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Much research has been conducted over the last thirty years in the development
and characterization of bivariate survival distributions. Typically, the multivariate
distribution is derived assuming that the marginal distributions are of some specified
lifetime family. In this thesis, we examine various bivariate Weibull models. In
addition, a location-scale bivariate Weibull model is proposed. Bivariate parameter
estimation, with and without censoring, is developed and applied to real and simulated

data. Examples are drawn from biomedical research.
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CHAPTER 1

INTRODUCTION
1.1 Univariate Lifetime Distributions

The term lifetime generally refers to the time to some events such as death
or failure from a certain starting point. We define lifetime or survival analysis as
the collection of statistical models and methodologies to analyze lifetime data of
various types. In applications in engineering and biomedical sciences, failure time
and survival time are often used synonymously as lifetime, thus we have terms failure
time distributions and survival time distributions respectively. Lifetime distributions
generally have positive support, i.e., lifetime data can take on only non-negative real
values.

For a nonnegative continuous random variable X, the cumulative distribution

function (cdf) Fx (-) and survivor distribution Sx (-) are defined as

Fe(o) = P(X <0) = [ fa (1.1)

Sx(z)=P(X >z)= /Oof(t) dt. (1.2)

and the hazard function is given by



limaz—o [W} f(x)
h(&) = — . = Sty (1.3)

The hazard function gives the instantaneous rate of failure at time z, given that
the individual survives up to x, and carries important information concerning the risk
of failure versus time. It is often desirable to model lifetime distributions through
the hazard function if factors affecting an individual’s lifetime are time-dependent, or

vary over time.

1.1.1 Univariate Weibull Distribution

In his 1951 paper, “A Statistical Distribution Function of Wide Applicability”,
the Swedish Professor Waloddi Weibull introduced the Weibull Distribution and
stated “Experience has shown that, in many cases, it fits the observations better
than other known distribution functions”. Eventually, the Weibull Distribution be-
came the most useful tool in reliability due to its unique characteristics and wide
range of applicability, especially so when it pertains to describing the underlying dis-
tribution of time to failure (TTF) of mechanical or electrical components or systems.

Professor Weibull defined his original cumulative distribution function as
T —x,)"
F(z) =1—exp [—%] : (1.4)
Lo
where x,, m, and zy correspond to the more universal notations used herein of the

location parameter d, the shape parameter 3, and the scale parameter 6 as in (1.5).



We define the three-parameter Weibull probability density function (pdf) as

8—1 B
f(a:)z%(xgé) exp[—(x;5>],x2520, 0, 3>0. (1.5)

The two-parameter Weibull probability density function (pdf) is given as

(g)ﬁl exp {_ (%ﬂ x>0,0, 3>0. (1.6)

Note that (1.6) is a special case of (1.5) where 6 = 0. When 3 = 1, the Weibull pdf
becomes an exponential pdf.
The corresponding cdfs of the two and three-parameter Weibull distribution are

given as

F(z)=1—exp {— (%ﬂ , (1.7)

F(z) =1 — exp [— (xf)ﬁ] . (1.8)

Note that all Weibull cdf’s cross at one point where the cdf is valued at ap-

and

proximately 0.63, and the corresponding x value is 1, which is the value of the scale
parameter . We define such a value of x as the characteristic life of the Weibull
distribution,which is the time at which the value of the cdf is exactly equal to 1 —e™1.
In other words, 63.212% of the population fails by the time of characteristic life no

matter what the values of the other parameters are. For two parameter Weibull



distribution, the characteristic life is equal to 0, and 6 + ¢ for the three parameter
Weibull.
The survival functions, the probability that an individual survives at least time

x, of the two and three-parameter Weibull distribution are given as

S (z) = exp {— (%ﬂ | (1.9)

and

S () = exp [— (xgé)ﬁl. (1.10)

The hazard function of the three-parameter Weibull distribution is given as

ha) = L&) _ 8 (35 . 5>ﬁ1; (1.11)

and the corresponding cumulative hazard function is given as

H(z) = jh(t)dt - (9’ oy 5>ﬁ = —In[S (2)] (1.12)

The Weibull distribution can have increasing, decreasing and constant hazard
rates, which in term reflects the versatileness of the Weibull distribution in lifetime

or survival analysis.



The above (1.5), (1.9) and (1.12) show the relationships among the pdf, the
survivor function, the hazard function and the cumulative hazard function of the

Weibull distribution, i.e., given any one of them, the others follow.

1.1.2 Distributional Properties for Univariate Weibull Distribution
The Moments of Weibull Distribution

The general noncentral moments of the two parameter Weibull Distribution is
given by

E(X") = 6T (1 + %) : (1.13)

for any integer n, and I' (cdot) is a gamma function defined as

(k)= /:Ek_l exp (—z)dz, k> 0.
0
The general moments of the three parameter (location-scale) Weibull distribu-
tion is more complicated, but can be derived from that of the two parameter Weibull.
Let the continuous positive random variable X follow a two parameter Weibull dis-

tribution as defined in (1.6), then Y = X + ¢ follows the three parameter Weibull

distribution as in (1.5). The general moment is thus given by

E(Y") =E[(X +6)"]. (1.14)



By applying the binomial theorem that for positive integers n,

(z+a)" = Xn: (Z) oFank, (1.15)

(1.14) becomes

E(Y") = E[(X+06)"=E

an; (Z) Xkan—k] (1.16)

The Mean, Median, and Variance of Weibull Distribution

The mean and the variance of the Weibull distribution can be derived from the

general moment. The means of the two and three parameter Weibull are given by

E(X) = 6r (1+%), and (1.17)

E(Y) = 5+er(1+%>.



The variance of the two parameter Weibull distribution is given by

Var (X) = E(X?) - E*(X) (1.18)

() (e
o))

and the variance of the three parameter Weibull distribution is given by

Var (X) = E(X?) - E*(X) (1.19)
2 o 1 2
- 2| ()] = (5) 4
k=0 B p
= |8+ 295r( 1)+02r (1+3)}
5 5
— [921“2 (1 + l) + 2067 (1 + l) + 52}
B B
2 1
0 {r <1+—> —T? (1+—)} :
g p
which is the same as the variance of the two parameter Weibull distribution.

The medians of the two and three parameter Weibull can be solved from the cdfs

or the survival functions, and are given as

M(X) = 0(-mm0.5)"" and (1.20)

M(X) = 6(-n0.5)"?+5.



1.1.3 Univariate Weibull Distribution Parameter Estimation

There are several methods for estimating the parameters of the Weibull distribu-
tion, i.e., probability plotting, hazard plotting, and maximum likelihood. The method
of maximum likelihood (ML) is a commonly used procedure because it has very de-
sirable properties that when the sample size n is large. Under certain regularity
conditions, the maximum likelihood estimator of any parameter is almost unbiased
and has a variance that is nearly as small as can be achieved by any estimator, and
its sampling distribution (or pdf) approaches normality [9, Devore (2000)].

Let X1, Xs,..., X,, be a random sample from a two-parameter Weibull distri-
bution, and xy, xs,..., x, be the corresponding observed values, then the likelihood

function (LF) is given by

L(0,3) = H <0%xiﬁ_le<?)ﬁdxi> (1.21)

Since the logarithm transform is a monotone increasing one, maximizing the
natural logarithm of the likelihood function is equivalent to maximizing the likelihood
function itself. Taking the natural logarithm of the LF, and setting both derivatives
to zero yields two sets of score equations that do not give closed-form solution for the
maximum likelihood estimates (mle). Instead, for each sample set, the equations can
be solved using an iterative numerical procedure which is quite tedious without the

aid of computers. In most instances, however, a simple trial and error approach also

works [7, Cohen (1965)].



The corresponding loglikelihood function (LLF) for two parameter Weibull dis-

tribution is given by

1.1.4 Asymptotic Normality and Confidence Intervals of MLE Weibull

Parameters

It is well known that the sampling distributions (SMD) of maximum likelihood
estimators for Weibull parameters approach normality asymptotically. For example,
(35, Miller (1984)] measured the degree of Normality for the MLE of 3 using Chi-
square goodness-of-fit. He found that when the sample size is around 170, the MLE
of (3 is approximately normally distributed. For small or medium sample sizes, distri-
butions of parameters are clearly skewed. Moreover, [30, Liu (1997)] suggests that for
20 or less observed failures, two-parameter Weibull distribution should be a preferred
choice for more stable and more conservative results.

We can construct asymptotic confidence intervals for the Weibull parameters
estimated by maximum likelihood method when the sample size is large. Because the
characteristic life, #, and the minimum life, §, are the-larger-the-better (LTB) type
of parameters, it is reasonable to construct lower one-sided confidence intervals for 6
and 0, and two-sided confidence interval (CI) for 3.

In order to calculate the asymptotic confidence intervals, we first need to estimate

standard errors of the parameters. Information Matrix and Bootstrapping method



can be utilized to better estimate standard errors. The conservative Bonferroni confi-
dence interval is also derived to address the problem of correlations between Weibull

parameters.

1.1.5 Information Matrix and Variance-Covariance Matrix of MLE Weibull

Parameters

The information matrix I can be constructed from the logarithm of the likelihood
function, where its ij'" element is

(1.22)

LB {_a%(e;xq

00,00;

The inverse of the information matrix, /=!, is the variance-covariance matrix,
where the diagonal elements are variances of parameters and elements elsewhere are
covariances. However, applying the expectation operator to the above equations in or-
der to obtain exact results is often too complicated to accomplish, though asymptotic
information matrix and variance-covariance matrix can be constructed as the sample

size increases. One option is to use simulation, such as parametric Bootstrapping as

proposed by [10, Efron (1985)], with the MLEs of 6§ and [ as seeds.

10



1.1.6 Bonferroni Simultaneous Confidence Intervals for the 2-Parameter

Weibull Model

It is clearly shown from the information matrix that there are correlations be-
tween Weibull parameters. The Cls obtained by Variance-Covariance and Bootstrap-
ping ignore such factors. If the CIs are independent, then the joint confidence co-
efficient for a joint CI would be the product of all the confidence coefficients of the

parameter Cls, i.e.
m

(1 = joint) = [ [(1 = ) (1.23)

i=1
where m is the number of parameters. The intervals, however, are not independent
for Weibull parameters. It can be shown that the overall error rate, ajoins, is no more
than the summation of all the individual error rates, or, ajomt < 221 «;, which

implies that when a joint confidence region is to be constructed with overall error
rate ajoine, the individual error rates should be set at around %, or, if different
individual error rates are desired, set them such that Zf;l QG R Qjoint-

So, in order to obtain a simultaneous rectangular Bonferroni (1 — cyin:)CI region
for Weibull parameters 6 and 3, we should set the individual confidence coefficients
for the CIs of 6§ and § both at (1 — =5=t). Therefore, the Bonferroni (1 — @jgint)CI
region for # and (3 are as follows:

The lower (1 — 2224)CI for 6

~

9 - Zo‘joint * Se(é) (124)

11



The two-sided (1 — =5=£)CI for 3

BiZ% % se(3) (1.25)

1.2 Multivariate Lifetime Distributions

Literature is abundant on multivariate lifetime data and distributions. [18,
Hougaard (2000)] and [37, Murthy, etc. (2004)] provide comprehensive and updated
literature reviews. However as mentioned in [26, Lawless (2002)], gaps exist in some
areas. A related issue is the introduction of covariates in multivariate survivor anal-

ysis, we analyze and investigate this for the bivariate case.

1.2.1 Multivariate Distribution Functions

Multivariate lifetime data arise when multiple events occur for each subject
in the study. The problem addressed hereby involves continuous nonnegative ran-

dom variables of lifetime, X, X5,..., X,,, with joint probability density function as

le,Xg,...,Xn (5131, X2y eeny -Tn)

A function fx, x,.. x, (21, %2, ...,2,) is a bivariate pdf if

1. fX17X27m7Xn(ZL‘17172, ,ZEn) Z 0 \V/ Zi, 7= 172, R

2. ff ...ffX17X27m’Xn(I1,$2, vy Tp)dx1dxs.. dx, = 1.
§Rn

12



The multivariate distribution and survivor functions are defined as

Fx, xo.. x,(T1, %2, .., xy) = P(X; <, Va0 =1,2,...,n) (1.26)

SXLXQ’.“,XH(SL’M‘TQ, ,.an) = P (Xz 2 :L‘i,Vxl-,i = 1, 2, ,n) (127)

and the marginal and joint hazard functions are given by

—0Sx, xy...x, (T1, Ta, ..., xn)/axj
SX1,X2,..,,Xn (96‘17 Ly eney ﬂﬁn)
le,XQ,..A,Xn (131, T2y ey xn)

SX1,X2,...,Xn (951, X2y .eny CUn)

(1.28)

The joint hazard function describes the instantenuous probability that all sub-
jects experience an event given the subjects have survived up to a time .
[23, Joe (1997)] summaries the following properties of a multivariate distribution

function.

L limg, oo S (21,02, ...,2,) =0 j = 1,2,...,m;
2. limg; oov F (71,20, .., 20) = 1, j =1,2,...,m;

3. For all (ay, ...,a,), (b1,...,b,) with a; < b;, j =1,2,...,n,
2

2
i1=1 in=1

(_1)i1+~--+in F (wliu '-'737711'”) > 07 Tj1 = a5, Tj2 = bj

(Rectangle Inequality)

13



If I has n'"-order derivatives, the above property is equivalent to 9" F/0x10z...01, >
0.
Unlike procedures in the univariate settings, it is difficult to show if a function

F' is a proper multivariate cdf by the above properties.

1.2.2 Dependence Structure and Types

An independence assumption of the bivariate covariates simplifies the question
and [26, Lawless (2002)], page 502 refers to this assumption as “working indepen-
dence”. There is a great need, however, in modeling multicomponent systems that
are not independent. The independence assumption is impractical in many models
such as the time of first and second occurrence of cancer tumors, a breakdown of
dual generators, or the survivor times of paired organ system (for example lungs and
kidneys in the human body).

Much research has been done in this direction. [32, Marshall and Olkin (1967)]
presented a derivation of the multivariate exponential and Weibull distributions with
a shock model such that the components in the system have simultaneous failure
time with a positive probability. [33, Marshall and Olkin (1988)] presented another
method without discussing inference procedures.

[6, Conway (1983)] and [20, Huang and Kotz (1984)] developed the idea of Farlie
- Gumbel - Morgenstern (FGM) families of bivariate distributions, but the statistical

procedures do not necessarily fit in the statistical estimations. [17, Hougaard (1986)]

14



derived the model for a bivariate Weibull distributions as a mixture. [31, Lu and Bat-
tacharrya (1990)] considered modeling the failure behavior of a two component system
through the construction of a new unifying bivariate family of lifetime distributions
with absolute continuity including positive and negative quadrant dependence, and a
bivariate Weibull model is obtained as a special case.

[21, Iyer and Manjunath (2002)] and [22, Iyer and Manjunath (2004)] derived
lifetime distributions assuming a linear relationship between the two variables of inter-
est. They presented bivariate distributions that have specified exponential marginal
distributions and motivate the linear structured relationship between two variables
and X3 in two parts: the measurement model that gives the data x = (x;2z2) and the
structured equation part that explains the relationship via a latent random variable

Z that is independent of X;. The variables are then related as

XQZCLXl—f—Z, (IZO

Once the covariates X; and X5 are specified, Z is determined. When X; and X5 each
follow normal distributions, Z also follows a normal distribution. In fact, the normal
case is the only one when Z has the same distribution as X; and X5. Moreover, the
result cannot be extended from normal to the exponential. The distribution of Z

is not exponential given X; and X, are exponentially distributed unless we assume

15



independence between them. We would like to develop similar procedures for non-
normal distributions, look at the properties of the model, and investigate statistical
inferences.

The physical meaning of the random variable Z is that it allows the model to
have the effect of fatal shock. Note that the linear relation described above should
not be confused with the linear regression model. Indeed, the regression model is
expressed as

Xy =0X1 4+ a+e, ewN(O,UZ)

where the § and a are unknown constants to be estimated from the relationship
between the pair (X7, X3). In the later part of the thesis, we will discuss a location-

scale regression model for bivariate data.

16



CHAPTER 2

SOME BIVARIATE FAILURE TIME DISTRIBUTIONS

Denote the bivariate joint probability density function (p.d.f.) of nonnegative

lifetime variables T4, T as fr, 1, (t1,t2), and the survivor function as

Stim (t,te) = P(Th 2 41, To > 1) (2.1)

and respectively the marginal survivor function as

Given the lifetime variable T} is continuous, the joint p.d.f. is given by

(—=1)% 028 (t1,12)
Ot10t

from (t,t2) = (2.2)

and by [26, Lawless (2002)], the hazard functions, which specify the joint distribution

of T} and T5, are denoted by

—08 (t1,t9) /Ot;
)\] (t) == S<<;1 t22))/ ! ’tj:ti=t7 (23)

=S (ty,t2) /OO — .
Aij (ti|tj> = 55 (tl,tg)/ﬁtj , ti>t5, 1, 1=1,2, j#1

17



The lifetimes T}, T are not in general independent, such as in the case of life-
times of a pair of twins. Literature is abundant with methods of modeling bivari-
ate distributions. For models with specified continuous marginal distributions, the
joint survivor function can be represented by a parametric family of copulas such as
models considered by [5, Clayton (1978)]. Extensive work have been done on the
construction of bivariate exponential models as in [15, Gumbel (1960)], [13, Freund
(1961)] and [40, Sarkar (1987)]. [32, Marshall and Olkin (1967)] and [27, Lee (1979)]
constructed bivariate Weibull models by power transformation of the marginal of a
bivariate exponential. [33, Marshall and Olkin (1988)] derived general families of bi-
variate distributions from mixture models by transformation. [17, Hougaard (1986)]
discussed another common approach through random effects which will be introduced

in following sections.

2.1 Linearly Associated Bivariate Failure Time Distributions

Let X; and X, be fixed marginally as exponential random variables with hazard
rates A1 and Ao, respectively. Then by introducing a latent variable, Z, statistically

independent of X7, a linear relationship is formed between X; and X, by setting

XQ = CLX1 —I— Z, (24)

for a > 0. [21, Iyer, Manjunath and Manivasakan (2002)] and [22, Iyer and Manju-

nanth (2004)] show through Laplace transforms, the distribution of the latent variable

18



Z can be completely and uniquely characterized as the product of a Bernoulli random
variable with P(Z = 0) = aX2/A; and a continuous random variable having the same
distribution as X5. Therefore, Z is distributed as mixture of a point mass at zero and
an exponential with hazard rate Ay. Note that when Z = 0 then X5 is proportional
to X; with proportionality constant a, which is fixed and known.

For the special case of a = 1 in (2.4), there is a positive probability for simul-
taneously events, i.e., P(Xs = X;) > 0. This phenomenon is often referred to as a
“fatal shock” in reference to the now famous bivariate exponential proposed by [32,
Marshall and Olkin (1967)]. Most bivariate exponential and Weibull models proposed
in the literature share this property, including, for example, the multivariate Weibull
proposed by [16, Hanagal (1996)]. In system reliability theory, [39, Rausand and
Hoyland (2004)] refers to this situation as “common cause failures” or as “cascading
failures” when the failure of one component is initiated by the failure of another in
a system. There are many realistic applications of this model in the physical and
biological sciences, such as, in medical research where simultaneous failure can occur
in pairs of organs (kidneys, livers and eyes), in engineering where a random shock
to a system of components may cause simultaneous failures, or in animal chemopre-
vention studies where several tumors may become palpable on the same day. Since
a > 0, the model driven by (2.4) is less restrictive in that it includes the possibility
for simultaneous failure (a = 1) and proportional failure times with proportionality

constant a, i.e.,P(Xy =aX;) = P(Z=0)=p > 0.
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2.1.1 Linearly Associated Bivariate Exponential (BVE)

Suppose the continuous random variable X; has an exponential pdf with hazard
)\ia

fx,(x) = Nie ™[ (x > 0), (2.5)

i =1,2 and I(-) is the indicator function.
Based on the linear structure given in (2.4) and the fact that Z has a point mass
at zero, we see that

CLX1 le:O
XQI(ZX1+Z: y

aXi+ 2 fZ#0

where P(Z =0) =p, P(Z #0) =1 —p, p = als/A1, and Z is independent of X.
Since Z is a mixture of discrete and continuous distributions with a point mass at 0,
i.e., P(Z =0) = p, we can use the Direc delta to express the distribution of Z as the

following integrable density function,

f2(2) = pé(2) + (1 = p)fx,(2)I(z > 0), (2.6)

where I(-) is an indicator function and §(-) is Dirac delta function. More details and

applications of the J-function can be found in [1, Au and Tam (1999)] and [25, Khuri
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(2004)]. Here, we define the d-function through its following mathematical properties:
5(t) = 0, if t # 0,and / S(t)dt = 1 2.7)

If h(t) is a real function with simple roots ¢y, ..., t, and is differentiable at each root

with W/(t;) #0,i=1,...,n, then

L S@),c 20,2 5(—t) = 5(t) (2.8)

S(h(t)) = Z % = dlet) = o

/_ T GO0t — to)dt = glto) = /_ St — to)dt — 1 (2.9)

o0
[25, Khuri (2004)] demonstrates how the d-function can be used to generalize dis-
tribution theory and provides a unified approach in finding transformations, without
regard to whether the transformation is one-to-one and without the computation of
the Jacobian matrix. This property proves quite useful in the distribution derivations
in this paper, since each is discontinuous on a line-transect, i.e., P(Xy = aX;) > 0.

Since X; is independent of Z, from (2.5) and (2.6), we can write the joint pdf as:

fx1,2(2,2) = fxi (2)f2(2) = pfxi ()0(2) + (1 = p) fx: (#) fx, (2) I (2 > 0). (2.10)

Notice that (2.6) and (2.10) are stated for any positive support distributions rather

than the specific exponentials given in 2.5. Theorem 1 similarly expresses the joint
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density in terms of general positive support distributions. After the proof of Theorem

1, we give the resulting bivariate exponential.

Theorem 2.1 Let X, be a positive support random variable with marginal density
fx,(z1). Let Z be a random variable with density function given in 2.6 and let Xy =
aXi+ Z, a > 0. Denote the variance of X; as 02,1 = 1,2, assume oy > acy and let

p = aoy/os. Then the joint pdf of X1 and X, is given by

fxix, (71, 02) = pfx, (21)0(va—awy)+(1=p) fx, (21) fxp (v2—ax1) [ (22 > azy), 79 > azy,

(2.11)

and the variance/covariance matriz, 33, and correlation matriz, p, are given as

o2 ao? 1 aoy /o9
Y= and p = , (2.12)
ao? o3 acy /oy 1

and Y positive definite.

Proof. Following [25, Khuri (2004)], we find the joint density, f(z1,z2) as

f(x1,29) = /_oo fx,z(x1,2)0 (axy + 2 — xa) dz

_ /_ (pfx, (1) 6 (2) 8 (azy + 2 — 7)

+ (1= p) fx, (21) fx, (x2) 0 (axy + 2 — x2) }d2
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from 2.10. Note that 2.7 implies 0(2)d(az; + z — x2) = 0 when z # 0 and §(az; + z —

x9) = (2 — (w9 — axy)), so

flane) = [ {pfo (@056 ~ an)
H(1 = p)fxy (@) fxa (0 — (2 — a1z
— ph(@)6(az — a) [ Zé(z)dz
L= D) (00) | Fr (200 = (02 = )

= pfx,(v1)d(x2 — axy) + (1 = p) fx, (v1) fx, (22 — ax1) [ (22 > axy),

where the first integral evaluation is from 2.7 and the second from 2.9. The covariance

can be found by noting that
cov(X1, Xy) = cov(Xy,aX| — Z) = cov(Xy,aX)) + cov(Xy, Z) = aoi,

using the fact that X; and Z are independent. [ |
From Theorem 3, if we let X; be an exponential given in 2.5, then 2.11 gives a

bivariate exponential, henceforth referred to as the BVE(A, Ay, a),
f(z1,29) = phie” M §(zy — amy) + (1 — p))\l)\ge’h”e’()‘r“h)“’“I(xg > azy), (2.13)

where p = ao1/oy = aXy/\; = corr(Xy, X5). Note that cov(Xy, Xs) = a/\]. The

density given in 2.13 differs from the one presented in [21, Iyer, Manjunath, and
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Manivasakan (2002)] and [22, Iyer and Manjunath (2004)] due to an error in their
derivation.
The joint cumulative distribution function (JCDF) for the exponential given in

2.13 can be written as

F(x1,29) = p)\l/ / e MU (v — au)dvdu
o Jo

T To
+(1 _p)>\1>\2/ / e A2V e~ (Nmara)u gy, gy
0 au
T To

— p/\l/o {e_’\1“/0 5(U—au)dv}du

z1
+(1 _ p)>\1/ 6—()\1—a>\2)u(6—a)\2u _ e—Agzz)du
0

1
= p)\l/ e MUy
0

1 A
+(1—p)A / e Mgy — (1 — p)—T1 e hem2(] _ o~ (amado)mry,
- | (1= ) e )
Recalling that p = aXy/\;, we get
F(xy,29) = (1 — e M) + e_’\y”?(e_(”\l_“”\?)”:1 — 1), 29 > axy, (2.14)

which we see is discontinuous at y = ax. Note that the expression in (11) is the exact
expression given in [22; Iyer et al. (2004)]. Similarly, since S(z1,x2) = 1+ F(x1, 22) —

F(o0,x9) — F(21,00), the joint survival function (JSF) is given as

S(xy,xy) = e 282e~(M1mar)zr, (2.15)
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If we let X(1) = min{ Xy, X5}, then from 2.15 we see that
P(Xgy>1t) = P(Xy > t,Xo > 1) = S(t,t) = e e Mol = gm(umadetha)t

which is the survival function for an exponential(A; — aXy + Ag). Further, with minor
adaptation, X; and X5 are said to have a joint distribution with Weibull minimums
after arbitrary scaling, as defined in [27, Lee (1979)].

In Theorem 4, below, we give the maximum likelihood estimators of A; and A
based on the joint likelihood expression. We refer to these estimators as ;\1 and ;\2
and these will be compared to the marginal MLE’s, denoted as 5\; and 5\;, which we
give immediately following the proof of Theorem 2. We define the marginal MLE’s
as those estimators that maximize the univariate marginal likelihood functions sepa-
rately for A\; and Ay. [26, Lawless (2002)] refers to the analysis of the marginal MLE’s
as assuming ”working independence”. As we will show later, assuming working inde-

pendence comes at a cost in terms of mean-squared-error.

Theorem 2.2 For a given random sample of size n, (x1;, %), = 1,...,n,, from a
bivariate exponential(A1, A2), the joint mazimum likelihood estimators of (A, A2) is

(A1, \2), where

. —k . 1
To nIq i)

k=>" I(xy—ax; =0), Ty =Y x1/n and Ty = Y x9/n. Also, A = (5\1,5\2)’ is

approzimately bivariate normal with mean vector A and variance/covariance matrix
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>, where

A 1 [ M —aXy) +a?);  aA
A= ' and ¥ = — 1 2 ? ? (2.17)
Ao " ar2 A2

and C’orr(jq, 5\2) =((1-p)/p*+ 1)_1/2'

Proof. For a given pair of bivariate exponential random variables, (xy;, xe;),i =
1,...,n, it is easy to see that maximum likelihood estimation under the likelihood
function L(\1, Aa|x1;, x2;) is equivalent to the maximum likelihood estimation under
L(A1, A2|x14, 2i), since x9; = azyy + 2;. From 2.13, the likelihood function for a random

sample of size n of pairs (14, ;) for 1 < i < n is given by

1—7‘1'

—.

LA A2) = (p/\le_hzli)” (<1 - p)>\1)\26_)‘1x“_>‘221)

=1

3

= [CL)xz@fAlle}” [()\1 — a)\z))\2€7/\lx“67)‘2zi] i
=1

P P P.(l_r_)
= CL/\Q) ’irie_)\l i Tt [(/\1—(1)\2>/\2} ’ ’

P P
we A =)z =Ae (1=ri)zi
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where 7; = I(z; = 0). The log-likelihood is given as

LL()\l, )\2) = log(a)\Q) Z Ty — )\1 Z TiZT14

—|—10g [()\1 — CL>\2))\2] Z(l — Ti) — )\1 Z(l — ’I"i){lfh‘ — /\2 Z(l — ’I"Z')Zi

= log(a) Z i +nlog(X2) — A Zﬁl’u

i

+log(A1 — a)s) Z( i) — A1 Z(l — 13)T1; — Ao Z Zis

)

since Y (1 —7;)z; = >_ z;. The partial derivative with respect to \; is given as

OLL 2i(l=m) do(1—1;)

i - L=rj)ry = =5—"— i-
3)\1 Z Tt )\1 — a)\2 Z( " )xl )\1 — G)\Q Z =
Setting OLL/OA; = 0 gives the following likelihood equation

)\1 - CL)\Q . 1
>l =) szll

(2.18)

The partial derivative with respect to A\ is given by

OLL n  a) ,(1—r) _n
[N iy v waleD Db Wl D BE R DL

by substituting the right hand side of 2.18 for the left hand side.
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Setting OLL/0Xy = 0 we get the second likelihood equation

/\%:azi:xu—i-zl:a;

(2.19)

Solving for A\ in 2.19, we have

1
>\2 n -

- azixu—i-zizi a

1

P = .
_i®eo 1 ) ar|+z
a n +nzizz 1

Solving for A; in 2.18 and substituting the above value of Ay gives

oo X

(l:f’l +Zz Zz T4

o X0n)
ari + z nrt,

Since Ty = ary + z and k = > (1 —

r;), it follows that the estimators in 2.16 are

the solutions to the likelihood equations. It easily follows that the Hessian matrix is
given by

P —
1(1*7"1‘) i(lfTi)
T u—an)? A —ars)?
O?LL(\i, \2)
H(\ N) = (L2200 A2))
( ! 2) ( (9)\2(9)\j ) Pi(l—m) n 2 Pi(l—m)
A —an)? X T Y )2
and
AN —k
det(H(y, hp)) = =k

~2 - ~
)\2()\1 — a)\g)
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since A\; — aXy = (n — k)/(nZ;) > 0. Therefore, estimators in 2.16 are the maximum
likelihood solutions. Since k is distributed as a Binomial(n, 1—p), i.e., E(k) = n(1—p),
where p = ady/A; and Ay —ads = A\ (1 —ady/A1), Fisher’s Information (see page 546,

26, Lawless (2002)]) is given as

/\1()\1n*a)\2) - Al(A?iLaAg)
OPLL(A, Ao)
TN = B (- ZEE AL A
( a 2) ( a)‘la)‘] an n a?n
TXOi-an) a2 T nu—an)

Therefore, from [26, Lawless (2002)], )\ is approximately normal with mean \ =
(A1, X2)" and variance/covariance matrix ¥ = It (A1, Xo). u

As mentioned previously, alternatives to the joint MLE’s given in 2.16 can by
found by maximizing the marginal likelihood expressions separately for A; and As.
These marginal MLE’s are well-known (see page 54 of [26, Lawless (2002)]) and are

given as

(2.20)

We observe that the marginal and joint MLE’s for Ay are identical, i.e., 5\; = 5\2, but

for \; the MLE’s are quite different for this model.
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We can adapt the likelihood for censored data. Suppose (Xi;, Xo), 1 =1,...,n
represents a random sample of size n from a population with joint survival func-
tion given in (11). If the observations are subject to right censoring with poten-
tial censoring times Cj; and Cy;, then the data will come in the form of (z1;, ),
x1; = min(Xy;, C1;) and x9; = min(Xy;, Cy;), ¢ = 1,...,n. Then, following [26, Law-

less (2002)], the likelihood function for a given observation can be expressed as

. 5(1—711')(1—721')’

_asj| Y1:(1=72;) |: _as:| (I=71)72s

L (1 Xo) = L. \o)V1i72i
() = L0, 2 | -

89512-

where S = S(z1;, z9;) is defined in 2.14, L(A;, A2) is defined in the proof of Theorem

2, and ;; = 1 if the ¢ 4t data value is not censored and zero otherwise.

2.1.2 Linearly Associated Bivariate Weibull

If X, is exponential random variable with hazard rate \;, i = 1,2 and pdf given
in 2.5, then for a fixed 3 > 0, it is well known that Y; = Xil/ fis distributed as

Weibull(\;, ) random variable with pdf given as,
Fry) = BAy® e I(y > 0),i = 1,2 (2.21)

From this one could derive a joint Weibull(A1, A2, #) with mariginals, Weibull()\;, 3), i

1,2, with the following linear relationship

vy =aYl + 28 (2.22)
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Since the marginal are Weibull with pdf given in 2.21, we know that (see page 18,

Lawless (2002))

_ 1 2 1
EY; =X""T(1 +r/B) and 02, = e+ ) -0+ 3] i=12 (223)

In Theorem 3, below, we give the derived bivariate Weibull, based on the struc-
ture in 2.22, along with its covariance structure. The proof of this theorem involves

the o-function and its properties given in (2.7), (2.8) and (2.9).

Theorem 2.3 Suppose (X1, X3) has the joint distribution given in 2.5, with expo-
nential marginal given in 2.5. Let Y; = Xil/ﬂ,z' = 1,2, 6> 0. Then the joint density

of (Y1,Y3) is given as

IR 181 (a8

[y, ) :P)\lﬁyf ‘e “ylé(yl,y2)+(1—p)>\1>\262y? 1y2ﬂ temtama e /\Q)ylf(yhyQ);
(2.24)

where 6(y1,12) = 6(yo — a*Py1) and I(y1,y2) = I(y2 > a'/Py1). The marginal distri-

bution of Y; is given in 2.21, 1 = 1,2 and

501+ 2/8) Ao o0
Cov(Yy,Ys) = 222 | 1 1+ 1/8) fy, (y)d
oV (Y1, ) vl AR ORR VAL
I(1+1/)
(Aha)1/8

where g(ys) = (A — aXs)yh Ja and IG(x, k) = Jo t*"tetdt as defined on page 25 of

Lawless (2003).
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Proof. To derive the density in 2.24, we follow the transformation approach given

in [25, Khuri (2004)], by using the appropriate §-functions as follows,

fly,y2) = / / Fl1,22)0(2y” — y0)d(25/” — yo)dwadary
= P/ / Fxi(@1)0 (w2 — az1)d (27" = y1)d(ay” — yo)dada,

+(1 —p) /OO /°° Ix (xl)f)@(b - a$1)5(x1/5 - y1)5($§/ﬁ — yo)dxodr;

= pPart 1+ (1 —p) Part 2

Since §(xo — a:vl)é(xé/ﬁ —yy) = 6(zo — azy)0((az)YP — 1), we have

Part 1 = / / Ifx (ﬁl)é(I}/ﬁ —11)0(x — axl)é((axl)l/ﬁ — Yo )dxodry

= [ {Bl - maten - arai(en)” i) |

e} —00

5(s — axl)dxg} di,
-/ Z 82V — y)o((az) " — o) f, (1) dy

-/ Z 8(2V® — )0 Pys — o) fx, (1)

= 30y = pe) [y ()b — o)y

= By w)d(ys — aPyn).
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Similarly,

Part 2 = / / Fxi (1) fxy (0 — aw0) B2 s 0 (w1 — 478 (e — vy )daaday
= 5211511/51/ Fxo (@) o (9 — az1)d(zy — yi)da

= B2y s () e (s — ayl).

Putting together Parts 1 and 2 above we get

Flyye) = pBy " fx (y))d(yo — a/Pyn) (2.25)

+(1—p) B2 e () Fo (48 — ay)I()

I(-) is an indicator function for all {(y1, 1) : y2 > a'/Py;}. Since X;, i = 1,2, have
densities given in 2.5, the joint density given in 2.24 follows directly from 2.25 above.
Given that X; and X, have the density given in 2.5, the result follows directly.

Now, to derive the covariance expression we must find

E(Y;-Y,) = / / Y1y2fyvi,ve (Y1, y2)dyedy, = Part A + Part B
o Jo
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where

o0 o0 _ B 8
Part A = p/ / Alﬁylyﬂhﬁ 1o )\lylé(ylayQ)ddeyl
o Jo
— / yp - (aPyy) -pﬁ/\lylﬁ_le_hyfdyl (by d-function property (6))
0

> IR
= pﬂ)\lalw/ Yyl e dy,
0

— paPE(Y) = a0 4 2/8)  (by (20) and p = ady/Ay)
and

Part B = / / vy fyiys W, v2) IS > ayy)dyrdys
0 0

o0 8 y2/a1/ﬂ 5
— (1= p)BAAs / ey, / Byfe-Ou-arad gy,
0 0

/\ by y2/al/ﬁ 1 _ 8
= —( /\1 —a)\22/ ﬂy e~Novs dys / B\ —a)\2)y1yf temumaro)vy gy
(A1—arg) B
( A AQ/ )\2y2 1 / “ 2 1 —
_— dyp———— /8=t dt
N — aAQ Byze VN —arg) B ¢
(A1—ary) B
)\1 — CL)\Q

Substituting Parts A and B into the E(Y] - Y2) expression above and subtracting
E(Yy) - E(Y3) from 2.23, the covariance expression follows. Om

Henceforth, we will refer to the bivariate Weibull density given in 2.23 as a
BVW(A1, A2, B,a). The covariance structure given in Theorem 3 for the proposed
BVW (A1, A2, B, a) is quite complicated and not in closed-form. Similarly complicated

structures are found with the multivariate Weibull proposed by [17, Hougaard (1986)]
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and [31, Lu and Bhattacharyya (1990)], as well as, the bivariate Weibull derived
from [32, Marshall and Olkin (1967)] by taking the identical transformation. The

correlation between Y7 and Y3, denoted p(y, y,) is found as

Cov(¥1, Y2)

v/ Var(¥1)y/Var(Y2)
(&E)Hﬂ L(1+2) B (14 1)
N T ) - T+ 5 -1+
. P(1+5)A { Ay }
D1+ 2) —T2(1+5) [(M —aky)

P(11,Y2)

Wl

/0 By 1G (g(a), 1 + 1/8) fra (y2) .

Similar to the likelihood for the exponential, we see that the likelihood for a given

pair (y1,¥2) is given as

1—r

LA, Ao, 0) = (aA?ﬁyfile_My?)r ((>\1 — a)\z)/\2529?195716_)‘295e—(M—ax\z)yf) ;
(2.26)
where 7 = I(yo — a'/Py; = 0). The likelihood in (23) will lead to joint maximum

likelihood estimators of (A1, A, 3) given as (;\1, ;\2,3), where

. AT 1 .
Ap:%+xnw)Ay::,wd6 (2.27)
Yo ny; 2

where gr = 237" yﬁ»,@' =1,2,k=> ", ](yg —aylﬁ — 0). The estimator /3 represents
the solution to the third likelihood equation found by differentiating the log-likelihood

with respect to (3, plugging the above estimators A1 and Ay and numerically solving

for 5.
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The JCDF can be found directly from (11) as:
e ot —(d—arg)y?
F(yla y2) = FXl,Xz (yfv yg) = (1 —€ A1y1) +e (6 (amareyr 1)7 (2'28>

for y» > aPy,. From (25), it is easy to verify that the marginal have the Weibull

distribution given in (18) by noting that:

= 3 B
Fy (y1) yllm Fyi,ys) = (1 — e M%)
= I odf

Similarly, the JSF is given as:
Sy, ) = etk = Camat (2.29)
Note that if we let Y(;) = min{Y;, Y3}, then (26) gives
P(Yay > t) = P(Y; > 1,Yy > t) = S(t, 1) = e 22 emCamadt? — p=(imaretda)t?

which is the survival function for an Weibull(\; —aXy + Ao, 3). It is easy to show that

Y; and Y, have a joint distribution with Weibull minimums after arbitrary scaling, as

defined in Lee (1979).
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2.2 Bivariate Lifetime Distributions Based on Random Hazards

[17, Hougaard (1986)] provides a general method of constructing bivariate failure

time distributions where both components in a system are affected by random hazards.

Lemma 2.4 Let \i(t) and Ao(t) be two arbitrary hazard functions, and Ai(t) and
As(t) be the corresponding cumulative hazard functions, where A;( fo

Let T}, j = 1, 2, be conditionally independent lifetimes given a specific quantity Z.
The marginal hazard of T is Z\;, and its cumulative hazard function is ZA;.

Then the conditional bivariate survivor function P (Ty > t1, Ty > t3|Z = z) = exp (—zA.),

where A. = Ay (t)+A2 (1) .

Proof. The conditional joint survivor function of 77s given Z is

S(tl,t2|Z = Z) = P(Tl > t,T5 > t2|Z = Z)

- HSHZ—zzHleXp{ / ()dﬂf}
_ Hp {_z / )\j(x)dﬂc} :Eexp [—2A; (1)
= exp [—Zif\j (t)

= exp (—zA.)

where A. =377 A;(t) |

Definition 1 [18, Hougaard (2000)] defines the positive stable distribution as:
Let X;, 1 = 1,...n, be independent, identically distributed random variables with

positive supports. If there exists a scale factor function c(n) having the form n'/®,
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a <1, such that

cn) X =p Xi+...+ X,

where =pdenotes having the same distribution as. The the distribution of X is called a

positive stable distribution with two parameters o and ¢ given by the Laplace transform

L(s) =exp(—ds*/a).

Theorem 2.5 Let T}, j =1, 2, be conditionally independent lifetimes given a specific
quantity Z, which in term has a positive stable distribution with parameter o given

by the Laplace transform

E{exp(—AZ)} =exp(—A%), «a€(0,1],

The marginal hazard of T; is Z\;, and A;(t) = f(f Aj(z)dx is the cumulative hazard.

Then the unconditional bivariate survivor function P (Ty > t1, Ty > t3) = exp (—A.%)
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Proof. Assuming some regularity conditions and by lemma 1, we have the following

result

P(Tl Z t17T2 Z tg) = //f(f[’l,ﬂfg) dl’ldl’g = // /f(l’l,ZL‘Q,Z> dZ dl’ldlEQ

ti1to tito |=—00

_ 7] ]Of(xl,x2|z)f(z)dz da1dos

ti1to —00

o0

_ / o77f(x1,x2|z)d:v1dx2 f(2)d=

—00 tito
oo

= /P(Tl>t1,T2>t2|Z:Z)f(Z)dZ

= E[P(Tl > tl,TQ > t2’Z = Z)]

= Flexp(—zA.)] = exp(—A.%)

2.2.1 The Bivariate Weibull Model (BVW) of Random Hazards

[17, Hougaard (2000)] derives a bivariate Weibull distribution with common
shape parameter 7 such that the arbitrary hazard rate \;(z) = €;4t7~!. The marginal

distributions are also Weibull with common shape o,
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Using more conventional parameterizations, [31, Lu and Bhatacharyya (1990)]
derive the same model without the assumption of conditional independence and com-

mon shape parameter, and render the survivor function as

S(ti,te) = P(Th>t,Ty > ts) (2.30)
tl B/ tg Ba/ox @
— — (= —= <1
exp (91) +(92) , 0<a<

as well as the moments

E(T;) = 6,0 (1/8,+1)
Var (Tj) = 63{0(2/8;+1) -T*(1/8,+1)}  j=1,2
Cov(T1,T) = 6102l (/B + 1) (/B +1) T (1/5, +1/8,+ 1)
F(A/6+ )T (A/B + )T (/B + /By +1)]
=T (o) By + /By + 1)

Lu and Bhatacharyya also studied the statistical properties of the BVW and

showed that for the bivariate exponential case where 3, = 3, = 1, the correlation

Cov (T, Ts)
\/Vcw* (Ty) Var (Ty)
2% (a+1) /T 2a+1) — 1

Corr (T1,T3) =

is free of the marginal parameters and could be conveniently utilized in simulation.
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2.2.2 The Farlie-Gumbel-Morgenstern (FGM) Family

A general class of bivariate distributions is the Farlie-Gumbel-Morgenstern (FGM)
Family as proposed by [36], [15], and [12]. In general, the FGM family of bivariate
distributions is defined as:

Let Fx, (z;), ¢ =1, 2, be a cdf of the continuous random variable X;, then the

joint cdf of X; and X5, with an FGM bivariate distribution is given as

Fxy x, (01, 2) = Fx, (21) Fx, (22) [+ a (1 = Fx, (1)) (1 = Fx, (22))]  (2.31)

where « is a dependence parameter such that |a| < 1.
It can be shown that the properties of a bivariate cdf all hold for the cdf defined

in the above (2.31):

1. FXl,XQ (xl, OO) = FX1 (l’l) and FXl,XQ (OO,SCQ) = FX2 (.1'2),
2. FXl,XQ (33’1, —OO) = FXl,XQ (—OO, 1‘2) = FX1,X2 (—OO, —OO) = O,
3. FX1,X2 (OO, OO) =1.

Let X, X5 be continuous random variables having marginal pdfs fy, (1) and
fx, (x2) and follow the FGM bivariate distribution,then the joint pdf, if exists, is

given as

Ixi30 (21, 22) = fxy (71) [x, (02) [L + @ (1 = 2Fx, (71)) (1 — 2Fx, (z2))] . (2.32)
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Assuming the joint cdf Fy, x, (21, x2) is differenciable to the second order, then

le,Xz (xlv 1’2)

o2
(9x18x2
0 0
8_$1 |:_FX1,X2 ($1, fUz)

81‘2
0 0
prs {a—szxl (71) Fx, (22)

ta (Fx, (11) = F3, (1) (Fx, (22) = F%, (1)) }

0

8_1‘1 [sz (xQ) FXl (xl)

+afx, (x2) (1 — 2Fx, (22)) (Fx, (z1) — F%, (21))]

FX1,X2 (1’17172)

Ixy (71) fx, (02) + afx, (21) fx, (22) (1 = 2FX, (1)) (1 = 2FX, (72))

fxi (71) fx, (02) [L+ @ (1 = 2Fx, (21)) (1 — 2Fx, (22))]
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The survival function of (X7, X5) is given as

SX1,X2 (3317 -TQ) — /oo oo fX17X2 (tlv t2) dtdts (233)
- / T ) P () [+ @ (1 2, (1)) (1~ 2P, (1)) dirdes
= /00 /Oo fx, (t1) fx, (t2) dtrdis

+a /{E1 /I2 fx, (t1) fx, (t2) (1 —2Fx, (t1)) (1 — 2F, (t2)) dt1dts

_ / Oo o (B) { / Oo Iy, (£) dtg] dt,

v [t ) (020 0| [ 1) (0= 2 () dte |
= SXI (Il) SXz (332>

+a [Sx, (#1) — F%, (t1)] [Sx, (v2) — F%, (t2)]

2.2.3 The Farlie-Gumbel-Morgenstern Family of BVWs

Let X;, i = 1, 2, be a continuous random variable distributed as the two pa-
rameter Weibull defined in (1.7), ie., X; ~ Weibull(6;,5;), i = 1, 2. Then the

Farlie-Gumbel-Morgenstern Family of BVWs is defined by the joint cdf as

Fxyx, (T1,22) = Fxy (01) Fx, (22) [1+ a (1 = Fx, (21)) (1 = Fx, (22))] (2.34)

e ()] o ()]
oo (- () 6]
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and the joint pdf is given as

fxix (T1,22) = fx (1) fx, (22) [T+ a (1 = 2Fx, (21)) (1 — 2FX, (22))] (2.35)
2 B1—1 - Bo—1 1 81 Lo B2
- an(z) (B) e [‘ () —(9—2)]
o2 ) - fen (-2)7) )

and the joint survival function is given by

Sx1.x, (1, 22) = Sx, (21) Sx, (22) + a [Sx, (21) — F%, (t1)] [Sx, (22) — F, (t2)]
(2.36)

where the marginal survivor functions and cdfs are defined as in (1.9) and (1.7).
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CHAPTER 3

BIVARIATE LOCATION-SCALE WEIBULL LIFETIME DISTRIBUTIONS

In this chapter, we firstly use the BVW defined in (2.30) as the standard pdf
to generate a location-scale family of bivariate distributions through location-scale
transformation. Then, by using the logarithm transform, we generated a location-
scale Farlie-Gumbel-Morgenstern (FGM) Family of BVWs. Maximum likelihood es-
timates of the parameters and properties of the FGM BVW are also studied. Lastly,
Bivariate Location-Scale Lifetime Distribution Regression Models are introduced and
charted as future research extension.

The location-scale family of distributions have cdfs of the form ® (%), —00 <
1 < oo and o > 0. Many of the widely used statistical distributions belong to such
a family of distributions. Examples of distributions that belong to the location-scale
family are normal distribution, exponential distribution, double exponential distri-
bution, Cauchy distribution, logistic distribution, and uniform distribution, etc. [34,
Meeker and Escobar (1998)] emphasizes the importance of the widely used location-

scale family with respect to its adaptivity and simplicity.

Definition 2 A group family of distributions is a family obtained by applying a suit-
able family of transformations to a random wvariable with a fized distribution [29,

Lehmann and Casella (1998)].
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Definition 3 Let f () be a pdf. Then the family of pdfs *f(=£), —oo < p < o0,

o > 0, is called the location-scale family with standard pdf f (z); u is called the location

parameter and o is called the scale parameter. [2, Casella and Berger (2002)]

The following three transformations result in three families of distributions, i.e.,
location families, scale families, and location-scale families. Examples of distributions
that belong to the location-scale family are normal distribution, exponential distribu-
tion, double exponential distribution, Cauchy distribution, logistic distribution, and
uniform distribution, etc.

Let U be a random variable with a fixed distribution Fy (u) with pdf fy (u)
and let p , the location parameter, and ¢ > 0 ,the scale parameter, be any given
constants. Then the random variables X = p+ U, X = oU, and X = pu+ oU
have distributions Fx(r — i), Fx(z/0), and Fx(**) with fx’s equal to fy(z — p),
L fu(x/o) and 1fy(*£), which constitute a location family, a scale family, and a
location-scale family, respectively.

[29, Lehmann and Casella (1998)] states that the families of transformations
for the above location-scale family distributions are closed under composition and
inversion.

Let the continuous random vector U = (U, ..., U,)" have a fixed joint distribution
Fy/ (1'). The random vector X = p+o'U, where p is an n x 1 constant vector and o
is an n x n diagonal matrix of constants with the diagonal entry being o; =1, . »,
and off-diagonal entries being zero. The marginal pdf of X; is fx, (z) = (,%.f b, (F5E).

g4
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The joint pdf of the random vector X'= (X7, ..., X,,) is given by

peto)= o (258, i)

[T, (o o1 on

which defines a multivariate location-scale family of distributions. More specifically,
when n=2, we have the bivariate case. The bivariate joint pdf of X'= (X3, X3) is

given by

1 T — [l T2 — fly
fX1,X2 (x1>x2) = fU17U2 ( ) :
0102 01 02

Since the bivariate location-scale transformations are one-to-one, the proof of
the above proposition can be readily obtained using Jacobian of the transformation.
Also it can be shown that the three properties of the bivariate distribution function

reiterated in [23, Joe (1997)] are satisfied.
L. limy, oo Svyu, (U1, u2) =0, i=1,2;
2. limy,—oovi Fu, v, (U1, u2) = 1; and

3. If Fy, y, has second-order derivatives, 0?Fy, y,/Ou10us > 0 (the rectangle in-

equality).

A proof of the proposition for the specific case of BVW is given in the next

section.
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3.1 Bivariate Location-Scale Family Based on BVW with Random Haz-

ards

Recall the BVW distribution defined by (2.30), its joint pdf is given by

(=1)°0%Snp, (t, o)
fT17T2 (tlth) - 8751(9152

B 62 B t_l B/ N t_2
= ahot, T 0, )
B1_4 B2 _4 1 B27¢
OO OFO)
91 92 81 02 1 02
y <t_1>51/0¢+(t_2)52/0‘ a+1_a
1 0 Q
tl B/ t2 B2/ @
X exp 1 — — + [ = O<a<l 051t < 0.
01 0o

Theorem 3.1 Let the continuous random vector U = (Uy, Us)" have a joint Bivariate

Weibull distribution Fy, u, (u1,us) as defined above, and define the transformation
X = pu+oU,where p is an 2 x 1 constant vector and o is an 2 X 2 diagonal matriz of

constants with the diagonal entry being o; =1, 2, and off-diagonal entries being zero.

Then

1. The marginal pdf of X; is fx, () = o%fm(%)

. Y
K3
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2. The bivariate joint pdf of X = (X1, X2)' is given by

1 T — To —
le,Xz (xla'r?) = fU1,U2( . MI’ 2 IU2> (31)
2

P1 B2
I AN R A
X exp § — ( = > + < - >
[ 01 05
where 0] = 0101, 05 =050, and 0 < o <1, 0 < 29,29 < 0.

The location parameter vector is (iiy, it5), and the scale parameter vector is

(8; = 910’1, 9; = 920’2).

Proof.  Assuming some regularity conditions as listed in [2, Casella and Berger
(2002)], we have the new bivariate random vector (X7, X») defined by bivariate trans-

formation

X1 =g1 (U1, Us) = pq + 01Uy
g= )
Xo = g2 (U1, Us) = piy + 02U
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Denote the inverse bivariate transformation by

L[ D= (X Xe) = S5

Up = hy (X1, X,) = 2202

Obviously the transformations are one-to-one, then by 4.3.2 of Casella and Berger

(2002), we have

Ohy  Ohy

) 3]
le,XQ ($1,$2) = fUl,UQ [hl ($1, 952) , ho ($1, 952)] o 2
Ohy  Ohg
Ox1  0Ox2

I
kh
S
S
VR
8
=
|
=
=
8
no
|
=
no
~__
o 2=
= o

01 )

_ 1 L1 — fq L2 — [o
- —QfU1,U2 9
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The survival function of (X7, X5) is given as

(3.2)

Sx1,x, (71, 72) / Ix1.x, (t1,t2) dtydts
1 9

Rl B | t1 — ty —
/ / fUl,UQ ( ! Iul ) 2 MQ) dtldtQ
z1 Jzo 0102

01 02

T — Mg T2 — [
SU1,U2( 17 2)

exp {—
exp {—

01
L1 — 4y
810’1

1 —
01

09

o
)

Lo — Mo

0

Lo — Ko
0

)52/0‘_

)ﬁQ/O‘:

)

3.2 Maximum Likelihood Estimates of the Bivariate Location-Scale Fam-

ily Based on BVW with Random Hazards

3.2.1 Likelihood Functions of Uncensored Lifetime Data

Let the bivariate lifetimes, (X;;, Xs;), of a random sample of size n without cen-

soring have continuous joint survivor function (3.2). The bivariate likelihood function

is given by

n
L= l_Ile,X2 (715, 22:)
i=1

o1

(3.3)



and the bivariate loglikelihood is

[ = nlog % +nlog ﬁf (3.4)
07 65
3 d @
Ty — 2 Toi — Mo «
+ (2 -1 1o P2 log | =212
(o) s () (1) s ()
n B1 Ba
&_2 Zl (l‘h ) I <$2i—*ﬁb2>
05
B1/a Ba/a @
L1 — To; — o e
1 T2 2
+Zog{[( )" ()|
P e + L2i — Ho fafe)
07 05

3.2.2 Likelihood Functions for Right Censored Lifetime Data

Let the bivariate lifetimes, (X1;, X»;), of a random sample of size n with right
censoring have continuous joint survivor function 3.2. Assume that censoring times
(Chi, Cy;)are independent of (X3, Xo;), and let the censoring indicator §;; = I [X;; = min (Xj;, Cj;)l,
j =1, 2. Then the bivariate likelihood function takes the form as given in [26, Lawless

(2002)]

01:(1=02)

- 5. | —0S T4, L4
L = HfX1,X2 ($1i,x2i)5u52z [ th;f 1ir T2i) (3.5)

(1=614)(1—62;)

% {—35)(1,)(2 (ffu‘, IQ’L):| b2:(1=811)

Er le,Xg (JCu, xzi)

n
= H Ixi . (14, 3321')6“5% fx (3311')62"(176”) fxs (3321')6“(17621) Sxy.x, (T14, 3321')(176“)(1762")
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where the marginal pdfs are given as

—3SX1,X2 (1712'7 -752z')
al‘ji

fXj (QIJZ) =

R B1/a L Ba/a]®
ol [y ey )
1 2

a—1

<5B1i_,u1>ﬁl/a <$2i_,u2)ﬁ2/a
X * + *
01 02

i q
X Oi (wi =15\ °
0; 0

J

The bivariate loglikelihood is given as

n

[ = Z [01:02: 108 fx, x5 (@14, T2i) + 02; (1 — 615) log fx, (x1;)

i=1

+01; (1 — 09;) log fx, (w2:) + (1 = d13) (1 — 69;) log Sx, x, (14, T2i)]

where

B/ B/
L1i — Lo — M
log Sx, x, (T, T2i) = — [( le* M1> +< 28* 2) ] ;
1 2

93
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B4, Ioh T — Iy B T — o
1 L Ty) = 1 (1) 2 )
08 fx, . x, (T1i, 2;) og ( 50 - og 7 13 og o

and

Ty — iy Bi/a N Toi — [y Ba/a
07 05
+ log (6—1) + (& — ) log (—xﬁ _* Mj) .
Hj o Gj

3.3 Location-Scale Family of BVWs Based on the Farlie-Gumbel-Morgenstern

Family

The FGM BVWs as defined in section 2.2.3 are not of location-scale form, how-
ever, by exploring the relationship between a two parameter Weibull distribution and
a smallest extreme value (SEV) distribution, the Weibull can be transformed into a

location-scale form as discussed in chapter four of [34, Meeker and Escobar (1998)].
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If random variable X ~ Weibull (0, 3), then Y = Log (X) ~ SEV (u,0) ,where
w = log (6) is the location parameter and o = 1/ is the scale parameter of the SEV.

Then the Weibull cdf, pdf, survival and hazard function can be written as

Fx(z) = Fy (M> (3.8)

g

e[t

fe () = %fy (log (:va) — 1 (3.9)
L [bg(l’)—u eXp<10g($)—u)}’
Sy(2) = Sy (bg(f"’%) (3.10)
- ol e (2]
hy (z) = %exp (%) . (3.11)
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Thus the FGM BVW cdf , pdf and survivor function in location-scale form are

given by

Fx, x, (x1,20) =

le,XQ (331,532) =

where Fy, (w

04

. <10g (21) —ul) B, <log (22) —u2> (3.12)

01 09

X {1 +a {1 — Fy, 1(log (x(;z —m)} {1 ~ Fy, <10g (xjil ;:2))]}

(oo ()} 1o (25252
log (z1) — p log (z9) —

oo [ow (BE22) oo (21)

1 log (1) — log (z5) —
fyl( 8(@) ’”‘1)fy2 (M) (3.13)
0102712 g1 )
% [1 L a (1 2y, (log (z1) — N1)> (1 Ry, (1og (z2) —H2)>]
o1 02
L exp [log (z1) — | log (z2) — 1o
010271T9 (o)

(2 o (22
o (2250 oo (22
(5

log(z;) >:| —1. 92

>:1—exp [—exp



SXl,Xz (xla x2) = SXl (xl) SX2 (132) (3'14>

+a [Sx, (21) = F%, (t)] [Sx, (22) — F5, (t)]
~ exp {_ exp (10% (1) - ul) . (log (w2) - ul)}

01 g1

2
_ log(®1)—pq _ log(z1)—pg
gt __(1_66@ ) )]
exp oE(m2)=n2 Cexp loEmmuz 7
X e 72 —|1-e 72

3.4 Maximum Likelihood Estimates of the FGM BV Ws

+«

In this section, maximum likelihood method is applied to the FGM BVW distri-
bution with two-parameter Weibull marginal. The two-parameter marginal are chosen
not out of necessity, but of convenience since the location-scale parametrization of
the FGM BVW has two-parameter Weibll marginal. Nevertheless all the following

results apply to the FGM BVW with three-parameter Weibull marginal readily.

3.4.1 Likelihood Functions of Uncensored Lifetime Data

Let the bivariate lifetimes, (Xi;, Xs;), of a random sample of size n without

censoring have FGM BVW distribution as defined in (2.34). The bivariate likelihood
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function is defined in (3.3), and the bivariate loglikelihood is

L (gigj) (3.15)
+il log (%) + (B, — 1)log <J(;_Z> - (a;ll)ﬁ ) <%>5]
bl ) e ()

i=1
For location-scale FGM BVW as defined in (3.12), the bivariate loglikelihood is

I = —nlog(oi0) Zlog T1T2)

log (z1) — 4 N log (xg log (z

Jog(o _Xp<
“)

1
+log [1—1—@ (1—2Fy1 < og (z1)

=) e ()
)(1—2&(“ “))l

where Fy, (%) =1—exp [— exp <log(x")_“i>] Li=1, 2.

i g4

3.4.2 Likelihood Functions for Right Censored Lifetime Data

Assume that censoring times (C};, Cy;)are independent of (X7y;, Xy;), and let the
censoring indicator 0;; = I [X;; = min (Xj;, C};)], j = 1, 2. The bivariate likelihood
function is given by (3.5) where the marginal pdfs are given by (1.6), and the bivariate
loglikelihood is given by (3.7), where the joint survival function and the joint pdf are
defined by (2.36) and (2.35) for FGM BVW, and by (3.14) and (3.13) for the location-

scale parametrization of the FGM BVW.



3.4.3 Optimization Procedures for MLEs of the FGM BVW

Let the vector of parameters & = (o, 3;, 35, 01,02) be in a parameter space €.
The maximum likelihood method is used to maximize the log-likelihood function [ (&),
and the corresponding vector of parameters, é = (éz, Bl, BQ, @1, 92>,, is call the vector
of mles. If the likelihood function has a unique maximum in the parameter space €2,
then the mle vector € can be found by solving U (&) = 0l (&) /O&€ = 0, which are called
score functions. For Weibull distribution, however, there is no closed form solutions
for the score functions. [26, Lawless (2002)] summarizes numerical methods of solving
the optimization problem, which are distinguished by their use of the first and second

derivatives of the logarithm of the likelihood function. The methods include:

1. Search algorithm or heuristics without utilizing any derivatives.
2. Methods that utilize only the first derivatives.

3. Methods that utilize both the first and second derivatives. Moreover, the second

derivative matrix (or the Hessian Matrix) is defined as H (&) = 9% (§) /0€0€’.

The SAS procedure NLP provides all three types of methods for the optimiza-
tion. The Newton-Raphson Method with Line Search (NEWRAP), which is of type
three method above, is the method of choice in the optimization procedures in the
simulation study for this thesis.

The NEWRAP technique uses the first derivative vector U (Sk ) and the Hessian
matrix H (5’“) in its iterations and requires that the logarithm of the likelihood func-

tion have continuous first- and second-order derivatives inside the parameter space
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). The NEWRAP method is a relatively efficient algorithm for medium to large
problems since it does not need many function, gradient, and Hessian calls. Never-
theless the SAS derivative compiler is not efficient in the computation of second-order
derivatives, and a complicated Hessian does affect the algorithm’s efficiency. The al-
gorithm also requires a positive definite Hessian. When the Hessian is not positive
definite, a multiple of the identity matrix is added to the Hessian matrix to make
it positive definite [11, Eskow and Schnabel 1991]. The default line-search method
uses quadratic interpolation and cubic extrapolation in each iteration to compute an
approximate optimum of the objective function.

Similar to that described for the FGM BVW’s, the optimization procedures for
MLEs of the bivariate location-scale family consist of three major type of numeri-
cal methods. Again, the Newton-Raphson Method is used in the simulation study.

Details of the simulation study can be found in the appendix.

3.5 Bivariate Location-Scale Lifetime Distribution Regression Models

The location-scale family includes many important distributions. Bivariate re-
gression models can improve estimation of marginal covariate effects when two or
more response variables are correlated(e.g. [41, Zellner (1962)]).

[19, He and Lawless (2005)] considers bivariate location-scale regression models:

Let the true bivariate distribution of response variables Y; and Y5 be given by

Y1 — Mg — X1H1 Y2 — Hog — X
F(y1>y2|X1,X2)=H¢(OJ1,WQ):H¢(1 Fao — %i#h Y2~ Hao 2’“‘2), (3.16)

T1 T2
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where X1, X are p x 1 and ¢ x 1 covariate vectors, H, (wy,ws) is a bivariate cdf
specified with an association parameter .

The location-scale form of the true marginal distributions of Y; and Y5 can be
written as

Y = o + X+ Tiw;, j=1,2 (3.17)

where the distribution of the error w; is independent of that of the covariate’s. p;, +
X, is the location parameter and 7; is the scale parameter.

[19, He and Lawless (2005)] proposes a location-scale regression model to inves-
tigate distribution misspecification effects on the estimation of regression coefficients.

The regression model is given as

i = By+x8 +oie (3.18)

Yy = oo+ X508, + 0262

where 3, + X3, is the location parameter and o; > 0 is the scale parameter, 3;
is the corresponding regression coefficient vector, and the errors €, €, have a joint
distribution specified by a copula function C;, with an association parameter ¢.

[19, He and Lawless (2005)] shows that estimators of the regression coefficients
Bl and BQ are consistent estimators and robust to misspecification of the marginal
distributions of the errors. Also, they examine the relative efficiency for using the

bivariate model to estimate ;1; and u, compared with using the marginal distributions.
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In their simulation study, a specific bivariate location-scale regression model as
proposed in [5, Clayton (1978)] is studied. The model is defined by the joint survivor

distribution

Hy(erz2) =[S ()70 + 5 (e2) V% — 1] T 40 (3.19)

where the survivor functions S (e1) and S (e5) define the location-scale marginal

distributions of Y; = 3,5 + x;3; + 0j¢;.
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CHAPTER 4

SIMULATION STUDY

The simulation study is focused on maximum likelihood estimation of several
bivariate models. Bivariate data generation, maximum likelihood estimation and

statistical properties are studied, and validation examples are provided.

4.1 Linearly Associated Bivariate Exponential and Weibull Models

4.1.1 Bivariate Data Generation

To generate the linearly associated bivariate data set, (X1, X;2),i = 1,...,n, of
BVE(A1, A2, a) as defined in section 2.1.1, we utilize the fact that X; and Z are in-
dependent of each other and generate the two random variables first. X; ~ exp (A1)
is generated with the SAS exponential random number generator. Since Z is the
product of of a Bernoulli random variable with P(Z = 0) = a)g/A; and a continu-
ous random variable having the same distribution as Xy ~ exp (\2), it is generated
using the SAS Bernoulli random number generator and the SAS exponential random
number generator. By the linear association defined in 2.4, X is then generated as
aX,+ Z.

The bivariate data set of BVW (A1, A2, 3,a) as defined in section 2.1.2 can be
readily obtained by a power transform of the BVE data set, i.e., letting Y;; = X 1/6

] )

j=1, 2
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4.1.2 Simulation Results

Table 4.1 summarizes the results of a simulation study where 10,000 simulated
samples of size 25 pairs from a BVE(1, 1, a) were generated.

Several other simulations were conducted using various combinations of Ay, Ao
and a and similar results were found as given in Table 1. Note that since A\ = \y =1,
Corr(Xy, Xo) = adg/A; = a. The empirical MSE was computed for both 5\1, the
estimator based on the joint likelihood given in (25), and J;, the usual maximum
likelihood estimator based on the marginal distribution. Also computed, were the
maximum likelihood estimators of the p, given as p = aly/\ and p* = aS\; /5\:

Percent MSE improvement was computed as

(MSE(6,) — MSE(0,))/MSE(8,) - 100%.

The joint MLE estimator A gave MSE improvement over the marginal MLE for
all values of p. Interestingly, percent improvement is a concave function of p, with
maximum occurring at p = 0.5, giving over 25%. The joint MLE for the correlation
coefficient gives monotonically increasing percent improvement over the estimator
based on the marginal MLE’s, with 44% improvement when p = 0.99.. Therefore,
ignoring the multivariate relationship between X; and X, comes at a significant cost
with respect to MSE.

Similarly, Table 4.2 summarizes the results of a simulation study where 10,000

simulated samples of size 25 pairs from a BVW(1,1,5,a), § = 0.5,1,1.5,2.0 were
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generated. The empirical MSE was computed for both 5\1, the estimator based on the
joint likelihood given in (25), and /A\I, the usual maximum likelihood estimator based
on the marginal distribution. Similar patterns of MSE improvement emerge for the

bivariate Weibull as in the bivariate exponential case, for all values of [.

4.2 Bivariate Location-Scale Models

4.2.1 Data Generation for BVW of Hougaard’s Model

[27, Lee (1979)] and [31, Lu and Bhattacharyya (1990)] show that (X, X3) of
BVW defined by 2.30 can be represented by two independent random variables (U, V)
as

X, = U&/Blvl/ﬁleb X, = (1 _ U)5/52 V1/5202’

where U ~ Uniform (0,1), and V is distributed as the mixture of a standard expo-

nential and standard Gamma(2). The pdf of V' is given by

f(v) =0vexp(—v)+ (1 —0)exp(—v), v > 0.

So we start by generating (U, V). U is generated by SAS uniform random number
generator. V' is obtained by generating other four standard uniform random variables

uy, ...uy, and using the logarithm transform as on page 248 of [2, Casella and Berger
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Mean Squared Error (MSE)

p

~%F

A

M

Y%o-imp

A%
P1

P1

Yo-imp

0.01
0.05
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
0.99

0.04585
0.04522
0.04512
0.04118
0.03930
0.03627
0.03757
0.03771
0.03799
0.04210
0.04326
0.04939

0.04621
0.04723
0.05005
0.04877
0.04937
0.04749
0.04834
0.04982
0.04713
0.04913
0.04675
0.04978

0.782
4.251
9.849
15.570
20.406
23.615
22.293
24.307
19.384
14.311
7.465
0.796

0.00001
0.00021
0.00077
0.00252
0.00456
0.00634
0.00741
0.00807
0.00763
0.00611
0.00343
0.00039

0.00001
0.00022
0.00082
0.00284
0.00546
0.00815
0.01011
0.01169
0.01131
0.00966
0.00574
0.00067

0.529

2.990

6.410
11.243
16.563
22.176
26.710
31.014
32.517
36.764
40.287
42.560

Based on 10,000 simulated samples

Table 4.1: Simulation Study for BVE(A; = Ay = 1, n = 25)

Percent-Improvement in MSE

a |B=05|8=118=15]3=2]3=10
0.0l | 1.864 | 0.152 | 0.141 | 0.233 | 0.490
0.05 | 4.904 | 4.836 | 4.568 | 3.986 | 1.973
0.1 | 5987 | 5.378 | 2.763 | 4.352 | 5.882
0.2 | 4285 | 5.021 | 7.807 | 4.352 | 10.089
0.3 | 9.974 | 9.035 | 12.566 | 5.988 | 6.809
0.4 | 9.408 |15.852 | 20.258 | 10.532 | 11.684
0.5 | 15.240 | 12.699 | 15.718 | 18.472 | 18.161
0.6 | 16.083 | 10.914 | 16.048 | 13.707 | 14.489
0.7 | 7.228 |12.788 | 12.214 | 13.676 | 12.571
0.8 | 9.946 |10.300 | 9.967 | 10.299 | 9.189
0.9 | 4.922 | 6.716 | 4.595 | 5.940 | 6.174
0.99 | 0.367 | 0.478 | 0.590 | 1.118 | 1.499

Based on 10,000 simulated samples of size n = 25.

Table 4.2: Simulation Study BVW(A; = Ay = 1)
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(2002)] such that

—Inwu; —Inwug, if uy <0
V=
—Inuy, if ug>9

where (—Inwu; — Inug) ~ gamma (2), and —Inuy ~ exp (1)

4.2.2 Data Generation for BVW of FGM Model (Sequential Monte Carlo

Simulation)

To generate bivariate data set, (X1, X;2),7 = 1,...,n, of the FGM BVW as
defined in 2.34, we first generate X; ~ Weibull(61, 3;) by setting its marginal CDF,

Fx,, equal to a random number of standard Uniform distribution, then

i1 = 61 [— lOg (1 — uil)]l/ﬁl s
where u;; ~ Uniform (0,1). The censoring indicator §;; is then determined by com-
paring x;; with the censoring value c¢;;.
X, is generated sequentially by setting its conditional CDF, Fx, x,, qual to a

random number of standard Uniform distribution. The conditional CDF is given by

o FX17X2 (1’1,1‘2)
Fx,x, = Fr, (1) (4.1)
By (@) Fx, (22) [T+ a (1= Fy, (21)) (1 — Fx, (22))]
Fx, (21)

= Fx,(x)[1+a(l—=Fyx, (1)) (1 = Fx, (x2))]

= (1=V)(1+aWV)
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where V' = exp (— (‘g—;>52> , W =exp (— (%)ﬁl).

Setting (4.1) equal to a standard uniform random number, then we have a

quadratic equation in terms of V/
OéWV2 + (1 — OéW) \% + (UiQ — 1) = O,

where u;y ~ Uniform (0,1) is independent of u;.

By Quadratic Formula and V' > 0,

(W = 1)+ /(1 aW)® — 4aW (ug — 1)

vV = STV (4.2)
1 \/(1 +aW)® —daWu, — 1
a7 2aW ’

and then X, is given by

Tin = 0 [ log (V)72 .

The censoring indicator d;5 is then determined by comparing y;; with the censoring

value ¢;9.

4.2.3 Simulation Settings and Results for Bivariate Location-Scale Mod-
els

Simulation Settings

1. Data sets are generated by methods listed in section 4.2.1 and 4.2.2;
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2. Sample size, n, is set at 25;
3. Simulation iteration is set to 500;

4. True parameter values are 3; = 0.5, 6, = 2, #; = 6 = 10.(equal scale parame-

ters);

5. Depedence parameters are set as 6 = 0.5, a = 0.5 for the RE and FGM models,

respectively.

Both the joint MLEs and working independence MLEs are obtained and compared
against each other.

Percent improvements/losses in terms of absolute bias and empirical MSE (mean
squared errors) are also calculated. We found mixed turnout of improvements and

losses.

The Random Effect(Hougaard) Model Simulation Results

Table 4.3 summarizes maximum likelihood estimation results based on the joint
and the working independence models. Tables 4.4 and 4.5 summarize the percent-
age improvement/losses obtained by comparing joint mle’s against working mle’s in
terms of their biasses and Empirical Mean Squared Errors(EMSE). Table 4.5 shows
overall improvement in MSE for mle’s of the shape parameters 3, and 3,. But for
mle’s of the scale parameters, no such pattern is found. It is expected as stated in

[24, Johnson, Evans and Green (1999)] that neither the sample correlation nor the
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population correlation depends on the values of the underlying scale parameters of

the marginal distributions.

The FGM Model Simulation Results

Table 4.6 summarizes maximum likelihood estimation results based on the joint
and the working independence models. Tables 4.7 and 4.8 summarize the improve-
ments/losses in biasses and EMSE obtained by comparing the joint mle’s against
working mle’s. Table 8 shows overall improvement in MSE only for mle’s of 3; and

slightly loss in f3,.

4.3 Example: DMBA-Induced Tumors

Table 4.9 contains the first and second tumor times for 30 control and 30 treated
animals, simulated as BV (0.000009, 0.000005, 8 = 3) and BV (0.000001, 0.0000005, 8 =
3), respectively, with @ = 1 in both cases. We see that there were 18 and 15 simul-
taneous tumors for the control and treated animals, respectively. We first estimated
the shape parameter based on the marginal Weibull likelihoods as B = 2.93. Then we
compute the scale parameter estimates for each population using the estimates given
in (24). This yielded A= (0.00001287,0.00000776) and (0.00000179,0.00000082) for

the controls and treated animals, respectively.
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4]

by

By

b,

2

5,

%3
By

AF

0,

3

0,

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.52768
0.52601
0.52724
0.53299
0.53413
0.52750
0.52602
0.53550
0.53219
0.52696

2.11475
2.10351
2.11299
2.11051
2.16718
2.11608
2.09350
2.11476
2.12814
2.10093

10.5071
10.3663
10.5591
10.7050
10.6873
10.3724
10.4076
10.8448
10.6916
10.5949

9.9578
9.9479
9.9889
9.9997
10.0069
9.9060
9.9371
10.0144
9.9758
9.8745

0.52775
0.52588
0.52688
0.53218
0.53587
0.52631
0.52619
0.53444
0.53207
0.52768

2.11411
2.10134
2.10869
2.11411
2.16407
2.11830
2.09460
2.11509
2.12961
2.10355

10.4546
10.3499
10.5284
10.6547
10.6663
10.3399
10.3778
10.8130
10.6822
10.6092

9.9468
9.9376
9.9826
9.9946
9.9937
9.8988
9.9301
10.0098
9.9707
9.8756

Where B* and 0 are working independence MLEs.

Table 4.3: Joint and Working MLEs with 3, = 0.5, 3, = 2, #; = 03 = 10 and varying

J

0 | B, bias improv.

(5 bias improv.

0, bias improv.

0, bias improv.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

-2477.84
-1968.70
-9211.99
-328586.83
-17276.79
-1058.00
-1560.73
-7062.51
-4334.31
-853.27

0.24710
-0.49651
-1.34267
-2.51654

4.84207
-4.51075

0.63741
-3.07633
-0.37612

2.60031

-0.56025
-2.13658
-3.95333
3.15616
-1.89587
1.87806
1.16725
0.28694
1.13056
2.52758

-11.5567
-4.6773
-5.8183
-7.6807
-3.1514
-9.5496
-7.8866
-3.9194
-1.3817

2.3545

Table 4.4: Bias Improvements/Losses(%) Over the Working Estimates
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0 | #; mse improv.

5 mse improv.

f, mse improv.

f; mse improv.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

90.8621
81.2788
70.9359
63.3886
08.1423
44.2761
32.2627
22.5092
18.3216
17.0853

1.61977
1.28675
4.39391
5.83908
7.17802
4.93833
4.65393
-0.46238
0.68599
-0.25471

1.35134
4.61830
-1.04580
6.00907
3.45869
0.76780
3.68219
-0.63960
-1.02801
1.01207

-1.40621
-0.01806
0.26043
-0.99596
1.05814
-0.44087
-0.62015
0.20701
-0.20352
-0.14121

Table 4.5: Empirical MSE Improvements/Losses(%) Over the Working Estimates

o

by

By

0,

b,

A
5y

3
By

AF

0,

A

0,

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.53263
0.52865
0.53248
0.52701
0.53353
0.53342
0.52007
0.53457
0.53131
0.52763

2.08660
2.09570
2.05551
2.02371
2.06266
2.02963
2.01353
2.01028
1.99020
2.00859

10.3397
10.4262
10.5498
10.1626
10.8290
10.5895
10.4359
10.7978
10.7238
10.8060

9.76154
9.67449
9.60398
9.39615
9.24950
9.10675
8.95880
8.87893
8.60068
8.50162

0.53228
0.52839
0.53197
0.52585
0.53263
0.53249
0.51912
0.53256
0.52961
0.52544

2.08518
2.09407
2.05479
2.02132
2.05816
2.02805
2.01013
2.00488
1.98629
2.00157

10.3515
10.4271
10.5549
10.1284
10.7823
10.5501
10.3927
10.6808
10.6340
10.7181

9.76080
9.68024
9.61140
9.39784
9.24247
9.10546
8.95503
8.86241
8.60127
8.48742

Where B* and 0 are working independence MLEs.

Table 4.6: Joint and Working MLEs with 3, = 0.5, 3, = 2, #; = 0, = 10 and varying

J
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J

(3, bias improv.

(5 bias improv.

0, bias improv.

0, bias improv.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

-342.920
-288.550
-205.638
-134.917
-120.447
-118.480
-94.343
-104.619
-103.403
-119.249

-1.10145
-0.92829
-1.59816
-4.48150
-2.76162
-2.84038
-4.99189
-6.18119
-5.74152
-8.62320

-1.660
-1.731
-1.311
-11.252
-7.725
-5.632
-33.548
-110.420
28.534
-447.628

3.3686
0.1915
0.9308
-26.6615
-5.9750
-7.1674
-10.9885
-17.1839
-14.1625
-12.2393

Table 4.7: Bias Improvements/Losses(%) Over the Working Estimates

0 | #; mse improv. | $, mse improv. | #; mse improv. | #; mse improv.
0.1 90.4678 -1.16397 0.13321 0.37230
0.2 84.3979 -0.35227 -1.69771 -0.51571
0.3 75.6162 -0.94049 -0.72841 -0.61527
0.4 71.8620 -2.32073 0.54219 -2.55347
0.5 69.7788 -1.72126 -2.74445 -2.78227
0.6 69.4358 -1.16677 -0.15066 -3.16534
0.7 65.3872 -1.84386 0.36968 -1.85708
0.8 65.0311 -1.49496 0.06637 -2.62671
0.9 68.4773 -1.58717 -0.34932 -4.46156
1.0 69.2833 -2.11464 -0.88495 -1.56760

Table 4.8: Empirical MSE Improvements/Losses(%) Over the Working Estimates
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Control Animals (n = 30,a = 1,k = 18)

(28,80), (53,53), (30,47), (25,63), (75,75), (21,21), (55,67), (55,66),
(42,43), (79,79), (56,56), (56,56), (42,42), (64,64), (44,56), (39,57),
(63,63), (41,41), (28,28), (49,49), (34,34), (10,82), (53,55), (26,26),
(43,52), (16,16), (57,86), (56,56), (29,29), (19,19)

Treated Animals (n = 30,a = 1,k = 15))

(50,50), (69,69), (53,53), (66,95), (77,77), (102,102), (114,142), (83,83),
(63,63), (58,116), (80,137), (122,122), (90,90), (42,65), (106,106), (90,90),
(114,114), (117,172), (98,98), (82,82), (22,99), (102,138), (123,147), (61,120),
(80,138), (75,142), (78,146), (51,166), (12,180), (147,147),

Table 4.9: Bivariate Weibull Times to first and second tumor
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APPENDIX A

SAS SIMULATION CODES

A.1 Data Generation and MLE for Linearly Associated BVE and BVW

data _null_;
retain c 1;
do i=.10, .2,.3,.4,.5,.6;
call symput(’loop’||left(c),i);
call symput(’step’, ¢);
c+1;
end;
run;
%MACRO sim(lambdal, lambda2 beta, n, iter,table);
%do i= 1 %to &step;
title ”lambdal=4&lambdal lambda2=~&lambda2 roh=&&loop&i samplesize=&n”;
DATA datal;
lambdal=~&lambdal;
lambda2=&lambda2;
beta=&beta;
roh=&&loop&i;

a=roh*(lambdal /lambda2);

79



p=a*lambda2/lambdal;
DO iter=1 to &iter;
DOi=1 to &n;
d=0;
z=RANBIN(0,1,1-p)*RANEXP(0) /lambda2;
X1=RANEXP(0)/lambdal;
X2=a*X1 + z;

y1=x1**(1/beta); y2=x2**(1/beta);
if z=0 then d=1;
ind=1-d;
OUTPUT;

end;
END;
run;
PROC NLP tech=newrap DATA=datal OUTEST=init noprint;
MAX logf;
PARMS Laml=1, Lam2=1,b=1;
logf=2*log(b) + log(Lam1)+ log(Lam2)
+(b-1)*log(y1) + (b-1)*log(y2)
-Lam1*y1**b - Lam2*y2*b;
BY iter;

RUN;

80



DATA init;

SET init;

IF _TYPE_="PARMS’;

KEEP iter lam1 lam2 b;

RENAME b=bhat;

RUN;

DATA data2a;

MERGE datal init; by iter;

y1l1=(y1**bhat); y22=(y2**bhat);

RUN;

proc means data=data2a noprint;

var yl1 y22 a d;

by iter;

output out=data2 mean(yll y22 a bhat lam1 lam2)=ylbar y2bar a bhat lam1
lam2 sum(d)=k;

run;

data mle;

set data2;

lambdal=&lambdal;
lambda2=&lambda2;
roh=&&loop&i;

a=roh*(lambdal /lambda2);
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lambhatll=a/y2bar + (&n-k)/(&n*ylbar);
lambhat12=1/y2bar;
rohhatstar=a*lambhat12/lambhat11;
lamb11bias=lambhat11-&lambdal;
lamb12bias=lambhat12-&lambda2;
rohhatstarbias=rohhatstar-&&loop&ei;
lamb11lmse=lamb11bias**2;
lamb12mse=lamb12bias**2;
rohhatstarmse=rohhatstarbias**2;
se_lamb11=sqrt((lambhat11*(lambhat11-a*lambhat12)+a**2*lambhat12**2) /&n);
LCL = lambhat11 - 2*se_lamb11;
UCL = lambhat11 + 2*se_lamb11;
conf=(lIcl le lambdal le ucl);
se_laml=sqrt(lam1**2/&n);
LCL1 = laml1 - 2*se_lam1;
UCL1 = laml + 2*se_laml;
confl=(lIcll le lambdal le ucll);
range=(ucl-lcl) /2;
rangel=(ucll-lcll)/2;
rohhat=a*lam2/lam1;
rohhatbias=rohhat-&&loopéi;

lam1bias=lam1-&lambdal;
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lam2bias=lam2-&lambda2;

lam1MSE=lam1bias**2;

lam2MSE=lam2bias**2;

rohhatMSE=rohhatbias**2;

run;

PROC MEANS data=mle noprint;

var roh conf lcl ucl confl lcll ucll range rangel lambhatll lam1 lambl1bias
lam1bias lamb11lmse lamlmse

lambhat12 lam2 lamb12bias lam2bias lamb12mse lam2mse

rohhatstar rohhat rohhatstarbias rohhatbias rohhatstarmse rohhatmse;

output out=stats

mean=rho conf Icl ucl confl Icll ucll range rangel lambhat11l lam1 lamb11bias
lam1bias lamb11lmse lamlmse

lambhat12 lam2 lamb12bias lam2bias lamb12mse lam2mse

rohhatstar rohhat rohhatstarbias rohhatbias rohhatstarmse rohhatmse;

run;

PROC DATASETS nodetails nolist force;

APPEND BASE=work.table&table DATA=stats;

RUN;

Y%end;

DATA sim.table&table;

SET table&table;
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Ibiasimp=(abs(lam1bias)-abs(lamb11bias))/lam1bias*100;
Imseimp=(lamlmse-lamb11mse)/lam1mse*100;
rhobiasimp=(abs(rohhatbias)-abs(rohhatstarbias)) /rohhatbias*100;
rhomseimp=(rohhatmse-rohhatstarmse) /rohhatmse*100;

RUN;

PROC EXPORT DATA= sim. TABLE&table
OUTFILE="C:\Documents and Settings\BB\My Documents\PAPER\Spring05\code\tables.
DBMS=EXCEL REPLACE;

SHEET="sheet&table”;

RUN;

%MEND sim;

%sim(10,1,2, 50, 1000,118);

/%%sim(100,1,50, 10000,6);

%sim(1,100,50, 10000,7);

%sim(100,100,50, 10000,8);*/

A.2 Data Generation and MLE for BVW of Hougaard’s Model

%LET directory=C:\;
LIBNAME sim ”&directory”;
%let seed=0;

%let betal=0.5;

%let beta2=2;
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%let thetal=10;

%let theta2=10;

%let n=25;

%macro hougsimu(iter);

%do dl=1 %to 10;

%let delta=&dl/10;

%do k=1 %to &iter;

DATA houg;

DO i =1 to &n;

U=uniform(0); U2=uniform(0); U3=uniform(0); U4=uniform(0); Us=uniform(0);
V=(-log(U2)-log(u3))*(ub le &delta) -log(ud) *(U5 > &delta);
X1=U**(&delta/&betal ) *v**(1/&betal)*&thetal;
x2=(1-U)**(&delta/&beta2)*v**(1/&beta2)*&theta2;

delta=&delta;
OUTPUT:

END;

RUN;

PROC NLP tech=newrap outest=outl DATA=houg noprint;
MAX logf;

PARMS bhat1 that;
logf=-log(that1)+log(bhatl)+(bhat1-1)*log(x1/that1)

-(x1/thatl)**bhat1;
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by delta;
RUN;
data outl; set outl;
KEEP _type_ bhatl thatl delta;
if type.="PARMS’;
RUN;
PROC NLP tech=newrap outest=out2 DATA=houg noprint;
MAX logf;
PARMS bhat2 that2;
logf=-log(that2)+log(bhat2)+(bhat2-1)*log(x2/that2)
-(x2/that2)**bhat2;
by delta;
RUN;
DATA out2; set out2;
KEEP _type_ bhat2 that2 delta;
IF _type.="PARMS’;
RUN;
*working independent mle;
DATA seedwrk;
merge outl out2;

RUN;
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PROC NLP tech=congra DATA=houg inest=seedwrk outest=hougwrkest no-
print;

MAX logf;

PARMS bhatl thatl bhat2 that2;

logf=log(bhat1)-log(that1)+log(bhat2)-log(that2)
+(bhat1-1)*log(x1/thatl)+(bhat2-1)*log(x2/that2)
-log((x1/thatl)**bhatl + (x2/that2)**bhat2)
+log((x1/thatl)**bhatl + (x2/that2)**bhat2)
-(x1/thatl)**bhatl - (x2/that2)**bhat2;

by delta;
RUN;
data simwrk;

set hougwrkest;

if _type.="PARMS’;

bhatlwrk=bhat1;

bhat2wrk=bhat2;

thatlwrk=that1;

that2wrk=that2;

keep bhatlwrk bhat2wrk thatlwrk that2wrk;
run;
*joint mle;

DATA seedl;
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set seedwrk;
dhat=0.1;
RUN;
PROC NLP tech=congra DATA=houg inest=seed1 outest=seed2 noprint;
MAX logf;
PARMS dhat; bounds 0<dhat<=1;
logf=log(bhat1/that1)+log(bhat2/that2)
+(bhat1/dhat-1)*log(x1/that1)+(bhat2/dhat-1)*log(x2/that2)
+(dhat-2)*log((x1/that1)**(bhat1/dhat) + (x2/that2)**(bhat2/dhat))

+log(((x1/thatl)**(bhatl/dhat) + (x2/that2)**(bhat2/dhat))**dhat+1/dhat-

-((x1/thatl)**(bhatl/dhat) + (x2/that2)**(bhat2/dhat))**dhat;
by delta;
RUN;
DATA seed2;
SET seed?2;
KEEP _type_ bhatl bhat2 thatl that2 dhat delta;
if type.="PARMS’;
RUN;
PROC NLP tech=nmsimp DATA=houg inest=seed2 outest=hougest noprint;
MAX logf;

PARMS dhat bhatl bhat2 thatl that2; bounds O<dhat<=1;
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logf=log(bhat1)-log(that1)+log(bhat2)-log(that2)
+(bhatl/dhat-1)*log(x1/that1)+(bhat2/dhat-1)*log(x2/that2)
+(dhat-2)*log((x1/that1)**(bhat1/dhat) 4+ (x2/that2)**(bhat2/dhat))

+log(((x1/thatl)**(bhatl/dhat) + (x2/that2)**(bhat2/dhat))**dhat+1/dhat-

-((x1/that1)**(bhatl/dhat) + (x2/that2)**(bhat2/dhat))**dhat;
by delta;

RUN;

data sim;
set hougest;
if _type.="PARMS’;

run;

data simrslt;
merge simwrk sim;
bhat1bias=bhat1-&betal;
bhat2bias=bhat2-&beta2;
that1bias=that1-&thetal;
that2bias=that2-&theta2;
bhatlwrkbias=bhatlwrk-&betal;
bhat2wrkbias=bhat2wrk-&beta2;
thatlwrkbias=that1lwrk-&thetal;

that2wrkbias=that2wrk-&theta2;
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bhatlmse=bhat1bias**2;
bhat2mse=bhat2bias**2;
thatlmse=that1bias**2;
that2mse=that2bias**2;
bhatlwrkmse=bhatlwrkbias**2;
bhat2wrkmse=bhat2wrkbias**2;
thatlwrkmse=that1wrkbias**2;
that2wrkmse=that2wrkbias**2;

run;

PROC DATASETS nodetails nolist force;

APPEND BASE=sim.hougresult DATA=simrslt;

RUN;

Y%end;

%end;

Y%mend hougsimu;

Y%hougsimu(1)

title thetal=&thetal betal=&Dbetal theta2=~&theta2 beta2=&beta2 delta=&delta;

proc sort data=sim.hougresult;
by delta;

run;

PROC MEANS data=sim.hougresult noprint;
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var bhatl bhat2 thatl that2 bhatlwrk bhat2wrk thatlwrk that2wrk dhat
delta
bhatlmse bhat2mse that1mse that2mse bhat1wrkmse bhat2wrkmse that1wrkmse
that2wrkmse
bhatlbias bhat2bias thatlbias that2bias bhatlwrkbias bhat2wrkbias
thatlwrkbias that2wrkbias;
output out=stats
mean=bhat1 bhat2 thatl that2 bhatlwrk bhat2wrk thatlwrk that2wrk dhat
bhatlmse bhat2mse thatlmse that2mse bhatlwrkmse bhat2wrkmse thatlwrkmse
that2wrkmse
bhatlbias bhat2bias thatlbias that2bias bhatlwrkbias bhat2wrkbias
thatlwrkbias that2wrkbias;
by delta;
run;
DATA hougtable;
SET stats;
blbiasimp=(abs(bhat1lwrkbias)-abs(bhat1bias))/abs(bhat1lwrkbias)*100;
b2biasimp=(abs(bhat2wrkbias)-abs(bhat2bias))/abs(bhat2wrkbias)*100;
t1biasimp=(abs(that1wrkbias)-abs(that1bias))/abs(that1wrkbias)*100;
t2biasimp=/(abs(that2wrkbias)-abs(that2bias))/abs(that2wrkbias)*100;
blmseimp=(bhatlwrkmse-bhat1mse)/bhatlwrkmse*100;

b2mseimp=(bhat2wrkmse-bhat2mse) /bhat2wrkmse*100;
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tlmseimp=(thatlwrkmse-thatlmse)/that1wrkmse*100;
t2mseimp=(that2wrkmse-that2mse)/that2wrkmse*100;
keep blbiasimp b2biasimp t1biasimp t2biasimp
blmseimp b2mseimp t1lmseimp t2mseimp delta;
RUN;
proc print data=stats;
var delta dhat bhat1 bhat2 thatl that2 bhatlwrk bhat2wrk thatlwrk that2wrk;
run;
proc print data=hougtable;
run;

quit;

A.3 Data Generation and MLE for BVW of FGM Model

*x ’del C:\fgmresult.sas7bdat’;

goptions reset=all; options nodate;

%LET directory=C:\Documents and Settings\Zhigang\My Documents\Yi Han
thesis simulation;

LIBNAME sim ”&directory”;

%olet seed=0;

%let betal=0.5;

%let beta2=2;

%let thetal=10;
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%let theta2=10;
Yolet n=25;
Y%macro fgmsimu(iter);
%do al=1 %to 10;
%let alpha=4&al/10;
%do k=1 %to &iter;
DATA fgm;
DO i =1 to &n;
Ul=uniform(&seed); U2=uniform(&seed);
x1=&thetal*(-log(1-U1))**(1/&betal);
W=exp(-(x1/&thetal)**&betal);
b=(((14&alpha*W)**2-4*&alpha*W*U2)**0.5-1) /(2*&alpha*W);
V1=0.5+(((1+-&alpha* W) *2-4* Lalpha* W*U2)**+0.5-1) /(2*&alpha*W);
V2=0.5-(((1+&alpha*W)**2-4*&alpha*W*U2)**0.541) /(2*&alpha*W);
V=max(V1, V2);
X2=&theta2*(-log(V))**(1/&beta2);
alpha=&alpha;
OUTPUT;
END:
RUN;
/*PROC CORR DATA=fgm out=corrout noprint;

VAR x1 x2;
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RUN;*/
PROC NLP tech=newrap outest=outl DATA=fgm noprint;
MAX logf;
PARMS bhat1 thatl;
logf=log(bhat1)-bhat1*log(that1)+(bhat1-1)*log(x1)
-(x1/thatl)**bhat1;

by alpha;
RUN;
data outl; set outl;
KEEP _type_ bhatl thatl alpha;

if _type.="PARMS’;
RUN;
PROC NLP tech=newrap outest=out2 DATA=fgm noprint;
MAX logf;
PARMS bhat2 that2;
logf=log(bhat2)-bhat2*log(that2)+(bhat2-1)*log(x2)
-(x2/that2)**bhat2;

by alpha;
RUN;
DATA out2; set out2;
KEEP _type_ bhat2 that2 alpha;

IF _type.="PARMS’;
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RUN;
*working independent mle;
data seedwrk;
merge outl out2;
run;
PROC NLP tech=newrap DATA=fgm inest=seedwrk outest=fgmwrkest noprint;
MAX logf;
PARMS bhatl bhat2 thatl that2; * bounds bhatl=1, bhat2=2;
logf=log(bhat1)-log(that1)+log(bhat2)-log(that2)
+(bhat1-1)*(log(x1)-log(that1))+(bhat2-1)*(log(x2)-log(that2))
-(x1/that1)**bhat1-(x2/that2)**bhat2;
by alpha;
RUN;
data simwrk;
set fgmwrkest;
if type.="PARMS’;
bhatlwrk=bhat1;
bhat2wrk=bhat2;
thatlwrk=that1;
that2wrk=that2;
keep bhatlwrk bhat2wrk thatlwrk that2wrk;

run;
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*joint mle;

DATA seedl;

set seedwrk;
alphat=0.1;

RUN;

PROC NLP tech=newrap DATA=fgm inest=seedl outest=seed2 noprint;

MAX logf;

PARMS alphat; bounds -1<=alphat<=1;

logf=log(bhat1)-log(that1)+log(bhat2)-log(that2)

+(bhat1-1)*(log(x1)-log(that1))+(bhat2-1)*(log(x2)-log(that2))
-(x1/thatl)**bhat1-(x2/that2)**bhat2

+log(1+alphat®(2*exp(-(x1/that1)**bhat1)-1)*(2*exp(-(x2/that2)**bhat2)-1));
by alpha;

RUN;

DATA seed2;

SET seed2;

KEEP _type_ bhatl bhat2 thatl that2 alphat;

if type.="PARMS’;

RUN;

PROC NLP tech=newrap DATA=fgm inest=seed2 outest=fgmest noprint;

MAX logf;

PARMS bhatl bhat2 thatl that2 alphat; bounds -1<=alphat<=1;

96



logf=log(bhat1)-log(that1)+log(bhat2)-log(that2)

+(bhat1-1)*(log(x1)-log(that1))+(bhat2-1)*(log(x2)-log(that2))
-(x1/thatl)**bhat1-(x2/that2)**bhat2

+log(1+alphat*(2*exp(-(x1/that1)**bhat1)-1)*(2*exp(-(x2/that2)**bhat2)-1));
by alpha;

RUN;

data sim;
set fgmest;
if type.="PARMS’;

run;

data simrslt;
merge simwrk sim;
bhat1lbias=bhat1-&betal;
bhat2bias=bhat2-&beta2;
that1bias=that1-&thetal;
that2bias=that2-&theta2;
bhatlwrkbias=bhatlwrk-&betal;
bhat2wrkbias=bhat2wrk-&beta2;
thatlwrkbias=thatlwrk-&thetal;
that2wrkbias=that2wrk-&theta2;
bhatlmse=bhat1bias**2;

bhat2mse=bhat2bias**2;
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thatlmse=that1bias**2;
that2mse=that2bias**2;
bhat1wrkmse=bhat1wrkbias**2;
bhat2wrkmse=bhat2wrkbias**2;
thatlwrkmse=that1wrkbias**2;
that2wrkmse=that2wrkbias**2;
run;
PROC DATASETS nodetails nolist force;
APPEND BASE=sim.fgmresult DATA=simrslt;
RUN;
%end;
Y%end;
%mend fgmsimu;
Y% fgmsimu(500)
title thetal=&thetal betal=&betal theta2=&theta2 beta2=~&Dbeta?2;
proc sort data=sim.fgmresult;
by alpha;
run;
PROC MEANS data=sim.fgmresult noprint;
var bhatl bhat2 thatl that2 bhatlwrk bhat2wrk thatlwrk that2wrk alphat

alpha
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bhatlmse bhat2mse thatlmse that2mse bhatlwrkmse bhat2wrkmse thatlwrkmse
that2wrkmse
bhatlbias bhat2bias thatlbias that2bias bhatlwrkbias bhat2wrkbias
thatlwrkbias that2wrkbias;
output out=stats
mean=bhatl bhat2 thatl that2 bhatlwrk bhat2wrk thatlwrk that2wrk al-
phat
bhat1mse bhat2mse that1mse that2mse bhat1wrkmse bhat2wrkmse that1wrkmse
that2wrkmse
bhatlbias bhat2bias thatlbias that2bias bhatlwrkbias bhat2wrkbias
thatlwrkbias that2wrkbias;
by alpha;
run;
DATA fgmtable;
SET stats;
blbiasimp=(abs(bhat1wrkbias)-abs(bhatlbias))/abs(bhatlwrkbias)*100;
b2biasimp=(abs(bhat2wrkbias)-abs(bhat2bias))/abs(bhat2wrkbias)*100;
t1biasimp=(abs(thatlwrkbias)-abs(that1bias))/abs(that1lwrkbias)*100;
t2biasimp=(abs(that2wrkbias)-abs(that2bias))/abs(that2wrkbias)*100;
blmseimp=(bhatlwrkmse-bhatlmse)/bhat1wrkmse*100;
b2mseimp=(bhat2wrkmse-bhat2mse) /bhat2wrkmse*100;

tlmseimp=(that1lwrkmse-thatlmse)/that1wrkmse*100;
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t2mseimp=(that2wrkmse-that2mse) /that2wrkmse*100;
keep blbiasimp b2biasimp tlbiasimp t2biasimp
blmseimp b2mseimp t1mseimp t2mseimp alpha;

RUN;
proc print data=stats;

var alpha alphat bhatl bhat2 thatl that2 bhatlwrk bhat2wrk thatlwrk

that2wrk ;

run;
proc print data=fgmtable;
run;

quit;

A.4 Example: DMBA-Induced Tumors

DATA datal;

INPUT Treatment$ x1 x2 censorl censor2;
7z=X2-X1; k=(z=0); n=1;

DATALINES:

Cont 78 99 00

Cont 41 o4 00

EGCG 33 87 00

EGCG 73 115 00

100



Res 83 118 00

Res 78 92 00

PROC SORT DATA=datal;

BY treatment;

RUN;

PROC MEANS data=datal noprint;

VAR x1 x2 n k censorl censor2; BY Treatment;
OUTPUT out=stats sum=x1 x2 n k censorl censor2;
RUN;

DATA stats; set stats;

DROP _freq_ _type_;

lambdall=(n-censor2)/x2 + (n-k)/(x1);
lambdal2=(n-censorl)/x1;

lambda2=(n-censor2) /x2;
sel1=sqrt((lambdall*(lambdall-lambda2) + lambda2**2)/n);
sel2=sqrt(lambdal2**2/n);
se2=sqrt(lambda2**2/(n-censor2));
cov=lambda2**2 /n;

corr=cov/(sell*se2);
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rhohat1l=lambda2/lambdall;
rhohat2=lambda2/lambdal2;
Ibl=lambdall-2*sell; ubl=lambdall+2%*sell;
Ib2=lambdal2-2*sel12; ub2=lambdal2+2*sel2;
Ib3=lambda2-2*se2; ub3=lambda2+2*se2;
RUN;

PROC PRINT; RUN;

/*PROC LIFETEST data=datal plots=(s,ls, lls);
TIME tuml;

strata treatment;

OUTSURV OUT=tuml;

RUN;

PROC LIFETEST data=datal plots=(s,ls, lls);
TIME tum2*delta(1);

strata treatment;

OUTSURV OUT=tum?2;

RUN;

PROC SORT DATA=datal;

BY treatment;

RUN;

PROC NLP tech=newrap DATA=datal OUTEST=init ;

MAX logf;
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PARMS Laml=1, b=1;

logf=log(b) + log(Lam1)+

+(b-1)*log(tum1)

-Lam1*tum1**Db ;

BY treatment;

RUN;

PROC NLP tech=newrap DATA=datal OUTEST=init ;

MAX logf;

PARMS lam1=1, Lam2=1, b=1;

logf=log(b) + log(Lam1)+

+(b-1)*log(tuml)

-Lam1*tum1**b + (1-delta)*log(b) + (1-delta)*log(Lam2)+
+(b-1)*(1-delta)*log(tum?2)

-(1-delta)*Lam2*tum2**b -delta*lam2*tum2**b;

BY treatment;

RUN;

DATA data2; set datal;

IF treatment ="Cont’ THEN DO; yl=tum1**3; y2=tum2**3; END;
IF treatment ='Res’ THEN DO; yl=tum1**3; y2=tum2**4; END;
IF treatment =’EGCG’ THEN DO; yl=tum1**3; y2=tum2**4; END;
RUN;

PROC LIFETEST data=data2 plots=(s,ls, lls);
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TIME y1;

strata treatment;

RUN;

PROC LIFETEST data=data2 plots=(s,ls, lls);
TIME y2*delta(1);

strata treatment;

RUN;
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