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Abstract

C preprocessor directives are extensively used in C programs. Due to this, performing

advanced program transformations on C programs is difficult. To obtain correct transfor-

mations, all possible configurations have to be considered. Modern IDEs ignore multiple

configurations of the C preprocessor due to its complexity. OpenRefactory/C is an infras-

tructure that builds correct and complex transformations for C programs.The preprocessor

and the program representation were modified to support multiple configurations in Open-

Refactory/C. The C grammar was extended to include conditional directives in the program

representation. The extended grammar allows conditional directives to appear in between

certain complete C constructs. However, the conditional directives can appear in any part of

the program. We modified the OpenRefactory/C parser to handle conditional directives that

appear at an unexpected location in C programs and hence support multiple configurations.
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Chapter 1

Introduction

Refactoring a source code improves its structure and design without changing the ex-

ternal behavior. It results in more readable and maintainable code and hence modifying the

refactored code is easier. Many modern IDEs such as Eclipse support refactoring. There are

many refactoring tools for C which support rudimentary transformations. However, these

tools do not support advanced refactorings such as extract method refactoring. Due to the

extensive use of preprocessor directives advanced refactoring of C is difficult.

The C grammar does not include preprocessor directives and hence the C code should

be preprocessed before parsing. Refactoring a preprocessed version of code might result in

inaccurate transformation. Suppose in the example shown in figure 1.1 (a), BIG ENDIAN is

not defined, refactoring the preprocessed version of source code results in inaccurate trans-

formation as shown in figure 1.1 (b). Correct transformation of the code can be performed by

supporting multiple preprocessor configurations. In the example, if both branches of #ifdef

are considered, refactoring will accurately transform the code as shown in figure 1.2.

Figure 1.1: Example illustrating the importance of multiple configuration transformations.
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Figure 1.2: Result of refactoring with multiple configurations.

1.1 OpenRefactory/C

OpenRefactory/C is a framework that builds correct and intricate program transfor-

mations for C. Every part of the OpenRefactory/C infrastructure is modified to support

configuration aware analysis and transformation.

1.2 Modifications to preprocessor and extending C grammar

As explained in the previous section, the preprocessed code can not be transformed as it

will result in losing branches of conditional directives except one. To overcome this problem,

we use the pseudo-preprocessing model by Garrido [3]. In pseudo-preprocess model, the

abstract syntax tree generated is similar to code after preprocessing and contains all possible

configurations of the code.

Behrang [22] [23] made changes to the preprocessor and program representation to

support multiple configurations. She designed an algorithm to keep track of all guarding

conditions associated with each macro definition. Therefore, when a macro call is expanded,

every possible expansion is included with a guarding condition.

The modified preprocessor feeds the lexical analyzer and the lexical analyzer produces

the stream of tokens that includes static conditional directives. However, the C grammar
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does not include the static conditionals constructs. To parse the C code that contains

conditional directives, Behrang [22] [23] extended the C grammar using the specifications

given in ISO standard for C99 [24].

1.3 A Problem

The extended C grammar allows preprocessor directives in between complete C con-

structs such as statements, function definitions and declarations. Despite that, the pre-

processor directives may appear anywhere in the code breaking a complete C construct and

violating the syntax of extended grammar. The LALR(1) parser used in OpenRefactory/C is

not capable of handling preprocessor directives that appear in inside a complete C construct.

1.4 Our solution

The parser generated using extended C grammar can successfully parse the code in

figure 1.3, since it has complete C constructs inside each static conditional branch. The re-

sulting abstract syntax tree for code in figure 1.3 is as shown in figure 1.4. The parser fails

Figure 1.3: Preprocessor directives appearing in between complete C constructs .

to parse the code in figure 1.5, since it violates the rules of extended C grammar. We need to

modify the OpenRefactory/C parser to handle such cases. We modified the LALR(1) parser

in OpenRefactory/C to handle the conditional directives that appear inside the complete

C constructs by implementing Fork-Merge technique. The Fork-Merge algorithm was intro-

duced by Gazzillo and Grimm [8]. In Fork-Merge technique, a new subparser is forked for
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Figure 1.4: Abstract syntax tree constructed by parsing code in figure 1.3.

Figure 1.5: Preprocessor directives in the middle of complete C constructs.

every static conditional. All subparsers together recognizes all configurations, hence supports

multiple configurations.

1.5 Thesis Organization

• Chapter 2 introduces basic concepts such as abstract syntax trees, parsing, different

classes of parsers, refactoring and automated refactoring tools. It also includes review

on existing literature.

• Since our work is based on fork-merge parsing algorithm, in Chapter 3 we explain how

fork-merge parsing algorithm works, optimizations introduced to fork-merge algorithm

to improve its performance and finally we explain the same using an example.
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• Chapter 4 describes how we implement fork-merge algorithm in OpenRefactory/C. The

changes made to fork-merge algorithm to accommodate requirements of OpenRefac-

tory/C. This chapter gives the implementation details of the parser.

• Chapter 5 discusses the conclusion and future work.
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Chapter 2

Literature Review

2.1 Abstract Syntax Trees

A programming language specification should include the syntax and the semantics

of the language. A parser for a programming language verifies that its input obeys the

syntactic rules of the language specification. Compilers often use data structures called

Abstract Syntax Trees.

An abstract syntax tree represents the syntactic structure of the program. Each node of

the abstract syntax tree represents a construct within the program. The word ”abstract” is

used since an abstract syntax tree does not include every detail appearing in the real code.

A simple if-then-else statement is represented using a single node with three branches. The

below figure represents the abstract syntax tree (AST) of a simple if-then-else statement:

Figure 2.1: Abstract syntax tree of a simple if-then-else statement.

Abstract syntax trees often mimic the grammatical structure of a language, but do not

include punctuation and delimiters such as semi-colon, parenthesis, etc. Note that, as we

progress from the root to the leaves of the AST, the nodes represent progressively fine-grained
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language constructs. The process of building a syntax tree (logically) for a given input using

the syntactic rules of a programming language is called parsing.

2.2 Parsers

One of the simplest parsers is called a shift-reduce parser. A shift-reduce parser is a

table-driven nondeterministic stack machine [18]. A shift-reduce parser is categorized as a

bottom-up parser since it identifies and processes the input’s lowest-level details first, then

the mid-level structures, and finally the highest-level overall structure. The shift-reduce

parser attempts to construct a parse tree by performing a series of shift and reduce actions.

The action of pushing an input symbol onto its stack is called shifting, and popping the input

symbols from the stack and replacing the symbols with the left-hand side of the production

is called reducing.

A grammar in formal language theory is used to specify the rules of a programming

language, and it can be defined using a set of production rules. Most languages are defined

using context-free grammars. The production rules in a context-free grammar are represented

in the following format:

Where a single nonterminal appears on the left-hand side and a string of terminals

or/and nonterminals appears on the right-hand side of each production rule. The right-hand

side of the production rule can be empty, and such productions are called -productions.

In 1965, Donald E. Knuth [17] invented LR parsing, a variation of shift-reduce pars-

ing. LR parsers are capable of recognizing languages defined by deterministic context-free

grammars [9]. LR is an acronym, where L means the parser reads the input from left to

right and R means the parser produces the right-most derivation. An LR parser is a type of

shift-reduce parser that adds an additional finite state machine and look ahead symbols.

In an LR parser, there are four types of actions that can take place: shift, reduce,

accept, or error. The shift and reduce actions are the same as any other shift-reduce parser.

An accept action takes place after completely reading the input string, and the parsing is
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successfully completed. An error arises if the input string does not obey the rules of the

grammar.

An LR(0) parser is the simplest of all LR parsers. It does not use lookahead tokens. A

lookahead token is the incoming token which a parser uses to make shift/reduce decisions.

In LR(0) parser, the shift/reduce decisions are made based on the tokens that are already

read. Figure 2.2 shows an example for LR(0) grammar.

Figure 2.2: Example for LR(0) grammar.

The LR(0) parsing table is constructed using LR(0) items which are the grammar rules

with an additional period symbol on the right-hand side of the rule. The possible LR(0)

items for the grammar in Figure 2.2 is shown in figure 2.3.

Figure 2.3: LR(0) items for LR(0) grammar in Figure 2.2.

The symbols on the left-hand side of the period symbol correspond to the input string

that is recognized by the parser. The symbols on right-hand side of the period symbol

correspond to possible next input.

With an LR(0) grammar there are no shift/reduce conflicts or reduce/reduce conflicts.

A shift/reduce conflict occurs when the grammar allows a rule to be reduced for a particular

token and allows another rule to be shifted for the same token. A reduce/reduce conflict
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occurs when the grammar allows two different rules to be reduced for a particular token.

The grammar in figure 2.4 has shift/reduce conflict and is not an LR(0) grammar and the

figure 2.5 shows an example for non-LR(0) grammar with reduce/reduce conflict.

Figure 2.4: An example for non-LR(0) grammar with shift/reduce conflict.

Figure 2.5: An example for non-LR(0) grammar with reduce/reduce conflict.

With a lookahead in LR parsers, both shift/reduce and reduce/reduce conflicts in the

above examples can be solved. A lookahead is a terminal representing the next possible

input to the parser after the right-hand side of the grammar rule. An LR parser with a single

lookahead is called an LR(1) or canonical parser. These have the potential to recognize all

deterministic context-free languages. LR(1) items are used to construct the canonical parsing

table. An LR(1) item is a LR(0) item annotated with a lookahead. For LR(1) grammar in

figure 2.6(a) the LR(1) items are as shown in figure 2.6(b). The lookahead and the symbols

on the right-hand side of the grammar is separated by a comma.

Figure 2.6: An example LR(1) grammar and its LR(1) items.
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Canonical parsers have a high memory requirement. To overcome this limitation of LR

parsers, Frank DeRemer in 1969 [16] devised two variations on LR parsers: SLR parsers and

LALR parsers.

Unlike LR parsers, the SLR parser does not use the lookahead to construct the parser

table. The SLR parser considers the follow-set of a symbol to decide whether to shift or

reduce. The follow-set of a symbol is the set of all terminal symbols that can follow the

occurrence of the symbol. SLR and LALR parsers have the same size tables and same parser

states.

LALR parsers accept more grammars than SLR parsers. LALR parsers lie in between

SLR and canonical parsers in terms of the grammars accepted. In a canonical parser, multiple

copies of any particular state in an LR(0) automaton may exist, each annotated with a

different lookahead information. LALR parsers can be implemented by starting with a

Canonical parser and integrating all the states that have the same LR(0) items but different

lookaheads. The lookaheads can be aggregated together, resulting in a parser with the same

number of states as LR(0) and the same information as the Canonical parser. LALR parsers

are capable of handling more shift/reduce conflicts than SLR parsers [18]. Figure 2.7 shows

the hierarchy of grammar classes for bottom-up parsing.

Figure 2.7: Hierarchy of grammar classes for bottom-up parsing. [25]
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2.3 Challenges in C parsing

The C language consists of the C language proper as well as the C preprocessor. In-

cluding the preprocessor makes the C language more expressive, it has facilities such as file

inclusion macros and static conditionals.

In practice, the use of the preprocessor in the C language is extensive, and preprocessor

code generally does not conform to the syntactic rules of the base C language. The C pro-

cessor operates at the lexical level, and this makes the parsing C language more challenging.

Preprocessor conditionals are frequently used in many software systems. These conditionals

are usually used to declare and define the configuration variables. Preprocessing and parsing

these conditional directives have been a significant challenge.

2.4 Analyzing C preprocessor usage

Ernst et al. [4] analyzed C preprocessor usage to determine how frequently the pre-

processor is used in practice; this provides significant insights on practical usage of the C

preprocessor. The primary motive of their study was to evaluate the potential for prepro-

cessor usage reduction and to find out the difficulty in creating a framework for preprocessor

aware tools. They analyzed 26 packages that consist of 1.4 million lines of C code. Through

their analysis, Ernst et al. found that about 8.4% of program lines are preprocessor directives

and across packages it varies from 4.5% to 22%. The lines that expand a macro or the lines

whose inclusion is controlled by if statements was not included while computing these ratios.

They also found that about 48% of the total directives in all packages they analyzed were

conditional compilation directives. The remaining 32% of the total directives were macro

definitions, and file includes making up to 15% of total directives.

Ernst et al. conducted a detailed analysis of macro definitions that may complicate the

program understanding. A macro can have multiple definitions inside a package, or it can

be even redefined while preprocessing. Redefining a macro makes it harder to find which
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definition is used in a particular expansion. Ernst et al. examined the frequency of macro

redefinition in the 26 packages they analyzed. They found that about 10% of the macros were

defined twice, 2% of the macros were defined thrice, and 2% of the macros were defined four

or more times. They also reported data regarding the prevalence of preprocessor directives,

macro body categorizations, use of the C preprocessor to achieve, inconsistencies and errors

in macro definitions and uses, and dependencies of the code upon macros.

2.5 Preprocessor conditionals

Preprocessor conditionals are often used to make the software compatible with various

hardware platforms and operating systems. Preprocessor macros are used as configuration

variables, and then tested using preprocessor conditionals to configure the software accord-

ingly. Aversano et al. [6] in their work handling preprocessor conditioned declarations

propose an approach for finding out all possible types a configuration variable can be de-

clared in a software system. They also analyze the effect of using preprocessor conditionals

for declaring configuration variables in 17 different software systems.

The authors proposed a tool that finds all possible types of a configuration variable

declared, and that detects inconsistent variable declarations for all possible configurations.

The tool that they created parses and creates an abstract syntax tree and then builds an

enhanced symbol table. The enhanced symbol table consists of the variable name, scope,

type of the variable and the conditional expression which decides the type of the variable.

The software system can be compiled and type-checked for all possible configurations using

the enhanced symbol table. This is unlike the traditional compilation where only one possible

configuration is type-checked at a time. After type checking, a list of all possible type errors

that can be produced by the software system is created.

There are many software systems that have a lifetime of more than ten years, for such

software systems, a new configuration is required, and old ones may not be used anymore

due to the evolution in hardware and software platforms. These old configurations which
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are no longer needed are considered to be dead configurations. Removing such dead config-

urations would save programmers from wasting their time to understand and analyze these

configurations. Removing these old configurations is tedious tasks as it takes a lot of time

to check for these old configurations, edit, compile, debug and test millions of lines of source

code.

Baxter and Mehlich [1] introduced a tool to remove the configurations that do not

have utility anymore. They use the Design Maintenance System (DMS) and a set of rules

that specify the configurations to be removed. Using DMS and these set of rules, the dead

configurations are removed automatically within a few hours and without much effort. They

also proposed a method to simplify and easily evaluate the Boolean expressions.

Kastner et al.[7] proposed a variability aware parser which parses almost all unprepro-

cessed code within a reasonable time. The variability aware parser not only finds the syntax

errors in the source code, it also finds the possible type errors that can occur. The variability

aware parser would build a single abstract syntax tree which reflects the code’s variability.

The code’s variability is represented by using optional subtrees. In their work, Kastner

et al.[7] proposed a tool called TypeChef that has a variability aware lexer and a variability

aware parser. The variability aware lexer propagates variability from conditional compilation

to conditions in the token stream and resolves macros and file inclusion.

The variability aware parser reads the token stream from the lexer and produces an

abstract syntax tree which preserves variability. Similar to the enhanced symbol table that

was used in Aversano et al.’s work on handling preprocessor conditioned declarations, a

conditional symbol table was used during parsing to track the state of the program correctly.

Although TypeChef seems to solve the problems with the preprocessor conditionals,

TypeChef misses several interactions with preprocessor and it has few drawbacks. TypeChef

evaluates the constraints only if the macros are defined using #define keyword.
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2.6 Fork-Merge parsing

Gazillo and Grimm [8] proposed an open source tool called SuperC that completely

parses programs with high variability. They propose a configuration preserving preprocessor

that resolves the preprocessor directives such as includes and macros. This leaves out static

conditionals sustaining the variability of the program. They also propose a configuration

preserving parser which builds an abstract syntax tree with a static node for each static

conditionals. The configuration preserving parser forks a new subparser each time it en-

counters a static conditional. The authors propose algorithms for configuration-preserving

preprocessing and configuration-preserving parsing.

To limit the number of subparsers that are forked for a static conditional, they imple-

ment techniques such as early reduces, lazy shifts, and shared reduces. Early reduces make

sure that the subparsers merge as soon as possible. Lazy shifts decrease the number of sub-

parsers by delaying the forking of subparsers that will shift, and shared reduces eliminate

the duplicate work done by subparsers by reducing single stack for several heads at the same

time. Chapter 3 describes the complete functionality of a Fork-Merge parser.

2.7 Refactoring

Refactoring is the process of removing the unwanted or duplicate code in the existing

code and improving the design without affecting the external behavior of the code [12].

Opdyke first introduced the term refactoring in 1990. Refactoring results in a more readable,

efficient and maintainable code. By refactoring the code, fixing the bugs in the code becomes

easier. Refactoring code makes it readable and understandable, it removes any existing

duplicate code or logic and simplifies programs that have complex conditional logic. It is

easier to find and fix bugs in programs that are readable, easy to understand, having less

lines of code and simple logic. Refactoring increases the code reusability. If we need to build

something on the existing code, we have to understand the code and by refactoring, it is
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easy to read, understand and modify or build on the existing code. Refactoring can be either

done manually by the software developer or by using an automated tool. To perform the

refactoring manually, one has to go through the code manually and make changes, this may

lead to errors, and it is a frustrating and tedious process if refactoring has to be performed

on enormous code. William Opdyke in his Ph.D. thesis [19], came up with the idea of

refactoring tool that can implement the chosen refactoring by itself. Don Roberts, John

Brant, and Ralph Johnson introduced a refactoring tool for smalltalk [10] which is the first

refactoring tool ever.

2.8 Automated refactoring tool

There are many Interactive Development Environments (IDEs) and software editors

that support automated refactoring. Eclipse, NetBeans, Xcode, Visual Studio are some of

the IDEs which support automated refactoring. Automated refactoring involves following

steps:

1. Discovering the parts of the code to be refactored.

2. Finding which refactoring to be applied to the code.

3. Make sure that the refactoring to be applied preserves the behavior of the code.

4. Transforming the existing code that is selected by applying the refactoring.

5. Evaluate the effect of refactoring on quality of code.

6. Make changes in the documentation of the code according to the changes made in

the code due to refactoring.

The automation of refactoring tool can be partial or full [15]. In partially automated

refactoring, the developer recognizes the part of the code to be refactored and selects the

appropriate refactoring to be applied, and the selected refactoring is performed automati-

cally. Most of the modern IDEs that support refactoring use partial automation approach.

There are some researches that support fully automated refactoring. In a fully automated

refactoring, the entire process is automated. Guru, a refactoring tool for SELF programs,

15



is an example of full automated refactoring tool [20]. Automated refactoring can be used to

convert object-oriented programs into aspect-oriented programs by marking the aspects in

the existing code, generating the corresponding aspect code and removal of the marked code

through refactoring [13]. Automating application of design patterns to the existing code is

one of the vital use of refactoring [14]. Application of design patterns to the code makes the

software system more flexible and with more flexibility the system can be extended according

to the changing requirements.

2.9 CRefactory

Refactoring a C source code with conditional directives is challenging [11]. Refactoring

is usually performed after preprocessing that means that the refactoring is performed on

the preprocessed version of the code, and the results of refactoring is based on a single

configuration. But, a refactoring tool cannot consider a single configuration of the source

code because changing source code for one configuration might not support compiling the

source code for other configurations. Therefore, it is important that the refactoring tool

makes sure that it preserves all possible configurations.

Garrido and Johnson [3] [5] proposed a refactoring tool called CRefactory, which handles

conditional directives correctly. In their work, they successfully proposed a way of integrating

conditional directives in to the C grammar and program representation. They preferred to

complete the branches of conditional directives with the text that is before the conditional,

after the conditional statement, or both. By doing this, the conditional statements can be

added to the C grammar and hence parse all conditional branches in a single pass.
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Chapter 3

Overview Of Fork-Merge Parsing

Gazzillo and Grimm [8] proposed a configuration preserving parser which builds an

abstract syntax tree with a static choice node for each static conditional. The configuration

preserving parser forks a new subparser each time it encounters a static conditional. To

improve the performance of the parser, they introduced four optimizations: token-follow set,

early reduces, lazy-shifts and shared reduces. In the next section, we explain how Fork-Merge

Parsing algorithm works, following which we describe the optimizations that were introduced

to improve the performance of the parser and finally we illustrate Fork-Merge Parsing using

an example.

3.1 Fork-Merge LR Parser: How It Works?

In Fork-Merge LR (FMLR) parsing, a priority queue of LR subparsers is used. Each

subparser in the queue consists of an LR parser stack, a presence condition and the head.

The head of a subparser is the next token to be processed. It can be either a conditional or

an ordinary token. A subparser is represented as follows:

p := (c, a, s)

where p is the subparser, c is the presence condition, a is the head of subparser, and s

is the LR parser stack.

At first, the priority queue is initialized with a subparser containing the initial token

as head, true as presence condition and an empty LR parser stack. The token-follow set is

computed for the subparser in the queue. The token-follow set captures the variability of

source code. It includes the first language token on each path and the corresponding static

conditional.
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For example, consider a subparser with p.c as presence condition and p.a as head. If p.a

is an ordinary token, the resulting token-follow set contains a single element T = {(p.c, p.a0)},

where a0 is the next language token in the source code. An LR action is performed on the

subparser and the single element in T. If the result of LR action is not accept or reject, then

the subparser is rescheduled.

If the head of the subparser p.a is a static conditional, then the token-follow set returns

more than one element. In this case, a fork action is performed on the current subparser.

The fork action results in a set of subparsers, where each subparser in the set represents a

distinct element from token-follow set.

Fork(T, p) := {(c, a, p.s) | (c, a) ∈ T )}

The resulting set of subparsers is rescheduled by inserting them into the queue. These

new subparsers replace the current subparser. The presence condition of each subparser is

distinct and the presence condition of all subparsers together recognizes all configurations.

Merge action combines subparsers that have the same head and LR parser stack. The

merged subparser replaces the original subparsers in the priority queue.

Merge(Q) := {(∨ p.c, a, s) | a = p.a and s = p.s ∀ p ∈ Q}

The presence condition of the merged subparser is the disjunction of the presence con-

ditions of the original subparsers. The priority queue makes sure that the subparsers are

merged at the earliest point. The next section explains the fork-merge LR parsing with an

example.

3.2 Optimizations to FMLR parsing

In MAPR [26], the configuration-preserving parser forks a subparser for every branch

of every static conditional, including empty branches. This will lead to many unnecessary

subparsers. To limit the number of subparsers, Gazillo and Grimm [8] came up with two

optimization techniques: use of token-follow set and lazy-shifts.
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As explained in previous section, the token-follow set captures the actual variability of

the source code by finding the tokens that follow each branch of a static conditional. The

token-follow set consists of a presence condition and token pair corresponding to each branch

of static conditional, except for an empty branch. This restricts the number of subparsers

that are forked.

The static conditionals with empty or implicit branches usually results in a follow-set

whose token requires a shift as next LR action. FMLR steps subparsers by position of head.

And the subparser with first such token performs its shift and can merge even before the

next subparser can perform its shift. In such cases, forking the subparsers eagerly is not

useful. The lazy-shift delays the forking of subparser by producing multiple heads for the

subparser. It forks off a single-headed subparser p’ for earliest head, performs shift action

on p’ and reschedules p’ and the multi-headed subparser.

Lazy(T, p) := { ⋃ {(c, a)} | Action(a, p.s) = ‘shift‘ ∀ (c, a) ∈ T}

To improve the performance of the parser further, Gazillo and Grimm [8] introduced

two more optimization techniques: early reduces and shared reduces.

Early reduces prevent the subparsers from outrunning each other and increase the merg-

ing opportunities. Since reduces does not change the head of a subparser, when all subparsers

in a priority queue have same head, the subparsers which reduce are given higher priority

than the subparsers that shift.

Shared reduces eliminate the duplicate work done by the parser. If all tokens in a follow-

set reduces to same nonterminal, instead of forking the subparser and reducing their stacks

in the same way, it is more efficient to reduce a single stack for several heads. Shared reduce

results in multi-headed subparser.

Shared(T, p) := { ⋃ {(c, a)} | Action(a, p.s) = ‘reduce n‘ ∀ (c, a) ∈ T}

3.3 An Example Illustrating FMLR Parsing

Consider a sample C code that has static conditional statements:
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Figure 3.1: An example code that has static conditional statements.

The FMLR parser initializes the queue with a subparser for the initial token int. The

initial state of priority is shown in figure 3.2.

Figure 3.2: Initial state of the priority queue.

The parser stack in the initial state is empty, with int as lookahead. For each token

until #ifdef the token-follow set method returns a single element. Hence, the FMLR parser

performs an LR action on each of these tokens. The state of parser stack at this point, is as

shown in figure 3.3.

Figure 3.3: Parser stack before shared reduce.

When the #ifdef token is encountered, the token-follow set T1 is computed, the starting

symbol of each branch and its presence condition are returned.
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T1 = {(M, 0X18UL), (!M&&N, 0X00UL), (!M&&!N,NULL)}

Since all tokens in token-follow set T1 reduce to the nonterminal InitializerList, shared

reduces turns the current subparser into a multi-headed subparser, p1 = (H1, parser stack)

with H1 = T1 (Figure 3.4).

Figure 3.4: Priority queue after shared reduces.

Figure 3.5: State of priority queue after fork action.

In the next iteration, the parser stack reduces and now since all tokens in H1 shifts,

lazy-shift produces same multi-headed subparser. FMLR parser now forks a single headed
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subparser p2 for presence condition M and shifts 0X18UL onto its stack. The current state

of the priority queue is as shown in figure 3.5. Next, the FMLR performs a shift on subparser

p2, the comma after the token 0X18UL is shifted onto the stack.

The FMLR now updates the head of p2 to conditional on line 5-7 and computes the

token-follow set as

T2 = {(M&&N, 0X00UL), (M&&!N,NULL)}

Now since all tokens in T2 reduces to InitializerList, shared reduce produces a multi-

headed subparser p3 = (H2, s), where H2= T2. At this point the subparsers p1 and p3 have

same head but different stack elements (Figure 3.6).

Figure 3.6: Priority queue with subparsers having same head but different parser stacks.

In the next iteration, p3 reduces due to early reduces and yields same stack as p1. The

subparsers p1 and p3 are now allowed to merge since they have same stack and head. The

merge action disjoins M and !M for all presence conditions and therefore M is eliminated

from presence condition.

The FMLR parser repeats the same actions for the conditional N at line 5-7. This way,

FMLR parses 22 configurations with two subparsers. Grimm and Gazzillo [8] in their work
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Figure 3.7: State of priority queue after merging.

evaluated FMLR parser by parsing Linux kernel. They found that FMLR requires less than

40 subparsers while MAPR [26] fails to parse most of the source files.
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Chapter 4

Fork-Merge parsing in OpenRefactory/C: Implementation

IDEs for C support only limited refactoring, making programmers do the additional

refactoring manually. The existing refactorings for C tend to be slow and buggy [21]. The

C programming IDEs ignore the multiple configurations of the C preprocessor, which result

in inaccurate transformations. Due to the presence of preprocessors and multiple configura-

tions, static analysis of C programs is complicated and hence IDEs for C does not support

sophisticated refactorings. OpenRefactory/C is a refactoring tool that resolves these chal-

lenges of building C program transformations.

OpenRefactory/C uses custom preprocessor and custom parser to support analysis and

transformation of code containing preprocessor configuration. The main goal of OpenRefac-

tory/C is to produce correct results of transformations and with all possible configurations.

OpenRefactory/C uses mutable abstract syntax trees (ASTs) as its primary program rep-

resentation for code transformation. The entire framework of OpenRefactory/C is written

in Java. Source code transformation is performed by modifying the AST and later travers-

ing the tree to output the revised source code. Behrang in her thesis [23] explained the

changes made to the preprocessor and the lexical analyzer to achieve the required results.

The modifications made to parser are explained in this chapter.

4.1 Modifications made to Parser

The grammar productions for C99 were extended to support C preprocessor directives.

The changes to the C99 grammar were made based on the section 6.10 in ISO standard

for C99. An LALR(1) parser for extended C grammar was generated using Ludwig [2].

The extended grammar allows the conditional directives to appear in between complete C
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constructs such as declarations, statements, and function definitions. In many cases, the

conditional directives appear in the middle of complete C construct and the parser fails to

construct an abstract syntax tree. We modified the OpenRefactory/C parser to successfully

handle and parse the source code when the conditional directives appear at an unexpected

location in the program.

We modified the OpenRefactory/C parser to implement Fork-Merge LR parsing algo-

rithm designed by Gazzillo and Grimm [8]. Using the Fork-Merge technique, we can handle

the conditional directives that violate the syntax of extended grammar.

4.2 Modifications made to Fork-Merge parsing

As explained in chapter 3, Fork-Merge parser is capable of preserving multiple configu-

rations efficiently. We use similar technique in our parser to handle multiple configurations.

In FMLR parsing, the entire parser was forked for every non-empty branch of a static con-

ditional. While forking, the entire parser stack of the original parser was copied into the

forked subparsers. In OpenRefactory/C, we fork the parser stacks instead of parsers and

include all required information such as guarding conditions inside the parser stack.

In OpenRefactory/C the extended grammar allows conditional directives to appear in

between certain complete C constructs such as declarations, statements and function defini-

tions. Therefore, the AST constructed while parsing should have the choice nodes only at the

nodes that represent these C constructs. To satisfy this requirement, we have modified the

merge action of FMLR parser. In FMLR parsing, two or more subparsers are merged when

they have same heads and parser stacks. In our parser, we merge parser stacks only when

their lookaheads are same and when both parser stacks have reduced to either a statement,

a declaration or a function definition.
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4.3 Implementation of graph-structured stack

In OpenRefactory/C, an LALR(1) parser was generated for the extended grammar. We

modified LALR(1) parser to implement fork-merge technique. As explained in chapter 2, an

LALR(1) parser uses a parser stack to keep track of elements that are parsed. The parser

stack contains a stack of states and a stack of symbols. We included more information in

the parser stack to support the fork-merge actions.

For each branch of #ifdef statement, the fork action creates a new parser stack. Every

new parser stack created holds a reference to the original parser stack object and we call the

reference as parentstack to the new parser stack. The presence condition for each branch

of #ifdef statements is stored in their respective parser stack object. For example, when

the piece of code in figure 4.1 is parsed, two new parser stacks are created and they have a

reference to the parentstack as shown in the figure 4.2. All three stacks together create a

graph like structure.

Figure 4.1: An example of code with simple conditional statements.

Using graph structured stack, we avoid duplication of parsing actions. To perform

a single action on multiple parser stacks parallely, we created a new class called parser

stackList. The parser stackList represents the graph structured stacks. Each parser stackList

object contains a priority queue. The priority queue consists of parser stacks that has same

parentstack. To perform LR actions on parser stacks in the priority queue, we need to

consider the following scenarios:
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Figure 4.2: Graph structure stacks formed due to fork action.

• Every parser stack in the queue reduces: In this case, we reduce every parser stack

by calling reduce action. Most of the times, after forking, the parser stack needs to

have elements from parentstack to perform reduce action. In section 4.7. we explain

in detail how we handle this situation.

• Every parser stack in the queue shifts: In this case, we shift the lookahead for each

parser stack and read next token from token stream to set the next lookahead.

• One or more parser stack in the queue reduces, while remaining parser stacks shift:

when one or more parser stack in the queue reduces, higher priority is given to the

parser stacks that reduce. The reduce action is performed for the parser stacks that

reduce while parser stacks that shift wait.

• One or more parser stack has syntax error and should be rejected: In this case, we try

to recover the parser stack from syntax error, if it fails to recover then the parser is

halted.

• One or more parser stack has to be completely parsed and should be accepted:

– When every parser stack in the queue is completely parsed we can simply merge

all the parser stacks, return the top element and end parsing.

27



– When two or more, but not all parser stacks have completely parsed then those

which are completely parsed are merged and wait for other parser stacks to com-

plete.

– If it is just one parser stack that finished parsing, the parser stack waits for other

parser stacks to complete.

We came up with the following strategy to handle the above scenarios:

1. code = calculateActionCode

2. if code == shift then

3. call shift method for parser stackList

4. else if code == reduce then

5. call reduce method for parser stackList

6. else

7. Merge all parser stacks in the queue and accepted the merged parser stack.

8. endif

9.

10. function calculateActionCode

11. for each parser stack in the queue do

12. find the action to be executed on the parser stack

13. if action == reduce then

14. return reduce code

15. else if action == shift then

16. shiftValue = action code

17. else if action == accept then

18. add the parser stack to acceptlist

19. acceptValue = action code

20. else

21. attemptToRecoverFromSyntaxError
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22. if attemptToRecoverFromSyntaxError fails then

23. halt the parser

24. endif

25. endif

26. if acceptlist.size == priorityQueue.size then

27. return acceptValue

28. else

29. return shiftValue

30. endif

31. end function

After finding the appropriate action code for parser stackList, based on the action code

either shift, reduce, accept or reject action is performed. The token-follow set in FMLR

parser captures the actual variability of the source code. It avoids the unnecessary forking

by ignoring the empty branches of conditional directives. In our parser, instead of finding

token-follow set for each branch, we do not fork for a conditional branch until we find an

ordinary token inside the branch or one of its nested branches. In the next section we explain

the factors we considered to decide whether to fork a conditional branch or not.

4.4 Making fork decision

The lexical analyzer feeds a stream of tokens to the parser. The parser reads these

tokens one at a time. If the token read is an ordinary token, then it is set as lookahead

for current parser stack. If the token read is a conditional directive, then the fork action is

performed. When the code has a simple conditional statement as in the example shown in

Figure 4.1, the fork action is simple and we need to keep track of one level of conditionals.

However, in real time conditional directives appear haphazardly. Generally, the following

cases may occur:
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• Static conditionals with empty branches: The empty branches are sometimes nested

as shown in Figure 4.3. In the example, the macros are expanded with the conditional

statements during preprocessing. Hence forking the conditional directives in figure

4.3 will result in redundant parser stacks. We need to identify such cases and avoid

forking.

Figure 4.3: Example for static conditionals with empty branches.

• Static conditionals that has an empty branch and a non-empty branch: In this case it

is tedious to keep track of the conditionals that should to be considered for forking. For

the example shown in Figure 4.4, we need to fork the #else branch and avoid forking

for nested #ifndef condition.

Figure 4.4: Example for nested static conditionals.

To handle the above cases, we designed an algorithm that keeps track of all conditionals

and determines the level of nesting to be considered for forking the parser stack. We created

a class called Directive that keeps track of directives and their conditions. We use list as
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main data structure to store the objects of Directive class. Each object of Directive class

represents a #if-[#elif-][#else-]#endif statement.

The variable isDirective is used to represent whether the last tokenRead is an ordinary

token or a conditional directive. It is initially set as false and is set as true if the tokenRead

is a conditional directive. The do-while loop executes until the next token read is not a

conditional directive. For every if-directive read from the token stream, we create a new

Directive object and is stored in Directive list, dirList. The directive object consists of a list

of directives and a list of conditions corresponding to the directives. When the tokenRead

is an elif-directive or an else-directive, we add the directive and the condition to the latest

object that was added to dirList. When the tokenRead is an endif-directive there are two

cases we need to deal with:

• endif-directive for an empty #if-#elif-#else statement - In this case we should ignore

the endif-directive and remove the last Directive object from dirList.

• When endif-directive occurs after forking #if, #elif or #else directives - In this case

we should consider the endif-directive and perform the required actions.

To handle these two cases, we use isFork variable in the Directive class to represent

if at least one of the directives in the object has been forked. When an endif-directive

is encountered and isFork is false, this means that the conditional statement has empty

branches and hence forking should be avoided. We use readDirective method to handle

conditional directives that are supposed to be forked. In the algorithm, when the next token

read is an ordinary token, the do-while exits at line 23 and for every conditional directive in

dirList, appropriate fork action is performed by calling readDirective method.

1. do

2. isDirective = false

3. if tokenRead is if-directive then

4. isDirective = true
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5. dirList.add(new Directive(tokenRead, condition))

6. tokenRead = next token from lexer

7. endif

8. if tokenRead is elif-directive OR tokenRead is else-directive then

9. isDirective = true

10. dir = dirList.getLastElement()

11. dir.add(tokenRead, condition)

12. tokenRead = next token from lexer

13. endif

14. if tokenRead is endif-directive then

15. isDirective = true

16. if dirList.getLastElement().isFork then

17. readDirective(tokenRead, )

18. endif

19. dirList.removeLastElement()

20. tokenRead = next token from lexer

21. endif

22. while isDirective

23. for each directive object dir in dirList do

24. for each (directive, condition) pair in dir do

25. readDirective(directive, condition)

26. dir.isFork = true

27. if directive is endif-directive then

28. dirList.removeLastElement()

29. endif

30. end for

31. end for
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32.

33. function readDirective(directive, condition)

34. if directive is if-directive then

35. fork-for-ifs()

36. else if directive is elif-directive OR directive is else-directive then

37. fork-for-else()

38. else

39. parser stack = parser stack.parentlist

40. endif

41. end function

The readDirective method takes a directive and a condition as parameter and based on

the type and nesting level of the directive different fork actions is performed. Next section

explains different kinds of forking we implemented in our parser.

4.5 Different fork actions

Following are the different fork actions that we implemented based on the type and

nesting level of the directives:

• Forking for if-directive: when an if-directive is passed as a parameter, the parser stack

is forked based on the nesting level of the if-directive. Following cases may occur with

forking an if-directive.

– For simple conditional statements similar to example in figure 4.1, we need to fork

the current parser stack. The fork action creates new parser stack, a reference to

the current parser stack is assigned as parentstack to the new parser stack. The

new parser stack is added to the priority queue.

– When the if-directive occurs inside a conditional statement, we need to fork for

nested if-directive. In this case, we replace the current parser stack from priority
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queue with the new parser stack that is created and current parser stack is assigned

as the parentstack of new parser stack.

• The elif and else directives are forked in a similar way. These two directives always

occur after if-directive or an elif-directive itself. The fork action for else and elif direc-

tives also creates a new parser stack. However, the parentstack for new parser stack is

the parentstack of current parser stack.

• endif-directive: When an endif-directive is encountered, we need to parse all parser

stacks in the priority queue parallely. Every action that was executed on a single

parser stack must be executed on multiple parser stacks. For this purpose, we override

a few methods defined for parser stack in parser stackList class. Next section explains

the changes made to these methods.

4.6 Parsing multiple parser stacks

In section 4.3, we have explained how LR actions are executed on multiple stacks. In

this section, we explain the implementation of various fork actions in parser stackList class

to handle consecutive conditional statements. Generally, there are two cases the consecutive

conditionals might occur.

• For simple consecutive conditional statements as shown in figure 4.5 we fork every

branch in the preceding conditional statement. The resulting graph-structured stack

will have four branches as shown in the figure 4.6.

• Consecutive conditional statements nested in a conditional statement as shown in figure

4.7. In this case, we apply the same strategy as nested fork method explained in section

4.5, and fork every branch in the preceding statement.
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Figure 4.5: Example of simple consecutive conditional statements.

Figure 4.6: Graph structured stack for simple consecutive condition statements.
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Figure 4.7: Consecutive conditional statements nested in a conditional statement.

4.7 Performing reduce action after forking

The reduce action in LALR(1) replaces one or more symbols from the top of the stack

to the left-hand side of the grammar production. While forking we created an empty stack

with same state as topstate of the parser stack that was forked. We continue to parse the

new parser stack that was forked. The shift action on the new parser stack does not cause

any problem, however the reduce action requires one or more symbols on the parser stack.

In example 4.1, after forking the parser stack for if-directive, the new parser stack p1

shifts the symbol ’0’ and then reduce. Due to fork action, the top state of the parentstack

is copied as starting state for p1. The state of p1 now reflects that it should reduce to an

assignment-statement. Since there are not enough symbols on the p1 to reduce, we should

consider the symbols from parentstack. One way to do this is to pop the symbols required

to reduce from parentstack and use them to complete the reduce action. In the example,

p1 needs two more symbols from its parentstack, so we pop the symbols ’a’ and ’=’. Using

these two symbols and ’0’ the p1 reduces to assignment-expression. However, since fork
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actions usually result in two or more parser stack with same parentstack, wrong symbols are

read when the other parser stacks try to read from the same parent. In our example, for

else-directive a new parser stack p2 is created with same parentstack as p1, after popping

the symbols ’a’ and ’=’. Now when the p2 has to reduce to assignment-expression, it has

the wrong symbols ’)’ and ’{’ on top of its parentstack as shown in figure 4.8.

Figure 4.8: Reading symbols by popping from parentstack.

To handle this problem, instead of popping the symbols from parentstack, we copy

them into child stack to perform reduce action. Now when p2 reads from parentstack it

still contains the expected symbols. We allow merging only for statements, declarations,

function definitions and translational unit. After reducing to assignment-expression, p1 has

to reduce to statement before merging with p2. This reduce action requires more symbols

from parentstack to be copied into p1 stack. Since we are not popping the symbols from

parentstack, the next symbols to be read from parentstack are not known. To solve this

problem, we use a variable called readParent to keep track of the number of symbols that

are read from parentstack for each parser stack. In the above example, when the parser

stack p1 copies the symbols ’a’ and ’=’ from parentstack and reduces the p1 to assignment-

expression, the readParent variable for p1 is set to 2. Now when we need to read more

37



elements from parentstack, we skip the top 2 symbols on top and copy the required number

of symbols and update the readParent value.

Figure 4.9: Copying from parentstack using readParent variable.

For nested conditional statements, it is obvious that a parentstack will inturn have

another parentstack. In some scenarios it is not only enough to read from the immediate

parentstack but also from higher levels of the parentstacks. Consider the sample code in figure

4.6, we name the parser stacks created due to forking as pX, where X is the line number

at which the conditional causing the fork action appears. The parser stack for condition

C2, p5 reduces first to a conditional-expression, at this point it copies the symbols ’a’ and

’ !=’ from its parentstack p3. In the next iteration, parser stack has to copy the symbols

’if’ and ’(’ from p3 to reduce to a statement, it. We came up with a strategy to readback

symbols that are required for reducing from the parentstack. We call the readback method

recursively to readback from higher levels of the parentstacks.

1. find the number of symbols to be popped to perform reduce action

2. if symbolsToPop from parser stack ¿ size of parser stack then

3. readBack(symbolsToPop)

4. endif

5. pop the symbols from parser stack.
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6. push the new nonterminal on left-hand side of grammar production.

7. calculate the new state of the parser stack and push the state value.

8.

9. function readBack(symbolsToPop)

10. symbolsFromParent = parentStackSize - readParent

11. if symbolsFromParent ¡ symbolsToPop then

12. parentStack.readBack(( symbolsToPop - symbolsFromParent))

13. readParent = parentStack.readParent

14. parentStack = parentStack.parentStack

15. endif

16. deep copy symbolToPop number of symbols from parentStack

17. add the deep copied symbols to the parser stack

18. readParent = readParent + symbolToPop

19. end function

In java, copying an object does not allocate a new memory location for the copied object,

instead it creates a new reference to the object to be copied. Hence the changes made to

the copied object are reflected in original object. The parser stack is a stack of objects that

may contain tokens, terminals or nonterminals.

Figure 4.10: Sample code containing static conditionals.

Consider the sample code in figure 4.10. The tokens ’static’ and ’unsigned’ reduce

to declaration-specifiers which is represented as ASTListNode in an AST. After forking for

#ifdef-directive, a new parser stack p1 is created. The parser stack p1 reads next three tokens
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Figure 4.11: State of parser stack before copying symbols from parentstack.

and reduces to CDeclaration by copying the declaration-specifiers from its parentstack. The

declaration specifier ’int’ which is in #ifdef branch is added to the declaration-specifiers

copied from the parentstack. If the declaration-specifiers object is not deep copied, then

’int’ added to the declaration-specifiers in p1 is reflected in declaration-specifiers object in

parentstack.

Figure 4.12: Incorrect AST as a result of not deep copying the objects from parentstack.
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Now when fork action is performed for #else-directive, the new parser stack p2 has

parentstack with wrong set of declaration specifiers: ’static’, ’unsigned’, and ’int’. Fur-

ther when p2 is reduced to CDeclaration, the declaration specifier ’long’ is added to the

same declaration-specifiers object resulting in wrong AST as shown in figure 4.12. To avoid

this, we need to deep copy each element while copying from parentstack. By deep copying

the declaration-specifiers object from parentstack, when p1 reduces to CDeclaration, the

declaration specifier ’int’ is added to copied object and this change is not reflected in the

declaration-specifiers of parentstack.

4.8 Merging parser stacks

Whenever the parser stacks in the queue reduces to statement or a declaration or a

function definition, we merge the parser stacks. We merge the parser stacks that reduce

either to statement, declaration or a function definition into a single parser stack. The

merged parser stack replaces the parser stacks in the priority queue.

Figure 4.13: Merged parser stack for example in figure 4.1.

To merge two or more parser stacks, the parser stacks need to have same parentstack

and should be reduced into either a statement, a declaration or a function definition. Based

on the type of reduction, we create an object to hold these multiple definitions. We created

41



3 different classes for this purpose: MultipleStatementDefinition, MultipleDeclarations, and

MultipleFunctionDefintions. These three classes implement the MultipleDefinition interface

and inherit ASTNode class. Each of these classes has a list of conditionals and list of

objects. These classes also define a hashmap object which maps the conditionals to their

corresponding statements, declarations, or function definitions. Figure 4.13 shows the merged

parser stack for example 4.1.

Figure 4.14: AST generated after parsing the example code in figure 4.1.

The resulting merged parser stack is parsed for remaining tokens. The merged parser

stack is a single parser stack and is parsed like an ordinary parser stack. In the example, the

’}’ is shifted onto merged parser stack and is reduced to CFunctionDefinition. The resulted

AST, as shown in figure 4.14, contains a MultipleStatementDefinition node which is a choice

node.
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4.9 Results

The modified OpenRefactory/C parser was tested by parsing the C standard library

header files. We created C programs that includes C standard library header files and parsed

these programs using the modified parser. The resulting abstract syntax tree is traversed

and is compared with the original source code to check if the parser is correctly constructing

the abstract syntax tree.

Among 24 C99 standard library header files, 19 header files parses successfully. In

the remaining 5 header files, the parser is not able to recognize some of the identifiers

that are defined using #define macros. This is due to a problem in expanding macros by

OpenRefactory/C preprocessor which was modified to support multiple configurations.
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Chapter 5

Conclusion and Future Work

In this thesis, we explained the modifications made to the OpenRefactory/C parser to

support multiple configurations and hence build correct program transformations.

The parser was modified to implement Fork-Merge technique. Using Fork-Merge ap-

proach, the parser constructs an AST that includes C preprocessor and thereby include all

possible configurations of the C program. In our parser, we fork a parser stack which is the

main data structure used in a parser. Each parser stack after forking represents a distinct

configuration. The parser stacks are merged when they reduce to a statement, a declaration

or a function defintion. The parser stacks are merged using a choice node.

We allow only few productions to have choice nodes. This may result in exponential

parser stack number. As a future work we will allow more productions to have static choice

node in order to decrease the number of active parser stacks.

However, treating too many grammar productions as complete forces the refactoring tool

to deal with too many static choice nodes. This complicates the refactoring process. We

need to examine C language libraries and carefully select the productions to be considered

for choice node.
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