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Much research has been conducted over the last thirty years in the development

and characterization of bivariate survival distributions. Typically, the multivariate

distribution is derived assuming that the marginal distributions are of some specified

lifetime family. In this thesis, we examine various bivariate Weibull models. In

addition, a location-scale bivariate Weibull model is proposed. Bivariate parameter

estimation, with and without censoring, is developed and applied to real and simulated

data. Examples are drawn from biomedical research.

v



Acknowledgments

I wish to express sincere appreciation to my academic advisor, Dr. Mark Car-

penter for his direction, assistance, advice and patience during my studies at Auburn

University. My appreciation also goes to Dr. Asheber Abebe and Dr. Nedret Billor

for serving on my advisory committee and their constructive comments. I appreciate

the great help I received from Mr. Norou Diawara. I would like to extend my special

thanks and great appreciation to my family and my fiance for their love, support, and

constant encouragement.

In loving memory of my father.

vi



Style manual or journal used Journal of Approximation Theory (together with the

style known as “aums”). Bibliograpy follows van Leunen’s A Handbook for Scholars.

Computer software used The document preparation package TEX (specifically

LATEX) together with the departmental style-file aums.sty.

vii



Table of Contents

List of Tables x

1 Introduction 1
1.1 Univariate Lifetime Distributions . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Univariate Weibull Distribution . . . . . . . . . . . . . . . . . 2
1.1.2 Distributional Properties for Univariate Weibull Distribution 5
1.1.3 Univariate Weibull Distribution Parameter Estimation . . . . 8
1.1.4 Asymptotic Normality and Confidence Intervals of MLE

Weibull Parameters . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.5 Information Matrix and Variance-Covariance Matrix of MLE

Weibull Parameters . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1.6 Bonferroni Simultaneous Confidence Intervals for the 2-

Parameter Weibull Model . . . . . . . . . . . . . . . . . . . . 11
1.2 Multivariate Lifetime Distributions . . . . . . . . . . . . . . . . . . . 12

1.2.1 Multivariate Distribution Functions . . . . . . . . . . . . . . . 12
1.2.2 Dependence Structure and Types . . . . . . . . . . . . . . . . 14

2 Some Bivariate Failure Time Distributions 17
2.1 Linearly Associated Bivariate Failure Time Distributions . . . . . . . 18

2.1.1 Linearly Associated Bivariate Exponential (BVE) . . . . . . . 20
2.1.2 Linearly Associated Bivariate Weibull . . . . . . . . . . . . . . 30

2.2 Bivariate Lifetime Distributions Based on Random Hazards . . . . . . 37
2.2.1 The Bivariate Weibull Model (BVW) of Random Hazards . . 39
2.2.2 The Farlie-Gumbel-Morgenstern (FGM) Family . . . . . . . . 41
2.2.3 The Farlie-Gumbel-Morgenstern Family of BVWs . . . . . . . 43

3 Bivariate Location-Scale Weibull Lifetime Distributions 45
3.1 Bivariate Location-Scale Family Based on BVW with Random Hazards 48
3.2 Maximum Likelihood Estimates of the Bivariate Location-Scale Family

Based on BVW with Random Hazards . . . . . . . . . . . . . . . . . 51
3.2.1 Likelihood Functions of Uncensored Lifetime Data . . . . . . . 51
3.2.2 Likelihood Functions for Right Censored Lifetime Data . . . . 52

3.3 Location-Scale Family of BVWs Based on the Farlie-Gumbel-
Morgenstern Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

viii



3.4 Maximum Likelihood Estimates of the FGM BVWs . . . . . . . . . . 57
3.4.1 Likelihood Functions of Uncensored Lifetime Data . . . . . . . 57
3.4.2 Likelihood Functions for Right Censored Lifetime Data . . . . 58
3.4.3 Optimization Procedures for MLEs of the FGM BVW . . . . 59

3.5 Bivariate Location-Scale Lifetime Distribution Regression Models . . 60

4 Simulation Study 63
4.1 Linearly Associated Bivariate Exponential and Weibull Models . . . . 63

4.1.1 Bivariate Data Generation . . . . . . . . . . . . . . . . . . . . 63
4.1.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Bivariate Location-Scale Models . . . . . . . . . . . . . . . . . . . . . 65
4.2.1 Data Generation for BVW of Hougaard’s Model . . . . . . . . 65
4.2.2 Data Generation for BVW of FGM Model (Sequential Monte

Carlo Simulation) . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2.3 Simulation Settings and Results for Bivariate Location-Scale

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Example: DMBA-Induced Tumors . . . . . . . . . . . . . . . . . . . 70

Bibliography 75

Appendices 78

A SAS Simulation Codes 79
A.1 Data Generation and MLE for Linearly Associated BVE and BVW . 79
A.2 Data Generation and MLE for BVW of Hougaard’s Model . . . . . . 84
A.3 Data Generation and MLE for BVW of FGM Model . . . . . . . . . 92
A.4 Example: DMBA-Induced Tumors . . . . . . . . . . . . . . . . . . . 100

ix



List of Tables

4.1 Simulation Study for BVE(λ1 = λ2 = 1, n = 25) . . . . . . . . . . . . 66

4.2 Simulation Study BVW(λ1 = λ2 = 1) . . . . . . . . . . . . . . . . . . 66

4.3 Joint and Working MLEs with β1 = 0.5, β2 = 2, θ1 = θ2 = 10 and
varying δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Bias Improvements/Losses(%) Over the Working Estimates . . . . . . 71

4.5 Empirical MSE Improvements/Losses(%) Over the Working Estimates 72

4.6 Joint and Working MLEs with β1 = 0.5, β2 = 2, θ1 = θ2 = 10 and
varying δ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 Bias Improvements/Losses(%) Over the Working Estimates . . . . . . 73

4.8 Empirical MSE Improvements/Losses(%) Over the Working Estimates 73

4.9 Bivariate Weibull Times to first and second tumor . . . . . . . . . . . 74

x



Chapter 1

Introduction

1.1 Univariate Lifetime Distributions

The term lifetime generally refers to the time to some events such as death

or failure from a certain starting point. We define lifetime or survival analysis as

the collection of statistical models and methodologies to analyze lifetime data of

various types. In applications in engineering and biomedical sciences, failure time

and survival time are often used synonymously as lifetime, thus we have terms failure

time distributions and survival time distributions respectively. Lifetime distributions

generally have positive support, i.e., lifetime data can take on only non-negative real

values.

For a nonnegative continuous random variable X, the cumulative distribution

function (cdf) FX (·) and survivor distribution SX (·) are defined as

FX(x) = P (X ≤ x) =

∫ x

0

f (t) dt, (1.1)

SX(x) = P (X ≥ x) =

∫ ∞

x

f (t) dt. (1.2)

and the hazard function is given by
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h(x) = −
lim4x→0

[
S(x+4x)−S(x)

S(x)

]
S(x)

=
f(x)

S(x)
. (1.3)

The hazard function gives the instantaneous rate of failure at time x, given that

the individual survives up to x, and carries important information concerning the risk

of failure versus time. It is often desirable to model lifetime distributions through

the hazard function if factors affecting an individual’s lifetime are time-dependent, or

vary over time.

1.1.1 Univariate Weibull Distribution

In his 1951 paper, “A Statistical Distribution Function of Wide Applicability”,

the Swedish Professor Waloddi Weibull introduced the Weibull Distribution and

stated “Experience has shown that, in many cases, it fits the observations better

than other known distribution functions”. Eventually, the Weibull Distribution be-

came the most useful tool in reliability due to its unique characteristics and wide

range of applicability, especially so when it pertains to describing the underlying dis-

tribution of time to failure (TTF) of mechanical or electrical components or systems.

Professor Weibull defined his original cumulative distribution function as

F (x) = 1− exp

[
−(x− xµ)

m

xm0

]
, (1.4)

where xu, m, and x0 correspond to the more universal notations used herein of the

location parameter δ, the shape parameter β, and the scale parameter θ as in (1.5).
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We define the three-parameter Weibull probability density function (pdf) as

f(x) =
β

θ

(
x− δ

θ

)β−1

exp

[
−
(
x− δ

θ

)β]
, x ≥ δ ≥ 0, θ, β > 0. (1.5)

The two-parameter Weibull probability density function (pdf) is given as

f(x) =
β

θ

(x
θ

)β−1

exp

[
−
(x
θ

)β]
, x ≥ 0, θ, β > 0. (1.6)

Note that (1.6) is a special case of (1.5) where δ = 0. When β = 1, the Weibull pdf

becomes an exponential pdf.

The corresponding cdfs of the two and three-parameter Weibull distribution are

given as

F (x) = 1− exp

[
−
(x
θ

)β]
, (1.7)

and

F (x) = 1− exp

[
−
(
x− δ

θ

)β]
. (1.8)

Note that all Weibull cdf’s cross at one point where the cdf is valued at ap-

proximately 0.63, and the corresponding x value is 1, which is the value of the scale

parameter θ. We define such a value of x as the characteristic life of the Weibull

distribution,which is the time at which the value of the cdf is exactly equal to 1−e−1.

In other words, 63.212% of the population fails by the time of characteristic life no

matter what the values of the other parameters are. For two parameter Weibull

3



distribution, the characteristic life is equal to θ, and θ + δ for the three parameter

Weibull.

The survival functions, the probability that an individual survives at least time

x, of the two and three-parameter Weibull distribution are given as

S (x) = exp

[
−
(x
θ

)β]
, (1.9)

and

S (x) = exp

[
−
(
x− δ

θ

)β]
. (1.10)

The hazard function of the three-parameter Weibull distribution is given as

h(x) =
f(x)

S(x)
=
β

θ

(
x− δ

θ

)β−1

; (1.11)

and the corresponding cumulative hazard function is given as

H (x) =

x∫
0

h(t)dt =

(
x− δ

θ

)β
= − ln [S (x)] (1.12)

The Weibull distribution can have increasing, decreasing and constant hazard

rates, which in term reflects the versatileness of the Weibull distribution in lifetime

or survival analysis.
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The above (1.5), (1.9) and (1.12) show the relationships among the pdf, the

survivor function, the hazard function and the cumulative hazard function of the

Weibull distribution, i.e., given any one of them, the others follow.

1.1.2 Distributional Properties for Univariate Weibull Distribution

The Moments of Weibull Distribution

The general noncentral moments of the two parameter Weibull Distribution is

given by

E (Xn) = θnΓ

(
1 +

n

β

)
, (1.13)

for any integer n, and Γ (cdot) is a gamma function defined as

Γ (k) =

∞∫
0

xk−1 exp (−x) dx, k > 0.

The general moments of the three parameter (location-scale) Weibull distribu-

tion is more complicated, but can be derived from that of the two parameter Weibull.

Let the continuous positive random variable X follow a two parameter Weibull dis-

tribution as defined in (1.6), then Y = X + δ follows the three parameter Weibull

distribution as in (1.5). The general moment is thus given by

E (Y n) = E [(X + δ)n] . (1.14)
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By applying the binomial theorem that for positive integers n,

(x+ a)n =
n∑
k=0

(
n

k

)
xkan−k, (1.15)

(1.14) becomes

E (Y n) = E [(X + δ)n] = E

[
n∑
k=0

(
n

k

)
Xkδn−k

]
(1.16)

=
n∑
k=0

E

[(
n

k

)
Xkδn−k

]
=

n∑
k=0

[(
n

k

)
δn−kE

(
Xk
)]

=
n∑
k=0

[(
n

k

)
θkδn−kΓ

(
1 +

k

β

)]

The Mean, Median, and Variance of Weibull Distribution

The mean and the variance of the Weibull distribution can be derived from the

general moment. The means of the two and three parameter Weibull are given by

E (X) = θΓ

(
1 +

1

β

)
, and (1.17)

E (Y ) = δ + θΓ

(
1 +

1

β

)
.
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The variance of the two parameter Weibull distribution is given by

V ar (X) = E
(
X2
)
− E2 (X) (1.18)

= θ2Γ

(
1 +

2

β

)
− θ2Γ2

(
1 +

1

β

)
= θ2

[
Γ

(
1 +

2

β

)
− Γ2

(
1 +

1

β

)]
,

and the variance of the three parameter Weibull distribution is given by

V ar (X) = E
(
X2
)
− E2 (X) (1.19)

=
2∑

k=0

[(
2

k

)
θkδ2−kΓ

(
1 +

k

β

)]
−
[
θΓ

(
1 +

1

β

)
+ δ

]2

=

[
δ2 + 2θδΓ

(
1 +

1

β

)
+ θ2Γ

(
1 +

2

β

)]
−
[
θ2Γ2

(
1 +

1

β

)
+ 2θδΓ

(
1 +

1

β

)
+ δ2

]
= θ2

[
Γ

(
1 +

2

β

)
− Γ2

(
1 +

1

β

)]
,

which is the same as the variance of the two parameter Weibull distribution.

The medians of the two and three parameter Weibull can be solved from the cdfs

or the survival functions, and are given as

M (X) = θ (− ln 0.5)1/β , and (1.20)

M (X) = θ (− ln 0.5)1/β + δ.
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1.1.3 Univariate Weibull Distribution Parameter Estimation

There are several methods for estimating the parameters of the Weibull distribu-

tion, i.e., probability plotting, hazard plotting, and maximum likelihood. The method

of maximum likelihood (ML) is a commonly used procedure because it has very de-

sirable properties that when the sample size n is large. Under certain regularity

conditions, the maximum likelihood estimator of any parameter is almost unbiased

and has a variance that is nearly as small as can be achieved by any estimator, and

its sampling distribution (or pdf) approaches normality [9, Devore (2000)].

Let X1, X2,. . . , Xn be a random sample from a two-parameter Weibull distri-

bution, and x1, x2,. . . , xn be the corresponding observed values, then the likelihood

function (LF ) is given by

L(θ, β) =
n∏
i=1

(
β

θβ
xβ−1
i e−(xi

θ )
β

dxi

)
(1.21)

Since the logarithm transform is a monotone increasing one, maximizing the

natural logarithm of the likelihood function is equivalent to maximizing the likelihood

function itself. Taking the natural logarithm of the LF, and setting both derivatives

to zero yields two sets of score equations that do not give closed-form solution for the

maximum likelihood estimates (mle). Instead, for each sample set, the equations can

be solved using an iterative numerical procedure which is quite tedious without the

aid of computers. In most instances, however, a simple trial and error approach also

works [7, Cohen (1965)].
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The corresponding loglikelihood function (LLF) for two parameter Weibull dis-

tribution is given by

l(θ, β) =
n∑
i=1

[
ln

(
β

θ

)
+ (β − 1) ln

(xi
θ

)
−
(xi
θ

)β]

1.1.4 Asymptotic Normality and Confidence Intervals of MLE Weibull

Parameters

It is well known that the sampling distributions (SMD) of maximum likelihood

estimators for Weibull parameters approach normality asymptotically. For example,

[35, Miller (1984)] measured the degree of Normality for the MLE of β using Chi-

square goodness-of-fit. He found that when the sample size is around 170, the MLE

of β is approximately normally distributed. For small or medium sample sizes, distri-

butions of parameters are clearly skewed. Moreover, [30, Liu (1997)] suggests that for

20 or less observed failures, two-parameter Weibull distribution should be a preferred

choice for more stable and more conservative results.

We can construct asymptotic confidence intervals for the Weibull parameters

estimated by maximum likelihood method when the sample size is large. Because the

characteristic life, θ, and the minimum life, δ, are the-larger-the-better (LTB) type

of parameters, it is reasonable to construct lower one-sided confidence intervals for θ

and δ, and two-sided confidence interval (CI) for β.

In order to calculate the asymptotic confidence intervals, we first need to estimate

standard errors of the parameters. Information Matrix and Bootstrapping method

9



can be utilized to better estimate standard errors. The conservative Bonferroni confi-

dence interval is also derived to address the problem of correlations between Weibull

parameters.

1.1.5 Information Matrix and Variance-Covariance Matrix of MLE Weibull

Parameters

The information matrix I can be constructed from the logarithm of the likelihood

function, where its ijth element is

Iij = E

[
−∂

2L(θ;X)

∂θi∂θj

]
(1.22)

The inverse of the information matrix, I−1, is the variance-covariance matrix,

where the diagonal elements are variances of parameters and elements elsewhere are

covariances. However, applying the expectation operator to the above equations in or-

der to obtain exact results is often too complicated to accomplish, though asymptotic

information matrix and variance-covariance matrix can be constructed as the sample

size increases. One option is to use simulation, such as parametric Bootstrapping as

proposed by [10, Efron (1985)], with the MLEs of θ and β as seeds.

10



1.1.6 Bonferroni Simultaneous Confidence Intervals for the 2-Parameter

Weibull Model

It is clearly shown from the information matrix that there are correlations be-

tween Weibull parameters. The CIs obtained by Variance-Covariance and Bootstrap-

ping ignore such factors. If the CIs are independent, then the joint confidence co-

efficient for a joint CI would be the product of all the confidence coefficients of the

parameter CIs, i.e.

(1− αjoint) =
m∏
i=1

(1− αi) (1.23)

where m is the number of parameters. The intervals, however, are not independent

for Weibull parameters. It can be shown that the overall error rate, αjoint, is no more

than the summation of all the individual error rates, or, αjoint ≤
∑m

i=1 αi, which

implies that when a joint confidence region is to be constructed with overall error

rate αjoint, the individual error rates should be set at around
αjoint

m
, or, if different

individual error rates are desired, set them such that
∑m

i=1 αi ≈ αjoint.

So, in order to obtain a simultaneous rectangular Bonferroni (1−αjoint)CI region

for Weibull parameters θ and β, we should set the individual confidence coefficients

for the CIs of θ and β both at (1 − αjoint

2
). Therefore, the Bonferroni (1 − αjoint)CI

region for θ and β are as follows:

The lower (1− αjoint

2
)CI for θ

θ̂ − Zαjoint
2

∗ se(θ̂) (1.24)
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The two-sided (1− αjoint

2
)CI for β

β̂ ± Zαjoint
4

∗ se(β̂) (1.25)

1.2 Multivariate Lifetime Distributions

Literature is abundant on multivariate lifetime data and distributions. [18,

Hougaard (2000)] and [37, Murthy, etc. (2004)] provide comprehensive and updated

literature reviews. However as mentioned in [26, Lawless (2002)], gaps exist in some

areas. A related issue is the introduction of covariates in multivariate survivor anal-

ysis, we analyze and investigate this for the bivariate case.

1.2.1 Multivariate Distribution Functions

Multivariate lifetime data arise when multiple events occur for each subject

in the study. The problem addressed hereby involves continuous nonnegative ran-

dom variables of lifetime, X1, X2, ..., Xn, with joint probability density function as

fX1,X2,...,Xn(x1, x2, ..., xn).

A function fX1,X2,...,Xn(x1, x2, ..., xn) is a bivariate pdf if

1. fX1,X2,...,Xn(x1, x2, ..., xn) ≥ 0 ∀ xi, i = 1, 2, ..., n;

2.
∫∫

...
∫

<n

fX1,X2,...,Xn(x1, x2, ..., xn)dx1dx2...dxn = 1.

12



The multivariate distribution and survivor functions are defined as

FX1,X2,...,Xn(x1, x2, ..., xn) = P (Xi ≤ xi,∀xi, i = 1, 2, ..., n) (1.26)

SX1,X2,...,Xn(x1, x2, ..., xn) = P (Xi ≥ xi,∀xi, i = 1, 2, ..., n) (1.27)

and the marginal and joint hazard functions are given by

λj (x) =
−∂SX1,X2,...,Xn(x1, x2, ..., xn)/∂xj

SX1,X2,...,Xn(x1, x2, ..., xn)
(1.28)

λ (x1, x2, ..., xn) =
fX1,X2,...,Xn(x1, x2, ..., xn)

SX1,X2,...,Xn(x1, x2, ..., xn)

The joint hazard function describes the instantenuous probability that all sub-

jects experience an event given the subjects have survived up to a time x.

[23, Joe (1997)] summaries the following properties of a multivariate distribution

function.

1. limxj→∞ S (x1, x2, ..., xn) = 0 j = 1, 2, ..., n;

2. limxj→∞∀j F (x1, x2, ..., xn) = 1, j = 1, 2, ..., n;

3. For all (a1, ..., an), (b1, ..., bn) with aj < bj, j = 1, 2, ..., n,

2∑
i1=1

...
2∑

in=1

(−1)i1+...+in F (x1i1 , ..., xnin) ≥ 0, xj1 = aj, xj2 = bj

(Rectangle Inequality)
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If F has nth-order derivatives, the above property is equivalent to ∂nF/∂x1∂x2...∂xn ≥

0.

Unlike procedures in the univariate settings, it is difficult to show if a function

F is a proper multivariate cdf by the above properties.

1.2.2 Dependence Structure and Types

An independence assumption of the bivariate covariates simplifies the question

and [26, Lawless (2002)], page 502 refers to this assumption as “working indepen-

dence”. There is a great need, however, in modeling multicomponent systems that

are not independent. The independence assumption is impractical in many models

such as the time of first and second occurrence of cancer tumors, a breakdown of

dual generators, or the survivor times of paired organ system (for example lungs and

kidneys in the human body).

Much research has been done in this direction. [32, Marshall and Olkin (1967)]

presented a derivation of the multivariate exponential and Weibull distributions with

a shock model such that the components in the system have simultaneous failure

time with a positive probability. [33, Marshall and Olkin (1988)] presented another

method without discussing inference procedures.

[6, Conway (1983)] and [20, Huang and Kotz (1984)] developed the idea of Farlie

- Gumbel - Morgenstern (FGM) families of bivariate distributions, but the statistical

procedures do not necessarily fit in the statistical estimations. [17, Hougaard (1986)]
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derived the model for a bivariate Weibull distributions as a mixture. [31, Lu and Bat-

tacharrya (1990)] considered modeling the failure behavior of a two component system

through the construction of a new unifying bivariate family of lifetime distributions

with absolute continuity including positive and negative quadrant dependence, and a

bivariate Weibull model is obtained as a special case.

[21, Iyer and Manjunath (2002)] and [22, Iyer and Manjunath (2004)] derived

lifetime distributions assuming a linear relationship between the two variables of inter-

est. They presented bivariate distributions that have specified exponential marginal

distributions and motivate the linear structured relationship between two variables

and X2 in two parts: the measurement model that gives the data x = (x1;x2) and the

structured equation part that explains the relationship via a latent random variable

Z that is independent of X1. The variables are then related as

X2 = aX1 + Z, a ≥ 0

Once the covariates X1 and X2 are specified, Z is determined. When X1 and X2 each

follow normal distributions, Z also follows a normal distribution. In fact, the normal

case is the only one when Z has the same distribution as X1 and X2. Moreover, the

result cannot be extended from normal to the exponential. The distribution of Z

is not exponential given X1 and X2 are exponentially distributed unless we assume

15



independence between them. We would like to develop similar procedures for non-

normal distributions, look at the properties of the model, and investigate statistical

inferences.

The physical meaning of the random variable Z is that it allows the model to

have the effect of fatal shock. Note that the linear relation described above should

not be confused with the linear regression model. Indeed, the regression model is

expressed as

X2 = βX1 + α+ ε, ε ∼ N
(
0, σ2

)
where the β and α are unknown constants to be estimated from the relationship

between the pair (X1, X2). In the later part of the thesis, we will discuss a location-

scale regression model for bivariate data.
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Chapter 2

Some Bivariate Failure Time Distributions

Denote the bivariate joint probability density function (p.d.f.) of nonnegative

lifetime variables T1, T2 as fT1,T2 (t1, t2), and the survivor function as

ST1,T2 (t1, t2) = P (T1 > t1, T2 > t2) (2.1)

and respectively the marginal survivor function as

Sj (tj) = P (Tj > tj) j = 1, 2

Given the lifetime variable Tj is continuous, the joint p.d.f. is given by

fT1,T2 (t1, t2) =
(−1)2 ∂2S (t1, t2)

∂t1∂t2
(2.2)

and by [26, Lawless (2002)], the hazard functions, which specify the joint distribution

of T1 and T2, are denoted by

λj (t) =
−∂S (t1, t2) /∂tj

S (t1, t2)
|tj=ti=t, (2.3)

λij (ti|tj) =
−∂2S (t1, t2) /∂ti∂tj
∂S (t1, t2) /∂tj

, ti > tj, i, j = 1, 2, j 6= i
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The lifetimes T1, T2 are not in general independent, such as in the case of life-

times of a pair of twins. Literature is abundant with methods of modeling bivari-

ate distributions. For models with specified continuous marginal distributions, the

joint survivor function can be represented by a parametric family of copulas such as

models considered by [5, Clayton (1978)]. Extensive work have been done on the

construction of bivariate exponential models as in [15, Gumbel (1960)], [13, Freund

(1961)] and [40, Sarkar (1987)]. [32, Marshall and Olkin (1967)] and [27, Lee (1979)]

constructed bivariate Weibull models by power transformation of the marginal of a

bivariate exponential. [33, Marshall and Olkin (1988)] derived general families of bi-

variate distributions from mixture models by transformation. [17, Hougaard (1986)]

discussed another common approach through random effects which will be introduced

in following sections.

2.1 Linearly Associated Bivariate Failure Time Distributions

Let X1 and X2 be fixed marginally as exponential random variables with hazard

rates λ1 and λ2, respectively. Then by introducing a latent variable, Z, statistically

independent of X1, a linear relationship is formed between X1 and X2 by setting

X2 = aX1 + Z, (2.4)

for a > 0. [21, Iyer, Manjunath and Manivasakan (2002)] and [22, Iyer and Manju-

nanth (2004)] show through Laplace transforms, the distribution of the latent variable
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Z can be completely and uniquely characterized as the product of a Bernoulli random

variable with P (Z = 0) = aλ2/λ1 and a continuous random variable having the same

distribution as X2. Therefore, Z is distributed as mixture of a point mass at zero and

an exponential with hazard rate λ2. Note that when Z = 0 then X2 is proportional

to X1 with proportionality constant a, which is fixed and known.

For the special case of a = 1 in (2.4), there is a positive probability for simul-

taneously events, i.e., P (X2 = X1) > 0. This phenomenon is often referred to as a

“fatal shock” in reference to the now famous bivariate exponential proposed by [32,

Marshall and Olkin (1967)]. Most bivariate exponential and Weibull models proposed

in the literature share this property, including, for example, the multivariate Weibull

proposed by [16, Hanagal (1996)]. In system reliability theory, [39, Rausand and

Hoyland (2004)] refers to this situation as “common cause failures” or as “cascading

failures” when the failure of one component is initiated by the failure of another in

a system. There are many realistic applications of this model in the physical and

biological sciences, such as, in medical research where simultaneous failure can occur

in pairs of organs (kidneys, livers and eyes), in engineering where a random shock

to a system of components may cause simultaneous failures, or in animal chemopre-

vention studies where several tumors may become palpable on the same day. Since

a > 0, the model driven by (2.4) is less restrictive in that it includes the possibility

for simultaneous failure (a = 1) and proportional failure times with proportionality

constant a, i.e.,P (X2 = aX1) = P (Z = 0) = p > 0.
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2.1.1 Linearly Associated Bivariate Exponential (BVE)

Suppose the continuous random variable Xi has an exponential pdf with hazard

λi,

fXi
(x) = λie

−λixI(x > 0), (2.5)

i = 1, 2 and I(·) is the indicator function.

Based on the linear structure given in (2.4) and the fact that Z has a point mass

at zero, we see that

X2 = aX1 + Z =

 aX1 if Z = 0

aX1 + Z if Z 6= 0

,

where P (Z = 0) = p, P (Z 6= 0) = 1 − p, p = aλ2/λ1, and Z is independent of X1.

Since Z is a mixture of discrete and continuous distributions with a point mass at 0,

i.e., P (Z = 0) = p, we can use the Direc delta to express the distribution of Z as the

following integrable density function,

fZ(z) = pδ(z) + (1− p)fX2(z)I(z > 0), (2.6)

where I(·) is an indicator function and δ(·) is Dirac delta function. More details and

applications of the δ-function can be found in [1, Au and Tam (1999)] and [25, Khuri
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(2004)]. Here, we define the δ-function through its following mathematical properties:

δ(t) = 0, if t 6= 0, and

∫ ∞

−∞
δ(t)dt = 1 (2.7)

If h(t) is a real function with simple roots t1, . . . , tn and is differentiable at each root

with h′(ti) 6= 0, i = 1, . . . , n, then

δ(h(t)) =
n∑
i=1

δ(t− ti)

|h′(ti)|
⇒ δ(ct) =

1

|c|
δ(t), c 6= 0,⇒ δ(−t) = δ(t) (2.8)

∫ ∞

−∞
g(t)δ(t− t0)dt = g(t0) ⇒

∫ ∞

−∞
δ(t− t0)dt = 1 (2.9)

[25, Khuri (2004)] demonstrates how the δ-function can be used to generalize dis-

tribution theory and provides a unified approach in finding transformations, without

regard to whether the transformation is one-to-one and without the computation of

the Jacobian matrix. This property proves quite useful in the distribution derivations

in this paper, since each is discontinuous on a line-transect, i.e., P (X2 = aX1) > 0.

Since X1 is independent of Z, from (2.5) and (2.6), we can write the joint pdf as:

fX1,Z(x, z) = fX1(x)fZ(z) = pfX1(x)δ(z) + (1− p)fX1(x)fX2(z)I(z > 0). (2.10)

Notice that (2.6) and (2.10) are stated for any positive support distributions rather

than the specific exponentials given in 2.5. Theorem 1 similarly expresses the joint
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density in terms of general positive support distributions. After the proof of Theorem

1, we give the resulting bivariate exponential.

Theorem 2.1 Let X1 be a positive support random variable with marginal density

fX1(x1). Let Z be a random variable with density function given in 2.6 and let X2 =

aX1 + Z, a > 0. Denote the variance of Xi as σ2
i , i = 1, 2, assume σ2 > aσ1 and let

p = aσ1/σ2. Then the joint pdf of X1 and X2 is given by

fX1X2(x1, x2) = pfX1(x1)δ(x2−ax1)+(1−p)fX1(x1)fX2(x2−ax1)I(x2 > ax1), x2 ≥ ax1,

(2.11)

and the variance/covariance matrix, Σ, and correlation matrix, ρ, are given as

Σ =

 σ2
1 aσ2

1

aσ2
1 σ2

2

 and ρ =

 1 aσ1/σ2

aσ1/σ2 1

 , (2.12)

and Σ positive definite.

Proof. Following [25, Khuri (2004)], we find the joint density, f(x1, x2) as

f (x1, x2) =

∫ ∞

−∞
fX1,Z (x1, z) δ (ax1 + z − x2) dz

=

∫ ∞

−∞
{pfX1 (x1) δ (z) δ (ax1 + z − x2)

+ (1− p) fX1 (x1) fX2 (x2) δ (ax1 + z − x2)}dz
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from 2.10. Note that 2.7 implies δ(z)δ(ax1 + z− x2) = 0 when z 6= 0 and δ(ax1 + z−

x2) = δ(z − (x2 − ax1)), so

f(x1, x2) =

∫ ∞

−∞
{pfX1(x1)δ(z)δ(x2 − ax1)

+(1− p)fX1(x1)fX2(z)δ(z − (x2 − ax1))}dz

= pfX1(x1)δ(x2 − ax1)

∫ ∞

−∞
δ(z)dz

+(1− p)fX1(x1)

∫ ∞

−∞
fX2(z)δ(z − (x2 − ax1))dz

= pfX1(x1)δ(x2 − ax1) + (1− p)fX1(x1)fX2(x2 − ax1)I(x2 > ax1),

where the first integral evaluation is from 2.7 and the second from 2.9. The covariance

can be found by noting that

cov(X1, X2) = cov(X1, aX1 − Z) = cov(X1, aX1) + cov(X1, Z) = aσ2
1,

using the fact that X1 and Z are independent.

From Theorem 3, if we let Xi be an exponential given in 2.5, then 2.11 gives a

bivariate exponential, henceforth referred to as the BVE(λ1, λ2, a),

f(x1, x2) = pλ1e
−λ1x1δ(x2 − ax1) + (1− p)λ1λ2e

−λ2x2e−(λ1−aλ2)x1I(x2 > ax1), (2.13)

where p = aσ1/σ2 = aλ2/λ1 = corr(X1, X2). Note that cov(X1, X2) = a/λ2
1. The

density given in 2.13 differs from the one presented in [21, Iyer, Manjunath, and
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Manivasakan (2002)] and [22, Iyer and Manjunath (2004)] due to an error in their

derivation.

The joint cumulative distribution function (JCDF) for the exponential given in

2.13 can be written as

F (x1, x2) = pλ1

∫ x1

0

∫ x2

0

e−λ1uδ(v − au)dvdu

+(1− p)λ1λ2

∫ x1

0

∫ x2

au

e−λ2ve−(λ1−aλ2)udvdu

= pλ1

∫ x1

0

{
e−λ1u

∫ x2

0

δ(v − au)dv

}
du

+(1− p)λ1

∫ x1

0

e−(λ1−aλ2)u(e−aλ2u − e−λ2x2)du

= pλ1

∫ x1

0

e−λ1udu

+(1− p)λ1

∫ x1

0

e−λ1udu− (1− p)
λ1

(λ1 − aλ2)
e−λ2x2(1− e−(λ1−aλ2)x1).

Recalling that p = aλ2/λ1, we get

F (x1, x2) = (1− e−λ1x1) + e−λ2x2(e−(λ1−aλ2)x1 − 1), x2 ≥ ax1, (2.14)

which we see is discontinuous at y = ax. Note that the expression in (11) is the exact

expression given in [22, Iyer et al. (2004)]. Similarly, since S(x1, x2) = 1+F (x1, x2)−

F (∞, x2)− F (x1,∞), the joint survival function (JSF) is given as

S(x1, x2) = e−λ2x2e−(λ1−aλ2)x1 . (2.15)

24



If we let X(1) = min{X1, X2}, then from 2.15 we see that

P (X(1) > t) = P (X1 > t,X2 > t) = S(t, t) = e−λ2te−(λ1−aλ2)t = e−(λ1−aλ2+λ2)t

which is the survival function for an exponential(λ1− aλ2 +λ2). Further, with minor

adaptation, X1 and X2 are said to have a joint distribution with Weibull minimums

after arbitrary scaling, as defined in [27, Lee (1979)].

In Theorem 4, below, we give the maximum likelihood estimators of λ1 and λ2

based on the joint likelihood expression. We refer to these estimators as λ̂1 and λ̂2

and these will be compared to the marginal MLE’s, denoted as λ̂
∗
1 and λ̂

∗
2, which we

give immediately following the proof of Theorem 2. We define the marginal MLE’s

as those estimators that maximize the univariate marginal likelihood functions sepa-

rately for λ1 and λ2. [26, Lawless (2002)] refers to the analysis of the marginal MLE’s

as assuming ”working independence”. As we will show later, assuming working inde-

pendence comes at a cost in terms of mean-squared-error.

Theorem 2.2 For a given random sample of size n, (x1i, x2i), i = 1, . . . , n,, from a

bivariate exponential(λ1, λ2), the joint maximum likelihood estimators of (λ1, λ2) is

(λ̂1, λ̂2), where

λ̂1 =
a

x̄2

+
(n− k)

nx̄1

and λ̂2 =
1

x̄2

(2.16)

k =
∑n

i=1 I(x2 − ax1 = 0), x̄1 =
∑
x1/n and x̄2 =

∑
x2/n. Also, λ̂

′
= (λ̂1, λ̂2)

′ is

approximately bivariate normal with mean vector λ and variance/covariance matrix
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Σ, where

λ =

λ1

λ2

 and Σ =
1

n

λ1(λ1 − aλ2) + a2λ2
2 aλ2

2

aλ2
2 λ2

2

 (2.17)

and Corr(λ̂1, λ̂2) = ((1− p)/p2 + 1)
−1/2

.

Proof. For a given pair of bivariate exponential random variables, (x1i, x2i), i =

1, . . . , n, it is easy to see that maximum likelihood estimation under the likelihood

function L(λ1, λ2|x1i, x2i) is equivalent to the maximum likelihood estimation under

L(λ1, λ2|x1i, zi), since x2i = axi1 + zi. From 2.13, the likelihood function for a random

sample of size n of pairs (x1i, zi) for 1 ≤ i ≤ n is given by

L(λ1, λ2) =
n∏
i=1

(
pλ1e

−λ1x1i
)ri (

(1− p)λ1λ2e
−λ1x1i−λ2zi

)1−ri
=

n∏
i=1

[
aλ2e

−λ1x1i
]ri[(λ1 − aλ2)λ2e

−λ1x1ie−λ2zi
]1−ri

= (aλ2)
P

i rie−λ1
P

i rix1i
[
(λ1 − aλ2)λ2

]P
i(1−ri)

×e−λ1
P

i(1−ri)x1ie−λ2
P

i(1−ri)zi .
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where ri = I(zi = 0). The log-likelihood is given as

LL(λ1, λ2) = log(aλ2)
∑
i

ri − λ1

∑
i

rix1i

+ log
[
(λ1 − aλ2)λ2

]∑
i

(1− ri)− λ1

∑
i

(1− ri)x1i − λ2

∑
i

(1− ri)zi

= log(a)
∑
i

ri + n log(λ2)− λ1

∑
i

rix1i

+ log(λ1 − aλ2)
∑
i

(1− ri)− λ1

∑
i

(1− ri)x1i − λ2

∑
i

zi,

since
∑

(1− ri)zi =
∑
zi. The partial derivative with respect to λ1 is given as

∂LL

∂λ1

= −
∑
i

rix1i +

∑
i(1− ri)

λ1 − aλ2

−
∑
i

(1− ri)x1i =

∑
i(1− ri)

λ1 − aλ2

−
∑
i

x1i.

Setting ∂LL/∂λ1 = 0 gives the following likelihood equation

λ1 − aλ2∑
i(1− ri)

=
1∑
i x1i

. (2.18)

The partial derivative with respect to λ2 is given by

∂LL

∂λ2

=
n

λ2

− a
∑

i(1− ri)

λ1 − aλ2

−
∑
i

zi =
n

λ2

− a
∑
i

x1i −
∑
i

zi,

by substituting the right hand side of 2.18 for the left hand side.
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Setting ∂LL/∂λ2 = 0 we get the second likelihood equation

n

λ2

= a
∑
i

x1i +
∑
i

zi (2.19)

Solving for λ2 in 2.19, we have

λ2 =
n

a
∑

i x1i +
∑

i zi
=

1

a
P

i x1i

n
+ 1

n

∑
i zi

=
1

ax̄1 + z̄
.

Solving for λ1 in 2.18 and substituting the above value of λ2 gives

λ1 =
a

ax̄1 + z̄
+

∑
i(1− ri)∑
i x1i

=
a

ax̄1 + z̄
+

∑
i(1− ri)

nx̄1

.

Since x̄2 = ax̄1 + z̄ and k =
∑

(1 − ri), it follows that the estimators in 2.16 are

the solutions to the likelihood equations. It easily follows that the Hessian matrix is

given by

H(λ1, λ2) =

(
∂2LL(λ1, λ2)

∂λi∂λj

)
=



−
P

i(1−ri)
(λ1−aλ2)2

a
P

i(1−ri)
(λ1−aλ2)2

a
P

i(1−ri)
(λ1−aλ2)2

− n
λ2
2
− a2

P

i(1−ri)
(λ1−aλ2)2


.

and

det(H(λ̂1, λ̂2)) =
n(n− k)

λ̂
2

2(λ̂1 − aλ̂2)
> 0,

28



since λ̂1 − aλ̂2 = (n− k)/(nx̄1) > 0. Therefore, estimators in 2.16 are the maximum

likelihood solutions. Since k is distributed as a Binomial(n, 1−p), i.e., E(k) = n(1−p),

where p = aλ2/λ1 and λ1−aλ2 = λ1(1−aλ2/λ1), Fisher’s Information (see page 546,

[26, Lawless (2002)]) is given as

I(λ1, λ2) = E

(
−∂

2LL(λ1, λ2)

∂λi∂λj

)
=



n
λ1(λ1−aλ2)

− a·n
λ1(λ1−aλ2)

− a·n
λ1(λ1−aλ2)

n
λ2
2

+ a2·n
λ1(λ1−aλ2)


.

Therefore, from [26, Lawless (2002)], λ̂ is approximately normal with mean λ′ =

(λ1, λ2)
′ and variance/covariance matrix Σ = I−1(λ1, λ2).

As mentioned previously, alternatives to the joint MLE’s given in 2.16 can by

found by maximizing the marginal likelihood expressions separately for λ1 and λ2.

These marginal MLE’s are well-known (see page 54 of [26, Lawless (2002)]) and are

given as

λ̂
∗
1 =

1

x̄1

and λ̂
∗
2 =

1

x̄2

. (2.20)

We observe that the marginal and joint MLE’s for λ2 are identical, i.e., λ̂
∗
2 ≡ λ̂2, but

for λ1 the MLE’s are quite different for this model.
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We can adapt the likelihood for censored data. Suppose (X1i, X2i), i = 1, . . . , n

represents a random sample of size n from a population with joint survival func-

tion given in (11). If the observations are subject to right censoring with poten-

tial censoring times C1i and C2i, then the data will come in the form of (x1i, x2i),

x1i = min(X1i, C1i) and x2i = min(X2i, C2i), i = 1, . . . , n. Then, following [26, Law-

less (2002)], the likelihood function for a given observation can be expressed as

L∗(λ1, λ2) = L(λ1, λ2)
γ1iγ2i

[
−∂S
∂x1i

]γ1i(1−γ2i)
[
−∂S
∂x2i

](1−γ1i)γ2i

· S(1−γ1i)(1−γ2i),

where S = S(x1i, x2i) is defined in 2.14, L(λ1, λ2) is defined in the proof of Theorem

2, and γji = 1 if the ijth data value is not censored and zero otherwise.

2.1.2 Linearly Associated Bivariate Weibull

If Xi is exponential random variable with hazard rate λi, i = 1, 2 and pdf given

in 2.5, then for a fixed β > 0, it is well known that Yi = X
1/β
i is distributed as

Weibull(λi, β) random variable with pdf given as,

fYi
(y) = βλiy

β−1e−λiy
β

I(y > 0), i = 1, 2 (2.21)

From this one could derive a joint Weibull(λ1, λ2, β) with mariginals, Weibull(λi, β), i =

1, 2, with the following linear relationship

Y β
2 = aY β

1 + Zβ (2.22)
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Since the marginal are Weibull with pdf given in 2.21, we know that (see page 18,

Lawless (2002))

EY r
i = λ

−r/β
i Γ(1 + r/β) and σ2

yi
=

1

λ
2/β
i

[
Γ(1 +

2

β
)− Γ2(1 +

1

β
)
]
, i = 1, 2. (2.23)

In Theorem 3, below, we give the derived bivariate Weibull, based on the struc-

ture in 2.22, along with its covariance structure. The proof of this theorem involves

the δ-function and its properties given in (2.7), (2.8) and (2.9).

Theorem 2.3 Suppose (X1, X2) has the joint distribution given in 2.5, with expo-

nential marginal given in 2.5. Let Yi = X
1/β
i , i = 1, 2, β > 0. Then the joint density

of (Y1, Y2) is given as

f(y1, y1) = pλ1βy
β−1
1 e−λ1y

β
1 δ(y1, y2)+(1−p)λ1λ2β

2yβ−1
1 yβ−1

2 e−λ2y
β
2 e−(λ1−aλ2)yβ

1 I(y1, y2),

(2.24)

where δ(y1, y2) = δ(y2 − a1/βy1) and I(y1, y2) = I(y2 > a1/βy1). The marginal distri-

bution of Yi is given in 2.21, i = 1, 2 and

Cov(Y1, Y2) =
a1+ 1

βλ2Γ(1 + 2/β)

λ
1+2/β
1

+
λ2

(λ1 − aλ2)
1
β

∫ ∞

0

IG(g(y2), 1 + 1/β)fY2(y2)dy2

−Γ2(1 + 1/β)

(λ1λ2)1/β

where g(y2) = (λ1 − aλ2)y
β
2 /a and IG(x, k) =

∫ x
0
tk−1e−tdt as defined on page 25 of

Lawless (2003).
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Proof. To derive the density in 2.24, we follow the transformation approach given

in [25, Khuri (2004)], by using the appropriate δ-functions as follows,

f(y1, y2) =

∫ ∞

−∞

∫ ∞

−∞
f(x1, x2)δ(x

1/β
1 − y1)δ(x

1/β
2 − y2)dx2dx1

= p

∫ ∞

−∞

∫ ∞

−∞
fX1(x1)δ(x2 − ax1)δ(x

1/β
1 − y1)δ(x

1/β
2 − y2)dx2dx1

+(1− p)

∫ ∞

−∞

∫ ∞

−∞
fX1(x1)fX2(x2 − ax1)δ(x

1/β
1 − y1)δ(x

1/β
2 − y2)dx2dx1

= p Part 1 + (1− p) Part 2

Since δ(x2 − ax1)δ(x
1/β
2 − y2) = δ(x2 − ax1)δ((ax1)

1/β − y2), we have

Part 1 =

∫ ∞

−∞

∫ ∞

−∞
fX1(x1)δ(x

1/β
1 − y1)δ(x2 − ax1)δ((ax1)

1/β − y2)dx2dx1

=

∫ ∞

−∞

{
δ(x

1/β
1 − y1)δ(x2 − ax1)δ((ax1)

1/β − y2)fX1(x1)

∫ ∞

−∞
δ(x2 − ax1)dx2

}
dx1

=

∫ ∞

−∞
δ(x

1/β
1 − y1)δ((ax1)

1/β − y2)fX1(x1)dx1

=

∫ ∞

−∞
δ(x

1/β
1 − y1)δ(a

1/βy1 − y2)fX1(x1)dx1

= δ(a1/βy1 − y2)

∫ ∞

−∞
βyβ−1

1 fX1(x1)δ(x1 − yβ1 )dx1

= βyβ−1
1 fX1(y

β
1 )δ(y2 − a1/βy1).
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Similarly,

Part 2 =

∫ ∞

−∞

∫ ∞

−∞
fX1(x1)fX2(x2 − ax1)β

2yβ−1
1 yβ−1

2 δ(x1 − yβ1 )δ(x2 − yβ2 )dx2dx1

= β2yβ−1
1 yβ−1

2

∫ ∞

−∞
fX1(x1)fX2(y

β
2 − ax1)δ(x1 − yβ1 )dx1

= β2yβ−1
1 yβ−1

2 fX1(y
β
1 )fX2(y

β
2 − ayβ1 ).

Putting together Parts 1 and 2 above we get

f(y1, y2) = pβyβ−1
1 fX1(y

β
1 )δ(y2 − a1/βy1) (2.25)

+ (1− p) β2yβ−1
1 yβ−1

2 fX1(y
β
1 )fX2(y

β
2 − ayβ1 )I(·)

I(·) is an indicator function for all {(y1, y2) : y2 ≥ a1/βy1}. Since Xi, i = 1, 2, have

densities given in 2.5, the joint density given in 2.24 follows directly from 2.25 above.

Given that X1 and X2 have the density given in 2.5, the result follows directly.

Now, to derive the covariance expression we must find

E(Y1 · Y2) =

∫ ∞

0

∫ ∞

0

y1y2fY1,Y2(y1, y2)dy2dy1 = Part A + Part B
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where

Part A = p

∫ ∞

0

∫ ∞

0

λ1βy1y2y
β−1
1 e−λ1y

β
1 δ(y1, y2)dy2dy1

=

∫ ∞

0

y1 · (a1/βy1) · pβλ1y
β−1
1 e−λ1y

β
1 dy1 (by δ-function property (6))

= pβλ1a
1/β

∫ ∞

0

y2
1y

β−1
1 e−λ1y

β
1 dy1

= pa1/βE(Y 2
2 ) = a1+1/βλ

−2/β−1
1 λ2Γ(1 + 2/β) (by (20) and p = aλ2/λ1)

and

Part B =

∫ ∞

0

∫ ∞

0

y1y2fY1,Y2(y1, y2)I(y
β
2 > ayβ1 )dy1dy2

= (1− p)βλ1λ2

∫ ∞

0

yβ2 e
−λ2y

β
2 dy2

∫ y2/a1/β

0

βyβ1 e
−(λ1−aλ2)yβ

1 dy1

=
(1− p)λ1λ2

λ1 − aλ2

∫ ∞

0

βyβ2 e
−λ2y

β
2 dy2

∫ y2/a1/β

0

β(λ1 − aλ2)y1y
β−1
1 e−(λ1−aλ2)yβ

1 dy1

=
(1− p)λ1λ2

λ1 − aλ2

∫ ∞

0

βyβ2 e
−λ2y

β
2 dy2

1

(λ1 − aλ2)1/β

∫ (λ1−aλ2)
a

yβ
2

0

t1/βe−tdt

=
(1− p)λ1λ2

(λ1 − aλ2)
1+ 1

β

∫ ∞

0

βyβ2 e
−λ2y

β
2 dy2

∫ (λ1−aλ2)
a

yβ
2

0

t1/βe−tdt.

Substituting Parts A and B into the E(Y1 · Y2) expression above and subtracting

E(Y1) · E(Y2) from 2.23, the covariance expression follows. �

Henceforth, we will refer to the bivariate Weibull density given in 2.23 as a

BVW(λ1, λ2, β, a). The covariance structure given in Theorem 3 for the proposed

BVW(λ1, λ2, β, a) is quite complicated and not in closed-form. Similarly complicated

structures are found with the multivariate Weibull proposed by [17, Hougaard (1986)]
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and [31, Lu and Bhattacharyya (1990)], as well as, the bivariate Weibull derived

from [32, Marshall and Olkin (1967)] by taking the identical transformation. The

correlation between Y1 and Y2, denoted ρ(Y1,Y2) is found as

ρ(Y1,Y2) =
Cov(Y1, Y2)√

Var(Y1)
√

Var(Y2)

=

(
aλ2

λ1

)1+ 1
β Γ(1 + 2

β
)

Γ(1 + 2
β
)− Γ2(1 + 1

β
)
−

Γ2(1 + 1
β
)

Γ(1 + 2
β
)− Γ2(1 + 1

β
)

+
Γ(1 + 1

β
)λ2

Γ(1 + 2
β
)− Γ2(1 + 1

β
)

[
λ1λ2

(λ1 − aλ2)

] 1
β
∫ ∞

0

βyβ2 e
−λ2y

β
2 IG(g(y2), 1 + 1/β)fY2(y2)dy2.

Similar to the likelihood for the exponential, we see that the likelihood for a given

pair (y1, y2) is given as

L(λ1, λ2, β) =
(
aλ2βy

β−1
1 e−λ1y

β
1
)r (

(λ1 − aλ2)λ2β
2yβ−1

1 yβ−1
2 e−λ2y

β
2 e−(λ1−aλ2)yβ

1

)1−r
,

(2.26)

where r = I(y2 − a1/βy1 = 0). The likelihood in (23) will lead to joint maximum

likelihood estimators of (λ1, λ2, β) given as (λ̂1, λ̂2, β̂), where

λ̂1 =
a

ȳ∗2
+

(n− k)

nȳ∗1
, λ̂2 =

1

ȳ∗2
, and β̂ (2.27)

where ȳ∗j = 1
n

∑n
i=1 y

β̂
ji, i = 1, 2, k =

∑n
i=1 I(y

β̂
2 −ay

β̂
1 = 0). The estimator β̂ represents

the solution to the third likelihood equation found by differentiating the log-likelihood

with respect to β, plugging the above estimators λ̂1 and λ̂2 and numerically solving

for β.
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The JCDF can be found directly from (11) as:

F (y1, y2) = FX1,X2(y
β
1 , y

β
2 ) = (1− e−λ1y

β
1 ) + e−λ2y

β
2 (e−(λ1−aλ2)yβ

1 − 1), (2.28)

for y2 ≥ aβy1. From (25), it is easy to verify that the marginal have the Weibull

distribution given in (18) by noting that:

FY1(y1) = lim
y2→∞

F (y1, y2) = (1− e−λ1y
β
1 )

FY2(y2) = lim
y1→∞

F (y1, y2) = F (y2/a
1/β, y2) = (1− e−λ2y

β
2 )

Similarly, the JSF is given as:

S(y1, y2) = e−λ2y
β
2 e−(λ1−aλ2)yβ

1 (2.29)

Note that if we let Y(1) = min{Y1, Y2}, then (26) gives

P (Y(1) > t) = P (Y1 > t, Y2 > t) = S(t, t) = e−λ2tβe−(λ1−aλ2)tβ = e−(λ1−aλ2+λ2)tβ

which is the survival function for an Weibull(λ1−aλ2 +λ2, β). It is easy to show that

Y1 and Y2 have a joint distribution with Weibull minimums after arbitrary scaling, as

defined in Lee (1979).
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2.2 Bivariate Lifetime Distributions Based on Random Hazards

[17, Hougaard (1986)] provides a general method of constructing bivariate failure

time distributions where both components in a system are affected by random hazards.

Lemma 2.4 Let λ1(t) and λ2(t) be two arbitrary hazard functions, and Λ1(t) and

Λ2(t) be the corresponding cumulative hazard functions, where Λj(t) =
∫ t

0
λj(x)dx.

Let Tj, j = 1, 2, be conditionally independent lifetimes given a specific quantity Z.

The marginal hazard of Tj is Zλj, and its cumulative hazard function is ZΛj.

Then the conditional bivariate survivor function P (T1 ≥ t1, T2 ≥ t2|Z = z) = exp (−zΛ.),

where Λ. = Λ1 (t)+Λ2 (t) .

Proof. The conditional joint survivor function of T ′js given Z is

S (t1, t2|Z = z) = P (T1 > t1, T2 > t2|Z = z)

=
2∏
j=1

S (tj|Z = z) =
2∏
j=1

exp

[
−
∫ t

0

zλj(x)dx

]

=
2∏
j=1

exp

[
−z
∫ t

0

λj(x)dx

]
=

2∏
j=1

exp [−zΛj (t)]

= exp

[
−z

2∑
j=1

Λj (t)

]
= exp (−zΛ.)

where Λ. =
∑n

j=1 Λj (t)

Definition 1 [18, Hougaard (2000)] defines the positive stable distribution as:

Let Xi, i = 1, ...n, be independent, identically distributed random variables with

positive supports. If there exists a scale factor function c(n) having the form n1/α,
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α ≤ 1, such that

c (n)X =D X1 + ...+Xn,

where =Ddenotes having the same distribution as. The the distribution of X is called a

positive stable distribution with two parameters α and δ given by the Laplace transform

L (s) = exp (−δsα/α) .

Theorem 2.5 Let Tj, j = 1, 2, be conditionally independent lifetimes given a specific

quantity Z, which in term has a positive stable distribution with parameter α given

by the Laplace transform

E {exp (−ΛZ)} = exp (−Λα) , α ∈ (0, 1] ,

The marginal hazard of Tj is Zλj, and Λj(t) =
∫ t

0
λj(x)dx is the cumulative hazard.

Then the unconditional bivariate survivor function P (T1 ≥ t1, T2 ≥ t2) = exp (−Λ.α)
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Proof. Assuming some regularity conditions and by lemma 1, we have the following

result

P (T1 ≥ t1, T2 ≥ t2) =

∞∞∫∫
t1t2

f (x1, x2) dx1dx2 =

∞∞∫∫
t1t2

 ∞∫
−∞

f (x1, x2, z) dz

 dx1dx2

=

∞∞∫∫
t1t2

 ∞∫
−∞

f (x1, x2|z) f (z) dz

 dx1dx2

=

∞∫
−∞

∞∞∫∫
t1t2

f (x1, x2|z) dx1dx2

 f (z) dz

=

∞∫
−∞

P (T1 > t1, T2 > t2|Z = z) f (z) dz

= E [P (T1 > t1, T2 > t2|Z = z)]

= E [exp (−zΛ.)] = exp (−Λ.α)

2.2.1 The Bivariate Weibull Model (BVW) of Random Hazards

[17, Hougaard (2000)] derives a bivariate Weibull distribution with common

shape parameter γ such that the arbitrary hazard rate λj(x) = εjγt
γ−1. The marginal

distributions are also Weibull with common shape αγ,
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Using more conventional parameterizations, [31, Lu and Bhatacharyya (1990)]

derive the same model without the assumption of conditional independence and com-

mon shape parameter, and render the survivor function as

S (t1, t2) = P (T1 ≥ t1, T2 ≥ t2) (2.30)

= exp

{
−

[(
t1
θ1

)β1/α

+

(
t2
θ2

)β2/α
]α}

, 0 < α ≤ 1

as well as the moments

E (Tj) = θjΓ
(
1/βj + 1

)
V ar (Tj) = θ2

j

{
Γ
(
2/βj + 1

)
− Γ2

(
1/βj + 1

)}
j = 1, 2

Cov (T1, T2) = θ1θ2 [Γ (α/β1 + 1) Γ (α/β2 + 1) Γ (1/β1 + 1/β2 + 1)

Γ (1/β1 + 1) Γ (1/β2 + 1) Γ (α/β1 + α/β2 + 1)]

÷Γ (α/β1 + α/β2 + 1)

Lu and Bhatacharyya also studied the statistical properties of the BVW and

showed that for the bivariate exponential case where β1 = β2 = 1, the correlation

Corr (T1, T2) =
Cov (T1, T2)√

V ar (T1)V ar (T2)

= 2Γ2 (α+ 1) /Γ (2α+ 1)− 1

is free of the marginal parameters and could be conveniently utilized in simulation.
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2.2.2 The Farlie-Gumbel-Morgenstern (FGM) Family

A general class of bivariate distributions is the Farlie-Gumbel-Morgenstern (FGM)

Family as proposed by [36], [15], and [12]. In general, the FGM family of bivariate

distributions is defined as:

Let FXi
(xi) , i = 1, 2, be a cdf of the continuous random variable Xi, then the

joint cdf of X1 and X2 with an FGM bivariate distribution is given as

FX1,X2 (x1, x2) = FX1 (x1)FX2 (x2) [1 + α (1− FX1 (x1)) (1− FX2 (x2))] (2.31)

where α is a dependence parameter such that |α| < 1.

It can be shown that the properties of a bivariate cdf all hold for the cdf defined

in the above (2.31):

1. FX1,X2 (x1,∞) = FX1 (x1) and FX1,X2 (∞, x2) = FX2 (x2) ,

2. FX1,X2 (x1,−∞) = FX1,X2 (−∞, x2) = FX1,X2 (−∞,−∞) = 0,

3. FX1,X2 (∞,∞) = 1.

Let X1, X2 be continuous random variables having marginal pdfs fX1 (x1) and

fX2 (x2) and follow the FGM bivariate distribution,then the joint pdf, if exists, is

given as

fX1,X2 (x1, x2) = fX1 (x1) fX2 (x2) [1 + α (1− 2FX1 (x1)) (1− 2FX2 (x2))] . (2.32)
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Assuming the joint cdf FX1,X2 (x1, x2) is differenciable to the second order, then

fX1,X2 (x1, x2) =
∂2

∂x1∂x2

FX1,X2 (x1, x2)

=
∂

∂x1

[
∂

∂x2

FX1,X2 (x1, x2)

]
=

∂

∂x1

{
∂

∂x2

FX1 (x1)FX2 (x2)

+α
(
FX1 (x1)− F 2

X1
(x1)

) (
FX2 (x2)− F 2

X2
(x2)

)}
=

∂

∂x1

[fX2 (x2)FX1 (x1)

+αfX2 (x2) (1− 2FX2 (x2))
(
FX1 (x1)− F 2

X1
(x1)

)]
= fX1 (x1) fX2 (x2) + αfX1 (x1) fX2 (x2) (1− 2FX1 (x1)) (1− 2FX2 (x2))

= fX1 (x1) fX2 (x2) [1 + α (1− 2FX1 (x1)) (1− 2FX2 (x2))]
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The survival function of (X1, X2) is given as

SX1,X2 (x1, x2) =

∫ ∞

x1

∫ ∞

x2

fX1,X2 (t1, t2) dt1dt2 (2.33)

=

∫ ∞

x1

∫ ∞

x2

fX1 (t1) fX2 (t2) [1 + α (1− 2FX1 (t1)) (1− 2FX2 (t2))] dt1dt2

=

∫ ∞

x1

∫ ∞

x2

fX1 (t1) fX2 (t2) dt1dt2

+α

∫ ∞

x1

∫ ∞

x2

fX1 (t1) fX2 (t2) (1− 2FX1 (t1)) (1− 2FX2 (t2)) dt1dt2

=

∫ ∞

x1

fX1 (t1)

[∫ ∞

x2

fX2 (t2) dt2

]
dt1

+α

∫ ∞

x1

fX1 (t1) (1− 2FX1 (t1))

[∫ ∞

x2

fX2 (t2) (1− 2FX2 (t2)) dt2

]
dt1

= SX1 (x1)SX2 (x2)

+α
[
SX1 (x1)− F 2

X1
(t1)
] [
SX2 (x2)− F 2

X2
(t2)
]

2.2.3 The Farlie-Gumbel-Morgenstern Family of BVWs

Let Xi, i = 1, 2, be a continuous random variable distributed as the two pa-

rameter Weibull defined in (1.7), i.e., Xi ∼ Weibull(θi, βi), i = 1, 2. Then the

Farlie-Gumbel-Morgenstern Family of BVWs is defined by the joint cdf as

FX1,X2 (x1, x2) = FX1 (x1)FX2 (x2) [1 + α (1− FX1 (x1)) (1− FX2 (x2))] (2.34)

=

[
1− exp

(
−
(
x1

θ1

)β1

)][
1− exp

(
−
(
x2

θ2

)β2

)]

×

[
1 + α exp

(
−
(
x1

θ1

)β1

−
(
x2

θ2

)β2

)]
;
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and the joint pdf is given as

fX1,X2 (x1, x2) = fX1 (x1) fX2 (x2) [1 + α (1− 2FX1 (x1)) (1− 2FX2 (x2))] (2.35)

=
β1β2

θ1θ2

(
x1

θ1

)β1−1(
x2

θ2

)β2−1

exp

[
−
(
x1

θ1

)β1

−
(
x2

θ2

)β2

]

×

{
1 + α

[
2 exp

(
−
(
x1

θ1

)β1

)
− 1

][
2 exp

(
−
(
x2

θ2

)β2

)
− 1

]}
;

and the joint survival function is given by

SX1,X2 (x1, x2) = SX1 (x1)SX2 (x2) + α
[
SX1 (x1)− F 2

X1
(t1)
] [
SX2 (x2)− F 2

X2
(t2)
]

(2.36)

where the marginal survivor functions and cdfs are defined as in (1.9) and (1.7).
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Chapter 3

Bivariate Location-Scale Weibull Lifetime Distributions

In this chapter, we firstly use the BVW defined in (2.30) as the standard pdf

to generate a location-scale family of bivariate distributions through location-scale

transformation. Then, by using the logarithm transform, we generated a location-

scale Farlie-Gumbel-Morgenstern (FGM) Family of BVWs. Maximum likelihood es-

timates of the parameters and properties of the FGM BVW are also studied. Lastly,

Bivariate Location-Scale Lifetime Distribution Regression Models are introduced and

charted as future research extension.

The location-scale family of distributions have cdfs of the form Φ
(
x−µ
σ

)
, −∞ <

µ < ∞ and σ > 0. Many of the widely used statistical distributions belong to such

a family of distributions. Examples of distributions that belong to the location-scale

family are normal distribution, exponential distribution, double exponential distri-

bution, Cauchy distribution, logistic distribution, and uniform distribution, etc. [34,

Meeker and Escobar (1998)] emphasizes the importance of the widely used location-

scale family with respect to its adaptivity and simplicity.

Definition 2 A group family of distributions is a family obtained by applying a suit-

able family of transformations to a random variable with a fixed distribution [29,

Lehmann and Casella (1998)].
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Definition 3 Let f (x) be a pdf. Then the family of pdfs 1
σ
f(x−µ

σ
), −∞ < µ < ∞,

σ > 0, is called the location-scale family with standard pdf f (x); µ is called the location

parameter and σ is called the scale parameter. [2, Casella and Berger (2002)]

The following three transformations result in three families of distributions, i.e.,

location families, scale families, and location-scale families. Examples of distributions

that belong to the location-scale family are normal distribution, exponential distribu-

tion, double exponential distribution, Cauchy distribution, logistic distribution, and

uniform distribution, etc.

Let U be a random variable with a fixed distribution FU (u) with pdf fU (u)

and let µ , the location parameter, and σ > 0 ,the scale parameter, be any given

constants. Then the random variables X = µ + U , X = σU , and X = µ + σU

have distributions FX(x − µ), FX(x/σ), and FX(x−µ
σ

) with fX ’s equal to fU(x − µ),

1
σ
fU(x/σ) and 1

σ
fU(x−µ

σ
), which constitute a location family, a scale family, and a

location-scale family, respectively.

[29, Lehmann and Casella (1998)] states that the families of transformations

for the above location-scale family distributions are closed under composition and

inversion.

Let the continuous random vector U = (U1, ..., Un)
′ have a fixed joint distribution

FU′ (u′). The random vector X = µ+σU, where µ is an n×1 constant vector and σ

is an n × n diagonal matrix of constants with the diagonal entry being σi, i=1, ..., n,

and off-diagonal entries being zero. The marginal pdf of Xi is fXi
(x) = 1

σi
f

Ui
(xi−µi

σi
).
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The joint pdf of the random vector X′= (X1, ..., Xn) is given by

fX′ (x′) =
1∏n

i=1 (σi)
fU′

(
x1 − µ1

σ1

, ...,
xn − µn
σn

)
.

which defines a multivariate location-scale family of distributions. More specifically,

when n=2, we have the bivariate case. The bivariate joint pdf of X′= (X1, X2) is

given by

fX1,X2 (x1, x2) =
1

σ1σ2

fU1,U2

(
x1 − µ1

σ1

,
x2 − µ2

σ2

)
.

Since the bivariate location-scale transformations are one-to-one, the proof of

the above proposition can be readily obtained using Jacobian of the transformation.

Also it can be shown that the three properties of the bivariate distribution function

reiterated in [23, Joe (1997)] are satisfied.

1. limui→∞ SU1,U2 (u1, u2) = 0, i = 1, 2;

2. limui→∞∀i FU1,U2 (u1, u2) = 1; and

3. If FU1,U2 has second-order derivatives, ∂2FU1,U2/∂u1∂u2 ≥ 0 (the rectangle in-

equality).

A proof of the proposition for the specific case of BVW is given in the next

section.
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3.1 Bivariate Location-Scale Family Based on BVW with Random Haz-

ards

Recall the BVW distribution defined by (2.30), its joint pdf is given by

fT1,T2 (t1, t2) =
(−1)2 ∂2ST1,T2 (t1, t2)

∂t1∂t2

=
∂2

∂t1∂t2
exp

{
−

[(
t1
θ1

)β1/α

+

(
t2
θ2

)β2/α
]α}

=
β1

θ1

β2

θ2

(
t1
θ1

)β1
α
−1(

t2
θ2

)β2
α
−1
[(

t1
θ1

)β1
α

+

(
t2
θ2

)β2
α

]α−2

×

{[(
t1
θ1

)β1/α

+

(
t2
θ2

)β2/α
]α

+
1− α

α

}

× exp

{
−

[(
t1
θ1

)β1/α

+

(
t2
θ2

)β2/α
]α}

0 < α ≤ 1, 0 ≤ t1, t2 <∞.

Theorem 3.1 Let the continuous random vector U = (U1, U2)
′ have a joint Bivariate

Weibull distribution FU1,U2 (u1, u2) as defined above, and define the transformation

X = µ+σU,where µ is an 2×1 constant vector and σ is an 2×2 diagonal matrix of

constants with the diagonal entry being σi, i=1, 2, and off-diagonal entries being zero.

Then

1. The marginal pdf of Xi is fXi
(x) = 1

σi
f

Ui
(xi−µi

σi
);
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2. The bivariate joint pdf of X = (X1, X2)
′ is given by

fX1,X2 (x1, x2) =
1

σ1σ2

fU1,U2

(
x1 − µ1

σ1

,
x2 − µ2

σ2

)
(3.1)

=
β1β2

θ∗1θ
∗
2

(
x1 − µ1

θ∗1

)β1
α
−1(

x2 − µ2

θ∗2

)β2
α
−1

×

[(
x1 − µ1

θ∗1

)β1
α

+

(
x2 − µ2

θ∗2

)β2
α

]α−2

×


[(

x1 − µ1

θ∗1

)β1
α

+

(
x2 − µ2

θ∗2

)β2
α

]α
+

1− α

α


× exp

−
[(

x1 − µ1

θ∗1

)β1
α

+

(
x2 − µ2

θ∗2

)β2
α

]α
where θ∗1 = θ1σ1, θ

∗
2 = θ2σ2, and 0 < α ≤ 1, 0 ≤ x1, x2 <∞.

The location parameter vector is (µ1, µ2), and the scale parameter vector is

(θ∗1 = θ1σ1, θ
∗
2 = θ2σ2).

Proof. Assuming some regularity conditions as listed in [2, Casella and Berger

(2002)], we have the new bivariate random vector (X1, X2) defined by bivariate trans-

formation

g =

 X1 = g1 (U1, U2) = µ1 + σ1U1

X2 = g2 (U1, U2) = µ2 + σ2U2


′

,
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Denote the inverse bivariate transformation by

h =

 U1 = h1 (X1, X2) = X1−µ1

σ1

U2 = h2 (X1, X2) = X2−µ2

σ2


′

.

Obviously the transformations are one-to-one, then by 4.3.2 of Casella and Berger

(2002), we have

fX1,X2 (x1, x2) = fU1,U2 [h1 (x1, x2) , h2 (x1, x2)]

∣∣∣∣∣∣∣
∂h1

∂x1

∂h1

∂x2

∂h2

∂x1

∂h2

∂x2

∣∣∣∣∣∣∣
= fU1,U2

(
x1 − µ1

σ1

,
x2 − µ2

σ2

) ∣∣∣∣∣∣∣
1
σ1

0

0 1
σ2

∣∣∣∣∣∣∣
=

1

σ1σ2

fU1,U2

(
x1 − µ1

σ1

,
x2 − µ2

σ2

)
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The survival function of (X1, X2) is given as

SX1,X2 (x1, x2) =

∫ ∞

x1

∫ ∞

x2

fX1,X2 (t1, t2) dt1dt2 (3.2)

=

∫ ∞

x1

∫ ∞

x2

1

σ1σ2

fU1,U2

(
t1 − µ1

σ1

,
t2 − µ2

σ2

)
dt1dt2

= SU1,U2

(
x1 − µ1

σ1

,
x2 − µ2

σ2

)
= exp

{
−

[(
x1 − µ1

θ1σ1

)β1/α

+

(
x2 − µ2

θ∗2

)β2/α
]α}

= exp

{
−

[(
x1 − µ1

θ∗1

)β1/α

+

(
x2 − µ2

θ∗2

)β2/α
]α}

θ∗i = θiσi

3.2 Maximum Likelihood Estimates of the Bivariate Location-Scale Fam-

ily Based on BVW with Random Hazards

3.2.1 Likelihood Functions of Uncensored Lifetime Data

Let the bivariate lifetimes, (X1i, X2i), of a random sample of size n without cen-

soring have continuous joint survivor function (3.2). The bivariate likelihood function

is given by

L =
n∏
i=1

fX1,X2 (x1i, x2i) , (3.3)
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and the bivariate loglikelihood is

l = n log

(
β1

θ∗1

)
+ n log

(
β2

θ∗2

)
(3.4)

+

(
β1

α
− 1

) n∑
i=1

log

(
x1i − µ1

θ∗1

)
+

(
β2

α
− 1

) n∑
i=1

log

(
x2i − µ2

θ∗2

)β2
α
−1

+ (α− 2)
n∑
i=1

log

[(
x1i − µ1

θ∗1

)β1
α

+

(
x2i − µ2

θ∗2

)β2
α

]

+
n∑
i=1

log

{[(
x1i − µ1

θ∗1

)β1/α

+

(
x2i − µ2

θ∗2

)β2/α
]α

+
1− α

α

}

−

[(
x1i − µ1

θ∗1

)β1/α

+

(
x2i − µ2

θ∗2

)β2/α
]α
.

3.2.2 Likelihood Functions for Right Censored Lifetime Data

Let the bivariate lifetimes, (X1i, X2i), of a random sample of size n with right

censoring have continuous joint survivor function 3.2. Assume that censoring times

(C1i, C2i)are independent of (X1i, X2i), and let the censoring indicator δji = I [Xji = min (Xji, Cji)],

j = 1, 2. Then the bivariate likelihood function takes the form as given in [26, Lawless

(2002)]

L =
n∏
i=1

fX1,X2 (x1i, x2i)
δ1iδ2i

[
−∂SX1,X2 (x1i, x2i)

∂x1i

]δ1i(1−δ2i)

(3.5)

×
[
−∂SX1,X2 (x1i, x2i)

∂x2i

]δ2i(1−δ1i)

SX1,X2 (x1i, x2i)
(1−δ1i)(1−δ2i)

=
n∏
i=1

fX1,X2 (x1i, x2i)
δ1iδ2i fX1 (x1i)

δ2i(1−δ1i) fX2 (x2i)
δ1i(1−δ2i) SX1,X2 (x1i, x2i)

(1−δ1i)(1−δ2i)
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where the marginal pdfs are given as

fXj
(xji) =

−∂SX1,X2 (x1i, x2i)

∂xji
(3.6)

= exp

{
−

[(
x1i − µ1

θ∗1

)β1/α

+

(
x2i − µ2

θ∗2

)β2/α
]α}

×

[(
x1i − µ1

θ∗1

)β1/α

+

(
x2i − µ2

θ∗2

)β2/α
]α−1

×
βj
θ∗j

(
xji − µj
θ∗j

)βj
α
−1

The bivariate loglikelihood is given as

l =
n∑
i=1

[δ1iδ2i log fX1,X2 (x1i, x2i) + δ2i (1− δ1i) log fX1 (x1i) (3.7)

+δ1i (1− δ2i) log fX2 (x2i) + (1− δ1i) (1− δ2i) logSX1,X2 (x1i, x2i)]

where

logSX1,X2 (x1i, x2i) = −

[(
x1i − µ1

θ∗1

)β1/α

+

(
x2i − µ2

θ∗2

)β2/α
]α
,
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log fX1,X2 (x1i, x2i) = log

(
β1β2

θ∗1θ
∗
2

)
+

(
β1

α
− 1

)
log

(
x1i − µ1

θ∗1

)
+

(
β2

α
− 1

)
log

(
x2i − µ2

θ∗2

)
+ (α− 2) log

[(
x1 − µ1

θ∗1

)β1
α

+

(
x2 − µ2

θ∗2

)β2
α

]

+ log


[(

x1 − µ1

θ∗1

)β1
α

+

(
x2 − µ2

θ∗2

)β2
α

]α
+

1− α

α


−

[(
x1 − µ1

θ∗1

)β1
α

+

(
x2 − µ2

θ∗2

)β2
α

]α
,

and

log fXj
(xji) = −

[(
x1i − µ1

θ∗1

)β1/α

+

(
x2i − µ2

θ∗2

)β2/α
]α

+ (α− 1) log

[(
x1i − µ1

θ∗1

)β1/α

+

(
x2i − µ2

θ∗2

)β2/α
]

+ log

(
βj
θ∗j

)
+

(
βj
α
− 1

)
log

(
xji − µj
θ∗j

)
.

3.3 Location-Scale Family of BVWs Based on the Farlie-Gumbel-Morgenstern

Family

The FGM BVWs as defined in section 2.2.3 are not of location-scale form, how-

ever, by exploring the relationship between a two parameter Weibull distribution and

a smallest extreme value (SEV) distribution, the Weibull can be transformed into a

location-scale form as discussed in chapter four of [34, Meeker and Escobar (1998)].
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If random variable X ∼ Weibull (θ, β), then Y = Log (X) ∼ SEV (µ, σ) ,where

µ = log (θ) is the location parameter and σ = 1/β is the scale parameter of the SEV.

Then the Weibull cdf, pdf, survival and hazard function can be written as

FX (x) = FY

(
log (x)− µ

σ

)
(3.8)

= 1− exp

[
− exp

(
log (x)− µ

σ

)]
;

fX (x) =
1

σx
fY

(
log (x)− µ

σ

)
(3.9)

=
1

σx
exp

[
log (x)− µ

σ
− exp

(
log (x)− µ

σ

)]
;

SX (x) = SY

(
log (x)− µ

σ

)
(3.10)

= exp

[
− exp

(
log (x)− µ

σ

)]
;

hX (x) =
1

σ
exp

(
log (x)− µ

σ

)
. (3.11)
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Thus the FGM BVW cdf , pdf and survivor function in location-scale form are

given by

FX1,X2 (x1, x2) = FY1

(
log (x1)− µ1

σ1

)
FY2

(
log (x2)− µ2

σ2

)
(3.12)

×
{

1 + α

[
1− FY1

(
log (x1)− µ1

σ1

)][
1− FY2

(
log (x2)− µ2

σ2

)]}
=

{
1− exp

[
− exp

(
log (x1)− µ

σ

)]}{
1− exp

[
− exp

(
log (x2)− µ

σ

)]}
×
{

1 + α exp

[
− exp

(
log (x1)− µ

σ

)
− exp

(
log (x2)− µ

σ

)]}
;

fX1,X2 (x1, x2) =
1

σ1σ2x1x2

fY1

(
log (x1)− µ1

σ1

)
fY2

(
log (x2)− µ2

σ2

)
(3.13)

×
[
1 + α

(
1− 2FY1

(
log (x1)− µ1

σ1

))(
1− 2FY2

(
log (x2)− µ2

σ2

))]
=

1

σ1σ2x1x2

× exp

[
log (x1)− µ1

σ1

+
log (x2)− µ2

σ2

− exp

(
log (x1)− µ1

σ1

)
− exp

(
log (x2)− µ

σ

)]
×
[
1 + α

(
1− 2FY1

(
log (x1)− µ1

σ1

))(
1− 2FY2

(
log (x2)− µ2

σ2

))]

where FYi

(
log(xi)−µi

σi

)
= 1− exp

[
− exp

(
log(xi)−µi

σi

)]
, i = 1, 2.
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SX1,X2 (x1, x2) = SX1 (x1)SX2 (x2) (3.14)

+α
[
SX1 (x1)− F 2

X1
(t1)
] [
SX2 (x2)− F 2

X2
(t2)
]

= exp

[
− exp

(
log (x1)− µ1

σ1

)
− exp

(
log (x2)− µ1

σ1

)]
+α

[
e
− exp

�
log(x1)−µ1

σ1

�

−
(

1− e
− exp

�
log(x1)−µ1

σ1

�)2
]

×

[
e
− exp

�
log(x2)−µ2

σ2

�

−
(

1− e
− exp

�
log(x2)−µ2

σ2

�)2
]

3.4 Maximum Likelihood Estimates of the FGM BVWs

In this section, maximum likelihood method is applied to the FGM BVW distri-

bution with two-parameter Weibull marginal. The two-parameter marginal are chosen

not out of necessity, but of convenience since the location-scale parametrization of

the FGM BVW has two-parameter Weibll marginal. Nevertheless all the following

results apply to the FGM BVW with three-parameter Weibull marginal readily.

3.4.1 Likelihood Functions of Uncensored Lifetime Data

Let the bivariate lifetimes, (X1i, X2i), of a random sample of size n without

censoring have FGM BVW distribution as defined in (2.34). The bivariate likelihood
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function is defined in (3.3), and the bivariate loglikelihood is

l = n log

(
β1β2

θ1θ2

)
(3.15)

+
n∑
i=1

[
(β1 − 1) log

(
x1i

θ1

)
+ (β2 − 1) log

(
x2i

θ2

)
−
(
x1i

θ1

)β1

−
(
x2i

θ2

)β2

]

+
n∑
i=1

{
log

[
1 + α

(
2 exp

(
−
(
x1i

θ1

)β1

)
− 1

)(
2 exp

(
−
(
x2i

θ2

)β2

)
− 1

)]}
.

For location-scale FGM BVW as defined in (3.12), the bivariate loglikelihood is

l = −n log (σ1σ2)−
n∑
i=1

log (x1x2)

+
log (x1)− µ1

σ1

+
log (x2)− µ2

σ2

− exp

(
log (x1)− µ1

σ1

)
− exp

(
log (x2)− µ

σ

)
+ log

[
1 + α

(
1− 2FY1

(
log (x1)− µ1

σ1

))(
1− 2FY2

(
log (x2)− µ2

σ2

))]
,

where FYi

(
log(xi)−µi

σi

)
= 1− exp

[
− exp

(
log(xi)−µi

σi

)]
, i = 1, 2.

3.4.2 Likelihood Functions for Right Censored Lifetime Data

Assume that censoring times (C1i, C2i)are independent of (X1i, X2i), and let the

censoring indicator δji = I [Xji = min (Xji, Cji)], j = 1, 2. The bivariate likelihood

function is given by (3.5) where the marginal pdfs are given by (1.6), and the bivariate

loglikelihood is given by (3.7), where the joint survival function and the joint pdf are

defined by (2.36) and (2.35) for FGM BVW, and by (3.14) and (3.13) for the location-

scale parametrization of the FGM BVW.
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3.4.3 Optimization Procedures for MLEs of the FGM BVW

Let the vector of parameters ξ = (α, β1, β2, θ1, θ2)
′ be in a parameter space Ω.

The maximum likelihood method is used to maximize the log-likelihood function l (ξ),

and the corresponding vector of parameters, ξ̂ =
(
α̂, β̂1, β̂2, θ̂1, θ̂2

)′
, is call the vector

of mles. If the likelihood function has a unique maximum in the parameter space Ω,

then the mle vector ξ̂ can be found by solving U (ξ) = ∂l (ξ) /∂ξ = 0, which are called

score functions. For Weibull distribution, however, there is no closed form solutions

for the score functions. [26, Lawless (2002)] summarizes numerical methods of solving

the optimization problem, which are distinguished by their use of the first and second

derivatives of the logarithm of the likelihood function. The methods include:

1. Search algorithm or heuristics without utilizing any derivatives.

2. Methods that utilize only the first derivatives.

3. Methods that utilize both the first and second derivatives. Moreover, the second

derivative matrix (or the Hessian Matrix) is defined as H (ξ) = ∂2l (ξ) /∂ξ∂ξ′.

The SAS procedure NLP provides all three types of methods for the optimiza-

tion. The Newton-Raphson Method with Line Search (NEWRAP), which is of type

three method above, is the method of choice in the optimization procedures in the

simulation study for this thesis.

The NEWRAP technique uses the first derivative vector U
(
ξk
)

and the Hessian

matrix H
(
ξk
)

in its iterations and requires that the logarithm of the likelihood func-

tion have continuous first- and second-order derivatives inside the parameter space
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Ω. The NEWRAP method is a relatively efficient algorithm for medium to large

problems since it does not need many function, gradient, and Hessian calls. Never-

theless the SAS derivative compiler is not efficient in the computation of second-order

derivatives, and a complicated Hessian does affect the algorithm’s efficiency. The al-

gorithm also requires a positive definite Hessian. When the Hessian is not positive

definite, a multiple of the identity matrix is added to the Hessian matrix to make

it positive definite [11, Eskow and Schnabel 1991]. The default line-search method

uses quadratic interpolation and cubic extrapolation in each iteration to compute an

approximate optimum of the objective function.

Similar to that described for the FGM BVW’s, the optimization procedures for

MLEs of the bivariate location-scale family consist of three major type of numeri-

cal methods. Again, the Newton-Raphson Method is used in the simulation study.

Details of the simulation study can be found in the appendix.

3.5 Bivariate Location-Scale Lifetime Distribution Regression Models

The location-scale family includes many important distributions. Bivariate re-

gression models can improve estimation of marginal covariate effects when two or

more response variables are correlated(e.g. [41, Zellner (1962)]).

[19, He and Lawless (2005)] considers bivariate location-scale regression models:

Let the true bivariate distribution of response variables Y1 and Y2 be given by

F (y1, y2|x1,x2) = Hψ (ω1, ω2) = Hψ

(
y1 − µ10 − x′1µ1

τ 1

,
y2 − µ20 − x′2µ2

τ 2

)
, (3.16)
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where x1, x2 are p × 1 and q × 1 covariate vectors, Hψ (ω1, ω2) is a bivariate cdf

specified with an association parameter ψ.

The location-scale form of the true marginal distributions of Y1 and Y2 can be

written as

Yj = µj0 + x′jµj + τ jωj, j = 1, 2 (3.17)

where the distribution of the error ωj is independent of that of the covariate’s. µj0 +

x′jµj is the location parameter and τ j is the scale parameter.

[19, He and Lawless (2005)] proposes a location-scale regression model to inves-

tigate distribution misspecification effects on the estimation of regression coefficients.

The regression model is given as

Y1 = β10 + x′1β1 + σ1ε1 (3.18)

Y2 = β20 + x′2β2 + σ2ε2

where βj0 + x′jβj is the location parameter and σj > 0 is the scale parameter, βj

is the corresponding regression coefficient vector, and the errors ε1, ε2 have a joint

distribution specified by a copula function Cφ with an association parameter φ.

[19, He and Lawless (2005)] shows that estimators of the regression coefficients

β̂1 and β̂2 are consistent estimators and robust to misspecification of the marginal

distributions of the errors. Also, they examine the relative efficiency for using the

bivariate model to estimate µ1 and µ2 compared with using the marginal distributions.
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In their simulation study, a specific bivariate location-scale regression model as

proposed in [5, Clayton (1978)] is studied. The model is defined by the joint survivor

distribution

Hφ (ε1, ε2) =
[
S1 (ε1)

−1/φ + S2 (ε2)
−1/φ − 1

]−φ
, φ > 0 (3.19)

where the survivor functions S1 (ε1) and S2 (ε2) define the location-scale marginal

distributions of Yj = βj0 + x′jβj + σjεj.
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Chapter 4

Simulation Study

The simulation study is focused on maximum likelihood estimation of several

bivariate models. Bivariate data generation, maximum likelihood estimation and

statistical properties are studied, and validation examples are provided.

4.1 Linearly Associated Bivariate Exponential and Weibull Models

4.1.1 Bivariate Data Generation

To generate the linearly associated bivariate data set, (Xi1, Xi2) , i = 1, ..., n, of

BVE(λ1, λ2, a) as defined in section 2.1.1, we utilize the fact that X1 and Z are in-

dependent of each other and generate the two random variables first. X1 ∼ exp (λ1)

is generated with the SAS exponential random number generator. Since Z is the

product of of a Bernoulli random variable with P (Z = 0) = aλ2/λ1 and a continu-

ous random variable having the same distribution as X2 ∼ exp (λ2), it is generated

using the SAS Bernoulli random number generator and the SAS exponential random

number generator. By the linear association defined in 2.4, X2 is then generated as

aX1 + Z.

The bivariate data set of BVW(λ1, λ2, β, a) as defined in section 2.1.2 can be

readily obtained by a power transform of the BVE data set, i.e., letting Yij = X
1/β
ij ,

j = 1, 2.
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4.1.2 Simulation Results

Table 4.1 summarizes the results of a simulation study where 10,000 simulated

samples of size 25 pairs from a BVE(1, 1, a) were generated.

Several other simulations were conducted using various combinations of λ1, λ2

and a and similar results were found as given in Table 1. Note that since λ1 = λ2 = 1,

Corr(X1, X2) = aλ2/λ1 = a. The empirical MSE was computed for both λ̂1, the

estimator based on the joint likelihood given in (25), and λ̂
∗
1, the usual maximum

likelihood estimator based on the marginal distribution. Also computed, were the

maximum likelihood estimators of the ρ, given as ρ̂ = aλ̂2/λ̂1 and ρ̂∗ = aλ̂
∗
2/λ̂

∗
1.

Percent MSE improvement was computed as

(MSE(θ̂
∗
1)−MSE(θ̂1))/MSE(θ̂

∗
1) · 100%.

The joint MLE estimator λ gave MSE improvement over the marginal MLE for

all values of ρ. Interestingly, percent improvement is a concave function of ρ, with

maximum occurring at ρ = 0.5, giving over 25%. The joint MLE for the correlation

coefficient gives monotonically increasing percent improvement over the estimator

based on the marginal MLE’s, with 44% improvement when ρ = 0.99.. Therefore,

ignoring the multivariate relationship between X1 and X2 comes at a significant cost

with respect to MSE.

Similarly, Table 4.2 summarizes the results of a simulation study where 10,000

simulated samples of size 25 pairs from a BVW(1,1,β,a), β = 0.5, 1, 1.5, 2.0 were
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generated. The empirical MSE was computed for both λ̂1, the estimator based on the

joint likelihood given in (25), and λ̂
∗
1, the usual maximum likelihood estimator based

on the marginal distribution. Similar patterns of MSE improvement emerge for the

bivariate Weibull as in the bivariate exponential case, for all values of β.

4.2 Bivariate Location-Scale Models

4.2.1 Data Generation for BVW of Hougaard’s Model

[27, Lee (1979)] and [31, Lu and Bhattacharyya (1990)] show that (X1, X2) of

BVW defined by 2.30 can be represented by two independent random variables (U, V )

as

X1 = U δ/β1V 1/β1θ1, X2 = (1− U)δ/β2 V 1/β2θ2,

where U ∼ Uniform (0, 1), and V is distributed as the mixture of a standard expo-

nential and standard Gamma(2). The pdf of V is given by

f (v) = δv exp (−v) + (1− δ) exp (−v) , v > 0.

So we start by generating (U, V ) . U is generated by SAS uniform random number

generator. V is obtained by generating other four standard uniform random variables

u1, ...u4, and using the logarithm transform as on page 248 of [2, Casella and Berger
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Mean Squared Error (MSE)

ρ λ̂
∗
1 λ̂1 %-imp ρ̂∗1 ρ̂1 %-imp

0.01 0.04585 0.04621 0.782 0.00001 0.00001 0.529
0.05 0.04522 0.04723 4.251 0.00021 0.00022 2.990
0.10 0.04512 0.05005 9.849 0.00077 0.00082 6.410
0.20 0.04118 0.04877 15.570 0.00252 0.00284 11.243
0.30 0.03930 0.04937 20.406 0.00456 0.00546 16.563
0.40 0.03627 0.04749 23.615 0.00634 0.00815 22.176
0.50 0.03757 0.04834 22.293 0.00741 0.01011 26.710
0.60 0.03771 0.04982 24.307 0.00807 0.01169 31.014
0.70 0.03799 0.04713 19.384 0.00763 0.01131 32.517
0.80 0.04210 0.04913 14.311 0.00611 0.00966 36.764
0.90 0.04326 0.04675 7.465 0.00343 0.00574 40.287
0.99 0.04939 0.04978 0.796 0.00039 0.00067 42.560

Based on 10,000 simulated samples

Table 4.1: Simulation Study for BVE(λ1 = λ2 = 1, n = 25)

Percent-Improvement in MSE
a β = 0.5 β = 1 β = 1.5 β = 2 β = 10

0.01 1.864 0.152 0.141 0.233 0.490
0.05 4.904 4.836 4.568 3.986 1.973
0.1 5.987 5.378 2.763 4.352 5.882
0.2 4.285 5.021 7.807 4.352 10.089
0.3 9.974 9.035 12.566 5.988 6.809
0.4 9.408 15.852 20.258 10.532 11.684
0.5 15.240 12.699 15.718 18.472 18.161
0.6 16.083 10.914 16.048 13.707 14.489
0.7 7.228 12.788 12.214 13.676 12.571
0.8 9.946 10.300 9.967 10.299 9.189
0.9 4.922 6.716 4.595 5.940 6.174
0.99 0.367 0.478 0.590 1.118 1.499
Based on 10,000 simulated samples of size n = 25.

Table 4.2: Simulation Study BVW(λ1 = λ2 = 1)
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(2002)] such that

V =

 − lnu1 − lnu2, if u4 ≤ δ

− lnu4, if u4 > δ

where (− lnu1 − lnu2) ∼ gamma (2), and − lnu4 ∼ exp (1)

4.2.2 Data Generation for BVW of FGM Model (Sequential Monte Carlo

Simulation)

To generate bivariate data set, (Xi1, Xi2) , i = 1, ..., n, of the FGM BVW as

defined in 2.34, we first generate X1 ∼ Weibull(θ1, β1) by setting its marginal CDF,

FX1 , equal to a random number of standard Uniform distribution, then

xi1 = θ1 [− log (1− ui1)]
1/β1 ,

where ui1 ∼ Uniform (0, 1) . The censoring indicator δi1 is then determined by com-

paring xi1 with the censoring value ci1.

X2 is generated sequentially by setting its conditional CDF, FX2|X1 , qual to a

random number of standard Uniform distribution. The conditional CDF is given by

FX2|X1 =
FX1,X2 (x1, x2)

FX1 (x1)
(4.1)

=
FX1 (x1)FX2 (x2) [1 + α (1− FX1 (x1)) (1− FX2 (x2))]

FX1 (x1)

= FX2 (x2) [1 + α (1− FX1 (x1)) (1− FX2 (x2))]

= (1− V ) (1 + αWV )
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where V = exp

(
−
(
x2

θ2

)β2

)
,W = exp

(
−
(
x1

θ1

)β1

)
.

Setting (4.1) equal to a standard uniform random number, then we have a

quadratic equation in terms of V

αWV 2 + (1− αW )V + (ui2 − 1) = 0,

where ui2 ∼ Uniform (0, 1) is independent of ui1.

By Quadratic Formula and V ≥ 0,

V =
(αW − 1) +

√
(1− αW )2 − 4αW (ui2 − 1)

2αW
(4.2)

=
1

2
+

√
(1 + αW )2 − 4αWui2 − 1

2αW
,

and then X2 is given by

xi2 = θ2 [− log (V )]1/β2 .

The censoring indicator δi2 is then determined by comparing yi2 with the censoring

value ci2.

4.2.3 Simulation Settings and Results for Bivariate Location-Scale Mod-

els

Simulation Settings

1. Data sets are generated by methods listed in section 4.2.1 and 4.2.2;
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2. Sample size, n, is set at 25;

3. Simulation iteration is set to 500;

4. True parameter values are β1 = 0.5, β2 = 2, θ1 = θ2 = 10.(equal scale parame-

ters);

5. Depedence parameters are set as δ = 0.5, α = 0.5 for the RE and FGM models,

respectively.

Both the joint MLEs and working independence MLEs are obtained and compared

against each other.

Percent improvements/losses in terms of absolute bias and empirical MSE (mean

squared errors) are also calculated. We found mixed turnout of improvements and

losses.

The Random Effect(Hougaard) Model Simulation Results

Table 4.3 summarizes maximum likelihood estimation results based on the joint

and the working independence models. Tables 4.4 and 4.5 summarize the percent-

age improvement/losses obtained by comparing joint mle’s against working mle’s in

terms of their biasses and Empirical Mean Squared Errors(EMSE). Table 4.5 shows

overall improvement in MSE for mle’s of the shape parameters β1 and β1. But for

mle’s of the scale parameters, no such pattern is found. It is expected as stated in

[24, Johnson, Evans and Green (1999)] that neither the sample correlation nor the

69



population correlation depends on the values of the underlying scale parameters of

the marginal distributions.

The FGM Model Simulation Results

Table 4.6 summarizes maximum likelihood estimation results based on the joint

and the working independence models. Tables 4.7 and 4.8 summarize the improve-

ments/losses in biasses and EMSE obtained by comparing the joint mle’s against

working mle’s. Table 8 shows overall improvement in MSE only for mle’s of β1 and

slightly loss in β2.

4.3 Example: DMBA-Induced Tumors

Table 4.9 contains the first and second tumor times for 30 control and 30 treated

animals, simulated asBVW (0.000009, 0.000005, β = 3) andBVW (0.000001, 0.0000005, β =

3), respectively, with a = 1 in both cases. We see that there were 18 and 15 simul-

taneous tumors for the control and treated animals, respectively. We first estimated

the shape parameter based on the marginal Weibull likelihoods as β̂ = 2.93. Then we

compute the scale parameter estimates for each population using the estimates given

in (24). This yielded λ̂ = (0.00001287, 0.00000776) and (0.00000179, 0.00000082) for

the controls and treated animals, respectively.
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δ β̂1 β̂2 θ̂1 θ̂2 β̂
∗
1 β̂

∗
2 θ̂

∗
1 θ̂

∗
2

0.1 0.52768 2.11475 10.5071 9.9578 0.52775 2.11411 10.4546 9.9468
0.2 0.52601 2.10351 10.3663 9.9479 0.52588 2.10134 10.3499 9.9376
0.3 0.52724 2.11299 10.5591 9.9889 0.52688 2.10869 10.5284 9.9826
0.4 0.53299 2.11051 10.7050 9.9997 0.53218 2.11411 10.6547 9.9946
0.5 0.53413 2.16718 10.6873 10.0069 0.53587 2.16407 10.6663 9.9937
0.6 0.52750 2.11608 10.3724 9.9060 0.52631 2.11830 10.3399 9.8988
0.7 0.52602 2.09350 10.4076 9.9371 0.52619 2.09460 10.3778 9.9301
0.8 0.53550 2.11476 10.8448 10.0144 0.53444 2.11509 10.8130 10.0098
0.9 0.53219 2.12814 10.6916 9.9758 0.53207 2.12961 10.6822 9.9707
1.0 0.52696 2.10093 10.5949 9.8745 0.52768 2.10355 10.6092 9.8756

Where β̂
∗

and θ̂
∗

are working independence MLEs.

Table 4.3: Joint and Working MLEs with β1 = 0.5, β2 = 2, θ1 = θ2 = 10 and varying
δ

δ β1 bias improv. β2 bias improv. θ1 bias improv. θ2 bias improv.
0.1 -2477.84 0.24710 -0.56025 -11.5567
0.2 -1968.70 -0.49651 -2.13658 -4.6773
0.3 -9211.99 -1.34267 -3.95333 -5.8183
0.4 -328586.83 -2.51654 3.15616 -7.6807
0.5 -17276.79 4.84207 -1.89587 -3.1514
0.6 -1058.00 -4.51075 1.87806 -9.5496
0.7 -1560.73 0.63741 1.16725 -7.8866
0.8 -7062.51 -3.07633 0.28694 -3.9194
0.9 -4334.31 -0.37612 1.13056 -1.3817
1.0 -853.27 2.60031 2.52758 2.3545

Table 4.4: Bias Improvements/Losses(%) Over the Working Estimates
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δ β1 mse improv. β2 mse improv. θ1 mse improv. θ2 mse improv.
0.1 90.8621 1.61977 1.35134 -1.40621
0.2 81.2788 1.28675 4.61830 -0.01806
0.3 70.9359 4.39391 -1.04580 0.26043
0.4 63.3886 5.83908 6.00907 -0.99596
0.5 58.1423 7.17802 3.45869 1.05814
0.6 44.2761 4.93833 0.76780 -0.44087
0.7 32.2627 4.65393 3.68219 -0.62015
0.8 22.5092 -0.46238 -0.63960 0.20701
0.9 18.3216 0.68599 -1.02801 -0.20352
1.0 17.0853 -0.25471 1.01207 -0.14121

Table 4.5: Empirical MSE Improvements/Losses(%) Over the Working Estimates

δ β̂1 β̂2 θ̂1 θ̂2 β̂
∗
1 β̂

∗
2 θ̂

∗
1 θ̂

∗
2

0.1 0.53263 2.08660 10.3397 9.76154 0.53228 2.08518 10.3515 9.76080
0.2 0.52865 2.09570 10.4262 9.67449 0.52839 2.09407 10.4271 9.68024
0.3 0.53248 2.05551 10.5498 9.60398 0.53197 2.05479 10.5549 9.61140
0.4 0.52701 2.02371 10.1626 9.39615 0.52585 2.02132 10.1284 9.39784
0.5 0.53353 2.06266 10.8290 9.24950 0.53263 2.05816 10.7823 9.24247
0.6 0.53342 2.02963 10.5895 9.10675 0.53249 2.02805 10.5501 9.10546
0.7 0.52007 2.01353 10.4359 8.95880 0.51912 2.01013 10.3927 8.95503
0.8 0.53457 2.01028 10.7978 8.87893 0.53256 2.00488 10.6808 8.86241
0.9 0.53131 1.99020 10.7238 8.60068 0.52961 1.98629 10.6340 8.60127
1.0 0.52763 2.00859 10.8060 8.50162 0.52544 2.00157 10.7181 8.48742

Where β̂
∗

and θ̂
∗

are working independence MLEs.

Table 4.6: Joint and Working MLEs with β1 = 0.5, β2 = 2, θ1 = θ2 = 10 and varying
δ
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δ β1 bias improv. β2 bias improv. θ1 bias improv. θ2 bias improv.
0.1 -342.920 -1.10145 -1.660 3.3686
0.2 -288.550 -0.92829 -1.731 0.1915
0.3 -205.638 -1.59816 -1.311 0.9308
0.4 -134.917 -4.48150 -11.252 -26.6615
0.5 -120.447 -2.76162 -7.725 -5.9750
0.6 -118.480 -2.84038 -5.632 -7.1674
0.7 -94.343 -4.99189 -33.548 -10.9885
0.8 -104.619 -6.18119 -110.420 -17.1839
0.9 -103.403 -5.74152 28.534 -14.1625
1.0 -119.249 -8.62320 -447.628 -12.2393

Table 4.7: Bias Improvements/Losses(%) Over the Working Estimates

δ β1 mse improv. β2 mse improv. θ1 mse improv. θ2 mse improv.
0.1 90.4678 -1.16397 0.13321 0.37230
0.2 84.3979 -0.35227 -1.69771 -0.51571
0.3 75.6162 -0.94049 -0.72841 -0.61527
0.4 71.8620 -2.32073 0.54219 -2.55347
0.5 69.7788 -1.72126 -2.74445 -2.78227
0.6 69.4358 -1.16677 -0.15066 -3.16534
0.7 65.3872 -1.84386 0.36968 -1.85708
0.8 65.0311 -1.49496 0.06637 -2.62671
0.9 68.4773 -1.58717 -0.34932 -4.46156
1.0 69.2833 -2.11464 -0.88495 -1.56760

Table 4.8: Empirical MSE Improvements/Losses(%) Over the Working Estimates
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Control Animals (n = 30, a = 1, k = 18)
(28,80), (53,53), (30,47), (25,63), (75,75), (21,21), (55,67), (55,66),
(42,43), (79,79), (56,56), (56,56), (42,42), (64,64), (44,56), (39,57),
(63,63), (41,41), (28,28), (49,49), (34,34), (10,82), (53,55), (26,26),
(43,52), (16,16), (57,86), (56,56), (29,29), (19,19)

Treated Animals (n = 30, a = 1, k = 15))
(50,50), (69,69), (53,53), (66,95), (77,77), (102,102), (114,142), (83,83),
(63,63), (58,116), (80,137), (122,122), (90,90), (42,65), (106,106), (90,90),
(114,114), (117,172), (98,98), (82,82), (22,99), (102,138), (123,147), (61,120),
(80,138), (75,142), (78,146), (51,166), (12,180), (147,147),

Table 4.9: Bivariate Weibull Times to first and second tumor
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Appendix A

SAS Simulation Codes

A.1 Data Generation and MLE for Linearly Associated BVE and BVW

data null ;

retain c 1;

do i=.10, .2,.3,.4,.5,.6;

call symput(’loop’||left(c),i);

call symput(’step’, c);

c+1;

end;

run;

%MACRO sim(lambda1, lambda2,beta, n, iter,table);

%do i= 1 %to &step;

title ”lambda1=&lambda1 lambda2=&lambda2 roh=&&loop&i samplesize=&n”;

DATA data1;

lambda1=&lambda1;

lambda2=&lambda2;

beta=&beta;

roh=&&loop&i;

a=roh*(lambda1/lambda2);
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p=a*lambda2/lambda1;

DO iter=1 to &iter;

DO i = 1 to &n;

d=0;

z=RANBIN(0,1,1-p)*RANEXP(0)/lambda2;

X1=RANEXP(0)/lambda1;

X2=a*X1 + z;

y1=x1**(1/beta); y2=x2**(1/beta);

if z=0 then d=1;

ind=1-d;

OUTPUT;

end;

END;

run;

PROC NLP tech=newrap DATA=data1 OUTEST=init noprint;

MAX logf;

PARMS Lam1=1, Lam2=1,b=1;

logf=2*log(b) + log(Lam1)+ log(Lam2)

+(b-1)*log(y1) + (b-1)*log(y2)

-Lam1*y1**b - Lam2*y2*b;

BY iter;

RUN;
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DATA init;

SET init;

IF TYPE =’PARMS’;

KEEP iter lam1 lam2 b;

RENAME b=bhat;

RUN;

DATA data2a;

MERGE data1 init; by iter;

y11=(y1**bhat); y22=(y2**bhat);

RUN;

proc means data=data2a noprint;

var y11 y22 a d;

by iter;

output out=data2 mean(y11 y22 a bhat lam1 lam2)=y1bar y2bar a bhat lam1

lam2 sum(d)=k;

run;

data mle;

set data2;

lambda1=&lambda1;

lambda2=&lambda2;

roh=&&loop&i;

a=roh*(lambda1/lambda2);
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lambhat11=a/y2bar + (&n-k)/(&n*y1bar);

lambhat12=1/y2bar;

rohhatstar=a*lambhat12/lambhat11;

lamb11bias=lambhat11-&lambda1;

lamb12bias=lambhat12-&lambda2;

rohhatstarbias=rohhatstar-&&loop&i;

lamb11mse=lamb11bias**2;

lamb12mse=lamb12bias**2;

rohhatstarmse=rohhatstarbias**2;

se lamb11=sqrt((lambhat11*(lambhat11-a*lambhat12)+a**2*lambhat12**2)/&n);

LCL = lambhat11 - 2*se lamb11;

UCL = lambhat11 + 2*se lamb11;

conf=(lcl le lambda1 le ucl);

se lam1=sqrt(lam1**2/&n);

LCL1 = lam1 - 2*se lam1;

UCL1 = lam1 + 2*se lam1;

conf1=(lcl1 le lambda1 le ucl1);

range=(ucl-lcl)/2;

range1=(ucl1-lcl1)/2;

rohhat=a*lam2/lam1;

rohhatbias=rohhat-&&loop&i;

lam1bias=lam1-&lambda1;
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lam2bias=lam2-&lambda2;

lam1MSE=lam1bias**2;

lam2MSE=lam2bias**2;

rohhatMSE=rohhatbias**2;

run;

PROC MEANS data=mle noprint;

var roh conf lcl ucl conf1 lcl1 ucl1 range range1 lambhat11 lam1 lamb11bias

lam1bias lamb11mse lam1mse

lambhat12 lam2 lamb12bias lam2bias lamb12mse lam2mse

rohhatstar rohhat rohhatstarbias rohhatbias rohhatstarmse rohhatmse;

output out=stats

mean=rho conf lcl ucl conf1 lcl1 ucl1 range range1 lambhat11 lam1 lamb11bias

lam1bias lamb11mse lam1mse

lambhat12 lam2 lamb12bias lam2bias lamb12mse lam2mse

rohhatstar rohhat rohhatstarbias rohhatbias rohhatstarmse rohhatmse;

run;

PROC DATASETS nodetails nolist force;

APPEND BASE=work.table&table DATA=stats;

RUN;

%end;

DATA sim.table&table;

SET table&table;
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lbiasimp=(abs(lam1bias)-abs(lamb11bias))/lam1bias*100;

lmseimp=(lam1mse-lamb11mse)/lam1mse*100;

rhobiasimp=(abs(rohhatbias)-abs(rohhatstarbias))/rohhatbias*100;

rhomseimp=(rohhatmse-rohhatstarmse)/rohhatmse*100;

RUN;

PROC EXPORT DATA= sim.TABLE&table

OUTFILE= ”C:\Documents and Settings\BB\My Documents\PAPER\Spring05\code\tables.xls”

DBMS=EXCEL REPLACE;

SHEET=”sheet&table”;

RUN;

%MEND sim;

%sim(10,1,2, 50, 1000,118);

/*%sim(100,1,50, 10000,6);

%sim(1,100,50, 10000,7);

%sim(100,100,50, 10000,8);*/

A.2 Data Generation and MLE for BVW of Hougaard’s Model

%LET directory=C:\;

LIBNAME sim ”&directory”;

%let seed=0;

%let beta1=0.5;

%let beta2=2;
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%let theta1=10;

%let theta2=10;

%let n=25;

%macro hougsimu(iter);

%do dl=1 %to 10;

%let delta=&dl/10;

%do k=1 %to &iter;

DATA houg;

DO i = 1 to &n;

U=uniform(0); U2=uniform(0); U3=uniform(0); U4=uniform(0); U5=uniform(0);

V=(-log(U2)-log(u3))*(u5 le &delta) -log(u4) *(U5 > &delta);

X1=U**(&delta/&beta1)*v**(1/&beta1)*&theta1;

x2=(1-U)**(&delta/&beta2)*v**(1/&beta2)*&theta2;

delta=&delta;

OUTPUT;

END;

RUN;

PROC NLP tech=newrap outest=out1 DATA=houg noprint;

MAX logf;

PARMS bhat1 that1;

logf=-log(that1)+log(bhat1)+(bhat1-1)*log(x1/that1)

-(x1/that1)**bhat1;
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by delta;

RUN;

data out1; set out1;

KEEP type bhat1 that1 delta;

if type =’PARMS’;

RUN;

PROC NLP tech=newrap outest=out2 DATA=houg noprint;

MAX logf;

PARMS bhat2 that2;

logf=-log(that2)+log(bhat2)+(bhat2-1)*log(x2/that2)

-(x2/that2)**bhat2;

by delta;

RUN;

DATA out2; set out2;

KEEP type bhat2 that2 delta;

IF type =’PARMS’;

RUN;

*working independent mle;

DATA seedwrk;

merge out1 out2;

RUN;

86



PROC NLP tech=congra DATA=houg inest=seedwrk outest=hougwrkest no-

print;

MAX logf;

PARMS bhat1 that1 bhat2 that2;

logf=log(bhat1)-log(that1)+log(bhat2)-log(that2)

+(bhat1-1)*log(x1/that1)+(bhat2-1)*log(x2/that2)

-log((x1/that1)**bhat1 + (x2/that2)**bhat2)

+log((x1/that1)**bhat1 + (x2/that2)**bhat2)

-(x1/that1)**bhat1 - (x2/that2)**bhat2;

by delta;

RUN;

data simwrk;

set hougwrkest;

if type =’PARMS’;

bhat1wrk=bhat1;

bhat2wrk=bhat2;

that1wrk=that1;

that2wrk=that2;

keep bhat1wrk bhat2wrk that1wrk that2wrk;

run;

*joint mle;

DATA seed1;
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set seedwrk;

dhat=0.1;

RUN;

PROC NLP tech=congra DATA=houg inest=seed1 outest=seed2 noprint;

MAX logf;

PARMS dhat; bounds 0<dhat<=1;

logf=log(bhat1/that1)+log(bhat2/that2)

+(bhat1/dhat-1)*log(x1/that1)+(bhat2/dhat-1)*log(x2/that2)

+(dhat-2)*log((x1/that1)**(bhat1/dhat) + (x2/that2)**(bhat2/dhat))

+log(((x1/that1)**(bhat1/dhat) + (x2/that2)**(bhat2/dhat))**dhat+1/dhat-

1)

-((x1/that1)**(bhat1/dhat) + (x2/that2)**(bhat2/dhat))**dhat;

by delta;

RUN;

DATA seed2;

SET seed2;

KEEP type bhat1 bhat2 that1 that2 dhat delta;

if type =’PARMS’;

RUN;

PROC NLP tech=nmsimp DATA=houg inest=seed2 outest=hougest noprint;

MAX logf;

PARMS dhat bhat1 bhat2 that1 that2; bounds 0<dhat<=1;
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logf=log(bhat1)-log(that1)+log(bhat2)-log(that2)

+(bhat1/dhat-1)*log(x1/that1)+(bhat2/dhat-1)*log(x2/that2)

+(dhat-2)*log((x1/that1)**(bhat1/dhat) + (x2/that2)**(bhat2/dhat))

+log(((x1/that1)**(bhat1/dhat) + (x2/that2)**(bhat2/dhat))**dhat+1/dhat-

1)

-((x1/that1)**(bhat1/dhat) + (x2/that2)**(bhat2/dhat))**dhat;

by delta;

RUN;

data sim;

set hougest;

if type =’PARMS’;

run;

data simrslt;

merge simwrk sim;

bhat1bias=bhat1-&beta1;

bhat2bias=bhat2-&beta2;

that1bias=that1-&theta1;

that2bias=that2-&theta2;

bhat1wrkbias=bhat1wrk-&beta1;

bhat2wrkbias=bhat2wrk-&beta2;

that1wrkbias=that1wrk-&theta1;

that2wrkbias=that2wrk-&theta2;
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bhat1mse=bhat1bias**2;

bhat2mse=bhat2bias**2;

that1mse=that1bias**2;

that2mse=that2bias**2;

bhat1wrkmse=bhat1wrkbias**2;

bhat2wrkmse=bhat2wrkbias**2;

that1wrkmse=that1wrkbias**2;

that2wrkmse=that2wrkbias**2;

run;

PROC DATASETS nodetails nolist force;

APPEND BASE=sim.hougresult DATA=simrslt;

RUN;

%end;

%end;

%mend hougsimu;

%hougsimu(1)

title theta1=&theta1 beta1=&beta1 theta2=&theta2 beta2=&beta2 delta=&delta;

proc sort data=sim.hougresult;

by delta;

run;

PROC MEANS data=sim.hougresult noprint;
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var bhat1 bhat2 that1 that2 bhat1wrk bhat2wrk that1wrk that2wrk dhat

delta

bhat1mse bhat2mse that1mse that2mse bhat1wrkmse bhat2wrkmse that1wrkmse

that2wrkmse

bhat1bias bhat2bias that1bias that2bias bhat1wrkbias bhat2wrkbias

that1wrkbias that2wrkbias;

output out=stats

mean=bhat1 bhat2 that1 that2 bhat1wrk bhat2wrk that1wrk that2wrk dhat

bhat1mse bhat2mse that1mse that2mse bhat1wrkmse bhat2wrkmse that1wrkmse

that2wrkmse

bhat1bias bhat2bias that1bias that2bias bhat1wrkbias bhat2wrkbias

that1wrkbias that2wrkbias;

by delta;

run;

DATA hougtable;

SET stats;

b1biasimp=(abs(bhat1wrkbias)-abs(bhat1bias))/abs(bhat1wrkbias)*100;

b2biasimp=(abs(bhat2wrkbias)-abs(bhat2bias))/abs(bhat2wrkbias)*100;

t1biasimp=(abs(that1wrkbias)-abs(that1bias))/abs(that1wrkbias)*100;

t2biasimp=(abs(that2wrkbias)-abs(that2bias))/abs(that2wrkbias)*100;

b1mseimp=(bhat1wrkmse-bhat1mse)/bhat1wrkmse*100;

b2mseimp=(bhat2wrkmse-bhat2mse)/bhat2wrkmse*100;
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t1mseimp=(that1wrkmse-that1mse)/that1wrkmse*100;

t2mseimp=(that2wrkmse-that2mse)/that2wrkmse*100;

keep b1biasimp b2biasimp t1biasimp t2biasimp

b1mseimp b2mseimp t1mseimp t2mseimp delta;

RUN;

proc print data=stats;

var delta dhat bhat1 bhat2 that1 that2 bhat1wrk bhat2wrk that1wrk that2wrk;

run;

proc print data=hougtable;

run;

quit;

A.3 Data Generation and MLE for BVW of FGM Model

*x ’del C:\fgmresult.sas7bdat’;

goptions reset=all; options nodate;

%LET directory=C:\Documents and Settings\Zhigang\My Documents\Yi Han

thesis simulation;

LIBNAME sim ”&directory”;

%let seed=0;

%let beta1=0.5;

%let beta2=2;

%let theta1=10;

92



%let theta2=10;

%let n=25;

%macro fgmsimu(iter);

%do al=1 %to 10;

%let alpha=&al/10;

%do k=1 %to &iter;

DATA fgm;

DO i = 1 to &n;

U1=uniform(&seed); U2=uniform(&seed);

x1=&theta1*(-log(1-U1))**(1/&beta1);

W=exp(-(x1/&theta1)**&beta1);

b=(((1+&alpha*W)**2-4*&alpha*W*U2)**0.5-1)/(2*&alpha*W);

V1=0.5+(((1+&alpha*W)**2-4*&alpha*W*U2)**0.5-1)/(2*&alpha*W);

V2=0.5-(((1+&alpha*W)**2-4*&alpha*W*U2)**0.5+1)/(2*&alpha*W);

V=max(V1, V2);

X2=&theta2*(-log(V))**(1/&beta2);

alpha=&alpha;

OUTPUT;

END;

RUN;

/*PROC CORR DATA=fgm out=corrout noprint;

VAR x1 x2;
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RUN;*/

PROC NLP tech=newrap outest=out1 DATA=fgm noprint;

MAX logf;

PARMS bhat1 that1;

logf=log(bhat1)-bhat1*log(that1)+(bhat1-1)*log(x1)

-(x1/that1)**bhat1;

by alpha;

RUN;

data out1; set out1;

KEEP type bhat1 that1 alpha;

if type =’PARMS’;

RUN;

PROC NLP tech=newrap outest=out2 DATA=fgm noprint;

MAX logf;

PARMS bhat2 that2;

logf=log(bhat2)-bhat2*log(that2)+(bhat2-1)*log(x2)

-(x2/that2)**bhat2;

by alpha;

RUN;

DATA out2; set out2;

KEEP type bhat2 that2 alpha;

IF type =’PARMS’;
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RUN;

*working independent mle;

data seedwrk;

merge out1 out2;

run;

PROC NLP tech=newrap DATA=fgm inest=seedwrk outest=fgmwrkest noprint;

MAX logf;

PARMS bhat1 bhat2 that1 that2; * bounds bhat1=1, bhat2=2;

logf=log(bhat1)-log(that1)+log(bhat2)-log(that2)

+(bhat1-1)*(log(x1)-log(that1))+(bhat2-1)*(log(x2)-log(that2))

-(x1/that1)**bhat1-(x2/that2)**bhat2;

by alpha;

RUN;

data simwrk;

set fgmwrkest;

if type =’PARMS’;

bhat1wrk=bhat1;

bhat2wrk=bhat2;

that1wrk=that1;

that2wrk=that2;

keep bhat1wrk bhat2wrk that1wrk that2wrk;

run;
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*joint mle;

DATA seed1;

set seedwrk;

alphat=0.1;

RUN;

PROC NLP tech=newrap DATA=fgm inest=seed1 outest=seed2 noprint;

MAX logf;

PARMS alphat; bounds -1<=alphat<=1;

logf=log(bhat1)-log(that1)+log(bhat2)-log(that2)

+(bhat1-1)*(log(x1)-log(that1))+(bhat2-1)*(log(x2)-log(that2))

-(x1/that1)**bhat1-(x2/that2)**bhat2

+log(1+alphat*(2*exp(-(x1/that1)**bhat1)-1)*(2*exp(-(x2/that2)**bhat2)-1));

by alpha;

RUN;

DATA seed2;

SET seed2;

KEEP type bhat1 bhat2 that1 that2 alphat;

if type =’PARMS’;

RUN;

PROC NLP tech=newrap DATA=fgm inest=seed2 outest=fgmest noprint;

MAX logf;

PARMS bhat1 bhat2 that1 that2 alphat; bounds -1<=alphat<=1;
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logf=log(bhat1)-log(that1)+log(bhat2)-log(that2)

+(bhat1-1)*(log(x1)-log(that1))+(bhat2-1)*(log(x2)-log(that2))

-(x1/that1)**bhat1-(x2/that2)**bhat2

+log(1+alphat*(2*exp(-(x1/that1)**bhat1)-1)*(2*exp(-(x2/that2)**bhat2)-1));

by alpha;

RUN;

data sim;

set fgmest;

if type =’PARMS’;

run;

data simrslt;

merge simwrk sim;

bhat1bias=bhat1-&beta1;

bhat2bias=bhat2-&beta2;

that1bias=that1-&theta1;

that2bias=that2-&theta2;

bhat1wrkbias=bhat1wrk-&beta1;

bhat2wrkbias=bhat2wrk-&beta2;

that1wrkbias=that1wrk-&theta1;

that2wrkbias=that2wrk-&theta2;

bhat1mse=bhat1bias**2;

bhat2mse=bhat2bias**2;
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that1mse=that1bias**2;

that2mse=that2bias**2;

bhat1wrkmse=bhat1wrkbias**2;

bhat2wrkmse=bhat2wrkbias**2;

that1wrkmse=that1wrkbias**2;

that2wrkmse=that2wrkbias**2;

run;

PROC DATASETS nodetails nolist force;

APPEND BASE=sim.fgmresult DATA=simrslt;

RUN;

%end;

%end;

%mend fgmsimu;

%fgmsimu(500)

title theta1=&theta1 beta1=&beta1 theta2=&theta2 beta2=&beta2;

proc sort data=sim.fgmresult;

by alpha;

run;

PROC MEANS data=sim.fgmresult noprint;

var bhat1 bhat2 that1 that2 bhat1wrk bhat2wrk that1wrk that2wrk alphat

alpha
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bhat1mse bhat2mse that1mse that2mse bhat1wrkmse bhat2wrkmse that1wrkmse

that2wrkmse

bhat1bias bhat2bias that1bias that2bias bhat1wrkbias bhat2wrkbias

that1wrkbias that2wrkbias;

output out=stats

mean=bhat1 bhat2 that1 that2 bhat1wrk bhat2wrk that1wrk that2wrk al-

phat

bhat1mse bhat2mse that1mse that2mse bhat1wrkmse bhat2wrkmse that1wrkmse

that2wrkmse

bhat1bias bhat2bias that1bias that2bias bhat1wrkbias bhat2wrkbias

that1wrkbias that2wrkbias;

by alpha;

run;

DATA fgmtable;

SET stats;

b1biasimp=(abs(bhat1wrkbias)-abs(bhat1bias))/abs(bhat1wrkbias)*100;

b2biasimp=(abs(bhat2wrkbias)-abs(bhat2bias))/abs(bhat2wrkbias)*100;

t1biasimp=(abs(that1wrkbias)-abs(that1bias))/abs(that1wrkbias)*100;

t2biasimp=(abs(that2wrkbias)-abs(that2bias))/abs(that2wrkbias)*100;

b1mseimp=(bhat1wrkmse-bhat1mse)/bhat1wrkmse*100;

b2mseimp=(bhat2wrkmse-bhat2mse)/bhat2wrkmse*100;

t1mseimp=(that1wrkmse-that1mse)/that1wrkmse*100;
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t2mseimp=(that2wrkmse-that2mse)/that2wrkmse*100;

keep b1biasimp b2biasimp t1biasimp t2biasimp

b1mseimp b2mseimp t1mseimp t2mseimp alpha;

RUN;

proc print data=stats;

var alpha alphat bhat1 bhat2 that1 that2 bhat1wrk bhat2wrk that1wrk

that2wrk ;

run;

proc print data=fgmtable;

run;

quit;

A.4 Example: DMBA-Induced Tumors

DATA data1;

INPUT Treatment$ x1 x2 censor1 censor2;

z=X2-X1; k=(z=0); n=1;

DATALINES;

Cont 78 99 0 0

Cont 41 54 0 0

...

EGCG 33 87 0 0

EGCG 73 115 0 0
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...

Res 83 118 0 0

...

Res 78 92 0 0

;

PROC SORT DATA=data1;

BY treatment;

RUN;

PROC MEANS data=data1 noprint;

VAR x1 x2 n k censor1 censor2; BY Treatment;

OUTPUT out=stats sum=x1 x2 n k censor1 censor2;

RUN;

DATA stats; set stats;

DROP freq type ;

lambda11=(n-censor2)/x2 + (n-k)/(x1);

lambda12=(n-censor1)/x1;

lambda2=(n-censor2)/x2;

se11=sqrt((lambda11*(lambda11-lambda2) + lambda2**2)/n);

se12=sqrt(lambda12**2/n);

se2=sqrt(lambda2**2/(n-censor2));

cov=lambda2**2/n;

corr=cov/(se11*se2);
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rhohat1=lambda2/lambda11;

rhohat2=lambda2/lambda12;

lb1=lambda11-2*se11; ub1=lambda11+2*se11;

lb2=lambda12-2*se12; ub2=lambda12+2*se12;

lb3=lambda2-2*se2; ub3=lambda2+2*se2;

RUN;

PROC PRINT; RUN;

/*PROC LIFETEST data=data1 plots=(s,ls, lls);

TIME tum1;

strata treatment;

OUTSURV OUT=tum1;

RUN;

PROC LIFETEST data=data1 plots=(s,ls, lls);

TIME tum2*delta(1);

strata treatment;

OUTSURV OUT=tum2;

RUN;

PROC SORT DATA=data1;

BY treatment;

RUN;

PROC NLP tech=newrap DATA=data1 OUTEST=init ;

MAX logf;
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PARMS Lam1=1, b=1;

logf=log(b) + log(Lam1)+

+(b-1)*log(tum1)

-Lam1*tum1**b ;

BY treatment;

RUN;

PROC NLP tech=newrap DATA=data1 OUTEST=init ;

MAX logf;

PARMS lam1=1, Lam2=1, b=1;

logf=log(b) + log(Lam1)+

+(b-1)*log(tum1)

-Lam1*tum1**b + (1-delta)*log(b) + (1-delta)*log(Lam2)+

+(b-1)*(1-delta)*log(tum2)

-(1-delta)*Lam2*tum2**b -delta*lam2*tum2**b;

BY treatment;

RUN;

DATA data2; set data1;

IF treatment =’Cont’ THEN DO; y1=tum1**3; y2=tum2**3; END;

IF treatment =’Res’ THEN DO; y1=tum1**3; y2=tum2**4; END;

IF treatment =’EGCG’ THEN DO; y1=tum1**3; y2=tum2**4; END;

RUN;

PROC LIFETEST data=data2 plots=(s,ls, lls);

103



TIME y1;

strata treatment;

RUN;

PROC LIFETEST data=data2 plots=(s,ls, lls);

TIME y2*delta(1);

strata treatment;

RUN;
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