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Abstract

This dissertation is devoted to the existence, regularity, stability and uniqueness of

transition fronts in nonlocal bistable equations in time heterogeneous media.

Instead of existence, we start our study with qualitative properties. We first show that

any transition front must be regular in space and propagates to the right with a continuously

differentiable interface location function; this is also true in space-time heterogeneous media.

We then turn to the study of space nonincreasing transition fronts and prove various

important properties such as uniform steepness, stability, uniform stability, exponential de-

caying estimates and so on.

Moreover, we show that any transition front, after certain space shift, coincides with a

space nonincreasing transition front, verifying the uniqueness, up to space shifts, of transition

fronts, and hence, all transition fronts satisfy just mentioned qualitative properties.

Also, we show that a transition front must be a periodic traveling wave in time periodic

media and the asymptotic speeds of transition fronts exist in time uniquely ergodic media.

Finally, we prove the existence of space nonincreasing transition fronts by constructing

appropriate approximating front-like solutions with regularities; this is done under certain

additional assumptions.
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Chapter 1

Introduction

This dissertation is devoted to the study of front propagation phenomenon in nonlocal

bistable equations in time heterogeneous media of the form

ut = J ∗ u− u+ f(t, u), (t, x) ∈ R× R, (1.1)

where t is the time variable, x is the space variable, u(t, x) is the unknown function, J is the

dispersal kernel with [J ∗ v](x) =
∫
R J(x− y)v(y)dy =

∫
R J(y)v(x− y)dy, and the nonlinear

term f(t, u) is of bistable type.

In equation (1.1), the dispersal operator defined by v 7→ J ∗ v − v on proper function

spaces is a nonlocal analog of the classical random dispersal operator, i.e., the Laplacian ∂xx,

and hence, equation (1.1) is the nonlocal analog of the classical reaction-diffusion equation

ut = uxx + f(t, u), (t, x) ∈ R× R. (1.2)

In fact, if we consider the rescaled dispersal kernel J ε(x) = 1
ε
J(x

ε
), then using Taylor expan-

sion, it is not hard to see that the operator v 7→ J ε∗v−v is quite close to ∂xx up to some scale

multiplication for all small ε > 0. It is known that the Laplacian ∂xx is very successful in

modeling Brownian motion based continuous diffusive processes. But, in many applications,

diffusion may not be continuous (see e.g. [22, 17, 25, 26, 32, 46, 62]), and hence, it is no

longer suitable to use the Laplacian to model diffusive processes with jumps; it is where the

nonlocal dispersal operator comes into play.

A time-independent function f(u) being of bistable type means that there exist three

zeros u− < u∗ < u+ of f(u) such that f(u) < 0 for u ∈ (u−, u∗) and f(u) > 0 for u ∈ (u∗, u+).
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Figure 1.1: Bistable Nonlinearities

In applications, the values of f(u) for u /∈ [u−, u+] are irrelevant. A time-dependent function

f(t, u) being of bistable type roughly means that for each t, f(t, u) is of bistable type as

a function of u. See Figure 1.1. Bistable nonlinearities arise in many scientific areas. In

population dynamics, they correspond to the well-known phenomenon called Allee effect,

after Warder C. Allee (see e.g. [2]), saying that the population grows logistically, while the

reverse holds when the density is low. They also appear in the Fitzhugh-Nagumo model

(more generally, the Hodgkin-Huxley model) describing the propagation of signals (see e.g.

[29, 30, 34, 55]), as well as in phase transition models such as Allen-Cahn equation (see e.g.

[3, 4]).

Motivated by application problems, the central problem concerning equations (1.1) and

(1.2) is to understand the asymptotic dynamics of solutions with front-like or compactly

supported initial data. This problem is then usually reduced to finding special solutions

and studying their stability. Special solutions of particular interest are traveling waves

(i.e., solutions of the form u(t, x) = φ(x − ct)) in homogeneous media, i.e., f(t, u) = f(u),

and transition fronts (proper generalizations of traveling waves) in heterogeneous media.

Results concerning equation (1.2) are quite complete in the literature. In the homogeneous

media, traveling waves as well as their stability and uniqeness have been established (see e.g.

[5, 6, 27]). In the time periodic media, periodic traveling waves as well as their stability and

uniqueness have been established in [1]. In the time heterogeneous media, transition fronts
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as well as their stability and uniqueness have been established (see [63, 64, 65, 66]). There

are also sharp transition phenomena in equation (1.2) (see [24, 59, 83]).

Due to the resemblance between (1.1) and (1.2), it is very natural to ask whether

we can establish all the corresponding results for (1.1). However, this is not an easy job

and results concerning (1.1) are far from enough. In fact, all we know about (1.1) in the

literature is the existence, stability and uniqueness of traveling waves in the homogenous

media (see [7, 15]). The main difficulty in treating equation (1.1) is caused by the lack of

space regularity, since the semigroup generated by the nonlocal dispersal operator does not

have regularizing effect. The lack of local comparison principle in nonlocal equations also

causes lots of technical difficulties.

This dissertation is devoted to the existence, regularity, stability and uniqueness of

transition fronts connecting 0 and 1 in nonlocal bistable equations in time heterogeneous

media. By a transtion front connecting 0 and 1, we mean a global-in-time continuous solution

u(t, x) of (1.1) such that u(t, x) ∈ (0, 1) for all (t, x) ∈ R × R and there exists an interface

location function X : R→ R such that

lim
x→−∞

u(t, x+X(t)) = 1 and lim
x→∞

u(t, x+X(t)) = 0 uniformly in t ∈ R.

Instead of existence, we start our study with qualitative properties. We first prove the

space regularity of transition front, that is,

• space regularity: any transition front u(t, x) must be continuously differentiable in

x and propagates to the right with a continuously differentiable interface location

function X(t), i.e., inft∈R Ẋ(t) > 0.

We then turn to the study of space nonincreasing transition fronts and prove various

important properties:
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• uniform steepness: space derivative of the profile function u(t, x + X(t)) is negative

uniformly in the time variable and locally uniformly in the space variable, that is, for

any M > 0, sup|x|≤M ux(t, x+X(t)) < 0;

• stability: the transition front exponentially attracts solutions with front-like initial

data, that is, if the intial data u0 : R → [0, 1] is such that u(x) → 1 as x → −∞

and u(x) → 0 as x → ∞, then there exists some t0 ∈ R and ξ ∈ R such that

supx∈R |u(t, x; t0, u0)− u(t, x+ ξ)| → 0 exponentially as t→∞;

• exponential decaying estimates: the profile function u(t, x + X(t)) approaches to 1

exponentially as x→ −∞ and to 0 exponentially as x→∞, uniformly in t ∈ R.

Moreover, we show the uniqness of transition fronts, that is,

• uniqueness: any transition front, after certain space shift, coincides with a space non-

increasing transition front (if exists), verifying the uniqueness, up to space shifts, of

transition fronts, and hence, all transition fronts satisfy just mentioned qualitative

properties.

Also, we show that

• a transition front must be a periodic traveling wave in time periodic media and the

asymptotic speeds of transition fronts exist in time uniquely ergodic media.

Finally, we prove

• the existence of space nonincreasing transition fronts by constructing appropriate ap-

proximating front-like solutions with regularities; this is done under certain additional

assumptions.

Besides the study of transition fronts in time heterogeneous media of bistable type, it

is also important to study transition fronts in space heterogeneous media of bistable type,
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that is, the equations

ut = uxx + f(x, u) and ut = J ∗ u− u+ f(x, u),

where f(x, u) is bistable in u for each x ∈ R. However, much less is known in this case (see

[12, 31, 56, 23]) because of the wave-blocking phenomenon (see [42]).

Also, there are lots of study of the equations

ut = uxx + f(t, x, u) (1.3)

ut = J ∗ u− u+ f(t, x, u) (1.4)

in the monostable case and ignition case. Here, we just collect some existing results in the

literature.

For equation (1.3), we refer to [5, 6, 27, 28, 35, 36, 37, 38, 39, 40, 78, 82] and references

therein for works in the homogeneous media, i.e., f(t, x, u) = f(u). We refer to [9, 23, 47,

48, 52, 56, 57, 77, 79, 84] and references therein for works in the space heterogeneous media,

i.e., f(t, x, u) = f(x, u), and to [1, 53, 63, 64, 66, 67, 69, 70] and references therein for works

in the time heterogeneous media, i.e., f(t, x, u) = f(t, x). There are also some works in the

space-time heterogeneous media (see e.g. [41, 43, 44, 50, 51, 65, 68, 79]), but it remains

widely open.

For equation (1.4), we refer to [7, 13, 15, 18, 19, 20, 61] and references therein for works

in homogeneous media. The study of (1.4) in the heterogeneous media is rather recent and

results concerning front propagation are very limited. In [21, 73, 74, 75], the authors inves-

tigated (1.4) in the space periodic monostable media and proved the existence of spreading

speeds and periodic traveling waves. In [60], Rawal, Shen and Zhang studied the existence of

spreading speeds and traveling waves of (1.4) in the space-time periodic monostable media.

For (1.4) in the space heterogeneous monostable media, Berestycki, Coville and Vo studied
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in [8] the principal eigenvalue, positive solution and long-time behavior of solutions, while

Lim and Zlatoš proved in [45] the existence of transition fronts. For (1.4) in the time het-

erogeneous media of ignition type, the authors of the present paper proved in [71, 72] the

existence, regularity and stability of transition fronts.

The rest of the dissertation is organized as follows. In Chapter 2, we collect the main

results obtained in this dissertation. In Chapter 3, we study the space regularity and prop-

agation of transition fronts of, in particular, equation (1.1). In Chapter 4, we focus our

study on space nonincreasing transition fronts of equation (1.1). We show that any space

nonincreasing transition front enjoys uniform steepness, stability, uniform stability and ex-

ponential decaying estimates. In Chapter 5, we show that any transition front of equation

(1.1), after certain space shift, coincides with a space nonincreasing transition front (if ex-

ists). In particular, any transtion front enjoys uniform steepness, stability, uniform stability

and exponential decaying estimates. In Chapter 6, under the additional time periodic as-

sumption on the nonlinearity, we show that any transition front must be a periodic traveling

wave. In Chapter 7, under the assumption that the nonlinearity f(t, u) is compact and

uniquely ergodic, in the sense that the dynamical systems defined by shift operators on the

hull of f(t, u), is compact and uniquely ergodic, we show that the asymptotic speeds of

transition fronts exist. In Chapter 8, we prove the existence of transition fronts. In Chapter

9, we make some remarks about the results obtained in the dissertation and mention some

open problems along the line. We end the dissertation with two appendices: one on bistable

traveling waves, and the other on comparison principles.
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Chapter 2

Main results

For the moment, let us consider the following equation in space-time heterogeneous

media

ut = J ∗ u− u+ f(t, x, u), (t, x) ∈ R× R (2.1)

with f(t, x, 0) = 0 = f(t, x, 1) for all (t, x) ∈ R × R. In this dissertation, we focus on the

transition fronts of (2.1) connecting 0 and 1. Recall

Definition 2.1. A global-in-time continuous solution u(t, x) of (2.1) is called a transition

front (connecting 0 and 1) in the sense of Berestycki-Hamel (see [10, 11], also see [63, 64]) if

u(t, x) ∈ (0, 1) for all (t, x) ∈ R×R and there exists a function X : R→ R, called interface

location function, such that

lim
x→−∞

u(t, x+X(t)) = 1 and lim
x→∞

u(t, x+X(t)) = 0 uniformly in t ∈ R.

We see that Definition 2.1 is equivalent to: a global-in-time continuous solution u(t, x)

of (2.1) is called a transition front if u(t,−∞) = 1 and u(t,∞) = 0 for any t ∈ R, and for

any ε ∈ (0, 1) there holds

sup
t∈R

diam{x ∈ R|ε ≤ u(t, x) ≤ 1− ε} <∞.

This equivalent definition specifies the bounded interface width. We remark that neither the

definition of transition front nor the equation (2.1) itself guarantees any space regularity of

transition fronts beyond continuity. This lack of space regularity causes lots of troubles in

studying transition fronts in nonlocal equations for that
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• approximating solutions may not have a limit even bounded interface width can be

verified;

• qualitative properties of transition fronts can hardly be reached.

Now, let us focus on equation (2.1) in the space-time heterogeneous media of bistable

type, i.e.,

ut = J ∗ u− u+ f(t, x, u), (t, x) ∈ R× R, (2.2)

where the convolution kernel J and the nonlinearity f are assumed to satisfy Hypothesis

2.1, Hypothesis 2.2 and Hypothesis 2.3, where

Hypothesis 2.1. J : R → R satisfies J 6≡ 0, J ∈ C1, J(x) = J(−x) ≥ 0 for all x ∈ R,∫
R J(x)dx = 1, and

∫
R
J(x)eγxdx <∞,

∫
R
|J ′(x)|eγxdx <∞, ∀γ ∈ R.

Hypothesis 2.2. There exist C2(R) functions fB : [0, 1]→ R and fB̃ : [0, 1]→ R such that

fB(u) ≤ f(t, x, u) ≤ fB̃(u), (t, x, u) ∈ R× R× [0, 1].

Moreover, the following conditions hold:

• f : R× R× [0, 1]→ R is continuously differentiable in x and u, and satisfies

sup
(t,x,u)∈R×R×[0,1]

|fx(t, x, u)| <∞ and sup
(t,x,u)∈R×R×[0,1]

|fu(t, x, u)| <∞;

• fB is of standard bistable type, that is, fB(0) = fB(θ) = fB(1) = 0 for some θ ∈ (0, 1),

fB(u) < 0 for u ∈ (0, θ), fB(u) > 0 for u ∈ (θ, 1) and
∫ 1

0
fB(u)du > 0;

• fB̃ is also of standard bistable type, that is, fB̃(0) = fB̃(θ̃) = fB̃(1) = 0 for some

θ̃ ∈ (0, 1), fB̃(u) < 0 for u ∈ (0, θ̃) and fB̃(u) > 0 for u ∈ (θ̃, 1).
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Hypothesis 2.3. There exist 0 < θ0 < θ̃ ≤ θ < θ1 < 1 such that

fu(t, x, u) ≤ 0, u ∈ [0, θ0] and fu(t, x, u) ≤ 0, u ∈ [θ1, 1].

for all (t, x) ∈ R× R.

Hypothesis 2.1 is a basic assumption on the dispersal kernel J . Hypothesis 2.2 is about

the uniform bistability. In particular, we require
∫ 1

0
fB(u)du > 0. Notice θ̃ ≤ θ. But, since it

could happen θ̃ < θ, f(t, x, u) may not be of standard type for fixed (t, x) ∈ R. Hypothesis

2.3 is about the uniform stability of constant solutions 0 and 1. We will take Hypothesis

2.1, Hypothesis 2.2 and Hypothesis 2.3 as standard assumptions in the present dissertation.

Note that we allow degeneracy at 0, 1 and other possible zeros. For different purposes, we

will need enhanced verions of Hypothesis 2.2 and Hypothesis 2.3.

Instead of trying to prove the existence of transition fronts for equation (2.2), we start

with various important qualitative properties of transition fronts, since this can be done in

a more general setting.

Our first result concerning the space regularity and propagation of transition fronts of

equation (2.2) is stated in the following

Theorem 2.2. Suppose Hypothesis 2.1, Hypothesis 2.2 and Hypothesis 2.3. Let u(t, x) be

an arbitrary transition front of equation (2.2) and X(t) be its interface location function.

Then,

(i) u(t, x) is regular in space, that is, for any t ∈ R, u(t, x) is continuously differentiable

in x and satisfies sup(t,x)∈R×R |ux(t, x)| <∞;

(ii) there exists a continuously differentiable function X̃ : R→ R satisfying cmin ≤ ˙̃X(t) ≤

cmax for some 0 < cmin ≤ cmax <∞ such that supt∈R |X(t)− X̃(t)| <∞.

As it is known, space regularity of transition fronts is not a problem at all in the reaction-

diffusion equation, but it is a big problem in the nonlocal equation (2.2), since the semigroup
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generated by the dispersal kernel J lacks of regularizing effects. But, in order to further study

various imporant properties, such as stability and uniqueness, we need the space regularity

to ensure the applicability of various techiniques for reaction-diffusion equations to nonlocal

equations.

The proof of (i) in Theorem 2.2 relies on two things: rightward propagation estimates,

and transition fronts being global-in-time. The rightward propagation estimates can be

established due to the uniform bistability, i.e.,
∫ 1

0
fB(u)du > 0 in Hypothesis 2.2, which

forces all front-like solutions to move to the right with their speeds controled from below

by bistable traveling waves. Due to the rightward propagation estimates, we find that for

any fixed x, only in certain period, the term
∣∣u(t,x+η)−u(t,x)

η

∣∣ may grow, which ensures the

boundedness in the long run. But, there’s another problem: lack of a priori information on

transition fronts, since we are treating transition fronts. This lack of a priori information

directly causes the boundedness problems of
∣∣u(t0,x+η)−u(t0,x)

η

∣∣ as η → 0 at the initial time

t0. This is where the fact that transition fronts are global-in-time comes into play and helps

out. The proof of (ii) in Theorem 2.2 is based on the rightward propagation estimates and

a modification process. The fact that ˙̃X(t) does not change its sign plays an important role

in stability analysis.

We remark that the results in (i) in Theorem 2.2 are also true for equation (2.2) with

ignition nonlinearities and some monostable nonlinearities; see Corollary 3.7 for more details.

With the understanding that all transition fronts are regular in space, we then turn to

the study of various important qualitative properties, such as stability and uniquenss, of

transition fronts of equation (2.2) in time heterogeneous media, i.e.,

ut = J ∗ u− u+ f(t, u), (t, x) ∈ R× R. (2.3)

To do so, we need an enhanced version of Hypothesis 2.3 in the case f(t, x, u) = f(t, u),

that is,
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Hypothesis 2.4. There exist 0 < θ0 < θ̃ ≤ θ < θ1 < 1 and β0 > 0, β1 > 0 such that

fu(t, u) ≤ −β0, u ∈ (−∞, θ0] and fu(t, u) ≤ −β1, u ∈ [θ1,∞)

for all (t, x) ∈ R× R.

We remark that the values of f(t, u) for u /∈ [0, 1] plays no role in studying transtion

fronts between 0 and 1. We prove

Theorem 2.3. Suppose Hypothesis 2.1, Hypothesis 2.2 and Hypothesis 2.4. Suppose, in

addition, equation (2.3) admits a space decreasing transition front. Let u(t, x) be an arbitrary

transition front of equation (2.3) and X(t) be its interface location function. Then, the

following statements hold:

(i) monotonicity: for any t ∈ R, u(t, x) is decreasing in x;

(ii) uniform steepness: for any M > 0, there holds supt∈R sup|x−X(t)|≤M ux(t, x) < 0;

(iii) stability: let u0 : R→ [0, 1] be uniform continuous and satisfy

lim inf
x→−∞

u0(x) > θ1 and lim sup
x→∞

u0(x) < θ0,

and, u(t, x; t0, u0) be the solution of (2.3) with initial data u(t0, ·; t0, u0) = u0. Then,

there exist t0 = t0(u0) ∈ R, ξ = ξ(u0) ∈ R, C = C(u0) > 0 and ω∗ > 0 (independent of

u0) such that

sup
x∈R
|u(t, x; t0, u0)− u(t, x− ξ)| ≤ Ce−ω∗(t−t0)

for all t ≥ t0;

(iv) uniform stability: let {ut0}t0∈R be a family of initial data satisfying

u(t0, x− ξ−0 )− µ0 ≤ ut0(x) ≤ u(t0, x− ξ+
0 ) + µ0, x ∈ R, t0 ∈ R
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for ξ±0 ∈ R and µ0 ∈ (0,min{θ0, 1 − θ1}) being independent of t0 ∈ R. Then, there

exist t0-independent constants C > 0 and ω∗ > 0, and a family of shifts {ξt0}t0∈R ⊂ R

satisfying supt0∈R |ξt0| <∞ such that

sup
x∈R
|u(t, x; t0, ut0)− u(t, x− ξt0)| ≤ Ce−ω∗(t−t0)

for all t ≥ t0 and t0 ∈ R;

(v) exponential decaying estimates: there exist two exponents c± > 0 and two shifts h± > 0

such that

u(t, x+X(t) + h+) ≤ e−c+x and u(t, x+X(t)− h−) ≥ 1− ec−x

for all (t, x) ∈ R× R;

(vi) uniqueness: if v(t, x) is another transition front of (2.3), then there exists a shift ξ ∈ R

such that v(t, x) = u(t, x+ ξ) for all (t, x) ∈ R× R;

(vii) periodicity: if, in addition, f(t, u) is periodic in t, then u(t, x) is a periodic traveling

wave;

(viii) asymptotic speeds: if, in addition, f(t, u) is compact and uniquely ergodic, then limt→±∞
X(t)
t

exist.

Let us explain the strategies for proving Theorem 2.3. The proof of Theorem 2.3 starts

with the verification of stability as in (iii). But, to prove the stability, we need the uniform

steepness as in (ii), which however can not be checked for an arbitrary transition front.

Hence, instead of trying to study an arbitrary transition front, we focus on an arbitrary

space nonincreasing transition front for the moment. We then show that an arbitrary space

nonincreasing transition front is uniformly steep as in (ii), which, together with the results

in Theorem 2.2, allow us to establish the stability, the uniform stability and the exponential
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decaying estimates as in (iii), (iv) and (v), respectively, for this space nonincreasing transition

front. Then, using the uniform stability of space nonincreasing transition fronts, we prove

that an arbitrary transition front coincides with an space nonincreasing transition front, up

to a space shift, and hence, any transition front satisfies (i)-(vi) in Theorem 2.3. Finally, we

show (vii) and (viii) in Theorem 2.3. It is referred to Section 7 for the definition of f(t, u)

being compact and uniquely ergodic.

Finally, we investigate the existence of transition fronts of (2.3). To do so, we replace

Hypothesis 2.2 by

Hypothesis 2.5. There exist C2(R) functions fB : [0, 1]→ R and fB̃ : [0, 1]→ R such that

fB(u) ≤ f(t, u) ≤ fB̃(u), (t, u) ∈ R× [0, 1].

Moreover, the following conditions hold:

• f : R× [0, 1]→ R is continuously differentiable and satisfies

sup
(t,u)∈R×[0,1]

|ft(t, u)| <∞ and sup
(t,u)∈R×[0,1]

|fu(t, u)| <∞;

• fB satisfies fB(0) = fB(θ) = fB(1) = 0 for some θ ∈ (0, 1), fB(u) < 0 for u ∈ (0, θ),

fB(u) > 0 for u ∈ (θ, 1), f ′B(1) < 0 and
∫ 1

0
fB(u)du > 0;

• fB̃ satisfies fB̃(0) = fB̃(θ) = fB̃(1) = 0, fB̃(u) < 0 for u ∈ (0, θ) and fB̃(u) > 0 for

u ∈ (θ, 1).

The requirement fB(θ) = 0 = fB̃(θ) in Hypothesis 2.5 is a little restrictive; see (i) in

Section 9 for a possible variation. We prove

Theorem 2.4. Suppose Hypothesis 2.1, Hypothesis 2.5 and Hypothesis 2.3. Then, equation

(2.3) admits a transition front.

13



Clearly, the transition front obtained in Theorem 2.4 must satisfy all properties in

Theorem 2.2 and Theorem 2.3. The proof of Theorem 2.4 is constructive. We first construct

approximating front-like solutions. However, due to the lack of space regularity in nonlocal

equations, it is not clear that the approximating solutions will converge to some solution

of (2.2). Also even if they do converge to some solution, it is difficult to see that the

limiting solution is a transition front. We then first establish the uniform boundedness of

the interface width and uniform decaying estimates of approximating solutions, which assure

the limiting solution (if exists) is a transition front. Then, we show the uniform Lipschitz

continuity in space of the approximating solutions, which of course implies the convergence

of the approximating solutions thanks to Arzelà-Ascoli theorem. We have used this strategy

to construct transition fronts in nonlocal equation in time heterogeneous media of ignition

type (see [71]).

We point out that the transition front obtained in Theorem 2.4 through the approxi-

mating process is only uniformly Lipschitz continuous in space. Of course, we can then apply

Theorem 2.2 to conclude the space regularity. Here, we want to mention another approach

to space regularity, that is, putting more conditions on the nonlinearity f to ensure that the

approximating solutions have more regularity in space. This approach has been used in [72]

to the nonlocal equation in time heterogeneous media of ignition type.
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Chapter 3

Properties of transition fronts in space-time heterogenerous media

In this chapter, we study some general properties, especially the space regularity, of

arbitrary transition fronts of equation (2.2). Throughout this section, we assume Hypothesis

2.1, Hypothesis 2.2 and Hypothesis 2.3.

In what follows in this section, u(t, x) will be an arbitrary transition front with the

interface location function X(t) (see Definition 2.1).

In this section, we first establish in Section 3.1 the rightward propagation estimate of

the transition front u(t, x), that is, it travels from the left infinity to the right infinity with

certain speed in the average sense. We then use this propagation estimate to prove the space

regularity, i.e., (i) in Theorem 2.2, in Section 3.2. We remark that our arguments for the

space regularity can be applied to ignition nonlinearities and some monostable nonlinearities

(see Remark 3.6 for more details). Finally, in Section 3.3, we use the rightward propagation

estimate to find a modification of X(t), which is of great technical importance.

3.1 Rightward propagation estimates

In this section, we study the rightward propagation of u(t, x). For λ ∈ (0, 1), let X−λ (t)

and X+
λ (t) be the leftmost and rightmost interface locations at λ, that is,

X−λ (t) = min{x ∈ R|u(t, x) = λ} and X+
λ (t) = max{x ∈ R|u(t, x) = λ}. (3.1)

Trivially, X−λ (t) ≤ X+
λ (t) and X±(t) are decreasing in λ. By the continuity of u(t, x) in x,

there holds u(t,X−λ (t)) = λ = u(t,X+
λ (t)). But, due to the nonlocality, it is not sure whether

X±(t) are continuous in t.
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From the definition of transition fronts, we have the following simple lemma.

Lemma 3.1. The following statements hold:

(i) for any 0 < λ1 ≤ λ2 < 1, there holds supt∈R[X+
λ1

(t)−X−λ2
(t)] <∞;

(ii) for any λ ∈ (0, 1), there hold supt∈R |X(t)−X±λ (t)| <∞.

Proof. (i) By the uniform-in-t limits limx→−∞ u(t, x+X(t)) = 1 and limx→∞ u(t, x+X(t)) =

0, there exist x1 and x2 such that u(t, x+X(t)) > λ2 for all x ≤ x2 and u(t, x+X(t)) < λ1 for

all x ≥ x1. It then follows from the definition of X−λ2
(t) and X+

λ1
(t) that x2 +X(t) ≤ X−λ2

(t)

and x1 +X(t) ≥ X+
λ1

(t). The result then follows.

(ii) Let λ1 = λ = λ2 in the proof of (i), we have x2 + X(t) ≤ X−λ (t) and x1 + X(t) ≥

X+
λ (t). In particular,

x2 +X(t) ≤ X−λ (t) ≤ X+
λ (t) ≤ x1 +X(t).

This completes the proof.

The next result gives the rightward propagation of u(t, x) in terms of X(t).

Theorem 3.2. There exist cavg
max ≥ cavg

min > 0 and T avg
min, T

avg
max > 0 such that

cavg
min(t− t0 − T avg

min) ≤ X(t)−X(t0) ≤ cavg
max(t− t0 + T avg

max), t ≥ t0.

Proof. We here only prove the first inequality; the second one can be proven along the

same line due to the bistability. Fix some λ ∈ (θ, 1). We write X−(t) = X−λ (t). Since

supt∈R |X(t)−X−(t)| <∞ by Lemma 3.1, it suffices to show

X−(t)−X−(t0) ≥ c(t− t0 − T ), t ≥ t0 (3.2)

for some c > 0 and T > 0.
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Let (cB, φB) with cB > 0 be the unique solution of


J ∗ φ− φ+ cφx + fB(φ) = 0,

φx < 0, φ(0) = θ, φ(−∞) = 1 and φ(∞) = 0.

See Appendix A for more properties about φB.

Let u0 : R → [0, 1] be a uniformly continuous and nonincreasing function satisfying

u0(x) = λ for x ≤ x0 and u0(x) = 0 for x ≥ 0, where x0 < 0 is fixed. Since X−(t) is the

leftmost interface location at λ, we see that for any t0 ∈ R, there holds u(t0, x+X−(t0)) ≥

u0(x) for all x ∈ R, and then, by f(t, x, u) ≥ fB(u) and the comparison principle, we find

u(t, x+X−(t0)) ≥ uB(t− t0, x;u0), x ∈ R, t ≥ t0,

where uB(t, x;u0) is the unique solution to ut = J ∗ u − u + fB(u) with uB(0, ·;u0) = u0.

By the choice of u0 and the stability of bistable traveling waves (see Lemma A.2), there are

constants xB = xB(λ) ∈ R, qB = qB(λ) > 0 and ωB > 0 such that

uB(t− t0, x;u0) ≥ φB(x− xB − cB(t− t0))− qBe−ωB(t−t0), x ∈ R, t ≥ t0.

Hence,

u(t, x+X−(t0)) ≥ φB(x− xB − cB(t− t0))− qBe−ωB(t−t0), x ∈ R, t ≥ t0.

Let T0 = T0(λ) > 0 be such that qBe
−ωBT0 = 1−λ

2
and denote by ξB(1+λ

2
) the unique point

such that φB(ξB(1+λ
2

)) = 1+λ
2

. Setting x∗ = xB + cB(t − t0) + ξB(1+λ
2

), the monotonicity of

φB implies that for all t ≥ t0 + T0 and x < x∗

u(t, x+X−(t0)) > φB(x∗ − xB − cB(t− t0))− qBe−ωBT0 = φB(ξB(
1 + λ

2
))− qBe−ωBT0 = λ.
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This says x∗ +X−(t0) ≤ X−(t) for all t ≥ t0 + T0, that is,

X−(t)−X−(t0) ≥ xB + cB(t− t0) + ξB(
1 + λ

2
), t ≥ t0 + T0. (3.3)

We now estimate X−(t) − X−(t0) for t ∈ [t0, t0 + T0]. We claim that there exists

z = z(T0) < 0 such that

X−(t)−X−(t0) ≥ z, t ∈ [t0, t0 + T0]. (3.4)

Let uB(t, x;u0) and uB(t;λ) := uB(t, x;λ) be solutions of ut = J ∗ u − u + fB(u) with

uB(0, x;u0) = u0(x) and uB(0;λ) = uB(0, x;λ) ≡ λ, respectively. By the comparison prin-

ciple, we have uB(t, x;u0) < uB(t;λ) for all x ∈ R and t > 0, and uB(t, x;u0) is strictly

decreasing in x for t > 0.

We see that for any t > 0, uB(t,−∞;u0) = uB(t;λ). This is because that d
dt
uB(t,−∞;u0) =

fB(uB(t,−∞;u0)) for t > 0 and uB(0,−∞;u0) = λ. Since λ ∈ (θ, 1), as a solution of the

ODE ut = fB(u), uB(t;λ) is strictly increasing in t, which implies that uB(t,−∞;u0) =

uB(t;λ) > λ for t > 0. As a result, for any t > 0 there exists a unique ξB(t) ∈ R such that

uB(t, ξB(t);u0) = λ. Moreover, ξB(t) is continuous in t.

Since f(t, x, u) ≥ fB(u) and u(t0, · + X−(t0)) ≥ u0, the comparison principle implies

that

u(t, x+X−(t0)) > uB(t− t0, x;u0), x ∈ R, t > t0.

Setting x∗∗ = ξB(t− t0), we find u(t, x+X−(t0)) > λ for all x < x∗∗ by the monotonicity of

uB(t, x;u0) in x, which implies that X−(t) ≥ x∗∗ +X−(t0) = ξB(t− t0) +X−(t0) for t > t0.

Thus, (3.4) follows if inft∈(t0,t0+T0] ξB(t− t0) > −∞, that is,

inf
t∈(0,T0]

ξB(t) > −∞. (3.5)
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We now show (3.5). Since u0(x) = λ for x ≤ x0, continuity with respect to the initial

data (in sup norm) implies that for any ε > 0 there exists δ > 0 such that

uB(t;λ)− λ ≤ ε and sup
x≤x0

[uB(t;λ)− uB(t, x;u0)] = uB(t;λ)− uB(t, x0;u0) ≤ ε

for all t ∈ [0, δ], where the equality is due to monotonicity. By Hypothesis 2.1, J concentrates

near 0 and decays very fast as x → ±∞. Thus, we can choose x1 = x1(ε) << x0 such that∫ x0

−∞ J(x− y)dy ≥ 1− ε for all x ≤ x1. Now, for any x ≤ x1 and t ∈ (0, δ], we have

d

dt
uB(t, x;u0) =

∫
R
J(x− y)uB(t, y;u0)dy − uB(t, x;u0) + fB(uB(t, x;u0))

≥
∫ x0

−∞
J(x− y)uB(t, y;u0)dy − uB(t, x;u0) + fB(uB(t, x;u0))

≥ (1− ε) inf
x≤x0

uB(t, x;u0)− uB(t;λ) + fB(uB(t, x;u0))

= −(1− ε) sup
x≤x0

[uB(t;λ)− uB(t, x;u0)]− εuB(t;λ) + fB(uB(t, x;u0))

≥ −ε(1− ε)− ε(λ+ ε) + fB(uB(t, x;u0)) > 0

if we choose ε > 0 sufficiently small, since then fB(uB(t, x;u0)) is close to fB(λ), which is

positive. This simply means that uB(t, x;u0) > λ for all x ≤ x1 and t ∈ (0, δ], which implies

that ξB(t) > x1 for t ∈ (0, δ]. The continuity of ξB then leads to (3.5). This proves (3.4).

(3.2) then follows from (3.3) and (3.4). This completes the proof.

As a simple consequence of Theorem 3.2, we have

Corollary 3.3. There holds X(t)→ ±∞ as t→ ±∞. In particular, u(t, x)→ 1 as t→∞

and u(t, x)→ 0 as t→ −∞ locally uniformly in x.

Proof. We have from Lemma 3.2 that

cavg
min(t− t0 − T avg

min) ≤ X(t)−X(t0).
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Setting t → ∞ in the above estimate, we find X(t) → ∞ as t → ∞. Setting t0 → −∞, we

find X(t0)→ −∞ as t0 → −∞.

This corollary shows that any transition front travels from the left infinity to the right

infinity. Thus, steady-state-like transition fronts, blocking the propagations of solutions, do

not exist.

3.2 Space regularity

In this section, study the space regularity of the transition front u(t, x), that is, we are

going to prove (i) in Theorem 2.2. For convenience, we restate (i) in Theorem 2.2 as

Theorem 3.4. For any t ∈ R, u(t, x) is continuously differentiable in x. Moreover, there

holds sup(t,x)∈R×R |ux(t, x)| <∞.

Proof. For (t, x) ∈ R× R and η ∈ R with |η| ≤ δ0 � 1, we set

vη(t, x) =
u(t, x+ η)− u(t, x)

η
.

It’s easy to see that vη(t, x) satisfies

vηt (t, x) =

∫
R
J(x− y)vη(t, y)dy − vη(t, x) + aη(t, x)vη(t, x) + ãη(t, x), (3.6)

where

aη(t, x) =
f(t, x, u(t, x+ η))− f(t, x, u(t, x))

u(t, x+ η)− u(t, x)
,

ãη(t, x) =
f(t, x+ η, u(t, x+ η))− f(t, x, u(t, x+ η))

η
.
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Hence, for any fixed x, treating (3.6) as an ODE in the variable t, we find for any t ≥ t0

vη(t, x) = vη(t0, x)e
−

∫ t
t0

(1−aη(s,x))ds
+

∫ t

t0

bη(τ, x)e−
∫ t
τ (1−aη(s,x))dsdτ

+

∫ t

t0

ãη(τ, x)e−
∫ t
τ (1−aη(s,x))dsdτ

(3.7)

where

bη(t, x) =

∫
R
J(x− y)vη(t, y)dy =

∫
R

J(x− y + η)− J(x− y)

η
u(t, y)dy.

Note that for any (t, x) ∈ R× R

aη(t, x)→ fu(t, x, u(t, x)),

ãη(t, x)→ fx(t, x, u(t, x)),

bη(t, x)→
∫
R
J ′(x− y)u(t, y)dy.

(3.8)

as η → 0.

To show the existence of the limit limη→0 v
η(t, x), we first do some preparations. We set

L0 = δ0 + sup
t∈R
|X(t)−X+

θ0
(t)| and L1 = δ0 + sup

t∈R
|X(t)−X−θ1(t)|,

where θ0 and θ1 are as in Hypothesis 2.3. By Lemma 3.1, L0 <∞ and L1 <∞. We also set

Il(t) = (−∞, X(t)− L1),

Im(t) = [X(t)− L1, X(t) + L0],

Ir(t) = (X(t) + L0,∞).

Trivially, for any t ∈ R, Il(t), Im(t) andIr(t) are pairwise disjoint and Il(t)∪Im(t)∪Ir(t) = R.

However, since X(t) may not be continuous, so are Il(t), Im(t) and Ir(t).
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Since X(t)→ ±∞ as t→ ±∞ by Corollary 3.3, for any fixed x ∈ R, there hold x ∈ Ir(t)

for all t� −1 and x ∈ Il(t) for all t� 1. Thus, for any fixed x ∈ R, we may define

tfirst(x) = sup{t̃ ∈ R|x ∈ Ir(t) for all t ≤ t̃},

tlast(x) = inf{t̃ ∈ R|x ∈ Il(t) for all t ≥ t̃}.

Clearly, the fact that X(t) → ±∞ as t → ±∞ ensures −∞ < tfirst(x) ≤ tlast(x) < ∞

(notice, tfirst(x) = tlast(x) may happen since X(t) may jump). By the definition of tfirst(x)

and tlast(x), we see

x ∈


Ir(t), t < tfirst(x),

Il(t), t > tlast(x).

(3.9)

Moreover, there holds

T := sup
x∈R

[tlast(x)− tfirst(x)] <∞. (3.10)

To see this, we suppose tfirst(x) < tlast(x) and for technical reasons, we consider two cases:

Case 1. x /∈ Ir(tfirst(x)) In this case, we have x ∈ Il(tfirst(x)) ∪ Im(tfirst(x)), that is,

x ≤ X(tfirst(x))+L0. Thus, for all t ≥ tfirst(x)+T avg
min + L0+L1+1

cavg
min

, we see from Lemma 3.2 that

x ≤ X(tfirst(x)) + L0 ≤ X(t)− cavg
min(t− tfirst(x)− T avg

min) + L0 ≤ X(t)− L1 − 1.

This, implies that x ∈ Il(t) for all t ≥ tfirst(x) + T avg
min + L0+L1+1

cavg
min

, and hence, by definition

tlast(x) ≤ tfirst(x) + T avg
min +

L0 + L1 + 1

cavg
min

. (3.11)

Case 2. x ∈ Ir(tfirst(x)) In this case, we can find a sequence {tn} satisfying tn > tfirst(x),

tn → tfirst(x) as n → ∞ and x /∈ Ir(tn(x)). Then, similar arguments as in the case x /∈

Ir(tfirst(x)) lead to

tlast(x) ≤ tn + T avg
min +

L0 + L1 + 1

cavg
min

.
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Passing to the limit n→∞, we find (3.11) again. Hence, we have shown (3.10).

Also, by Hypothesis 2.3 and the choices of L0 and L1, we find that for any (t, x) ∈ R×R

and 0 < |η| ≤ δ0

aη(t, x) ≤


0, x ∈ Ir(t),

0, x ∈ Il(t).

In particular, we have from (3.9) that for any (t, x) ∈ R× R and 0 < |η| ≤ δ0, there holds

aη(t, x) ≤


0, t < tfirst(x),

0, t > tlast(x).

(3.12)

By (3.8), (3.12) holds with aη(t, x) replaced by fu(t, x, u(t, x)), that is,

fu(t, x, u(t, x)) ≤


0, t < tfirst(x),

0, t > tlast(x).

(3.13)

Now, we are ready to prove the existence of limη→0 v
η(t, x). To do so, we fix any x ∈ R.

We are going to take t0 → −∞ along some subsequence, and so t0 � tfirst(x). For t, there

are three cases: (i) t ≤ tfirst(x); (ii) t ∈ [tfirst(x), tlast(x)]; (iii) t ≥ tlast(x). Here, we only

consider the case t ≥ tlast(x); other two cases can be treated similarly and are simpler.

Hence, we assume t0 � tfirst(x) and t ≥ tlast(x) in the rest of the proof. We treat three

terms on the right hand side of (3.7) separately.

For the second term on the right hand side of (3.7), we claim

∫ t

t0

bη(τ, x)e−
∫ t
τ (1−aη(s,x))dsdτ →

∫ t

t0

(∫
R
J ′(x− y)u(τ, y)dy

)
e−

∫ t
τ (1−fu(s,x,u(s,x)))dsdτ

as η → 0 uniformly in t0 � tfirst(x).

(3.14)
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To see this, we notice

∣∣∣∣ ∫ t

t0

bη(τ, x)e−
∫ t
τ (1−aη(s,x))dsdτ −

∫ t

t0

(∫
R
J ′(x− y)u(τ, y)dy

)
e−

∫ t
τ (1−fu(s,x,u(s,x)))dsdτ

∣∣∣∣
≤
∫ t

−∞

∣∣∣∣bη(τ, x)e−
∫ t
τ (1−aη(s,x))ds −

(∫
R
J ′(x− y)u(τ, y)dy

)
e−

∫ t
τ (1−fu(s,x,u(s,x)))ds

∣∣∣∣dτ.
By (3.8), the integrand converges to 0 as η → 0 pointwise. Thus, by dominated convergence

theorem, we only need to make sure that the integrand is controlled by some integrable

function. Writing b0(τ, x) =
∫
R J
′(x − y)u(τ, y)dy and a0(τ, x) = fu(τ, x, u(τ, x)), we only

need to make sure that the function

τ 7→ sup
0≤|η|≤δ0

∣∣∣∣bη(τ, x)e−
∫ t
τ (1−aη(s,x))ds

∣∣∣∣
is integrable over (−∞, t]. To see this, we first note M := sup0≤|η|≤δ0 |b

η(τ, x)| <∞ and the

following uniform-in-η estimates hold:

e−
∫ tfirst(x)
r (1−aη(s,x))ds ≤ e−(tfirst(x)−r), r ≤ tfirst(x),

e−
∫ tlast(x)
r (1−aη(s,x))ds ≤ eCaT , r ∈ [tfirst(x), tlast(x)],

e−
∫ t
r (1−aη(s,x))ds ≤ e−(t−r), r ∈ [tlast(x), t],

(3.15)

where

Ca := sup
(t,x)∈R×R

sup
0<|η|≤δ0

|1− aη(t, x)| <∞

by Hypothesis 2.2. They are simple consequences of (3.10), (3.12) and (3.13). It then follows

that

sup
0≤|η|≤δ0

∣∣∣∣bη(τ, x)e−
∫ t
τ (1−aη(s,x))ds

∣∣∣∣ ≤M sup
0≤|η|≤δ0

e−
∫ t
τ (1−aη(s,x))ds.

To bound the last integral uniformly in 0 ≤ |η| ≤ δ0, according to (3.15), we consider three

cases:
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Case (i). τ < tfirst(x) In this case,

sup
0≤|η|≤δ0

e−
∫ t
τ (1−aη(s,x))ds = sup

0≤|η|≤δ0
e
−[

∫ tfirst(x)
τ +

∫ tlast(x)

tfirst(x)
+

∫ t
tlast(x)](1−a

η(s,x))ds

≤ e−(tfirst(x)−τ)eCaT e−(t−tlast(x));

Case (ii). τ ∈ [tfirst(x), tlast(x)] In this case,

sup
0≤|η|≤δ0

e−
∫ t
τ (1−aη(s,x))ds = sup

0≤|η|≤δ0
e
−[

∫ tlast(x)
τ +

∫ t
tlast(x)](1−a

η(s,x))ds ≤ eCaT e−(t−tlast(x));

Case (iii). τ ∈ (tlast(x), t] In this case,

sup
0≤|η|≤δ0

e−
∫ t
τ (1−aη(s,x))ds ≤ e−(t−τ).

Thus, setting

h(τ) =


e−(tfirst(x)−τ)eCaT e−(t−tlast(x)), τ < tfirst(x)

eCaT e−(t−tlast(x)), τ ∈ [tfirst(x), tlast(x)]

e−(t−τ), τ ∈ (tlast(x), t],

we find for any τ ∈ (−∞, t]

sup
0<|η|≤δ0

∣∣∣∣bη(τ, x)e−
∫ t
τ (1−aη(s,x))ds −

(∫
R
J ′(x− y)u(τ, y)dy

)
e−

∫ t
τ (1−fu(s,x,u(s,x)))ds

∣∣∣∣ ≤ 2h(τ).
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To show (3.14), it remains to show
∫ t
−∞ h(τ)dτ <∞. But, we readily compute

∫ t

−∞
h(τ)dτ =

∫ tfirst(x)

−∞
h(τ)dτ +

∫ tlast(x)

tfirst(x)

h(τ)dτ +

∫ t

tlast(x)

h(τ)dτ

≤
∫ tfirst(x)

−∞
e−(tfirst(x)−τ)eCaT e−(t−tlast(x))dτ

+

∫ tlast(x)

tfirst(x)

eCaT e−(t−tlast(x))dτ +

∫ t

tlast(x)

e−(t−τ)dτ

≤ eCaT + TeCaT + 1.

(3.16)

Thus, we have shown (3.14). Note that the last bound is uniform in (t, x) ∈ R× R.

For the third term on the right hand side of (3.7), we claim

∫ t

t0

ãη(τ, x)e−
∫ t
τ (1−aη(s,x))dsdτ →

∫ t

t0

fx(t, x, u(t, x))e−
∫ t
τ (1−fu(s,x,u(s,x)))dsdτ

as η → 0 uniformly in t0 � tfirst(x).

(3.17)

The proof of (3.17) is similar to that of (3.14). So, we omit it here. Notice

∫ t

−∞

∣∣∣∣fx(t, x, u(t, x))e−
∫ t
τ (1−fu(s,x,u(s,x)))ds

∣∣∣∣dτ
≤
[

sup
(t,x,u)∈R×R×[0,1]

|fx(t, x, u)|
] ∫ t

−∞
h(τ)dτ

≤
[

sup
(t,x,u)∈R×R×[0,1]

|fx(t, x, u)|
](
eCaT + TeCaT + 1

)
.

(3.18)

For the first term on the right hand side of (3.7), we choose t0 to be such that tfirst(x)−

t0 = 1
|η| and claim that

vη(t0, x)e
−

∫ t
t0

(1−aη(s,x))ds → 0 as η → 0. (3.19)
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In fact, from |vη(t0, x)| ≤ 1
|η| and (3.15), we see

∣∣∣∣vη(t0, x)e
−

∫ t
t0

(1−aη(s,x))ds

∣∣∣∣ ≤ 1

|η|
e
−[

∫ tfirst(x)
t0

+
∫ tlast(x)

tfirst(x)
+

∫ t
tlast(x)](1−a

η(s,x))ds

≤ 1

|η|
e−(tfirst(x)−t0)eCaT e−(t−tlast(x))

≤ 1

|η|
e−

1
|η| eCaT → 0 as η → 0.

This proves (3.19).

Hence, choosing t0 to be such that tfirst(x)− t0 = 1
|η| and passing to the limit η → 0 in

(3.7), we conclude from (3.14), (3.17) and (3.19) that

ux(t, x) = lim
η→0

vη(t, x)

=

∫ t

−∞

[ ∫
R
J ′(x− y)u(τ, y)dy + fx(τ, x, u(τ, x))

]
e−

∫ t
τ (1−fu(s,x,u(s,x)))dsdτ.

(3.20)

From which, we see that ux(t, x) is continuous in (t, x) ∈ R × R. Moreover, by (3.16) and

(3.18), we have sup(t,x)∈R×R |ux(t, x)| <∞.

Remark 3.5. From (3.20), (3.16) and (3.18), we see

sup
(t,x)∈R×R

|ux(t, x)| ≤
[
‖J ′‖L1(R) + sup

(t,x,u)∈R×R×[0,1]

|fx(t, x, u)|
](
eCaT + TeCaT + 1

)
,

where Ca depends only on sup(t,x,u)∈R×R×[0,1] |fu(t, x, u)| and T is controled by (3.11), and

hence, T depends only on fB and the shape of u(t, x).

Remark 3.6. The proof of Theorem 3.4 relies on Theorem 3.2. But, notice we only used

the first estimate in Theorem 3.2, i.e.,

cavg
min(t− t0 − T avg

min) ≤ X(t)−X(t0),
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whose proof only needs f(t, x, u) ≥ fB(u). This observation allows us to show that the

regularity result of transition fronts in Theorem 3.4 (or (i) in Theorem 2.2) is true if we

replace fB̃ by some monostable nonlinearity, and replace fu(t, x, u) ≤ 0 for u ∈ [0, θ0] by

fu(t, x, u) ≤ 1− κ0 for u ∈ [0, θ0] for some κ0 ∈ (0, 1). More precisely, we have

Corollary 3.7. If J satisfies Hypothesis 2.1 and f(t, x, u) satisfies

(i) there exist C2(R) function fB : [0, 1]→ R and fM : [0, 1]→ R such that

fB(u) ≤ f(t, x, u) ≤ fM(u), (t, x, u) ∈ R× R× [0, 1];

moreover, the following conditions hold:

– f : R× R× [0, 1]→ R is continuously differentiable in x and u, and satisfies

sup
(t,x,u)∈R×R×[0,1]

|fx(t, x, u)| <∞ and sup
(t,x,u)∈R×R×[0,1]

|fu(t, x, u)| <∞;

– fB is of standard bistable type, that is, fB(0) = fB(θ) = fB(1) = 0 for some

θ ∈ (0, 1), fB(u) < 0 for u ∈ (0, θ), fB(u) > 0 for u ∈ (θ, 1) and
∫ 1

0
fB(u)du > 0;

– fM is of standard monostable type, that is, fM(0) = fM(1) = 0 and fM(u) > 0

for u ∈ (0, 1),

and

(ii) there exist 0 < θ0 < θ1 < 1 and κ0 > 0 such that

fu(t, x, u) ≤ 1− κ0, u ∈ [0, θ0] and fu(t, x, u) ≤ 0, u ∈ [θ1, 1]

for all (t, x) ∈ R× R,

then any transition front u(t, x) of the equation (2.2) is continuously differentiable in x and

satisfies sup(t,x)∈R×R |ux(t, x)| <∞.
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Clearly, the nonlinearity f(t, x, u), as in (i) and (ii), covers ignition nonlinearities and

some monostable nonlinearities.

3.3 Modified interface locations

For the convenience of later analysis, we modify X(t) in this section. We restate (ii) in

Theorem 2.2 as

Theorem 3.8. There are constants c̃min > 0, c̃max > 0 and d̃max > 0, and a continuously

differentiable function X̃(t) satisfying c̃min ≤ ˙̃X(t) ≤ c̃max for all t ∈ R such that

0 ≤ X̃(t)−X(t) ≤ d̃max, t ∈ R.

In particular, for any λ ∈ (0, 1), there hold supt∈R |X̃(t)−X±λ (t)| <∞.

Proof. We prove the theorem within two steps. The first step gives a continuous modification.

The second step gives the continuously differentiable modification as in the statement of the

theorem.

Step 1. We show there is a continuous function X̃ : R→ R such that supt∈R |X̃(t)−X(t)| <

∞. Fix some T > 0. At t = 0, let

Z+(t; 0) = X(0) + cavg
max(T + T avg

max) +
cavg

min

2
t, t ≥ 0

By Lemma 3.2, X(t) < Z+(t; 0) for all [0, T ). By Lemma 3.2, we have X(t) > Z+(t; 0) for

all large t. Define T+
1 = inf{t ≥ 0|X(t) ≥ Z+(t; 0)}. By Lemma 3.2, it is easy to see that

T+
1 ∈ [T,

cavg
max(T+T avg

max)+cavg
minT

avg
min

cavg
min/2

]. At the moment T+
1 , X(t) may jump, and, due to Lemma 3.2,

the jump is at most cavg
maxT

avg
max. Thus, we obtain

X(t) < Z+(t; 0) for t ∈ [0, T+
1 ) and X(T+

1 ) ∈ [Z+(t; 0), Z+(t; 0) + cavg
maxT

avg
max).
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Next, at t = T+
1 , let

Z+(t;T+
1 ) = X(T+

1 ) + cavg
max(T + T avg

max) +
cavg

min

2
(t− T+

1 ), t ≥ T+
1 .

Then, T+
2 = inf{t ≥ T+

1 |X(t) ≥ Z+(t;T+
1 )} is well-defined, and T+

2 −T+
1 ∈ [T,

cavg
max(T+T avg

max)+cavg
minT

avg
min

cavg
min/2

].

Moreover, there hold

X(t) < Z+(t;T+
1 ) for t ∈ [T+

1 , T
+
2 ) and X(T+

2 ) ∈ [Z+(T+
2 ;T+

1 ), Z+(T+
2 ;T+

1 ) + cavg
maxT

avg
max).

Repeating the above arguments, we obtain the following, there is a sequence of times

{T+
n−1}n≥1 satisfying T+

0 = 0, T+
n − T+

n−1 ∈ [T,
cavg
max(T+T avg

max)+cavg
minT

avg
min

cavg
min/2

] and

X(t) < Z+(t;T+
n−1) for t ∈ [T+

n−1, T
+
n ) and X(T+

n ) ∈ [Z+(T+
n ;T+

n−1), Z+(T+
n ;T+

n−1)+cavg
maxT

avg
max),

(3.21)

for all n ≥ 1, where Z+(t;T+
n−1) = X(T+

n−1) + cavg
max(T + T avg

max) +
cavg
min

2
(t− T+

n−1).

We define Z+ : [0,∞)→ R by setting

Z+(t) = Z+(t;T+
n−1), t ∈ [T+

n−1, T
+
n ), n ≥ 1

Since supn≥1[T+
n−1, T

+
n ) = [0,∞), Z+(t) is well-defined. It follows from (3.21) that X(t) <

Z+(t) for all t ≥ 0. Moreover, for t ∈ [T+
n−1, T

+
n ),

Z+(t)−X(t) ≤ X(T+
n−1) + cavg

max(T + T avg
max) +

cavg
min

2
(t− T+

n−1)− [X(T+
n−1) + cavg

min(t− T+
n−1 − T

avg
min)]

≤ cavg
max(T + T avg

max)− cavg
min

2
(t− T+

n−1) + cavg
minT

avg
max ≤ cavg

max(T + T avg
max) + cavg

minT
avg
min.

Hence, 0 < Z+(t)−X(t) ≤ cavg
max(T+T avg

max)+cavg
minT

avg
min for all t ∈ [0,∞). Modifying Z+(t) near

T+
n−1 for n ≥ 1, we find a continuous function Z̃+ : [0,∞)→ R such that supt∈[0,∞) |Z̃+(t)−

X(t)| <∞.
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Clearly, we can mimic the above arguments to find a continuous function Z̃− : (0,∞]→

R such that supt∈(−∞,0] |Z̃−(t) − X(t)| < ∞. Combining Z̃±(t) and modifying near 0, we

find a continuous function X̃ : R→ R such that supt∈R |X̃(t)−X(t)| <∞.

Step 2. By Step 1, we assume, without loss of generality, that X(t) is continuous. Fix any

t0 ∈ R and consider it as an initial moment. At the initial moment t0, we define

Z(t; t0) = X(t0) + C0 +
1

2
cavg

min(t− t0), t ≥ t0,

where cavg
min is as in Lemma 3.2 and C0 > 0 is so large that C0 > cavg

maxT
avg
max. Clearly, X(t0) <

Z(t0; t0). By Lemma 3.2, X(t) will hit Z(t; t0) sometime after t0. Let T1(t0) be the first time

that X(t) hits Z(t; t0), that is, T1(t0) = min
{
t ≥ t0

∣∣X(t) = Z(t; t0)
}

. It follows that

X(t) < Z(t; t0) for t ∈ [t0, T1(t0)) and X(T1(t0)) = Z(T1(t0); t0).

Moreover, T1(t0)− t0 ∈
[
C0−Cavg

maxT
avg
max

Cavg
max−Cavg

min/2
,
C0+Cavg

minT
avg
min

Cavg
min/2

]
, which is a simple result of Lemma 3.2 and

the assumption on X(t) as in the statement.

Now, at the moment T1(t0), we define

Z(t;T1(t0)) = X(T1(t0)) + C0 +
1

2
cavg

min(t− T1(t0)), t ≥ T1(t0).

Similarly, X(T1(t0)) < Z(T1(t0);T1(t0)) and X(t) will hit Z(t;T1(t0)) sometime after T1(t0).

Denote by T2(t0) the first time that X(t) hits Z(t;T1(t0)). Then,

X(t) < Z(t;T1(t0)) for t ∈ [T1(t0), T2(t0)) and X(T2(t0)) = Z(T2(t0);T1(t0)),

and T2(t0)− T1(t0) ∈
[
C0−Cavg

maxT
avg
max

Cavg
max−Cavg

min/2
,
C0+Cavg

minT
avg
min

Cavg
min/2

]
.
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Repeating the above arguments, we obtain the following: there is a sequence of times

{Tn−1(t0)}n∈N satisfying T0(t0) = t0 and

Tn(t0)− Tn−1(t0) ∈
[
C0 − Cavg

maxT
avg
max

Cavg
max − Cavg

min/2
,
C0 + Cavg

minT
avg
min

Cavg
min/2

]
, ∀ n ∈ N, (3.22)

and for any n ∈ N

X(t) < Z(t;Tn−1(t0)) for t ∈ [Tn−1(t0), Tn(t0)) and X(Tn(t0)) = Z(Tn(t0);Tn−1(t0)),

where

Z(t;Tn−1(t0)) = X(Tn−1(t0)) + C0 +
1

2
cavg

min(t− Tn−1(t0)).

Moreover, for any n ∈ N and t ∈ [Tn−1(t0), Tn(t0)), we conclude from Lemma 3.2 that

Z(t;Tn−1(t0))−X(t)

≤ X(Tn−1(t0)) + C0 +
1

2
cavg

min(t− Tn−1(t0))−
[
X(Tn−1(t0)) + cavg

min(t− Tn−1(t0)− T avg
min)

]
= C0 + cavg

minT
avg
min −

1

2
cavg

min(t− Tn−1(t0)) ≤ C0 + cavg
minT

avg
min.

Next, define Z̃(·; t0) : [t0,∞)→ R by setting

Z̃(t; t0) = Z(t;Tn−1(t0)) for t ∈ [Tn−1(t0), Tn(t0)), n ∈ N. (3.23)

Since [t0,∞) = ∪n∈N[Tn−1(t0), Tn(t0)) by (3.22), Z̃(t; t0) is well-defined for all t ≥ t0. Notice

Z̃(t; t0) is strictly increasing and is linear on [Tn−1(t0), Tn(t0)) with slope 1
2
cavg

min for each n ∈ N,

and satisfies

0 ≤ Z̃(t; t0)−X(t) ≤ C0 + cavg
minT

avg
min, t ≥ t0.

Due to (3.22), we can modify Z̃(t; t0) near each Tn(t0) for n ∈ N as follows. Fix some δ∗ ∈(
0, 1

2
C0−Cavg

maxT
avg
max

Cavg
max−Cavg

min/2

)
. We modify Z̃(t; s) by redefining it on the intervals (Tn(t0) − δ∗, Tn(t0)),
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n ∈ N as follows: define

X(t; t0) =


Z̃(t; t0), t ∈ [t0,∞)\ ∪n∈N (Tn(t0)− δ∗, Tn(t0)),

X(Tn(t0)) + δ(t− Tn(t0)), t ∈ (Tn(t0)− δ∗, Tn(t0)), n ∈ N,

where δ : [−δ∗, 0]→ [−1
2
cavg

minδ∗, C0] is twice continuously differentiable and satisfies

δ(−δ∗) = −1

2
cavg

minδ∗, δ(0) = C0,

δ̇(−δ∗) =
1

2
cavg

min = δ̇(0), δ̇(t) ≥ 1

2
cavg

min for t ∈ (−δ∗, 0) and

δ̈(−δ∗) = 0 = δ̈(0).

The existence of such a function δ(t) is clear. Moreover, there exist cmax = cmax(δ∗) > 0 and

c̃max = c̃max(δ∗) > 0 such that δ̇(t) ≤ cmax and |δ̈(t)| ≤ c̃max for t ∈ (−δ∗, 0). Notice the

above modification is independent of n ∈ N and t0. Hence, X(t; t0) satisfies the following

uniform in t0 properties:

• 0 ≤ X(t; t0)−X(t) ≤ dmax for some dmax > 0,

• 1
2
cavg

min ≤ Ẋ(t; t0) ≤ cmax,

• |Ẍ(t; t0)| ≤ c̃max.

Since X(t) locally bounded, we may apply Arzelà-Ascoli theorem to conclude the existence

of some function continuously differentiable function X : R→ R such that X(t; t0)→ X̃(t)

and Ẋ(t; t0) → Ẋ(t) locally uniformly in t as t0 → −∞ along some subsequence. It’s easy

to see that X̃(t) satisfies all the properties as in the statement of the theorem.

Remark 3.9. In what follows, replacing X(t) by X̃(t), we may assume, without loss of

generality, that X(t) is continuously differentiable and there exist cmin > 0 and cmax > 0

such that cmin ≤ Ẋ(t) ≤ cmax for all t ∈ R.
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Chapter 4

Properties of space nonincreasing transition fronts in time heterogeneous media

In this chapter, we study some qualitative properties, such as uniform steepness, sta-

bility and exponential decaying estimates, of space nonincreasing transition fronts in time

heterogeneous media. That is, we study the equation (2.3), i.e.,

ut = J ∗ u− u+ f(t, u).

Throughout this section, we assume Hypothesis 2.1, Hypothesis 2.2 and Hypothesis 2.4.

Thus, all results obtained in Chapter 3 apply here.

In what follows in this chapter, u(t, x) will be an arbitrary transition front of equation

(2.3) that is space nonincreasing, i.e.,

ux(t, x) ≤ 0, ∀(t, x) ∈ R× R.

By comparison principle, u(t, x) is decreasing in x for any t ∈ R. As a result, for any

λ ∈ (0, 1), the leftmost and rightmost interface locations coincide, i.e., X+
λ (t) = X−λ (t), which

will be denoted by Xλ(t). Again, let X(t) be the interface location function corresponding

to u(t, x). By Remark 3.9, we assume X(t) is continuously differentiable and satisfies cmin ≤

Ẋ(t) ≤ cmax for all t ∈ R

In this chapter, we first study the uniform steepness of u(t, x) in Section 4.1. Then, we

turn to the stability of u(t, x) in Section 4.2. Uniform stability, in the sense of attracting

a special family of initial data, is also obtained there. Finally, in Section 4.3, exponential

decaying estimates of u(t, x) are obtained.
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In the next chapter, Chapter 5, we will show that an arbitrary transition front of equa-

tion (2.3) coincides with a space nonincreasing transition front of equation (2.3) up to a

space shift. Hence, all transition fronts of equation (2.3) enjoy all properties obtained in this

chapter.

4.1 Uniform steepness

In this section, we study the uniform steepness of u(t, x), that is, the uniform-in-t

negativity of u(t, x+X(t)) on bounded intervals. The main result in this section is given in

Theorem 4.1. For any M > 0, there holds

sup
t∈R

sup
|x−X(t)|≤M

ux(t, x) < 0.

A direct consequence of Theorem 4.1 is the boundedness of the oscillation of u(t, x).

Corollary 4.2. For any λ ∈ (0, 1), Xλ(t) is continuously differentiable and satisfies

sup
t∈R
|Ẋλ(t)| <∞.

Proof. Let λ ∈ (0, 1). By Theorem 4.1 and the fact that supt∈R |Xλ(t) −X(t)| < ∞, there

exists some αλ > 0 such that

sup
t∈R

ux(t,Xλ(t)) ≤ −αλ. (4.1)

Then, since u(t,Xλ(t)) = λ, implicit function theorem says that Xλ(t) is continuously dif-

ferentiable. Differentiating the equation u(t,Xλ(t)) = λ with respect to t, we find

Ẋλ(t) = − ut(t,Xλ(t))

ux(t,Xλ(t))
.

The result then follows from (4.1) and the fact sup(t,x)∈R×R |ut(t, x)| <∞.

To prove Theorem 4.1, we need the following
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Lemma 4.3. For any t > t0, h > 0 and z ∈ R, there holds

u(t, x+ ε)− u(t, x) ≤ C

∫ z+h

z−h
[u(t0, y + ε)− u(t0, y)]dy, ∀x ∈ R, ε > 0,

where C = C(t− t0, |x− z|, h) > 0 satisfies

(i) C → 0 polynomially as t− t0 → 0 and C → 0 exponentially as t− t0 →∞;

(ii) C : (0,∞)× [0,∞)× (0,∞)→ (0,∞) is locally uniformly positive in the sense that for

any 0 < t1 < t2 <∞, M1 > 0 and h1 > 0, there holds

inf
t∈[t1,t2],M∈[0,M1],h∈(0,h1]

C(t,M, h) > 0.

Proof. Let ε > 0 and t > t0. Let v1(t, x) = u(t, x + ε) and v2(t, x) = u(t, x). We see that

v(t, x) := v1(t, x)− v2(t, x) < 0 by monotonicity and satisfies

vt = J ∗ v − v + f(t, v1)− f(t, v2).

By (H2), we can find K > 0 such that f(t, v1)− f(t, v2) ≤ −K(v1 − v2), which implies that

vt ≤ J ∗ v − v −Kv.

Setting ṽ(t, x) = e(1+K)(t−t0)v(t, x), we see

ṽt ≤ J ∗ ṽ. (4.2)

Since v < 0, we have ṽ < 0, which implies J ∗ ṽ < 0 by the nonnegativity of J by (H1),

and therefore, ṽt < 0 by (4.2). In particular, ṽ(t, x) < ṽ(t0, x). It then follows from the
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nonnegativity of J and (4.2) that

ṽt(t, x) ≤ [J ∗ ṽ(t, ·)](x) ≤ [J ∗ ṽ(t0, ·)](x). (4.3)

For each x ∈ R, (4.3) is an ordinary differential inequality. Integrating (4.2) over [t0, t] with

respect to the time variable, we find from ṽ(t0, x) < 0 that

ṽ(t, x) ≤ (t− t0)[J ∗ ṽ(t0, ·)](x) + ṽ(t0, x) < (t− t0)[J ∗ ṽ(t0, ·)](x).

In particular, for any T > 0, we have

ṽ(t0 + T, x) < T [J ∗ ṽ(t0, ·)](x). (4.4)

Then, considering (4.2) with initial time at t0 + T and repeating the above arguments,

we find

ṽ(t0 + T + T, x) < T [J ∗ ṽ(t0 + T, ·)](x) < T 2[J ∗ J ∗ ṽ(t0, ·)](x),

where we used (4.4) in the second inequality. Repeating this, we conclude that for any T > 0

and any N = 1, 2, 3, . . . , there holds

ṽ(t0 +NT, x) < TN [JN ∗ ṽ(t0, ·)](x), (4.5)

where JN = J ∗ J ∗ · · · ∗ J︸ ︷︷ ︸
N times

. Note that JN is nonnegative, and if J is compactly supported,

then JN is not everywhere positive no matter how large N is. But, since J is nonnegative

and positive on some open interval, JN can be positive on any fixed bounded interval if N

is large. Moreover, since J is symmetric, so is JN .

Now, let x ∈ R, z ∈ R and h > 0, and let N := N(|x− z|, h) be large enough so that

C̃ = C̃(|x− z|, h) := inf
y∈[x−z−h,x−z+h]

JN(y) > 0.
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Note that the dependence of N on x − z through |x − z| is due to the symmetry of JN .

Moreover, the positivity of C̃ : [0,∞)× (0,∞)→ (0,∞) is uniform on compacts sets, which

is because N can be chosen to be nondecreasing in |x− z| and in h.

Then, for t > t0, we see from (4.5) with T = t−t0
N

that

ṽ(t, x) <

(
t− t0
N

)N ∫
R
JN(x− y)ṽ(t0, y)dy

≤
(
t− t0
N

)N ∫ z+h

z−h
JN(x− y)ṽ(t0, y)dy ≤ C̃

(
t− t0
N

)N ∫ z+h

z−h
ṽ(t0, y)dy,

since x− y ∈ [x− z − h, x− z + h] when y ∈ [z − h, z + h]. Going back to u(t, x), we find

u(t, x+ ε)− u(t, x) ≤ C̃e−(1+K)(t−t0)

(
t− t0
N

)N ∫ z+h

z−h
[u(t0, y + ε)− u(t0, y)]dy

The result the follows with C = C̃e−(1+K)(t−t0)
(
t−t0
N

)N
.

Now, we prove Theorem 4.1.

Proof of Theorem 4.1. Since ux(t, x) < 0 for (t, x) ∈ R × R by comparison principle, we

have X−λ (t) = X+
λ (t) for all λ ∈ (0, 1) and t ∈ R, where X±λ (t) are leftmost and rightmost

interface locations defined in (3.1). Thus, we write Xλ(t) := X±λ (t) for λ ∈ (0, 1) and t ∈ R.

It then follows from Lemma 3.1 that for any λ ∈ (0, 1), supt∈R |X(t)−Xλ(t)| <∞.

Fix any λ0 ∈ (0, 1) and set

hλ0 := max

{
sup
t∈R
|X(t)−Xλ0

2

(t)|, sup
t∈R
|X(t)−X 1+λ0

2

(t)|
}
.

Then, hλ0 <∞ and

X(t) + hλ0 ≥ Xλ0
2

(t), X(t)− hλ0 ≤ X 1+λ0
2

(t) (4.6)
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for all t ∈ R. Now, fix τ > 0. For t ∈ R, we apply Lemma 4.3 with z = X(t) and h = hλ0 to

see that if |x−X(t)| ≤M , then

ux(τ + t, x) ≤ C(τ,M, hλ0)

∫ X(t)+hλ0

X(t)−hλ0

ux(t, y)dy

= C(τ,M, hλ0)[u(t,X(t) + hλ0)− u(t,X(t)− hλ0)]

≤ C(τ,M, hλ0)[u(t,Xλ0
2

(t))− u(t,X 1+λ0
2

(t))] = −C(τ,M, hλ0)

2
,

(4.7)

where we used (4.6) and the monotonicity in the second inequality. To apply (4.7), we see

that if |x−X(t+ 1)| ≤M , then |x−X(t)| ≤ |x−X(t+ 1)|+ |X(t+ 1)−X(t)| ≤M + cmax,

where we used Remark 3.9. We then apply (4.7) with M replaced by M+cmax and τ replaced

by 1 to conclude that ux(t + 1, x) ≤ −C(1,M+cmax,hλ0
)

2
. Since t ∈ R is arbitrary, we arrive at

the result.

4.2 Stability

In this section, we study the stability of u(t, x). We prove

Theorem 4.4. Let u0 : R→ [0, 1] be uniform continuous and satisfies

lim inf
x→−∞

u0(x) > θ1 and lim sup
x→∞

u0(x) < θ0,

where θ0 and θ1 are as in Hypothesis 2.3. Then, there exist t0 = t0(u0) ∈ R, ξ = ξ(u0) ∈ R,

C = C(u0) > 0 and ω∗ > 0 (independent of u0) such that

sup
x∈R
|u(t, x; t0, u0)− u(t, x− ξ)| ≤ Ce−ω∗(t−t0)

for all t ≥ t0.

To prove Theorem 4.4, we first show
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Lemma 4.5. Let u0 be as in Theorem 4.4. Then, there exist t0 = t0(u0) ∈ R, ξ±0 = ξ±0 (u0) ∈

R, µ = µ(u0) > 0 and ω = min{β0, β1} > 0 (independent of u0) such that

u(t, x− ξ−(t))− µe−ω(t−t0) ≤ u(t, x; t0, u0) ≤ u(t, x− ξ+(t)) + µe−ω(t−t0), x ∈ R (4.8)

for t ≥ t0, where β0 and β1 are as in Hypothesis 2.4, and

ξ±(t) = ξ±0 ±
Aµ

ω
(1− e−ω(t−t0)), t ≥ t0

for some universal constant A > 0.

In particular, there holds

u(t, x− ξ−)− µe−ω(t−t0) ≤ u(t, x; t0, u0) ≤ u(t, x− ξ+) + µe−ω(t−t0), x ∈ R

for t ≥ t0, where ξ± = ξ±0 ±
Aµ
ω

.

Proof. Let u0 be as in the statement of Theorem 4.4. Let µ±0 = µ±0 (u0) be such that

θ1 < 1− µ−0 < lim inf
x→−∞

u0(x) and lim sup
x→∞

u0(x) < µ+
0 < θ0.

Then, we can find t0 = t0(u0) and ξ±0 = ξ±0 (u0) such that

u(t0, x− ξ−0 )− µ−0 ≤ u0(x) ≤ u(t0, x− ξ+
0 ) + µ+

0 , x ∈ R. (4.9)

To show the lemma, we then construct appropriate sub- and super-solutions and apply

comparison principle. We here only prove the first inequality in (4.10); the second one can

be proven along the same line. To do so, we fix ω > 0, A > 0 (to be chosen) and set

u−(t, x) = u(t, x− ξ(t))− µ−0 e−ω(t−t0),
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where ξ(t) = ξ−0 −
Aµ−0
ω

(1− e−ω(t−t0)). We then compute

u−t − [J ∗ u− − u−]− f(t, u−)

= f(t, u(t, x− ξ(t)))− f(t, u−(t, x)) + Aµ−0 e
−ω(t−t0)ux(t, x− ξ(t)) + ωµ−0 e

−ω(t−t0).

Now, we let M > 0 be so large that

∀t ∈ R,


u(t, x) ≤ θ0 if x−X(t) ≥M,

u(t, x) ≥ θ1 + µ−0 if x−X(t) ≤ −M.

Notice such an M exists due to Lemma 3.1. Then, we see

• if x− ξ(t)−X(t) ≥M , then u−(t, x) ≤ u(t, x− ξ(t)) ≤ θ0, and then by (H4),

f(t, u(t, x− ξ(t)))− f(t, u−(t, x)) ≤ −β0[u(t, x− ξ(t))− u−(t, x)] = −β0µ
−
0 e
−ω(t−t0).

Since Aµ−0 e
−ω(t−t0)ux(t, x− ξ(t)) ≤ 0, we find

u−t − [J ∗ u− − u−]− f(t, u−) ≤ −β0µ
−
0 e
−ω(t−t0) + ωµ−0 e

−ω(t−t0) ≤ 0

if ω ≤ β0;

• if x− ξ(t)−X(t) ≤ −M , then

u(t, x− ξ(t)) ≥ u−(t, x) = u(t, x− ξ(t))− µ−0 e−ω(t−t0) ≥ θ1 + µ−0 − µ1
0 = θ1,

and then by (H4), f(t, u(t, x − ξ(t))) − f(t, u−(t, x)) ≤ −β1µ
−
0 e
−ω(t−t0). Hence, u−t −

[J ∗ u− − u−]− f(t, u−) ≤ 0 if ω ≤ β1;
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• if |x− ξ(t)−X(t)| ≤M , then by Theorem 4.1,

CM = sup
t∈R

sup
|x−ξ(t)−X(t)|≤M

ux(t, x− ξ(t)) = sup
t∈R

sup
|x−X(t)|≤M

ux(t, x) < 0.

Since |f(t, u(t, x− ξ(t)))− f(t, u−(t, x))| ≤ C∗µ
−
0 e
−ω(t−t0) for some C∗ > 0, we find

u−t − [J ∗ u− − u−]− f(t, u−) ≤
(
C∗µ

−
0 + Aµ−0 CM + ωµ−0

)
e−ω(t−t0) ≤ 0

if A ≥ C∗+ω
−CM

.

Hence, if we choose ω = min{β0, β1} and A = 2C∗
−CM

(note ω = min{β0, β1} ≤ C∗), we find

u−t ≤ J ∗ u− − u− + f(t, u−), x ∈ R, t > t0,

that is, u−(t, x) is a sub-solution on (t0,∞). Since u−(t0, x) = u(t0, x − ξ−0 ) − µ−0 ≤ u0(x)

due to (4.9), we conclude from comparison principle that

u(t, x− ξ(t))− µ−0 e−ω(t−t0) = u−(t, x) ≤ u(t, x; t0, u0), x ∈ R, t ≥ t0.

Setting µ = max{µ−0 , µ+
0 }, we completes the proof.

The proof of Lemma 4.5 gives the following

Corollary 4.6. Suppose that ũ0 : R→ [0, 1] is uniformly continuous and satisfies

u(t0, x− ξ̃−0 )− µ̃−0 ≤ ũ0(x) ≤ u(t0, x− ξ̃+
0 ) + µ̃+

0 , x ∈ R

for t0 ∈ R, ξ̃±0 ∈ R and µ̃±0 > 0 satisfying θ1 < 1− µ̃−0 and µ̃+
0 < θ0, where θ0 and θ1 are as

in Hypothesis 2.3. Then, there exist µ̃ = max{µ̃−0 , µ̃+
0 } > 0 and ω = min{β0, β1} > 0 such
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that

u(t, x− ξ̃−(t))− µ̃e−ω(t−t0) ≤ u(t, x; t0, ũ0) ≤ u(t, x− ξ̃+(t)) + µ̃e−ω(t−t0), x ∈ R (4.10)

for t ≥ t0, where

ξ̃±(t) = ξ̃±0 ±
Aµ̃

ω
(1− e−ω(t−t0)), t ≥ t0

for some universal constant A > 0.

In particular, we have

u(t, x− ξ̃−)− µ̃e−ω(t−t0) ≤ u(t, x; t0, ũ0) ≤ u(t, x− ξ̃+) + µ̃e−ω(t−t0), x ∈ R

for t ≥ t0, where ξ̃± = ξ̃±0 ±
Aµ̃
ω

.

The next lemma is the key to the proof of Theorem 4.4. We will let u(t, x; t0), t ≥ t0 be

a solution with initial data at time t0 ∈ R.

Lemma 4.7. There exists ε∗ ∈ (0, 1) such that if there holds

u(τ, x− ξ̂)− δ̂ ≤ u(τ, x; t0) ≤ u(τ, x− ξ̂ − ĥ) + δ̂, x ∈ R (4.11)

for some τ ≥ t0, ξ̂ ∈ R, ĥ > 0 and δ̂ ∈ (0,min{θ0, 1 − θ1}), then there exist ξ̂(t), ĥ(t) and

δ̂(t) satisfying

ξ̂(t) ∈ [ξ̂ − 2Aδ̂

ω
, ξ̂ + ε∗min{1, ĥ}]

0 ≤ĥ(t) ≤ ĥ− ε∗min{1, ĥ}+
4Aδ̂

ω

0 ≤δ̂(t) ≤ [δ̂e−ω + C∗ε∗min{1, ĥ}]e−ω(t−τ−1)

such that

u(t, x− ξ̂(t))− δ̂(t) ≤ u(t, x; t0) ≤ u(t, x− ξ̂(t)− ĥ(t)) + δ̂(t), x ∈ R
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for t ≥ τ + 1.

Proof. Applying Corollary 4.6 to (4.11), we find

u(t, x− ξ̂−(t))− δ̂e−ω(t−τ) ≤ u(t, x; t0) ≤ u(t, x− ξ̂+(t)− ĥ) + δ̂e−ω(t−τ), x ∈ R (4.12)

for t ≥ τ , where ω = min{β0, β1} and ξ̂±(t) = ξ̂ ± Aδ̂
ω

(1− e−ω(t−τ)).

We now modify (4.12) at t = τ + 1 to get a new estimate for u(τ + 1, x; t0), and then

apply Corollary 4.6 to this new estimate to conclude the result. To this end, we set

h = min{ĥ, 1} and Csteep =
1

2
sup
t∈R

sup
|x−X(t)|≤2

ux(t, x).

By Theorem 4.1, Csteep < 0. Taylor expansion then yields
∫ X(t)+ 1

2

X(t)− 1
2

[u(t, x− h)− u(t, x)]dx ≥

−2Csteeph for all t ∈ R. In particular, at t = τ , either

∫ X(τ)+ 1
2

X(τ)− 1
2

[u(t, x− h)− u(t, x+ ξ̂; t0)]dx ≥ −Csteeph (4.13)

or ∫ X(τ)+ 1
2

X(τ)− 1
2

[u(t, x+ ξ̂; t0)− u(t, x)]dx ≥ −Csteeph (4.14)

must be the case.

Suppose first that (4.14) holds. We estimate u(τ +1, x; t0)−u(τ +1, x− ξ̂−(τ +1)− ε∗h)

from below, where ε∗ > 0 is to be chosen. To do so, let M > 0 and consider two cases: (i)

|x− ξ̂ −X(τ)| ≤M ; (ii) |x− ξ̂ −X(τ)| ≥M .

(i) |x− ξ̂ −X(τ)| ≤M In this case, we write

u(τ + 1, x; t0)− u(τ + 1, x− ξ̂−(τ + 1)− ε∗h)

= [u(τ + 1, x; t0)− u(τ + 1, x− ξ̂−(τ + 1))]

+ [u(τ + 1, x− ξ̂−(τ + 1))− u(τ + 1, x− ξ̂−(τ + 1)− ε∗h)] =: (I) + (II).
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For (I), we argue

(I) + δ̂e−ω = u(τ + 1, x; t0)− [u(τ + 1, x− ξ̂ +
Aδ̂

ω
(1− e−ω))− δ̂e−ω]

= u(τ + 1, y + ξ̂; t0)− [u(τ + 1, y +
Aδ̂

ω
(1− e−ω))− δ̂e−ω]

(by y = x− ξ̂ ∈ X(τ) + [−M,M ])

= u(τ + 1, y + ξ̂; t0)− û(τ + 1, y)

(where û(t, y) = u(t, y +
A

ω
(1− e−ω(t−τ)))− δ̂e−ω(t−τ))

≥ C(M)

∫ X(τ)+ 1
2

X(τ)− 1
2

[u(τ, y + ξ̂; t0)− û(τ, y)]dy

≥ C(M)

∫ X(τ)+ 1
2

X(τ)− 1
2

[u(τ, y + ξ̂; t0)− u(τ, y)]dy ≥ −C(M)Csteeph,

where the first inequality follows as in the proof of Lemma 4.3. In fact, we know u(t, y+ ξ̂; t0)

is a solution of vt = J ∗ v− v+ f(t, v), while û(t, y) is a subsolution by the proof of Theorem

4.4. Moreover, u(t, y + ξ̂; t0) ≥ û(t, y) by (4.12). Based on these information, we can repeat

the arguments as in the proof of Lemma 4.3 to conclude the inequality. Hence,

(I) ≥ −δ̂e−ω − C(M)Csteeph.

For (II), Taylor expansion yields for some x∗ ∈ (0, ε∗h)

(II) = ux(τ + 1, x− ξ̂−(τ + 1)− x∗)ε∗h ≥ −ε∗h sup
(t,x)∈R×R

|ux(t, x)| ≥ C(M)Csteeph

if we choose ε∗ = min
{

1, −C(M)Csteep

sup(t,x)∈R×R |ux(t,x)|

}
. It then follows that

u(τ + 1, x; t0)− u(τ + 1, x− ξ̂−(τ + 1)− ε∗h) ≥ −δ̂e−ω. (4.15)
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(ii) |x− ξ̂ −X(τ)| ≥M In this case,

u(τ + 1, x; t0)− u(τ + 1, x− ξ̂−(τ + 1)− ε∗h)

= [u(τ + 1, x; t0)− u(τ + 1, x− ξ̂−(τ + 1))]

+ [u(τ + 1, x− ξ̂−(τ + 1))− u(τ + 1, x− ξ̂−(τ + 1)− ε∗h)]

≥ −δ̂e−ω − ε∗h sup
(t,x)∈R×R

|ux(t, x)|,

(4.16)

where we used the first inequality in (4.12) and Taylor expansion.

Hence, by (4.15), (4.16) and the second inequality in (4.12), we find

u(τ + 1, x− ξ̂−(τ + 1)− ε∗h)− δ̂e−ω − C∗ε∗h

≤ u(τ + 1, x; t0) ≤ u(τ + 1, x− ξ̂+(τ + 1)− ĥ) + δ̂e−ω,

(4.17)

where C∗ = sup(t,x)∈R×R |ux(t, x)|. Taking ε∗ smaller, if necessary, so that δ̂e−ω + C∗ε∗h <

1− θ1, and applying Corollary 4.6 to (4.17), we conclude

u(t, x− ξ̃−(t))− δ̃e−ω(t−τ−1) ≤ u(t, x; t0) ≤ u(t, x− ξ̃+(t)) + δ̃e−ω(t−τ−1) (4.18)

for t ≥ τ + 1, where ω = min{β0, β1}, δ̃ = max{δ̂e−ω + C∗ε∗h, δ̂e−ω} = δ̂e−ω + C∗ε∗h and

ξ̃−(t) = ξ̂−(τ + 1) + ε∗h− Aδ̂

ω
(1− e−ω(t−τ−1)) = ξ̂ − 2Aδ̂

ω
+ ε∗h+

Aδ̂

ω
[e−ω + e−ω(t−τ−1)],

ξ̃+(t) = ξ̂+(τ + 1) + ĥ+
Aδ̂

ω
(1− e−ω(t−τ−1)) = ξ̂ +

2Aδ̂

ω
+ ĥ− Aδ̂

ω
[e−ω + e−ω(t−τ−1)].

Setting

ξ̂(t) = ξ̃−(t) = ξ̂ − 2Aδ̂

ω
+ ε∗h+

Aδ̂

ω
[e−ω + e−ω(t−τ−1)],

ĥ(t) = ξ̃+(t)− ξ̃−(t) = ĥ− ε∗h+
4Aδ̂

ω
− 2Aδ̂

ω
[e−ω + e−ω(t−τ−1)],

δ̂(t) = δ̃e−ω(t−τ−1) = [δ̂e−ω + C∗ε∗h]e−ω(t−τ−1),
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the estimate (4.18) can be written as

u(t, x− ξ̂(t))− δ̂(t) ≤ u(t, x; t0) ≤ u(t, x− ξ̂(t)− ĥ(t)) + δ̂(t), x ∈ R, t ≥ τ + 1. (4.19)

Note that (4.19) is obtained under the assumption (4.14).

Now, we assume (4.13) and estimate u(τ + 1, x; t0)− u(τ + 1, x− ξ̂+(τ + 1)− ĥ+ ε∗h)

from above. Arguing as before and replacing ĥ by h at appropriate steps lead to

u(τ + 1, x; t0)− u(τ + 1, x− ξ̂+(τ + 1)− ĥ+ ε∗h) ≤ δ̂e−ω + C∗ε∗h,

where C∗ = sup(t,x)∈R×R |ux(t, x)|. This, together with the first inequality in (4.12), yields

u(τ + 1, x− ξ̂−(τ + 1))− δ̂e−ω

≤ u(τ + 1, x; t0) ≤ u(τ + 1, x− ξ̂+(τ + 1)− ĥ+ ε∗h) + δ̂e−ω + C∗ε∗h.

(4.20)

Then, applying Corollary 4.6 to (4.20), we find (4.18) again with

ξ̂(t) = ξ̂ − 2Aδ̂

ω
+
Aδ̂

ω
[e−ω + e−ω(t−τ−1)],

ĥ(t) = ĥ− ε∗h+
4Aδ̂

ω
− 2Aδ̂

ω
[e−ω + e−ω(t−τ−1)],

δ̂(t) = [δ̂e−ω + C∗ε∗h]e−ω(t−τ−1).

This completes the proof.

Now, we use the “squeezing technique” (see e.g. [15, 14, 16, 49, 48, 63, 70, 72, 76]) to

prove Theorem 4.4.

Proof of Theorem 4.4. Let u0 be the initial data as in the statement of the theorem. Lemma

4.5 ensures the existence of t0 = t0(u0) ∈ R, ξ± = ξ±(u0) ∈ R and µ = µ(u0) such that

u(t, x− ξ−)− µe−ω(t−t0) ≤ u(t, x; t0, u0) ≤ u(t, x− ξ+) + µe−ω(t−t0)
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for t ≥ t0, where ω = min{β0, β1}. Choosing T0 = T0(u0) > 0 be such that

δ0 := µe−ωT0 < δ∗ := min
{
θ0, 1− θ1,

ε∗ω

8A

}
< 1,

we find

u(t0 + T0, x− ξ0)− δ0 ≤ u(t0 + T0, x; t0, u0) ≤ u(t0 + T0, x− ξ0 − h0) + δ0, (4.21)

where ξ0 = ξ− and h0 = ξ+ − ξ−. Notice, we may assume, without loss of generality, that

ξ+ > ξ−, so h0 > 0. But, h0 depends on u0, so we may assume, without loss of generality,

that h0 > 1. Let T > 1 be such that

[e−ω + C∗ε∗]e−ω(T−1) ≤ δ∗ := min
{
θ0, 1− θ1,

ε∗ω

8A

}
.

We are going to reduce h0.

Applying Lemma 4.7 to (4.21), we find

u(t0 +T0 +T, x− ξ1)− δ1 ≤ u(t0 +T0 +T, x; t0, u0) ≤ u(t0 +T0 +T, x− ξ1−h1) + δ1, (4.22)

where

ξ1 ∈ [ξ0 −
2Aδ0

ω
, ξ0 + ε∗min{1, h0}] = [ξ0 −

2Aδ0

ω
, ξ0 + ε∗] ⊂ [ξ0 −

ε∗

4
, ξ0 + ε∗],

0 ≤h1 ≤ h0 − ε∗min{1, h0}+
4Aδ0

ω
= h0 − ε∗ +

4Aδ0

ω
≤ h0 −

ε∗

2
,

0 ≤δ1 ≤ [δ0e
−ω + C∗ε∗min{1, h0}]e−ω(T−1) = [δ0e

−ω + C∗ε∗]e−ω(T−1) ≤ δ∗.

If h1 ≤ 1, we stop. Otherwise, we apply Lemma 4.7 to (4.22) to find

u(t0 +T0 +2T, x−ξ2)−δ2 ≤ u(t0 +T0 +2T, x; t0, u0) ≤ u(t0 +T0 +2T, x−ξ2−h2)+δ2, (4.23)
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where

ξ2 ∈ [ξ1 −
2Aδ1

ω
, ξ1 + ε∗min{1, h1}] = [ξ1 −

2Aδ1

ω
, ξ1 + ε∗] ⊂ [ξ1 −

ε∗

4
, ξ1 + ε∗],

0 ≤h2 ≤ h1 − ε∗min{1, h1}+
4Aδ1

ω
= h1 − ε∗ +

4Aδ1

ω
≤ h0 − 2

(ε∗
2

)
,

0 ≤δ2 ≤ [δ1e
−ω + C∗ε∗min{1, h1}]e−ω(T−1) = [δ1e

−ω + C∗ε∗]e−ω(T−1) ≤ δ∗.

If h2 ≤ 1, we stop. Otherwise, we apply Lemma 4.7 to (4.23), and repeat this. Suppose

hi > 1 for all i = 0, 1, 2, . . . n− 1, we then have

u(t0+T0+nT, x−ξn)−δn ≤ u(t0+T0+nT, x; t0, u0) ≤ u(t0+T0+nT, x−ξn−hn)+δn, (4.24)

where

ξn ∈ [ξn−1 −
2Aδn−1

ω
, ξn−1 + ε∗min{1, hn−1}] ⊂ [ξn−1 −

ε∗

4
, ξn−1 + ε∗],

0 ≤hn ≤ hn−1 − ε∗min{1, hn−1}+
4Aδn−1

ω
= hn−1 − ε∗ +

4Aδn−1

ω
≤ h0 − n

(ε∗
2

)
,

0 ≤δn ≤ [δn−1e
−ω + C∗ε∗min{1, hn−1}]e−ω(T−1) = [δn−1e

−ω + C∗ε∗]e−ω(T−1) ≤ δ∗.

Note that since h0 > 1 and ε∗

2
∈ (0, 1), we must exist some N = N(u0) > 0 such that hi > 1

for i = 0, 1, 2, . . . , N − 1 and 0 < h0 −N( ε
∗

2
) ≤ 1. In particular, hN ≤ 1. Then, we stop and

obtain from (4.23) that

u(t̃0, x− ξ̃0)− δ̃0 ≤ u(t̃0, x; t0, u0) ≤ u(t̃0, x− ξ̃0 − h̃0) + δ̃0, (4.25)

where t̃0 = t0 + T0 +NT , ξ̃0 = ξN , δ̃0 = δN ≤ δ∗ and h̃0 = hN ≤ 1.

Now, we treat (4.25) as the new initial estimate and run the iteration argument again.

Let T̃ > 1 be such that

[e−ω + C∗ε∗]e−ω(T̃−1) ≤ min
{
δ∗, 1−

ε∗

2
,
ω

4A

ε∗
2

(
1− ε∗

2

)}
.
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Applying Lemma 4.7 to (4.25), we find

u(t̃0 + T̃ , x− ξ̃1)− δ̃1 ≤ u(t̃0 + T̃ , x; t0, u0) ≤ u(t̃0 + T̃ , x− ξ̃1 − h̃1) + δ̃1, (4.26)

where

ξ̃1 ∈ [ξ̃0 −
2Aδ̃0

ω
, ξ̃0 + ε∗h̃0],

0 ≤h̃1 ≤ h̃0 − ε∗h̃0 +
4Aδ̃0

ω
≤ 1− ε∗

2
,

0 ≤δ̃1 ≤ [δ̃0e
−ω + C∗ε∗h̃0]e−ω(T−1) ≤ min

{
δ∗, 1−

ε∗

2
,
ω

4A

ε∗
2

(
1− ε∗

2

)}
.

Applying Lemma 4.7 to (4.26), we find

u(t̃0 + 2T̃ , x− ξ̃2)− δ̃2 ≤ u(t̃0 + 2T̃ , x; t0, u0) ≤ u(t̃0 + 2T̃ , x− ξ̃2 − h̃2) + δ̃2,

where

ξ̃2 ∈ [ξ̃1 −
2Aδ̃1

ω
, ξ̃1 + ε∗h̃1],

0 ≤h̃2 ≤ h̃1 − ε∗h̃1 +
4Aδ̃1

ω
≤ (1− ε∗

2
)(1− ε∗) +

ε∗
2

(
1− ε∗

2

)
= (1− ε∗

2
)2,

0 ≤δ̃2 ≤ [δ̃1e
−ω + C∗ε∗h̃1]e−ω(T−1) ≤ (1− ε∗

2
)×min

{
δ∗, 1−

ε∗

2
,
ω

4A

ε∗
2

(
1− ε∗

2

)}
.

Applying Lemma 4.7 repeatedly, we find for n ≥ 3

u(t̃0 + nT̃ , x− ξ̃n)− δ̃n ≤ u(t̃0 + nT̃ , x; t0, u0) ≤ u(t̃0 + nT̃ , x− ξ̃n − h̃n) + δ̃n,
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where

ξ̃n ∈ [ξ̃n−1 −
2Aδ̃n−1

ω
, ξ̃n−1 + ε∗h̃n−1],

0 ≤h̃n ≤ h̃n−1 − ε∗h̃n−1 +
4Aδ̃n−1

ω
≤ (1− ε∗

2
)n−1(1− ε∗) +

ε∗
2

(
1− ε∗

2

)n−1
= (1− ε∗

2
)n,

0 ≤δ̃n ≤ [δ̃n−1e
−ω + C∗ε∗h̃n−1]e−ω(T−1) ≤ (1− ε∗

2
)n−1 ×min

{
δ∗, 1−

ε∗

2
,
ω

4A

ε∗
2

(
1− ε∗

2

)}
.

The result then follows readily. We remark that the dependence of C on u0 in the statement

of the theorem is because T0 is u0 dependent.

Checking the dependence of C and ξ on u0 in the statement of Theorem 4.4, we have the

following uniform stability for a family of initial data satisfying certain uniform conditions.

Corollary 4.8. Let {ut0}t0∈R be a family of initial data satisfying

u(t0, x− ξ−0 )− µ0 ≤ ut0(x) ≤ u(t0, x− ξ+
0 ) + µ0, x ∈ R, t0 ∈ R

for ξ±0 ∈ R and µ0 ∈ (0,min{θ0, 1− θ1}) being independent of t0 ∈ R. Then,

(i) there holds

u(t, x− ξ−)− µ0e
−ω(t−t0) ≤ u(t, x; t0, ut0) ≤ u(t, x− ξ+) + µ0e

−ω(t−t0), x ∈ R

for all t ≥ t0 and t0 ∈ R, where ω = min{β0, β1} and ξ± = ξ± ± Aµ0

ω
.

(ii) there exist t0-independent constants C > 0 and ω∗ > 0, and a family of shifts {ξt0}t0∈R ⊂

R satisfying supt0∈R |ξt0| <∞ such that

sup
x∈R
|u(t, x; t0, ut0)− u(t, x− ξt0)| ≤ Ce−ω∗(t−t0)

for all t ≥ t0 and t0 ∈ R.
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We will use this corollary in the next section, Section 4.3, to show the exponential

decaying estimates of space nonincreasing transition fronts, and in the next chapter, Chapter

5, to show the uniquenss of transiton fronts.

4.3 Exponential decaying estimates

In this section, we prove exponential decaying estimates of u(t, x).

Theorem 4.9. There exist c± > 0 and h± > 0 such that

u(t, x) ≤ e−c
+(x−X(t)−h+) and 1− u(t, x) ≤ ec

−(x−X(t)+h−)

for all (t, x) ∈ R× R.

In particular, for any λ ∈ (0, 1), there exist h±λ > 0 such that

u(t, x) ≤ e−c
+(x−Xλ(t)−h+

λ ) and 1− u(t, x) ≤ ec
−(x−Xλ(t)+h−λ )

for all (t, x) ∈ R× R.

To prove Theorem 4.9, we first prove several lemmas. Let θ2 ∈ (0,min{1
4
, θ0, 1 − θ1})

be small and h > 0, and define u±0 : R → [0, 1] to be smooth and nonincreasing functions

satisfying

u+
0 (x) =


1− θ2, x ≤ −h,

0, x ≥ 0,

and u−0 (x) =


1, x ≤ 0,

θ2, x ≥ h.

(4.27)

Moreover, we can make u±0 so that u+
0 is decreasing on (−h, 0) and u−0 is decreasing on (0, h).

For t0 ∈ R, we define

u+(t, x; t0) := u(t, x; t0, u
+
0 (· −X1−θ2(t0))),

u−(t, x; t0) := u(t, x; t0, u
−
0 (· −Xθ2(t0)))
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for t ≥ t0. Note that by the choice of θ2 and the asymptotically stability of the constant

solutions 0 and 1, we have

lim
x→−∞

u+(t, x; t0) > 1− θ2, lim
x→∞

u+(t, x; t0) = 0,

lim
x→−∞

u−(t, x; t0) = 1 and lim
x→∞

u−(t, x; t0) < θ2

for all t > t0. Moreover, since u±0 are nonincreasing, u±(t, x; t0) are decreasing in x for all

t > t0. Hence, for any λ ∈ (θ2, 1 − θ2), the interface locations X±λ (t; t0) ∈ R such that

u±(t,X±λ (t; t0); t0) = λ are well-defined for all t ≥ t0.

The first lemma gives the uniform boundedness of the gap between the interface locations

of u±(t, x; t0) and u(t, x).

Lemma 4.10. For any λ ∈ (θ2, 1− θ2), there hold

sup
t0∈R

sup
t≥t0
|X±λ (t; t0)−X(t)| <∞.

Proof. Let λ ∈ (θ2, 1− θ2). By the definition of u+
0 , we see that u+

0 (x−X1−θ2(t0)) ≤ u(t0, x)

for x ∈ R. Comparison principle then yields u+(t, x; t0) ≤ u(t, x) for x ∈ R and t ≥ t0. In

particular, X+
λ (t; t0) ≤ Xλ(t) for all t ≥ t0.

Moreover, we readily check that u+
0 (x−Xθ2(t0)− h) + θ2 ≥ u(t0, x), which is equivalent

to

u(t0, x+Xθ2(t0) + h−X1−θ2(t0))− θ2 ≤ u+
0 (x−X1−θ2(t0)) = u+(t0, x; t0).

Setting L = supt0∈R |Xθ2(t0) + h −X1−θ2(t0)| < ∞, we see from the monotonicity of u(t, x)

in x that

u(t0, x− (−L))− θ2 ≤ u+(t0, x; t0).

Since L and θ2 are t0-independent, we apply Corollary 4.8 to conclude that

u(t, x− (−L− Aθ2

ω
))− θ2 ≤ u(t, x− (−L− Aθ2

ω
))− θ2e

−ω(t−t0) ≤ u+(t, x; t0), x ∈ R
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for all t ≥ t0 and t0 ∈ R. Setting x = −L − Aθ2
ω

+ Xλ+θ2(t), we find λ ≤ u+(t,−L − Aθ2
ω

+

Xλ+θ2(t); t0), which implies by monotonicity that X+
λ (t; t0) ≥ −L − Aθ2

ω
+ Xλ+θ2(t) for all

t ≥ t0.

Hence, we have shown that

X+
λ (t; t0) ≤ Xλ(t) and X+

λ (t; t0) ≥ −L− Aθ2

ω
+Xλ+θ2(t)

for all t ≥ t0 and t0 ∈ R. Since supt∈R |Xλ(t) − Xλ+θ2(t)| < ∞, we arrive at the result

supt0∈R supt≥t0 |X
+
λ (t; t0)−X(t)| <∞. The another result supt0∈R supt≥t0 |X

−
λ (t; t0)−X(t)| <

∞ follows along the same line.

Next, we prove the uniform exponential decaying estimates of u±(t, x; t0).

Lemma 4.11. There exist c± > 0 and h± > 0 such that

u+(t, x; t0) ≤ e−c
+(x−X(t)−h+) and u−(t, x; t0) ≥ 1− ec−(x−X(t)+h−)

for all x ∈ R, t ≥ t0 and t0 ∈ R.

Proof. We prove the first estimate; the second one can be proven in a similar way. Note first

that f(t, u) ≤ −β0u for u ∈ [0, θ0]. Let h := supt≥t0 |X
+
θ0

(t; t0)−X(t)| <∞ by Lemma 4.10,

since θ0 ∈ (θ2, 1− θ2). We consider

N [u] = ut − [J ∗ u− u] + β0u.

Since u+(t, x; t0) ≤ θ0 for x ≥ X+
θ0

(t; t0), we find N [u+] = β0u + f(t, u) ≤ 0 for x ≥

X+
θ0

(t; t0). In particular, N [u+] ≤ 0 for x ≥ X(t) + h.

Now, let c > 0. We see

N [e−c(x−X(t)−h)] =

[
cẊ(t)−

∫
R
J(y)ecydy + 1 + β0

]
e−c(x−X(t)−h).
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Since Ẋ(t) ≥ cmin > 0 by Remark 3.9 and
∫
R J(y)ecydy → 1 as c → 0, we can find some

c∗ > 0 such that N [e−c∗(x−X(t)−h)] ≥ 0. Thus, we have

• N [u+(t, x; t0)] ≤ 0 ≤ N [e−c∗(x−X(t)−h)] for x ≥ X(t) + h and t > t0,

• u+(t, x; t0) < 1 ≤ e−c∗(x−X(t)−h) for x ≤ X(t) + h and t > t0,

• u+(t0, x; t0) = u+
0 (x−X1−θ2(t0)) ≤ e−c∗(x−X(t0)−h) for x ∈ R.

We then conclude from the comparison principle (see e.g. Lemma B.1) that u+(t, x; t0) ≤

e−c∗(x−X(t)−h) for all x ∈ R, t ≥ t0 and t0 ∈ R. This completes the proof.

We also need the uniform-in-t0 exponential convergence of u±(t, x; t0) to u(t, x).

Lemma 4.12. There exist t0-independent constants C > 0 and ω∗ > 0, and two families of

shifts {ξ±t0}t0∈R ⊂ R satisfying supt0∈R |ξ
±
t0| <∞ such that

sup
x∈R
|u±(t, x; t0)− u(t, x− ξ±t0)| ≤ Ce−ω∗(t−t0)

for all t ≥ t0 and t0 ∈ R.

Proof. Let C2 = supt∈R |Xθ2(t)−X1−θ2(t)| <∞. Then, it’s easy to see that for any t0 ∈ R

u(t0, x+ C2 + h)− θ2 ≤ u+
0 (x−X1−θ2(t0)) ≤ u(t0, x) + ε0, x ∈ R

u(t0, x)− ε0 ≤ u−0 (x−Xθ2(t0)) ≤ u(t0, x− C2 − h) + θ2, x ∈ R

for arbitrary fixed ε0 ∈ (0,min{1
4
, θ0, 1− θ1}), that is,

u(t0, x+ C2 + h)− µ0 ≤ u+(t0, x; t0) ≤ u(t0, x) + µ0, x ∈ R

u(t0, x)− µ0 ≤ u−0 (t0, x; t0) ≤ u(t0, x− C2 − h) + µ0, x ∈ R,

where µ0 = max{θ2, ε0}. Since C2, h and µ0 are independent of t0 ∈ R, we apply Corollary

4.8 to conclude the result.

55



Finally, we prove Theorem 4.9.

Proof of Theorem 4.9. By Lemma 4.11 and Lemma 4.12, we have

u(t, x− ξ+
t0

) ≤ u+(t, x; t0) + Ce−ω∗(t−t0) ≤ e−c
+(x−X(t)−h+) + Ce−ω∗(t−t0)

for all x ∈ R and t ≥ t0. Since supt0∈R |ξ
+
t0 | < ∞, there exists ξ+ ∈ R such that ξ+

t0 → ξ+

as t0 → −∞ along some subsequence. Thus, for any (t, x) ∈ R × R, setting t0 → −∞

along this subsequence, we find u(t, x − ξ+) ≤ e−c
+(x−X(t)−h+). The lower bound for u(t, x)

follows similarly. The “in particular” part then is a simple consequence of the fact that

supt∈R |Xλ(t)−X(t)| <∞ for any λ ∈ (0, 1).
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Chapter 5

Uniquenss of transition fronts in time heterogeneous media

In this chapter, we study the uniqueness of transition fronts in time heterogenous media.

Therefore, we consider equation (2.3), i.e.,

ut = J ∗ u− u+ f(t, u),

under the assumptions Hypothesis 2.1, Hypothesis 2.2 and Hypothesis 2.4 as in Chapter 4.

Let v(t, x) be an arbitrary transition front (not necessarily nonicreasing in space), and

u(t, x) be an arbitrary space nonincreasing transition front of (2.3). Hence, all results ob-

tained in Chapter 3 apply to v(t, x), and all results obtained in Chapter 3 and Chapter 4

apply to u(t, x).

Let Y (t), Y ±λ (t) be the interface locations of v(t, x), and X(t), Xλ(t) = X±λ (t) be

the interface locations of u(t, x). By Remark 3.9, both X(t) and Y (t) are continuously

differentiable. By Corollary 4.2, Xλ(t) is continuously differentiable. But, Y ±λ (t) may jump.

We prove

Theorem 5.1. There exists some ξ ∈ R such that v(t, x) = u(t, x+ ξ) for all (t, x) ∈ R×R.

Combining all results obtained in Section 4 and Theorem 5.1, we have

Corollary 5.2. Statements (i)-(vi) in Theorem 2.3 hold.

To show Theorem 5.1, we first prove a lemma.

Lemma 5.3. There holds supt∈R |X(t)− Y (t)| <∞.

Proof. Note that since supt∈R |X 1
2
(t) − X(t)| < ∞, it suffices to show: (i) supt≥0 |Y (t) −

X 1
2
(t)| <∞; (ii) supt≤0 |Y (t)−X 1

2
(t)| <∞.
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(i) Let µ ∈ (0,min{1
4
, θ0, 1− θ1}) be small. We first see that

u(0, x− Y −1−µ(0) +Xµ(0))− µ ≤ v(0, x) ≤ u(0, x− Y +
µ (0) +X1−µ(0)) + µ, x ∈ R. (5.1)

In fact, if x ≥ Y −1−µ(0), then by the monotonicity of u(t, x) in x, we have

u(0, x− Y −1−µ(0) +Xµ(0))− µ ≤ u(0, Xµ(0))− µ = 0 < v(0, x).

If x ≤ Y −1−µ(0), then v(0, x) ≥ 1 − µ ≥ u(0, x − Y −1−µ(0) + Xµ(0)) − µ. This proves the first

inequality. The second one is checked similarly.

Setting ξ−0 = Y −1−µ(0) −Xµ(0) and ξ+
0 = Y +

µ (0) −X1−µ(0) in (5.1), and then, applying

Corollary 4.6 to (5.1), we find

u(t, x− ξ−)− µ ≤ v(t, x) ≤ u(t, x− ξ+) + µ, x ∈ R (5.2)

for all t ≥ 0, where ξ± = ξ±0 ±
Aµ
ω

. It then follows from the first inequality in (5.2) and the

monotonicity of u(t, x) in x that

1

2
− µ = u(t,X 1

2
(t))− µ < u(t, x− ξ−)− µ ≤ v(t, x) for all x < ξ− +X 1

2
(t),

which implies that ξ− +X 1
2
(t) ≤ Y −1

2
−µ(t) for t ≥ 0. Similarly, the second inequality in (5.2)

and the monotonicity of u(t, x) in x implies that

v(t, x) ≤ u(t, x− ξ+) + µ < u(t,X 1
2
(t)) + µ =

1

2
+ µ for all x > ξ+ +X 1

2
(t),

which leads to Y +
1
2

+µ
(t) ≤ ξ+ + X 1

2
(t) for t ≥ 0. Since supt∈R |Y −1

2
−µ(t) − Y (t)| < ∞ and

supt∈R |Y (t)− Y +
1
2

+µ
(t)| <∞ by Lemma 3.1, we conclude that supt≥0 |X 1

2
(t)− Y (t)| <∞.
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(ii) Suppose on the contrary that supt≤0 |Y (t) − X 1
2
(t)| = ∞. Since both Y (t) and

X 1
2
(t) are continuous, there exists a sequence tn → −∞ as n→∞ such that either Y (tn)−

X 1
2
(tn)→∞ or Y (tn)−X 1

2
(tn)→ −∞ as n→∞.

Suppose first that Y (tn) −X 1
2
(tn) → ∞ as n → ∞. Since supt∈R |Y (t) − Y −1

2

(t)| < ∞,

we in particular have Y −1
2

(tn)−X 1
2
(tn)→∞ as n→∞. Then, for any µ > 0 and ξ0 ∈ R, we

can find an N = N(µ, ξ0) > 0 such that tN < 0 and u(tN , x− ξ0)− µ ≤ v(tN , x) for x ∈ R.

We then apply Corollary 4.6 to conclude that

u(t, x− ξ0 +
Aµ

ω
)− µ ≤ v(t, x), x ∈ R, t ≥ tN .

Then, setting t = 0 in the above estimate, we find from the monotonicity of u(t, x) in x that

1

2
− µ = u(0, X 1

2
(0))− µ < u(0, x− ξ0 +

Aµ

ω
)− µ ≤ v(0, x), ∀x < ξ0 −

Aµ

ω
+X 1

2
(0),

which implies that ξ0− Aµ
ω

+X 1
2
(0) ≤ Y −1

2
−µ(0). Setting ξ0 →∞, we arrive at a contradiction.

Now, suppose Y (tn)−X 1
2
(tn)→ −∞ as n→∞. Then, we have in particular Y +

1
2

(tn)−

X 1
2
(tn) → −∞ as n → ∞. Then, for any µ > 0 and ξ0 ∈ R, we can find some N =

N(µ, ξ0) > 0 such that tN < 0 and v(tn, x) ≤ u(tN , x−ξ0)+µ for x ∈ R. Applying Corollary

4.6, we find

v(t, x) ≤ u(t, x− ξ0 −
Aµ

ω
) + µ, x ∈ R, t ≥ tN .

Setting t = 0 in the above estimate, we find

v(0, x) ≤ u(0, x− ξ0 −
Aµ

ω
) + µ < u(0, X 1

2
(0)) + µ =

1

2
+ µ, ∀x > ξ0 +

Aµ

ω
+X 1

2
(0),

which implies that Y +
1
2

+µ
(0) ≤ ξ0 + Aµ

ω
+ X 1

2
(0). This leads to a contradiction if we set

ξ0 → −∞. Hence, we have supt≤0 |Y (t)−X 1
2
(t)| <∞. This completes the proof.

Now, we prove Theorem 5.1.
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Proof of Theorem 5.1. Let θ3 ∈ (0,min{θ0, 1− θ1}). For t0 ∈ R, we define

u−(t0, x) = u(t0, x− Y −1−θ3(t0) +Xθ3(t0))− θ3,

u+(t0, x) = u(t0, x− Y +
θ3

(t0) +X1−θ3(t0)) + θ3.

We claim

u−(t0, x) ≤ v(t0, x) ≤ u+(t0, x), x ∈ R.

In fact, if x ≥ Y −1−θ3(t0), then by monotonicity, u−(t0, x) ≤ u(t0, Xθ3(t0))− θ3 = 0 < v(t0, x).

If x ≤ Y −1−θ3(t0), then by the definition of Y −1−θ3(t0), v(t0, x) ≥ 1 − θ3 > u−(t0, x). Hence,

u−(t0, x) ≤ v(t0, x). The inequality v(t0, x) ≤ u+(t0, x) is checked similarly.

By Lemma 3.1 and Lemma 5.3, we have

L := max

{
sup
t0∈R
|Y −1−θ3(t0)−Xθ3(t0)|, sup

t0∈R
|Y +
θ3

(t0)−X1−θ3(t0)|
}
<∞.

Then, shifting u−(t0, x) to the left and u+(t0, x) to the right, we conclude from the mono-

tonicity of u(t, x) in x that for all t0 ∈ R, there holds

u(t0, x+ L)− θ3 ≤ u−(t0, x) ≤ v(t0, x) ≤ u+(t0, x) ≤ u(t0, x− L) + θ3. (5.3)

That is, we are in the position to apply Corollary 4.8. So, we apply Corollary 4.8 to (5.3) to

conclude that there exist t0-independent constants C > 0 and ω > 0, and a family of shifts

{ξt0}t0∈R ⊂ R satisfying supt0∈R |ξt0 | <∞ such that

sup
x∈R
|v(t, x)− u(t, x− ξt0)| ≤ Ce−ω∗(t−t0)

for all t ≥ t0. We now pass to the limit t0 → −∞ along some subsequence to conclude

ξt0 → ξ for some ξ ∈ R, and then conclude that v(t, x) = u(t, x − ξ) for all (t, x) ∈ R × R.

This completes the proof.
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Chapter 6

Periodic traveling waves in time periodic media

In this chapter, we consider equation (2.3), i.e.,

ut = J ∗ u− u+ f(t, u),

under the assumptions Hypothesis 2.1, Hypothesis 2.2 and Hypothesis 2.4 as in Chapter 4,

and the additional time periodic assumption, that is, there exists T > 0 such that f(t +

T, u) = f(t, u) for all t ∈ R and u ∈ [0, 1]. We also suppose equation (2.3) admits a space

decreasing transition front so that Theorem 5.1 is applied here.

Let u(t, x) be an arbitrary transition front of (2.3). Note u(t, x) is decreasing in x by

Theorem 5.1. We restate (vii) in Theorem 2.3 as

Theorem 6.1. u(t, x) must be a T -periodic traveling wave, that is, there are a constant

c > 0 and a function ψ : R× R→ (0, 1) satisfying


ψt = J ∗ ψ − ψ + cψx + f(t, ψ),

limx→−∞ ψ(t, x) = 1, limx→∞ ψ(t, x) = 0 uniformly in t ∈ R,

ψ(t, ·) = ψ(t+ T, ·) for all t ∈ R

(6.1)

such that u(t, x) = ψ(t, x− ct) for all (t, x) ∈ R× R.

Proof. By periodicity, u(t+ T, x) is also a transition front of (2.3). Theorem 5.1 then yields

the existence of some ξ ∈ R such that

u(t+ T, x) = u(t, x+ ξ), ∀(t, x) ∈ R× R. (6.2)
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Fix some θ∗ ∈ (0, 1). Setting t = 0 and x = Xθ∗(T ) in (6.2), we find θ∗ = u(T,Xθ∗(T )) =

u(0, Xθ∗(T ) + ξ), which leads to Xθ∗(0) = Xθ∗(T ) + ξ by monotonicity. It then follows from

(6.2) that

u(t+ T, x) = u(t, x+Xθ∗(0)−Xθ∗(T )), ∀(t, x) ∈ R× R. (6.3)

Setting c =
Xθ∗ (T )−Xθ∗ (0)

T
and

ψ(t, x) = u(t, x+ ct), ∀(t, x) ∈ R× R,

we readily verify that (c, ψ) satisfies (6.1). The fact that c > 0 follows from the fact that

u(t, x) moves to the right.
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Chapter 7

Asymptotic speeds of transition fronts in time uniquely ergodic media

In this chapter, we consider equation (2.3), i.e.,

ut = J ∗ u− u+ f(t, u),

under the assumptions Hypothesis 2.1, Hypothesis 2.2 and Hypothesis 2.4 as in Chapter 4,

and the following additional assumption on f : the dynamical system {σt}t∈R defined by

σt : H(f)→ H(f), f 7→ f(·+ t, ·) (7.1)

is compact and uniquely ergodic, where H(f) = {f(·+ t, ·) : t ∈ R} with the closure taken

under the open-compact topology (which is equivalent to locally uniform convergence in our

case). We also suppose equation (2.3) admits a space decreasing transition front so that

Theorem 5.1 is applied here

Let u(t, x) be an arbitrary transition front of (2.3) and let X(t) be the corresponding

interface locations and X 1
2
(t) be the interface locations at 1

2
.

We restate (viii) in Theorem 2.3 as

Theorem 7.1. The asymptotic speeds limt→±∞
X(t)
t

exist.

To prove Theorem 7.1, let us first do some preparation. Note that any g ∈ H(f) satisfies

Hypothesis 2.2 and Hypothesis 2.4. Let ug(t, x) be the unique transition front of

ut = J ∗ u− u+ g(t, x) (7.2)
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satisfying the normalization Xg
1
2

(0) = 0, where Xg
1
2

(t) is the interface locations of ug(t, x) at

1
2
, i.e., ug(t,Xg

1
2

(t)) = 1
2
.

Let

ψg(t, x) = ug(t, x+Xg
1
2

(t)), ∀(t, x) ∈ R× R

be the profiles of ug(t, x). Then, ψg(t, 0) = 1
2

for all t ∈ R.

We prove

Lemma 7.2. There hold the following statements:

(i) for any g ∈ H(f), there holds

ψg(t+ τ, x) = ψg·τ (t, x), ∀(t, τ, x) ∈ R× R× R,

where g · τ = g(·+ τ, ·);

(ii) there holds sup(t,τ)∈R×R |Ẋ
f ·τ
1
2

(t)| <∞;

(iii) the limits

lim
x→−∞

ψg(t, x) = 1 and lim
x→∞

ψg(t, x) = 0

are unfiormly in t ∈ R and g ∈ H(f);

(iv) there holds supg∈H(f) supt∈R |Ẋ
g
1
2

(t)| <∞.

We remark that (ii) is a special case of (iv), but it plays an important role in proving

the lemma, so we state it explicitly.

Proof of Lemma 7.2. For notational simplicity, we writeXg(t) = Xg
1
2

(t). Therefore, ug(t,Xg(t)) =

1
2

and Xg(0) = 0.

(i) Fix any τ ∈ R. We see that both

u1(t, x) = ψg·τ (t, x−Xg·τ (t)) and u2(t, x) = ψg(t+ τ, x−Xg(t+ τ))
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are transition fronts of ut = J ∗ u− u+ g(t+ τ, x). Then, by uniqueness, i.e., Theorem 5.1,

there exists ξ ∈ R such that u1(t, x) = u2(t, x+ ξ). Moreover, since

u1(t,Xg·τ (t)) = ψg·τ (t, 0) =
1

2
and u2(t,Xg(t+ τ)) = ψg(t+ τ, 0) =

1

2
,

we find

u1(t,Xg(t+ τ)− ξ) = u2(t,Xg(t+ τ)) =
1

2
,

and hence, Xg·τ (t) = Xg(t+ τ)− ξ by monotonicity. It then follows that

ψg·τ (t, x) = u1(t, x+Xg·τ (t))

= u2(t, x+Xg·τ (t) + ξ)

= u2(t, x+Xg(t+ τ))

= ψg(t+ τ, x).

(ii) By (i), we in particular have

ψf ·τ (t, x) = ψf (t+ τ, x), ∀(t, τ, x) ∈ R× R× R. (7.3)

Since the limits ψf (t, x) → 1 as x → −∞ and ψf (t, x) → 0 as x → ∞ are uniformly in

t ∈ R, we find

lim
x→−∞

ψf ·τ (t, x) = 1 and lim
x→∞

ψf ·τ (t, x) = 0 uniformly in (t, τ) ∈ R× R. (7.4)

From (7.3), we also have

uf ·τ (t, x+Xf ·τ (t)) = uf (t+ τ, x+Xf (t+ τ)), ∀(t, τ, x) ∈ R× R× R. (7.5)
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Setting x = 0 and differentiating the resulting equality with respect to t, we find

Ẋf ·τ (t) =
d
dt

[uf (t+ τ,Xf (t+ τ))]− uf ·τt (t,Xf ·τ (t))

uf ·τx (t,Xf ·τ (t))

=
d
dt

[uf (t+ τ,Xf (t+ τ))]− uf ·τt (t,Xf ·τ (t))

ufx(t+ τ,Xf (t+ τ))
,

where we used uf ·τx (t,Xf ·τ (t)) = ufx(t + τ,Xf (t + τ)), which comes from (7.5). We see that

both d
dt

[uf (t + τ,Xf (t + τ))] and uf ·τt (t,Xf ·τ (t)) are bounded uniformly in (t, τ) ∈ R × R.

Moreover, ufx(t + τ,Xf (t + τ)) is bounded uniformly in (t, τ) ∈ R × R due to the uniform

steepness, i.e., Lemma 4.1. It then follows that sup(t,τ)∈R×R |Ẋf ·τ (t)| <∞.

(iii) For any g ∈ H(f), there is a sequence {tn} such that gn := f · tn → g in H(f).

Trivially, supn sup(t,x)∈R×R |u
gn
t (t, x)| < ∞, and by (i), supn sup(t,x)∈R×R |ugnx (t, x)| < ∞. It

then follows from (ii) that

sup
n

sup
(t,x)∈R×R

|ψgnt (t, x)| = sup
n

sup
(t,x)∈R×R

|ugnt (t, x+Xgn(t)) + Ẋgn(t)ugnx (t, x+Xgn(t))|

≤ sup
n

sup
(t,x)∈R×R

|ugnt (t, x+Xgn(t))|

+ sup
(t,τ)∈R×R

|Ẋf ·τ (t)| sup
n

sup
(t,x)∈R×R

|ugnx (t, x+Xgn(t))| <∞,

sup
n

sup
(t,x)∈R×R

|ψgnx (t, x)| = sup
n

sup
(t,x)∈R×R

|ugnx (t, x+Xgn(t))| <∞.

In particular, by Arzelà-Ascoli theorem, there exists a continuous function ψ(·, ·; g) : R×R→

[0, 1] such that limn→∞ ψ
gn(t, x) = ψ(t, x; g) locally uniformly in (t, x) ∈ R × R. We then

conclude from (7.4) that

lim
x→−∞

ψ(t, x; g) = 1 and lim
x→∞

ψ(t, x; g) = 0 uniformly in t ∈ R and g ∈ H(f). (7.6)
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It remains to show ψg(t, x) = ψ(t, x; g). Fix any g ∈ H(f). By (ii), there exists a

continuous function X(·; g) : R→ R such that, up to a subsequence,

Xgn(t)→ X(t; g) and ψgn(t, x−Xgn(t))→ ψ(t, x−X(t; g); g) (7.7)

as n→∞ locally uniformly in (t, x) ∈ R× R. Since, trivially,

sup
n

sup
(t,x)∈R×R

∣∣∣∣ ddtψgn(t, x−Xgn(t))

∣∣∣∣ = sup
n

sup
(t,x)∈R×R

|ugnt (t, x)| <∞,

sup
n

sup
(t,x)∈R×R

∣∣∣∣ d2

dt2
ψgn(t, x−Xgn(t))

∣∣∣∣ = sup
n

sup
(t,x)∈R×R

|ugntt (t, x)| <∞,

we will also have

d

dt
ψgn(t, x−Xgn(t))→ d

dt
ψ(t, x−X(t; g); g) (7.8)

as n → ∞ locally uniformly in (t, x) ∈ R × R. Thus, ψ(t, x−X(t; g); g) is a global-in-time

solution of (7.2), and hence, it is a transition front due to (7.6). Uniqueness of transition

fronts and the normalization Xgn(0) = 0 then imply that ψg(t, x) = ψ(t, x; g).

(iv) It’s a simple consequence of (ii) and the proof of (iii).

Now, we prove Theorem 7.1.

Proof of Theorem 7.1. Again, write Xg(t) = Xg
1
2

(t). Since supt∈R |Xf (t) − X(t)| < ∞, it

suffices to show the existence of the limits limt→±∞
Xf (t)
t

. Since

lim
t→±∞

Xf (t)

t
= lim

t→±∞

Xf (t)−Xf (0)

t
= lim

t→±∞

1

t

∫ t

0

Ẋf (s)ds,

we only need to show the dynamical system (i.e., the shift operators) generated by Ẋf (t) is

compact and uniquely ergodic.

To this end, we first derive a formula for Ẋg(t). We claim

Ẋg(t) = −
∫
R J(y)ψg(t,−y)dy − 1

2
+ g(t, 1

2
)

ψgx(t, 0)
, ∀t ∈ R. (7.9)
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In fact, differentiating ug(t,Xg(t)) = 1
2
, we find

Ẋg(t) = −u
g
t (t,X

g(t))

ugx(t,Xg(t))
= − [J ∗ ug(t, ·)](Xg(t))− ug(t,Xg(t)) + f(t, ug(t,Xg(t)))

ugx(t,Xg(t))
.

The equality (7.9) then follows from ug(t, x + Xg(t)) = ψg(t, x) and ug(t,Xg(t)) = 1
2
. Note

that due to (i) in Lemma 7.2 and (7.9), there holds Ẋg·τ (t) = Ẋg(t+ τ) for all t, τ ∈ R.

Next, we define

• the phase space H̃ = {(ψg, Ẋg)|g ∈ H(f)};

• the shift operators {σ̃}t∈R, i.e., the dynamical system on H̃,

σ̃t : H̃ → H̃, (ψg, Ẋg) 7→ (ψg·t, Ẋg·t) = (ψg(·+ t, ·), Ẋg(·+ t));

• an operator Ω : H(f)→ H̃, g 7→ (ψg, Ẋg).

Clearly,

σ̃t ◦ Ω = Ω ◦ σt, ∀t ∈ R, (7.10)

where {σt}t∈R is given in (7.1).

We show that Ω is a homeomorphism. We first claim that Ω is continuous. By (7.9),

the continuity of Ω is the case if we can show that if gn → g∗ in H(f) as n→∞, then

ψgn(t, x)→ ψg∗(t, x) locally uniform in t ∈ R and uniformly in x ∈ R (7.11)

as n → ∞. To see this, let gn → g∗ in H(f) as n → ∞, then as in the proof of (iii) in

Lemma 7.2, there exist continuous functions X∗ : R→ R and ψ∗ : R× R→ [0, 1] such that

Xgn(t)→ X∗(t) and ψgn(t, x−Xgn(t))→ ψ∗(t, x−X∗(t)) locally uniformly in (t, x) ∈ R×R
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as n→∞. As (7.8), we also have

d

dt
ψgn(t, x−Xgn(t))→ d

dt
ψ∗(t, x−X∗(t)) locally uniformly in (t, x) ∈ R× R

as n→∞. In particular, ψ∗(t, x−X∗(t)) is global-in-time solution of (7.2) with g replaced

by g∗. Moreover, (iii) in Lemma 7.2 forces ψ∗(t, x − X∗(t)) to be a transition front, and

hence, ψ∗(t, x) = ψg∗(t, x) by uniqueness and normalization. It then follows that ψgn(t, x)→

ψg∗(t, x) locally uniform in (t, x) ∈ R× R as n→∞. But, this actually leads to (7.11) due

to the uniform limits as x→ ±∞ as in (iii) in Lemma 7.2. Hence, Ω is continuous.

Clearly, from the continuity of Ω and the compactness of H(f), H̃ = Ω(H(f)) is com-

pact, and hence, H̃ = {(ψf ·t, Ẋf ·t)|t ∈ R}. Thus, if we can show that Ω is one-to-one, then

its inverse Ω−1 exists and must be continuous, and hence, Ω is a homeomorphism.

We show Ω is one-to-one. For contradiction, suppose there are g1, g2 ∈ H(f) with

g1 6= g2, but Ωg1 = Ωg2, i.e., (ψg1 , Ẋg1) = (ψg2 , Ẋg2). In particular, Ẋg1 = Ẋg2 , which

together with the normalization Xg1(0) = 0 = Xg2(0) gives Xg1 = Xg2 . It then follows from

(??) that

ug1(t, x) = ug2(t, x), (t, x) ∈ R× R,

which then leads to g1(t, u(t, x)) = g2(t, u(t, x)), where u = ug1 = ug2 . Since u(t, x) is

continuous and connects 0 and 1 for any t ∈ R, we conclude that g1 = g2 on R× [0, 1]. It is

a contradiction. Hence, Ω is one-to-one, and therefore, Ω is a homeomorphism.

Since Ω is a homeomorphism, invariant measures on H(f) and H̃ are related by Ω. We

then conclude from (7.10) and the fact {σt}t∈R is compact and uniquely ergodic that {σ̃t}t∈R

is compact and uniquely ergodic. The result follows.
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Chapter 8

Construction of transition fronts in time-heterogeneous media

In this chapter, we construct transition fronts for the equation (2.3), i.e.,

ut = J ∗ u− u+ f(t, u),

Throughout this chapter, we assume Hypothesis 2.1, Hypothesis 2.5 and Hypothesis 2.3.

We restate Theorem 2.4 in some details as

Theorem 8.1. Equation (2.3) admits a transition front u(t, x) that is strictly decreasing in

space and uniformly Lipschitz continuous in space, that is,

sup
x 6=y,t∈R

∣∣∣∣u(t, y)− u(t, x)

y − x

∣∣∣∣ <∞.
Moreover, there exists a continuous differentiable function X : R→ R such that the following

hold:

(i) there exist cmin > 0 and cmax > 0 such that cmin ≤ Ẋ(t) ≤ cmax for all t ∈ R;

(ii) there exist two exponents c± > 0 and two shifts h± > 0 such that

u(t, x+X(t) + h+) ≤ e−c+x and u(t, x+X(t)− h−) ≥ 1− ec−x

for all (t, x) ∈ R× R.

The proof of Theorem 8.1 is constructive. In Section 8.1, we first construct appropriate

approximating front-like solutions. We next show that the approximating solutions enjoys

bounded interface width and exponential decaying estimates in Section 8.2 and Section 8.3,
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respectively. This ensures the limit function of the approximating solutions (if exists) must

be a transition front. We then show that the approximating solutions are actually uniformly

Lipschitz continuous in space in Section 8.4, and hence, the limit function exists. This

finishes the construction. We also study the space regularity of this constructed transition

front in Section 8.5 via improving the reglarity of approximating solutions.

8.1 Approximating front-like solutions

In this section, we construct approximating front-like solutions of (2.3), which will be

shown to converge to a transition solution of (2.3).

Note that, by general semigroup theory (see e.g. [58]), for any u0 ∈ Cb
unif(R,R) and

s ∈ R, (2.2) has a unique (local) solution u(t, ·; s, u0) ∈ Cb
unif(R,R) with u(s, x; s, u0) = u0(x),

where

Cb
unif(R,R) = {u ∈ C(R,R) |u is uniformly continuous on R and sup

x∈R
|u(x)| <∞}

equipped with the norm ‖u‖ = supx∈R |u(x)|. Moreover, u(t, ·; s, u0) is continuous in s ∈ R

and u0 ∈ Cb
unif(R,R). By the comparison principle, if u0(x) ≥ 0 for x ∈ R, then u(t, ·; s, u0)

exists for all t ≥ s and u(t, x; s, u0) ≥ 0 for t ≥ s and x ∈ R.

Recall that φB is the profile of bistable traveling waves given in (A.2). For s < 0

and y ∈ R, denote by u(t, x; s, φB(· − y)) the classical solution of (2.3) with initial data

u(s, x; s, φB(· − y)) = φB(x− y). The next lemma gives the approximating solutions.

Lemma 8.2. For any s < 0, there exists a unique ys ∈ R such that u(0, 0; s, φB(·− ys)) = θ.

Moreover, ys → −∞ as s→ −∞.

Proof. Let s < 0. We first see that comparison principle gives

u(t, x; s, φB(· − y)) ≥ φB(x− y − cB(t− s)), x ∈ R, t ≥ s.
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In particular, u(0, 0; s, φB(· − y)) ≥ φB(cBs − y). Thus, the monotonicity and the normal-

ization of φB ensure that u(0, 0; s, φB(· − y)) ≥ θ if y ≥ cBs.

To bound u(t, x; s, φmin(· − y)) from above, we see that by Lemma A.1, φB(· − y) ≤

e−c
+
B(·−y−x+

B) for all y ∈ R. Setting vy(t, ·; s) = e−c
+
B(·−y−x+

B−c(t−s)), where c > 0 is to be

chosen, we compute

vyt − [J ∗ vy − vy] =

[
c+
Bc−

∫
R
J(z)ec

+
Bzdz + 1

]
vy ≥ f(t, vy)

provided c > 0 is so large that c+
Bc −

∫
R J(z)ec

+
Bzdz + 1 ≥ supu∈(0,1)

fB̃(u)

u
, where fB̃ is as in

Hypothesis 2.5. Comparison principle then leads to u(t, x; s, φB(· − y)) ≤ e−c
+
B(x−y−x+

B−c(t−s))

for all x ∈ R and t ≥ s. In particular, u(0, 0; s, φB(· − y)) ≤ θ if y ≤ ln θ−x+
B+c+Bcs

c+B
.

Continuity of u(0, 0; s, φB(· − y)) in y then yields the existence of some ys ∈ R such

that u(0, 0; s, φB(· − ys)) = θ. The uniqueness of such an ys is a simple consequence of the

comparison principle. Moreover, the above analysis implies that

ln θ − x+
B + c+

Bcs

c+
B

≤ ys ≤ cBs, (8.1)

and hence, ys → −∞ as s→ −∞.

For notational simplicity, in what follows, we put

u(t, x; s) = u(t, x; s, φB(· − ys)). (8.2)

Thus, u(s, ·; s) = φB(· − ys). The next lemma provides some fundamental properties of

u(t, x; s).

Lemma 8.3. For any s < 0 and t ≥ s there hold

(i) the limits u(t,−∞; s) = 1 and u(t,∞; s) = 0 are locally uniformly in s and t;
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(ii) u(t, x; s) is strictly decreasing in x. In particular, u(t, x; s) is almost everywhere dif-

ferentiable in x.

Proof. (i) It follows from the fact u(t, x; s) ∈ (0, 1) by the comparison principle, the estimate

(8.1) and the following estimate

φ(x− ys − cB(t− s)) ≤ u(t, x; s) ≤ e−c
+
B(x−ys−x+

B−c(t−s)) (8.3)

for some sufficiently large c > 0, which is derived in Lemma 8.2.

(ii) For the monotonicity, we first see that u(s, x; s) = φB(x− ys) is strictly decreasing

in x. For any y > 0, we apply comparison principle to u(t, x − y; s) − u(t, x; s) to conclude

that that u(t, x− y; s) > u(t, x; s) for t > s. The result then follows.

8.2 Bounded interface width

For s < 0, t ≥ s and λ ∈ (0, 1), let Xλ(t; s) be such that u(t,Xλ(t; s); s) = λ. By Lemma

8.3, it is well-defined and continuous in t (but not sure whether it is differentiable in t right

now). Moreover, Xλ1(t; s) > Xλ2(t; s) if λ1 < λ2 by monotonicity of u(t, x; s) in x.

The main result in this section is stated in the following

Theorem 8.4. There exists λ∗ ∈ (θ, 1) such that for any 0 < λ1 < λ2 ≤ λ∗, there holds

sup
s<0,t≥s

[
Xλ1(t; s)−Xλ2(t; s)

]
<∞.

Theorem 8.4 shows the uniform boundedness of the width between interfaces below λ∗.

Later in Corollary 8.11, it is extended to any 0 < λ1 < λ2 < 1.

The proof Theorem 8.4 is a little long and technical. To do so, we first study the

rightward propagation of Xλ(t; s). We have
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Lemma 8.5. Let λ ∈ (θ, 1). For any ε > 0 there exists tε,λ > 0 such that

Xλ(t; s)−Xλ(t0; s) ≥ (cB − ε)(t− t0 − tε,λ)

for all s < 0, t ≥ t0 ≥ s.

Proof. Fix some λ ∈ (θ, 1). Let u0 : R→ [0, 1] be a uniformly continuous and nonincreasing

function satisfying u0(x) = λ for x ≤ x0 and u0(x) = 0 for x ≥ 0, where x0 < 0 is fixed.

Clearly, space monotonicity of u(t, x; s) implies that

u(t0, x+Xλ(t0; s); s) ≥ u0(x), x ∈ R, t0 ≥ s,

and then, by f(t, u) ≥ fmin(u) ≥ fB(u) and the comparison principle, we find

u(t, x+Xλ(t0; s); s) ≥ uB(t− t0, x;u0), x ∈ R, t ≥ t0 ≥ s.

By Lemma A.2, there are constants ξ−B = ξ−B(λ) ∈ R, qB = qB(λ) > 0 and ωB > 0 such that

uB(t− t0, x;u0) ≥ φB(x− ξ−B − cB(t− t0))− qBe−ωB(t−t0), x ∈ R, t ≥ t0 ≥ s.

Hence,

u(t, x+Xλ(t0; s); s) ≥ φB(x− ξ−B − cB(t− t0))− qBe−ωB(t−t0), x ∈ R, t ≥ t0 ≥ s.

Let T0 = T0(λ) be such that qBe
−ωBT0 = 1−λ

2
and denote by ξB(1+λ

2
) the unique point such

that φB(ξB(1+λ
2

)) = 1+λ
2

. Setting x = ξ−B + cB(t− t0) + ξB(1+λ
2

), we find for t ≥ t0 + T0

u(t, ξ−B + cB(t− t0) + ξB(
1 + λ

2
) +Xλ(t0; s); s) ≥ φB(ξB(

1 + λ

2
))− qBe−ωBT0 = λ,
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which together with monotonicity implies that

Xλ(t; s)−Xλ(t0; s) ≥ ξ−B + cB(t− t0) + ξB(
1 + λ

2
), t ≥ t0 + T0. (8.4)

We now estimate Xλ(t; s) − Xλ(t0; s) for t ∈ [t0, t0 + T0]. We claim that there exists

z = z(T0) < 0 such that

Xλ(t; s)−Xλ(t0; s) ≥ z for all s < 0, s ≤ t0 ≤ t ≤ t0 + T0. (8.5)

Let uB(t, x;u0) and uB(t;λ) := uB(t, x;λ) be solutions of (A.1) with uB(0, x;u0) = u0(x) and

uB(0;λ) = uB(0, x;λ) ≡ λ, respectively. By the comparison principle, we have uB(t, x;u0) <

uB(t;λ) for all x ∈ R and t > 0, and uB(t, x;u0) is strictly decreasing in x for t > 0.

We see that for any t > 0, limx→−∞ uB(t, x;u0) = uB(t;λ). This is because that

d
dt
uB(t,−∞;u0) = fB(uB(t,−∞;u0)) for t > 0 and uB(0,−∞;u0) = λ. Since λ ∈ (θ, 1),

as a solution of the ODE ut = fB(u), uB(t;λ) is strictly increasing in t, which implies that

uB(t,−∞;u0) = uB(t;λ) > λ for t > 0. As a result, for any t > 0 there exists a unique

ξB(t) ∈ R such that uB(t, ξB(t);u0) = λ. Moreover, ξB(t) is continuous in t.

Since f(t, u) ≥ fB(u) and u(t0, · + Xλ(t0; s); s) ≥ u0, the comparison principle implies

that

u(t, x+Xλ(t0; s); s) ≥ uB(t− t0, x;u0), x ∈ R, t ≥ t0 ≥ s.

Setting x = ξB(t − t0), we find u(t, ξB(t − t0) + Xλ(t0; s); s) ≥ λ, which together with the

monotonicity implies that Xλ(t; s) ≥ ξB(t− t0) +Xλ(t0; s) for t ≥ t0 ≥ s. Thus, (8.5) follows

if inft∈(t0,t0+T0] ξB(t− t0) > −∞, that is,

inf
t∈(0,T0]

ξB(t) > −∞. (8.6)
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We now show (8.6). Since u0(x) = λ for x ≤ x0, continuity with respect to the initial

data (in sup norm) implies that for any ε > 0 there exists δ > 0 such that

uB(t;λ)− λ ≤ ε and sup
x≤x0

[uB(t;λ)− uB(t, x;u0)] = uB(t;λ)− uB(t, x0;u0) ≤ ε

for all t ∈ [0, δ], where the equality is due to monotonicity. By Hypothesis 2.1, J concentrates

near 0 and decays very fast as x → ±∞. Thus, we can choose x1 = x1(ε) << x0 such that∫ x0

−∞ J(x− y)dy ≥ 1− ε for all x ≤ x1. Now, for any x ≤ x1 and t ∈ (0, δ], we have

d

dt
uB(t, x;u0) =

∫
R
J(x− y)uB(t, y;u0)dy − uB(t, x;u0) + fB(uB(t, x;u0))

≥
∫ x0

−∞
J(x− y)uB(t, y;u0)dy − uB(t, x;u0) + fB(uB(t, x;u0))

≥ (1− ε) inf
x≤x0

uB(t, x;u0)− uB(t;λ) + fB(uB(t, x;u0))

= −(1− ε) sup
x≤x0

[uB(t;λ)− uB(t, x;u0)]− εuB(t;λ) + fB(uB(t, x;u0))

≥ −ε(1− ε)− ε(λ+ ε) + fB(uB(t, x;u0))

> 0

if we choose ε > 0 sufficiently small, since then fB(uB(t, x;u0)) is close to fB(λ), which is

positive. This simply means that uB(t, x;u0) > λ for all x ≤ x1 and t ∈ (0, δ], which implies

that ξB(t) > x1 for t ∈ (0, δ]. The continuity of ξB then leads to (8.6). This proves (8.5).

The result of the proposition then follows from (8.4) and (8.5).

We remark that the estimate for Xλ(t; s) of the form

Xλ(t; s)−Xλ(t0; s) ≤ (cB̃ + ε)(t− t0 + tε,λ)

can also be established due to the bistability, but we are not going to use this.
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Next, we define a new interface location and study the boundedness between this new

interface location and the original ones. For κ > 0, set

cκ := inf
λ>0

1

λ

(∫
R
J(y)eλydy − 1 + κ

)
> 0.

It is not hard to see that there exists a unique λκ > 0 such that

cκ =
1

λκ

(∫
R
J(y)eλκydy − 1 + κ

)
. (8.7)

We remark that cκ corresponds to the minimal speed of traveling waves in the KPP case for

nonlocal equations. As in the classical random dispersal case, we have

Lemma 8.6. cκ → 0 and λκ → 0 as κ→ 0.

Proof. We see

cκ ≤
1√
κ

(∫
R
J(y)e

√
κydy − 1 + κ

)
→ 0 as κ→ 0,

since 1√
κ

( ∫
R J(y)e

√
κydy − 1

)
→ 0 as κ→ 0.

We show λκ → 0 as κ → 0. It is understood that λκ is the unique positive point such

that d
dλ

[
1
λ

( ∫
R J(y)eλydy − 1 + κ

)]
= 0, that is,

λ

∫
R
J(y)yeλydy −

∫
R
J(y)eλydy + 1 = κ.

Setting g(λ) := λ
∫
R J(y)yeλydy −

∫
R J(y)eλydy + 1, we see g(0) = 0 and

g′(λ) = λ

∫
R
J(y)y2eλydy > 0 for λ > 0.

This simply means that the unique solution of g(λ) = κ goes to 0 as κ→ 0. This completes

the proof.
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For κ > 0, s < 0 and t ≥ s, define

Yκ(t; s) = inf
{
y ∈ R

∣∣∣u(t, x; s) ≤ e−λκ(x−y), x ∈ R
}
. (8.8)

From the proof of Lemma 8.2, we see that Yκ(t; s) is well-defined if λκ ≤ c+
B, which is the

case if κ is sufficiently small due to Lemma 8.6. Notice the definition does not guarantee any

continuity or monotonicity of Yκ(t; s) since u(t, x; s) is not monotone in time. The following

result controls the propagation of Yκ(t; s).

Lemma 8.7. Let κ0 = supu∈(0,1)
fB̃(u)

u
. For κ > 0, set c̃κ := 1

λκ

( ∫
R J(y)eλκydy − 1 + κ0

)
,

where λκ is given in (8.7). Then, for any small κ > 0, we have c̃κ > 0 and

Yκ(t; s)− Yκ(t0; s) ≤ c̃κ(t− t0)

for all s < 0, t ≥ t0 ≥ s.

Proof. For small κ > 0, we have c̃κ ≥ cκ > 0. For s < 0, t ≥ t0 ≥ s, define

v(t, x; t0) = e−λκ(x−Yκ(t0;s)−c̃κ(t−t0)), x ∈ R.

By the definition of c̃κ, we readily check that vt = J ∗v−v+κ0v. By the definition of κ0, we

have κ0v ≥ fB̃(v) for all v ≥ 0. It then follows from v(t0, x; t0) = e−λκ(x−Yκ(t0;s)) ≥ u(t0, x; s)

by (8.8) and the comparison principle that v(t, x; t0) ≥ u(t, x; s) for t ≥ t0, which leads to

the result.

We now prove the main result leading to Theorem 8.4. In what follows, we fix some

small κ > 0 such that cκ < cB, and for this fixed κ, we write Yκ(t; s) as Y (t; s), and set

λ∗ := min
{
u > 0

∣∣fB̃(u) = κu
}
∈ (θ, 1). (8.9)
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We remark that it is important to have λ∗ > θ, and this is the reason why we need fB(θ) =

0 = fB̃(θ) in Hypothesis 2.5.

Proposition 8.8. For any λ ∈ (θ, λ∗], there is C(λ) > 0 such that

|Xλ(t; s)− Y (t; s)| ≤ C(λ)

for all s < 0, t ≥ s.

Proof. From the definition of λ∗, we readily see that

f(t, u) ≤ fB̃(u) ≤ κu, u ∈ [0, λ∗]. (8.10)

Fix an λ ∈ (θ, λ∗]. Set C0 = max{Y (s; s) − Xλ(s; s), 1}. We see that C0 is independent

of s < 0. This is because that u(s, ·; s) = φB(· − ys), and hence, space translations do not

change Y (s; s) − Xλ(s; s). Clearly, we have the estimate sups<0,t≥s[Xλ(t; s) − Y (t; s)] ≤ C

for some large C > 0.

Set ε = cB−cκ
2

and C1 = C0 +cBtε,λ, where tε,λ is as in Lemma 8.5. To finish the proof, we

only need to show sups<0,t≥s[Y (t; s)−Xλ(t; s)] ≤ C1. Suppose this is not the case, then we

can find some t1 ≥ s1 such Y (t1; s1)−Xλ(t1; s1) > C1. Since Y (s1; s1)−Xλ(s1; s1) ≤ C0 < C1,

there holds t1 > s1. Let

t0 = sup
{
t ∈ [s1, t1]

∣∣Y (t; s1)−Xλ(t; s1) ≤ C0

}
.

We claim Y (t0; s1)−Xλ(t0; s1) ≤ C0. It is trivial if there are only finitely many t ∈ [s1, t1]

such that Y (t; s1) − Xλ(t; s1) ≤ C0. So we assume there are infinitely many such t and

the claim is false. Then, there exists a sequence {t̃n}n∈N ⊂ [s1, t0) such that Y (t̃n; s1) −

Xλ(t̃n; s1) ≤ C0 for n ∈ N and t̃n → t0 as n→∞. Moreover, Y (t0; s1)−Xλ(t0; s1) = C̃1 > C0.
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It then follows that for all n ∈ N

Y (t̃n; s1)−Xλ(t̃n; s1) ≤ C0 = C0 − C̃1 + Y (t0; s1)−Xλ(t0; s1),

that is,

C̃1 − C0 +Xλ(t0; s1)−Xλ(t̃n; s1) ≤ Y (t0; s1)− Y (t̃n; s1) ≤ c̃κ(t0 − t̃n),

where the second inequality is due to Lemma 8.7. Passing n → ∞, we easily deduce a

contradiction from the continuity of Xλ(t; s1). Hence, the claim is true, that is, Y (t0; s1) −

Xλ(t0; s1) ≤ C0. It follows that t0 < t1.

We show

Y (t0; s1)−Xλ(t0; s1) = C0. (8.11)

Suppose (8.11) is not true, then we can find some δ0 > 0 such that Y (t0; s1)−Xλ(t0; s1) =

C0− δ0. Since Y (t; s1)−Xλ(t; s1) > C0 for t ∈ (t0, t1] by the definition of t0, we deduce from

Lemma 8.7 that for t ∈ (t0, t1]

C0 < Y (t; s1)−Xλ(t; s1) ≤ Y (t0; s1) + c̃κ(t− t0)−Xλ(t0; s1) +Xλ(t0; s1)−Xλ(t; s1)

= C0 − δ0 + c̃κ(t− t0) +Xλ(t0; s1)−Xλ(t; s1).

This leads to a contradiction when t approaches t0 due to the continuity of Xλ(t; s1) in t.

Hence, (8.11) holds.

Next, we look at the time interval [t0, t1] and set Ỹ (t; s1) = Y (t0; s1) + cκ(t − t0) for

t ∈ [t0, t1]. Note both Xλ(t; s1) and Ỹ (t; s1) are continuous, and Xλ(t0; s1) < Ỹ (t0; s1) by

(8.11). We claim that Xλ(t; s1) < Ỹ (t; s1) for all t ∈ [t0, t1]. Suppose this is not the case and

let

t2 = min
{
t ∈ [t0, t1]

∣∣Xλ(t; s1) = Ỹ (t; s1)
}
.
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Clearly, t2 ∈ (t0, t1]. We define

v(t, x; t0) = e−λκ(x−Ỹ (t;s1)), x ∈ R, t ∈ [t0, t2].

We easily check vt = J ∗ v − v + κv. Moreover, we see

• at the initial moment t0, we have u(t0, x; s1) ≤ e−λκ(x−Y (t0;s1)) = v(t0, x; t0) for x ∈ R,

• for x ≤ Ỹ (t; s1) and t ∈ (t0, t2), we have u(t, x; s1) < 1 ≤ v(t, x; t0),

• for x > Ỹ (t; s1) and t ∈ (t0, t2), we have x > Xλ(t; s1), and hence u(t, x; s1) ≤ λ. As a

result, we have ut = J ∗ u− u+ f(t, u) ≤ J ∗ u− u+ κu by (8.10).

Note, by Lemma 8.3 and the definition of v(t, x; t0), the limit v(t, x; t0) − u(t, x; s1) → 0 as

x→∞ is uniformly in t ∈ [t0, t2]. Then, applying the comparison principle (see Proposition

B.1) to v(t, x; t0)− u(t, x; s1), we conclude

u(t, x; s1) ≤ v(t, x; t0) = e−λκ(x−Ỹ (t;s1)), x ∈ R, t ∈ [t0, t2].

It follows that Y (t; s1) ≤ Ỹ (t; s1) for t ∈ [t0, t2] by definition in (8.8). In particular,

Y (t2; s1) ≤ Ỹ (t2; s1) = Xλ(t2; s1). Since t2 ∈ (t0, t1], we have Y (t2; s1) −Xλ(t2; s1) > C0 by

the definition of t0. It is a contradiction. Thus, the claim follows, that is, Xλ(t; s1) < Ỹ (t; s1)

for all t ∈ [t0, t1], and repeating the above arguments, we see

Y (t; s1) ≤ Ỹ (t; s1) = Y (t0; s1) + cκ(t− t0), t ∈ [t0, t1]. (8.12)

It follows from (8.12) and Lemma 8.5 that for any t ∈ [t0, t1]

Y (t; s1)−Xλ(t; s1) ≤ Y (t0; s1) + cκ(t− t0)− [Xλ(t0; s1) + (cB − ε)(t− t0 − tε,λ)]

= C0 + (cB − ε)tε,λ − (cB − cκ − ε)(t− t0)

≤ C0 + cBtε,λ = C1.
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This is a contradiction. Consequently, Y (t; s) − Xλ(t; s) ≤ C1 for all s < 0, t ≥ s. This

completes the proof.

We remark that the proof of Proposition 8.8 is based on the rightward propagation

estimate as in Lemma 8.5 and an idea of Zlatoš (see [85, Lemma 2.5]).

Finally, we prove Theorem 8.4.

Theorem 8.4. Let λ∗ be as in (8.9) and fix any 0 < λ1 < λ2 ≤ λ∗. Consider the function

g(t, x; s) = e−λκ(x−Y (t;s)), x ∈ R.

Since g(t, Y (t; s); s) = 1, there exists a unique x1 > 0 (independent of s < 0, t ≥ s) such that

g(t, Y (t; s) + x1; s) = λ1. Since g(t, x; s) ≥ e−λκ(x−Y (t;s)) ≥ u(t, x; s) for x ≥ Y (t; s), we have

Y (t; s) + x1 ≥ Xλ1(t; s). It then follows that Xλ1(t; s)−Xλ2(t; s) ≤ Y (t; s)−Xλ2(t; s) + x1.

The result then follows from Proposition 8.8.

8.3 Modified interface locations and exponential decaying estimates

In the study of the propagation of the solution u(t, x; s), the propagation of the interface

location Xλ(t; s), more precisely, how fast it moves, plays a crucial role. In the classical

random dispersal case, this problem is transferred into the study of uniform steepness, that

is, whether ux(t,Xλ(t; s); s) is uniformly negative, since there holds the formula

Ẋλ(t; s) = − ut(t,Xλ(t; s); s)

ux(t,Xλ(t; s); s)
.

Clearly, this approach does not work here since we are lack of space regularity of u(t, x; s).

Moreover, we do not know if Xλ(t; s) is differentiable in t and it moves back and forth in

general. To circumvent these difficulties, we look at the problem from a different viewpoint.

Instead of studying Xλ(t; s) directly, we modify it to get a new interface location of expected

properties, such as moving in one direction with certain speed and staying within a certain

82



distance from Xλ(t; s), which captures the propagation nature of u(t, x; s). This is the main

purpose of this subsection. As an application of the new interface location, we derive uniform

exponential decaying estimates of u(t, x; s).

We first modify Xλ(t; s) properly by proving the following

Theorem 8.9. Let λ∗ be as in (8.9). There are cmin > 0, cmax > 0, c̃max > 0 and dmax > 0

such that for any s < 0, there exists a continuously differentiable function X(t; s) : [s,∞)→

R satisfying

cmin ≤ Ẋ(t; s) ≤ cmax, t ≥ s,

|Ẍ(t; s)| ≤ c̃max, t ≥ s

such that

0 ≤ X(t; s)−Xλ∗(t; s) ≤ dmax, t ≥ s.

Moreover, {Ẋ(·, s)}s<0 and {Ẍ(·, s)}s<0 are uniformly bounded and uniformly Lipschitz con-

tinuous.

In particular, for any λ ∈ (0, λ∗], there exists dmax(λ) > 0 such that

|X(t; s)−Xλ(t; s)| ≤ dmax(λ) if λ ∈ (0, λ∗]

for all s < 0, t ≥ s.

Proof. By Lemma 8.5, there exists tB > 0 such that

Xλ∗(t; s)−Xλ∗(t0; s) ≥ 3

4
cB(t− t0 − tB), s < 0, t ≥ t0 ≥ s. (8.13)

Recall Y (t; s) is Yκ(t; s) for some fixed small κ > 0 and we have

C0 := sup
s<0,t≥s

|Xλ∗(t; s)− Y (t; s)| <∞ (8.14)
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by Proposition 8.8, and

Y (t; s)− Y (t0; s) ≤ c0(t− t0), s < 0, t ≥ t0 ≥ s (8.15)

by Lemma 8.7, where c0 = c̃κ for the fixed κ > 0. We interpret that (8.13), (8.14) and (8.15)

imply that Xλ∗(t; s) moves with a uniformly positive and uniformly bounded average speed.

This observation is crucial in the following modification.

We modify Xλ∗(t; s) as follows. At the initial moment s, we define

Z(t; s) = Xλ∗(s; s) + 2C0 + 1 +
cB
2

(t− s), t ≥ s.

Clearly, Xλ∗(s; s) < Z(s; s). By (8.13), Xλ∗(t; s) will hit Z(t; s) sometime after s. Let T1(s)

be the first time that Xλ∗(t; s) hits Z(t; s), that is, T1(s) = min
{
t ≥ s

∣∣Xλ∗(t; s) = Z(t; s)
}

.

It follows that

Xλ∗(t; s) < Z(t; s) for t ∈ [s, T1(s)) and Xλ∗(T1(s); s) = Z(T1(s); s).

Moreover, T1(s)− s ∈
[

2
2c0−cB

, 4(2C0+1)
cB

+ 3tB
]
, which is a simple result of (8.13), (8.14) and

(8.15).

Now, at the moment T1(s), we define

Z(t;T1(s)) = Xλ∗(T1(s); s) + 2C0 + 1 +
cB
2

(t− T1(s)), t ≥ T1(s).

Similarly, Xλ∗(T1(s); s) < Z(T1(s);T1(s)) and Xλ∗(t; s) will hit Z(t;T1(s)) sometime after

T1(s). Denote by T2(s) the first time that Xλ∗(t; s) hits Z(t;T1(s)). Then,

Xλ∗(t; s) < Z(t;T1(s)) for t ∈ [T1(s), T2(s)) and Xλ∗(T2(s); s) = Z(T2(s);T1(s)),

and T2(s)− T1(s) ∈
[

2
2c0−cB

, 4(2C0+1)
cB

+ 3tB
]

by (8.13), (8.14) and (8.15).
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Repeating the above arguments, we obtain the following: there is a sequence of times

{Tn−1(s)}n∈N satisfying T0(s) = s and

Tn(s)− Tn−1(s) ∈
[

2

2c0 − cB
,
4(2C0 + 1)

cB
+ 3tB

]
for all n ∈ N,

and for any n ∈ N

Xλ∗(t; s) < Z(t;Tn−1(s)) for t ∈ [Tn−1(s), Tn(s)) and Xλ∗(Tn(s); s) = Z(Tn(s);Tn−1(s)),

where

Z(t;Tn−1(s)) = Xλ∗(Tn−1(s); s) + 2C0 + 1 +
cB
2

(t− Tn−1(s)).

Moreover, for any n ∈ N and t ∈ [Tn−1(s), Tn(s))

Z(t;Tn−1(s))−Xλ∗(t; s)

≤ Xλ∗(Tn−1(s); s) + 2C0 + 1 +
cB
2

(t− Tn−1(t0))

−
[
Xλ∗(Tn−1(s); s) +

3

4
cB(t− Tn−1(s)− tB)

]
= 2C0 + 1 +

3

4
cBtB −

1

4
cB(t− Tn−1(s)) ≤ 2C0 + 1 +

3

4
cBtB.

Now, define Z̃(t; s) : [s,∞)→ R by setting

Z̃(t; s) = Z(t;Tn−1(s)) for t ∈ [Tn−1(s), Tn(s)), n ∈ N. (8.16)

Since [s,∞) = ∪n∈N[Tn−1(s), Tn(s)), Z̃(t; s) is well-defined for all t ≥ s. Notice Z̃(t; s) is

strictly increasing and is linear on [Tn−1(s), Tn(s)) with slope cB
2

for each n ∈ N, and satisfies

0 ≤ Z̃(t; s)−Xλ∗(t; s) ≤ 2C0 + 1 +
3

4
cBtB, t ≥ s.
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Finally, we can modify Z̃(t; s) near each Tn(s) for n ∈ N to get the expected modification.

In fact, fix some δ∗ ∈ (0, 1
2

2
2c0−cB

). We modify Z̃(t; s) by redefining it on the intervals

(Tn(s)− δ∗, Tn(s)), n ∈ N as follows: define

X(t; s) =


Z̃(t; s), t ∈ [s,∞)\ ∪n∈N (Tn(s)− δ∗, Tn(s)),

Xλ∗(Tn(s)) + δ(t− Tn(s)), t ∈ (Tn(s)− δ∗, Tn(s)), n ∈ N,

where δ : [−δ∗, 0]→ [− cB
2
δ∗, 1] is twice continuously differentiable and satisfies

δ(−δ∗) = −cB
2
δ∗, δ(0) = 1,

δ̇(−δ∗) =
cB
2

= δ̇(0), δ̇(t) ≥ cB
2

for t ∈ (−δ∗, 0) and

δ̈(−δ∗) = 0 = δ̈(0).

The existence of such a function δ(t) is clear. Moreover, there exist cmax = cmax(δ∗) > 0 and

c̃max = c̃max(δ∗) > 0 such that δ̇(t) ≤ cmax and |δ̈(t)| ≤ c̃max for t ∈ (−δ∗, 0). Notice the

above modification is independent of n ∈ N and s < 0. As a result, we readily check that

X(t; s) satisfies all expected properties. This completes the proof.

We now apply Theorem 8.9 to study uniform exponential decaying estimates of u(t, x; s)

behind and ahead of interfaces. Let λ∗ be as in (8.9) and X(t; s) be as in Theorem 8.9. Since

f ′B(1) < 0, we see that there exist θ∗ ∈ (θ, λ∗] and β > 0 such that

fB(u) ≥ β(1− u), u ∈ [θ∗, 1]. (8.17)

Set

X̂(t; s) = X(t; s)− dmax − Ĉ, (8.18)

where Ĉ > 0 is some constant (to be chosen) introduced only for certain flexibility. Theorem

8.4 and Theorem 8.9 then imply that X̂(t; s) ≤ Xθ∗(t; s), and hence, u(t, x+ X̂(t; s); s) ≥ θ∗
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for all x ≤ 0. We also set

X̃(t; s) = X(t; s) + sup
s<0,t≥s

∣∣Xθ(t; s)−Xλ∗(t; s)
∣∣. (8.19)

Since X(t; s) ≥ Xλ∗(t; s) by Theorem 8.9, we have X̃(t; s) ≥ Xθ(t; s), and hence, u(t, x +

X̃(t; s); s) ≤ θ for x ≥ 0.

We now prove the main result in this subsection.

Theorem 8.10. There exist c± > 0 such that

u(t, x; s) ≥ 1− ec−(x−X̂(t;s)), x ≤ X̂(t; s),

u(t, x; s) ≤ e−c+(x−X̃(t;s)), x ≥ X̃(t; s)

for all s < 0, t ≥ s.

Proof. Define

N−[v] = vt − [J ∗ v − v]− β(1− v).

For x ≤ X̂(t; s), we have u(t, x; s) ≥ θ∗, which together with (8.17) implies that

f(t, u(t, x; s)) ≥ fB(u(t, x; s)) ≥ β(1− u(t, x; s)), x ≤ X̂(t; s)

It then follows that for x ≤ X̂(t; s)

N−[u] = ut − [J ∗ u− u]− β(1− u) = f(t, u)− β(1− u) ≥ 0.

For c > 0, we compute

N−[1− ec(x−X̂(t;s))] =

[
c

˙̂
X(t; s) +

∫
R
J(y)e−cydy − 1− β

]
ec(x−X̂(t;s))

≤
[
ccmax +

∫
R
J(y)e−cydy − 1− β

]
ec(x−X̂(t;s)),
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where we used the definition of X̂(t; s) and Theorem 8.9. Since
∫
R J(y)e−cydy → 1 as

c → 0, we can choose c > 0 so small that ccmax +
∫
R J(y)e−cydy − 1 − β ≤ 0, and then,

N−[1− ec(x−X̂(t;s))] ≤ 0. Hence, we have shown

N−[u] ≥ 0 ≥ N−[1− ec−(x−X̂(t;s))], x ≤ X̂(t; s).

for some small c− > 0. Trivially, we have u(t, x; s) > 0 ≥ 1− ec−(x−X̂(t;s)) for x ≥ X̂(t; s). At

the initial moment s, we obtain from Lemma A.1 that u(s, x; s) = φB(x−ys) ≥ 1−ec−(x−X̂(s;s))

if we choose c− smaller and Ĉ sufficiently large. Then, we conclude from the comparison

principle (see (ii) in Proposition B.1) that u(t, x; s) ≥ 1− ec−(x−X̂(t;s)) for x ≤ X̂(t; s). This

proves half of the theorem.

We now prove the other half. To do so, we define

N+[v] = vt − [J ∗ v − v].

Since X̃(t; s) ≥ Xθ(t; s) by construction, we have u(t, x; s) ≤ θ for x ≥ X̃(t; s), and hence,

f(t, u(t, x; s)) ≤ 0 for x ≥ X̃(t; s). From which, we deduce

N+[u] = ut − [J ∗ u− u] = f(t, u) ≤ 0, x ≥ X̃(t; s).

Let c > 0. We compute

N+[e−c(x−X̃(t;s))] =

[
c ˙̃X(t; s)−

∫
R
J(y)ecydy + 1

]
e−c(x−X̃(t;s))

≥
[
ccmin −

∫
R
J(y)ecydy + 1

]
e−c(x−X̃(t;s)),

where we used Theorem 8.9. Set g(c) = ccmin −
∫
R J(y)ecydy + 1. Clearly, g(0) = 0 and

g′(c) = cmin −
∫
R J(y)yecydy. Due to the symmetry of J ,

∫
R J(y)yecydy → 0 as c→ 0. As a

result, g′(c) > 0 for all small c > 0. Hence, we can find some c+ > 0 such that g(c+) > 0,
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and therefore, N+[e−c+(x−X̃(t;s))] ≥ g(c+)e−c+(x−X̃(t;s)) ≥ 0. Hence, we have shown

N+[u] ≤ 0 ≤ N+[e−c+(x−X̃(t;s))], x ≥ X̃(t; s).

for some small c+ > 0. Since we have trivially ũ < 1 ≤ e−c+(x−X̃(t;s)) for x ≤ X̃(t; s) and,

by Lemma A.1 and X̃(s; s) ≥ Xθ(s; s) = ys, u(s, x; s) = φB(x − ys) ≤ e−c+(x−X̃(t;s)) if we

choose c+ smaller, we conclude from the comparison principle (see (i) in Proposition B.1)

that u(t, x; s) ≤ e−c+(x−X̃(t;s)) for x ≥ X̃(t; s). This completes the proof.

As a simple consequence of Theorem 8.10, we have

Corollary 8.11. For any 0 < λ1 < λ2 < 1, there holds

sup
s<0,t≥s

[
Xλ1(t; s)−Xλ2(t; s)

]
<∞.

In particular, for any λ ∈ (0, 1), there holds

sup
s<0,t≥s

∣∣Xλ(t; s)−X(t; s)
∣∣ <∞.

Proof. By Theorem 8.10, we have

max
{

0, 1− ec−(x−X̂(t;s))
}
≤ u(t, x; s) ≤ min

{
1, e−c+(x−X̃(t;s))

}
.

The result then follows from the fact that X̃(t; s)− X̂(t; s) ≡ const.

8.4 Construction of transition fronts

In this section, we prove Theorem 8.1. To do so, we prove uniform Lipschitz continuity

of u(t, x; s) in the space variable x.
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Lemma 8.12. There holds

sup
x 6=y

s<0,t≥s

∣∣∣∣u(t, y; s)− u(t, x; s)

y − x

∣∣∣∣ <∞.
Proof. Since u(t, x; s) ∈ (0, 1), there holds trivially

∀δ > 0, sup
|y−x|≥δ
s<0,t≥s

∣∣∣∣u(t, y; s)− u(t, x; s)

y − x

∣∣∣∣ <∞.
Thus, to finish the proof of the lemma, it suffices to show the local uniform Lipschitz conti-

nuity, that is,

∀δ > 0, sup
0<|y−x|≤δ
s<0,t≥s

∣∣∣∣u(t, y; s)− u(t, x; s)

y − x

∣∣∣∣ <∞. (8.20)

To this end, we fix δ > 0. Let X(t; s) be as in Theorem 8.9 and define

L1 = δ + sup
s<0,t≥s

∣∣Xθ0(t; s)−X(t; s)
∣∣ and L2 = δ + sup

s<0,t≥s

∣∣Xθ1(t; s)−X(t; s)
∣∣,

where θ0 and θ1 are as in Hypothesis 2.3. Notice L1 < ∞ and L2 < ∞ by Corollary 8.11.

Then, for any 0 < |y − x| ≤ δ we have

• if x ≥ X(t; s) + L1, then y ≥ x − δ ≥ Xθ(t; s), which implies that u(t, y; s) ≤ θ0,

u(t, x; s) ≤ θ0, and hence by Hypothesis 2.3

f(t, u(t, y; s))− f(t, u(t, x; s))

u(t, y; s)− u(t, x; s)
≤ 0; (8.21)

• if x ≤ X(t; s) − L2, then y ≤ x + δ ≤ Xθ̃(t; s), which implies that u(t, y; s) ≥ θ̃ and

u(t, x; s) ≥ θ̃, and hence by Hypothesis 2.3

f(t, u(t, y; s))− f(t, u(t, x; s))

u(t, y; s)− u(t, x; s)
≤ 0. (8.22)
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According to (8.21) and (8.22), we consider time-dependent disjoint decompositions of R

into

R = Rl(t; s) ∪Rm(t; s) ∪Rr(t; s),

where

Rl(t; s) = (−∞, X(t; s)− L2),

Rm(t; s) = [X(t; s)− L2, X(t; s) + L1] and

Rr(t; s) = (X(t; s) + L1,∞).

Since X(t; s) is continuous in t, this three regions change continuously in t. As X(t; s) moves

to the right by Theorem 8.9, any fixed point will eventually enter into Rl(t; s) and stay there

forever.

For s < 0 and x0 ∈ R, let tfirst(x0; s) be the first time that x0 is in Rm(t; s), that is,

tfirst(x0; s) = min
{
t ≥ s

∣∣x0 ∈ Rm(t; s)
}
,

and tlast(x0; s) be the last time that x0 is in Rm(t; s), that is,

tlast(x0; s) = max
{
t0 ∈ R

∣∣x0 ∈ Rm(t0; s) and x0 /∈ Rm(t, s) for t > t0
}
.

Since X(t; s) moves to the right, if x0 ∈ Rl(s; s), then x0 ∈ Rl(t; s) for all t > s. In this case,

tfirst(x0; s) and tlast(x0; s) are not well-defined, but it will not cause any trouble. Clearly,

x0 ∈ Rl(t; s) for all t > tlast(x0; s).

We see that either both tfirst(x0; s) and tlast(x0; s) are well-defined, or both of them are

not well-defined. In fact, tfirst(x0; s) and tlast(x0; s) are well-defined only if x0 /∈ Rl(s; s). As

a simple consequence of Lemma 8.5 and the fact that the length of Rm(t; s) is L1 + L2, we

have

T = T (δ) := sup
s<0,x0 /∈Rl(s;s)

[
tlast(x0; s)− tfirst(x0; s)

]
<∞. (8.23)
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Now, we are ready to prove the lemma. Fix x0 ∈ R, s < 0 and 0 < |η| ≤ δ. Set

vy(t, x; s) =
u(t, x+ η; s)− u(t, x; s)

η
.

Clearly, vη(t, x0; s) satisfies

vηt (t, x0; s) =

∫
R
J(x0 − y)vη(t, y; s)dy − vη(t, x0; s) + aη(t, x0; s)vη(t, x0; s),

where

aη(t, x0; s) =
f(t, u(t, x0 + η; s))− f(t, u(t, x0; s))

u(t, x0 + η; s)− u(t, x0; s)

is uniformly bounded. Notice
∫
R J(x0 − y)vη(t, y; s)dy is bounded uniformly in x0 and η. In

fact, the change of variable gives

∫
R
J(x0 − y)vη(t, y; s)dy =

∫
R

J(x0 − y + η)− J(x0 − y)

η
u(t, y; s)dy.

The uniform boundedness then follows from the fact u(t, x; s) ∈ (0, 1) and the assumption

J ′ ∈ L1(R) by Hypothesis 2.1.

Setting M = M(δ) := supx0∈R,0<|η|≤δ |
∫
R J(x0 − y)vη(t, y; s)dy|, we see that vη(t, x0; s)

satisfies

−M − vη(t, x0; s) + aη(t, x0; s)vη(t, x0; s)

≤ vηt (t, x0; s) ≤M − vη(t, x0; s) + aη(t, x0; s)vη(t, x0; s),

(8.24)

which essentially are ordinary differential inequalities. The solution of (8.24) satisfies

vη(t0, x0; s)e
−

∫ t
t0

(1−aη(τ,x0;s))dτ −M
∫ t

t0

e−
∫ t
r (1−aη(τ,x0;s))dτdr

≤ vη(t, x0; s) ≤ vη(t0, x0; s)e
−

∫ t
t0

(1−aη(τ,x0;s))dτ
+M

∫ t

t0

e−
∫ t
r (1−aη(τ,x0;s))dτdr

(8.25)
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for s ≤ t0 ≤ t. Notice 1− aη(t, x0; s) controls the behavior of vη(t, x0; s). We see, initially,

vη(s, x0; s) =
u(s, x0 + η; s)− u(s, x0; s)

η
=
φB(x0 + η − ys)− φB(x0 − ys)

η
,

which is uniformly bounded (uniform in s < 0, x0 ∈ R and 0 < |η| ≤ δ, and even in δ > 0)

since φB ∈ C1(R). Now,

(i) if x0 ∈ Rl(s; s), then x0 ∈ Rl(t; s) for all t ≥ s, which implies that aη(t, x0; s) ≤ 0

for all t ≥ s by (8.22). We then conclude from (8.25) that supt≥s |vη(t, x0; s)| ≤

C(M, ‖φB‖C1(R));

(ii) if x0 ∈ Rm(s; s), then tfirst(x0; s) = s. For t ∈ [tfirst(x0; s), tlast(x0; s)], we conclude

from (8.25) and the fact that aη(t, x0; s) is uniformly bounded that vη(t, x0; s) at most

grows exponentially with growth rate not larger than some universal constant, and this

expnential growth can only last for a period not longer than T , which is given in (8.23).

As a result, |vη(tlast(x0; s), x0; s)| ≤ C(M, ‖φB‖C1(R), T ). As mentioned before, for t >

tlast(x0; s), we have x0 ∈ Rl(t; s), which together with (8.22) implies that aη(t, x0; s) ≤

0. Then, as in (i), we conclude from (8.25) that |vη(t, x0; s)| ≤ C(M, ‖φB‖C1(R), T ) for

t > tlast(x0; s). Hence, supt≥s |vη(t, x0; s)| ≤ C(M, ‖φB‖C1(R), T );

(iii) if x0 ∈ Rr(s; s), then tfirst(x0; s) > s. For t ∈ [s, tfirst(x0; s)), we have x0 ∈ Rr(t; s),

which implies aη(t, x0; s) ≤ 0 by (8.21). Notice the interval [s, tfirst(x0; s)) may not have

uniformly bounded length, but (8.25) says that as long as t ∈ [s, tfirst(x0; s)), we have

|vη(t, x0; s)| ≤ C(M, ‖φB‖C1(R)), which implies, vη(tfirst(x0; s), x0; s) ≤ C(M, ‖φB‖C1(R)).

Then, we can follow the arguments in (ii) to conclude that supt≥s |vη(t, x0; s)| ≤

C(M, ‖φB‖C1(R), T ).

Consequently, supt≥s |vη(t, x0; s)| ≤ C(M, ‖φB‖C1(R), T ). Since x0 ∈ R and s < 0 are arbi-

trary, and T and M depend only on δ, we find (8.20), and hence, finish the proof of the

lemma.
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Now, we prove Theorem 8.1.

Proof of Theorem 8.1. Since u = u(t, x; s) satisfies ut = J ∗u−u+f(t, u), we conclude from

(H2) and the fact that u(t, x; s) ∈ (0, 1) that

sup
s<0,t>s

|ut(t, x; s)| <∞. (8.26)

Then, since v(t, x; s) := ut(t, x; s) satisfies

vt = J ∗ v − v + ft(t, u(t, x; s)) + fu(t, u(t, x; s))v,

we conclude from (8.26) and Hypothesis 2.5 that

sup
s<0,t>s

|utt(t, x; s)| = sup
s<0,t>s

|vt(t, x; s)| <∞. (8.27)

Now, by Lemma 8.12, (8.26), (8.27), Arzelà-Ascoli theorem and the diagonal argument, we

are able to find some continuous function u(t, x) : R×R→ [0, 1] that is differentiable in t and

nonincreasing in x such that u(t, x; s) → u(t, x) and ut(t, x; s) → ut(t, x) locally uniformly

in (t, x) ∈ R × R as s → −∞ along some subsequence. In particular, u(t, x) is an entire

classical solution of (2.3). Moreover, as an entire solution, u(t, x) ∈ (0, 1) and it is strictly

decreasing in x. The uniform Lipschitz continuity in space of u(t, x) also follows.

We now show the decaying properties of u(t, x). Recall X̂(t; s) and X̃(t; s) are given in

(8.18) and (8.19), respectively. By Theorem 8.9, {X(t; s)}s<0, {X̂(t; s)}s<0 and {X̃(t; s)}s<0

converge locally uniformly to a continuously differentiable functions X(t), X̂(t) and X̃(t),

respectively. Clearly, cB
2
≤ Ẋ(t) ≤ cmax, X(t)− X̂(t) = h− and X̃ −X(t) = h+ for all t ∈ R,

where h± > 0 are constants. In particular,

u(t, x+ X̂(t; s); s)→ u(t, x+ X̂(t)) and u(t, x+ X̃(t; s); s)→ u(t, x+ X̃(t))
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locally uniformly in (t, x) ∈ R×R as s→ −∞ along some subsequence, which together with

Theorem 8.10 implies that

u(t, x+ X̂(t)) ≥ 1− ec−x and u(t, x+ X̃(t)) ≤ e−c+x

for all (t, x) ∈ R× R. This completes the proof.

8.5 Conditional space regularity

Let u(t, x) be the transition front constructed in Theorem 8.1. Then, it is continu-

ously differentiable in x according to Theorem 2.2. In this subsection, we investigate the

space regularity of u(t, x) from a different viewpoint: we improve the space regularity of

approximating solutions u(t, x; s) to ensure the space regularity of u(t, x). To do so, besides

assumptions Hypothesis 2.1, Hypothesis 2.5 and Hypothesis 2.3, we assume in addition

Hypothesis 8.1. f(t, u) is twice continuously differentiable in u and satisfies

sup
(t,u)∈R×[0,1]

|fuu(t, u)| <∞.

Then, we prove

Theorem 8.13. Let u(t, x) be the transition front in Theorem 8.1. Then, for any t ∈

R, u(t, x) is continuously differentiable in x. Moreover, ux(t, x) is uniformly bounded and

uniformly Lipschitz continuous in x, that is,

sup
(t,x)∈R×R

|ux(t, x)| <∞ and sup
x 6=y
t∈R

∣∣∣∣ux(t, x)− ux(t, y)

x− y

∣∣∣∣ <∞, (8.28)

respectively.

To prove Theorem 8.13, we first investigate the space regularity of u(t, x; s). We have
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Lemma 8.14. For any s < 0 and t ≥ s, u(t, x; s) is continuously differentiable in x.

Moreover,

(i) ux(t, x; s) is uniformly bounded, that is,

sup
x 6=y

s<0,t≥s

|ux(t, x; s)| <∞;

(ii) ux(t, x; s) is uniformly Lipschitz continuous in space, that is,

sup
x 6=y

s<0,t≥s

∣∣∣∣ux(t, x; s)− ux(t, y; s)

x− y

∣∣∣∣ <∞.
Assuming Lemma 8.14, let us prove Theorem 8.13.

Proof of Theorem 8.13. It follows from Lemma 8.14, Arzelà-Ascoli theorem and the diago-

nal argument. More precisely, besides u(t, x; s) → u(t, x) and ut(t, x; s) → ut(t, x) locally

uniformly, we also have

ux(t, x; s)→ ux(t, x) locally uniformly in (t, x) ∈ R× R (8.29)

as s → −∞ along some subsequence. The properties of u(t, x) then inherit from that of

u(t, x; s).

In the rest of this subsection, we prove Lemma 8.14.

Proof of Lemma 8.14. (i) Setting

vη(t, x; s) :=
u(t, x+ η; s)− u(t, x; s)

η
.

By Lemma 8.12, supx∈R,η 6=0
s<0,t≥s

|vη(t, x; s)| <∞. Clearly, vη(t, x; s) satisfies

vηt (t, x; s) =

∫
R
J(x− y)vη(t, y; s)dy − vη(t, x; s) + aη(t, x; s)vη(t, x; s), (8.30)
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where

aη(t, x; s) =
f(t, u(t, x+ η; s))− f(t, u(t, x; s))

u(t, x+ η; s)− u(t, x; s)

is uniformly bounded by Hypothesis 2.5. Setting

bη(t, x; s) :=

∫
R
J(x− y)vη(t, y; s)dy =

∫
R

J(x− y + η)− J(x− y)

η
u(t, y; s)dy,

we see that supx∈R,η 6=0
s<0,t≥s

|bη(t, x; s)| <∞, since J ′ ∈ L1(R) and u(t, x; s) ∈ (0, 1).

The solution of (8.30) is given by

vη(t, x; s) = vη(s, x; s)e−
∫ t
s (1−aη(τ,x;s))dτ +

∫ t

s

bη(r, x; s)e−
∫ t
r (1−aη(τ,x;s))dτdr. (8.31)

Notice as η → 0, the following pointwise limits hold:

vη(s, x; s) =
φB(x+ η − ys)− φB(x− ys)

η
→ φ′B(x− ys),

aη(t, x; s)→ fu(t, u(t, x; s)) and

bη(t, x; s)→
∫
R
J ′(x− y)u(t, y; s)dy.

Then, setting η → 0 in (8.31), we conclude from the dominated convergence theorem that

for any s < 0, t ≥ s and x ∈ R, the limit ux(t, x; s) = limη→0 v
η(t, x; s) exists and

ux(t, x; s) = φ′B(x− ys)e−
∫ t
s (1−fu(τ,u(τ,x;s)))dτ +

∫ t

s

b(r, x; s)e−
∫ t
r (1−fu(τ,u(τ,x;s)))dτdr, (8.32)

where b(t, x; s) =
∫
R J
′(x − y)u(t, y; s)dy =

∫
R J
′(y)u(t, x − y; s)dy. In particular, for any

s < 0 and t ≥ s, u(t, x; s) is continuously differentiable in x. The uniform boundedness of

ux(t, x; s), i.e., sup x 6=y
s<0,t≥s

|ux(t, x; s)| <∞, then follows from Lemma 8.12.
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(ii) Since ux(t, x; s) is uniformly bounded by (i), we trivially have

∀δ > 0, sup
|x−y|≥δ
s<0,t≥s

∣∣∣∣ux(t, x; s)− ux(t, y; s)

x− y

∣∣∣∣ <∞.
Thus, to show the uniform Lipschitz continuity of ux(t, x; s), it suffices to show the local

uniform Lipschitz continuity, i.e.,

∀δ > 0, sup
|x−y|≤δ
s<0,t≥s

∣∣∣∣ux(t, x; s)− ux(t, y; s)

x− y

∣∣∣∣ <∞. (8.33)

To this end, we fix δ > 0. Let X(t; s) and Xλ(t; s) for λ ∈ (0, 1) be as in Theorem 8.9

and define

L1 = δ + sup
s<0,t≥s

∣∣Xθ0(t; s)−X(t; s)
∣∣ and L2 = δ + sup

s<0,t≥s

∣∣Xθ1(t; s)−X(t; s)
∣∣.

Notice L1 <∞ and L2 <∞. Then, for any x ∈ R and |η| ≤ δ we have

• if x ≥ X(t; s)+L1, then x+η ≥ x−δ ≥ Xθ0(t; s), which implies that u(t, x+η; s) ≤ θ0

by monotonicity, and hence

fu(t, u(t, x+ η; s)) ≤ 0; (8.34)

• if x ≤ X(t; s)−L2, then x+η ≤ x+δ ≤ Xθ1(t; s), which implies that u(t, x+η; s) ≥ θ1

by monotonicity, and hence

fu(t, u(t, x+ η; s)) ≤ 0. (8.35)

According to (8.34) and (8.35), we consider time-dependent disjoint decompositions of R

into

R = Rl(t; s) ∪Rm(t; s) ∪Rr(t; s),
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where

Rl(t; s) = (−∞, X(t; s)− L2),

Rm(t; s) = [X(t; s)− L2, X(t; s) + L1] and

Rr(t; s) = (X(t; s) + L1,∞).

(8.36)

For s < 0 and x0 ∈ R, let tfirst(x0; s) be the first time that x0 is in Rm(t; s), that is,

tfirst(x0; s) = min
{
t ≥ s

∣∣x0 ∈ Rm(t; s)
}
,

and tlast(x0; s) be the last time that x0 is in Rm(t; s), that is,

tlast(x0; s) = max
{
t0 ∈ R

∣∣x0 ∈ Rm(t0; s) and x0 /∈ Rm(t, s) for t > t0
}
.

Since Ẋ(t; s) ≥ cmin > 0 by Theorem 8.9, if x0 ∈ Rl(s; s), then x0 ∈ Rl(t; s) for all t > s.

In this case, tfirst(x0; s) and tlast(x0; s) are not well-defined, but it will not cause any trouble.

We see that tfirst(x0; s) and tlast(x0; s) are well-defined only if x0 /∈ Rl(s; s). As a simple

consequence of Ẋ(t; s) ∈ [cmin, cmax] in Theorem 8.9 and the fact that the length of Rm(t; s)

is L1 + L2, we have

T = T (δ) := sup
s<0,x0 /∈Rl(s;s)

[
tlast(x0; s)− tfirst(x0; s)

]
<∞. (8.37)

Moreover, we see that for any |η| ≤ δ,

fu(t, u(t, x0 + η; s)) ≤ 0 if t ∈ [s, tfirst(x0; s)],

fu(t, u(t, x0 + η; s)) ≤ 0 if t ≥ tlast(x0; s).

(8.38)
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We now show that

sup
x0∈R,0<|η|≤δ

s<0,t≥s

∣∣∣∣ux(t, x0 + η; s)− ux(t, x0; s)

η

∣∣∣∣ <∞. (8.39)

Using (8.32), we have

ux(t, x0 + η; s)− ux(t, x0; s)

η

=
φ′B(x0 + η − ys)− φ′B(x0 − ys)

η
e−

∫ t
s (1−fu(τ,u(τ,x0+η;s)))dτ︸ ︷︷ ︸

(I)

+ φ′B(x0 − ys)
e−

∫ t
s (1−fu(τ,u(τ,x0+η;s)))dτ − e−

∫ t
s (1−fu(τ,u(τ,x0;s)))dτ

η︸ ︷︷ ︸
(II)

+

∫ t

s

b(r, x0 + η; s)− b(r, x0; s)

η
e−

∫ t
r (1−fu(τ,u(τ,x0;s)))dτdr︸ ︷︷ ︸

(III)

+

∫ t

s

b(r, x0; s)
e−

∫ t
r (1−fu(τ,u(τ,x0+η;s)))dτ − e−

∫ t
r (1−fu(τ,u(τ,x0;s)))dτ

η
dr︸ ︷︷ ︸

(IV)

.

Hence, it suffice to bound terms (I)-(IV). To do so, we need to consider three cases: x0 ∈

Rl(s; s), x0 ∈ Rm(s; s) and x0 ∈ Rr(s; s). We here focus on the last case, i.e., x0 ∈ Rr(s; s),

which is the most involved one. The other two cases are simpler and can be treated similarly.

Also, for fixed s < 0 and x0 ∈ Rr(s; s), we will focus on t ≥ tlast(x0; s); the case with

t ∈ [tfirst(x0; s), tlast(x0; s)] or t ≤ tfirst(x0; s) will be clear. Thus, we assume x0 ∈ Rr(s; s) and

t ≥ tlast(x0; s).
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We will frequently use the following estimates: for any |η̃| ≤ δ there hold

e−
∫ tfirst(x0;s)
r (1−fu(τ,u(τ,x0+η̃;s)))dτ = e−(tfirst(x0;s)−r), r ∈ [s, tfirst(x0; s)]

e−
∫ tlast(x0;s)
r (1−fu(τ,u(τ,x0+η̃;s)))dτ ≤ eT sup(t,u)∈R×[0,1] |1−fu(t,u)|, r ∈ [tfirst(x0; s), tlast(x0; s)]

e−
∫ t
r (1−fu(τ,u(τ,x0+η̃;s)))dτ ≤ e−(t−r), r ∈ [tlast(x0; s), t].

(8.40)

They are simple consequences of (8.37) and (8.38). Set

C0 := sup
(t,u)∈R×[0,1]

|1− fu(t, u)|, C1 := sup
x 6=y

∣∣∣∣φ′B(x)− φ′B(y)

x− y

∣∣∣∣, C2 := sup
x∈R
|φ′B(x)|

C3 := sup
(t,u)∈R×[0,1]

|fuu(t, u)| × sup
x∈R

s<0,t≥s

|ux(t, x; s)|, C4 = sup
x 6=y

s<0,t≥s

∣∣∣∣u(t, x; s)− u(t, y; s)

x− y

∣∣∣∣.
Note that all these constants are finite. In fact, C0 < ∞ by Hypothesis 2.5, C1 < ∞ by

(A.3), C3 <∞ by Hypothesis 8.1 and (i) in Theorem 8.14, and C4 <∞ by Lemma 8.12.

We are ready to bound (I)-(IV). For the term (I), using (A.3) and (8.40), we see that

|(I)| ≤ C1e
−

∫ t
s (1−fu(τ,u(τ,x0+η;s)))dτ

= C1e
−
[ ∫ tfirst(x0;s)

s +
∫ tlast(x0;s)

tfirst(x0;s)
+

∫ t
tlast(x0;s)

]
(1−fu(τ,u(τ,x0+η;s)))dτ

≤ C1e
−(tfirst(x0;s)−s)eC0T e−(t−tlast(x0;s)) ≤ C1e

C0T .

(8.41)

For the term (II), we have from Taylor expansion of the function η 7→ e−
∫ t
s (1−fu(τ,u(τ,x0+η;s)))dτ

at η = 0 that

|(II)| ≤ C2

∣∣∣∣e−
∫ t
s (1−fu(τ,u(τ,x0+η;s)))dτ − e−

∫ t
s (1−fu(τ,u(τ,x0;s)))dτ

η

∣∣∣∣
≤ C2e

−
∫ t
s (1−fu(τ,u(τ,x0+η∗;s)))dτ

∫ t

s

∣∣∣fuu(τ, u(τ, x0 + η∗; s))ux(τ, x0 + η∗; s)
∣∣∣dτ,
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where η∗ is between 0 and η, and hence, |η∗| ≤ δ. We see

∫ t

s

∣∣∣fuu(τ, u(τ, x0 + η∗; s))ux(τ, x0 + η∗; s)
∣∣∣dτ ≤ C3(t− s).

It then follows from (8.40) that

|(II)| ≤ C2C3e
−(tfirst(x0;s)−s)e−(t−tlast(x0;s))(t− s)

= C2C3e
−(tfirst(x0;s)−s)e−(t−tlast(x0;s))

×
[
(t− tlast(x0; s)) + (tlast(x0; s)− tfirst(x0; s)) + (tfirst(x0; s)− s)

]
≤ C2C3

[
e−(t−tlast(x0;s))(t− tlast(x0; s)) + T + e−(tfirst(x0;s)−s)(tfirst(x0; s)− s)

]
≤ C2C3

(
2

e
+ T

)
.

(8.42)

For the term (III), we first see that

∣∣∣∣b(r, x0 + η; s)− b(r, x0; s)

η

∣∣∣∣ =

∣∣∣∣ ∫
R
J ′(y)

u(r, x0 + η − y; s)− u(r, x0 − y; s)

η
dy

∣∣∣∣ ≤ C4‖J ′‖L1(R).

Thus,

|(III)| ≤ C4‖J ′‖L1(R)

∫ t

s

e−
∫ t
r (1−fu(τ,u(τ,x0;s)))dτdr

= C4‖J ′‖L1(R)

[ ∫ tfirst(x0;s)

s

e−
∫ t
r (1−fu(τ,u(τ,x0;s)))dτdr︸ ︷︷ ︸
(III-1)

+

∫ tlast(x0;s)

tfirst(x0;s)

e−
∫ t
r (1−fu(τ,u(τ,x0;s)))dτdr︸ ︷︷ ︸
(III-2)

+

∫ t

tlast(x0;s)

e−
∫ t
r (1−fu(τ,u(τ,x0;s)))dτdr︸ ︷︷ ︸

(III-3)

]
.
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We estimate (III-1), (III-2) and (III-3). For (III-1), we obtain from (8.40) that

(III-1) =

∫ tfirst(x0;s)

s

e
−
[ ∫ tfirst(x0;s)

r +
∫ tlast(x0;s)

tfirst(x0;s)
+

∫ t
tlast(x0;s)

]
(1−fu(τ,u(τ,x0;s)))dτ

dr

≤ eC0T

∫ tfirst(x0;s)

s

e−(tfirst(x0;s)−r)e−(t−tlast(x0;s))dr

= eC0T e−(t−tlast(x0;s))(1− e−(tfirst(x0;s)−s)) ≤ eC0T .

Similarly,

(III-2) =

∫ tlast(x0;s)

tfirst(x0;s)

e
−
[ ∫ tlast(x0;s)

r +
∫ t
tlast(x0;s)

]
(1−fu(τ,u(τ,x0;s)))dτ

dr

≤ eC0T

∫ tlast(x0;s)

tfirst(x0;s)

e−(t−tlast(x0;s))dr ≤ eC0TTe−(t−tlast(x0;s)) ≤ TeC0T

and (III-3) ≤
∫ t
tlast(x0;s)

e−(t−r)dr = 1− e−(t−tlast(x0;s)) ≤ 1. Hence,

(III) ≤ C4‖J ′‖L1(R)(e
C0T + TeC0T + 1). (8.43)

For the term (IV), using |b(r, x0; s)| ≤ ‖J ′‖L1(R) and Taylor expansion as in the treatment

of the term (II), we have

|(IV)| ≤ ‖J ′‖L1(R)

∫ t

s

e−
∫ t
r (1−fu(τ,u(τ,x0+η∗;s)))dτ

(∫ t

r

∣∣∣fuu(τ, u(τ, x0 + η∗; s))ux(τ, x0 + η∗; s)
∣∣∣dτ)dr

≤ C3‖J ′‖L1(R)

∫ t

s

(t− r)e−
∫ t
r (1−fu(τ,u(τ,x0+η∗;s)))dτdr

= C3‖J ′‖L1(R)

[ ∫ tfirst(x0;s)

s

(t− r)e−
∫ t
r (1−fu(τ,u(τ,x0+η∗;s)))dτdr︸ ︷︷ ︸

(IV-1)

+

∫ tlast(x0;s)

tfirst(x0;s)

(t− r)e−
∫ t
r (1−fu(τ,u(τ,x0+η∗;s)))dτdr︸ ︷︷ ︸

(IV-2)

+

∫ t

tlast(x0;s)

(t− r)e−
∫ t
r (1−fu(τ,u(τ,x0+η∗;s)))dτdr︸ ︷︷ ︸

(IV-3)

]
,
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where |η∗| ≤ |η| ≤ δ. Similar to (III-1), (III-2) and (III-3), we have

(IV-1) =

∫ tfirst(x0;s)

s

(t− r)e−
[ ∫ tfirst(x0;s)

r +
∫ tlast(x0;s)

tfirst(x0;s)
+

∫ t
tlast(x0;s)

]
(1−fu(τ,u(τ,x0+η∗;s)))dτdr

≤ eC0T

∫ tfirst(x0;s)

s

[
(t− tlast(x0; s)) + T + (tfirst(x0; s)− r)

]
e−(tfirst(x0;s)−r)e−(t−tlast(x0;s))dr

≤ eC0T

[
(t− tlast(x0; s))e−(t−tlast(x0;s))

∫ tfirst(x0;s)

s

e−(tfirst(x0;s)−r)dr

+ T

∫ tfirst(x0;s)

s

e−(tfirst(x0;s)−r)dr +

∫ tfirst(x0;s)

s

(tfirst(x0; s)− r))e−(tfirst(x0;s)−r)dr

]
≤ eC0T

[
1− e−(tfirst(x0;s)−s)

e
+ T (1− e−(tfirst(x0;s)−s)) +

(
1− (1 + tfirst(x0; s)− s)e−(tfirst(x0;s)−s)

)]
≤ eC0T

(
1

e
+ T + 1

)
,

(IV-2) =

∫ tlast(x0;s)

tfirst(x0;s)

(t− r)e−
[ ∫ tlast(x0;s)

r +
∫ t
tlast(x0;s)

]
(1−fu(τ,u(τ,x0+η∗;s)))dτdr

≤ eC0T

∫ tlast(x0;s)

tfirst(x0;s)

[(t− tlast(x0; s)) + (tlast(x0; s)− r)]e−(t−tlast(x0;s))dr

≤ eC0T

[
T (t− tlast(x0; s))e−(t−tlast(x0;s)) +

∫ tlast(x0;s)

tfirst(x0;s)

(tlast(x0; s)− r)dr
]

≤ eC0T

(
T

e
+
T 2

2

)
and

(IV-3) ≤
∫ t

tlast(x0;s)

(t− r)e−(t−r)dr = 1− (1 + t− tlast(x0; s))e−(t−tlast(x0;s)) ≤ 1.

Hence,

|(IV)| ≤ C3‖J ′‖L1(R)

[
eC0T

(
1

e
+ T + 1

)
+ eC0T

(
T

e
+
T 2

2

)
+ 1

]
. (8.44)

Consequently, (8.39) follows from (8.41), (8.42), (8.43) and (8.44).
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Chapter 9

Concluding remarks and future plans

In this chapter, we make some remarks about the results obtained in the present dis-

sertation and mention some open problems.

(i) Let fB and fB̃ be two standard homogeneous bistable nonlinearies on [0, 1] with fB ≤

fB̃ and
∫ 1

0
fB(u)du > 0, as in Hypothesis 2.2. Thus, if θ ∈ (0, 1) and θ̃ ∈ (0, 1) are the

unstable (or middle) zeros of fB and fB̃, respectively, we have θ̃ ≤ θ. In proving the

existence of transition fronts in Section 8, we require θ̃ = θ, which is kind of restrictive,

but allows degeneracy at θ, that is, f ′B(θ) = 0 = f ′
B̃

(θ).

Here’s a possible variation: suppose that θ̃ < θ, f(t, u) is of standard bistable in u

for any t ∈ R. Let θ(t) ∈ (0, 1) be such that f(t, θ(t)) = 0, and assume θ(t) is an

exponentially unstable solution to ut = f(t, u). Then, the techniques in [64] can be

adapted to prove the existence of transition fronts.

(ii) The condition θ̃ = θ is not needed in studying the qualitative properties of transition

fronts in Chapter 3-Chapter 7.

(iii) The regularity result in Section 3.2 only covers some monostable nonlinearites in space-

time heterogeneous (see Corollary 3.7). It would be interesting to know if the regularity

can be established for all monostable nonlinearities.

(iv) The condition
∫ 1

0
fB(u)du > 0 forces all front-like solutions to move to the right, and

due to this, we can prove rightward propagation estimates of approximating front-

like solutions in Section 8, which plays an important role in our regularity arguments

leading to the construction of transition fronts.
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Thus, it would be interesting and important to know if transition fronts can be con-

structed if we assume
∫ 1

0
fB(u)du < 0 <

∫ 1

0
fB̃(u)du. Under this assumption, we will

lose rightward propagation estimates, and hence, our regularity arguments fail.

9.1 Future plans

Here are some problems I am interested in.

(i) There’s few work (see [12]) concerning the equation ut = J ∗ u − u + f(x, u) in the

bistable case. I would like to know whether transition fronts, or periodic traveling

waves in the periodic case, can be found.

(ii) Consider the equation ut = J ∗u−u+f(t, u) in the monostable case. Periodic traveling

waves in the periodic case have been established (see [60]), but no result exist in the

literature concerning transition fronts in the general case.

(iii) Consider the equation ut = uxx+f(t, x, u) in the monostable, bistable or ignition case.

Almost all results concerning this equation were obtained when f(t, x, u) = f(t, u)

or f(t, x, u) = f(x, u) or f(t, x, u) is periodic in t or x. Thus, it is very interesting

and important to establish transition front in the general case. However, this seem

unavailable so far.

(iv) Lots of effort and work has been carried out to the understanding of the single equation

ut = uxx+f(t, x, u) or ut = J ∗u−u+f(t, x, u). As opposed to this, results concerning

systems, say 
ut = uxx + u(a1(t, x)− b1(t, x)u− c1(t, x)v)

vt = uxx + v(a2(t, x)− c2(t, x)v − b2(t, x)u)

or 
ut = J ∗ u− u+ u(a1(t, x)− b1(t, x)u− c1(t, x)v)

vt = J ∗ v − v + v(a2(t, x)− c2(t, x)v − b2(t, x)u)
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are much less known. But, in applications, systems are much more meaningful than

single equations. Therefore, it is very important to have a better undertanding of the

dynamics of systems. This is a challenging problem.
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Appendix A

Bistable traveling waves

We collect some results about bistable traveling waves for convenience (see [7]). Consider

the following homogeneous equation

ut = J ∗ u− u+ fB(u), (t, x) ∈ R× R, (A.1)

where fB, given in Hypothesis 2.2, is of standard bistable type. There are a unique cB > 0

and a unique continuously differentiable function φ = φB : R→ (0, 1) satisfying


J ∗ φ− φ+ cBφx + fB(φ) = 0,

φx < 0, φ(0) = θ, φ(−∞) = 1 and φ(∞) = 0.

(A.2)

That is, φB is the normalized wave profile and φB(x− cBt) is the traveling wave of (A.1). It

is not hard to see that φ′B is uniformly Lipschitz continuous, that is,

sup
x 6=y

∣∣∣∣φ′B(x)− φ′B(y)

x− y

∣∣∣∣ <∞. (A.3)

Moreover, φB enjoys exponential decaying estimates as in

Lemma A.1. There exist c±B > 0 and x±B > 0 such that

φB(x) ≤ e−c
+
B(x−x+

B) and 1− φB(x) ≤ ec
−
B(x+x−B)

for all x ∈ R.

Also, the following stability result for φB(x− cBt) holds:
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Lemma A.2. Let u0 : R→ [0, 1] be uniformly continuous and satisfy

lim sup
x→∞

u0(x) < θ < lim inf
x→−∞

u0(x).

Then, there exists ξ±B = ξ±B(u0) ∈ R, qB = qB(u0) > 0 and ωB > 0 (independent of u0) such

that

φB(x− ξ−B − cBt)− qBe
−ωBt ≤ uB(t, x;u0) ≤ φB(x− ξ+

B − cBt) + qBe
−ωBt, x ∈ R

for all t ≥ 0, where uB(t, x;u0) is the solution of (A.1) with initial data uB(0, ·;u0) = u0.
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Appendix B

Comparison principles

We prove comparison principles used in the previous chapters.

Proposition B.1. Let K : R×R→ [0,∞) be continuous and satisfy supx∈R
∫
RK(x, y)dy <

∞. Let a : R× R→ R be continuous and uniformly bounded.

(i) Suppose that X : [0,∞) → R is continuous and that u : [0,∞) × R → R satisfies the

following: u, ut : [0,∞)×R→ R are continuous, the limit limx→∞ u(t, x) = 0 is locally

uniformly in t, and


ut(t, x) ≥

∫
RK(x, y)u(t, y)dy + a(t, x)u(t, x), x > X(t), t > 0,

u(t, x) ≥ 0, x ≤ X(t), t > 0,

u(0, x) = u0(x) ≥ 0, x ∈ R.

Then u(t, x) ≥ 0 for (t, x) ∈ (0,∞)× R.

(ii) Suppose that X : [0,∞) → R is continuous and that u : [0,∞) × R → R satisfies

the following: u, ut : [0,∞) × R → R are continuous, the limit limx→−∞ u(t, x) = 0 is

locally uniformly in t, and


ut(t, x) ≥

∫
RK(x, y)u(t, y)dy + a(t, x)u(t, x), x < X(t), t > 0,

u(t, x) ≥ 0, x ≥ X(t), t > 0,

u(0, x) = u0(x) ≥ 0, x ∈ R.

Then u(t, x) ≥ 0 for (t, x) ∈ (0,∞)× R.
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(iii) Suppose that u : [0,∞) × R → R satisfies the following: u, ut : [0,∞) × R → R is

continuous, inft≥0,x∈R u(t, x) > −∞, and


ut(t, x) ≥

∫
RK(x, y)u(t, y)dy + a(t, x)u(t, x), x ∈ R, t > 0,

u(0, x) = u0(x) ≥ 0, x ∈ R.

Then u(t, x) ≥ 0 for (t, x) ∈ (0,∞) × R. Moreover, if u0(x) 6≡ 0, then u(t, x) > 0 for

(t, x) ∈ (0,∞)× R.

Proof. (i) We follow [33, Proposition 2.4]. Note first that replacing u(t, x) by ertu(t, x) for

sufficiently large r > 0, we many assume, without loss of generality, that a(t, x) > 0 for all

(t, x) ∈ R× R.

Set K0 := supx∈R
∫
RK(x, y)dy < ∞, a0 := sup(t,x)∈R×R a(t, x) and τ := 1

2(K0+a0)
. Sup-

pose there exists (t0, x0) ∈ [0, τ ]×R such that u(t0, x0) < 0. Then, by the assumption, there

exists (t1, x1) ∈ Ω0,τ := {(t, x) ∈ R× R|x > X(t), t ∈ (0, τ ]} such that

u(t1, x1) = min
(t,x)∈Ω0,τ

u(t, x) < 0.

Define

s1 := max{t ∈ [0, t1]|u(t, x1) ≥ 0}.

By continuity of u(t, x), s1 < t1 and u(s1, x1) ≥ 0. Moreover, by the definition of s1, we see

that x1 > X(t) for t ∈ (s1, t1]. In particular, we have

ut(t, x1) ≥
∫
R
K(x1, y)u(t, y)dy + a(t, x1)u(t, x1), t ∈ (s1, t1].
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Integrating the above inequality with respect to t from s1 to t1, we conclude from the facts

that u(t, x) ≥ 0 for x ≤ X(t) and u(t1, x1) < 0 that

u(t1, x1)− u(s1, x1) ≥
∫ t1

s1

∫
R
K(x1, y)u(t, y)dydt+

∫ t1

s1

a(t, x1)u(t, x1)dt

≥
∫ t1

s1

∫ ∞
X(t)

K(x1, y)u(t, y)dydt+

∫ t1

s1

a(t, x1)u(t, x1)dt

≥ u(t1, x1)

[ ∫ t1

s1

∫ ∞
X(t)

K(x1, y)dydt+

∫ t1

s1

a(t, x1)dt

]
≥ u(t1, x1)(K0 + a0)(t1 − s1)

≥ u(t1, x1)(K0 + a0)τ,

which implies that [1−(K0 +a0)τ ]u(t1, x1) ≥ u(s1, x1) ≥ 0. It then follows from the choice of

τ that u(t1, x1) ≥ 0. It’s a contradiction. Thus, u(t, x) ≥ 0 for (t, x) ∈ [0, τ ]×R. Repeating

the above arguments with initial times τ, 2τ, 3τ, . . . , we find the result.

(ii) It can be proved by the similar arguments as in (i).

(iii) It follows from the arguments in [73, Propositions 2.1 and 2.2].
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