 2 = 0, 

𝑔𝑔𝑖𝑖 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

= 𝑓𝑓�𝑥𝑥𝑖𝑖−1,𝑖𝑖�−𝑓𝑓(𝑥𝑥𝑠𝑠𝑠𝑠)
𝑥𝑥𝑖𝑖−1,𝑖𝑖−𝑥𝑥𝑠𝑠𝑠𝑠

  (3.1-11) 

(b) Otherwise, 

𝑔𝑔𝑖𝑖 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

= 𝑓𝑓�𝑥𝑥𝑖𝑖+1,𝑖𝑖�−𝑓𝑓(𝑥𝑥𝑠𝑠𝑠𝑠)
𝑥𝑥𝑖𝑖+1,𝑖𝑖−𝑥𝑥𝑠𝑠𝑠𝑠

  (3.1-12) 

(c) End Iteration 

Step 5. Calculate the reflection point: 

 𝑥𝑥𝑟𝑟 = 𝑥𝑥1 − 𝜌𝜌 ∗ 𝑔𝑔, where 𝜌𝜌 is a reflection coefficient. (3.1-13) 

Step 6. Expansion:  

a. If 𝑓𝑓𝑟𝑟  <  𝑓𝑓𝑛𝑛, calculate the expansion point: 
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𝑥𝑥𝑒𝑒 = (1 − 𝜒𝜒) ∗ 𝑥𝑥1 + 𝜒𝜒 ∗ 𝑥𝑥𝑟𝑟 (3.1-14) 

i. Evaluate 𝑓𝑓(𝑥𝑥𝑒𝑒).   

ii. If 𝑓𝑓𝑒𝑒  <  𝑓𝑓𝑟𝑟, accept 𝑥𝑥𝑒𝑒 and terminate the iteration.  

iii. Otherwise, accept 𝑥𝑥𝑟𝑟 and terminate the iteration.  

End Iteration. 

One may notice that this version of the NM algorithm does not require a contraction or shrink 

step. This is because the quasi-gradient is calculated, so the so called reflected point, 𝑥𝑥𝑟𝑟, is going 

to be in the correct direction. This algorithm does have an increased cost in each iteration due to 

the calculation of the quasi-gradient, but the algorithm saves in the number of iterations needed 

to converge [65]. 

 

3.2 Nelder-Mead Enhanced Extreme Learning Machine 

The ELM family of algorithms boast very good training times and acceptable generalization 

performance, but the network size is always very large. This is likely due to the fact that out of 

three possible tunable parameters, the ELMs elect to only optimize one parameter. Let us think 

in terms of a network of RBF neurons. Each neuron has 3 tunable parameters, the center, the 

width, and the height. The height of each neuron is optimized by the ELM algorithms, but the 

center, and width are not. However, the ELM algorithms omit these parameters in the interest of 

training time. The goal of the algorithm presented here is to provide similarly fast training times 

and errors, but to also provide a more compact network with better generalization properties.  

This is done by adjusting the I-ELM algorithm so that it now optimizes the radii and the weights 

of the RBF neurons while choosing the centers in a greedy fashion. These design choices will 
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help us to construct as compact a network as possible. This work has been very recently 

published in the Journal of Neurocomputing [67]. 

Keeping this in mind, the Nelder-Mead algorithm was chosen for the task of optimizing the 

radius of each newly added node for the following reasons: the Nelder-Mead algorithm tends to 

produce significant improvement over the first few iterations, the Nelder-Mead algorithm does 

not require many calculations of derivatives only a few function values at each iteration, and 

finally, it is easy to understand and explain [68].  All of these properties allow the algorithm to 

be used to very quickly change the radius of each node so that the error is improved. 

Furthermore, the improved version of the Nelder-Mead algorithm published by Pham in [65] was 

used in the final version of this algorithm. In the initial iteration of the algorithm proposed here, 

the original nelder-mead simplex algorithm as described in [63] was used, but better performance 

was achieved using the improved version.  

NME-ELM Algorithm: Given a training set as described in equation (2.4-16), an 

activation function, ℎ(𝑥𝑥), a maximum number of hidden neurons 𝑁𝑁�, a maximum number of 

Nelder-Mead iterations, 𝑘𝑘, and a required learning accuracy, 𝜀𝜀.  

Step 1. Initialize: Let the number of nodes, n = 0 and the error, 𝐸𝐸 =  𝑡𝑡. 

Step 2. Learning: While 𝑛𝑛 < 𝑁𝑁� and ‖𝐸𝐸‖ < 𝜀𝜀 

(a) Increment 𝑛𝑛. 

(b) Find the index, 

 𝑖𝑖∗ = {𝑖𝑖| max1≤𝑖𝑖≤𝑘𝑘‖𝑒𝑒𝑖𝑖‖}.   (3.2-1) 

(c) Assign the center 𝑐𝑐𝑛𝑛, of the new node to be the input pattern 𝑥𝑥𝑖𝑖∗  . 

(d) Assume the initial value of 𝛽𝛽𝑛𝑛 to be equal to 𝑒𝑒𝑖𝑖∗ . 

(e) Initialize the Nelder-Mead Simplex [63] algorithm: 
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i. Set the Simplex parameters according to the parameters defined Chapter 2: 

𝜌𝜌 = 1,    𝜒𝜒 = 2,    𝛾𝛾 = 1
2

 , 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼 = 1
2
  (3.2-2) 

ii. Choose some initial values for 𝜎𝜎𝑛𝑛. 

iii. Calculate: 

𝑆𝑆𝑆𝑆𝑆𝑆(𝜎𝜎𝑛𝑛,𝑗𝑗) = ∑ (𝑒𝑒𝑖𝑖 −  𝛽𝛽𝑛𝑛 ∗ 𝑔𝑔𝑛𝑛(𝑥𝑥𝑖𝑖))2𝑁𝑁
𝑖𝑖=1   (3.2-3) 

For each 𝜎𝜎𝑛𝑛,𝑗𝑗.   

The vector of 𝜎𝜎 values becomes the vector of vertices for a simplex. The vector of 

SSE values becomes the vector of function values for the simplex. 

iv. Perform 𝑘𝑘 iterations of the Simplex algorithm (𝑘𝑘 is typically 5-10). This step 

results in an optimal 𝜎𝜎𝑛𝑛 value. 

(f) Re-calculate 𝛽𝛽𝑛𝑛 using equation (2.4-18). 

(g) Calculate the residual error as in equation (2.4-19).  

End While Loop. 

A flow chart of this algorithm is shown in Figure 3.2-1. 
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Figure 3.2-1 The NME2-ELM algorithm given a training set {(𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝)|𝑥𝑥𝑝𝑝 ∈ 𝑅𝑅𝐷𝐷 ,𝑦𝑦𝑝𝑝 ∈ 𝑅𝑅,𝑝𝑝 =

[1 …𝑃𝑃]}, an activation function g(x), a maximum node number H, and an expected learning 

accuracy ε. 

In order to illustrate the intuitive process of this algorithm, the step by step network 

construction process will be demonstrated on a simple problem. The network will be constructed 

to approximate one period of a simple sine wave. The desired function is shown in Figure 3.2-2a.   
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(a) (b) 

Figure 3.2-2 An illustration of the first few iterations of the NME2-ELM algorithm. (a) Desired 

sinusoidal function with the first center c1 shown by the black asterisk. (b) The output of one 

node using NME2-ELM. 

From the inputs and desired outputs, a new neuron is created and its center is chosen. For this 

problem, the center c1 = 1.5678, and is shown in Figure 3.2-2 as the black asterisk.  Then the 

radius σ1 and the height 𝛽𝛽1 are optimized using the Nelder-Mead algorithm described previously. 

This yields σ1 = 1.1429 and 𝛽𝛽1 = 1.0714.  Figure 6b shows the results of this process. 

The residual error is calculated using equation (2.4-19) and is used in the next iteration as a 

second neuron is added. Figure 3.2-3a depicts the error surface (new desired curve) and the 

second added center c2. 
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(a) (b) 

Figure 3.2-3 Step by step illustration for the second neuron. (a) The desired curve for the second 

node and the center c2. (b) Desired surface and NME2-ELM output after 2 RBF units have been 

added to the network.  RMSE = 0.0627.  

Continuing the algorithm to add a second neuron to the network, the resulting parameters are: 

c2 = 4.7035, σ2 = 0.6797, and 𝛽𝛽2 = 1.0260.  Figure 3.2-3b shows that after two RBF neurons are 

added to the network, the NME2-ELM algorithm reaches a RMSE value of 0.0627. The RMSE 

can be further reduced by adding more neurons to the network. If the algorithm is allowed to 

continue to a total of five RBF units, the RMSE value is as low as 0.0162. The results after 10 

neurons are added to the network are shown in Figure 3.2-4. 

Intuitively, it can be seen that this algorithm makes choices that allow a network to reduce 

error very significantly with the addition of each neuron. This algorithm was tested on several 

bench mark problems including some real world problems from the UCI Machine Learning 

Repository [69]. The next section presents the results from these tests and comparisons with the 

ELM algorithms and SVR. 
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(a) (b) 

Figure 3.2-4 Summary of results after ten neurons are used. (a) The sine problem after 10 RBF 

neurons are added to the network. The RMSE = 0.0162. (b) The RMSE with respect to number 

of neurons in the network. 

 
3.3 Testing and Comparisons 

In this section, the performance of the proposed NME-ELM algorithm is evaluated and 

compared with other popular algorithms used to construct RBF networks. Algorithms such as the 

various incremental ELM algorithms and the popular SVR algorithm are compared to the 

proposed algorithm on several problems. The testing environment used is MATLAB with the 

exception of SVR that was tested using the LIBSVM package [70]. The hardware consists of an 

Intel i7-2600 CPU @ 3.4GHz with 8 GB of RAM on a 64 bit operating system.  

The results seem to indicate that the NME-ELM algorithm performs as it is expected to 

perform. The errors converge with very few neurons required, and generalization performance is 

good. Another important thing to note is that there is no randomness in the NME-ELM approach. 

This means that fewer trials are needed to reach an acceptable solution. In the case of the other 

ELMs, a poor random selection of the input parameters can lead to the network never converging 
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to acceptable error levels. This requires that many trials be run and then the top few networks 

selected for further analysis.  

 

3.3.1 Highly Nonlinear Benchmark: Peaks Problem 

In this section the NME-ELM algorithm is tested and compared on a highly nonlinear 

problem called the peaks problem. This problem is designed to be used as a benchmark in testing 

the robustness of the learning algorithm.  The problem has 2-dimensional inputs from the range 

[-1,1] and an output in the range [-1,1] can be described by the following equation: 

𝑧𝑧(𝑥𝑥,𝑦𝑦) = −
1

30
exp(−1 − 6𝑥𝑥 − 9𝑥𝑥2 − 9𝑦𝑦2)

− (0.6𝑥𝑥 − 27𝑥𝑥3 − 243𝑦𝑦5) exp(−9𝑥𝑥2 − 9𝑦𝑦2)

+ (0.3 − 1.8𝑥𝑥 + 2.7𝑥𝑥2)exp (−1− 6𝑦𝑦 − 9𝑥𝑥2 − 9𝑦𝑦2) 

(3.3-1) 

In order to make this problem more “real” 500 training vectors with random coordinates (x,y) 

were chosen in the range [-1,1].  Then the desired outputs were calculated using equation (3.3-

1).  Then a Gaussian noise distribution with a standard deviation of 0.1 was added to the target 

outputs to simulate imperfect data. For testing, an evenly spaced grid of x and y coordinates 

consisting of 900 patterns was used. The parameters for each algorithm were optimized with 

respect to testing RMSE using a grid search run 20 times (to help eliminate the randomness that 

comes with ELM).  For this particular problem the impact factor for the ELM algorithms was set 

to 2.7583, and centers were chosen randomly from the input space. The radius of the RBF kernel 

for SVR was set to 0.5 and the C parameter was varied between 20 and 210 (this is how we have 

multiple points to plot for the SVR errors). 

The desired testing surface of the peaks problem is shown in Figure 3.3-1. Figure 3.3-2a 

shows the training errors of different algorithms with respect to the number of neurons (or 
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support vectors) required. Figure 8b shows the corresponding testing errors for each algorithm 

with respect to the number of neurons required. Each algorithm was run 20 times and the average 

errors are presented. From these results, it can be seen that the proposed algorithm converges to 

lower error with fewer neurons than the other algorithms and far outperforms the other 

incrementally constructive algorithms of the ELM family. It should also be noticed that once the 

algorithm reaches a certain training error (which is far below the level of the other algorithms), 

the testing error does not improve. This is believed to be caused by overtraining or training to 

noise rather than trends in the data. 

 

 
Figure 3.3-1 Desired surface for the peaks problem. 
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(a) (b) 

Figure 3.3-2 Testing and training errors of various algorithms on the peaks problem. (a) Training 

results on the peaks problem with different algorithms. It can be seen that the NME2-ELM 

algorithm takes a very quick path to lower error. (b) Testing results on the peaks problem with 

different algorithms. It can be seen that for NME2-ELM the network starts training to noise in 

the data after ~40 neurons are added. 

 
3.3.2 Real World Data 

The proposed algorithm’s robustness is further demonstrated by testing it on high 

dimensional real world data. The datasets used are taken from the UCI Repository of Machine 

Learning Databases [69].  The testing errors obtained for the data sets and the generated network 

sizes are then compared to other popular RBF algorithms such as the ELMs and SVR.  

All of the inputs used in for the real world data sets were normalized to the range [-1, 1], and 

the outputs were normalized to the range [0, 1].  Each of the data sets were randomly divided 

into training data and testing data. In most cases, this was roughly %50 of the patterns for both 

sets. For each data set, the training and testing sets were randomly generated and run 20 times. 

The results presented are the averages of these trials.  Table 4 shows the data sets used and the 
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way they were split apart for testing and training as well as the number of input dimensions. 

Notice that for the ELM family of algorithms a somewhat arbitrary choice must be made to 

select the number of hidden units, because the errors decrease slowly as the network size 

increases (Figure 3.3-3b-d). However, it can be seen that in the case of NME2-ELM, an error 

saturation is reached very early. 

 

Table 4 Dataset Information 

Problem #Training 
Data 

#Testing 
Data 

# Attributes 

Abalone 2000 2177 8 
Auto Price 80 79 15 
Boston Housing 250 256 13 
Cal Housing 8000 12640 8 
Delta Ailerons 3000 4129 5 
Delta Elevators 4000 5517 6 
Machine CPU 100 109 6 
 
 

Figure 3.3-3a shows the testing results for the NME-ELM algorithm on several real world 

datasets.  It can be seen that the testing RMSE converges within 50 RBF units for each problem.  

This RMSE is comparable to the RMSE obtained by the ELM algorithms, but in this case only 50 

RBF nodes are used.  Furthermore, Figure 3.3-3b-d shows a comparison between the ELM 

algorithms, the proposed algorithm, and SVR.  It can be seen that the proposed algorithm 

converges to its minimum testing error very quickly, especially when compared to the other 

Incremental ELMs. 

The data presented in Table 5 shows that the NME-ELM algorithm performs very well in 

terms of testing RMSE. Again, notice that the NME-ELM algorithm’s testing error is comparable 

or better than the other algorithms despite using far fewer neurons. Table 6 Table 7 give a 

comparison of training times and network size respectively. It can be seen that the NME2-ELM 
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performs well as it constructs a smaller network than the Incremental ELMs, and is often able to 

train faster as well. 

  

(a) (b) 

  

(c) (d) 

Figure 3.3-3 (a) The NME2-ELM on various Real World Problems. (b) A comparison between 

various algorithms on the Auto Price problem. (c) A comparison between various algorithms on 

the Boston Housing problem. (d) A comparison between various algorithms and the Delta 

Elevators problem. 
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Table 5 Average Testing Errors For Real World Problems 

Problems NME2-ELM I-ELM EI-ELM CI-ELM SVR 
RMSE RMSE RMSE RMSE (C,γ) RMSE 

Abalone 0.0849 0.0938 0.0829 0.0858 (24, 2-6) 0.0846 
Auto Price 0.1104 0.1222 0.1139 0.1197 (28, 2-5) 0.1052 
Boston Housing 0.1124 0.1261 0.1281 0.1423 (24, 2-3) 0.1155 
Cal Housing 0.1642 0.1691 0.1503 0.1756 (23, 21) 0.1311 
Delta Ailerons 0.0413 0.0513 0.0448 0.0416 (23, 2-3) 0.0467 
Delta Elevators 0.0557 0.0632 0.0575 0.0566 (20, 2-2) 0.0603 
Machine CPU 0.0791 0.0674 0.0554 0.0675 (26, 2-4) 0.0620 
 
 
Table 6 Training Times For Real World Problems 

Problems NME2-ELM I-ELM EI-ELM CI-ELM SVR 
Time (s) Time (s) Time (s) Time (s) (C,γ) Time (s) 

Abalone 0.0944 0.5990 5.9603 0.6098 (24, 2-6) 0.2659 
Auto Price 0.0064 0.0203 0.1777 0.0204 (28, 2-5) 0.0294 
Boston Housing 0.0243 0.0822 0.6910 0.2237 (24, 2-3) 0.0461 
Cal Housing 0.3746 1.8631 14.554 1.4608 (23, 21) 6.0684 
Delta Ailerons 0.1587 0.5511 5.3020 0.5453 (23, 2-3) 0.2499 
Delta Elevators 0.2399 0.8651 8.5861 0.8789 (20, 2-2) 1.0234 
Machine CPU 0.0099 0.2549 0.3078 0.0353 (26, 2-4) 0.0265 
 

Table 7 Network Size For Real World Problems 

Problems NME2-ELM I-ELM EI-ELM CI-ELM SVR 
# Neurons # Neurons # Neurons # Neurons (C,γ) # Neurons 

Abalone 100 200 200 200 (24, 2-6) 310 
Auto Price 82 200 200 200 (28, 2-5) 96 
Boston Housing 94 200 200 200 (24, 2-3) 22 
Cal Housing 195 200 200 200 (23, 21) 47 
Delta Ailerons 182 200 200 200 (23, 2-3) 2189 
Delta Elevators 140 200 200 200 (20, 2-2) 83 
Machine CPU 28 200 200 200 (26, 2-4) 261 
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Chapter 4 Error Correction Algorithm 

In this work it has been posited that being able to adjust more parameters leads to more 

compact learning networks. In the case of classical neural networks, this is the way they have 

always been constructed and trained. However, RBF neural networks are often constructed in 

a different manner. Typically this is done by selecting the centers using a clustering 

algorithm such as kohonen training. Then RBF neurons are created with fixed widths and the 

heights are adjusted using any number of popular training techniques. The ability to move 

RBF network centers to minimize the errors should allow for very compact networks with 

good generalization abilities. 

 

4.1 Levenberg-Marquardt Training for RBF Networks 

It was proposed in [71] that a second order method be used to train RBF networks. The 

method proposed is an adapted version of the Neuron by Neuron algorithm published in [72]. 

Furthermore, the Levenberg-Marquardt method was improved for computations with large 

data sets in [43]. This allows for the Jacobian matrix needed for the second order 

approximation to be efficiently stored for large networks and large data sets. A training 

algorithm using this LM method was proposed in [71] that shows very good results; 

however, there are some deficiencies that are addressed in the following section. 
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4.1.1 ISO Deficiencies 

The Improved Second-Order (ISO) algorithm for training radial basis function networks was 

introduced in [71]. This algorithm uses the improved version of the Levenberg-Marquardt 

algorithm to optimally adjust the parameters of a given RBF network. This algorithm requires 

first that you have a network of RBF units with some initial parameters and an initial error state. 

Then it uses the LM method as described earlier to adjust the parameters to find a minimum in 

the error surface. The requirement for an initial state of a network is a dilemma however, because 

one must still consider the non-trivial problem of choosing an appropriately sized network for the 

problem. This coupled with the fact that the neurons are often initialized with random parameters 

leads to the need for several trials before an optimum solution is found. The ErrCor algorithm 

presented in the following section attempts to address these issues. In a single trial, a network is 

both constructed and trained to a minimum error with zero random parameters and no initial 

network. Figure 4.1-1 depicts the difference in error convergence over many trials with ISO and 

a single trial of the new ErrCor algorithm.  
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Figure 4.1-1 The ISO algorithm and the ErrCor algorithm on the Peaks problem using 5 RBF 

units.  Notice that the ISO algorithm errors vary greatly due to the random start points, while 

ErrCor reaches small error with a single try. 

 
4.2 Error Correction Algorithm 

The Error Correction (ErrCor) algorithm described here is a greedy incremental network 

construction algorithm [73]. This means that the algorithm starts from scratch and places each 

RBF neuron into the network based on a heuristic measure. Basically the ErrCor algorithm 

attempts to reduce the error as much as possible during each training step by adding an RBF 

neuron located at the place with the highest peak in the error surface. Then the RBF parameters 

are further optimized using the LM method described earlier. This algorithm has been shown to 

have good training and generalization characteristics on benchmark problems and real world 

datasets. A detailed description of the algorithm is given in this section, and experimental results 

and comparisons are given in section 4.3. 
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Error Correction Algorithm: Recall that a typical training set is of the form: 

ℵ = {(𝑥𝑥𝑖𝑖, 𝑡𝑡𝑖𝑖)|𝑥𝑥𝑖𝑖 ∈ ℝ𝑛𝑛, 𝑡𝑡𝑖𝑖 ∈ ℝ𝑚𝑚, 𝑖𝑖 = 1, … ,𝑁𝑁}  (4.2-1) 

Given the set described above, activation function, ℎ(𝑥𝑥), a maximum number of hidden 

neurons 𝑁𝑁�, and a required learning accuracy, 𝜀𝜀. 

Step 1. Initialization: 

(a) Declare network output, 𝑜𝑜 = 0.  

(b) Set LM training parameters the maximum iterations, Miter, the combination 

coefficient, 𝜇𝜇, and the minimum error difference, 𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. 

Step 2. Learning: 

(a) While 𝑛𝑛 < 𝑁𝑁� and 𝐸𝐸 > 𝜀𝜀 

i. Increment 𝑛𝑛. 

ii. calculate errors: 

𝑬𝑬 =  |𝑻𝑻 − 𝒐𝒐| = [𝑒𝑒1, 𝑒𝑒2, … 𝑒𝑒𝑁𝑁]  (4.2-2) 

iii. Find the index according to: 

𝑖𝑖∗ = {𝑖𝑖| max1≤𝑖𝑖≤𝑘𝑘‖𝑒𝑒𝑖𝑖‖}  (4.2-3) 

iv. Create a new RBF unit with center equal to 𝑥𝑥𝑖𝑖∗. 

v. Set output weight and width of new RBF unit to 1. 

vi. if 𝑛𝑛 >  1,Initialize existing network to the training results of step 𝑛𝑛 − 1. 

vii. Evaluate RMSE using equation (2.4-17): 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸1 = �∑ 𝑒𝑒𝑖𝑖2𝑁𝑁
𝑖𝑖=1   (4.2-4) 

viii. Set the number of LM iterations, 𝑘𝑘 = 1. 

ix. While 𝑘𝑘 <  𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 1 and  𝑒𝑒𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 < (𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑘𝑘 − 𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑘𝑘+1)  
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1. Calculate quasi-Hessian matrix, 𝑸𝑸𝒌𝒌 and gradient vector, 𝒈𝒈𝒌𝒌. 

2. Update network parameters using the ISO update rule: 

∆𝑘𝑘+1= ∆𝑘𝑘 − (𝑸𝑸𝑘𝑘 + 𝜇𝜇𝑘𝑘𝐼𝐼)−1𝒈𝒈𝒌𝒌  (4.2-5) 

3. Compute output of network 𝒐𝒐; 

4. Evaluate,  𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑘𝑘+1  

5. Increment 𝑘𝑘. 

End While. 

x. Calculate 𝑬𝑬. 

 End While. 

In order to illustrate the intuitive process of this algorithm, the step by step network 

construction process will be demonstrated on a simple problem. The network will be constructed 

to approximate one period of a simple sine wave. The desired function is shown in Figure 4.2-1a.   

  

(a) (b) 

Figure 4.2-1 An illustration of the first iteration of the Error Correction algorithm. (a) Desired 

sinusoidal function with the first center c1 shown by the black asterisk. (b) The output of the 

network created using ErrCor after one iteration. 
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By going through the data of the curve in Figure 4.2-1a, the center location 𝑐𝑐1 = 4.7 and the 

error height 𝛽𝛽1 = −1 corresponding to the highest magnitude point in the error surface are 

chosen as the initial parameters of the first neuron. Then the neuron is trained by applying the 

LM algorithm (section II.B) for parameter adjustment. The resulting network (a single neuron) 

output is shown in Figure 4.2-1b. The RBF parameters after the LM training are: 𝑐𝑐1 = 4.722, 

𝛽𝛽1 = −1.076, 𝜎𝜎1 = 1.560. Based on the training results, the outputs of the RBF network are 

visualized in Figure 4.2-1b, and new error curve (Figure 4.2-2a) is obtained as the difference 

between Figure 4.2-1a and Figure 4.2-1b. Comparing the error curves in Figure 4.2-1a and Fig. 

14a, one may notice that, the lowest valley (marked as an asterisk) in Figure 4.2-1a has been 

eliminated in Figure 4.2-2a.  This results in an RMSE of  0.2000. This residual error is then used 

to find the initial location of the next RBF neuron (see Figure 4.2-2). 

  

(a) (b) 

Figure 4.2-2 Illustration of the ErrCor algorithm during the second iteration. (a) The desired 

curve for the second node and the center c2. (b) Desired surface and network output after 2 RBF 

units have been added to the network.  RMSE = 0.0025.  

Continuing the algorithm to add a second neuron to the network, the resulting parameters are: 

𝑐𝑐2  =  −1.1,  𝛽𝛽2 =  −0.5958, and 𝜎𝜎2 =  2.079.  Figure 14b shows that after two RBF neurons 
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are added to the network, the ErrCor algorithm reaches a RMSE value of 0.025. The RMSE can 

be further reduced by adding more neurons to the network. If the algorithm is allowed to 

continue to a total of five RBF units, the RMSE value is as low as 0.000025. The results after 5 

neurons are added to the network are shown in Figure 4.2-3. 

  

(a) (b) 

Figure 4.2-3 Summary of results of the ErrCor algorithm after five neurons are used. (a) The 

sine problem after 5 RBF neurons are added to the network. The RMSE is effectively 0. (b) The 

RMSE with respect to number of neurons in the network. 

It is worth comparing the error convergence of this algorithm and the previously discussed 

Nelder-Mead Enhanced Extreme Learning machine. Intuitively, it can be seen that this algorithm 

makes choices that allow a network to reduce error very significantly with the addition of each 

neuron even more so that the NME-ELM. This improvement is due to the fact that the centers are 

not fixed once they are guessed to be the highest peak in the error surface. Figure 4.2-4 shows 

the error rate for each added neuron for the two algorithms. Notice that ErrCor reaches a lower 

error in fewer neurons. This algorithm was tested on several bench mark problems including 

some real world problems from the UCI Machine Learning Repository [69]. The next section 

presents the results from these tests and comparisons with the ELM algorithms and SVR. 
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(a) (b) 

Figure 4.2-4 Summary of results of the NME-ELM algorithm and the ErrCor algorithm after 

several neurons are used. (a) The RMSE of the NME-ELM as it adds up to 10 neurons to the 

network. (b) The RMSE of the ErrCor algorithm as it adds up to 5 neurons to the network. 

 
4.3 Testing and Comparisons 

In this section, the performance of the proposed ErrCor algorithm is evaluated and compared 

with other popular algorithms used to construct RBF networks. These algorithms include the 

popular GGAP, GGAP-GMM, RAN, MRAN, and RANEKF algorithms. These algorithms are 

primarily designed as online algorithms while the algorithms proposed here are offline 

algorithms. However, the aforementioned algorithms also work well as offline algorithms; 

therefore, they are also compared with the proposed ErrCor algorithm. It is important to note that 

the training time is a very important aspect of online algorithms because they are constantly 

being retrained as new information is seen. However, offline algorithms such as the various 

incremental ELM algorithms, the popular SVR algorithm, the new NME-ELM algorithm, and 

the proposed ErrCor algorithm focus on execution times and generalization abilities. This keeps 

the compactness of the networks and the testing RMSE at the forefront of the evaluation process.  
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The testing environment used is MATLAB with the exception of SVR that was tested using 

the LIBSVM package [70]. The hardware consists of an Intel i7-2600 CPU @ 3.4GHz with 8 

GB of RAM on a 64 bit operating system. The results seem to indicate that the ErrCor algorithm 

performs as it is expected to perform. The errors converge with very few neurons required, and 

generalization performance is superior to all of the algorithms against which it is compared. 

Another important thing to note is that there is no randomness in the ErrCor approach, not even 

in the initialization process. This means that only a single trial is needed to reach an acceptable 

solution. In the case of the other ELMs, a poor random selection of the input parameters can lead 

to the network never converging to acceptable error levels. This requires that many trials be run 

and then the top few networks selected for further analysis.  

 

4.3.1 Highly Nonlinear Benchmarks 

In the presented study, it was found that many of the real-world data sets are not highly 

nonlinear and good results can be obtained with very few RBF neurons (see Table 11). 

Therefore, in this section, the ErrCor algorithm is applied so some well-known nonlinear bench 

tests to demonstrate in an easily visible manner the power and robustness of the algorithm. These 

benchmark tests are organized as follow, Rapidly Changing Function, Peaks Problem, and Two 

Spiral Problem. 

 

4.3.1.1 Rapidly Changing Function 

In this experiment, the proposed algorithm is applied to design RBF networks to approximate 

the following rapidly changing function this is the same function used to test many popular 

algorithms such as the GGAP-RBF algorithm shown in [16]. 
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The formula for this benchmark problem is the following: 

𝑦𝑦(𝑥𝑥) = 0.8𝑒𝑒−0.2𝑥𝑥sin (10𝑥𝑥)  

In this problem, there are 3000 training patterns with x-coordinates uniformly distributed in 

range [0, 10]. The validation data set consists of 1500 patterns with x-coordinates randomly 

generated in the same range [0, 10]. 

Figure 4.3-1 shows the testing results of the proposed ErrCor algorithm, with the number of 

RBF units equal to 10 and 20 respectively.  Figure 4.3-2 shows the training results of proposed 

ErrCor algorithm and several other algorithms. One may notice that the proposed ErrCor 

algorithm can reach a similar training/testing error level with a 3 to 30 times smaller network.  

  

(a) (b) 

Figure 4.3-1 Testing results of the ErrCor algorithm on the rapidly changing function. (a) The 

results after 10 neurons are added to the network. The training and testing mean square errors are 

7.846 × 10−3 and 7.516 × 10−3 respectively. (b) The results after 20 neurons are added to the 

network. The training and testing mean square errors are 5.428 × 10−6 and 5.347 × 10−6 

respectively. 
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Figure 4.3-2 Function approximation problem: training/testing average sum square errors vs. 

average number of RBF units. 

Table 8 presents the comparison of average training time, training errors, testing time, and 

testing error for each algorithm. For the proposed ErrCor algorithm, the computation time is 

counted until the RBF network with 20 units (with smaller training/testing errors than other 

algorithms) gets trained.  For the ELM algorithms, the centers were generated from the input 

range [0,10] while impact factors were from the range (0,0.5]. For GAP-RBF the parameters are 

fixed at 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 = 1.15, 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 = 0.04, 𝜅𝜅 = 0.10,𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾 = 0.999. For the MRAN algorithm, the 

threshold for growing and pruning was set as 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀 = 0.06, and the appropriate size of the sliding 

window was chosen as 𝑀𝑀 = 100. The parameters for GGAP were 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝐺𝐺 = 0.00001. For SVR, 

the parameter C was tuned to 1000 while γ was set at 1. 

In order to provide a measure independent of physical CPU power, a normalized computation 

time was used to determine the efficiency of the constructed networks.  The normalization was 

done by first testing two different data sets on networks of different sizes twenty times each.  The 

average computation time per RBF unit per testing input was 1.195μs. 
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Table 8 Comparison of training times/errors and validation times per pattern/errors for the 

rapidly changing function problem 

Algorithm Train 
Time (s) 

Train 
RMSE 

Test Time 
(µs) 

Test 
RMSE 

GGAP 24.808 0.0265 54.16 0.0265 
MRAN 78.572 0.0458 52.15 0.0490 
RANEKF 105.72 0.0265 106.8 0.0265 
RAN 45.514 0.0671 112.2 0.0686 
SVR 0.2552 0.0346 2496 0.0361 
I-ELM 0.5509 0.0831 239.0 0.0843 
CI-ELM 0.5597 0.1356 239.0 0.1378 
EI-ELM 5.3991 0.0728 239.0 0.0755 
NME-ELM 0.1725 0.0238 119.5 0.0303 
ErrCor 48.530 0.0141 23.90 0.0141 
 

 

4.3.1.2 Peaks Problem 

The peaks problem is a problem with a two dimensional input that yields an output with 

many peaks and valleys; the peaks problem provides a way to easily visualize the training 

process of the various algorithms. In this experiment, the peaks problem consists of 2000 

randomly generated patterns in the range (-1,+1) for both x and y directions using the formula 

described in chapter 3 (3.3-1). 

Once again the described function is shown in Figure 4.3-3. Another 1000 randomly 

generated patterns were used for the validation.   
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Figure 4.3-3 The desired output for the peaks problem. 

As can be seen in Figure 4.3-4a, the major peaks and valleys of the desired output are 

targeted by the ErrCor algorithm with only five RBF units.  This compact network achieves a 

validation RMSE of 0.031. As training continues, the error decreases steadily as units are added 

until the RMSE reaches about 0.0003 with 20 units.  As was expected, after five RBF units were 

added to the network, the centers of the RBF units in the trained network are located 

approximately in the centers of the highest peaks and valleys.  What is interesting however, is 

that after twenty RBF units were added, the centers had moved to completely different locations. 

In comparison to the other algorithms, ErrCor was able to reach a much smaller RMSE with 

much fewer RBF units.  This demonstrates that the ErrCor algorithm is very efficient when 

choosing heights, widths, and centers of the RBF units.  The ELM family of algorithms was 

tested on this problem and was able to achieve an RMSE of about 0.03 with one thousand RBF 

units (See Figure 4.3-4d, Figure 4.3-5, and Figure 4.3-6).  This error is still 100 times larger than 

the error obtained with only 20 RBF units using the ErrCor algorithm (RMSE = 0.0003).  The 

SVR algorithm used thirty-six support vectors to achieve an RMSE of 0.031 (See Figure 4.3-7). 

Still, this requires about seven times more units than ErrCor for the same error. 
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(a) (b) 

  
(c) (d) 

Figure 4.3-4 ErrCor output for the peaks problem. The yellow contour depicts the desired 

surface, the purple contour depicts the network output, and the red asterisks show where the 

centers of the RBF units are located. 

  
(a) (b) 

Figure 4.3-5 ErrCorr output using 10 nodes, (a) compared to ELM output using 1000 nodes, (b). 
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Figure 4.3-6 Comparison of the three ELM algorithms on the peaks problem.  All three attain 

similar errors. The random centers for the ELM algorithm were generated in the range of inputs 

[-1,1] while the impact factors were in the range (0,0.5]. 

 
Figure 4.3-7 SVR output for the peaks problem. The yellow contour depicts the desired surface, 

the purple contour depicts the algorithm output, and the red asterisks show where the support 

vectors are located. The SVR parameters used were: G=0.3, Epsilon = 0.001, and C=10. 
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4.3.1.3 Two Spiral Problem 

The two-spiral problem is primarily used as a benchmark for pattern classification. It can also 

be used as an approximation problem where patterns on one spiral should produce +1 outputs, 

while patterns on the other spiral should produce -1 outputs.  

This problem is widely used as a challenging benchmark to evaluate the efficiency of 

learning algorithms and their network architectures.  For the purpose of approximation the two-

spiral data set needs to be better defined, so in this work 388 patterns were used instead of the 

typical 194 patterns. 

The RBF-MLP networks proposed in [74] required at least 74 RBF units to solve the two-

spiral problem. It was reported in [75] that the two-spiral problem was solved using 70 hidden 

RBF units. Using the ortho-normalization procedure in [76], the two-spiral problem can be 

solved with at least 64 RBF kernel functions. 

Applying the ErrCor algorithm, Figure 4.3-8 shows several steps in the training process. One 

may notice that, each newly added RBF unit contributes the error reduction during the training 

process. The ErrCorr algorithm constructs the network by adding one RBF unit at a time, and 

with 22 RBF units the training error drops below 0.003 (Figure 4.3-9). The SVR algorithm was 

tested using the LIBSVM package in [70]. SVR was trained to the two spiral problem using the 

parameters, C=1, G=0.5, and epsilon = 0.01. This output can be seen in Figure 4.3-10. 
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Figure 4.3-8 The ErrCor algorithm incrementally solves the two spiral problem.  The two classes 

of patterns are shown as blue and yellow asterisks, while the green contour shows the network 

output. The red asterisks are the locations of the RBF centers. 

 

 
Figure 4.3-9 The RMSE as the ErrCor algorithm adds neurons to solve the two spiral problem. 

 90 



  
Figure 4.3-10 The SVR algorithm solves the two spiral problem. 297 patterns were used as 

support vectors to reach an RMSE of 0.003. 

 
4.3.2 Real-World Data 

This section compares ErrCor with well-known algorithms on traditional benchmarks from 

various repositories, [69]. These are real life problems with many dimensions and with number 

of patterns from hundreds to thousands. Table 9 depicts the specifications of the benchmark data 

sets.  In our experiments, all of the inputs have been normalized into the range [-1,1] while the 

outputs have been normalized into [0,1]. 

 

Table 9 Real-World Dataset Information 

Problem # Training 
Data 

# Testing 
Data 

#Attributes 

Abalone 2000 2177 8 
Auto-MPG 320 78 7 
Auto-Price 80 79 15 

Bos Housing 250 256 13 
Cal Housing 8000 12640 8 

Delta-Ailerons 3000 4129 5 
Delta-Elevators 4000 5517 6 
Machine CPU 100 109 6 
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In each benchmark samples are randomly divided into two categories: training samples and 

validation samples. These experiments are repeated with 20 different random selections so the 

average and standard deviation results can be evaluated. Table 10 and Table 11 and Figure 

4.3-11and Figure 4.3-12 present more detailed comparisons on the Abalone and Auto-MPG 

datasets.  These comparisons are given to compare the behavior of the ErrCor algorithm with 

other popular algorithms. Table 12 presents a comparison of validation errors and Table 13 

presents a comparison of units required to reach the desired errors by currently popular 

algorithms on all of the datasets. 

The proposed algorithm was compared with other algorithms such as: GAP [16], GGAP [48], 

GGAP-GMM [49], SVR [50], [51], I-ELM [59], CI-ELM [60], EI-ELM [61], MRAN [14], 

RAN-EKF [12], RAN [11]. The parameters for these algorithms were set based on the data 

presented in the aforementioned papers. For all data sets, the ELM algorithm parameters were 

centers in the range of inputs, [-1,1], and impact factors in the range (0, 0.5]. For GAP-RBF the 

parameters are fixed at 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 = 1.15, 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 = 0.04, 𝜅𝜅 = 0.10, 𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾 = 0.999. For the MRAN 

algorithm, the threshold for growing and pruning was set as 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀𝑀𝑀 = 0.0001, and the appropriate 

size of the sliding window was chosen as 𝑀𝑀 = 50. The parameters for GGAP were 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝐺𝐺 =

0.00008 and 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝐺𝐺𝐺𝐺 = 0.00007for Abalone and Auto-MPG respectively. For GGAP-GMM the 

parameters for the significance threshold are 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚
𝑔𝑔𝑔𝑔𝑔𝑔 = 0.08, 𝜂𝜂 = 0.1 for Abalone and  𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚

𝑔𝑔𝑔𝑔𝑔𝑔 =

0.11, 𝜂𝜂 = 0.06 for Auto-MPG. The DRNN algorithm used a parameter of A=2000 and A=40 for 

the abalone and fuel consumption datasets respectively. The parameters for SVR are mentioned 

in Table 12. 

As before, the testing environment of the proposed algorithm consists of a Windows 7 64-bit 

operating system, an Intel Core i7-2600 CPU @ 3.4 GHz processor, and 8GB RAM. 
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It can be noticed from Figure 4.3-11 and Figure 4.3-12 that, the proposed ErrCor algorithm 

reaches smaller training/testing errors with a more compact RBF architecture than the other 

algorithms. Longer training with more than four RBF units leads to smaller training errors, but 

greater validation errors due to over-fitting.  One may notice that other offline algorithms such as 

ELM, SVR, or DRNN give much worse results. DRNN was omitted from these figures because 

the best case yielded a validation error of RMSE=0.34. 

A comparison of training times for different algorithms on both the Abalone and the Fuel 

Consumption data sets can be seen in Table 10. Again, the proposed ErrCor algorithm has a 

larger training time than the SVR, I-ELM, and CI-ELM algorithms, but a faster training time 

than the GGAP, MRAN, RANEKF, RAN, and EI-ELM algorithms.  Notice that the SVR 

algorithm may show a lower training error than ErrCor because ErrCor training was stopped 

when a very small validation error was reached.   

A more important comparison for the purpose at hand is that of validation times.  This 

comparison answers the question, “How efficient is the network once it has been trained?”  In 

general, for RBF networks, this will be determined by how many units are in the network.  As in 

section 4.3.1, a normalized computation time for RBF calculation was used to calculate the 

testing time for each algorithm.  A comparison of computation time for testing patterns is shown 

in Table 11.  
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Figure 4.3-11 Abalone age prediction problem: training/testing average sum square errors vs. 

average number of RBF units. 
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Figure 4.3-12 Fuel consumption prediction problem: training/testing average sum square errors 

vs. average number of RBF units. 

 
Table 10 comparison between training times and training errors for abalone and fuel 

consumption problem 

 Abalone Fuel Consumption 
Algorithm Time(s) RMSE Time(s) RMSE 
GAP 14.28 0.0963 0.4524 0.1144 
MRAN 255.8 0.0836 1.4644 0.1086 
RANEKF 15480 0.0738 1.0103 0.1088 
RAN 105.17 0.0931 0.8042 0.2923 
SVR 0.4446 0.0706 0.0210 0.0465 
I-ELM 0.5990 0.0920 0.0593 0.0949 
CI-ELM 0.6635 0.0827 0.0612 0.0929 
EI-ELM 5.732 0.0811 0.5638 0.0930 
NME-ELM 0.0944 0.0597 0.0184 0.0724 
DRNN 9.404 0.0820 0.0837 0.3506 
ISO 8.497 0.0747 0.6657 0.0724 
ErrCor 4.808 0.0758 0.5030 0.0671 
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Table 11 comparison between validation times per pattern and validation errors for abalone and 

fuel consumption problem 

Algorithm Abalone Fuel Consumption 
Time(s) RMSE  Time(s) RMSE  

GAP 2.82e-5 0.0966 3.73e-6 0.1404 
MRAN 1.05e-4 0.0837 5.33e-6 0.1376 
RANEKF 4.89e-4 0.0794 6.14e-6 0.1387 
RAN 4.13e-4 0.0978 5.31e-6 0.3081 
SVR 6.75e-4 0.0846 1.15e-4 0.0785 
I-ELM 2.39e-4 0.0938 2.39e-4 0.0970 
CI-ELM 2.39e-4 0.0857 2.39e-4 0.1105 
EI-ELM 2.39e-4 0.0829 2.39e-4 0.0892 
NME-ELM 1.20e-4 0.0849 8.37e-5 0.0861 
DRNN 2.39e-3 0.3361 3.82e-4 0.3098 
ISO 4.78e-6 0.0770 2.39e-6 0.1445 
ErrCor 3.59e-6 0.0765 3.59e-6 0.0792 

 
 
Table 12 comparison of most current algorithms in terms of testing RMSE on several real-world 

benchmark problems 

Real World 
Problem I-ELM CI-ELM EI-ELM SVR 

NME-
ELM ErrCor 

RMSE (Test) RMSE C, γ RMSE RMSE 
Abalone 0.0938 0.0827 0.0829 0.0846 (24, 2-6) 0.0849 0.0765 
Auto-MPG 0.0970 0.0929 0.0892 0.0785 (20, 20) 0.0861 0.0792 
Auto-Price 0.1261 0.1196 0.1139 0.1052 (28, 2-5) 0.1104 0.0909 
Boston Housing 0.1320 0.1455 0.1077 0.1155 (24, 2-3) 0.1124 0.0989 
California Housing 0.1731 0.1660 0.1503 0.1311 (23, 21) 0.1642 0.1223 
Delta-Ailerons 0.0632 0.0494 0.0448 0.0467 (23, 2-3) 0.0413 0.0394 
Delta-Elevators 0.0790 0.0622 0.0575 0.0603 (20, 2-2) 0.0557 0.0532 
Machine CPU 0.0674 0.0589 0.0829 0.0846 (26, 2-4) 0.0791 0.0765 
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Table 13 comparison of most current algorithms in terms of network size on several real-world 

benchmark problems 

Real World Problem ELMS SVR NME-ELM ErrCor 
Abalone 200 310 100 4 
Auto-MPG 200 96 73 3 
Auto-Price 200 22 82 2 
Boston Housing 200 47 94 4 
California Housing 200 2189 195 10 
Delta-Ailerons 200 83 182 3 
Delta-Elevators 200 261 140 3 
Machine CPU 200 8 28 1 
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Chapter 5 Conclusions 

Much of the appeal to modern day computing comes from the ability to solve difficult 

problems without the use of a human. However, there are some complex real-world problems 

that cannot effectively be solved by traditional approaches such as first principles modeling or 

explicit statistical modeling. Many of these problems are not considered to be mathematically 

well-posed problems. In many cases, nature is able to handle incredibly difficult problems in an 

ever-changing context. In an attempt to imitate nature, a computational unit called a neuron is 

used to provide a mapping from input data to an output. The construction of networks of these 

computational units for the task of solving problems is a widely researched topic in the field of 

computer engineering. 

Artificial neural networks are used extensively in industry to solve important problems such 

as, fault detection, adaptive control, and computer vision. However, many of the currently used 

methods for obtaining a suitable ANN for a given problem could be improved. In some cases, it 

may make more sense to use locally tuned units instead of the global units that are typically used. 

It has been shown that locally tuned neurons have good performance in areas where spatial 

relationships are important such as, computer vision and signal processing. Once the type of 

neuron is chosen, there are still training and construction considerations that must be made. 

Specifically addressing the questions: “How should I layout my neural network?” and “How can 

I train this neural network to achieve acceptable performance?” is paramount to developing 

optimally designed networks. 
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Several attempts have been made at answering the questions posed above when building 

RBF network systems. The RAN, RANEKF, and MRAN algorithms attempt to construct RBF 

networks that use a minimal number of neurons to represent a large amount of data. The GGAP 

and GGAP-GMM algorithms attempt to further minimize network sizes by pruning neurons that 

do not adequately impact network outputs. The ELM family of algorithms addresses the question 

of training. These algorithms focus on constructing networks to achieve acceptable error 

performance as quickly as possible. 

The algorithms presented in this work attempt to both construct minimally sized networks 

and reach desirable error performance. The NME-ELM algorithm uses the concept of allocating 

neurons to compensate for the largest value in the error function. Then it adjusts the radius of the 

neurons using the Nelder-Mead Simplex method. This algorithm was shown to generate better 

error performance and more compact networks than the ELM algorithms while still maintaining 

a fast training time. The Error Correction algorithm also minimizes network size by allocating 

neurons to compensate for large errors, then reaches incredibly low error levels by training the 

neurons with a second-order training method. This algorithm was demonstrated to reach very 

good error performance with extremely compact networks. These algorithms were compared 

with many of the other state of the art approaches to constructing networks on several benchmark 

tests and real-world data sets. The experimental results demonstrate effective construction of 

compact and robust networks. 
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Appendix 
 

Main Files: 
Peaks_Test 
%Benchmark Peaks Test for ELM, I-ELM, EI-ELM, CI-ELM, NME-ELM, ErrCor and SVR 
format compact; clear all; 
%create evenly spaced validation data 
x=linspace(-1,1,30); 
g=1; 
for i=1:30 
    for j=1:30 
        in(g,:)=[x(i) x(j)]; 
        g=g+1; 
    end 
end 
nts=size(in,1); 
% use the peaks equation 
y =(0.3-1.8*in(:,1)+2.7*in(:,1).^2).*exp(-1-6*in(:,2)-9*in(:,1).^2-9*in(:,2).^2) ... 
    - (0.6*in(:,1)-27*in(:,1).^3-243*in(:,2).^5).*exp(-9*in(:,1).^2-9*in(:,2).^2) ... 
    - 1/30*exp(-1-6*in(:,1)-9*in(:,1).^2-9*in(:,2).^2); 
yn=awgn(y,15); 
x1=reshape(in(:,1),30,30);y1=reshape(in(:,2),30,30);z1=reshape(y,30,30);zn=reshape(yn,30,30); 
figure(2);clf;surf(x1,y1,zn); 
  
% load randomly spaced training data 
X=load('peaks500.dat'); 
[np,nd]=size(X); 
trainx=X(:,1:nd-1);targets=X(:,nd); 
targets=awgn(targets,20); 
trIn=trainx; trOut=targets; 
trSize=size(trIn,1); 
tstIn=in;tstOut=y; 
RMSEVN(1)=sqrt((y'*y)/900); 
RMSEVE(1,:)=ones(1,20)*sqrt((y'*y)/900); 
RMSEVI(1,:)=ones(1,20)*sqrt((y'*y)/900); 
RMSEVEI(1,:)=ones(1,20)*sqrt((y'*y)/900); 
RMSEVCI(1,:)=ones(1,20)*sqrt((y'*y)/900); 
RMSEVSV(1,:)=sqrt((y'*y)/900); 
rangesb=[-10 -5 -2 -1 0]; 
rangest=[0 1 2 5 10]; 
C=[2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8 2^9 2^10]; 
G=[0.1 0.5 1 1.5 2]; 
GE=linspace(0.1,3,25); 
for j=1:100 
    t=mod(j-1,5)+1; 
    v=ceil(j/5); 
    nodes=j; 
    tic; 
    [cent, weights, radius, mseTr]=NME_ELM3(trainx,targets,nodes); 
    time1(j)=toc 
    % E(3)=mseTr(nodes+1) 
    figure(3);clf;plot(0:nodes,mseTr); 
    O=calc_ELM_Out1(in,weights,cent,radius,nodes); 
    er=y-O;SSEV=er'*er;RMSEVN(j+1)=sqrt(SSEV/nts) 
    x1=reshape(in(:,1),30,30);y1=reshape(in(:,2),30,30);z1=reshape(O,30,30); 
    figure(4);clf;surf(x1,y1,z1); 
    wRange=[rangesb(t),rangest(v)];bRange=wRange; 
    for i=1:20 
       %Run Original ELM 
        %train 
        [inw outw bias O error]=ELMR(trainx,targets,2,GE(j),nodes); 
        %verify 
        O=calc_ELM_Out(tstIn,outw,inw,bias,nodes); 
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        er=y-O;SSEV=er'*er;RMSEVE(j+1,i)=sqrt(SSEV/nts); 
       %run I-ELMS 
        %train 
        tic; 
        [cent, weights, radius, mseTr]=I_ELM(trIn,trOut,nodes,GE(j),2); 
        timeE(j,i)=toc; 
        %verify 
        O=calc_ELM_Out(tstIn,weights,cent,radius,nodes); 
        ver=tstOut-O;SSEV=ver'*ver;RMSEVI(j+1,i)=sqrt(SSEV/nts); 
        %train 
        tic; 
        [cent, weights, radius, mseTr]=CI_ELM(trIn,trOut,nodes,GE(j),2); 
        timeCI(j,i)=toc; 
        %verify 
        O=calc_ELM_Out(tstIn,weights,cent,radius,nodes); 
        ver=tstOut-O;SSEV=ver'*ver;RMSEVCI(j+1,i)=sqrt(SSEV/nts); 
        %train 
        tic; 
        [cent, weights, radius, mseTr]=EI_ELM(trIn,trOut,nodes,GE(j),2); 
        timeEI(j,i)=toc; 
        %verify 
        O=calc_ELM_Out(tstIn,weights,cent,radius,nodes); 
        ver=tstOut-O;SSEV=ver'*ver;RMSEVEI(j+1,i)=sqrt(SSEV/nts); 
 
 
        tic; 
           [weights_output, widths, weights_input, 
centers]=ISO_RBF(nodes,trIn,trOut,stop,maximum_iteration) 
        Time(4,i)=toc; 
        O=verification(weights_input, weights_output, widths, centers, tstIn) 
        ver=tstOut-O;SSEV=ver'*ver;RMSEV4(k)=sqrt(SSEV/nts); 
 
    end 
 
        tic; 
           [weights_output, widths, cebters, 
weights_input]=ErrCor(nodes,trIn,trOut,stop,maximum_iteration) 
        Time(5,i)=toc; 
        O=verification(weights_input, weights_output, widths, centers, tstIn) 
        ver=tstOut-O;SSEV=ver'*ver;RMSEV5(k)=sqrt(SSEV/nts); 
 
    %      run SVR 
    d=data(trIn,trOut); 
    tic; 
    [tr,a]=train(svr({kernel('rbf',0.5),'optimizer = "libsvm"',['C=' 
num2str(C(j))],'epsilon=0.1'}),d); 
    timeSV(i)=toc; 
    svs(j) = size(a.Xsv.X,1); 
    sseTr = sum((trOut-tr.X).^2); 
    mseTr = sseTr/trSize; 
    rmseTr(i) = sqrt(mseTr); 
    %test the svm 
    d = data(tstIn); 
    cost=test(a,d); 
    sseTst = sum((tstOut-cost.X).^2); 
    mseTst = sseTst/nts; 
    rmseTst(j)= sqrt(mseTst); 
end 
RMSEVE=mean(RMSEVE,2); 
RMSEVI=mean(RMSEVI,2); 
RMSEVEI=mean(RMSEVEI,2); 
RMSEVCI=mean(RMSEVCI,2); 
RMSEVSV=[RMSEVSV;rmseTst']; 
figure(1);clf; 
plot(0:j,RMSEVN,'LineWidth',1.5);hold all; 
plot(0:j,RMSEVE,'LineWidth',1.5);plot(0:j,RMSEVI,'LineWidth',1.5);plot(0:j,RMSEVEI,'LineWidth',1.
5);plot(0:j,RMSEVCI,'LineWidth',1.5); 
plot(0:j,RMSEVSV,'LineWidth',1.5); 
[sm,I1]=min(RMSEVE) 
t=mod(I1-2,5)+1 
v=ceil((I1-1)/5) 
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[sm,I2]=min(RMSEVI) 
t=mod(I2-1,5)+1 
v=ceil(I2/5) 
[sm,I3]=min(RMSEVEI) 
t=mod(I3-1,5)+1 
v=ceil(I3/5) 
[sm,I4]=min(RMSEVCI) 
t=mod(I4-1,5)+1 
v=ceil(I4/5) 
[sm,I5]=min(RMSEVSV) 
t=mod(I5-2,5)+1 
v=ceil((I5-1)/5) 
 
Rapidly_Changing_Function_Test 
format compact; clear all; clc; close all; 
% Benchmark rapidly changing function Test for ELM, I-ELM, EI-ELM, CI-ELM, NME-ELM, ErrCor and 
SVR 
  
trIn=linspace(0,10,3000)'; 
trOut=0.8*exp(-0.2*inputs).*sin(10*inputs); 
ver_inputs = 10*rand(1500,1); 
nts=1500; 
tstIn = sort(ver_inputs); 
tstOut = 0.8*exp(-0.2*ver_inputs).*sin(10*ver_inputs); 
RMSEVN(1)=sqrt((y'*y)/nts); 
RMSEVE(1,:)=ones(1,20)*sqrt((y'*y)/nts); 
RMSEVI(1,:)=ones(1,20)*sqrt((y'*y)/nts); 
RMSEVEI(1,:)=ones(1,20)*sqrt((y'*y)/nts); 
RMSEVCI(1,:)=ones(1,20)*sqrt((y'*y)/nts); 
RMSEVSV(1,:)=sqrt((y'*y)/900); 
rangesb=[-10 -5 -2 -1 0]; 
rangest=[0 1 2 5 10]; 
C=[2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8 2^9 2^10]; 
G=[0.1 0.5 1 1.5 2]; 
GE=linspace(0.1,3,25); 
for j=1:100 
    t=mod(j-1,5)+1; 
    v=ceil(j/5); 
    nodes=j; 
    tic; 
    [cent, weights, radius, mseTr]=NME_ELM3(trainx,targets,nodes); 
    time1(j)=toc 
    % E(3)=mseTr(nodes+1) 
    figure(3);clf;plot(0:nodes,mseTr); 
    O=calc_ELM_Out1(in,weights,cent,radius,nodes); 
    er=y-O;SSEV=er'*er;RMSEVN(j+1)=sqrt(SSEV/nts) 
    x1=reshape(in(:,1),30,30);y1=reshape(in(:,2),30,30);z1=reshape(O,30,30); 
    figure(4);clf;surf(x1,y1,z1); 
    wRange=[rangesb(t),rangest(v)];bRange=wRange; 
    for i=1:20 
       %Run Original ELM 
        %train 
        [inw outw bias O error]=ELMR(trainx,targets,2,GE(j),nodes); 
        %verify 
        O=calc_ELM_Out(tstIn,outw,inw,bias,nodes); 
        er=y-O;SSEV=er'*er;RMSEVE(j+1,i)=sqrt(SSEV/nts); 
       %run I-ELMS 
        %train 
        tic; 
        [cent, weights, radius, mseTr]=I_ELM(trIn,trOut,nodes,GE(j),2); 
        timeE(j,i)=toc; 
        %verify 
        O=calc_ELM_Out(tstIn,weights,cent,radius,nodes); 
        ver=tstOut-O;SSEV=ver'*ver;RMSEVI(j+1,i)=sqrt(SSEV/nts); 
        %train 
        tic; 
        [cent, weights, radius, mseTr]=CI_ELM(trIn,trOut,nodes,GE(j),2); 
        timeCI(j,i)=toc; 
        %verify 
        O=calc_ELM_Out(tstIn,weights,cent,radius,nodes); 
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        ver=tstOut-O;SSEV=ver'*ver;RMSEVCI(j+1,i)=sqrt(SSEV/nts); 
        %train 
        tic; 
        [cent, weights, radius, mseTr]=EI_ELM(trIn,trOut,nodes,GE(j),2); 
        timeEI(j,i)=toc; 
        %verify 
        O=calc_ELM_Out(tstIn,weights,cent,radius,nodes); 
        ver=tstOut-O;SSEV=ver'*ver;RMSEVEI(j+1,i)=sqrt(SSEV/nts); 
  
  
        tic; 
           [weights_output, widths, weights_input, 
centers]=ISO_RBF(nodes,trIn,trOut,stop,maximum_iteration) 
        Time(4,i)=toc; 
        O=verification(weights_input, weights_output, widths, centers, tstIn) 
        ver=tstOut-O;SSEV=ver'*ver;RMSEV4(k)=sqrt(SSEV/nts); 
  
    end 
  
        tic; 
           [weights_output, widths, cebters, 
weights_input]=ErrCor(nodes,trIn,trOut,stop,maximum_iteration) 
        Time(5,i)=toc; 
        O=verification(weights_input, weights_output, widths, centers, tstIn) 
        ver=tstOut-O;SSEV=ver'*ver;RMSEV5(k)=sqrt(SSEV/nts); 
  
    %      run SVR 
    d=data(trIn,trOut); 
    tic; 
    [tr,a]=train(svr({kernel('rbf',0.5),'optimizer = "libsvm"',['C=' 
num2str(C(j))],'epsilon=0.1'}),d); 
    timeSV(i)=toc; 
    svs(j) = size(a.Xsv.X,1); 
    sseTr = sum((trOut-tr.X).^2); 
    mseTr = sseTr/trSize; 
    rmseTr(i) = sqrt(mseTr); 
    %test the svm 
    d = data(tstIn); 
    cost=test(a,d); 
    sseTst = sum((tstOut-cost.X).^2); 
    mseTst = sseTst/nts; 
    rmseTst(j)= sqrt(mseTst); 
end 
RMSEVE=mean(RMSEVE,2); 
RMSEVI=mean(RMSEVI,2); 
RMSEVEI=mean(RMSEVEI,2); 
RMSEVCI=mean(RMSEVCI,2); 
RMSEVSV=[RMSEVSV;rmseTst']; 
figure(1);clf; 
plot(0:j,RMSEVN,'LineWidth',1.5);hold all; 
plot(0:j,RMSEVE,'LineWidth',1.5);plot(0:j,RMSEVI,'LineWidth',1.5);plot(0:j,RMSEVEI,'LineWidth',1.
5);plot(0:j,RMSEVCI,'LineWidth',1.5); 
plot(0:j,RMSEVSV,'LineWidth',1.5); 
[sm,I1]=min(RMSEVE) 
t=mod(I1-2,5)+1 
v=ceil((I1-1)/5) 
[sm,I2]=min(RMSEVI) 
t=mod(I2-1,5)+1 
v=ceil(I2/5) 
[sm,I3]=min(RMSEVEI) 
t=mod(I3-1,5)+1 
v=ceil(I3/5) 
[sm,I4]=min(RMSEVCI) 
t=mod(I4-1,5)+1 
v=ceil(I4/5) 
[sm,I5]=min(RMSEVSV) 
t=mod(I5-2,5)+1 
v=ceil((I5-1)/5) 
 
Real_Data_Test 
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%Test the ELMs, SVR, ErrCor, and the NME_ELM on real-world data 
format compact; clear all; 
dat_name=('Abalone_Norm'); 
trSize=2000; C=2^4; G=2^-6; 
  
% dat_name=('auto_MPG_N'); 
% trSize=320; C=2^0; G=2^0; 
% 
% dat_name=('Auto_Price_Norm'); 
% trSize=80; C=2^8; G=2^-5; 
% 
% dat_name=('Boston_Norm'); 
% trSize=250; C=2^4; G=2^-3; 
% 
% dat_name=('Cal_Norm'); 
% trSize=8000; C=2^3; G=2^1; 
% 
% dat_name=('Delta_Ailerons_Norm'); 
% trSize=3000; C=2^3; G=2^-3; 
% 
% dat_name=('Delta_Elevators_Norm'); 
% trSize=4000; C=2^0; G=2^-2; 
% 
% dat_name=('MachineCPU_Norm'); 
% trSize=100; C=2^6; G=2^-4; 
  
X=load([dat_name,'.dat']); 
[np,nd]=size(X); nts=np-trSize; 
stop=0.001; 
  
for j=1:200 
    nodes=j; 
    for i=1:20 
        %Shuffle Data 
        [trIn trOut tstIn tstOut]=RandomizeData(trSize,X); 
         
        %NME-ELM 
        tic; 
        [cent, weights, radius, mseTr]=NME_ELM3(trIn,trOut,nodes); 
        time(1,i)=toc; 
        E(1)=mseTr(nodes+1) 
        O=calc_ELM_Out(tstIn,weights,cent,radius,nodes); 
        ver=tstOut-O;SSEV=ver'*ver;RMSEV(1,i)=sqrt(SSEV/nts); 
         
        for k=1:20 
            tic; 
            [cent, weights, radius, mseTr]=I_ELM(trIn,trOut,nodes); 
            time(2,i)=toc; 
            E(2)=mseTr(nodes+1) 
            O=calc_ELM_Out(tstIn,weights,cent,radius,nodes); 
            ver=tstOut-O;SSEV=ver'*ver;RMSEV1(k)=sqrt(SSEV/nts); 
            tic; 
            [cent, weights, radius, mseTr]=EI_ELM(trIn,trOut,nodes); 
            time(3,i)=toc; 
            O=calc_ELM_Out(tstIn,weights,cent,radius,nodes); 
            ver=tstOut-O;SSEV=ver'*ver;RMSEV2(k)=sqrt(SSEV/nts); 
            E(3)=mseTr(nodes+1) 
             
            tic; 
            [cent, weights, radius, mseTr]=CI_ELM(trIn,trOut,nodes); 
            time(3,i)=toc; 
            O=calc_ELM_Out(tstIn,weights,cent,radius,nodes); 
            ver=tstOut-O;SSEV=ver'*ver;RMSEV3(k)=sqrt(SSEV/nts); 
            E(4)=mseTr(nodes+1) 
 
           tic; 
           [weights_output, widths, weights_input, 
centers]=ISO_RBF(nodes,trIn,trOut,stop,maximum_iteration) 
        Time(4,i)=toc; 
        O=verification(weights_input, weights_output, widths, centers, tstIn) 
        ver=tstOut-O;SSEV=ver'*ver;RMSEV4(k)=sqrt(SSEV/nts); 
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        end 
 
        tic; 
           [weights_output, widths, cebters, 
weights_input]=ErrCor(nodes,trIn,trOut,stop,maximum_iteration) 
        Time(5,i)=toc; 
        O=verification(weights_input, weights_output, widths, centers, tstIn) 
        ver=tstOut-O;SSEV=ver'*ver;RMSEV5(k)=sqrt(SSEV/nts); 
 
        RMSEV(2,i)=mean(RMSEV1,2); 
        RMSEV(3,i)=mean(RMSEV2,2); 
        RMSEV(4,i)=mean(RMSEV3,2); 
        RMSEV(5,i)=mean(RMSEV4,2); 
        RMSEV(6,i)=RMSEV5; 
 
        %SVR 
        d=data(trIn,trOut); 
        tic; 
        [tr,a]=train(svr({kernel('rbf',G),'optimizer = "libsvm"',['C=' 
num2str(C)],'epsilon=0.1'}),d); 
        time(4,i)=toc; 
        svs(j) = size(a.Xsv.X,1); 
        sseTr = sum((trOut-tr.X).^2); 
        mseTr = sseTr/trSize; 
        rmseTr(i) = sqrt(mseTr); 
        %test the svm 
        d = data(tstIn); 
        cost=test(a,d); 
        sseTst = sum((tstOut-cost.X).^2); 
        mseTst = sseTst/nts; 
        RMSEV(5,i)= sqrt(mseTst); 
    end 
    RMSE(j,:)=mean(RMSEV,2)'; 
    SDEV(j,:)=std(RMSEV,0,2)'; 
    tavg(j,:)=mean(time,2)'; 
end 
xlswrite(['ELMS_SVR_',dat_name,'.xls'],[RMSE SDEV tavg]); 
 
Two_Spiral_Test 
format compact; clear all; clc; close all; 
% Benchmark Two-Spiral Test for ELM, I-ELM, EI-ELM, CI-ELM, NME-ELM, ErrCor and SVR 
X=load('spiral4.dat'); 
[np,nd]=size(X); 
inputs = X(1:361,1:nd-1); 
outputs = X(1:361,nd); 
trIn=inputs; 
trOut=outputs; 
tstIn=inputs; 
tstOut=outputs; 
nts=np; 
  
RMSEVN(1)=sqrt((y'*y)/nts); 
RMSEVE(1,:)=ones(1,20)*sqrt((y'*y)/nts); 
RMSEVI(1,:)=ones(1,20)*sqrt((y'*y)/nts); 
RMSEVEI(1,:)=ones(1,20)*sqrt((y'*y)/nts); 
RMSEVCI(1,:)=ones(1,20)*sqrt((y'*y)/nts); 
RMSEVSV(1,:)=sqrt((y'*y)/900); 
rangesb=[-10 -5 -2 -1 0]; 
rangest=[0 1 2 5 10]; 
C=[2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8 2^9 2^10]; 
G=[0.1 0.5 1 1.5 2]; 
GE=linspace(0.1,3,25); 
for j=1:100 
    t=mod(j-1,5)+1; 
    v=ceil(j/5); 
    nodes=j; 
    tic; 
    [cent, weights, radius, mseTr]=NME_ELM3(trainx,targets,nodes); 
    time1(j)=toc 
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    % E(3)=mseTr(nodes+1) 
    figure(3);clf;plot(0:nodes,mseTr); 
    O=calc_ELM_Out1(in,weights,cent,radius,nodes); 
    er=y-O;SSEV=er'*er;RMSEVN(j+1)=sqrt(SSEV/nts) 
    x1=reshape(in(:,1),30,30);y1=reshape(in(:,2),30,30);z1=reshape(O,30,30); 
    figure(4);clf;surf(x1,y1,z1); 
    wRange=[rangesb(t),rangest(v)];bRange=wRange; 
    for i=1:20 
       %Run Original ELM 
        %train 
        [inw outw bias O error]=ELMR(trainx,targets,2,GE(j),nodes); 
        %verify 
        O=calc_ELM_Out(tstIn,outw,inw,bias,nodes); 
        er=y-O;SSEV=er'*er;RMSEVE(j+1,i)=sqrt(SSEV/nts); 
       %run I-ELMS 
        %train 
        tic; 
        [cent, weights, radius, mseTr]=I_ELM(trIn,trOut,nodes,GE(j),2); 
        timeE(j,i)=toc; 
        %verify 
        O=calc_ELM_Out(tstIn,weights,cent,radius,nodes); 
        ver=tstOut-O;SSEV=ver'*ver;RMSEVI(j+1,i)=sqrt(SSEV/nts); 
        %train 
        tic; 
        [cent, weights, radius, mseTr]=CI_ELM(trIn,trOut,nodes,GE(j),2); 
        timeCI(j,i)=toc; 
        %verify 
        O=calc_ELM_Out(tstIn,weights,cent,radius,nodes); 
        ver=tstOut-O;SSEV=ver'*ver;RMSEVCI(j+1,i)=sqrt(SSEV/nts); 
        %train 
        tic; 
        [cent, weights, radius, mseTr]=EI_ELM(trIn,trOut,nodes,GE(j),2); 
        timeEI(j,i)=toc; 
        %verify 
        O=calc_ELM_Out(tstIn,weights,cent,radius,nodes); 
        ver=tstOut-O;SSEV=ver'*ver;RMSEVEI(j+1,i)=sqrt(SSEV/nts); 
  
  
        tic; 
           [weights_output, widths, weights_input, 
centers]=ISO_RBF(nodes,trIn,trOut,stop,maximum_iteration) 
        Time(4,i)=toc; 
        O=verification(weights_input, weights_output, widths, centers, tstIn) 
        ver=tstOut-O;SSEV=ver'*ver;RMSEV4(k)=sqrt(SSEV/nts); 
  
    end 
  
        tic; 
           [weights_output, widths, cebters, 
weights_input]=ErrCor(nodes,trIn,trOut,stop,maximum_iteration) 
        Time(5,i)=toc; 
        O=verification(weights_input, weights_output, widths, centers, tstIn) 
        ver=tstOut-O;SSEV=ver'*ver;RMSEV5(k)=sqrt(SSEV/nts); 
  
    %      run SVR 
    d=data(trIn,trOut); 
    tic; 
    [tr,a]=train(svr({kernel('rbf',0.5),'optimizer = "libsvm"',['C=' 
num2str(C(j))],'epsilon=0.1'}),d); 
    timeSV(i)=toc; 
    svs(j) = size(a.Xsv.X,1); 
    sseTr = sum((trOut-tr.X).^2); 
    mseTr = sseTr/trSize; 
    rmseTr(i) = sqrt(mseTr); 
    %test the svm 
    d = data(tstIn); 
    cost=test(a,d); 
    sseTst = sum((tstOut-cost.X).^2); 
    mseTst = sseTst/nts; 
    rmseTst(j)= sqrt(mseTst); 
end 

 112 



RMSEVE=mean(RMSEVE,2); 
RMSEVI=mean(RMSEVI,2); 
RMSEVEI=mean(RMSEVEI,2); 
RMSEVCI=mean(RMSEVCI,2); 
RMSEVSV=[RMSEVSV;rmseTst']; 
figure(1);clf; 
plot(0:j,RMSEVN,'LineWidth',1.5);hold all; 
plot(0:j,RMSEVE,'LineWidth',1.5);plot(0:j,RMSEVI,'LineWidth',1.5);plot(0:j,RMSEVEI,'LineWidth',1.
5);plot(0:j,RMSEVCI,'LineWidth',1.5); 
plot(0:j,RMSEVSV,'LineWidth',1.5); 
[sm,I1]=min(RMSEVE) 
t=mod(I1-2,5)+1 
v=ceil((I1-1)/5) 
[sm,I2]=min(RMSEVI) 
t=mod(I2-1,5)+1 
v=ceil(I2/5) 
[sm,I3]=min(RMSEVEI) 
t=mod(I3-1,5)+1 
v=ceil(I3/5) 
[sm,I4]=min(RMSEVCI) 
t=mod(I4-1,5)+1 
v=ceil(I4/5) 
[sm,I5]=min(RMSEVSV) 
t=mod(I5-2,5)+1 
v=ceil((I5-1)/5) 
 
Building Blocks: 
Calculate_gradient 
%-------------------------------------------------------------------------- 
%*                         METHOD - calculate_gradient 
%-------------------------------------------------------------------------- 
%* Method calculates the gradients for an RBF network and returns the 
%* gradient and quasi-hessian. 
%* 
%* INPUTS: 
%*  ww - the input weights 
%*  weights - the output weights of the network 
%*  widths - the widths of the neurons in the network 
%*  centers - the centers of the neurons in the network 
%*  inputs - the training inputs 
%*  outputs - the desired outputs 
%* 
%* OUTPUTS: 
%*  gradient - the gradient matrix used for parameter updates 
%*  hessian - the quasi-hessian matrix used for second order methods 
function [gradient, hessian] = calculate_gradient(ww, weights, widths, centers, inputs, outputs) 
[p1,p2] = size(weights); 
[p3,p4] = size(centers); 
[p5,p6] = size(widths); 
[p7,p8] = size(ww); 
g_weight = zeros(p1,p2); 
g_center = zeros(p3,p4); 
g_width = zeros(p5,p6); 
g_ww = zeros(p7,p8); 
gradient = zeros(1,p1*p2+p3*p4+p5*p6+p7*p8); 
hessian = zeros(p1*p2+p3*p4+p5*p6+p7*p8,p1*p2+p3*p4+p5*p6+p7*p8); 
%     gradient = zeros(1,p1*p2+p3*p4+p7*p8); 
%     hessian = zeros(p1*p2+p3*p4+p7*p8,p1*p2+p3*p4+p7*p8); 
[m,n] = size(inputs); 
for i = 1:m 
    net = weights(1); 
    for j = 1:p3 
        node(j) = exp(-sum((ww(j,:).*inputs(i,:)-centers(j,:)).^2)/widths(j)); 
        net = net + node(j)*weights(j+1); 
    end; 
    % for g_weight 
    out = net; 
    de = 1; 
    err = outputs(i,1) - out; 
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    J_weight(1) = -de; 
    for j = 2:p2 
        J_weight(j) = J_weight(1)*node(j-1); 
    end; 
    % for g_center 
    for j = 1:p3 
        J_center(j,:) = (-1)*weights(j+1)*node(j)*2*(ww(j,:).*inputs(i,:)-
centers(j,:))./widths(j); 
        J_width(j) = (-1)*weights(j+1)*node(j)*sum((ww(j,:).*inputs(i,:)-
centers(j,:)).^2)/widths(j)^2; 
        for k = 1:n 
            J_ww(j,k) = (-1)*weights(j+1)*node(j)*(-1)/widths(j)*2*(ww(j,k)*inputs(i,k)-
centers(j,k))*inputs(i,k); 
        end; 
    end; 
    J = parameter_combination(J_weight, J_width, J_ww, J_center); 
    gradient = gradient + err*J; 
    hessian = hessian + J'*J; 
end; 
 
Calculate_SSE 
%-------------------------------------------------------------------------- 
%*                         METHOD - calculate_SSE 
%-------------------------------------------------------------------------- 
%* Method calculates the SSE for a network  
%* 
%* INPUTS: 
%*  ww - the input weights 
%*  weights - the output weights of the network 
%*  widths - the widths of the neurons in the network 
%*  centers - the centers of the neurons in the network 
%*  inputs - the training inputs 
%*  outputs - the desired outputs 
%*  eps - the parameter for error forgiveness 
%* 
%* OUTPUTS: 
%*  SSE - the SSE for the network 
function [SSE] = calculate_SSE(ww, weights,widths,centers,inputs,outputs,eps) 
[m,n] = size(inputs); 
[p,q] = size(centers); 
SSE = 0; 
for i = 1:m 
    count = weights(1); 
    for j = 1:p 
        count = count + weights(j+1)*exp(-sum((ww(j,:).*inputs(i,:)-centers(j,:)).^2)/widths(j)); 
    end; 
        SSE = SSE + (count - outputs(i,1))^2; 
end; 
 
Calc_ELM_Out1 
% ****************************************************************** 
% Method: calc_ELM_Out1 - calculates output of any SLFN RBF network 
  
% --------OUTPUTS------- 
% output = the predicted output of the algorithm 
  
% -------INPUTS-------- 
% inputs = the inputs to the datasat you would like to predict 
% weights = the output weights produced by the training algorithm 
% centers = the centers generated by the training algorithm 
% radii = the random radii generated by the training algorithm 
% nodes = the number of nodes used to train 
%**************Copyright - Dr. Philip Reiner - 2015*********************** 
 
function [output]=calc_ELM_Out1(inputs,weights,centers,radii,nodes) 
[ni,nd]=size(inputs); 
for i=1:ni 
    for j=1:nodes 
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        h(j) = weights(j).*exp(-1*(1/radii(j)^2)*norm(inputs(i,:)-centers(j,:))^2); 
    end 
    output(i) = sum(h); 
end 
output = output'; 
end 
 
CI-ELM 
% ************************ Method - CI_ELM ************************ 
% This function is the CI_ELM function that randomly generates centers 
% Radius for RBF functions and then weights the output of the functions. 
  
% --------OUTPUTS------- 
% centers = the generated centers for all of the nodes 
% weights = the output weights generated for the nodes 
% radii = the radii of all the rbf nodes 
% rmse = the root mean square error after each generated node 
  
% -------INPUTS-------- 
% inputs = the inputs to the datasat you would like to train 
% outputs = the training outputs corresponding to the inputs 
% nodes = the maximum number of nodes you would like your net to have 
% 1/G = the maximum value allowed for your radius 
% range = the maximum range of the inputs 
%**************Copyright - Dr. Philip Reiner - 2015*********************** 
  
function [centers, weights, radii, mseTr]=CI_ELM(inputs,outputs,nodes,G,range) 
[ni,nd] = size(inputs); 
Er = outputs'; 
Do = outputs'; 
n=0; 
mse = sum(Er.^2)/ni; 
mseTr(1)=mse; 
while (n < nodes )&&(mse > 10e-5) 
    n = n+1; 
    %assign random center and impact factor 
    centers(n,:) = range.*rand(1,nd)-range/2; 
    radii(n) = G*rand(1); 
    %calculate output weights 
    %   weight B(N) = sum(error(p)*H(p))/sum(H(p)^2) for all p 
    for i=1:ni, 
        H(i) = exp(-1*radii(n)*norm(inputs(i,:)-centers(n,:))^2); 
    end 
   Beta = (Er*(Er-(Do-H))')/((Er-(Do-H))*(Er-(Do-H))'); 
            if n > 1 
                weights = (1-Beta).*weights; 
            end 
            weights(n) = Beta; 
            Er = (1-weights(n)).*Er+weights(n).*(Do-H);       % remaining error surface 
            mse = sum(Er.^2)/ni; 
    mseTr(n+1) = mse; 
    if sum(H)==0 
        n=n-1; 
    end 
end 
end 
 
EffELM 
%% Original ELM (not incremental ELM) 
% Inputs ******************** 
%  x are the training vectors 
%  y are the targets 
%  wRange is a 1x2 matrix containing the lower and upper bounds for the 
%  range of the input weights 
%  bRange is the same as wRange but pertaining to the input bias 
%  nodes is the number of nodes in the network 
%  output = sum of outw*g(inw*x+bias) 
% Outputs ******************** 
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%  inw - input weights 
%  outw - output weights 
%  bias - bias parameters 
%  outputs - network outputs 
%  error - errors 
%**************Copyright - Dr. Philip Reiner - 2015*********************** 
 
function [inw outw bias outputs error]=EffELM(x,y,wRange,bRange,nodes) 
[np,nd]=size(x); 
inw=(wRange(2)-wRange(1))*rand(nodes,nd)+wRange(1); 
bias=(bRange(2)-bRange(1))*rand(nodes,1)+bRange(1); 
%Sort By affine Transformations 
tempx=x; 
for j=1:nd 
    w(1,j)=1/max(abs(x(1:nodes,j))); 
    tempx(1:nodes,j)=w(1,j)*tempx(1:nodes,j); 
    for i=1:nodes-1 
        tempy(i,j)=abs(tempx(i+1,j)-tempx(i,j)); 
    end 
    del=log10(nd)+log10(2); 
    n(j)=-log10(min(tempy(:,j)))+del; 
    w(2,j)=w(1,j)*10*sum(n); 
end 
inw=w(2,:); 
M=1; xo=0; alp=max([sqrt(abs(2*log(nodes))),1])+1; 
dist=max([alp-xo,alp+xo]); 
for i=2:nodes-1 
    k=(2*dist)/(min([inw(1,:)*tempx(i+1,:)'-inw(1,:)*tempx(i,:)',inw(1,:)*tempx(i,:)'-
inw(1,:)*tempx(i-1,:)'])); 
    inw(i,:)=k*inw(1,:); 
end 
inw(1,:)=inw(2,:); inw(nodes,:)=inw(nodes-1,:); 
for i=1:nodes 
    bias(i)=xo-inw(i,:)*tempx(i,:)'; 
end 
  
for i=1:nodes 
    for j=1:np 
        H(j,i)=1/(1+exp(-(inw(i,:)*tempx(j,:)'+bias(i)))); 
    end 
end 
%Calculate Moore-Penrose generalized inverse of H 
Ht=pinv(H); 
%Calculate output weights 
outw=Ht*y; 
outputs=(outw'*H')'; 
error=y-outputs; 
 
EI_ELM 
% ****************************************************************** 
% This function is the EI_ELM function that randomly generates centers 
% Radius for RBF functions and then weights the output of the functions. 
  
% --------OUTPUTS------- 
% centers = the generated centers for all of the nodes 
% weights = the output weights generated for the nodes 
% radii = the radii of all the rbf nodes 
% rmse = the root mean square error after each generated node 
  
% -------INPUTS-------- 
% inputs = the inputs to the datasat you would like to train 
% outputs = the training outputs corresponding to the inputs 
% nodes = the maximum number of nodes you would like your net to have 
% 1/G = the maximum value allowed for your radius 
% range = the maximum range of the inputs 
%**************Copyright - Dr. Philip Reiner - 2015*********************** 
function[centers, weights, radii, mseTr] = EI_ELM(inputs, outputs, nodes,G,range) 
[ni,nd] = size(inputs); 
Er = outputs'; 
n = 0; 
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mse = sum(Er.^2)/ni; 
mseTr(1) = mse; 
while (n < nodes )&&(mse > 10e-5) 
        n = n+1; 
        for z=1:10 
            %assign random center and impact factor 
            a(z,:) = range.*rand(1,nd)-range/2; 
            b(z) = G*rand(1); 
            %calculate output weights 
            %   weight B(N) = sum(error(p)*H(p))/sum(H(p)^2) for all p 
            for i=1:ni, 
                H(i) = exp(-1*b(z)*norm(inputs(i,:)-a(z,:))^2); 
            end 
            B(z) = (Er*H')/(H*H'); 
            O = B(z).*H; 
            IEr(z,:) = Er-O;       % remaining error surface 
            imse(z) = sum(Er.^2)/ni; 
        end 
        %choose best node 
        [Y,I]=sort(imse); 
        Er = IEr(I(1),:); 
        centers(n,:) = a(I(1),:); 
        radii(n) = b(I(1)); 
        weights(n) = B(I(1)); 
        mse = Y(1); 
        mseTr(n+1) = mse; 
end 
 end 
 
ErrCor 
%-------------------------------------------------------------------------- 
%*                         METHOD - ErrCor 
%-------------------------------------------------------------------------- 
%* Method constructs and trains an RBF network incrementally 
%* 
%* INPUTS: 
%*  nodes - the number of neurons in the network 
%*  inputs - training inputs 
%*  outputs - training outputs 
%*  stop - error stopping criterion 
%*  maximum_iteration - loop stopping criterion 
%* 
%* OUTPUTS: 
%*  weights_output - trained output weights of the network 
%*  widths - trained widths of the RBF neurons 
%*  weights_input - trained input weights of the network 
%*  centers - trained network centers 
  
function [weights_output, widths, centers, weights_input] = 
ErrCor(nodes,inputs,outputs,stop,maximum_iteration) 
 Nmax=nodes; 
[m,n] = size(inputs); 
[np,nd]=size(inputs); 
  
actual_output_ = zeros(size(outputs)); 
centers = []; 
weights_input = []; 
weights_output = 1; 
widths = []; 
number_of_hidden_unit = 0; 
 tic; 
 g=1; 
    maximum_error = stop; 
    mu = 100; 
for kkk = 1:Nmax, 
    [maxi_, index_1] = max(abs(outputs-actual_output_)); 
    number_of_hidden_unit = number_of_hidden_unit + 1; 
    centers = [centers; inputs(index_1,:)]; 
    weights_input = [weights_input; ones(1,n)]; 
    weights_output = [weights_output, 1]; 
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    widths = [widths, 1]; 
    para_cur = parameter_combination(weights_output, widths, weights_input, centers); 
    % para_cur = weights_output; 
    I = eye(length(para_cur)); 
    % other parameters 
  
    % training process 
    [SSE(1)] = calculate_SSE(weights_input, weights_output,widths,centers,inputs,outputs); 
    SSE2(g)=SSE(1); 
    g=g+1; 
    fprintf('Number of RBF units = %d, iteration = 1, SSE = %6.10f\n',kkk,SSE(1)); 
    for iter = 2:maximum_iteration 
        jw = 0; 
        [gradient, hessian] = calculate_gradient(weights_input, weights_output, widths, centers, 
inputs, outputs ); 
        para_back = para_cur; 
        while 1 
            para_cur = para_back - (inv(hessian+mu*I)*gradient')'; 
            [weights_output, widths, wieghts_input, centers] = 
parameter_divison(para_cur,number_of_hidden_unit,inputs); 
            [SSE(iter)] = calculate_SSE(weights_input, 
weights_output,widths,centers,inputs,outputs); 
            SSE2(g)=SSE(iter); 
            g=g+1; 
            if SSE(iter) <= SSE(iter-1) 
                if mu > 10^-20; 
                    mu = mu/10; 
                end; 
                break; 
            end; 
            if mu < 10^20 
                mu = mu*10; 
            end; 
            jw = jw + 1; 
            if jw > 20 
                break; 
            end; 
        end; 
  
    end; 
  
end; 
 
evalEr 
%% Error Evaluation (SSE) 
% inputs 
%   data - two column set where the first column is desired outputs and the 
%          second column is the current output 
% outputs  
%   Er - the sum squared error Er = sum((data(:,1)-data(:,2)).^2) 
%**************Copyright - Dr. Philip Reiner - 2015*********************** 
function SSE=evalEr(rad) 
global inputs prevOut newCen w desired H; 
H=funct(inputs,rad,newCen); 
Er=desired-prevOut; 
w=(H'*Er)/(H'*H); 
Er=Er-w*H; 
SSE=Er'*Er; 
 
funct 
%*********************** Method - funct *********************************** 
%*  method calculates the output of a RBF unit 
%* INPUTS: 
%*  x - input data 
%*  radi - width of RBF unit 
%*  xo - center of RBF unit 
%* OUTPUTS: 
%*  y - output for each data input 
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%**************Copyright - Dr. Philip Reiner - 2015*********************** 
  
function y=funct(x,radi,xo) 
[m,n]=size(x); 
for q=1:m 
    y(q)=exp(-sum((x(q,:)-xo).^2,2)/radi^2); 
end 
y=y'; 
return; 
 
I-ELM 
% ****************************************************************** 
% This function is the I_ELM function that randomly generates centers 
% Radius for RBF functions and then weights the output of the functions. 
  
% --------OUTPUTS------- 
% centers = the generated centers for all of the nodes 
% weights = the output weights generated for the nodes 
% radii = the radii of all the rbf nodes 
% rmse = the root mean square error after each generated node 
  
% -------INPUTS-------- 
% inputs = the inputs to the datasat you would like to train 
% outputs = the training outputs corresponding to the inputs 
% nodes = the maximum number of nodes you would like your net to have 
% 1/G = the maximum value allowed for your radius 
% range = the maximum range of the inputs 
%**************Copyright - Dr. Philip Reiner - 2015*********************** 
 
function [centers, weights, radii, mseTr]=I_ELM(inputs,outputs,nodes,G,range) 
[ni,nd] = size(inputs); 
Er = outputs'; 
n=0; 
mse = sum(Er.^2)/ni; 
mseTr(1) = mse; 
while (n < nodes )&&(mse > 10e-5) 
    n = n+1; 
    %assign random center and impact factor 
    centers(n,:) = range.*rand(1,nd)-range/2; 
    radii(n) = G*rand(1); 
    %calculate output weights 
    %   weight B(N) = sum(error(p)*H(p))/sum(H(p)^2) for all p 
    for i=1:ni, 
        H(i) = exp(-1*radii(n)*norm(inputs(i,:)-centers(n,:))^2); 
    end 
    weights(n) = (Er*H')/(H*H'); 
    O = weights(n).*H; 
%     figure(1); clf; mesh(reshape(O,30,30)); 
    Er = Er-O;       % remaining error surface 
%     figure(2); clf; mesh(reshape(Er,30,30)); 
    mse = sum(Er.^2)/ni; 
    mseTr(n+1) = mse; 
    if sum(H)==0 
        n=n-1; 
    end 
end 
end 
 
ISO_RBF 
%-------------------------------------------------------------------------- 
%*                         METHOD - ISO_RBF 
%-------------------------------------------------------------------------- 
%* Method creates a randomly initialized RBF network, and then trains it 
%* using the Improved Second order training method. 
%* 
%* INPUTS: 
%*  nodes - the number of neurons in the network 
%*  trIn - training inputs 
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%*  trOut - training outputs 
%*  stop - error stopping criterion 
%*  maximum_iteration - loop stopping criterion 
%* 
%* OUTPUTS: 
%*  weights_output - trained output weights of the network 
%*  widths - trained widths of the RBF neurons 
%*  weights_input - trained input weights of the network 
%*  centers - trained network centers 
  
function [weights_output, widths, weights_input, 
centers]=ISO_RBF(nodes,trIn,trOut,stop,maximum_iteration) 
 %% set the number of RBF units    
    number_of_hidden_unit = nodes; 
    %% initial parameter generation 
    weights_input = rand(nodes,size(trIn,2)) ; 
    weights_output = rand(nodes+1,size(trOut,2)); 
    widths = rand(nodes) ; 
    centers = rand(nodes,size(trIn,2)); 
    binputs=trIn; 
    boutputs=trOut; 
    %% Run algorithm on the entire data set as a control 
    [m,n] = size(binputs); 
    %% combination of parameters 
    para_cur = parameter_combination(weights_output, widths, weights_input, centers); 
    %% other parameters 
    I = eye(length(para_cur)); 
%     maximum_iteration = 30; 
    maximum_error = stop; 
    mu = 1; 
    %% training process 
    [SSE(1)] = calculate_SSE(weights_input, weights_output,widths,centers,binputs,boutputs,eps); 
    RMSE(1)=sqrt(SSE(1)/m); 
    fprintf('iteration = 1, SSE = %6.10f\n',SSE(1)); 
    tic 
    for iter = 2:maximum_iteration 
        jw = 0; 
        [gradient, hessian] = calculate_gradient(weights_input, weights_output, widths, centers, 
binputs, boutputs ); 
        para_back = para_cur; 
        while 1 
            para_cur = para_back - ((hessian+mu*I)\gradient')'; 
            del(iter-1,:)=((hessian+mu*I)\gradient')'; 
            [weights_output, widths, weights_input, centers] = 
parameter_divison(para_cur,number_of_hidden_unit,binputs); 
            [SSE(iter)] = calculate_SSE(weights_input, 
weights_output,widths,centers,binputs,boutputs,eps); 
            if SSE(iter) <= SSE(iter-1) 
                if mu > 10^-20; 
                    mu = mu/10; 
                end; 
                break; 
            end; 
            if mu < 10^20 
                mu = mu*10; 
            end; 
            jw = jw + 1; 
            if jw > 10 
                break; 
            end; 
        end; 
        RMSE(iter)=sqrt(SSE(iter)/m); 
        fprintf('iteration = %d, RMSE = %6.10f\n',iter, RMSE(iter)); 
        if SSE(iter) < maximum_error 
            break; 
        end; 
    end; 
 
nelder_mead_ndmd2 
function [f_BEST,BEST]=nelder_mead_ndmd2(obj,x0,d_SIM,df_min,ite_max,times) 
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%   INPUT ARGUMENTS: 
%   nelder_mead_ndmd2(@testf1,[100,100],1,1e-4,2e2,100) 
%   obj         - Handle of objective function. 
%   x0          - Initial starting point. 
%   d_SIM   - Size of initial simplex. 
%   df_min  - Minimum improvement required for termination. 
%   ite_max - Desired number of iterations. 
  
%  OUTPUT ARGUMENTS: 
%   BEST    - Location of baest solution. 
%   f_BEST  - Best value of the objective found. 
%   SIMPLEX - Matrix conatining final simplex. 
%   f       - Objective values for each point in the simplex. 
  
format long; 
tavg_ite=0; 
tsecond=0; 
second=0; 
succ_time=0; 
avg_ite=0; 
avg_time=0; 
avg_error=0; 
average_min=0; 
% Initialize parameters and create simplex 
for itee=1:times,   %training timesa=1; 
    tic; 
    alpha=1; 
    a=1; 
    b=2; 
    c=0.5; 
    n=length(x0); 
    mo=zeros(1,n); 
    mu=0.1; 
    X0=ones(n,1)*x0; 
    SIMPLEX=[X0+diag(d_SIM*(rand(1,n)));x0]; % create simplex vertices 
    f(n+1)=0; 
    f_mid(n)=0; 
    mid=zeros(n); 
  
    for init=1:n+1 
        f(init)=feval(obj,SIMPLEX(init,:)); 
    end 
    init=0; 
    SIMPLEX(:,end+1)=f'; 
    SIMPLEX=sortrows(SIMPLEX,n+1);    %sort row depending of value of f in ascending order; 
  
    f=SIMPLEX(:,end)'; 
    SIMPLEX(:,end)=[]; 
  
    % Simplex Code 
    for ite=1:ite_max, 
         
         Pb=sum(SIMPLEX(1:n,:))/n;       %calculate the centroid P_ of points with i#h 
         Ps=(1+a)*Pb-a*SIMPLEX(end,:);    %calculate reflection point of Ph:Ps  
         f_Ps=feval(obj,Ps); 
         Pss=(1-b)*Pb+b*Ps;    %calculate P** by expansion 
         f_Pss=feval(obj,Pss); 
       
         if f_Ps>f(1) 
             % using hyper plane equation 
             I=SIMPLEX(:,1:n); 
             A=ones(1,n+1)'; 
             A(:,2:n+1)=I; 
             B=f'; 
             P=pinv(A)*B; 
             grad=P'; 
             Gs=SIMPLEX(1,:)-alpha*grad(1,2:n+1);    
             % Calculate reflected point 
             P3=(1+a)*SIMPLEX(1,:)-SIMPLEX(end,:); 
             P1=SIMPLEX(1,:); 
             P2=Gs; 
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             PP=(P3-P1).*(P2-P1); 
             u=sum(PP)/sum((P2-P1).^2); 
             Gs=P1+u*(P2-P1); 
             f_Gs=feval(obj,Gs); 
             
             if f_Gs<f_Ps 
                 Ps=Gs;             %new reflected point 
                 f_Ps=f_Gs; 
                 Pb=SIMPLEX(1,:); 
                 Pss=(1-b)*SIMPLEX(1,:)+b*Ps;   %calculate P** by expansion 
                 f_Pss=feval(obj,Pss); 
             end 
           
         end 
         
         if f_Ps<f(1)    %f(P*)<f(l) 
               if f_Pss<f(1)    %f(P**)<f(l) 
                   SIMPLEX(end,:)=Pss;      %replace Ph by P** 
                   f(end)=f_Pss; 
               else 
                  SIMPLEX(end,:)=Ps;        %replace Ph by P* 
                  f(end)=f_Ps; 
               end         
         else 
             check=0; 
             for i=1:n, 
                 if f_Ps>f(i)      % f_P*>f_i and i#h 
                     check=1;    
                     break; 
                 end 
             end 
             if check==0 
                 SIMPLEX(end,:)=Ps;        %replace Ph by P* 
                 f(end)=f_Ps; 
             else 
                 if f_Ps>f(end)    %f_P*>f_h 
                     Pss=c*SIMPLEX(end,:)+(1-c)*Pb; %calculate P** by expansion 
                     f_Pss=feval(obj,Pss); 
                     if f_Pss>f(end)    %f(P**)>f(h) 
                         for i=1:n+1 
                            SIMPLEX(i,:)=(SIMPLEX(i,:)+SIMPLEX(1,:))/2; %replace all Pi' by 
(Pi+Pl)/2 
                            f(i)=feval(obj,SIMPLEX(i,:)); 
                         end 
                     else 
                        SIMPLEX(end,:)=Pss;      %replace Ph by P** 
                        f(end)=f_Pss; 
                     end 
                 else 
                    SIMPLEX(end,:)=Ps;        %replace Ph by P* 
                    f(end)=f_Ps; 
                 end     
             end 
         end 
  
        % reorder and display iteration output    
        SIMPLEX(:,end+1)=f'; 
        SIMPLEX=sortrows(SIMPLEX,n+1); 
  
        f=SIMPLEX(:,end)'; 
        SIMPLEX(:,end)=[]; 
        error(ite)=f(1); 
        t(ite)=ite; 
  
        % terminate condition3 for neural network training 
        if f(1)<df_min, 
            succ_time=succ_time+1; 
            avg_ite=avg_ite+ite; 
            avg_time=avg_time+1; 
            avg_error=avg_error+f(1); 
            second=second+toc; 
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            break; 
        end 
     end; 
    % display the result 
    succ_rate=succ_time/times; 
    BEST=SIMPLEX(1,:); 
    f_BEST=f(1); 
%     average_min=average_min+f_BEST; 
%     tavg_ite=tavg_ite+ite; 
%     tsecond=tsecond+toc; 
%     disp(' '); 
%     disp(['Minimum value of f = ',num2str(f_BEST),]) 
%     disp(['located at x = [',num2str(BEST),'].']) 
%     disp(['Success rate = [',num2str(succ_rate),'].']) 
%     % plot 
%     semilogy(t,error,'b'); 
%     xlabel('Iterations') 
%     ylabel('Error') 
%     hold on; 
end 
%     avg_iteration=avg_ite/avg_time; 
%     avg_errors=avg_error/avg_time; 
%     avg_second=second/avg_time; 
%     tavg_iteration=tavg_ite/times; 
%     avg_minimum=average_min/times; 
%     avg_tsecond=tsecond/times; 
%     disp(['Average Iteration = ',num2str(avg_iteration),]) 
%     disp(['Average Error = ',num2str(avg_errors),]) 
%     disp(['Average second = ',num2str(avg_second),]) 
%     disp(['tAverage Iteration = ',num2str(tavg_iteration),]) 
%     disp(['tAverage Minimum = ',num2str(avg_minimum),]) 
%     disp(['tAverage second = ',num2str(avg_tsecond),]) 
return 

 
NME-ELM 
%************************** METHOD - NME-ELM ****************************** 
%* INPUTS: 
%*  in - the input pairs for training NxD 
%*  outputs - training target values Nxm 
%*  Nodes - the maximum number of neurons 
%*  eps - the error criterion 
%* OUTPUTS: 
%*  cent - the resulting network centers N~xD 
%*  weights - the resulting network output weights 
%*  radius - the widths of the resulting network 
%*  mseTr - the mean squared error for each added neuron 
%**************Copyright - Dr. Philip Reiner - 2015*********************** 
  
function [cent, weights, radius, mseTr]=NME_ELM3(in,outputs,Nodes,eps) 
%alpha, beta, and gamma are simplex parameters 
% figure(6);clf; 
global inputs prevOut newCen w desired np nd H; 
inputs=in; 
[np,nd]=size(inputs); 
desired = outputs; 
prevOut=zeros(np,1); 
Er=outputs; 
mseTr(1)=(Er'*Er)/np; 
j=1; 
while j<=Nodes 
    %% Initialize each node 
    [big I]=max(abs(Er)); 
    cent(j,:)=inputs(I(1),:); 
    newCen=cent(j,:); 
    % find the radiusssssssssssssssssssssssss 
    figure(1);clf; 
    [f_BEST,BEST]=nelder_mead_ndmd2(@evalEr,1,4,1e-5,10,1); 
    %% Calculate Final weight 
    weights(j)=w; 
    Er=Er-weights(j)*H; 
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    radius(j)=BEST; 
    mseTr(j+1)=(Er'*Er)/np; 
    prevOut=prevOut+w*H; 
    %     x1=reshape(in(:,1),30,30);y1=reshape(in(:,2),30,30);z1=reshape(prevOut,30,30); 
    %     figure(4);clf;surf(x1,y1,z1); 
    % %     title('Desired Curve');xlabel('x');ylabel('y'); 
    %     plot(inputs,w(j)*H(:,j),'r','LineWidth',2.5); 
    %     legend('Desired','C1','NME-ELM Out'); 
    j=j+1; 
end 

 
Parameter_combination 
%-------------------------------------------------------------------------- 
%*                         METHOD - parameter_combination 
%-------------------------------------------------------------------------- 
%* Method calculates the SSE for a network  
%* 
%* INPUTS: 
%*  weights_input - the input weights 
%*  weights_output - the output weights of the network 
%*  widths - the widths of the neurons in the network 
%*  centers - the centers of the neurons in the network 
%* 
%* OUTPUTS: 
%*  vector - a vector of all the network parameters in a single row 
function [vector] = parameter_combination(weights_output, widths, weights_input, centers) 
[p1,p2] = size(weights_input); 
[p3,p4] = size(centers); 
vector = [weights_output widths reshape(weights_input',1,p1*p2) reshape(centers',1,p3*p4)]; 
 
Parameter_division 
%-------------------------------------------------------------------------- 
%*                         METHOD - parameter_division 
%-------------------------------------------------------------------------- 
%* Method calculates the SSE for a network  
%* 
%* INPUTS: 
%*  vector - a vector of all the network parameters in a single row 
%*  num - number of nodes in the network 
%*  data - the input data for training 
%* 
%* OUTPUTS: 
%*  weights_input - the input weights 
%*  weights_output - the output weights of the network 
%*  widths - the widths of the neurons in the network 
%*  centers - the centers of the neurons in the network 
  
function [weights_output, widths, weights_input, centers] = parameter_divison(vector, num, data) 
[row, col] = size(data); 
for i = 1:(num+1) 
    weights_output(1,i) = vector(1,i); 
end; 
for i = 1:num 
    widths(1,i) = vector(1, num+1+i); 
end; 
for i = 1:num 
    for j = 1:col 
        weights_input(i,j) = vector(1,2*num+1+(i-1)*col+j); 
        %             weights_input(i,j) = vector(1,num+1+(i-1)*col+j); 
    end; 
end; 
for i = 1:num 
    for j = 1:col 
        centers(i,j) = vector(1,2*num+1+num*col+(i-1)*col+j); 
        %             centers(i,j) = vector(1,num+1+num*col+(i-1)*col+j); 
    end; 
end; 
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verification 
%-------------------------------------------------------------------------- 
%*                         METHOD - Verification 
%-------------------------------------------------------------------------- 
%* Method calculates outputs generated by a network 
%* 
%* INPUTS: 
%*  weights_input - the input weights 
%*  weights_output - the output weights of the network 
%*  widths - the widths of the neurons in the network 
%*  centers - the centers of the neurons in the network 
%*  testing_input - the test data for the network to process 
%* 
%* OUTPUTS: 
%*  output - network outputs for each entry in the testing inputs 
  
function [output] = verification(weights_input, weights_output, widths, centers, testing_input) 
%% verification process 
[m,n] = size(testing_input); 
[p,q] = size(centers); 
for i = 1:m 
    count = weights_output(1); 
    for j = 1:p 
        count = count + weights_output(j+1)*exp(-sum((weights_input(j,:).*testing_input(i,:)-
centers(j,:)).^2)/widths(j)); 
    end; 
    output(i,1) = count; 
end; 
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