

Efficient Determination of Copper Electroplating Chemistry
Additives using Advanced Neural Network Algorithms

	

by

Charles David Ellis

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy	

Auburn, Alabama
May 10, 2015

Approved by:

Robert N. Dean, Chair, Associate Professor of Electrical & Computer Engineering
Bogdan M. Wilamowski, Co-chair, Professor of Electrical & Computer Engineering

Michael C. Hamilton, Assistant Professor of Electrical & Computer Engineering
Richard C. Jaeger, Professor Emeritus of Electrical & Computer Engineering

 ii

Abstract

 Copper plating is the metallization process of choice for modern semiconductor devices.

It has proven to be a relatively inexpensive and simple process and easily adaptable to high

volume manufacturing. The development of the copper plating process includes the addition of

organic components that provide a uniform and smooth surface [1]–[5] These organic

components are not only consumed during the plating process, but also decompose over time [6].

To insure a repeatable process these organic components, typically added in parts per million

concentrations, must be carefully controlled. To do this, the industry has developed chemical

analysis techniques such as Modified Linear Approximation, Dilution-titration, and Response

curves to assist in determining the exact concentration of the organics in the plating bath. These

techniques, while widely used, are time consuming, wasteful, and inaccurate. A new technique is

proposed that will speed up the process, reduce the complexity and waste, and provides a higher

accuracy [7]. These techniques will utilize recently introduced second order Advanced Neural

Network (ANN) algorithms developed at Auburn University.

 iii

Acknowledgements

 I would like to thank my wife, Julie, my son David, and my daughter Anna, for their love

and support during my professional career. And to the Electrical & Computer Engineering

Department who has provided me with stimulating work for the past 29 years.

 iv

Table of Contents

Abstract	
 ..	
 ii	

Acknowledgements	
 ..	
 iii	

List	
 of	
 Tables	
 ..	
 vii	

List	
 of	
 Figures	
 ..	
 viii	

Chapter	
 1:	
 Introduction	
 ...	
 1	

1.1	
 The	
 Case	
 for	
 Copper	
 Plating	
 ...	
 2	

Chapter	
 2:	
 Copper	
 Interconnect	
 and	
 Via	
 Plating	
 Process	
 ...	
 4	

2.1 Platable Region Preparation	
 ..	
 4	

2.2	
 Damascene	
 Process	
 ..	
 4	

2.3	
 Through	
 Silicon	
 Via	
 (TSV)	
 Process	
 ..	
 6	

2.4	
 Copper	
 Plating	
 Bath	
 Makeup	
 ..	
 10	

2.5	
 TSV	
 Copper	
 Plating	
 Process	
 ...	
 11	

2.5.1	
 Pre-­‐Wetting	
 ...	
 11	

2.5.2	
 Plating	
 system	
 schematic	
 ..	
 15	

2.5.3	
 DC	
 vs.	
 Pulse	
 Plating	
 ..	
 17	

2.5.4	
 Cathode	
 Boundary	
 Layer	
 Formation	
 ..	
 18	

Chapter	
 3:	
 Bottom-­‐Up	
 Fill	
 Mechanism	
 ..	
 20	

3.1	
 Effect	
 of	
 Suppressors	
 ..	
 21	

 v

3.2	
 Effect	
 of	
 Accelerators	
 ..	
 22	

3.3	
 Effect	
 of	
 Levelers	
 ..	
 25	

3.4	
 Combined	
 effect	
 of	
 organic	
 components	
 ...	
 26	

Chapter	
 4:	
 Present	
 Industrial	
 Organic	
 Additive	
 Analysis	
 Methods	
 ..	
 32	

4.1	
 Commonly	
 Used	
 Additive	
 Control	
 Methods	
 ...	
 33	

4.1.1	
 Accelerator	
 Determination	
 Using	
 MLAT	
 ...	
 33	

4.1.2	
 Suppressor	
 Determination	
 Using	
 Dilution-­‐Titration	
 ...	
 35	

4.1.3	
 Leveler	
 Determination	
 Using	
 Response	
 Curve	
 ..	
 36	

Chapter	
 5.	
 Machine	
 Learning	
 Algorithms	
 ..	
 38	

5.1	
 First	
 Order	
 Algorithms	
 ..	
 39	

5.1.1	
 Polynomial	
 Regression	
 ...	
 39	

5.1.2	
 Extreme	
 learning	
 machine	
 ..	
 42	

5.1.3	
 Support	
 Vector	
 Machines	
 ..	
 47	

5.1.4	
 Error	
 Back	
 Propagation	
 ..	
 48	

5.2	
 Second	
 Order	
 Algorithms	
 ...	
 59	

5.2.1	
 Newton	
 ..	
 60	

5.2.2	
 Gauss-­‐Newton	
 ...	
 61	

5.2.3	
 Levenberg-­‐Marquardt	
 (LM)	
 Algorithm	
 ...	
 65	

5.2.4	
 Neuron	
 by	
 Neuron	
 (NBN)	
 Algorithm	
 ...	
 66	

Chapter	
 6.	
 Proposed	
 Plating	
 Chemistry	
 Component	
 Determination	
 Method	
 	
 70	

6.1	
 Proposed	
 Additive	
 Control	
 Methods	
 ...	
 70	

6.2	
 Machine	
 Learning	
 Software	
 Tools	
 ..	
 74	

6.3	
 Accelerator	
 Determination	
 ..	
 75	

6.4 Suppressor Determination	
 ...	
 82	

 vi

6.5 Leveler Determination	
 ..	
 85	

Conclusion	
 ...	
 88	

Future	
 Work	
 ...	
 89	

Appendix	
 ..	
 95	

Appendix A. Python Script for parity 3 ELM network	
 ..	
 95	

Appendix B. Error Back Propagation (EBP) Python Script	
 ..	
 96	

Appendix C. Python implementation of the Gauss-Newton algorithm	
 ...	
 98	

Appendix D. Levenberg-Marquardt Algorithm python implementation	
 ..	
 101	

Appendix E. Original Plating Bath Data	
 ...	
 104	

	

 vii

List of Tables

Table 1. Parity 3 Table ... 45	

Table 2. Parity 2 truth table .. 54	

Table 3. EBP program output .. 58	

Table 4. CVS Test Parameters ... 72	

Table 5. Typical Measured Plating Bath Data before Normalization .. 73	

Table 6. Typical Measured Plating Bath Data After Normalization ... 74	

Table 7. Accelerator prediction comparison of machine learning techniques 82	

Table 8. Suppressor prediction comparison of machine learning techniques 85	

Table 9. Leveler prediction comparison of machine learning techniques 87	

 viii

List of Figures

Figure 1. Damascene Process [8] .. 2	

Figure 2. Via void in copper filled via .. 5	

Figure 3. 3-D packaging cross-section showing through silicon vias (TSV) [23] 7	

Figure 4. TSV process flow .. 8	

Figure 5. TSV cross-section after via fill process ... 9	

Figure 6. Revealed copper vias after CMP process .. 10	

Figure 7. TSV pre-wetting process [26] ... 12	

Figure 8. Method to view TSV cross-section ... 13	

Figure 9. Wet first process and results .. 14	

Figure 10. Vacuum first process and results ... 15	

Figure 11. Copper plating bath configuration ... 16	

Figure 12. Cathode Boundary Layer and Potential ... 18	

Figure 13. (a) sub-conformal, (b) conformal, (c) bottom up fill mechanisms 20	

Figure 14. Plating rate vs. PEG concentration .. 22	

Figure 15. Chemical Structure of SPS .. 23	

Figure 16. Chemical structure of Janus Green B (JGB) leveler ... 26	

Figure 17 (h).Plated TSV with leveler, showing reduction of “accelerator bump” 31	

Figure 18. Actual plated TSV showing bottom up fill .. 31	

Figure 19. CVS Stripping Curve ... 33	

 ix

Figure 20. Normalized Stripping Charge vs. Suppressor Concentration 34	

Figure 21. Typical MLAT plot for accelerator determination .. 35	

Figure 22. Typical MLAT plot for accelerator determination .. 36	

Figure 23. Typical Leveler Calibration and Determination Plot .. 37	

Figure 24. Polynomial regression example ... 39	

Figure 25. High order polynomial showing the problem with over-fitting 40	

Figure 26. Single Hidden Layer Topology for ELM .. 43	

Figure 27. ELM network for parity 3 problem, shown is 6 hidden layer neurons, the actual
network, for parity 3, requires 8 hidden layer neurons ... 45

Figure 28. Support Vector Machine extended dimensional conversion 47	

Figure 29. MLP Topology used for EBP Analysis ... 49	

Figure 30. MLP network with weights and biases .. 50	

Figure 31. Error Back Propagation (EBP), 5 tries and 10000 iterations - 59	

Figure 32. Gauss-Newton algorithm, 300 tries and 100 iterations – parity 3 problem 64	

Figure 33. LM algorithm, 200 iterations, parity 3 problem .. 66	

Figure 34. FCC Neural Network Topology .. 67	

Figure 35. NBN Algorithm Pseudocode ... 68	

Figure 36. NBN output, parity-3 problem .. 68	

Figure 37. Stripping Charge vs Suppressor Concentration [61] ... 70	

Figure 38. Normalized Charge vs. Leveler Concentration [61] .. 71	

Figure 39. Polynomial Regression Results for Accelerator .. 76	

Figure 40. Training and Validation results for the Multilayer Preceptron Topology and EBP
Training. .. 77	

Figure 41. Accelerator Training & Validation using Support Vector Regression 78	

Figure 42. Accelerator Training & Validation using Extreme Learning Machine 79	

 x

Figure 43. Fully Connected Cascade Topology .. 80	

Figure 44. Accelerator Training and Validation results for an MLP Topology with NBN
algorithm ... 80	

Figure 45. Accelerator Training and Validation results for an FCC Topology with NBN
algorithm ... 81	

Figure 46. Suppressor Polynomial Validation .. 83	

Figure 47. Suppressor MLP/NBN Validation ... 84	

Figure 48. Suppressor FCC/NBN Validation ... 84	

Figure 49. Leveler Polynomial Validation for 4 & 5 Inputs ... 86	

Figure 50. Leveler MLP/NBN Validation for 4 & 5 Inputs ... 86	

Figure 51. Leveler FCC/NBN Validation for 4 & 5 Inputs .. 87	

Figure 52. Automating Plating Bath Analysis System ... 89	

Figure 53. Flow vs. Pump Voltage ... 90	

 1

Chapter 1: Introduction

 In the early 1990s IBM introduced a process for replacing aluminum with copper in IC

metallization – this process, called Damascene [8], was quickly adopted by most high volume

manufacturers and has helped to provide increased speeds and miniaturization that have allowed

a continual advancement of IC circuit functionality to the present day.

 The Damascene process, shown in Figure 1, contains many steps including seed-layer

deposition, pattern delineation, copper plating, and chemical mechanical polishing. In this work a

review of the copper plating process is presented in order to familiarize the reader with the

complicated chemistry and the reasoning behind the careful additive component control

necessary to achieve repeatable plating results. A review of present component analysis

techniques is given to show their complexity and wastefulness, and why new techniques would

be beneficial. A review of some of the most popular advanced neural network algorithms is

presented to show their differences and why new second order techniques are capable of

converging for very non-linear datasets. These neural network algorithms are compared and

demonstrate the ability to predict minute concentrations of the plating component with much less

waste and time.

 2

Figure 1. Damascene Process [8]

1.1 The Case for Copper Plating

 There are only 4 metals in the periodic table that have electrical resistance low enough

for use in thin films in the semiconductor industry. These metals include aluminum, gold, silver,

and copper. Aluminum’s resistivity is much higher then the other three (aluminum – 2.69 µohm-

cm, gold – 2.3 µohm-cm, copper – 1.67 µohm-cm, and silver – 1.60 µohm-cm).

Aluminum:

 Aluminum has been used in the IC industry for many years and has many nice properties

such as it forms a stable oxide, adheres very well, has almost no diffusion in most dielectrics and

other materials used in IC processing, and is easily etched with dry techniques. Unfortunately the

 3

high speed requirements of modern circuits dictates that a metal must have as low a resistance as

possible. Since aluminum has the highest resistance of the 4 possible metals it is not the most

desirable candidate.

Silver:

 Silver would seem to be the best choice, if resistivity is the only consideration, but it

suffers from very high diffusivity in other materials such as dielectrics [9]. One of the reasons for

this is that it diffuses as an ion and not as an atom, this small ion causes it to be able to quickly

diffuse in the relatively large spaces of a dielectric, especially under an electric field. Silver also

oxidizes or tarnishes very quickly. These reasons and the fact that Cu is not much different in

resistivity leads one to select Cu as the better choice.

Gold:

 Gold has many nice properties, such as the fact that it does not oxidize and is very stable,

but it does have the same problems with diffusivity as silver [9] (i.e. a very fast diffuser in most

materials used in processing). It also has a much higher resistivity and is very expensive. So, it

would seem Cu is still the best choice of the 4 metals.

Copper:

 Copper metallization has been used in the PCB industry and on MCM substrates for

many years and has a mature plating technology for deposition and delineation [10]. This fact

along with the fact that the resistivity is only slightly different than that of silver makes copper

the best choice for a metal. Although copper still suffers from a high diffusivity in dielectrics

[11], it is not as high as silver or gold. So, depending on the dielectric used, there may have to be

a barrier metal added to insure a slowing down of the copper diffusion [11], thus increasing the

reliability of the structure.

 4

Chapter 2: Copper Interconnect and Via Plating Process

2.1 Platable Region Preparation

 There are many uses for copper plating in the IC industry including conductor plating

[12], via plating [13], pillar plating [14], through silicon via (TSV) plating [14], and [15],

damascene and dual damascene plating. This work will concentrate on the chemistry needed to

successfully perform via filling processes such as TSV and Damascene. The organic components

are also used in the other plating processes and this new analysis procedure will help determine

the organic additives in these plating baths as well. The via processes will be used as examples

since the need for the organic components is more obvious and easier to understand with the

requirement for a bottom up fill process.

2.2 Damascene Process

 The damascene process is shown in figure 1: it shows an additive process for copper as

opposed to the typical subtractive process historically used for aluminum. This additive process

begins with etching of the underlying dielectric to delineate the regions that will eventually

become the copper conductors. After the dielectric etching process (normally a dry etch process),

a barrier layer is deposited that provide a barrier between the underlying dielectric and the

copper conductors. Since copper is a fast diffuser, in most dielectrics, a thin layer of Ta, TaN,

TiN, or TiW is deposited to completely cover the dielectric surface and etched sidewalls, from

the previous step. A layer of “seed” copper is next deposited to act as a base layer onto which

additional copper will be plated. This seed layer will have to be thick enough to provide a low

resistance path for electroplating, yet thin enough to not close off the small hole etched in the

 5

dielectric. Typical thicknesses are 100 nm to 400 nm. This copper layer is sputter deposited to

provide optimal step coverage, making sure the copper layer is continuous throughout the etched

hole. After the seed layer is deposited copper is electroplated to fill the holes. This plating

process must allow the etched hole to be completely filled, which can only be accomplished if

the hole is filled from the bottom, otherwise the copper on the surface and at the top edges of the

hole will tend to “pinch” off the hole, not allowing additional copper to plate in the center of the

hole, leaving a void filled with the copper solution. This could be a reliability problem due to

trapped chemistry and a thinning of via metal [17], as well as a reduction in via resistance. A

typical via void is shown in figure 2.

Figure 2. Via void in copper filled via

 The next step is a Chemical Mechanical Polish (CMP) [18] that removes excess copper

from the surface as well as planarizes the surface delineating the copper conductors. CMP uses

the combination of physical and chemical removal processes to provide a planar surface that

Void

 6

stops on the barrier layer and has a minimal effect on the copper conductor surface. As

mentioned earlier it is the filling of the etched holes that must be carefully controlled to make

sure the plating process proceeds with a bottom up fill: in other words the plating process should

plate faster at the bottom of the hole compared to the surface of the substrate. There should also

be a reduced rate of plating at the sharp corner at the top of the hole. These steps will allow the

hole to fully fill, without voiding.

2.3 Through Silicon Via (TSV) Process

 Recent advances in logic switching times and frequency along with reduced circuit

voltages have created the need to reduce the attenuation of signals for a given length across an

integrated circuit [19]. Some small reductions in attenuation have been realized with lower K

dielectrics, but there is still a need to reduce the length of the lines to make significant

reductions. The only way to reduce the line length, while maintaining the processing power and

complexity, is to break the sections of the processor into separate thin chips and stack them into a

3-D array [20]–[23]. This concept is shown in figure 3, and is the only method presently capable

of making a significant reduction in the line delays and signal attenuation.

 7

Figure 3. 3-D packaging cross-section showing through silicon vias (TSV) [23]

 Through Silicon Vias have been developed to provide interconnection between the

stacked die. These vias are filled with copper to provide a low resistance connection and are

typically 2 – 50 µms in diameter. The via depth is typically 50 – 150 µms depending on the final

thickness of the stacked die. The process for fabricating TSVs is shown in figure 4 and described

below.

 8

Figure 4. TSV process flow

 A silicon wafer is patterned to define the TSV openings and then etched in a deep

reactive ion etcher to form high aspect ratio holes. The next step is to strip photoresist and any

polymer in the holes. Then the surface of the hole is passivated by thermal oxidation or a

deposited oxide layer. The next step is to deposit a barrier layer, typically TiN or TaN, and a

plating seed layer, typically copper or ruthenium (in the case of atomic layer deposition (ALD))

[24] . The wafer is then placed in a copper plating bath to fill the vias with copper, as with the

 9

damascene hole fill this process must proceed with a bottom up fill to make sure there are no

voids in the copper. Figure 5 shows a wafer after TSV copper plating at Auburn University: in

this case the via diameter is 20 µms and the depth is 160 µms.

Figure 5. TSV cross-section after via fill process

 As shown in figure 5, there is significant over-plating at the top of the holes and on the

surface of the wafer that must be removed to isolate the vias from one another. To do this a

chemical mechanical polish (CMP) system is used to remove the excess copper [25] from the

surface using a combination of chemical and mechanical means. This allows some selectivity to

allow the polishing to slow down as the copper is removed and the barrier layer is revealed. The

selectivity allows the polishing process to completely remove the copper in shallow areas while

the polishing in the exposed higher areas is virtually stopped. A photo of the revealed TSVs,

 10

after a CMP process (at Auburn University), is shown in figure 6: notice the insulating oxide

region (black area surrounding the copper).

Figure 6. Revealed copper vias after CMP process

 Next, the wafer is background to thin the wafer to the final thickness. To do this the

wafer is first temporarily attached to a second substrate and the back of the wafer is ground and

polished to thin the wafer to a predetermined thickness, exposing the bottom of the TSVs.

Finally, a dielectric layer is deposited on both the front and the back surfaces and patterned to

form contacts to the vias and the next metal layer to be applied.

2.4 Copper Plating Bath Makeup

 A copper plating bath, formulated for damascene or TSVs, consists of various chemicals

[5] , both non-organic and organic, to control different aspects of the plating process. The

primary component is copper sulfate that contains the copper source. Sulfuric acid is added to

 11

provide an ion source for electrical conductance. The next component is hydrochloric acid that

provides a source of chlorine required to activate the organic components. There are typically

three organic additives that control the plating rates and other properties at various regions of the

plated substrate surface. The three organics are suppressor, accelerator, and leveler. They are

normally added in small quantities, a few ml/l of solution, but can have a huge effect on the

plating rates. The effects will be discussed in detail in chapter 3.

 The concentration of the various components is different for the application, as an

example when plating surface conductors and shallow regions, the copper sulfate concentration

is relatively low, while when there is a deep or a high aspect ratio feature the copper sulfate

concentration is relatively high to insure there is sufficient concentration at the bottom of the

deep feature. If you think about plating in a deep feature you are dividing the concentration at the

surface of the hole by the surface area interior to the hole, so, as the plating progresses, down the

hole, copper is depleted at the surface and copper is plated on the upper sidewalls.

 Copper plating solutions are available from many different vendors including Atotech,

Enthone, Rhom-Haas, and Moses Lakes, and is sold as a virgin makeup solution (VMS), that

contains vendor specified proportions of copper sulfate, sulfuric acid, and hydrochloric acid.

These vendors also sale the organic components and give a starting point for their use. Most of

the intellectual property (IP) is in the organic additives, which are different for each company.

2.5 TSV Copper Plating Process

2.5.1 Pre-Wetting

 The copper plating process begins once the vias have been etched, passivated, and a seed

layer has been deposited. The next step is to pre-wet the via hole, typically with water, to ensure

 12

air bubbles do not keep the plating chemistry from entering the via, causing voids. The most

promising [26] pre-wetting process begins with placing the TSV wafer into a vacuum chamber,

then the air is removed and degassed water is added to the chamber. This process will still have

trapped air in the holes, but the composition of the trapped bubble is mostly water vapor

(assuming a vacuum level of at least 3 mtorr was achieved prior to adding water). As the vacuum

chamber is brought back to atmospheric pressure the trapped bubble is reduced in size according

to the ideal gas law PV=nRT (i.e. as the pressure decreases the volume increases, and as the

pressure increases the volume decreases). The bubble is still mostly water vapor that will

eventually be re-absorbed into the surrounding water further reducing the size of the bubble to a

tiny fraction of the original. This process is shown in figure 7.

Figure 7. TSV pre-wetting process [26]

 Alternative methods to pre-wet include placing a “wet” wafer into a vacuum chamber and

pulling vacuum. This process only allows a partial removal of the trapped bubble, since this

 13

bubble is mostly air and upon expanding, during the vacuum phase, it may separate and release

some of it’s contents into the surrounding water and eventually into the vacuum region. The rest

of the bubble stays behind and is still located in the bottom of the hole.

 To show the results of the two pre-wetting procedures, several samples were tested and

cross-sectioned using the method shown in figure 8. A large array of TSVs are ground at an

angle of approximately 3o, exposing different vertical regions of the via with a lateral view. This

allows you to see voids without performing time consuming and tedious vertical cross-

sectioning.

Figure 8. Method to view TSV cross-section

 The results are shown in figures 9 & 10 showing the process and the 3o cross-sectioning.

Figure 9 shows the process of wetting before applying vacuum and the cross-section results

showing voids near the middle (small dark areas in the center of the via). Figure 10 shows the

vacuum first process and the results showing the absence of voids.

 14

Figure 9. Wet first process and results

 15

Figure 10. Vacuum first process and results

2.5.2 Plating system schematic

 A typical electroplating system is composed of an anode and cathode that serve as the

powered electrodes in the ion exchange system [27]. The anode is biased positively and acts as

the ion source, while the negative biased cathode acts as the source for electrons. The item to be

plated acts as the cathode of the circuit. The setup for a copper plating process is shown in figure

11. It shows a Cu anode that acts as a source for the Cu ions, these copper ions are associated

with sulfate ions in the solution to form copper sulfate. At the cathode the Cu2+ ions are

reduced, by cathode supplied electrons, to a neutral copper atom once it is deposited on the

 16

surface of the cathode. A copper plating solution will contain both copper sulfate and sulfuric

acid, with the copper sulfate acting as the copper source and sulfuric acid permitting electricity to

flow. The copper from the copper sulfate is reduced at the cathode, the Cu from the anode will be

eroded and maintain the copper sulfate concentration in the plating bath. Therefore, a copper

anode is required otherwise the copper sulfate concentration will be reduced with plating and

would have to be continuously added. As mentioned previously a relatively low amount of

copper sulfate is used for shallow plating, while a larger concentration is used for high aspect

ratio plating – such as TSVs.

Figure 11. Copper plating bath configuration

Anode

+ -­‐

Cathode

CU

SO2-­‐4

CU

Cu2+

 17

2.5.3 DC vs. Pulse Plating

 DC and pulse plating [28] are two techniques commonly used in the plating industry for

various reasons. Each has advantages and disadvantages. A quick review of pulse plating

literature finds that it provides advantages such as grain structure control, leveling of the plating

surface, and increased plating in deep recesses. The pulse plating process uses a pulsing power

supply that either turns the plating on and off or on to reverse plating in periodic pulses. The

process of turning the plating off periodically allows the ion distribution to redistribute, through

a diffusion process, and help even out the plating surface. The process of periodically reversing

the plating process allows ions to be de-plated replenishing the ion concentration in hard to reach

areas, evening out the plating in these regions. It also heavily plates organic compounds in sharp

areas, where fields are higher, thereby, suppressing the plating in these areas during the

subsequent forward plating pulse. The advantages of pulse plating mirror the advantages of

adding organics to the plating bath and, if done properly, reduces the requirement for these

additives. The disadvantages of pulse plating is that it is quite complicated to get the pulse timing

and amplitudes set for the particular plated surface. The pulse/amplitude requirements can

change during the plating process. The cost of the equipment is much higher due to the

complexity of the plating power supplies.

 DC plating uses a constant current during the plating process. Most modern TSV plating

companies use DC plating exclusively due to the simplicity and cost of the plating equipment

and process. This causes them to put more technology into controlling organic additives since

this is the alternative to providing the same desirable functions as gained with pulse plating. So,

all modern production plating systems will include two indispensible items, these are a DC

power supply and an additive analysis and dosing system.

 18

2.5.4 Cathode Boundary Layer Formation

 During the plating process a boundary layer is formed next to the cathode as shown in

figure 12. This region is a result of the reaction of the copper ions with the cathode surface

causing a concentration gradient from the bulk concentration to a much smaller concentration

where the copper ions are consumed and neutralized at the cathode. This reduction in ion

concentration causes a potential change from the bulk region to the grounded cathode as shown

in figure 12.

Figure 12. Cathode Boundary Layer and Potential

 Since the bulk ion concentration is much higher than the boundary region concentration

the potential is relatively constant in the bulk region and all the applied voltage is dropped across

this boundary layer. While the positive copper ions drift across this potential difference, the

concentration change also causes neutral additive organic molecules to diffuse from the bulk to

 19

the cathode. It is this diffusion that controls the concentrations of the organic additives at

different parts of the substrate surface. The different organic additive molecules have different

diffusion rates and different functions that will be discussed in more detail in subsequent

chapters. This boundary layer is of paramount importance in the plating process, especially in the

plating of high aspect ratio vias. The boundary layer thickness and uniformity can be controlled

and are conditions that must be understood and manipulated to be able to successfully and

repeatedly plate copper across large diameter wafers, and to be able to fully fill a high aspect

ratio via.

 20

Chapter 3: Bottom-Up Fill Mechanism

 In order to fabricate reliable TSVs a bottom up fill is required. If this bottom up fill is not

performed there will be a high probability of a void forming in the center of the via. Shown in

figure 13 are three types of filling: (a) sub-conformal, where the top edge of the via is plated

more heavily than the sidewalls of the via hole. This causes a large void in the center if the via

once plating is complete. The second type of fill is a conformal fill as shown in figure 13 (b),

where the sidewalls and top edges of a via are the same thickness. This type of fill will cause a

small or thin void to form as the plating is completed. The desired type of fill for a TSV via is

bottom up filling as shown in figure 13 (c), where there is increased plating at the bottom of the

via as compared to the top edges and upper surfaces of the via. This type of plating will ensure

there is a void free, filled via.

Figure 13. (a) sub-conformal, (b) conformal, (c) bottom up fill mechanisms

 21

 There has been a lot of work over the past 15 – 20 years to develop a process for

repeatedly and reliably bottom-fill a TSV via. This work has provided processes that utilize

several organics including Accelerators, Suppressors, and Levelers that control plating rates in

various regions of the TSV substrate. The details of how these organic compounds affect the

plating process is explained in the following sections.

3.1 Effect of Suppressors

 A suppressor organic additive will inhibit or slow down the plating rate by adsorbing

onto the plating surface and physically blocking the plating process. A typical suppressor is

Polyethylene Glycol (PEG) [3], a simple polyether with multiple CH2CH2O segments. PEG has

an affinity for Cu and will readily physically adsorb onto the surface in a matter of seconds. This

process will only happen in the presence of chloride in sufficient concentration. Once adsorbed

on the Cu surface the plating rate is reduced several orders of magnitude as compared to the

plating rate in the absence of PEG and chloride. This suppression effect is dependent on the

concentration of PEG and chloride. In both cases there is a maximum reached in the suppression

as one component is maintained constant and the other component is increased. This is shown in

figure 14 where the chloride concentration is held constant and plating current is measured vs.

PEG concentration. It is shown that the plating rate is reduced until a minimum is reached after

which further increases in PEG concentration will not reduce the plating rate. This is the point at

which the surface is completely covered with PEG.

 22

Figure 14. Plating rate vs. PEG concentration

3.2 Effect of Accelerators

 In addition to PEG another organic additive utilized in modern TSV plating chemistries is

Na2[SO3(CH2)3S]2 (figure 15) or SPS [29] that acts as an accelerator or catalyst to increase

plating in suppressed regions.

 23

Figure 15. Chemical Structure of SPS

 This increase in plating is only in the presence of a suppressor, so, the effect is to reduce

the suppression caused by the PEG additive. In the absence of a suppressor, SPS has little effect

on the plating rate. This process of anti-suppression is thought to occur by the replacement of the

suppressor molecule by an SPS molecule and/or the blocking of a suppressor molecule from

absorbing onto the plating surface. This disruption in the suppression is dependent on the plating

potential or a more general metric – the over potential. As the over potential is raised the

adsorption rate is increased, at a low over potential the replacement of the PEG molecules, and

the return to the additive free plating rate, can take several minutes to complete. The relative

concentrations of SPS and PEG can also determine the relative plating rates.

 To achieve a bottom up fill, the plating rate at the bottom of the via needs to be higher

than the other portions of the via. This plating rate enhancement at the bottom of the via is

achieved by the relative fast diffusion rate of the SPS molecule vs. the PEG molecule. The SPS

molecule has an atomic weight of 354.4 g/mo as compared to several thousand for PEG

molecules, which leads to the SPS molecules having diffusion coefficients several orders of

magnitude higher than PEG. So, as a pre-wetted wafer, containing TSV vias, is placed in a

 24

plating bath and the surface is wetted with the plating chemistry the bath components will diffuse

to all regions of the wafer surface including the bottom of the vias. The relatively fast diffusing

SPS molecules will diffuse quickly to the bottom of the vias before the slow diffusing PEG

molecules. Since the plating boundary layer is very thin at the surface, the slow moving, but fast

adsorbing PEG molecules will saturate the surface of the wafer and suppress the plating on areas

other than the bottom of the holes. The SPS molecules will attach to the bottom of the vias and

inhibit the PEG molecules from attaching, thus giving additive free plating rates, several orders

of magnitude, in these regions. This difference in plating rates is the definition of bottom up fill.

The challenge is to balance the concentration of suppressor and accelerator molecules in the bulk

to prevent the SPS molecules from completely replacing the PEG molecules on the surface, but

do the opposite in the vias. As mentioned previously the removal of PEG molecules by SPS

molecules is potential dependent, so along with SPS/PEG concentration control, the plating

potential must be carefully controlled to achieve a bottom up fill. Once PEG molecules have

been replaced by SPS molecules the plating mechanism goes back to fully conformal and the

possibility of a void returns. This balance is very difficult to achieve during the relatively long

plating times that are required for TSVs (several minutes to hours). For submicron damascene

features, with plating times in several seconds, the process works very will as the plating time is

less than the time PEG to SPS replacement time. For these longer plating times, a requirement

would be either to significantly increase the SPS adsorption time or somehow keep the PEG

from diffusing very deep into the vias. Neither one of these has been accomplished to date in a

production environment. To achieve the bottom up plating in deep TSVs a third component has

proven to be necessary that is very slow diffusing and is not displaced by SPS or PEG. This

component is known as a Leveler and is discussed below.

 25

3.3 Effect of Levelers

 The third organic component is leveler [30], a polarized copper plating inhibiting

molecule that is a relatively slow diffuser and is not removed by SPS molecules. It is consumed

or broken down during the plating process. A nitrogen containing dye, safrananne azo dimethyl

aniline (Janus Green B, JGB), figure 16, has been used commercially for many years as a leveler.

In the PCB industry JGB is used to reduce the enhanced plating at sharp points or edges, it levels

the plating by being a slightly polarized molecule that will preferentially deposit in higher

electric field regions and inhibit plating. In TSV plating levelers will preferentially deposit on

upper corners of the TSV hole and inhibit plating that would normally cause a pinch-off and

voiding. JGB has also been used to reduce the “Accelerator Bump” caused by the fact that SPS is

not consumed in the plating process and will tend to concentrate in the hole areas, causing a

bump after the TSV is filled.

 As mentioned earlier, the addition of a leveler is required for TSV bottom up filling and

only needed as an “accelerator bump” reducer in damascene processing, due to the plating time

required for the respective plating processes. It has been reported that TSV bottom up filling can

be achieved using only leveler, due to the fact that it is consumed during the plating process and

it is a relatively slow diffuser. If a good agitation, thin boundary layer, is maintained and the

TSV is relatively deep, then it is easy to see why this might be possible. The concentration of

leveler is reduced significantly in the hole region and if the concentration in the bulk is balanced

properly then the supply of leveler, to make up for the amount consumed during plating, can be

high at the surface and very low in the hole, leading to a bottom up fill. From conversations with

researchers at Atotech [31], there continues to be a lot of work in this area to see if in fact a

 26

single additive process can be developed. There are a lot of proprietary levelers being introduced

recently that shows this is an active area of research.

Figure 16. Chemical structure of Janus Green B (JGB) leveler

3.4 Combined effect of organic components

 In most literature, reporting TSV and Damascene processing, all three of the organic

components mentioned previously are added to a copper plating bath. The combination of these

three additives has been shown to provide repeatable and reliable bottom up plating. The process

is shown in the following drawings (figure 17 a-h) [32]. The images show the ideal process

sequence beginning with a pre-wetted via that is placed in a plating solution containing

suppressor and accelerator organic additives. The fast diffusing accelerator molecules quickly

cover the surface of the wafer, but they do not react right away, as the adsorption process is slow

compared to the PEG adsorption. Since the boundary layer is much thinner at the surface of the

wafer, PEG molecules reach the Cu surface quickly and adsorb right away. The slow diffusing

PEG molecules will adsorb onto the inner surfaces of the TSV, thus depleting the concentration

 27

deeper into the hole. This low PEG concentration and the extra time it takes for it to diffuse into

the deep hole will allow the accelerator time to adsorb and inhibit any PEG that might eventually

reach the via bottom from adsorbing. As discussed before the adsorbed PEG will eventually be

replaced with SPS given enough time. Also, notice SPS tends to pile up at the bottom of the via,

as it is not consumed during the plating process. Upon completion of the plating process the high

concentration of accelerator at the moving portion of the bottom-up fill will cause this region to

plate faster and eventually cause a “bump” or high spot [32] over the hole. This bump can will

cause problems in subsequent CMP processing. To inhibit this bump formation a leveler is

typically added to the chemistry to inhibit plating in regions closer to the boundary layer. Leveler

molecules are attracted to the higher regions and will readily replace SPS molecules.

 A cross-section of an actual partially plated TSV is shown in figure 18. A bottom up fill

is shown with very minimal plating in the other regions of the via.

17 (a). Initial step of TSV Cu plating, showing seed layer and relative additive concentrations

 28

Figure 17 (b). Next step in TSV copper plating showing accelerator concentration at the bottom
of the TSV

Figure 17 (c). Bottom up process progression

 29

Figure 17 (d). Bottom up process showing lack pinch-off

Figure 17 (e). Near end of TSV bottom-up fill process showing high concentration of accelerator

 30

Figure 17 (f). End of TSV plating process showing a high concentration of accelerator in the via
region, ideal stopping point

Figure 17 (g). Completed TSV showing “accelerator bump”

 31

Figure 17 (h).Plated TSV with leveler, showing reduction of “accelerator bump”

Figure 18. Actual plated TSV showing bottom up fill

 32

Chapter 4: Present Industrial Organic Additive Analysis Methods

 In the copper electroplating process organic additives must be maintained within a very

tight range in order to insure consistent results from wafer to wafer. Typical copper plating baths

contain organic additives to attain a bright, smooth, and level plating surface. These additives

include:

• Accelerators (brightners) - catalyses and speeds-up plating especially in trenches and
vias

• Suppressors (carriers) - suppresses plating
• Levelers - polar organic molecules that are attracted to higher potential regions, such as

sharp points or corners, suppressing plating in these regions.

 The combination of these organic additives will allow super-filling of a deep via while

suppressing plating on the surface and the top edges of the hole, insuring the hole is completely

filled, with copper and without voids.

 The organic additives are added in minute quantities and must be maintained within very

tight ranges. There are two methods used today to insure consistent plating in production

systems. The first is Cyclic Voltrametric Stripping (CVS) [33], [34] , and the other is Bleed &

Feed [35] . Often times the two techniques are combined in order to reduce the level of

breakdown products, which can lead to a reduction in the ability to control the plating bath. The

Bleed & Feed method is a technique whereby a portion (typically around 5%) of the solution is

bled from the bath and then a fresh amount, equal to the bled amount, is added at the same rate as

the bleed to attain a steady-state solution providing a consistent bath. The CVS method is a

standard chemical analysis method that is used to plate a small amount of copper onto a spinning

disk electrode and then stripping it from the electrode. The area under the stripping curve is

 33

integrated and this charge is recorded. By performing certain computational methods this charge

can be used to determine the amounts of each type of additive.

4.1 Commonly Used Additive Control Methods

 Present methods of chemical analysis use CVS to determine the stripping area (Plating

charge from integrating the area under the positive portion of the curve), shown in Fig. 19, for

plating bath samples. The bath sample stripping data is analyzed using the following techniques

to determine the amount of accelerator, suppressor, and leveler present in the plating bath.

Figure 19. CVS Stripping Curve

4.1.1 Accelerator Determination Using MLAT

 To determine the amount of accelerator in a plating sample, a Modified Linear

Approximation (MLAT) technique is used [36]. This technique begins with a sample of Virgin

Makeup Solution (VMS), which is a solution without any added organics (i.e. zero accelerator,

suppressor, leveler). A sufficient amount of 60/40 suppressor/leveler is added to the solution to

insure it is completely saturated - see Fig. 20.

 34

The saturated solution will insure that any additional suppressor or leveler will not have an effect

on the stripping charge. This minimum charge is recorded and used as the intercept baseline.

 Next, a small amount of the plating bath, to be analysed, is added to the saturated solution

to give a starting point for the analysis. Next, known amounts of accelerator are added to

provide additional points from which a straight line can be drawn.

Figure 20. Normalized Stripping Charge vs. Suppressor Concentration

 It is known that at small accelerator levels the stripping charge vs. accelerator addition is

linear [36]. From the straight line drawn through these points the beginning concentration can be

determined from the point where the line crosses the intercept baseline to the origin. This value

corresponds to the amount in the first addition (from the actual plating bath) and through some

simple calculations can give the number of ml/l of accelerator in the actual plating bath. A

typical plot is shown in figure 21.

 35

 This technique requires mixing a VMS solution and running at least 4 separate CVS

analysis runs (Qint, Qbath, Q1, & Q2). It also requires maintaining test solutions of Accelerator,

Suppressor, and Leveler.

Figure 21. Typical MLAT plot for accelerator determination

4.1.2 Suppressor Determination Using Dilution-Titration

 The determination of the suppressor concentration uses a CVS Dilution-Titration (DT)

technique [37] . This method requires a calibration curve that must be generated at least once per

week. The calibration curve is generated by starting with a VMS solution and adding suppressor

additions until the charge per CVS run has dropped to 50% of the VMS solution charge (in other

words the amount of plating has been suppressed by 50%). Once the calibration curve is

established the VMS solution is replaced with the actual plating bath sample and suppressor is

then added until the 50% point is reached - the reduction in the amount of suppressor required to

 36

reach the 50% point is equal to the amount of suppressor in the sample originally. A typical

calibration and determination curve is shown in figure 22.

Figure 22. Typical MLAT plot for accelerator determination

 The suppressor determination requires a calibration curve and typically 5 − 10 CVS

analysis steps, as well as the maintenance of a VMS solution and a test suppressor solution.

4.1.3 Leveler Determination Using Response Curve

 The leveler concentration is determined by using a response curve calibration [38]. The

first step is to take a VMS solution and add sufficient amounts of suppressor and accelerator to

saturate the effects of each. The next step is to generate a calibration curve by adding small

amounts of leveler and recording the reduction in stripping charge. Next, the actual sample can

be analyzed by adding an amount of it to a fresh solution of the VMS + Suppressor + Accelerator

 37

and recording this point. The reduction of the plating is noted on the calibration plot and from

that the amount of leveler, in the sample, can be determined. A typical plot is shown in figure 23.

Figure 23. Typical Leveler Calibration and Determination Plot

 Leveler determination requires a calibration plot and at least one CVS analysis. These

standard analysis steps require calibration plots, at least 10 CVS analysis steps, and the

maintenance of several solutions for diluting the VMS for each type of determination.

 38

 Chapter 5. Machine Learning Algorithms

 Machine learning is a term used to describe the process of training a computer or

electrical hardware to provide outputs for a given set of inputs and/or to predict and output from

an unknown set of inputs. The most popular machine learning methods in order of decreasing

popularity is shown below [39] :

- Decision trees
- Regression
- Cluster analysis
- Time series
- Neural nets
- Factor analysis
- Text mining
- Association rules
- Ensemble models
- Support vector machines
- Bayesian
- Anomaly detection
- Survival analysis
- Rule induction
- Social network analysis
- Genetic algorithms
- Link analysis
- Uplift modeling
- MARS

 In this work several of these techniques will be tested and compared to determine if

machine learning is a viable method for determining the levels of organic additives in a copper

TSV plating bath, and if viable, which technique will give the most accurate results. Polynomial

regression, Support Vector Regression (SVM), Extreme Learning Machines (ELM), Error Back

Propagation (EBP), Levenberg-Marquardt (LM), and a modified LM – Neuron by Neuron

(NBN) techniques will be discussed and compared.

 39

5.1 First Order Algorithms

5.1.1 Polynomial Regression

 The first machine learning method evaluated is polynomial regression: it is basically linear

regression where the relationship between the independent variable x and the dependent variable

y is a polynomial of nth degree.

Figure 24. Polynomial regression example

 As seen in figure 24, the 2nd order polynomial approximates the given data points. As the

polynomial order increases the approximation will fit the data more closely, but at the expense of

over-fitting, where the approximation is no longer generalized enough to provide a good

prediction, or follow the data trend shown in figure 25. The optimum order must be determined

with a validation dataset.

 40

Figure 25. High order polynomial showing the problem with over-fitting

 This polynomial least squares is a linear regression since the coefficients are linear and x,

x2, x3, … are treated as independent variables. A 4 dimensional, 2nd order polynomial has the

form of equation 1.

 𝑦 = 𝑎! + 𝑎!𝑥! + 𝑎!𝑥! + 𝑎!𝑥! + 𝑎!𝑥! + 𝑎!𝑥!! + 𝑎!𝑥!! + 𝑎!𝑥!! + 𝑎!𝑥!! (1)

 The polynomial will always have the number of coefficients shown in equation 2 (without

cross-multiplication).

 #𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 = (𝑜𝑟𝑑𝑒𝑟 ∗ 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛)+ 1 (2)

 Since we are solving for the number of coefficients – the number of unknowns is equal to

the number of coefficients and thus there must be at least as many training vectors as the number

of coefficients.

 To find the coefficients that give the minimum gradient you need to set the gradient of

the residuals to 0. The derivation gives an equation known as the “Normal Equation” [40]

 41

 𝑨𝒂 = 𝒚 → 𝑨𝑻𝑨𝒂 = 𝑨𝑻𝒚 (3)

 To solve for a (the set of coefficients) ATA must be inverted.

 𝑨𝑻𝑨 !𝟏 𝑨𝑻𝑨 𝒂 = (𝑨𝑻𝑨)!𝟏𝑨𝑻𝒚 (4)

 𝒂 = 𝑨𝑻𝑨 !𝟏𝑨𝒕𝒚 (5)

 For the polynomial shown in equation 1 the A matrix, A matrix transpose, and ATA is

shown below.

Matrix A

1	
 X11	
 X12	
 X13	
 X14	
 X112	
 X122	
 X132	
 X142	

1	
 X21	
 X22	
 X23	
 X24	
 X212	
 X222	
 X232	
 X242	

1	
 X31	
 X32	
 X33	
 X34	
 X312	
 X322	
 X332	
 X342	

1	
 X41	
 X42	
 X43	
 X44	
 X412	
 X422	
 X432	
 X442	

1	
 X51	
 X52	
 X53	
 X54	
 X512	
 X522	
 X532	
 X542	

1	
 X61	
 X62	
 X63	
 X64	
 X612	
 X622	
 X632	
 X642	

1	
 X71	
 X72	
 X73	
 X74	
 X712	
 X722	
 X732	
 X742	

1	
 X81	
 X82	
 X83	
 X84	
 X812	
 X822	
 X832	
 X842	

1	
 X91	
 X92	
 X93	
 X94	
 X912	
 X922	
 X932	
 X942	

	

Matrix	
 AT	

1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	

X11	
 X21	
 X31	
 X41	
 X51	
 X61	
 X71	
 X81	
 X91	

X12	
 X22	
 X32	
 X42	
 X52	
 X62	
 X72	
 X82	
 X92	

X13	
 X23	
 X33	
 X43	
 X53	
 X63	
 X73	
 X83	
 X93	

X14	
 X24	
 X34	
 X44	
 X54	
 X64	
 X74	
 X84	
 X94	

X112	
 X212	
 X312	
 X412	
 X512	
 X612	
 X712	
 X812	
 X912	

X122	
 X222	
 X322	
 X422	
 X522	
 X622	
 X722	
 X822	
 X922	

X132	
 X232	
 X332	
 X432	
 X532	
 X632	
 X732	
 X832	
 X932	

X142	
 X242	
 X342	
 X442	
 X542	
 X642	
 X742	
 X842	
 X942	

	

Matrix	
 ATA	

9 ΣXn1 ΣXn2 ΣXn3 ΣXn4 ΣXn1

2 ΣXn2
2 ΣXn3

2 ΣXn4
2

ΣXn1 ΣXn1
2 ΣXn1Xn2 ΣXn1Xn3 ΣXn1Xn4 ΣXn1

3 ΣXn1Xn2
2 ΣXn1Xn3

2 ΣXn1Xn4
2

ΣXn2 ΣXn1Xn2 ΣXn2
2 ΣXn2Xn3 ΣXn2Xn4 ΣXn2Xn1

2 ΣXn2
3 ΣXn2Xn3

2 ΣXn2Xn4
2

ΣXn3 ΣXn1Xn3 ΣXn2Xn3 ΣXn3
2 ΣXn3Xn4 ΣXn3Xn1

2 ΣXn3Xn2
2 ΣXn3

3 ΣXn3Xn4
2

ΣXn4 ΣXn1Xn4 ΣXn2Xn4 ΣXn3Xn4 ΣXn4
2 ΣXn4Xn1

2 ΣXn4Xn2
2 ΣXn4Xn3

2 ΣXn4
3

ΣXn1
2 ΣXn1

3 ΣXn1
2Xn1

2 ΣXn3Xn1
2 ΣXn4Xn1

2 ΣXn1
4 ΣXn1

2Xn2
2 ΣXn1

2Xn3
2 ΣXn1

2Xn4
2

ΣXn2
2 ΣXn1Xn2

2 ΣXn2
3 ΣXn3Xn2

2 ΣXn4Xn2
2 ΣXn1

2Xn2
2 ΣXn2

4 ΣXn2
2Xn3

2 ΣXn2
2Xn4

2
ΣXn3

2 ΣXn1Xn3
2 ΣXn2Xn3

2 ΣXn3
3 ΣXn4Xn3

2 ΣXn1
2Xn3

2 ΣXn2
2Xn3

2 ΣXn3
4 ΣXn3

2Xn4
2

ΣXn4
2 ΣXn1Xn4

2 ΣXn2Xn4
2 ΣXn3Xn4

2 ΣXn4
3 ΣXn12Xn4

2 ΣXn2
2Xn4

2 ΣXn3
2Xn4

2 ΣXn4
4

 42

	

n = number of rows (data vectors)

 To determine the coefficients, matrix (ATA) will have to be inverted. This is not a trivial

task even though it is a square matrix. Singular value decomposition (SVD) can be used and is

probably the most stable method to perform the inversion. Another method of solving for the

coefficients is to use QR factorization. QR factorization substitutes QR for A and determines the

matrices Q & R where Q is orthogonal (QTQ=I) and R is upper triangular.

Substituting A=QR in the normal equation and solving in terms of R & Q the result is given in

equations 6-11:

 𝑨𝑻𝑨𝒂 = 𝑨𝑻𝒚 (6)

 𝑸𝑻𝑹𝑻𝑸𝑹𝒂 = 𝑸𝑻𝑹𝑻𝒚 (7)

 𝑹𝑻𝑹𝒂 = 𝑸𝑻𝑹𝑻𝒚 (8)

 𝑹𝒂 = 𝑸𝑻𝒚 (9)

 𝑹!𝟏𝑹𝒂 = 𝑹!𝟏𝑸𝑻𝒚 (10)

 𝒂 = 𝑹!𝟏𝑸𝑻𝒚 (11)

	

The unknown vector a (polynomial coefficients) can be found once Q & R are determined. R is

easily inverted since it is an upper rectangular matrix.

5.1.2 Extreme learning machine

 Extreme Learning Machine (ELM) [41]–[43] is a method of quickly solving single

hidden layer forward neural networks without using back propagation. The output weights are

analytically determined using inverse matrix operations, while the input weights and hidden

layer biases are randomly generated. This method promises to greatly speed up the solution

 43

process and give as good or better generalization. According to the ELM papers referenced

above, this method trains two orders of magnitude faster than error back propagation (EBP) and

an order of magnitude faster than Support Vector Machine (SVM) and has a success rate better

than both. The ELM method will only work for single hidden layer networks, but according to

[44], any single hidden layer network can approximate any continuous function and implement

any classification application.

 The ELM process can be described by the following steps for the Single Hidden Layer

Forward Neural Network (SLFN) shown in figure 26.

Figure 26. Single Hidden Layer Topology for ELM

For a training dataset (xi,ti) – where x is an input, t is an output, and i = (1, …., N)

g(x) – activation function - typically a simple sigmoid function:

 𝑔 𝑥 = 1/(1+ 𝑒!!) (12)

L = number of hidden layers

Step 1. Assign random weights, between 0 and 1, wi, and bias bi, i=1, …. ,L.
Step 2. Calculate the hidden layer output matrix H.
Step 3. Calculate the output weight β. (𝜷 = 𝐇!𝐓), where 𝐇! is the Moore-Penrose generalized

 44

inverse (or Pseudoinverse [45]) of matrix H

The output Matrix H is defined as:

 𝐇 𝑤!,⋯ ,𝑤! , 𝑏!,⋯ , 𝑏!,𝑥!,⋯ , 𝑥! =

𝒈 𝑤! ∗ 𝑥! + 𝑏! ⋯𝒈 𝑤! ∗ 𝑥! + 𝑏!

⋮ ⋯ ⋮

𝒈 𝑤! ∗ 𝑥! + 𝑏! ⋯𝒈 𝑤! ∗ 𝑥! + 𝑏!

 (13)

 Since H is usually not a square matrix, it is not a trivial matter to perform the

psuedoinverse of mxn matrix H. There are several methods to do this, but the most useful one is

Singlular Value Decomposition (SVD), since it can be used on singular matrices and is not a

slow iterative process. The basic steps of the SVD method are summarized below:

For a given m × n matrix H, there exists a factorization of the form

 H = 𝐔𝚺𝐕𝐓 (14)

where U is an m × m unitary matrix, Σ is a m × n diagonal matrix with non-negative real

numbers on the diagonal, and the n × n unitary matrix VT denotes the transpose of the n × n

unitary matrix V. Such a factorization is called a singular value decomposition of H. The

diagonal entries σi of Σ are known as the singular values of H. A common convention is to list

the singular values in descending order.

 Once the factorization of M is found, the singular value decomposition can be used for

computing the pseudoinverse of a matrix. The pseudoinverse of the matrix H with singular value

decomposition H = UΣVT is

 𝐇! = 𝐕𝚺!𝐔 (15)

 45

where Σ+ is the pseudoinverse of Σ, which is formed by replacing every non-zero diagonal entry

by its reciprocal and transposing the resulting matrix. Once this matrix is calculated the output

weights can be tabulated and the network is complete and ready for testing.

An example of using an ELM network to solve a parity 3 problem is shown in the following.

Table 1. Parity 3 Table

Figure 27. ELM network for parity 3 problem, shown is 6 hidden layer neurons, the actual
network, for parity 3, requires 8 hidden layer neurons

 46

 A python script written to implement the ELM algorithm is given in Appendix A. The

output from this script, for a parity 3 problem, is shown below.

Output:

Output Weights: (8 hidden layer neurons)

[-2.04742978e+02 3.86405547e+02 -9.80026727e-01 -1.00796852e+03 4.98503268e+00
4.87324607e+02 -6.67910173e+01 3.70362928e+02]

Outputs: (8 hidden layer neurons)
[-5.11590770e-13
 1.00000000e+00
 1.00000000e+00
 -2.84217094e-13
 1.00000000e+00
 -1.98951966e-13
 -1.98951966e-13
 1.00000000e+00]

 (6 hidden layer neurons)
[0.40873744
 0.49533829
 0.67783524
 0.44787446
 0.53262453
 0.66622452
 0.38109374
 0.39732011]

 As can be seen, from the above discussion and software, as long as a pseudoinversion

method is available, ELM can train the weights very quickly without any iterative actions. The

parity problem is a highly non-linear problem and it is not a surprise that it takes 9 neurons to

solve it.

 47

5.1.3 Support Vector Machines

 Support Vector Machines (SVM) [46] learning is a relatively recent addition to the

machine learning tools. It uses a technique where hyperplanes, in extended multidimensional

space, are defined from a subset of the training vectors that specify the prediction path. Training

data within a defined distance Epsilon (ε) of the prediction path is ignored leaving a set of

“support vectors”. An example of how moving data to a higher dimensional space will help

classify the different sets of data is shown in figure 28.

Figure 28. Support Vector Machine extended dimensional conversion

 As shown in figure 28 (a), the two sets of data, in 2 dimensional space, are not separable

by a plane, but if a third dimension is added to the data Figure 28 (b), the data is separable with a

single plane. The vectors closest to the plane from both sides will act as the “support vectors”.

To perform regression type analysis there is an extension to SVM that allows a set of support

vectors to define a least squares type of plane or line that follows the data. The support vector

math is extremely intensive and will not be discussed in this work. There are multiple

a b

 48

commercial and open source software packages that will perform the SVM technique for both

classification and regression problems. The Rapid-Miner software package [47] will be used to

solve for the support vectors using libSVM as the underlying code. It is a powerful tool for

setting up a machine learning “project”, allowing one to use optimization to find the optimum

coefficients and cross-validation to divide the data set into training and validation sets to

determine generalization capability. While it is no longer an open source program; it still has an

educational set of modules that will perform SVM and SVR (support Vector Regression).

 During SVM training there is a couple of parameters that must be adjusted to allow a low

error. One of these is the “C” parameter. The C parameter tells the SVM optimization to

minimize the chance of misclassifying each training example. For large values of C, the

optimization will choose a smaller-margin hyperplane if that hyperplane does a better job of

getting all the training points classified correctly. A very small value of C will cause the

optimizer to look for a larger-margin separating hyperplane, even if that hyperplane misclassifies

more points. For very tiny values of C, you should get misclassified examples, often even if your

training data is linearly separable. This C parameter must be optimized for a low error, it is not

always easy to choose this value, users typically use a validation set to adjust this parameter.

5.1.4 Error Back Propagation

 Error back propagation [48]–[50] is the most popular algorithm for training neural

networks and is found in virtually all software packages that train Multi Layer Perceptron (MLP)

network topologies, shown in figure 29. An MLP network is a feedforward topology that may

have several levels of neurons, but it only has connections to neurons on the next level. EBP is a

 49

relatively easy to understand and implement algorithm, which is part of the reason it is so

popular.

Figure 29. MLP Topology used for EBP Analysis

 While it has been determined that EBP can be used on more complicated networks, such as

networks that allow connections across layers, or connections that extend beyond the next layer,

they are very slow to converge compared with more advanced 2nd order algorithms. Researchers

have developed various techniques for speeding up EBP, such as momentum [51] , RPROP [52] ,

and adaptive learning constant [53] . While these techniques have managed to make a significant

difference in the speed of EBP, they are not able to overcome the 1000 times speed difference

between the EBP first-order algorithm and several of the 2nd-order algorithms. One advantage of

EBP is that it can be used on networks with almost an unlimited number of neurons, which is

good because more often than not it takes a lot of neurons to provide a convergent solution.

 The EBP algorithm is a gradient based algorithm where the network is trained to find a

minimum of the error function. The weights are adjusted to continually reduce the error until an

acceptable level is reached. Of course, as mentioned earlier, the network can be over-trained

 50

causing the resulting network, with adjusted weights, to not provide a generalized solution for

inputs not contained in the training set.

 Figure 30 shows a small network that contains 2 inputs, 2 neurons in the first layer and a

single output neuron.

Figure 30. MLP network with weights and biases

 There is typically a set of neuron bias lines connected to each neuron for neuron function

threshold adjustment. The input, first layer, and bias weights are shown, with a notation Wji,

where j is the index of the neuron and i is the input, or if it is between two neurons Wkj where j is

the index of the neuron closest to the input and k is the index of the neuron toward the output of

the network.

 51

 The gradient decent method adjusts the network weights in an effort to reduce the resulting

error. The total error can be given as follows:

 𝑬 =
1
2 (𝒕𝒌 − 𝒐𝒖𝒕𝒌)

𝑿

𝒌

 (16)

- where 𝒕𝒌 is the desired output and 𝒐𝒖𝒕𝒌 is the actual output and x is the number of output

neurons.

 We want to find a delta weight that will reduce the error:

 ∆𝑾 ∝ −
𝝏𝑬
𝝏𝑾 (17)

To do this we will look at the change in output E due to a change in a single output W, or, in

other words, the sensitivity of the error to a small change in a weight.

 ∆𝑊!" ∝ −
𝜕𝐸
𝜕𝑊!"

 (18)

Since the error is not a direct function of the weights, we must expand the equation as follows:

 ∆𝑊!" = −𝜇
𝜕𝐸

𝜕𝑜𝑢𝑡!
𝜕𝑜𝑢𝑡!
𝑛𝑒𝑡!

𝑛𝑒𝑡!
𝑊!"

 (19)

Where 𝝁 is a constant. Now we should examine each of the partial terms.

The first term is the partial derivative of the output error with respect to the output:

 𝜕𝐸
𝜕𝑜𝑢𝑡!

=
𝜕(12 (𝑡!!!"#!)

!)
𝜕𝑜𝑢𝑡!

= −(𝑡! − 𝑜𝑢𝑡!) (20)

The second term is the partial derivative of the output with respect to the output neuron’s net

input:

𝜕𝑜𝑢𝑡!
𝜕𝑛𝑒𝑡!

=
𝜕(1+ 𝑒!!"#!)!!

𝜕𝑛𝑒𝑡!
=

𝑒!!"#!
1+ 𝑒!!"#! ! (21)

This can be rewritten in terms of the activation function:

 52

 1−
1

1+ 𝑒!!"#! =
𝑒!!"#!

1+ 𝑒!!"#! (22)

∴

𝑒!!"#!
1+ 𝑒!!"#! ! = 𝑜𝑢𝑡! (1− 𝑜𝑢𝑡!)

(23)

The last term is the partial derivative of the output neuron’s net input with respect to an output

weight:

𝜕𝑛𝑒𝑡!
𝜕𝑊!"

=
𝜕(𝑊!"𝑜𝑢𝑡!)
𝜕𝑊!"

= 𝑜𝑢𝑡! (24)

Now if we recombine the three derivatives we get:

 Δ𝑊!" = 𝜇 𝑡! − 𝑜𝑢𝑡! 𝑜𝑢𝑡! 1− 𝑜𝑢𝑡! 𝑜𝑢𝑡! (25)

We can assign terms to the various portions of this equation:

 𝑒𝑟𝑟! = 𝑡! − 𝑜𝑢𝑡! (26)

 𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐴! 𝑜𝑢𝑡! = 𝑜𝑢𝑡! 1− 𝑜𝑢𝑡! (27)

 𝑜𝑢𝑡! = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑙𝑎𝑦𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 (28)

By combining the err and activation function derivative we have a sort of sensitivity factor we’ll

call del:

𝛿! = 𝑒𝑟𝑟!𝑜𝑢𝑡! 1− 𝑜𝑢𝑡!

(29)

We can now rewrite the output delta weight as:

 ∆𝑊!" = 𝜇𝛿!𝑜𝑢𝑡! (30)

We will also want to look at how much to change the input weights:

 Δ𝑊!" ∝ −
𝜕𝐸

𝜕𝑜𝑢𝑡!
𝜕𝑜𝑢𝑡!
𝜕𝑛𝑒𝑡!

𝜕𝑛𝑒𝑡!
𝜕𝑜𝑢𝑡!

!

!

𝜕𝑜𝑢𝑡!
𝜕𝑛𝑒𝑡!

𝜕𝑛𝑒𝑡!
𝜕𝑊!"

=
𝜕𝐸
𝜕𝑊!"

 (31)

From a similar process as shown in the output formula, we can rewrite the above as:

 53

 ∆𝑊!" = 𝜇 𝑡! − 𝑜𝑢𝑡! 𝑜𝑢𝑡! 1− 𝑜𝑢𝑡! 𝑊!"

!

!

𝑜𝑢𝑡! 1− 𝑜𝑢𝑡! 𝑖𝑛𝑝𝑢𝑡! (32)

By rewriting equation (29) as:

 𝛿! = 𝑡! − 𝑜𝑢𝑡! 𝑜𝑢𝑡! 1− 𝑜𝑢𝑡! (33)

we can rewrite the above formula as:

 ∆𝑊!" = 𝜇 𝛿!𝑊!"

!

!

𝑜𝑢𝑡! 1− 𝑜𝑢𝑡! 𝑖𝑛𝑝𝑢𝑡! (34)

We can now define a new variable 𝒆𝒓𝒓𝒋 𝒂𝒏𝒅 𝜹𝒋 as:

 𝑒𝑟𝑟! = 𝛿!𝑊!"

!

!

 (35)

And

 𝛿! = 𝑒𝑟𝑟!𝑜𝑢𝑡! 1− 𝑜𝑢𝑡! (36)

This gives:

 ∆𝑊!" = 𝜇𝛿!𝑖𝑛𝑝𝑢𝑡! (37)

 The last step is to add the delta weights to their respective weight.

The weights training process proceeds as follows:

Forward Process

1.) The weights are assigned a random number between 0 and 1.

2.) An input pattern is applied to the inputs

3.) The input patterns are multiplied by the respective weights to provide an input net to the

following neuron.

4.) Apply the neuron function to the net and generate an output at each neuron.

5.) Multiply the neuron output by the respective weights to form an input net for the output

neuron.

6.) Apply the output neuron function to the output net to get the final output.

 54

7.) Determine the output error by subtracting the desired output from the actual output.

Back Propagation

8.) The output error sensitivity factor is determined and “placed” at the input of the output

neuron.

9.) The sensitivity factor is multiplied by the output weights to back propagate the error to

the respective outputs of the hidden layer neurons. A delta weight is added to the output

weights

10.) The error sensitivity for the hidden neurons are determined and “placed” at the front of

the hidden layer neurons.

11.) The error sensitivities are multiplied by the inputs and a new delta input weight is

determined.

12.) This process is repeated, beginning at step 2, for each input pattern, and then repeated

multiple times (iterations) until the weights are adjusted to give a minimum error for all

the outputs.

13.) The whole process, starting from the beginning, may be repeated several times (training

times) to reduce the possibility of being stuck in a local minimum of the error function.

 It might be beneficial to provide an example to illustrate the process. To keep it readable, a

parity-2 table will be used as the inputs and outputs for a simple 3 neuron hidden layer MLP

network (shown in figure 32). The parity-2 truth table is shown in table 2.

Table 2. Parity 2 truth table

Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 0

1.) The first step is to assign the random weights:

 55

inputWeights [# inputs + bias, # hidden neurons]

[0.55719336 0.69559482 0.42489087]
[0.34693303 0.04731304 0.19875418]
[0.9520813 0.07458135 0.84528506]

outputWeights [# hidden neurons + bias, # outputs]

[0.19099137]
[0.94340588]
[0.54034952]
[0.38595208]

2.) The second step is to apply the inputs and generate the net/input for each hidden neuron:

net1 [# input patterns, # hidden neurons]
[0.9520813 0.07458135 0.84528506]
[1.29901433 0.12189439 1.04403924]
[1.50927466 0.77017617 1.27017593]
[1.85620769 0.81748921 1.46893011]

3.) The next step is to generate the output of each hidden neuron by applying the sigmoid

activation function to the hidden neuron input net.

out1 [# input patterns, # hidden neurons]

[0.72153355 0.5186367 0.69957714]
[0.78566905 0.53043592 0.73962863]
[0.81895369 0.683559 0.78077286]
[0.86485431 0.69370311 0.81289471]

4.) The next step is to add the output neuron bias to the out1 array to form the inputs to the

output neuron. Then multiply this new ‘ip2’ array by the output weights to generate the input net

to the output neuron:

net2 [# input patterns, # outputs]
[1.39105985]
[1.43608243]
[1.60912899]
[1.64482265]

 56

5.) Next the output is generated by applying the sigmoid activation function to the output neuron

input net.

out2 [# input patterns, # outputs]

[0.80076139]
[0.80784726]
[0.83329042]
[0.83819009]

6.) Determine the errors, (desired output – output):

err2 [# input patterns, # ouputs]

[-0.80076139]
[0.19215274]
[0.16670958]
[-0.83819009]

That completes the first iteration of the forward process – the next steps will back propagate the

errors to adjust the weights in a manner to reduce the errors.

7.) The derivative of the output is multiplied by the error to determine the sensitivity factor:

del2 [# input patterns, # outputs]

[-0.12775554]
[0.02982788]
[0.02315888]
[-0.1136816]

8.) Next the sensitivity factor is multiplied by the output weights, backing the error to the hidden

layer neurons:

err1 [# hidden neurons + bias, # input patterns]

[-0.02440021 0.00569687 0.00442315 -0.0217122]
[-0.12052533 0.0281398 0.02184822 -0.10724789]
[-0.06903265 0.01611748 0.01251389 -0.0614278]
[-0.04930752 0.01151213 0.00893822 -0.04387565]

 57

The last row of the err1 matrix is the back error propagation on the bias line, and is not needed

for further back propagation. So, it is removed before the next steps.

9.) The next step is to determine the sensitivity factor of the back propagated error for each

hidden layer by multiplying err1 by the derivative of the hidden layer outputs.

del1 [# input patterns, # hidden neurons]

 [-0.00490256 -0.03008947 -0.01450852]
 [0.00095931 0.00700888 0.00310387]
 [0.00065581 0.0047259 0.00214196]
 [-0.00253775 -0.02278793 -0.00934298]

10.) The amount that the output weights are adjusted (delta output weight) is determined by

multiplying the del2 matrix by the hidden layer outputs and the bias input. All entries, except the

last one, are the sum of the products of del2 X out2, the last entry is the sum of the products of

the output bias and the output bias weight for each input pattern.

dw2 [# hidden layers + bias]

[-0.14809704]
[-0.11346775]
[-0.14164265]
[-0.18845038]

11.) Next the amount the input weights are adjusted is determined by multiplying the hidden

layer sensitivity factor by the inputs and the bias input. Each delta input weight is the sum of the

products of del1 and the input for each input pattern.

dw1 [# inputs + bias, # hidden layers]

[-0.00188194 -0.00157844 -0.00582518]
[-0.01806203 -0.01577905 -0.04114262]
[-0.00720102 -0.0062391 -0.01860566]

 58

12.) dw1 is subtracted from the respective input weights and dw2 is subtracted from the

respective output weights. Then the process is repeated (iteration), not including the first step of

assigning random weights, until a predetermined error is achieved.

13.) The entire process is repeated (training) to reinitiate the weights to help reduce the

possibility of the process becoming “stuck” in a local minima of the error function.

 The total error is commonly determined by one of two different methods – summed squared

error (SSE), or root mean squared error (RMSE).

 A python script that implements the above steps, written by the author, is shown in Appendix

B.

A typical output for a parity 3 problem is shown in table 3.

Table 3. EBP program output

Training # 1 Iteration # 1 SSE= 1.25064612831
Training # 1 Iteration # 10 SSE= 1.19705651195
Training # 1 Iteration # 100 SSE= 0.774592249767
Training # 1 Iteration # 1000 SSE= 0.00126155535867
Training # 1 Iteration # 2000 SSE= 0.000546331855821
Training # 1 Iteration # 4000 SSE= 0.00025259226898
Training # 1 Iteration # 6000 SSE= 0.000163577401642
Training # 1 Iteration # 8000 SSE= 0.000120781567025
Training # 1 Iteration # 10000 SSE= 9.56729250499e-05
Training # 1 Iteration # 12000 SSE= 7.9179336313e-05
Training # 1 Iteration # 14000 SSE= 6.75222581545e-05
Training # 1 Iteration # 16000 SSE= 5.88491885986e-05
Training # 1 Iteration # 18000 SSE= 5.2145818529e-05
Training # 1 Iteration # 20000 SSE= 4.68103936315e-05
Training # 1 Iteration # 22000 SSE= 4.24634351565e-05
Training # 1 Iteration # 24000 SSE= 3.88538399081e-05
Training # 1 Iteration # 26000 SSE= 3.58088553343e-05
Training # 1 Iteration # 28000 SSE= 3.32057468725e-05
Training # 1 Iteration # 30000 SSE= 3.09549261586e-05
Training # 1 Iteration # 32000 SSE= 2.89894744973e-05
Training # 1 Iteration # 34000 SSE= 2.72584022729e-05
Training # 1 Iteration # 36000 SSE= 2.57221776321e-05
Training # 1 Iteration # 38000 SSE= 2.43496807311e-05
Training # 1 Iteration # 40000 SSE= 2.31160801845e-05

 59

Training # 1 Iteration # 42000 SSE= 2.20013216834e-05
Training # 1 Iteration # 44000 SSE= 2.09890323855e-05
Training # 1 Iteration # 46000 SSE= 2.0065713521e-05
Training # 1 Iteration # 48000 SSE= 1.92201364948e-05
SSE= [1.84432580e-05]
Output:
[[0.00230754]
 [0.99813799]
 [0.99776322]
 [0.00215598]]

Figure 31. Error Back Propagation (EBP), 5 tries and 10000 iterations -
for a parity 3 problem

5.2 Second Order Algorithms

 In gradient decent methods, such as EBP, the step size that is used to descend down the

gradient of the error function curve must be kept small in order to not move out of the trough.

But with the small step size it can take many iterations to reach the bottom of the gradient,

slowing down the training process. There have been methods mentioned that will improve this

 60

process by varying the coefficient in order to change the decent rates. In order to speed up the

process, several second order algorithms have been used to train neural networks. These include

Newton, Gauss-Newton (GN) [54] , Levenburg-Marquardt (LM) [55], [56] , and Neuron by

Neuron (NBN) [57]–[59] .

5.2.1 Newton

 As seen in the previous section the weights are changed relative to the direction and

magnitude of the gradient of the error function and is given by the equation (39):

 ∆𝑊!" = −𝑢
𝜕𝐸
𝜕𝑊!"

 (38)

If the gradient is:

 𝑔 =
𝜕𝐸
𝜕𝑊!"

 (39)

Then the new weight is:

 𝑊!" =𝑊!" + ∆𝑊!" = 𝑊!" − 𝑢𝑔! (40)

The newton method begins with the assumption that the gradient is a function of the weights of

the system:

𝑔! = 𝐹! 𝑤! + 𝑤! +⋯+ 𝑤!
𝑔! = 𝐹! 𝑤! + 𝑤! +⋯+ 𝑤!

⋯
𝑔! = 𝐹!(𝑤! + 𝑤! +⋯+ 𝑤!)

 (41)

If 𝒈𝟏is expanded using the Taylor series, the first order approximation results are:

 𝑔! = 𝑔!,! +
𝜕𝑔!
𝜕𝑊!

∆𝑤! +
𝜕𝑔!
𝜕𝑊!

∆𝑤! +⋯+
𝜕𝑔!
𝜕𝑊!

∆𝑤! (42)

The same can be done for each of the other gradients.

By noting that the gradient is defined as :

 61

 𝒈 =
𝜕𝐸(𝑥,𝑤)
𝜕𝑤

=
𝜕𝐸
𝜕𝑤!

𝜕𝐸
𝜕𝑤!

…
𝜕𝐸
𝜕𝑤!

!

 (43)

and that the minima is found at 𝒈 = 𝟎

equation (x) can be rearranged to give:

 −𝒈𝟏 =
𝜕!𝐸
𝑤!!

𝜕!𝐸

𝜕𝑤!𝜕𝑤!
…

𝜕!𝐸
𝜕𝑤!𝜕𝑤!

 × ∆𝑤! (44)

with the Hessian Matrix defined as:

 𝑯 =
𝜕!𝐸
𝑤!!

𝜕!𝐸

𝜕𝑤!𝜕𝑤!
…

𝜕!𝐸
𝜕𝑤!𝜕𝑤!

 (45)

which can be written as:

 −𝒈 = 𝑯∆𝒘 (46)

or

 𝒘𝒌!𝟏 = 𝒘𝒌 −𝑯!𝟏𝒈 (47)

 To determine the components of the Hessian matrix, second order solutions to the total

error function must be found. This can get very complicated for even small sized networks. The

Newton algorithm can converge on a solution very quickly if the system is almost linear to begin

with. This is not the case in most neural networks, causing this method to be mostly useless, due

to divergence, for ANNs.

5.2.2 Gauss-Newton

 In order to move away from having to solve second order total error functions found in the

Hessian matrix, the Gauss-Newton algorithm replaces the need to solve the Hessian matrix with

a solution based on a Jacobian matrix. For our Neural Network case the Jacobian matrix will be

defined as:

 62

𝒋 =

𝜕𝑒!,!
𝜕𝑤!

𝜕𝑒!,!
𝜕𝑤!

 ⋯
𝜕𝑒!,!
𝜕𝑤!

𝜕𝑒!,!
𝜕𝑤!

𝜕𝑒!,!
𝜕𝑤!

 ⋯
𝜕𝑒!,!
𝜕𝑤!

⋮ ⋯ ⋮

𝜕𝑒!,!
𝜕𝑤!

𝜕𝑒!,!
𝜕𝑤!

 ⋯
𝜕𝑒!,!
𝜕𝑤!

⋮ ⋯ ⋮
𝜕𝑒!,!
𝜕𝑤!

𝜕𝑒!,!
𝜕𝑤!

 ⋯
𝜕𝑒!,!
𝜕𝑤!

𝜕𝑒!,!
𝜕𝑤!

𝜕𝑒!,!
𝜕𝑤!

 ⋯
𝜕𝑒!,!
𝜕𝑤!

⋮ ⋯ ⋮
𝜕𝑒!,!
𝜕𝑤!

𝜕𝑒!,!
𝜕𝑤!

 ⋯
𝜕𝑒!,!
𝜕𝑤!

(48)

 The rows of the Jacobian matrix are equal to the number of outputs multiplied by the

number of patterns, and the number of columns is equal to the number of weights. So, it could

potentially get very large for a large number of patterns and a large network (many weights).

The gradient vector 𝒈 in relation to the above Jacobian matrix can be found by the following

derivation:

 𝒈𝒊 =
𝝏𝑬
𝝏𝒘𝒊

=
𝝏 𝟏
𝟐 𝒆𝒑,𝒎𝟐𝒎

𝒎!𝟏
𝒑
𝒑!𝟏

𝝏𝒘𝒊
=

𝝏𝒆𝒑,𝒎
𝝏𝒘𝒊

𝒆𝒑,𝒎

𝒎

𝒎!𝟏

𝒑

𝒑!𝟏

 (49)

From the previous 2 equations the gradient vector 𝒈 is

 𝒈 = 𝑱𝒆 (50)

where e is defined as:

 63

 𝒆 =

𝑒!,!
𝑒!,!
⋯
𝑒!,!
⋯
𝑒!,!
𝑒!,!
⋯
𝑒!,!

 (51)

If we look back at the Hessian Matrix and substitute the sum squared error (SSE):

 𝐸 𝑤, 𝑥 =
1
2 𝑒!,!!

!

!!!

!

!!!

 (52)

for the row i and column j entry we get:

 𝒉𝒊,𝒋 =
𝝏!𝑬

𝝏𝒘𝒊𝝏𝒘𝒋
=
𝝏𝟐 𝟏

𝟐 𝒆𝒑,𝒎𝟐𝑴
𝒎!𝟏

𝑷
𝒑!𝟏

𝝏𝒘𝒊𝝏𝒘𝒋
=

𝝏𝒆𝒑,𝒎
𝝏𝒘𝒊

𝝏𝒆𝒑,𝒎
𝝏𝒘𝒋

+ 𝑺𝒊,𝒋

𝑴

𝒎!𝟏

𝑷

𝒑!𝟏

 (53)

where 𝑺𝒊,𝒋 is:

 𝑺𝒊,𝒋 =
𝝏𝟐𝒆𝒑,𝒎
𝝏𝒘𝒊𝝏𝒘𝒋

𝒆𝒑,𝒎

𝑴

𝒎!𝟏

𝑷

𝒑!𝟏

 (54)

It is assumed that 𝑺𝒊,𝒋 is close to zero, with this assumption the Hessian matrix can now be

written as:

 𝑯 = 𝑱𝑻𝑱 (55)

The Gauss-Newton weight update equation is:

 𝒘𝒌!𝟏 = 𝒘𝒌 − 𝑱𝒌𝑻𝑱𝒌
!𝟏𝑱𝒌𝑻𝒆𝒌 (56)

The question now is how to calculate the Jacobian matrix. We must find

𝝏𝒆𝒑,𝒎
𝝏𝒘𝒏

 (57)

 64

which is the partial derivative of the error at each output for each pattern with respect to the

partial derivative of each weight. The Jacobian matrix calculation is found by performing the

following steps:

1.) Forward computation to determine the net, output, and slope for each neuron.
2.) Determine 𝜹 for each output: 𝜹𝒋 =

𝝏𝒇𝒋(𝒏𝒆𝒕𝒋)
𝝏𝒏𝒆𝒕𝒋

= 𝒐𝒖𝒕𝒋 𝟏− 𝒐𝒖𝒕𝒋 = slope

3.) Propagate 𝜹 to the previous layer neurons by multiplying the output 𝜹 by the weight
between the previous neuron and the output neuron.

4.) Propagate 𝜹 to the input of the neuron by multiplying by the slope of the neuron.
5.) Continue for each layer
6.) Determine each element of the Jacobian matrix by multiplying :

𝝏𝒆𝒑,𝒎
𝝏𝒘𝒏

= −𝜹𝒎,𝒋𝒚𝒋,𝒊

 The Gauss-Newton algorithm is implemented by the Python code shown in Appendix C.

A typical output is shown in figure 32.

Figure 32. Gauss-Newton algorithm, 300 tries and 100 iterations – parity 3 problem

 As seen in figure 32, the success rate is really small, only one out of 300 tries for this run.

The initial guess has to be very close to the final solution for the Gauss-Newton algorithm to

 65

converge. It also shows that when there is convergence, it happens very quickly (i.e. very few

iterations).

5.2.3 Levenberg-Marquardt (LM) Algorithm

 From the above discussions, it seems an ideal algorithm would combine the fast

convergence of Gauss-Newton and the high convergence rate of Error Back Propagation.

Kenneth Levenberg in 1944 and Donald Marquardt in 1966 both independently developed an

algorithm that does combine the best of GN and EBP. It is called the Levenberg-Marquardt (LM)

algorithm and is generally regarded as one of the most efficient training algorithms [60] .

 The LM algorithm adds a factor (𝜇) to the Gauss-Newton delta weight equation that,

depending on the magnitude of the factor, causes the algorithm to either resemble the Gauss-

Newton or a version of the gradient decent method. The LM equation is:

 𝒘𝒌!𝟏 = 𝒘𝒌 − 𝑱𝒌𝑻𝑱𝒌 + 𝒖𝑰
!𝟏𝑱𝒌𝑻𝒆𝒌 (58)

Where 𝑰 is the identity matrix. If 𝜇 is small then the LM algorithm becomes:

 𝒘𝒌!𝟏 = 𝒘𝒌 − 𝑱𝒌𝑻𝑱𝒌
!𝟏𝑱𝒌𝑻𝒆𝒌 (59)

The Gauss-Newton algorithm, but if 𝝁 is large then the LM equation becomes:

 𝒘𝒌!𝟏 = 𝒘𝒌 −∝ 𝑱𝒌𝑻𝒆𝒌 with ∝= 𝟏
𝝁
 (60)

The gradient decent equation. The LM algorithm begins by giving 𝝁 a small value (i.e. 0.01).

The next steps are as follows:

1.) Randomly generate the initial weights and determine the total error (SSE).
2.) Compute the jacobian matrix and update weights using equation X.
3.) Re-evaluate the total error
4.) If the new error is greater then the previous error, then reset the weights to the previous

set and increase 𝝁 by a factor of 10. If the new error is less then the previous error, then
the new set of weights is kept and 𝝁 is decreased by a factor of 10.

 66

5.) Continue to step 2 until the total error is less than the specified amount.

 The LM algorithm is implemented in the Python code found in Appendix D:

A typical output is shown in figure 33, which shows a high success rate for convergence.

Figure 33. LM algorithm, 200 iterations, parity 3 problem

5.2.4 Neuron by Neuron (NBN) Algorithm

 So far all of the neural network algorithms, first and second order, have been capable of

utilizing only Multilevel Perceptron (MLP) topologies. It has been shown that arbitrarily

connected topologies, such as fully connected cascade (FCC) networks, are more powerful and

are capable of convergence with fewer neurons. But the training of such networks will require a

new algorithm that is more powerful and able to calculate the jacobian matrix neuron by neuron

instead of layer by layer. Such a training algorithm was developed, that utilizes the LM

 67

algorithm to update weights, along with a neuron by neuron determination of the jacobian matrix.

It is known as the Neuron by Neuron (NBN) algorithm.

An FCC network is shown in figure 34.

Figure 34. FCC Neural Network Topology

 The procedure begins with a forward computation of the nets, outputs, and slopes for

each neuron, followed by a back propagation of the delta parameter for each neuron. The next

step is to determine the Jacobian row for each pattern. After all patterns have been applied the

entire Jacobian matrix is found.

The pseudo code for the basic NBN algorithm is shown in figure 35.

 68

Figure 35. NBN Algorithm Pseudocode

The output is shown in figure 36.

Figure 36. NBN output, parity-3 problem

for all patterns (np)
% Forward computation
 for all neurons (nn)
 for all weights of the neuron (nx)
 calculate net;
 end;
 calculate neuron output; % Eq. (3)
 calculate neuron slope; % Eq. (6)
 end;
 for all outputs (no)
 calculate error; % Eq. (2)
%Backward computation
 initial delta as slope;
 for all neurons starting from output neurons (nn)
 for the weights connected to other neurons (ny)
 multiply delta through weights
 sum the backpropagated delta at proper nodes
 end;
 multiply delta by slope (for hidden neurons);
 end;
 related Jacobian row computation; %Eq. (12)
 end;

end;

 69

 Notice the mention above of the “basic” NBN algorithm, this is considered the basic

NBN since there have been a couple of improvements including a forward only. In this work the

basic NBN algorithm is presented.

 70

Chapter 6. Proposed Plating Chemistry Component Determination Method

6.1 Proposed Additive Control Methods

 After an examination of the techniques used in the standard analysis methods it seems that

by gaining knowledge of the entire system a predictive analysis could be utilized to determine

the status of the system. So, if a method could be found by which a set of independent variables

could be determined, which are related to the amounts of each additive, then machine learning

could be used to provide the capability of predicting the additive amounts.

 In an effort to generate a set of independent variables, CVS stripping area response plots

for the various additives vs. concentration of the additives were investigated to determine if there

are certain conditions that would favor one additive over another. Figure 37 shows a plot of

stripping area vs. suppressor concentration [61] for various electrode and test parameter

configurations.

Figure 37. Stripping Charge vs Suppressor Concentration [61]

(Legend: - Rotation speed (RPM) - Scan Rate (V/Sec) - Negative Limit (V))

 71

 From the plots in figure 18 it is shown that there is a reduced sensitivity to concentration as

the working CVS electrode rotation speed is reduced, and as the scan rate is increased. Both

trends make account for the fact that the reactivity of the suppressor is concentration dependent

and the concentration is related to the barrier layer thickness (determined by the spin speed of the

electrode) that is controlled by mass transport and absorption properties. The barrier layer is

thinner as the rotation speed is increased and thus the absorption ability is lowered as the scan

rate is increased.

Figure 38 shows a plot of stripping area vs. leveler concentration [61].

Figure 38. Normalized Charge vs. Leveler Concentration [61]
(Legend: - Rotation speed (RPM) - Scan Rate (V/Sec) - Negative Limit (V))

Figure 38 shows that as the scan rate is increased, the stripping area becomes less sensitive to the

leveler concentration. Leveler is a large polar molecule and a slow diffuser. Accelerator is a fast

diffuser and thus does not exhibit as large a sensitivity to the barrier layer thickness as the larger

slow diffusing suppressor and leveler molecules.

 72

 With the above information it was concluded that a set of tests, which included large

differences in electrode rotational spin rate and voltage scan rate, would favor or disfavor the

various additives and provide a set of stripping areas that would independently define a certain

set of additives. Also, once this set of stripping areas is generated, it could be used as a

calibration set for determining an amount of additives in an unknown sample. It was further

expected that the calibration set of stripping areas could be used to train learning machine

systems to estimate the amount of additives in an unknown sample.

 The following four CVS analysis methods shown in Table 4 were used to generate a set of

stripping curves using a Metrohm CVS system.

Table 4. CVS Test Parameters

CVS Test
Spin Speed

(rpm) Scan Rate
(V/s)

1 800 0.05
2 800 0.5
3 3000 0.05
4 3000 0.5

 While there may be many other combinations of tests that would be able to independently

characterize the plating additives, this set of tests is well within the capabilities of most available

test systems and has proven to give repeatable results after many calibration runs. The intent of

this work is to prove that machine learning can predict additive concentration, not to select the

optimum set of tests. The selection of an optimum set of tests is a good candidate for future

work.

 73

 A set of data was generated using the methods described in the previous section. It will be

used as a training set to evaluate various machine learning techniques to determine if it is a

viable option for additive prediction from unknown plating bath samples. The data typically

needs to be scaled to allow it to be used as input for neural network systems. The data will first

be normalized to set the magnitude of the input data to the same order as the initial random

weights. A subset of the dataset used for this work is shown in table 5. It can be seen that the

magnitudes of the values are well above the ranges needed for neural network training (normally

between -1 & 1). The data is normalized by dividing each data point by the value with the

highest magnitude in each column, thereby normalizing all of the values to numbers between 0

and 1.

Table 5. Typical Measured Plating Bath Data before Normalization

Test1 Test2 Test3 Test4 A S L
2390.0 353.5 1540.0 274.7 7.000 3.000 2.000
1680.0 314.1 1130.0 208.1 7.000 3.000 3.800
1150.0 681.7 763.7 275.4 1.000 1.200 4.000
873.5 462.2 750.1 224.7 1.000 1.800 4.000
794.8 350.9 740.5 195.0 1.000 2.400 4.000
767.0 290.8 731.8 175.1 1.000 3.000 4.000
759.6 252.7 724.4 161.6 1.000 3.600 4.000
749.9 228.3 718.5 150.9 1.000 4.200 4.000
740.4 210.0 712.2 143.1 1.000 4.800 4.000

 The dataset will be divided into three sets of data (four inputs and one output) one for each

of the additives (i.e. accelerator, suppressor, and leveler). This will allow the use of machine

learning techniques that are only capable of learning with one output (i.e. Support Vector

Regression and Polynomial Regression). Table 6 shows normalized data (same set of data from

Table 5).

 74

Table 6. Typical Measured Plating Bath Data After Normalization

Test1 Test2 Test3 Test4 A S L
0.996 0.147 1.000 0.415 0.778 0.500 0.100
0.700 0.131 0.734 0.314 0.778 0.500 0.190
0.479 0.284 0.496 0.416 0.111 0.200 0.200
0.364 0.193 0.487 0.339 0.111 0.300 0.200
0.331 0.146 0.481 0.295 0.111 0.400 0.200
0.320 0.121 0.475 0.265 0.111 0.500 0.200
0.317 0.105 0.470 0.244 0.111 0.600 0.200
0.312 0.095 0.467 0.228 0.111 0.700 0.200
0.309 0.088 0.462 0.216 0.111 0.800 0.200

6.2 Machine Learning Software Tools

 In this work we will investigate different machine learning techniques to determine which

one provides the most accurate predictions for this application:

• Neural Networks (NN) – Traditional Neural Network architectures (MLP) using Error
Back Propagation.

• Polynomial Regression.
• Support Vector Regression (SVR) - Support Vector Regression.
• Extreme Learning Machine (ELM).
• Advanced Neural Network Algorithms / Architectures – Fully Connected Cascade

(FCC) using Neuron by Neuron algorithm.

For traditional and advanced Neural Network evaluation the neural networks trainer (NBN 2.10)

was used, this software can be downloaded at: http://www.eng.auburn.edu/users/wilambm/nnt/.

For Support Vector Regression, Rapid-Miner Software was used, this software can be

downloaded at: http://rapid-i.com/content/view/181/190/

 75

For Extreme Learning Machines and Polynomial Regression dedicated custom software was

used.

 The training data was generated using the “new plating chemistry analysis methods”

described in chapter 5. A dataset of 77 vectors was generated over a typical range of Accelerator,

Suppressor, and Leveler additive concentrations. The following sections will describe the initial

review of the dataset and analysis of the resulting data along with validations for each training

run.

6.3 Accelerator Determination

 Seven of the vectors were randomly removed from the 77 vector dataset to be used as a

validation set, leaving a set of 70 vectors for training. The 70 vector dataset was used as the

training dataset for the following algorithms and architectures.

6.3.1 Accelerator Determination using Polynomial Regression

 A polynomial regression model with orders between 2 & 10 was used at first. Cross

multiplication of the input variables was not utilized to simplify the software needed and to allow

the sample dataset to be a reasonable size. Dedicated software was written to perform the linear

least squares approach to estimate the coefficients of the polynomial.

 This method computes the polynomial coefficients for various order polynomials during

accelerator training and used these coefficients to evaluate the accelerator validation set for the

different polynomial orders. The results are shown in figure 39. As can be seen that the

polynomial regression approach more closely fits the training data as the order increased. As

expected, if the order is too high (larger than 7 in this case), the over-fitting phenomenon occurs.

 76

Seven appears to be the optimal order for this dataset and gave a very reasonable fit to the

validation data of 0.015 RMSE.

Figure 39. Polynomial Regression Results for Accelerator

6.3.2 Accelerator Determination using Error back Propagation

 The standard Error Back Propagation (EBP) algorithm was utilized on the training set

using a Multi-layer Perceptron (MLP) neuron topology with a unipolar sigmoid activation

function (gain of 1 and learning constant of 0.1). The MLP topology is shown in figure 32.

 The previously described training and validation datasets are used to train and test

generalization for the MLP topology with an increasing number of neurons in the input layer.

Results from training and validation, using the NBN 2.10 program, are shown in figure 40.

 77

Figure 40. Training and Validation results for the Multilayer Preceptron Topology and EBP
Training.

 A significant amount of time was spent on trying to optimize the gain, learning constant

and other factors to obtain a better convergence. It appears that the validation RMSE is lower

than the training RMSE for all neuron numbers. This was not expected, but seems to be the case

through all training & validation runs. A possible reason for this is that the data is highly non-

linear and more time and effort will be required to optimize the network, thus a reason why this

algorithm results in researchers becoming disillusioned with neural networks.

6.3.3 Accelerator Determination using Support Vector Regression (SVR)

 The same training set defined above was used for training using SVR. Typically the best

method for determining the optimum set of support vectors is to vary the Soft Margin Parameter

(C) and validate. A plot of the validation Root Mean Squared Error (RMSE) vs. the soft margin

parameter is shown in figure 41. This data shows a general trend downward with increasing C

 78

for both the training and validation data. The validation seems to level out at a RMSE of

approximately 0.025 starting around a C value of 80.

Figure 41. Accelerator Training & Validation using Support Vector Regression

6.3.4 Accelerator Determination using Extreme Learning Machine (ELM)

 The extreme learning machine technique has been recently mentioned as a new and novel

technique that has the capability to converge very quickly. It is considered an incremental

learning algorithm, that is thought to provide universal approximation capability. It uses an

algorithm that incrementally constructs a single hidden layer feedforward network with

randomly generated activation parameters (i.e. radius, center of RBF, input weight, bias for other

functions). The optimum output weights are determined by a least squares minimization. The

previously defined dataset was used in experimentation. The ELM algorithm was trained with

between 50 and 500 RBF units and 20 training runs. The RMSE results for three different

versions of the ELM algorithm are shown in figure 42.

 79

Figure 42. Accelerator Training & Validation using Extreme Learning Machine

 An error rate as low as the previous three methods, even after increasing the number of

RBF units to as high as 500, was not obtainable. As with EBP, the high non-linearity of the data

may cause this algorithm to not converge to a low error rate.

6.3.5 Accelerator Determination using Second Order Algorithms

 The advanced second order neural network learning algorithm, neuron by neuron, allows

arbitrarily connected topologies to be used. The Fully Connected Cascade (FCC) is one of the

most powerful arbitrarily connected topologies for NN training. This topology consists of a

series of neurons all fully connected to all previous neurons in a cascade arrangement as shown

in figure 43.

 80

Figure 43. Fully Connected Cascade Topology

 The NBN algorithm was used to train MLP and FCC topology networks, using the same

training and validation files as was used in the experiments with traditional NNs. The results are

shown in figures 44 and 45 respectfully. In figure 44, the MLP topology, it can be seen that

there is a very low (as low as 2e-5) root mean square error (RMSE) and a corresponding low

validation error as low as 0.001 RMSE) – showing an ability to accurately predict the accelerator

concentration within a few percent difference (<4 %).

Figure 44. Accelerator Training and Validation results for an MLP Topology with NBN
algorithm

 81

 Figure 45 shows the training and validation for the FCC topology and the NBN algorithm.

It shows a low (1e-5) RMSE for the training and a 1e-3 RMSE for validation, showing that this

combination of topology and algorithm can be used to accurately predict the accelerator

concentration (within a small percent difference). It should be noticed that overtraining (the

validation error begins to increase) is apparent when more than 8 neurons are used. The MLP

topology shows similar results.

Figure 45. Accelerator Training and Validation results for an FCC Topology with NBN
algorithm

6.3.6 Summary of Accelerator Determination Results

 The validation results for the tested learning machine techniques are summarized in Table

7. It shows the lowest values for accelerator predictions using the percent difference for the 7

validation vectors. It can be seen that the NBN MLP & FCC algorithm/topology provided the

best generalization. While the Poly, SVM, NN/EBP, and ELM techniques gave similar results

 82

that are ~ an order of magnitude worse that the NBN, but still reasonable for this application,

although not giving the increase in accuracy desired.

Table 7. Accelerator prediction comparison of machine learning techniques

Predicted Accelerator Values for Different Algorithms/Topologies
Validate
Point #

Actual
ml/l Poly SVM ELM EBP/MLP NBN/MLP NBN/FCC

1 2 2.25 2.14 2.23 2.10 2.03 2.01
2 5 5.11 5.04 6.09 5.17 5.02 4.99
3 2 1.91 1.91 1.97 1.71 2.00 2.00
4 9 8.96 9.02 8.92 9.09 9.00 9.00
5 7 6.91 7.56 7.04 7.25 7.00 7.03
6 9 9.12 8.89 8.56 8.84 9.00 8.99
7 2.9 3.08 2.67 2.62 2.51 2.90 2.90

 Now that the accelerator has been shown to be predictable using machine learning

techniques, in particular the NBN algorithm, an attempt to use the NBN method for predicting

the other two additives, suppressor and leveler, will be investigated. Only the validation data is

shown in the following analysis (no training data). The neural network NBN algorithm will be

used since it has shown to be the most accurate predictor from the previous results. The

polynomial regression analysis will also be investigated as a comparison.

6.4 Suppressor Determination

 The same training and verification dataset will be used with the accelerator output

replaced by the suppressor output. The NBN/FCC and NBN/MLP algorithms/topologies will be

used to determine how well the suppressor can be predicted. The addition of the predetermined

accelerator value as a fifth input variable will be investigated.

 83

 Figures 46 – 48 show the validation results for Polynomial, MLP/NBN, and FCC/NBN

learning. These figures compare the 4 inputs along with the inclusion of accelerator as the fifth

input variable. Table 8 compares the results from the various NBN topologies and with adding

accelerator as an additional input (SA). It is seen that all of the NN techniques gave good results

while using accelerator as the fifth input improved the accuracy in all cases. Polynomial

regression was used to compare a non-NN learning technique.

Figure 46. Suppressor Polynomial Validation

 84

Figure 47. Suppressor MLP/NBN Validation

Figure 48. Suppressor FCC/NBN Validation

 85

Table 8. Suppressor prediction comparison of machine learning techniques

Predicted Suppressor Values for Different Algorithms/Topologies

Validate
Point#

Actual
ml/l

S NBN/
MLP

SA NBN/
MLP

S NBN/
FCC

SA NBN/
FCC S Poly

SA
Poly

1 6 5.98 5.89 5.79 5.86 5.77 5.80
2 3.6 3.58 3.66 3.94 3.61 3.56 3.85
3 6 5.84 5.85 5.77 5.84 5.09 6.14
4 3.6 3.64 3.57 3.56 3.58 3.40 3.57
5 6 6.00 5.98 6.00 6.00 6.20 6.02
6 4.8 4.49 4.82 4.66 4.73 4.63 4.86
7 3 3.00 3.00 3.00 3.00 3.02 2.99

6.5 Leveler Determination

 The Leveler training verification data is shown in figures 49-51 for both leveler

validation RMSE for original four test inputs and for adding the accelerator as a fifth input

variable. Table 9 shows the percent difference between the predicted and actual leveler amounts

for the different algorithms/topologies. The “L” and “AL” designations mean Leveler or

Accelerator / Leveler inputs respectively. It shows that all of the NN techniques gave very good

predictions. The addition of accelerator as a fifth input showed a slight improvement.

 86

Figure 49. Leveler Polynomial Validation for 4 & 5 Inputs

Figure 50. Leveler MLP/NBN Validation for 4 & 5 Inputs

 87

Figure 51. Leveler FCC/NBN Validation for 4 & 5 Inputs

Table 9. Leveler prediction comparison of machine learning techniques

Predicted Leveler Values for Different Algorithms/Topologies

Vaildate
Point#

Actual
ml/l

L NBN/
MLP

AL NBN/
MLP

L NBN/
FCC

AL NBN/
FCC

L
Poly AL Poly

1 10 9.85 9.95 10.01 10.00 10.67 10.18
2 5 4.94 4.99 4.95 4.99 4.98 4.70
3 15 14.97 14.99 14.96 15.00 14.32 14.92
4 10 10.00 10.00 9.98 10.00 10.03 9.91
5 15 14.99 15.00 15.00 15.00 14.83 14.99
6 20 20.00 20.00 20.00 20.00 20.40 20.06
7 15 15.00 15.00 15.00 15.00 15.30 15.00

 88

Conclusion

 The present methods for analyzing copper plating baths were shown to be very wasteful

and inaccurate. These methods are presently implemented using very expensive chemical

analysis systems sold by several vendors. These systems normally cost on the order of 100 –

200K and are about the size of a refrigerator. They waste a considerable amount of plating

chemistry and need a very experienced operator to understand and maintain them.

 It was thought that it would be beneficial to determine if there is a better and simpler

method that will be less wasteful, more accurate and easier to maintain. A decision was made to

investigate the use of new algorithms that were under development at Auburn University by Dr.

Bogdan Wilamowski’s Neural Network Group. These algorithms promised to be much more

powerful and easier to use than conventional algorithms.

 The next issue was to determine if a set of data could be gathered that would allow the

determination of the three different plating organic components using the new algorithms.

Through an exhaustive search of the literature and with years of experience in copper plating and

CVS analysis, it was decided to the use of set of CVS parameters that generated four charge

magnitudes. This set of data, based on these charge magnitudes, were shown to be able to very

accurately determine the amounts of accelerator, suppressor, and leveler contained in a copper

plating bath using second order neural networks.

 It is believed that this method can be easily added to a production copper plating system

and will provide a high level of control over the additives, and it can be further adapted to

determine decomposition byproducts and other plating components of interest.

 89

Future Work

 The obvious next steps would work toward putting this new plating component analysis

method into practice. A system would need to be developed that would automate the analysis

procedures and allow it to be integrated with a commercial plating bath system. During this work

a system was fabricated and tested that should be capable of automating the plating bath testing

phase [62]. It is shown in figure 52.

Figure 52. Automating Plating Bath Analysis System

 90

The system contains a working electrode, counter electrode, and reference electrode. The plating

solution would be continuously flowing through the system with measurements made

periodically to determine the plating bath components. The four measurements required to

generate the data needed for the neural network inputs requires two different working electrode

spin speeds. This is not available with the system shown, but an alternative method is to change

the pumping speed of the solution as this would perform the same function of changing the

plating cathode barrier layer. Basically all that is needed is to provide fresh solution at different

rates. A flow rate vs. motor voltage is shown in figure 53 for the system shown in figure 52.

Figure 53. Flow vs. Pump Voltage

Other areas for future research could be looking at the analysis of breakdown components in the

plating solution. These breakdown components are important to the makeup of the bath and to

determine the end of life, or when the bath needs to be completely changed.

 91

References

[1] P. C. Andricacos, C. Uzoh, J. O. Dukovic, and J. Horkans, “Damascene Copper
Electroplating for Chip Interconnections,” IBM J Res Dev, vol. 42, pp. 567–574, 1998.

[2] R. A. Binstead, R. Mikkola, and J. M. Calvert, “Fundamental Mechanism Controlling
Copper Electrodeposition. The Roles of Organic and Inorganic Components in Promoting
Superconformal Filling and Self-Leveling of Inlaid Submicron Interconnects,” in
Fundamental Challenges in Electrodeposition, San Francisco, 2003.

[3] M. Yokoi, “Supression Effect and Additive Chemistry,” in Copper Electrodeposition for
Nanofabrication of Electronics Devices, New York: Springer Science+Business Media, pp.
27–43. 2014.

[4] P. M. Vereecken, R. A. Binstead, H. Deligianni, and P. C. Andricacos, “The chemistry of
additives in damascene copper plating,” IBM J Res Dev, vol. 49, no. 1, pp. 3–18, Jan. 2005.

[5] A. C. West, “Theory of Filling High-Aspect Ratio Trenches and Vias in Presence of
Additives,” J Electrochem Soc, vol. 147, pp. 227–232, 2000.

[6] M. H. Lee and J. K. Cho, “A study on the Additive Decomposition Generated during the
Via-Filling Process,” J. Korean Inst. Surf. Eng., vol. 46, no. 4, pp. 153–157, Aug. 2013.

[7] C. D. Ellis, M. C. Hamilton, J. R. Nakamura, and B. M. Wilamowski, “Efficient
Determination of Copper Electroplating Chemistry Additives,” IEEE Trans. Compon.
Packag. Manuf. Technol., vol. 4, no. 8, pp. 1380–1390, Aug. 2014.

[8] J. Reid, “Damascene Copper Electroplating,” in Handbook of semiconductor
manufacturing technology, 2nd ed., vol. Chapter 16, Boca Raton: CRC Press, 2008.

[9] Ralf Willecke; Franz Faupel, “Diffusion of Gold and Silver in Bisphenol A
Polycarbonate,” Am. Chem. Soc., vol. 30, pp. 567–573, 1997.

[10] B. Norsworthy, “Advances in Copper Plating Technology.” Onboard Technology, Apr-
2006.

[11] P. F. Green and L. L. Berger, “Effects of polyimide chemical structure and environment on
the diffusivity of copper,” Thin Solid Films, vol. 224, no. 2, pp. 209–216, Mar. 1993.

[12] K. Shimoto, K. Matsui, and K. Utsumi, “Cu/Photosensitive-BCB Thin-Film Multilayer
Technology for High Performance Multichip Modules,” IEEE Trans Compon. Packag.
Manuf Technol B Adv Packag., vol. 18, pp. 18–22, 1995.

[13] V. M. Ahmed, D. G. Berger, A. Kumar, and S. J. LaMaire, “Selective Plating Method for
Forming Integral Vias on Wiring Layers,” 5,209,817.

[14] “Thick Copper Pillar Bump Fabrication | Solid State Technology.” .
[15] Y. Zhang, T. Richardson, S. Chung, C. Wang, and B. Kim, “Fast copper plating process for

TSV fill,” in Microsystems, Packaging, Assembly and Circuits Technology, 2007. IMPACT
2007. International, 2007, pp. 219–222.

[16] Qi Li; Huiqin Ling; Haiyong Cao; Zuyang Bian; Ming Li; Dali Mao, “Through silicon via
filling by copper electroplating in acidic cupric methanesulfonate bath,” in Electronic
Packaging Technology & High Density Packaging, 2009. ICEPT-HDP ’09, pp. 68–72,
2009.

[17] B. Banijamali, S. Ramalingam, K. Nagarajan, and R. Chaware, “Advanced reliability study
of TSV interposers and interconnects for the 28nm technology FPGA”, pp. 285–290. 2011.

 92

[18] J. Chew, U. Mahajan, R. Bajaj, I. Mirshad, and R. Newcomb, “Characterization and
optimization of a TSV CMP reveal process using a novel wafer inspection technique for
detecting sub-monolayer surface contamination,”, pp. 1–6, 2013.

[19] Jacob, P., McDonald, J.F., “Predicting the Performance of a 3D Processor-Memory Chip
Stack,” IEEE Des. Test Comput., vol. 22, no. 6, pp. 540–547, November - December. 2005.

[20] P. Garrou, C. Bower, and P. Ramm, Handbook of 3D Integration – Technology and
Applications of 3D Integrated Circuits. Weinheim, Germany: Wiley-VCH, 2008.

[21] R. Weerasekera, L.-R. Zheng, D. Pamanuwa, and H. Tenhunen, “Extending Systems-on-
Chip to the Third Dimension: Performance, Cost and Technological Tradeoffs,” in
Proceedings International Conference on Computer-Aided Design (ICCAD), pp. 212–219,
2007.

[22] E. Beyne and B. Swinnen, “3D System Integration Technologies,” in Proceedings of IEEE
International Conference on Integrated Circuit Design and Technology (ICICDT) , 2007.

[23] “Three-dimensional integrated circuit.” [Online]. Available:
http://en.wikipedia.org/wiki/Three-dimensional_integrated_circuit. [Accessed: 01-Feb-
2015].

[24] H. Wang, R. G. Gordon, R. Alvis, and R. M. Ulfig, “Atomic Layer Deposition of
Ruthenium Thin Films from an Amidinate Precursor,” Chem. Vap. Depos., p. n/a–n/a, Dec.
2009.

[25] A. Redolfi, D. Velenis, S. Thangaraju, and P. Andricacos, “Implementation of an Industry
Compliant, 5×50µm, Via-Middle TSV Technology on 300mm Wafers,” presented at the
Electronic Components and Technology Conference, pp. 1384–1388, 2011.

[26] J. S. . Chiu, “The Use of Vacuum Pre-wetting as a Process Aid for TSV Filling,” presented
at the 3-D Architectures for Semiconductor Integration and Packaging, San Francisco, CA,
2010.

[27] Modern electroplating. Hoboken, N.J.: Wiley, 2013.
[28] M. S. Chandrasekar and M. Pushpavanam, “Pulse and pulse reverse plating—

Conceptual,advantages and applications” in Electrochimica Acta, vol. 53, pp. 3313–3322,
2008.

[29] Y. Lu, H. Cao, Q. Sun, H. Ling, M. Li, and J. Sun, “Investigation of competitive adsorption
between accelerator and suppressor in TSV copper electroplating,” in 2012 13th
International Conference on Electronic Packaging Technology and High Density
Packaging (ICEPT-HDP), pp. 434–437, 2012.

[30] H. Ling, H. Cao, Y. Guo, H. Yu, M. Li, and D. Mao, “Influence of leveler concentration on
copper electrodeposition for through silicon via filling,” in International Conference on
Electronic Packaging Technology High Density Packaging, 2009. ICEPT-HDP ’09, pp.
860–862, 2009.

[31] J. Enloe, “Conversation with Atotech representative concerning Copper plating bath
additives,” 29-Aug-2011.

[32] A. Keigler, Z. Liu, J. Chui, and J. Drexler, “Sematech 3D Equipment Challenges: 300mm
Copper Plating,” presented at the International Sematech Meeting, 2008.

[33] H. Cao, X. Feng, Q. Sun, W. Luo, H. Ling, J. Sun, and M. Li, “Electrochemical analysis of
cathode in TSV copper electroplating,” in 2012 2nd IEEE CPMT Symposium Japan, pp. 1–
4. , 2012.

[34] H. Shen, C. Uzoh, and T. Dinan, “Precise Chemistry Control Using Cyclic Stripping
Voltammetry For Improved Through Silicon Via Fill.” Invensas Inc., 2014.

 93

[35] M. West, R. McDonald, M. Anderson, S. Kingston, and R. Mui, “Controlling Copper
Electrochemical Deposition (ECD),” presented at the Characterization and Metrology for
VLSI Technology: 2003 International Conference, pp. 504–513, 2003.

[36] R. Gluzman, “Brightner Determination using Modified Linear Approximation Technique
(MLAT),” presented at the 70Th Am. Electroplaters Soc. Tech. Conf., Indianapolis, IN, pp.
13–18, 1983.

[37] W. O. Freitag, C. Ogden, D. Berger, and J. White, in Plating Surf. Fin., vol. 70, p. 55,
1983.

[38] Application Note V-184, “Determination of leveler in acid copper baths by response curve
technique.” Metrohm, Inc.

[39] “Popular Machine Learning Methods,” vol. https://sites.google.com/site/mldmda/popular-
methods, last accessed - February 2015.

[40] “Linear least squares,”
http://en.wikipedia.org/wiki/Linear_least_squares_%28mathematics%29.

[41] G. Haung and L. Chen, “Convex incremental extreme learning machine,” Neurocomputing,
vol. 70, pp. 3056–3062, 2007.

[42] G. Haung and L. Chen, “Enhanced random search based incremental extreme learning
machine”, Neurocomputing, vol. 71, pp. 3460–3468, 2008.

[43] G. Haung, L. Chen, and C.-K. Siew, “Universal Approximation Using Incremental
Constructive Feedforward Networks With Random Hidden Nodes,” IEEE Trans. Neural
Netw., vol. 17, no. 4, Jul. 2006.

[44] G. B. Huang, Q. Y. Zhu, and H. A. Barbi, “Classification ability of single hidden layer
feedforward neural networks,” IEEE Trans. Neural Netw., vol. 11, no. 3, pp. 799–801,
2000.

[45] C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and its Applications. New
York, 1971.

[46] O. L. Mangasarian and D. R. Musicant, “Robust linear and support vector regression,”
IEEE Trans Pattern Anal. Mach Intell, vol. 22, pp. 950–955, 2000.

[47] Rapid Miner, http://rapid-i.com/content/view/181/190/, accessed February 2015. .
[48] P. J. Werbos, “Back-propagation: Past and future,” in Proceedings of the IEEE Int. Conf.

Neural Netw., San Diego, CA, vol. 1, pp. 343–353, 1988.
[49] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-

propagating errors,” Nature, vol. 323, pp. 533–536, 1986.
[50] B. M. Wilamowski, “Neural network architectures and learning algorithms: How not to be

frustrated with neural networks,” EEE Ind Electron Mag, vol. 3, no. 4, pp. 56–63, Dec.
2009.

[51] V. V. Phansalkar and P. S. Sastry, “Analysis of the back-propagation algorithm with
momentum,” IEEE Trans. Neural Netw., vol. 5, no. 3, pp. 505–506, May 1994.

[52] L.-H. Zhou, P. Han, S.-M. Jiao, and B.-R. Lin, “Feedforward neural networks using
RPROP algorithm and its application in system identification,” in 2002 International
Conference on Machine Learning and Cybernetics, 2002. Proceedings, vol. 4, pp. 2041–
2044, 2002.

[53] C.-C. Yu and B.-D. Liu, “A backpropagation algorithm with adaptive learning rate and
momentum coefficient,” in Proceedings of the 2002 International Joint Conference on
Neural Networks, 2002. IJCNN, vol. 2, pp. 1218–1223, 2002.

 94

[54] B. M. Wilamowski and J. D. Irwin, Eds., “Levenberg-Marquardt Training,” in Intelligent
systems, 2nd ed., Boca Raton: CRC Press, pp. 12–1 – 12–16, 2011.

[55] K. Levenburg, “A method for the solution of certain problems in least squares,” Q. Appl.
Machematics, vol. 5, pp. 164–168, 1944.

[56] D. Marquardt, “An Algorithm for the Least-Squares Estimation of Nonlinear Parameters,”
SIAM J Ournal Appl. Math., vol. 11, no. 2, pp. 431–441, Jun. 1963.

[57] B. M. Wilamowski, N. Cotten, O. Kaynak, and G. Dundar, “Computing Gradient Vector
and Jacobian Matrix in Arbitrarily Connected Neural Networks,” IEEE Trans Ind.
Electron., vol. 55, no. 10, pp. 3784–3790. 2010.

[58] H. Yu and B. M. Wilamowski, “Efficient and reliable training of neural networks”, in ,
Catania, Italy, May 21-23, 2009, pp. 109-115.,” in Proc. 2nd IEEE Human System
Interaction Conf. HSI 2009, Catania, Italy, pp. 109–115, 2009.

[59] B. M. Wilamowski, N. Cotten, J. Hewlett, and O. Kaynak, “Neural network trainer with
second order learning algorithms”. Proc. International Conference on Intelligent
Engineering Systems,” in Proc. International Conference on Intelligent Engineering
Systems, pp. 127–132, 2007.

[60] M. T. Hagan and M. Menhaj, “Traing Feed Forward Networks with the Marquardt
Algorithm,” IEEE Trans. Neural Netw., vol. 5, pp. 989–993, 1994.

[61] Z.-W. Sun and G. Dixit, “Optimized bath control for void-free copper deposition,” Solid
State Technol., vol. 44, pp. 46–51, Nov. 2001.

[62] J. D. Adolf, “Modeling the role of plating additives in the metallization of semiconductor
interconnects: From dual damascene to through silicon vias,” Case Western University,
2011.

 95

Appendix

Appendix A. Python Script for parity 3 ELM network

import random
import numpy
import math

inputs=[[0,0,0],[0,0,1],[0,1,0],[0,1,1],[1,0,0],[1,0,1],[1,1,0],[1,1,1]]
t=[0,1,1,0,1,0,0,1]

numInputs=3
hidden=8
patterns=len(inputs)

w = numpy.zeros((numInputs,hidden))
b= numpy.zeros((hidden))

Hmatrix=numpy.zeros((patterns,hidden))
for a in range(0,numInputs):
 for c in range(0,hidden):
 w[a,c]=random.random()
 b[c]=random.random()

for k in range(0,patterns):
 nSum=0
 for i in range(0,hidden):
 nSum=0
 for j in range(0,numInputs):
 prod=inputs[k][j]*w[j][i]
 nSum=nSum+prod
 nSum=nSum+b[i]
 gNsum=1/(1+math.exp(-1*nSum))
 Hmatrix[k][i]=gNsum
Hinv=numpy.linalg.pinv(Hmatrix,rcond=1e-15)
outW=numpy.dot(Hinv,t)
print "Output Weights:\n",outW
outArray=numpy.dot(Hmatrix,outW.transpose())
print “Outputs:\n” , outArray

 96

Appendix B. Error Back Propagation (EBP) Python Script

import random
import numpy
import math

inputs=[[0,0],[0,1],[1,0],[1,1]]
outputs=[0,1,1,0]
hidden = 3 # number hidden layer neurons
numInputs = len(inputs[0]) #number of inputs
numPatterns = len(inputs) #number of input patterns
numOutpatterns = len(outputs) #number of output patterns
numOutputs = 1 #number of output neurons
k2=1 #
acc=1 #
tries=1 #number of training runs
inputs=numpy.insert(inputs,numInputs,values=1,axis=1)#add column of '1's for bias inputs
print inputs

iterations=50000 #number of iterations
sumErrors=numpy.zeros((tries))
RMSE=numpy.zeros((tries))
for t in range (0,tries):
 inputWeights = numpy.random.uniform(0, 1, (numInputs+1,hidden)) #initialize input weights

 outputWeights = numpy.random.uniform(0, 1, (hidden+1,numOutputs)) #initialize output
weights

 print_count=0
 for ite in range (0,iterations):
 sumErrors[t]=0
 print_count=print_count + 1
 net1=numpy.dot(inputs,inputWeights)#Multiply inputs and input weights
 out1=1/(1+numpy.exp(-1*k2*net1))#Hidden Layer sigmoid function output
 ip2 = numpy.insert(out1, hidden, values=1, axis=1)#add column of '1's for hidden layer bias

 net2=numpy.dot(ip2,outputWeights)#Multiply hidden layer output and hidden layer weights
 out2=1/(1+numpy.exp(-1*k2*net2))#Final outputs

 ee2=numpy.subtract(outputs,out2.T)#output error
 del2=numpy.multiply(ee2.T,numpy.multiply(1-out2,out2))#Output error gradient
multiplier
 ee1=numpy.dot(outputWeights,del2.T)#back propagated error

 ee1=numpy.delete(ee1,hidden,axis=0)#delete the bias error - not a neuron to back

 97

propagate

 del1=numpy.multiply(ee1.T,numpy.multiply((1-out1),out1))#hidden layer error gradient
multipliers

 dw2=numpy.dot(del2.T,ip2)#hidden layer delta weights
 outputWeights=numpy.add(outputWeights,dw2.T)#new output weights
 dw1=numpy.dot(del1.T,inputs)#input delta weights

 inputWeights=numpy.transpose(numpy.add(numpy.transpose(inputWeights),dw1))#new
input weights
 myErrors=numpy.transpose(ee2)#Errors
 for x in range(0,numPatterns):#Sum Squared Errors
 sumErrors[t]=sumErrors[t]+myErrors[x]**2
 #RMSE[t]=math.sqrt(sumErrors[t]/numPatterns)#Root Mean Squared Errors
 #print "Training # ",t+1,"Iteration # ",ite, "RMSE= ",RMSE[t]
 if print_count == 2000:
 print "Training # ",t+1,"Iteration # ",ite, "SSE= ",sumErrors[t]
 print_count=0
#print "RMSE=",RMSE
print "SSE= ",sumErrors
print "Output:\n",out2

 98

Appendix C. Python implementation of the Gauss-Newton algorithm

import numpy
import matplotlib.pyplot as plt

inputs = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 1]]
outputs = [0, 1, 1, 0, 1, 0, 1]

hidden = 5 # number hidden layer neurons
numInputs = len(inputs[0]) # number of inputs
numPatterns = len(inputs) # number of input patterns
numOutpatterns = len(outputs) # number of output patterns
numOutputs = 1 # number of output neurons
k2 = 0.3
tries = 300 # number of training runs
inputs = numpy.insert(inputs, numInputs, values=1, axis=1) # add column of '1's for bias inputs
iterations = 100 # number of iterations

sumErrors = numpy.zeros(tries)
del_hidden_out1 = numpy.zeros(hidden+1)
jj_element = numpy.zeros((numPatterns,((numInputs+1)*hidden)))
RMSE = numpy.zeros((tries))
newInputWeights = numpy.zeros((numInputs+1, hidden))
newOutputWeights = numpy.zeros((hidden+1, numOutputs))
jj_identity = numpy.identity(((numInputs+1)*hidden)+((hidden+1)*numOutputs))
savedite = 0
success = 0
for t in range(0, tries):
 inputWeights = numpy.random.uniform(0, 1, (numInputs+1, hidden)) # initialize input
weights
 outputWeights = numpy.random.uniform(0, 1, (hidden+1, numOutputs)) # initialize output
weights
 print_count = -1
 sumError = numpy.zeros(iterations)
 for ite in range(0,iterations):

 sumErrors[t] = 0
 print_count = print_count+1
 net1 = numpy.dot(inputs, inputWeights) # Multiply inputs and input weights
 out1 = 1/(1+numpy.exp(-1*k2*net1)) # Hidden Layer sigmoid function output
 slope = numpy.multiply(out1, (1-out1))
 ip2 = numpy.insert(out1, hidden, values=1, axis=1) # add column of '1's for hidden layer
bias
 net2 = numpy.dot(ip2, outputWeights) # Multiply hidden layer output and hidden layer
weights
 out2 = 1/(1+numpy.exp(-1*k2*net2)) # Final outputs

 99

 ee2 = numpy.subtract(outputs, out2.T) # output error
 myErrors = numpy.transpose(ee2) # Errors
 for x in range(0, numPatterns): # Sum Squared Errors
 sumErrors[t] = sumErrors[t]+myErrors[x]**2
 eesum = sumErrors
 slope_out = numpy.multiply(out2, (1-out2))
 delout = slope_out
 del_hidden_out = numpy.dot(delout, numpy.transpose(outputWeights)) # need to cut last
column from del_hidden_out & then .* the 4x3 arrays (slope*Del_hidden_out) to get input Del
 del_hidden_out_nobias = numpy.delete(del_hidden_out, hidden, axis=1) # delete the bias
error - not a neuron to back propagate
 del_input_hidden = numpy.multiply(slope, del_hidden_out_nobias)
 jj_element2 = ip2
 for x in range(0, numPatterns):
 jj_element2[x, :] *= delout[x]
 jj_element2 = jj_element2*-1
 for w in range(0, numPatterns):
 count = 0
 for x in range(0, hidden):
 for y in range (0, numInputs+1):
 jj_element[w, count] = numpy.multiply(inputs[w][y], del_input_hidden[w][x])
 count = count+1
 jj_element = jj_element*-1
 jm = numpy.append(jj_element, jj_element2, axis=1)
 jj_invert = numpy.linalg.pinv(numpy.dot(numpy.transpose(jm), jm))
 Del_weight = numpy.dot(jj_invert, numpy.dot(numpy.transpose(jm), myErrors))
 count = 0
 for y in range(0, hidden):
 for x in range(0, numInputs+1):
 newInputWeights[x][y] = inputWeights[x][y]-Del_weight[count]
 count = count+1
 for x in range(0, numOutputs):
 for y in range(0, hidden+1):
 newOutputWeights[y][x] = outputWeights[y][x]-Del_weight[count]
 count = count+1
 myErrors = numpy.transpose(ee2) # Errors
 for x in range(0, numPatterns): # Sum Squared Errors
 sumErrors[t] = sumErrors[t]+myErrors[x]**2
 inputWeights = newInputWeights
 outputWeights = newOutputWeights
 sumError[ite] = sumErrors[t]

 if sumError[ite] == sumError[ite-1]:
 plt.semilogy(sumError)
 if ite >= savedite:
 savedite = ite

 100

 break
 if sumErrors[t] <= 0.0001:
 plt.semilogy(sumError)
 if ite >= savedite:
 savedite = ite
 success = success+1
 break
 if ite >= savedite:
 savedite=ite
 print "training= ", t+1, "iteration= ", ite+1,"SSE= ", sumErrors[t]
 plt.semilogy(sumError)
 plt.ylabel('SSE')
 plt.xlabel('iterations')
 plt.xlim([0,100])

 print out2
print "Success = ",success,"out of ",tries
plt.show()

 101

Appendix D. Levenberg-Marquardt Algorithm python implementation

import numpy
import matplotlib.pyplot as plt

inputs = [[0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 1]]
outputs = [0, 1, 1, 0, 1, 0, 1]
hidden = 4 # number hidden layer neurons
numInputs = len(inputs[0]) # number of inputs
numPatterns = len(inputs) # number of input patterns
numOutpatterns = len(outputs) # number of output patterns
numOutputs = 1 # number of output neurons
k2 = 0.3
tries = 200 # number of training runs
inputs = numpy.insert(inputs, numInputs, values=1, axis=1) # add column of '1's for bias inputs
iterations = 100 # number of iterations

sumErrors = numpy.zeros(tries)
del_hidden_out1 = numpy.zeros((hidden+1))
jj_element = numpy.zeros((numPatterns, ((numInputs+1)*hidden)))
RMSE = numpy.zeros(tries)
newInputWeights = numpy.zeros((numInputs+1, hidden))
newOutputWeights = numpy.zeros((hidden+1, numOutputs))
jj_identity = numpy.identity(((numInputs+1)*hidden)+((hidden+1)*numOutputs))
savedite = 0
success = 0
for t in range(0, tries):
 inputWeights = numpy.random.uniform(0, 1, (numInputs+1, hidden)) # initialize input
weights
 outputWeights = numpy.random.uniform(0, 1, (hidden+1, numOutputs)) # initialize output
weights
 print_count = -1
 mu = 0.01
 sumError = numpy.zeros(iterations)
 for ite in range(0, iterations):
 sumErrors[t] = 0
 print_count = print_count+1
 net1 = numpy.dot(inputs, inputWeights) # Multiply inputs and input weights
 out1 = 1/(1+numpy.exp(-1*k2*net1)) # Hidden Layer sigmoid function output
 slope = numpy.multiply(out1, (1-out1))
 ip2 = numpy.insert(out1, hidden, values=1, axis=1) # add column of '1's for hidden layer
bias
 net2 = numpy.dot(ip2, outputWeights) # Multiply hidden layer output and hidden layer
weights
 out2 = 1/(1+numpy.exp(-1*k2*net2)) # Final outputs
 ee2 = numpy.subtract(outputs, out2.T) # output error

 102

 myErrors = numpy.transpose(ee2) # Errors
 for x in range(0, numPatterns): # Sum Squared Errors
 sumErrors[t] = sumErrors[t]+myErrors[x]**2
 eesum = sumErrors
 slope_out = numpy.multiply(out2, (1-out2))
 delout = slope_out
 del_hidden_out = numpy.dot(delout, numpy.transpose(outputWeights)) # need to cut last
column from del_hidden_out & then .* the 4x3 arrays (slope*Del_hidden_out) to get input Del
 del_hidden_out_nobias = numpy.delete(del_hidden_out, hidden,axis=1) # delete the bias
error - not a neuron to back propagate
 del_input_hidden = numpy.multiply(slope, del_hidden_out_nobias)
 jj_element2 = ip2
 for x in range(0, numPatterns):
 jj_element2[x, :] *= delout[x]
 jj_element2 = jj_element2*-1
 for w in range(0, numPatterns):
 count = 0
 for x in range(0, hidden):
 for y in range(0, numInputs+1):
 jj_element[w,count] = numpy.multiply(inputs[w][y], del_input_hidden[w][x])
 count = count+1
 jj_element = jj_element*-1
 jm = numpy.append(jj_element, jj_element2, axis=1)
 mu_part = mu*jj_identity
 jj_invert = numpy.linalg.pinv(numpy.dot(numpy.transpose(jm), jm)+mu_part)
 Del_weight = numpy.dot(jj_invert, numpy.dot(numpy.transpose(jm), myErrors))
 count = 0
 for y in range(0, hidden):
 for x in range(0, numInputs+1):
 newInputWeights[x][y] = inputWeights[x][y]-Del_weight[count]
 count = count+1
 for x in range(0,numOutputs):
 for y in range(0, hidden+1):
 newOutputWeights[y][x] = outputWeights[y][x]-Del_weight[count]
 count = count+1
 myErrors = numpy.transpose(ee2) # Errors
 for x in range(0,numPatterns): # Sum Squared Errors
 sumErrors[t] = sumErrors[t]+myErrors[x]**2
 pre_inputWeights = inputWeights
 pre_outputWeights = outputWeights
 inputWeights = newInputWeights
 outputWeights = newOutputWeights
 sumError[ite] = sumErrors[t]
 if ite != 0:
 if sumError[ite] >= sumError[ite-1]:
 print sumError[ite], sumError[ite-1]

 103

 inputWeights = pre_inputWeights
 outputWeights = pre_outputWeights
 mu = mu*10
 else:
 mu = mu/10
 if sumError[ite] == sumError[ite-1]:
 plt.semilogy(sumError)
 break
 if sumErrors[t] <= 0.0001:
 plt.semilogy(sumError)
 if ite >= savedite:
 savedite = ite
 success = success+1
 break

 print "training= ", t+1, "iteration= ", ite+1, "SSE= ", sumErrors[t]

 plt.semilogy(sumError)
 print out2
print "Success = ", success, "out of ", tries

plt.ylabel('SSE')
plt.xlabel('iterations')
plt.xlim([0, savedite+10])
plt.show()

 104

Appendix E. Original Plating Bath Data

Test1	
 Test2	
 Test3	
 Test4	
 Acc	
 Sup	
 Lev	

2390	
 353.5	
 1540	
 274.7	
 7	
 3	
 2	

1680	
 314.1	
 1130	
 208.1	
 7	
 3	
 3.8	

1150	
 681.7	
 763.7	
 275.4	
 1	
 1.2	
 4	

873.5	
 462.2	
 750.1	
 224.7	
 1	
 1.8	
 4	

794.8	
 350.9	
 740.5	
 195	
 1	
 2.4	
 4	

767	
 290.8	
 731.8	
 175.1	
 1	
 3	
 4	

759.6	
 252.7	
 724.4	
 161.6	
 1	
 3.6	
 4	

749.9	
 228.3	
 718.5	
 150.9	
 1	
 4.2	
 4	

740.4	
 210	
 712.2	
 143.1	
 1	
 4.8	
 4	

737.5	
 196.9	
 707.8	
 137.1	
 1	
 5.4	
 4	

734.1	
 187.2	
 702.3	
 131.4	
 1	
 6	
 4	

1290	
 603.8	
 973.6	
 267.2	
 5	
 1.2	
 5	

1260	
 434	
 947.2	
 229.4	
 5	
 1.8	
 5	

1250	
 349.1	
 928.4	
 206.2	
 5	
 2.4	
 5	

1230	
 300.4	
 914.2	
 189.6	
 5	
 3	
 5	

1230	
 269.1	
 902.8	
 177.9	
 5	
 3.6	
 5	

1220	
 246.6	
 893.6	
 169.3	
 5	
 4.2	
 5	

1210	
 229.7	
 886.6	
 162.6	
 5	
 4.8	
 5	

1200	
 217.2	
 880.3	
 157	
 5	
 5.4	
 5	

1200	
 207.5	
 873.4	
 154.2	
 5	
 6	
 5	

1390	
 281.1	
 963.1	
 174.9	
 7	
 3	
 5.6	

1220	
 255	
 871	
 154.2	
 7	
 3	
 7.4	

1110	
 232.9	
 808.4	
 139.6	
 7	
 3	
 9.2	

663.9	
 405	
 539.8	
 188.9	
 2	
 0.6	
 10	

969.6	
 437.3	
 784.3	
 214.3	
 5	
 0.6	
 10	

1470	
 438.7	
 1130	
 227.1	
 9	
 0.6	
 10	

638.1	
 313.7	
 516.7	
 160.2	
 2	
 1.2	
 10	

947.4	
 340.2	
 763.7	
 183.3	
 5	
 1.2	
 10	

1450	
 340.8	
 1110	
 198.6	
 9	
 1.2	
 10	

621.9	
 261.5	
 501.4	
 141.9	
 2	
 1.8	
 10	

930.9	
 284.8	
 750.1	
 163.5	
 5	
 1.8	
 10	

1450	
 289.6	
 1090	
 180.5	
 9	
 1.8	
 10	

610.4	
 228.2	
 490.9	
 129.6	
 2	
 2.4	
 10	

918.6	
 249.6	
 740.5	
 149.9	
 5	
 2.4	
 10	

1430	
 257.3	
 1070	
 167.6	
 9	
 2.4	
 10	

602.6	
 206	
 482.4	
 119.7	
 2	
 3	
 10	

908.3	
 226.2	
 731.8	
 139.8	
 5	
 3	
 10	

1430	
 235.3	
 1060	
 158.3	
 9	
 3	
 10	

594.7	
 190.5	
 475.6	
 112.8	
 2	
 3.6	
 10	

900.1	
 209.2	
 724.4	
 132.4	
 5	
 3.6	
 10	

1420	
 220.3	
 1050	
 151.3	
 9	
 3.6	
 10	

588	
 178.4	
 471	
 107.3	
 2	
 4.2	
 10	

 105

893.5	
 197.2	
 718.5	
 126.5	
 5	
 4.2	
 10	

1410	
 209.2	
 1040	
 145.2	
 9	
 4.2	
 10	

582.9	
 169.9	
 466.8	
 102.6	
 2	
 4.8	
 10	

887.2	
 187.7	
 712.2	
 121.7	
 5	
 4.8	
 10	

1400	
 200.7	
 1030	
 140.4	
 9	
 4.8	
 10	

578.1	
 162.4	
 463.4	
 98.7	
 2	
 5.4	
 10	

882	
 180.2	
 707.8	
 117.5	
 5	
 5.4	
 10	

1400	
 193.7	
 1020	
 136.4	
 9	
 5.4	
 10	

575.2	
 156.3	
 459.6	
 95.5	
 2	
 6	
 10	

877.2	
 173.7	
 702.3	
 114.2	
 5	
 6	
 10	

1390	
 187.7	
 1010	
 132.8	
 9	
 6	
 10	

1030	
 213.8	
 760.7	
 128.8	
 7	
 3	
 11	

971.7	
 196.2	
 722.5	
 120.3	
 7	
 3	
 12.8	

922.1	
 179.6	
 691.6	
 113.1	
 7	
 3	
 14.6	

579.9	
 357.6	
 593.5	
 247.7	
 2	
 0	
 15	

553.6	
 279.7	
 550.8	
 193.8	
 2	
 0.6	
 15	

998.4	
 262.3	
 819.8	
 153	
 7	
 0.6	
 15	

538.6	
 234.1	
 525.1	
 164.5	
 2	
 1.2	
 15	

979.2	
 231.6	
 804.3	
 139.5	
 7	
 1.2	
 15	

527.1	
 204.5	
 510.8	
 145	
 2	
 1.8	
 15	

979.2	
 201.9	
 792.7	
 128.5	
 7	
 1.8	
 15	

518.7	
 184.6	
 500.8	
 131.9	
 2	
 2.4	
 15	

969.6	
 184.9	
 783	
 120.4	
 7	
 2.4	
 15	

349.8	
 144.3	
 313.8	
 90.3	
 0.5	
 3	
 15	

422.5	
 147.6	
 376.3	
 93.5	
 1.3	
 3	
 15	

512.2	
 171.3	
 491.9	
 122.1	
 2	
 3	
 15	

501.4	
 150.2	
 437.2	
 96.4	
 2.1	
 3	
 15	

578.8	
 152.2	
 497.4	
 99	
 2.9	
 3	
 15	

661	
 154.1	
 557.5	
 102.2	
 3.7	
 3	
 15	

740.8	
 157.1	
 616.4	
 105.4	
 4.5	
 3	
 15	

820.7	
 160	
 674.9	
 108.5	
 5.3	
 3	
 15	

902.8	
 162.4	
 731.6	
 111.7	
 6.1	
 3	
 15	

981.8	
 164.3	
 788.3	
 114.6	
 6.9	
 3	
 15	

960	
 171	
 775.8	
 114.5	
 7	
 3	
 15	

1060	
 167.6	
 845.6	
 117.6	
 7.7	
 3	
 15	

1150	
 169.5	
 900.6	
 121	
 8.5	
 3	
 15	

507	
 160.3	
 484.7	
 114.9	
 2	
 3.6	
 15	

959.8	
 160.4	
 768.9	
 109.7	
 7	
 3.6	
 15	

502.5	
 152.4	
 478.7	
 108.8	
 2	
 4.2	
 15	

952.5	
 152.9	
 762.9	
 105.6	
 7	
 4.2	
 15	

498.4	
 145.5	
 473.5	
 104.2	
 2	
 4.8	
 15	

947.7	
 146.7	
 756.8	
 101.8	
 7	
 4.8	
 15	

495	
 140	
 468.9	
 100.1	
 2	
 5.4	
 15	

942.7	
 142.4	
 751.6	
 98.9	
 7	
 5.4	
 15	

492.2	
 135.1	
 464.7	
 96.9	
 2	
 6	
 15	

 106

937.3	
 137.8	
 747.7	
 95.9	
 7	
 6	
 15	

880.1	
 168.7	
 665.6	
 107	
 7	
 3	
 16.4	

842.1	
 159.4	
 643.1	
 102	
 7	
 3	
 18.2	

1050	
 211.5	
 886.8	
 138	
 9	
 0.6	
 20	

1040	
 189.8	
 877	
 128.7	
 9	
 1.2	
 20	

1030	
 175.1	
 868.3	
 121.5	
 9	
 1.8	
 20	

1020	
 164.9	
 860.1	
 116.1	
 9	
 2.4	
 20	

816.3	
 150.8	
 625	
 97.3	
 7	
 3	
 20	

1010	
 157.1	
 852.9	
 111.8	
 9	
 3	
 20	

1010	
 150.5	
 846.1	
 108.2	
 9	
 3.6	
 20	

1000	
 145.6	
 840.6	
 104.9	
 9	
 4.2	
 20	

997.9	
 140.9	
 835.2	
 102.7	
 9	
 4.8	
 20	

990.5	
 137.5	
 829.8	
 100.4	
 9	
 5.4	
 20	

986.3	
 134.7	
 824.7	
 98.6	
 9	
 6	
 20	

