
Factor Pair Latin Squares

by

James M. Hammer, III

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
May 10, 2015

Keywords: Factor Pair, Latin Square, Factor Pair Latin Square, Quasi-Factor Pair Latin
Square, Sudoku Design, Factor Pair Latin Square Design, Gerechte Design, Mutliple

Gerechte Design

Copyright 2015 by James M. Hammer, III

Approved by

Dean G. Hoffman, Professor, Professor of Mathematics
Chris A. Rodger, Don Logan Endowed Chair in Mathematics, Professor of Mathematics

Peter D. Johnson, Professor, Professor of Mathematics
Douglas A. Leonard, Professor, Professor of Mathematics

Abstract

Sudoku has risen in popularity over the past few years. The rules are simple, yet the

solutions are often less than trivial. Mathematically, these puzzles are interesting in their

own right. This dissertation will use the idea of a Sudoku Puzzle to define a new kind of n×n

array. Further, we will aim to prove some necessary (and on occasion sufficient) conditions

for the existence of these arrays. To that end, we define a latin square of order n as an n×n

array where every row and every column contain every symbol 1, 2, . . . , n exactly once. We

say a× b is an ordered factor pair of the integer n if n = a× b. An (a, b)-Sudoku latin square

is a latin square where in addition to each row and column containing every symbol exactly

once, each a× b rectangle also contains every symbol exactly once when the n× n array is

tiled with a× b rectangles in the natural way. A factor pair latin square of order n (denoted

FPLS(n)) is an (a, b)-Sudoku latin square for every factor pair (a, b) of n. This dissertation

will mainly be concerned with the existence of such designs as well as related problems to

such designs.

ii

Acknowledgments

I would like to thank the entire Mathematics Department at Auburn University. In

particular, I would like to express my deepest gratitude to my advisory committee, without

whom this would not be possible. Dr. Chris Rodger, Dr. Douglas Leonard, and Dr. Pete

Johnson have always been there for me whenever I needed an ear to talk through an idea.

Each one of you has taught me a great lesson about what it means to be a professor, a

mathematician, and a mentor. Thank you to Dr. Dean G. Hoffman for seeing me through

this problem and through the entirety of my graduate career at Auburn University. You

have always believed in me and given me room to explore wherever this problem led me,

encouraging me the entire way. This problem was Dr. Hoffman’s brain child. Thank you for

your willingness to share it with me.

I would also like to thank my advisors from my undergraduate university – Kutztown

University of Pennsylvania. Thank you Dr. Padraig McLoughlin, who believed in me and

ensured that I got into a good graduate school. To Dr. Anke Walz, Words cannot describe

how much your constant guidance and friendship has meant to me through the years. You

have been my mentor and role model. I have never stopped learning from you, and I suspect

that I never will.

To my colleagues at Auburn. It sounds cliché to all of you, but my Auburn Family has

been my family away from home. I tried to enumerate the people that I would have to thank

in this paragraph; however, the list is just too extensive. It will have to suffice to say that

you all know who you are. I couldn’t have made it through without you all. We’ve had a lot

of fun, laughed, cried, and worked together. You’ve been with me through everything, and

I think you all for that. I will never forget these times. I hope to stay in touch with each

and every one of you.

iii

To my friends in from Pennsylvania. You’re more like family to me than friends. Like

my family, you have been there with me through the good times and the bad times. I would

do anything for you, and I know you would do anything for me. In particular, thank you

Brian Levering, Nate Ohlinger, Mark Shivers, Mike Ricco, James Corson, and Jim Bellizzi.

I have looked up to all of you all for different reasons throughout my life, and I continue to

do so.

To my Family. In particular, I would like to thank Gina Hammer, Jim Hammer, Mary

Assetto, Jack Assetto, Danny Concordia, and Darlene Concordia. What can I say? Each

and every one of you have been there with me through thick and thin. You have always

stood by me, no matter what. You have gotten me through some hard times. Each one of

you have been there when I really needed you. You believed in me when I didn’t believe in

myself. What more can I say but I love you all dearly. I wouldn’t be the person I am today

if it weren’t for all of you believing in me and supporting me through the years. From the

bottom of my heart, thank you!

iv

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Figures . vii

1 Introduction . 1

1.1 History . 1

1.2 Plan of Attack . 3

2 Known Constructions of Factor Pair Latin Squares 5

2.1 Power of Primes . 7

2.2 Twice a Prime . 9

3 Wording as a k-Uniform Hypergraph . 14

3.1 Three Edges . 15

3.2 Four Edges . 16

3.3 Greater than Four Edges . 20

4 Negative Results on Factor Pair Latin Squares 22

4.1 Generalizing Order Twelve . 22

4.2 Generalizing Order Twenty . 27

4.3 General Order Twenty-Eight . 31

5 Results on Quasi-Factor Pair Latin Squares . 37

5.1 Order Twelve . 37

5.2 Order Twenty-Four . 38

6 Mappings to other Problems . 41

6.1 Exact Cover Problem . 41

6.2 Resolvable 1-Designs . 42

v

6.3 Multiple Gerechte Designs . 43

6.4 Pigeon-Hole Principle . 45

7 Open Problems . 47

Bibliography . 50

Appendices . 51

A Inadmissibility Code . 52

B Inadmissible Values . 55

C Backtracking Program . 59

D DLX Code . 63

D.1 Header File . 63

D.2 CPP File . 68

vi

List of Figures

1.1 FPLS(6) . 2

2.1 (a, b)-Sudoku Latin Square Construction . 6

2.2 Power of Primes . 8

2.3 FPLS(8) . 9

2.4 Z2 . 11

2.5 Z7 . 12

2.6 Z7 Construction . 12

2.7 FPLS(14) . 13

3.1 n-Coloring n-Uniform Hyper-Graph with Three Edges 16

3.2 Four Rectangles . 19

3.3 Row Reduced Four Rectangles . 19

3.4 Pictoral Version of Theorem 3.3 . 20

4.1 Similar Proof to Order 12 . 23

4.2 Three Conditions . 25

4.3 n ≡ 0 (mod 12) . 26

vii

4.4 FPLS(15) . 28

4.5 FPLS(18) . 28

4.6 Generalization of Order Twenty . 29

4.7 FPLS(21) . 32

4.8 Generalization of Order Twenty-Eight . 33

4.9 Five Hyper Edges in Order Twenty Eight . 35

5.1 QFPLS(12, {1× 12, 12× 1, 2× 6, 6× 2, 3× 4}) 38

5.2 QFPLS(24, {1× 24, 24× 1, 2× 12, 12× 2, 4× 6, 6× 4}) 40

viii

Chapter 1

Introduction

1.1 History

In recent years, Sudoku puzzles have become extremely popular. The modern day

Sudoku puzzle first appeared in 1979 as a puzzle called “Number Place” in Dell Magazine.

[5] They were designed by Howard Garns [1], a freelance puzzle constructor and retired

architect. A Sudoku puzzle is a 9 × 9 square grids in which every cell contains exactly one

symbol, typically denoted with integers 1 through 9, in such a way that each 1 × 9 row

contains each symbol exactly once, each 9 × 1 column contains each symbol exactly once,

and each 3×3 sub-square (often called blocks or regions) contains each symbol exactly once.

For ease of speech, we say a subset S of n cells of an n × n grid is latin if S contains each

symbol exactly once. The property that every row and every column is latin is an important

property. Arrays in which every row and every column is latin are called latin squares.

So, how would one go about extending the idea of what a Sudoku puzzle is for orders

larger than nine? To define a higher order Sudoku puzzle, one must determine what size the

blocks will be. A positive integer n is said to have ordered factor pairs (a, b) if n = a × b.

Naturally, if (a, b) is an ordered factor pair of a positive integer then (b, a) is also an ordered

factor pair. The distinction is important in this case, because when we are defining regions

over the n×n grid, the a×b regions may be different from the b×a regions. More specifically,

if a > b then the a × b regions have more rows than columns while the b × a regions have

more columns than rows. One might observe that the a×b regions look like the b×a regions

if one were to transpose the n× n array. So, given an ordered factor pair (a, b) of a positive

integer n, the n × n grid can then be partitioned into a × b regions in a very natural way,

namely starting in the top left corner. An (a, b)-Sudoku latin square of order n is a latin

1

1 2 3 4 5 6

4 5 6 1 2 3

3 6 2 5 1 4

5 1 4 6 3 2

2 4 1 3 6 5

6 3 5 2 4 1

.

Figure 1.1: FPLS(6)

square on the symbol set {1, 2, . . . n} where each a × b region in the natural tiling contains

all of the symbols exactly once [6].

As this dissertation is mainly concerned with existence of different kinds of designs, it

is interesting to see when an (a, b)-Sudoku latin square exists. One might observe that there

exists an (a, b)-Sudoku latin square for each ordered factor pair (a, b) of a positive integer

n, as will be shown in Chapter 2 by giving an explicit construction. We will then take this

definition a step further and say a factor pair latin square of order n, denoted FPLS(n), is

an (a, b)-Sudoku latin square of order n for every ordered factor pair (a, b) of n.

Certainly as the number of ordered factor pairs increase, the problem gets more complex.

In order to solidify this idea, perhaps an example is in order. First, observe that the number

six has ordered factor pairs 1× 6, 6× 1, 2× 3, and 3× 2. Therefore, a FPLS(6) would have

the following regions being Latin: 1 × 6, 6 × 1, 3 × 2, and 2 × 3. An example of a FPLS(6)

is presented in Figure 1.1.

Of course, the first question that arises with such a definition is to whether these designs

exist or not. Originally, it was conjectured that there existed a factor pair latin square for

every order n; however, as we will see in Chapter 4, this conjecture is false since there exist

several infinite families of positive integers n such that there does not exist a factor pair latin

square of order n. Therefore, finding necessary and sufficient conditions for the existence of

such designs is non-trivial.

2

There are other natural questions to ask as we are striving to generalize the definition

of a Sudoku puzzle. One such way is to change the shape of the regions. These designs

are called Gerechte designs [3]. Gerechte designs have been useful in designing agricultural

experiments. Moreover, an n×n square that satisfies multiple Gerechte designs at the same

time is called a multiple Gerechte design [1]. This dissertation will focus on finding some

necessary (and sometimes sufficient) conditions for the existence of factor pair latin squares,

which are special types of multiple Gerechte designs.

1.2 Plan of Attack

This dissertation will mainly be concerned with finding some necessary and sufficient

conditions for the existence of factor pair latin squares. That is to say, for what orders can it

be guaranteed that a factor pair latin squares exists and for what orders can it be guaranteed

that a factor pair latin squares does not exist? To that end, Chapter 2 will look at a few

small examples as well as some natural constructions of factor pair latin squres. Afterwards,

Chapter 4 will produce some infinite families of factor pair latin squares that do not exist.

One of the most basic factor pair latin square that can be constructed is one of a prime

order; since if p is prime, the only ordered factor pairs of p are 1× p and p× 1. This simply

means that every row and every column in the p× p array is latin. Since latin squares exist

for every order n (as stated in [7]), if one is looking for a factor pair latin square of prime

order p, one can pick any latin square of order p as a representative.

Chapter 2 will be concerned with some general constructions of factor pair latin squares.

Section 2.2 will give a construction for when n is the power of a prime number and Section

2.1 will construct a factor pair latin square of order 2p, where p is a prime number.

It is sometimes helpful to word a problem in different ways. To that avail, a hypergraph

is a pair H = (V,E) where V is a set of vertices and E is a set of subsets of V called edges

or hyperedges. Moreover, a k-uniform hypergraph is a hypergraph in which every edge is of

size k (that is every edge is incident to k vertices). Constructing a partial factor pair latin

3

square of order n is equivalent to properly rainbow n-coloring the vertices (meaning that the

colors on the vertices of each edge are all different) of an n-uniform hypergraph with nN

edges, where N is the number of ordered factor pairs. Chapter 2 will give necessary and

sufficient conditions for a rainbow n-coloring when there are less than or equal to four edges

in the n-uniform hypergraph that intersect. When more than four edges can intersect, the

conditions are shown to be necessary and not sufficient.

Further, one can construct examples of factor pair latin squares up to and including

order eleven with constructions given in Chapter 2. Order twelve, however, is an interesting

case. It will be discussed in Section 4.1 as to why there does not exist a factor pair latin

square of order twelve. The remainder of Chapter 4 will give other infinite families of orders

for which factor pair latin squares do not exist.

Section 6.1 will map the completion of a partial factor pair latin square to the exact

cover problem. In doing this, Donald Knuth’s DLX algorithm can be used as discussed

in [9]. Programs to brute force a partially filled factor pair latin square have been put in

Appendices C and D. Chapter 6 will address the problem of completing a factor pair latin

square in terms of the pigeon-hole principle (Section 6.4).

When there does not exist a factor pair latin square, Chapter 5 will discuss when a

maximum set of ordered factor pairs F exists such that for every ordered factor pair (a, b)

from F there is an (a, b)-Sudoku latin square. The aforementioned designs will be called

quasi-factor pair latin squares.

Lastly, Chapter 7 will discuss open problems and future research.

4

Chapter 2

Known Constructions of Factor Pair Latin Squares

Provided n = ab, and n, a, and b are positive integers, an (a, b)-Sudoku latin square of

order n is a latin square on the symbol set {1, 2, . . . n} where each a× b region in the natural

tiling contains all of the symbols exactly once [6]. A factor pair latin square is an (a, b)-

Sudoku latin square for every ordered factor pair of order n. Since we are using (a, b)-Sudoku

latin squares to define a factor pair latin square, it is good to start out with the existence of

(a, b)-Sudoku latin squares.

Theorem 2.1. There exists an (a, b)-Sudoku latin square for each ordered factor pair (a, b)

of order n.

Proof. This proof will be constructive. That is to say that it will give an algorithm for

creating an (a, b)-Sudoku latin square followed by a proof that the algorithm works.

Algorithm. Construct an ab× ab array as in Figure 2.1 as follows:

1. Fill in the top left a × b so that each symbol appears exactly once. Call this a × b

matrix A.

2. Let the a× a matrix

P =

0 1

Ia−1,a−1 0

define the permutation matrix of order a that cyclically shifts the rows by one and the

b× b matrix

Q =

0 Ib−1,b−1

1 0

denote the permutation matrix of order b that cyclically shifts the columns by one.

5

b j

a A

i P i−1AQj−1

Figure 2.1: (a, b)-Sudoku Latin Square Construction

3. For the 1 ≤ i ≤ b and 1 ≤ j ≤ a, to compute the rectangle in the ith row (with

respect to the rectangles) and jth column (with respect to the rectangles), multiply

P i−1AQj−1.

Justification. Since every symbol occurs exactly once in the top left a× b rectangle, the top

left rectangle is clearly latin. For 1 ≤ i ≤ b, since P i is a permutation matrix of order a

which rotates the rows cyclically down by i, each of the first a rows in the n × n array are

latin. Also, since the original top left a × b rectangle was latin to begin with, rectangles in

the first row of a × b rectangles are also latin. In a similar fashion, for 1 ≤ j ≤ a, since Qj

is a permutation matrix of order b which rotates the columns cyclically right by j, each of

the columns in the n× n array is latin. Similarly, the remaining rows of the n× n array are

latin since the first a rows were latin. Once again, since the original top left a× b rectangle

was latin to begin with, each of the subsequent rectangles obtained by multiplying by these

permutation matrices will also be latin, since the permutations are only effecting how the

symbols are arranged within each a× b rectangle.

However, there is not a similar theorem for factor pair latin squares. As we will see in

Chapter 4, there does not exist a factor pair latin square for every order n. This section will

be mostly be concerned with constructing infinite families of factor pair latin squares.

6

2.1 Power of Primes

One might observe that there exists a factor pair latin square of every prime order. A

number p is said to be prime if it is greater than one and has no positive factors other than

one and itself. Given a prime number p, the only two ordered factor pairs that need to be

latin are the 1 × p rows and the p × 1 columns. By the definition of a latin square, every

latin square of order p is a factor pair latin square of order p.

On a less trivial note, it is natural to look at the prime factorization of a number n,

since factor pair latin squares are designs that are concerned with all of the ordered factors

of the number n. Before we get to the following theorem, we first need to define what a word

is. A word is an ordered sequence of symbols often called letters from a particular set which

is often called the alphabet. For example, Zαp will have words of length α with respect to the

alphabet Zp. That is to say that every symbol must come from Zp (for example, the word

1101 would be a word in Z4
2). We will also need to know what a quasigroup is. A quasigroup

is a latin square with a headline, a sideline, and a binary operation defined. The following

theorem ensures that a factor pair latin square can be constructed if n is a power of a prime

number.

Theorem 2.2. Let p be a prime number and let α be a positive integer. Then there exists a

factor pair latin square of order pα.

Proof. This proof will be constructive. That is to say that it will give an algorithm for

creating a factor pair latin square of order n = pα, followed by a proof that the algorithm

does what is intended.

Algorithm. Let Zαp denote the words of length α from the alphabet Zp. Consider the following

quasigroup with entries from Zαp . Label the headline with v1, v2, . . . , vn such that
⋃n
i=1 vi =

Zαp and the vi’s are ordered lexicographically. Label the sideline with u1, u2, . . . , un where

ui is obtained from vi by applying the permutation (α, α− 1, . . . , 2, 1). Let the entry of cell

(a, b) be a+ b (mod p).

7

bbbbb . . . b

bbbbb . . . b

v

w

Each Block

︷ ︸︸ ︷
w bbbbbbb . . . b

bbbbb . . . b v

︷ ︸︸ ︷

︷ ︸︸ ︷

|v|

|w|

Figure 2.2: Power of Primes

Justification. Define a block of the array to be the projection of the block we are interested

in onto the headline and sideline. Let β ∈ {0, 1, . . . , α} and note that each block in the

headline consists of a word w of length β concatenated with every word of length α−β. The

sideline has every word of length β concatenated with some fixed word v of length α − β.

So, within each block, v and w are set words that run through every combination of words

of size |v| and |w| respectively. Moreover, this means that every rectangle of size pα−β × pβ

must be latin. This can be exemplified by the following example as well as Figure 2.2.

Perhaps an example is in order. A factor pair latin square of order eight can be con-

structed using the method outlined in Theorem 2.2, since eight has a prime factor decompo-

sition of 23. What follows is the construction from Theorem 2.2 for a factor pair latin square

of order eight. If one examines the boxed in cells in Figure 2.3, the w in the above proof

represents the word 1. Notice that all of the words of length two are concatenated to w.

Similarly, v is the word 01. Notice that v is concatenated to all possible words of length one,

producing the latin 2× 4 block in boxed in cells.

For constructing a FPLS(8), we construct (Z3
2) as in Figure 2.3.

8

+ 000 001 010 011 100 101 110 111
000 000 001 010 011 100 101 110 111
100 100 101 110 111 000 001 010 011
010 010 011 000 001 110 111 100 101
110 110 111 100 101 010 011 000 001
001 001 000 011 010 101 100 111 110
101 101 100 111 110 001 000 011 010
011 011 010 001 000 111 110 101 100
111 111 110 101 100 011 010 001 000

Figure 2.3: FPLS(8)

2.2 Twice a Prime

One of the goals is to get constructions for as many factor pair latin squares as we can.

To that avail, if n can be decomposed into twice a prime number, then a factor pair latin

square of order n can be constructed. That is there exists a factor pair latin square of order

n = 2p, where p is a prime number.

Theorem 2.3. Let p be a prime number. Then there exists a factor pair latin square of

order 2p.

Proof. This proof will be constructive. That is to say that when p is a prime number an

algorithm is presented for creating a factor pair latin square of order 2p. This will be followed

by a proof that the algorithm does what is intended.

Algorithm. Since n = 2p, we will be looking at elements from Z2 × Zp. That is to say that

every element in the 2p× 2p array will be an ordered pair (a, b) where a is an element of Z2

and b is an element of Zp. For ease of construction, we will construct two different 2p × 2p

arrays. The first array, Z1, will be with symbols from Z2, while the second array, Zp, will

correspond to symbols from Zp. Let xij denote the symbol in cell (i, j) of Z2 and yij denote

the symbol in cell (i, j) of Zp. Cell (i, j) of the constructed factor pair latin square of order

2p will be filled with the ordered pair (xij, yij). Construct Z2 and Zp as follows:

To construct Z2:

9

• In the first row, fill the first p cells up with the symbol 0 and cells p + 1 through 2p

with the symbol 1.

• In the second row, fill the first p cells up with the symbol 1 and cells p+ 1 through 2p

with the symbol 0.

• For rows 3 through 2p, use the addition table for Z2 with the headline of alternating

0’s and 1’s and the sideline of alternating 0’s and 1’s.

To construct Zp:

• For the first two rows, use the headline 0 through p− 1 twice and the sideline 0.

• For the third row through the (p − 1)st row, group the rows in two. The sideline for

the third and fourth row should be 2, the fifth and sixth should be 4, and so on to the

(p− 1)st row.

• For rows (p+2) through (2p− 2), group the rows in two. The sideline for the (p+ 2)th

and (p+ 3)th row should be 1, the (p+ 4)th and the (p+ 5)th rows should be 3, and so

on.

• For the pth row and the (2p)th row, use the headline of 0, 0, 2, 2, 4, 4, . . . , p, p. The

sideline should be p− 1.

• For the (p+ 1)st row and the (2p− 1)st row, use the headline p− 1, 1, 1, 3, 3, . . . , p− 1

with the sideline p− 1.

Justification. Notice that in Zp, each 2×p block and each p×2 block has symbols 1 through

2p exactly twice. This fact is obvious for the first two rows, and is true for every subsequent

pair of two rows from the third row through the (p − 1)st row as well as the (p + 2)nd row

through the (2p − 2)nd row since we are simply repeating the symbols (that is to say the

third row is the same as the fourth row and so on). Similarly, the pth row and the (p + 1)st

row as well as the (2p)th row and the (2p− 1)st row have each symbol exactly twice since for

10

0 0 0 0 0 0 0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0 1 0

Figure 2.4: Z2

every symbol, it’s partner is next to it accept for the pth symbol, which is the first symbol of

the next row. Moreover, each repeated symbol is next to it’s partner (it’s partner is either

to the left, right, above or below it) accept for the (p+1)st row and the (2p−1)st row, which

have exactly one symbol that wraps around the grid. In any case, the Z2 grid alternates

between symbols 0 and 1, making every ordered pair occur exactly once within each row,

column, and block of the grid.

As an illustration of this, a factor pair latin square of order fourteen will be constructed

using the above algorithm. By the above algorithm, we have Z2 as in Figure 2.4 and Z7 as

in Figure 2.6 and Figure 2.5. Putting both Z2 and Z7 together, a completed factor pair latin

square of order fourteen will be produced in Figure 2.7

11

0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 1 2 3 4 5 6 0 1 2 3 4 5 6

2 3 4 5 6 0 1 2 3 4 5 6 0 1

2 3 4 5 6 0 1 2 3 4 5 6 0 1

4 5 6 0 1 2 3 4 5 6 0 1 2 3

4 5 6 0 1 2 3 4 5 6 0 1 2 3

6 6 1 1 3 3 5 5 0 0 2 2 4 4

5 0 0 2 2 4 4 6 6 1 1 3 3 5

1 2 3 4 5 6 0 1 2 3 4 5 6 0

1 2 3 4 5 6 0 1 2 3 4 5 6 0

3 4 5 6 0 1 2 3 4 5 6 0 1 2

3 4 5 6 0 1 2 3 4 5 6 0 1 2

5 0 0 2 2 4 4 6 6 1 1 3 3 5

6 6 1 1 3 3 5 5 0 0 2 2 4 4

.

Figure 2.5: Z7

0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6 0 1 2 3 4 5 6

2 2 3 4 5 6 0 1 2 3 4 5 6 0 1

2 2 3 4 5 6 0 1 2 3 4 5 6 0 1

4 4 5 6 0 1 2 3 4 5 6 0 1 2 3

4 4 5 6 0 1 2 3 4 5 6 0 1 2 3

0 0 2 2 4 4 6 6 1 1 3 3 5 5

6 6 6 1 1 3 3 5 5 0 0 2 2 4 4

6 1 1 3 3 5 5 0 0 2 2 4 4 6

6 5 0 0 2 2 4 4 6 6 1 1 3 3 5

0 1 2 3 4 5 6 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0 1 2 3 4 5 6 0

1 1 2 3 4 5 6 0 1 2 3 4 5 6 0

3 3 4 5 6 0 1 2 3 4 5 6 0 1 2

3 3 4 5 6 0 1 2 3 4 5 6 0 1 2

6 1 1 3 3 5 5 0 0 2 2 4 4 6

6 5 0 0 2 2 4 4 6 6 1 1 3 3 5

0 0 2 2 4 4 6 6 1 1 3 3 5 5

6 6 6 1 1 3 3 5 5 0 0 2 2 4 4

Figure 2.6: Z7 Construction

12

0,0 0,1 0,2 0,3 0,4 0,5 0,6 1,0 1,1 1,2 1,3 1,4 1,5 1,6

1,0 1,1 1,2 1,3 1,4 1,5 1,6 0,0 0,1 0,2 0,3 0,4 0,5 0,6

0,2 1,3 0,4 1,5 0,6 1,0 0,1 1,2 0,3 1,4 0,5 1,6 0,0 1,1

1,2 0,3 1,4 0,5 1,6 0,0 1,1 0,2 1,3 0,4 1,5 0,6 1,0 0,1

0,4 1,5 0,6 1,0 0,1 1,2 0,3 1,4 0,5 1,6 0,0 1,1 0,2 1,3

1,4 0,5 1,6 0,0 1,1 0,2 1,3 0,4 1,5 0,6 1,0 0,1 1,2 0,3

0,6 1,6 0,1 1,1 0,3 1,3 0,5 1,5 0,0 1,0 0,2 1,2 0,4 1,4

1,5 0,0 1,0 0,2 1,2 0,4 1,4 0,6 1,6 0,1 1,1 0,3 1,3 0,5

0,1 1,2 0,3 1,4 0,5 1,6 0,0 1,1 0,2 1,3 0,4 1,5 0,6 1,0

1,1 0,2 1,3 0,4 1,5 0,6 1,0 0,1 1,2 0,3 1,4 0,5 1,6 0,0

0,3 1,4 0,5 1,6 0,0 1,1 0,2 1,3 0,4 1,5 0,6 1,0 0,1 1,2

1,3 0,4 1,5 0,6 1,0 0,1 1,2 0,3 1,4 0,5 1,6 0,0 1,1 0,2

0,5 1,0 0,0 1,2 0,2 1,4 0,4 1,6 0,6 1,1 0,1 1,3 0,3 1,5

1,6 0,6 1,1 0,1 1,3 0,3 1,5 0,5 1,0 0,0 1,2 0,2 1,4 0,4

Figure 2.7: FPLS(14)

13

Chapter 3

Wording as a k-Uniform Hypergraph

In order to properly reword this problem in terms of Graph Theory, some preliminary

definitions must be presented. A hypergraph is a pair H = (V,E) where V is a set of vertices

and E is a set of subsets of V called edges or hyperedges.

Let Vn be the n2 vertices corresponding to the cells of an n× n array. Let J be the set

of indices of the form (a, b, j) , 1 ≤ j ≤ n, where (a, b) is an ordered factor pair of n. So,

A (a, b, j) is the jth sub-rectangle of the n×n array of cells in the natural partition ordering

them in “typewriter” order. For all j ∈ J , let Aj ⊆ Vn be the set of n cells of the n×n array

corresponding to the n cells of the jth rectangle of the factor pair latin square. So, for each

ordered factor pair, the set of nonempty rectangles Ai associated with that ordered factor

pair partitions Vn. Let En = {Aj | 1 ≤ j ≤ fn} and define the hypergraph Hn = (Vn, En).

Further, let AI =
⋂
i∈I Ai \

⋃
j∈IC Aj. So , for all i ∈ I, the set of all nonempty Ai also

partitions Vn.

A k-uniform hypergraph is a hypergraph where every edge is of size k. It should be noted

that each edge of the hypergraph generated by a factor pair latin square will have n vertices

in it, making the hypergraph formed from the factor pair latin square of order n an n-uniform

hypergraph. A coloring C of the hypergraph H is said to be a proper rainbow coloring of H

if no edge of H contains two vertices of the same color. If a hypergraph has a proper rainbow

coloring in c colors, we say that the hypergraph is c-rainbow colorable. When is a k-uniform

hypergraph k-rainbow colorable? In general, this question is NP -complete; however, for

k-uniform hypergraphs with four edges or less, necessary and sufficient conditions can be

found.

14

3.1 Three Edges

The following theorem demonstrates when a k-uniform hypergraph with three edges is

k-rainbow colorable.

Theorem 3.1. Let H be an n-uniform hypergraph with N = 3 edges. Then, H is n-rainbow

colorable if and only if

|A1,2|+ |A1,3|+ |A2,3|+ |A1,2,3| ≤ n.

Proof. Clearly, if H is a n-rainbow colorable then |A1,2|+ |A1,3|+ |A2,3|+ |A1,2,3| ≤ n, since

any two vertices are in at least one edge together. That is to say they must all be different

colors. Since there are only n colors to choose from, the above summation must be less than

n.

Since H is an n-uniform hypergraph, the following conditions are always true:

|A1,2|+ |A1,3|+ |A1,2,3| ≤ n

|A1,2|+ |A2,3|+ |A1,2,3| ≤ n

|A1,3|+ |A2,3|+ |A1,2,3| ≤ n.

If |A1,2|+ |A1,3|+ |A2,3|+ |A1,2,3| ≤ n, then there are five different color classes as depicted

in Figure 3.1, Where v, w, x, y, and z denote the number of color classes that have the

configuration depicted above them. Summing them all up gives us n, which is also the

number of colors. Moreover, this will give us a proper n-rainbow coloring of H.

Naturally, if one can find a |AI | which has greater than n cells in it where every two

cells are in at least one edge together, there cannot exist a factor pair latin square of order

n, since there are not enough symbols to fill all of the cells of |AI |. The following corollary

says that these conditions are necessary for three rectangles which are allowed to overlap in

a factor pair latin square of order n.

15

v = |A1,2,3| w = |A2,3| x = |A1,3|

y = |A1,2| z = n− v − w − x− y

Figure 3.1: n-Coloring n-Uniform Hyper-Graph with Three Edges

Corollary 3.2. There does not exist a factor pair latin square of order n if there exist N = 3

rectangles A1, A2, and A3 such that

|A1,3|+ |A1,2|+ |A2,3|+ |A1,2,3| > n.

Proof. This follows from the contrapositive of Theorem 3.1. If the above inequality holds,

then the n-uniform hypergraph is not n-rainbow colorable. Moreover, this means that there

does not exist a factor pair latin square.

The above fact will be used in an alternate proof of Theorem 4.2.

3.2 Four Edges

Since all that was needed from Theorem 3.1 was sufficiency when discussing factor pair

latin squares, as we increase the number of edges in the n-uniform hypergraph, sufficiency

will suffice. Nevertheless, for an n-uniform hypergraph with four edges, inequalities can be

found that are both necessary and sufficient.

16

Theorem 3.3. Let H be an n-uniform hypergraph with N = 4 edges. Then, H is n-rainbow

colorable if and only if

|A1234|+ |A123|+ |A124|+ |A134|+ |A234|+ |A23|+ |A24|+ |A34| ≤ n,

|A1234|+ |A123|+ |A124|+ |A134|+ |A234|+ |A14|+ |A24|+ |A34| ≤ n,

|A1234|+ |A123|+ |A124|+ |A134|+ |A234|+ |A12|+ |A23|+ |A24| ≤ n,

|A1234|+ |A123|+ |A124|+ |A134|+ |A234|+ |A12|+ |A14|+ |A24| ≤ n,

|A1234|+ |A123|+ |A124|+ |A134|+ |A234|+ |A13|+ |A23|+ |A34| ≤ n,

|A1234|+ |A123|+ |A124|+ |A134|+ |A234|+ |A13|+ |A14|+ |A34| ≤ n,

|A1234|+ |A123|+ |A124|+ |A134|+ |A234|+ |A12|+ |A13|+ |A23| ≤ n, and

|A1234|+ |A123|+ |A124|+ |A134|+ |A234|+ |A12|+ |A13|+ |A14| ≤ n.

Proof. A similar proof to Theorem 3.1 could be used; however, an alternative proof will be

given here using set theory and linear algebra. A set partition of a set U (often called a

universal set) is a non-empty set of non-empty subsets of U such that every element u of U

is in exactly one subset. In other words, if P is a partition of a set N = {1, 2, 3, 4}, then

a) ∅ 6∈ P , b)
⋃
A∈P A = N , and c) If A,B ∈ P and A 6= B, then A ∩B = ∅. Let E denote

the set of all set partitions of N . Construct a (24 − 1) × |E | matrix whose headline is E

and sideline is 2N \ ∅, filling cell (i, j) with a 1 if and only if the set in the ith sideline is

contained in the set partition in the jth column and a 0 otherwise as done in Figure 3.2.

A
(
2N − 1

)
×
(
2N − 1

)
identity matrix has been appended to the matrix in order to keep

track of the elementary row operations. Using elementary row operations to row reduce

the matrix, we find that there are
(
2N − 1

)
inequalities along with three free variables as

depicted in Figure 3.3.

From the construction of this matrix, it was necessary that each row had to be greater

than or equal to zero (that is, no subset of a partition can be negative). Let i ∈ N and

let Ki be the set of subsets of 2N that contain i except for the singleton set {i}. With this

17

notation, it is clear that |Ai| = n−∑j∈Ki
|Aj|. Using this substitution along with Fourier-

Motzkin elimination [4] gives us the above inequalities, showing that these conditions are

necessary.

Sufficiency holds as well. To show this, split the matrix into two pieces. On the side with

the set partitions, we have an identity matrix. On the other side, we have the elementary

row operations done in order to row reduce the set partition side. Reading this matrix from

left to right gives us that the set partition indicated on the left is equal to the sum of the

row operations depicted on the right. Moreover, if the above inequalities hold, these give us

our color classes as in the proof of sufficiency in Theorem 3.1.

As before, if one can find an |AI | which has greater than n cells in it such that every

two cells are in at least one edge together then there cannot exist a factor pair latin square

of order n, since there are not enough symbols to fill all of the cells of |AI |. The following

corollary says that for four rectangles which are allowed to overlap, these conditions are

necessary.

Corollary 3.4. There does not exist a factor pair latin square of order n if there exist N = 4

rectangles A1, A2, A3, and A4 such that

|A1234|+ |A123|+ |A124|+ |A134|+ |A234|+ |A23|+ |A24|+ |A34| > n,

|A1234|+ |A123|+ |A124|+ |A134|+ |A234|+ |A14|+ |A24|+ |A34| > n,

|A1234|+ |A123|+ |A124|+ |A134|+ |A234|+ |A12|+ |A23|+ |A24| > n,

|A1234|+ |A123|+ |A124|+ |A134|+ |A234|+ |A12|+ |A14|+ |A24| > n,

|A1234|+ |A123|+ |A124|+ |A134|+ |A234|+ |A13|+ |A23|+ |A34| > n,

|A1234|+ |A123|+ |A124|+ |A134|+ |A234|+ |A13|+ |A14|+ |A34| > n,

|A1234|+ |A123|+ |A124|+ |A134|+ |A234|+ |A12|+ |A13|+ |A23| > n, or

|A1234|+ |A123|+ |A124|+ |A134|+ |A234|+ |A12|+ |A13|+ |A14| > n.

18

1
2
3
4

1
2
3
|4

1
2
4
|3

1
3
4
|2

2
3
4
|1

1
2
|3

4
1
3
|2

4
1
4
|2

3
1
2
|3
|4

1
3
|2
|4

1
4
|2
|3

2
3
|1
|4

2
4
|1
|3

3
4
|1
|2

1
|2
|3
|4

1
0

0
0

0
1

0
0

0
0

0
0

1
1

1
1

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

0
0

0
1

0
0

0
0

0
1

1
0

0
1

1
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

3
0

0
1

0
0

0
0

0
1

0
1

0
1

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
4

0
1

0
0

0
0

0
0

1
1

0
1

0
0

1
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

1
2

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

1
3

0
0

0
0

0
0

1
0

0
1

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

1
4

0
0

0
0

0
0

0
1

0
0

1
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

2
3

0
0

0
0

0
0

0
1

0
0

0
1

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

2
4

0
0

0
0

0
0

1
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

3
4

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

1
2
3

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

1
2
4

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

1
3
4

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

2
3
4

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

1
2
3
4

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

F
ig

u
re

3.
2:

F
ou

r
R

ec
ta

n
gl

es

α
β

γ
A

1
A

2
A

3
A

4
A

1
2

A
1
3

A
1
4

A
2
3

A
2
4

A
3
4

A
1
2
3

A
1
2
4

A
1
3
4

A
2
3
4

A
1
2
3
4

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
1

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
0

1
0

0
0

0
0

1
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

−
1
−

1
−

1
0

0
0

−
1

1
1

0
1

−
1

−
1

1
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

0
0

−
1

0
0

0
0

0
1

0
0

0
0

−
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

0
−

1
0

0
0

0
0

0
0

1
0

0
−

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
1

1
1

0
0

0
1

−
1

−
1

1
−

1
1

1
−

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
1

−
1

−
1

0
0

1
1

−
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

0
0

−
1

1
1

0
0

−
1

−
1

1
0

0
−

1
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
0

−
1

1
0

−
1

1
0

−
1

1
0

−
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
1

−
1

0
1

−
1

1
−

1
0

1
−

1
0

0
0

F
ig

u
re

3.
3:

R
ow

R
ed

u
ce

d
F

ou
r

R
ec

ta
n
gl

es

19

Figure 3.4: Pictoral Version of Theorem 3.3

Proof. This follows from the contrapositive of Theorem 3.3. If the above inequality holds,

then the n-uniform hypergraph is not n-rainbow colorable. Moreover, this means that there

does not exist a factor pair latin square of order n.

3.3 Greater than Four Edges

This observation shows that the necessary conditions for an n-rainbow coloring of an

n-uniform hypergraph is all that is needed when concerned with factor pair latin squares.

Moreover, if we were to depict the inequalities for Theorem 3.3 as done in Figure 3.4, it

becomes evident that all that is needed is a maximal set with the property that any two

intersections are in at least one edge together.

The above observation leads to the following theorem:

Theorem 3.5. Let N denote the number of edges in an n-uniform hypergraph H, N =

{1, 2, 3, . . . , N}, and B be a maximal subset of 2N with the property that for α and β ∈

B, Aα ∩ Aβ 6= ∅. If a hypergraph with N edges is n-rainbow colorable, then

∑

B∈B

|AB| ≤ n.

This is also sufficient if n ≤ 4 as shown in Theorem 3.1 and Theorem 3.3; however, it is not

sufficient for n ≥ 5.

20

Proof. The set B having the property that every two sets, B1 and B2, intersect means that

the vertices within
⋂
J⊆B1

AJ and the vertices within
⋂
J⊆B2

AJ must be in at least one edge

together. In other words, let B1 ∩ B2 = I. Then the vertices within
⋂
J∈B1

AJ and the

vertices within
⋂
J∈B2

AJ must be in rectangle Ai together where i ∈ I. Hence, each of the

vertices in
⋃
B∈BAB must be different colors. Therefore, there must be less than n vertices

in
∑

B∈B |AB|.

These conditions are not sufficient, however, since C5 is a 2-uniform hypergraph which

requires three colors. Since the intersection of any two edges is at most one vertex, the

necessary conditions hold, but C5 cannot be three colored.

Corollary 3.6. Let N denote the number of rectangles in a factor pair latin square of order

n, N = {1, 2, 3, . . . , N}, and B be a maximal subset of 2N with the property that for α and

β ∈ B, Aα ∩ Aβ 6= ∅. There does not exists a factor pair latin square of order n if there

exist N rectangles such that
∑

B∈B

|AB| > n.

Proof. This is a direct consequence (the contrapositive) of Theorem 3.5.

21

Chapter 4

Negative Results on Factor Pair Latin Squares

4.1 Generalizing Order Twelve

At the onset of this problem, it was conjectured that a factor pair latin square existed

for every order. With the proper time and patience, one can easily show that there does not

exist a factor pair latin square of order twelve, since the ordered factor pairs of twelve are

{1× 12, 12× 1, 2× 6, 6× 2, 3× 4, 4× 3}.

Theorem 4.1. There does not exist a factor pair latin square of order twelve.

Proof. Since the first 2× 6 rectangle must be latin, fill the top left most 2× 6 rectangle with

the twelve symbols. Since 6 = 3 · 2, there are 2 rectangles of size 3 × 4 that cover the top

2×6 block. There is also a 4×3 block that covers the top of the first 2×6 block. Moreover,

cell (3, 4) cannot be filled, since it cannot be any symbol from the first 4
6

of the top left 2× 6

rectangle and it cannot be any symbol from the second 3
6

of the top left 2× 6 rectangle.

This can be thought of in terms of hypergraphs as well. An alternate proof will now be

presented.

Proof. Assume that the conditions in Theorem 4.1 hold. Let H = (V,E) define a hypergraph

with three edges, A1 the edge defined by the top left a× b rectangle, A2 the edge defined by

the top left c× d rectangle, and A3 defined by the last b× a rectangle that is incident with

the a× b rectangle. Then |A12| = 6, |A1,3| = 4, |A2,3| = 1, and |A1,2,3| = 2. Moreover,

|A1,2|+ |A1,3|+ |A2,3|+ |A1,2,3| = 13 > 12.

22

︸ ︷︷ ︸
a

b

c

d︷ ︸︸ ︷

︸ ︷︷ ︸
b

a

Figure 4.1: Similar Proof to Order 12

The idea of this proof can be generalized to higher orders. In general, we have the

following theorem that describes in terms of ordered factor pairs what orders are inadmissible

by this technique.

Theorem 4.2. There does not exist a Factor Pair Latin Square if:

n = a · b = c · d,

c < a , b < d,

a+ b > d, and

a | d.

Proof. Since the first c× d rectangle must be latin, fill the top left most c× d rectangle with

the n symbols. Since a | d, we can say that d = a · k. So, there are k rectangles of size

b × a that cover the top c × d block (and more, since c < a < b). Now, since a + b > d, by

substitution, we have that b > a(k − 1). Since this is a strict inequality, the top left most

a× b rectangle must pass through strictly more than k−1 rectangles of size b×a. Moreover,

this means that there is at least one cell that is in the kth b × a rectangle and not in the

original c × d rectangle that cannot be filled, since it covers the first k − 1 columns of the

top left c× d rectangle as well as the other entries of the top left c× d rectangle since that

cell is in the kth b× a rectangle. The top left corner of the proposed factor pair latin square

is depicted in Figure 4.1.

23

This can also be thought of in terms of hypergraphs as well. An alternate proof will

now be presented.

Proof. Assume that the conditions in Theorem 4.2 hold. Let H = (V,E) define a hypergraph

with three edges, A1 the edge defined by the top left a× b rectangle, A2 the edge defined by

the top left c× d rectangle, and A3 defined by the last b× a rectangle that is incident with

the a× b rectangle. Then |A1,2|+ |A1,3|+ |A1,2,3| = n, since it completely encompasses the

top left a× b block. Moreover, |A2,3| 6= 0, since |A1,2,3| 6= 0. Hence

|A1,2|+ |A1,3|+ |A2,3|+ |A1,2,3| > n.

A natural question arises. Namely, can we generalize this result to three different sized

rectangles instead of two? The following theorem generalizes the above result to three

rectangles of different sizes.

Theorem 4.3. There does not exist a Factor Pair Latin Square if:

n = a · b = c · d = f · g,

a < c < f , g < d < b,

g
⌊
d
g

⌋
< d, and

g
⌈
d
g

⌉
≥ b.

Proof. Fill in the first a × b rectangle with the n symbols. Since g | b, we can say that

b = k · g. So, there are k rectangles of size f × g that cover the top a× b block. Now, since

d + g > b, by substitution, we have that d > g(k − 1). Since this is a strict inequality, the

top left most c × d rectangle must pass through strictly more than k − 1 rectangles of size

f × g. Moreover, this means that there is at least one cell that is in the kth c× d rectangle

and not in the original a × b rectangle that cannot be filled, since it is covered by the first

24

︸ ︷︷ ︸
g

f

a

b︷ ︸︸ ︷

︸ ︷︷ ︸
d

c

Figure 4.2: Three Conditions

k− 1 columns of the top left a× b rectangle as well as the other entries of the top left a× b

rectangle since that cell is in the kth c × d rectangle. The top left corner of the proposed

factor pair latin square is depicted in Figure 4.2.

As before, this can be thought of in terms of hypergraphs as well. An alternate proof

will now be presented.

Proof. Assume that the conditions in Theorem 4.3 hold. Let H = (V,E) define a hypergraph

with three edges, A1 the edge defined by the top left a× b rectangle, A2 the edge defined by

the top left c× d rectangle, and A3 defined by the last f × g rectangle that is incident with

the a× b rectangle. Then |A1,2|+ |A1,3|+ |A1,2,3| = n, since it completely encompasses the

top left a× b block. Moreover, |A2,3| 6= 0, since |A1,2,3| 6= 0. Hence

|A1,2|+ |A1,3|+ |A2,3|+ |A1,2,3| > n.

This all started with the observation that there does not exist a factor pair latin square

of order twelve. Moreover, the following theorem generalizes this to say that there cannot

be a factor pair latin square of any order that is divisible by twelve.

Theorem 4.4. There does not exist a factor pair latin square of order n if n ≡ 0 (mod 12).

25

4

︸ ︷︷ ︸
3k

3

4k︷ ︸︸ ︷

6k︷ ︸︸ ︷

2

Figure 4.3: n ≡ 0 (mod 12)

Proof. Since n ≡ 0 (mod 12), n = 12k for some k ∈ Z+. Moreover, n = 2(6k) = 3(4k).

Hence, F = {. . . , 2× 6k, 6k× 2, 6× 2k, 2k× 6, 3× 4k, 4k× 3, 4× 3k, 3k× 4, . . .}. Examining

the 3 × 4k block along with the 4 × 3k block, we see that the symbols to the right of the

4× 3k block that are within the 3× 4k block must have the same symbol set as those below

the 3× 4k block contained within the 4× 3k block. Now, if one were to examine the 2× 6k

blocks, one would see that the second 2 × 6k block cannot be latin, as demonstrated by

Figure 4.3

Naturally, one might ask whether or not a similar thing can be said for other orders

that satisfy Theorem 4.3. The following corollary states that if a number m satisfies the

hypothesis to Theorem 4.3 then every multiple of m is inadmissible as a factor pair latin

square.

Corollary 4.5. If m satisfies the hypothesis of Theorem 4.3 and n ≡ 0 (mod m) then there

does not exist a factor pair latin square of order n.

26

Proof. Let m satisfy the hypothesis of Theorem 4.3. That is to say that

m = a · b = c · d = f · g,

a < c < f , g < d < b,

g
⌊
d
g

⌋
< d, and

g
⌈
d
g

⌉
≥ b.

Moreover, since n ≡ 0 (mod m), n = km for some positive integer k. That is to say that

there exist three ordered factor pairs such that

n = a · bk = c · dk = f · gk,

a < c < f , gk < dk < bk,

gk
⌊
dk
gk

⌋
= gk

⌊
d
g

⌋
< dk, and

gk
⌈
dk
gk

⌉
= gk

⌈
d
g

⌉
≥ bk.

Since each inequality is simply multiplied by k, the above inequalities also satisfy the hy-

pothesis for Theorem 4.3. Hence, there does not exist a factor pair latin square of order

n.

4.2 Generalizing Order Twenty

Factor pair latin squares can be constructed using methods from Chapter 2 for orders

thirteen, fourteen, sixteen, seventeen, and nineteen. Moreover, there exists a factor pair latin

square of order fifteen as shown in Figure 4.4 as well as a factor pair latin square of order

eighteen as shown in Figure 4.5. One might notice, however, that order twenty is missing

from this list. The following theorem give a reasoning as to why that is the case.

27

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6 7 8 9 10 11 12 13 14 15 1 2 3 4 5

11 12 13 14 15 1 2 3 4 5 6 7 8 9 10

4 5 9 2 3 7 1 10 15 8 13 14 6 11 12

10 14 15 8 12 13 5 6 11 3 4 9 1 2 7

7 1 6 11 13 2 4 9 12 14 3 5 10 15 8

2 3 4 1 6 5 8 7 10 9 12 15 11 13 14

5 8 10 7 9 12 14 15 13 11 2 1 4 3 6

12 13 11 15 14 3 6 1 2 4 8 10 5 7 9

9 15 14 10 4 8 3 11 5 6 7 13 2 12 1

3 6 1 5 2 4 9 12 7 13 14 8 15 10 11

8 11 12 13 7 10 15 14 1 2 5 3 9 6 4

13 4 2 12 1 9 10 5 6 7 15 11 14 8 3

14 9 5 3 11 15 13 4 8 12 10 6 7 1 2

15 10 7 6 8 14 11 2 3 1 9 4 12 5 13

Figure 4.4: FPLS(15)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

12 13 11 10 17 14 18 16 15 2 4 5 7 1 8 6 3 9

8 15 7 16 18 9 14 3 6 1 13 17 5 4 10 12 2 11

4 10 5 2 12 11 1 17 13 14 16 18 3 6 9 7 8 15

14 16 9 1 8 7 4 2 11 3 15 6 12 17 18 13 10 5

6 17 18 15 13 3 10 12 5 7 8 9 11 16 2 4 1 14

3 7 17 14 1 4 9 15 16 12 10 2 8 18 11 5 13 6

5 11 8 12 2 10 6 13 18 4 1 14 9 15 3 17 7 16

9 18 6 13 16 15 5 11 8 17 3 7 10 2 1 14 12 4

10 1 2 3 7 17 12 4 14 16 9 15 6 13 5 11 18 8

15 12 16 5 11 8 17 10 3 18 6 13 4 7 14 1 9 2

13 14 4 9 6 18 2 1 7 8 5 11 16 12 17 3 15 10

11 9 15 6 10 2 13 14 1 5 7 3 17 8 4 18 16 12

7 5 12 17 3 16 8 18 4 15 2 10 1 11 6 9 14 13

18 4 13 8 14 1 11 9 12 6 17 16 15 10 7 2 5 3

2 3 10 7 15 5 16 6 17 13 14 4 18 9 12 8 11 1

17 6 1 18 9 13 15 5 2 11 12 8 14 3 16 10 4 7

16 8 14 11 4 12 3 7 10 9 18 1 2 5 13 15 6 17

Figure 4.5: FPLS(18)

28

1 2 3 4

5 6 7 8
9

1

a

︸ ︷︷ ︸

d

c

︸ ︷︷ ︸

d

c

a

︷ ︸︸ ︷b

︸ ︷︷ ︸

b

hh

︷ ︸︸ ︷
j

f

︸ ︷︷ ︸
g

f

︸ ︷︷ ︸
g

10

11 12

13

14

Figure 4.6: Generalization of Order Twenty

Theorem 4.6. There does not exist a factor pair latin square if:

n = a× b = c× d = f × g = h× j,

h < a < c < f , g < d < b < j,

b | j, g | d , h | a, c | f,

h > c− a , g > b− d, and
(
b− g

⌊
b
g

⌋) (
h
⌈
c
h

⌉
− c
)

<
(
2a− h

⌈
c
h

⌉) (
g
⌈
b
g

⌉
− b
)
.

Proof. First and foremost, it should be noted that if the above conditions are satisfied, then

there exists a configuration of rectangles as seen in Figure 4.6 in the top left corner of the

proposed factor pair latin square. This proof will show that if the above conditions are

satisfied, then no symbol can go into Region 10 as depicted in Figure 4.6. First, fill in the

h× j rectangle in Figure 4.6. By the top left a× b rectangle and the top left b× c rectangle,

Region 1 must have the same symbol set as Region 11. Moreover, by this fact and by the

intersection of the top right a × b rectangle along with the top right c × d rectangle, the

union of Regions 1, 2, 3, and 4 must have the same symbol set as Region 12. Moreover,

29

every symbol from Region 8 must go into Region 14 since the right most f × g rectangle

must have those symbols and they cannot be in Regions 9 or 13 (due to the bottom right

a× b rectangle). So, the symbols in Region 6 can only either go in Region 13 or Region 14.

Notice that the condition
(
b− g

⌊
b
g

⌋) (
h
⌈
c
h

⌉
− c
)
<
(
2a− h

⌈
c
h

⌉) (
g
⌈
b
g

⌉
− b
)

essentially

says that there are more symbols in Region 10 than there are in Region 6. If the symbols in

Region 6 are placed in region 14, then all of the symbols from Region 5 must go into Region

13. Moreover, Region 10 cannot be filled, since it has seen every symbol. Moreover, if the

symbols from Region 6 are in Region 13, then Region 10 can have
(
b− g

⌊
b
g

⌋) (
h
⌈
c
h

⌉
− c
)

symbols in it. But, we said before that
(
b− g

⌊
b
g

⌋) (
h
⌈
c
h

⌉
− c
)
<
(
2a− h

⌈
c
h

⌉) (
g
⌈
b
g

⌉
− b
)

;

so, there will be at least one cell in Region 10 that has seen every symbol and is therefore

unable to be filled.

Corollary 4.7. There does not exist a factor pair latin square of order twenty

Proof. By Theorem 4.6, let a = 4, b = 5, c = 5, d = 4, f = 10, g = 2, h = 2, and j = 10.

As before, Theorem 4.6 can extended to say that if order m satisfies the hypothesis of

Theorem 4.6 and n ≡ 0 (mod m), then there does not exist a factor pair latin square of

order n.

Corollary 4.8. If m satisfies the hypothesis of Theorem 4.6 and n ≡ 0 (mod m), then there

does not exist a factor pair latin square of order n.

Proof. Say m satisfies the hypothesis of Theorem 4.6. That is, there exist a set of four

ordered factor pairs such that

m = a× b = c× d = f × g = h× j,

h < a < c < f , g < d < b < j,

b | j, g | d , h | a, c | f,

h > c− a , g > b− d, and
(
b− g

⌊
b
g

⌋) (
h
⌈
c
h

⌉
− c
)

<
(
2a− h

⌈
c
h

⌉) (
g
⌈
b
g

⌉
− b
)
.

30

Let n ≡ 0 (mod m). That is to say that there exists a positive integer k such that n = km.

Moreover, there exist a set of four ordered factor pairs such that

n = a× bk = c× dk = f × gk = h× jk,

h < a < c < f , gk < dk < bk < jk,

bk | jk, gk | dk , h | a, c | f,

h > c− a , gk > bk − dk, and
(
bk − gk

⌊
bk
gk

⌋) (
h
⌈
c
h

⌉
− c
)

<
(
2a− h

⌈
c
h

⌉) (
gk
⌈
bk
gk

⌉
− bk

)
.

Since all of the inequalities are either the same as before or multiples of k, n also satisfies the

hypothesis of Theorem 4.6. Hence, there does not exist a factor pair latin square of order

n.

4.3 General Order Twenty-Eight

A factor pair latin square of order twenty-one has been constructed in Figure 4.7. One

might also notice that Chapter 2 gives us constructions for factor pair latin squares for orders

twenty-two, twenty-three, and twenty-five through twenty-seven. Also, there cannot exist a

factor pair latin square of order twenty-four since twenty-four is divisible by twelve. Twenty

eight; however, is one that is not covered by these constructions. The reason for that is that

there does not exist a factor pair latin square of order twenty-eight as we will see in Corollary

4.10.

Before proving this corollary, however, we notice that if we look at how many times it

takes for rectangle of size a to completely cover a rectangle of size b, it will take approximately

the same number of b sized rectangles to completely cover a rectangle of size a.

Now we turn our attention to showing that there does not exist a factor pair latin square

of order twenty-eight. In fact, we will display another infinite family of forbidden orders of

which twenty eight is the first member.

31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14

8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7

19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4

4 11 18 7 14 21 3 10 17 6 13 20 2 9 16 5 12 19 1 8 15

16 5 12 19 1 8 15 4 11 18 7 14 21 3 10 17 6 13 20 2 9

10 17 6 13 20 2 9 16 5 12 19 1 8 15 4 11 18 7 14 21 3

2 1 4 3 6 5 8 7 10 9 16 11 12 13 14 15 20 21 17 18 19

7 14 9 10 11 12 13 2 18 15 17 21 19 20 6 1 4 3 8 5 16

18 15 19 17 21 16 20 3 14 4 6 8 1 5 2 10 9 12 7 11 13

3 8 11 9 4 15 1 21 19 2 20 13 7 17 18 14 5 16 6 12 10

13 21 20 14 7 18 17 6 12 5 3 10 9 16 11 8 19 2 4 15 1

6 12 2 5 10 19 16 11 4 1 14 15 18 8 3 7 13 17 21 9 20

9 3 1 2 8 4 5 13 7 11 10 6 14 12 21 18 16 20 15 19 17

11 10 13 6 15 7 12 17 1 20 21 18 16 19 9 4 2 5 3 14 8

20 18 16 21 17 14 19 9 3 8 5 4 15 2 7 12 11 10 13 1 6

14 4 5 16 3 1 2 20 8 19 9 17 11 10 13 21 15 6 18 7 12

17 7 15 12 18 11 6 14 21 13 2 3 4 1 20 19 8 9 10 16 5

21 19 8 20 13 9 10 18 15 16 12 7 5 6 17 3 1 14 11 4 2

Figure 4.7: FPLS(21)

32

a

︷ ︸︸ ︷
b

c

︸ ︷︷ ︸
d

f

︸ ︷︷ ︸
g

Figure 4.8: Generalization of Order Twenty-Eight

Theorem 4.9. There does not exist a factor pair latin square if

n = a× b = c× d = f × g,

a < c < f, g < d < b,

d - b, and

d
⌊
b
d

⌋
< g

⌊
b
g

⌋
< d

⌈
b
d

⌉
≤ g

⌈
b
g

⌉
.

Proof. If the above conditions hold, the top left corner of the n × n grid looks like Figure

4.8. Let s = a
c

= d
b
. Since the rectangles overlap each other in the same number of times,

the region from the first row to the (sa)th row and from the first column to the (sd)th

column sees some symbols s times and others s − 1 times. The symbols that it sees s − 1

times must be in the region R1 defined as the region from the (sa+ 1)th row to the cth row

in the vertical direction and from the first column to the (sd)th column in the horizontal

direction as well as the region R2 defined as the region from the first row to the (sa)th row

in the vertical direction and from the (sd+ 1)th column to the bth column in the horizontal

direction. Moreover, R1 and R2 must have the same symbol set. In a similar fashion, the

region R3 defined as the region from the bth column to the (s (d+ 1))th column and from

33

the first row to the cth row must have the same symbol set as the region R4 defined as the

region from the cth row to the (s (a+ 1))th row and the first column to the gth column, since

the (s (a+ 1))th rectangle intersects the (s (d+ 1))th rectangle. Fill R3 with the n symbols,

ensuring that R1 and R2 have the same symbol set and R3 and R4 have the same symbol

set. Since d ·
⌊
b
d

⌋
< g ·

⌊
b
g

⌋
< d ·

⌈
b
d

⌉
≤ g ·

⌈
b
g

⌉
, the region from the (c+ 1)th row to the

(s (a+ 1))th row and from the gth column to the bth column cannot be filled.

Corollary 4.10. There does not exist a factor pair latin square of order twenty-eight

Proof. By Theorem 4.9, let a = 4, b = 7, c = 7, d = 4, f = 14, and g = 2.

Corollary 4.10 cannot be proven by the hypergraph results proven in Chapter 3, however,

since we can find an embedded C5 which has to be 2-colored inside of the hypergraph

produced by the constraints in Theorem 4.9. Define a graph whose vertices are the union

of cells in one rectangle but not another. Two vertices are connected if only if their symbol

sets must be distinct. Weight each vertex with the number of cells within the intersection.

More specifically, define the vertices v1 as the cells in the uppermost 4× 7 rectangle but not

the cells in the second 7 × 4 rectangle (weight 16), v2 as the cells in the uppermost 4 × 7

rectangle but not the cells in the first 7 × 4 rectangle (weight 12), v3 as the cells in the

second 4× 7 rectangle but not the cells in the second 7× 4 rectangle (weight 12), v4 as the

cells in the second 4× 7 rectangle but not the cells in the first 7× 4 rectangle (weight 16),

and v5 as the cell (8, 8), which is in the fourth 14 × 2 rectangle (weight 1). This produces

C5 = (v1, v2, v4, v5, v3) which must be three colored while there are only two colors available,

since there are only two possible symbol sets in this graph. This construction is depicted in

Figure 4.9 Moreover, this falls into the case when there are five edges in a hypergraph and

the necessary conditions are not sufficient.

As before, we can extend this to orders which are multiple of a number that is deemed

inadmissible by Theorem 4.9.

34

v1 v2

v3 v4

v5

16 16

16 16

4

7

︷ ︸︸ ︷4
︷ ︸︸ ︷7

14

︸ ︷︷ ︸
2

︷ ︸︸ ︷4

4

Figure 4.9: Five Hyper Edges in Order Twenty Eight

Corollary 4.11. If m satisfies the hypothesis of Theorem 4.9 and n ≡ 0 (mod m) then there

does not exist a factor pair latin square of order n.

Proof. If m satisfies Theorem 4.9, then there exist three ordered factor pairs such that

m = a× b = c× d = f × g,

a < c < f, g < d < b,

d - b, and

d
⌊
b
d

⌋
< g

⌊
b
g

⌋
< d

⌈
b
d

⌉
≤ g

⌈
b
g

⌉
.

35

Moreover, if n is a multiple of m, then n = mk for some positive integer k. Furthermore,

there exist three ordered factor pairs of n such that

n = a× bk = c× dk = f × gk,

a < c < f, gk < dk < bk,

dk - bk, and

dk
⌊
bk
dk

⌋
< gk

⌊
bk
gk

⌋
< dk

⌈
bk
dk

⌉
≤ gk

⌈
bk
gk

⌉
.

Since every inequality is either the same as m or it is a multiple of k. In either case, the

above set of inequalities satisfy the hypothesis of Theorem 4.9. Henceforth, if n is a multiple

of a number that satisfies Theorem 4.9, then there does not exist a factor pair latin square

of order n.

The theorems discussed in this Chapter give us an infinite family of inadmissible orders

for factor pair latin squares. A program which can be found in Appendix A has been written

to determine the inadmissible values given by these results up to five thousand. The results

of the code can be found in Appendix B.

36

Chapter 5

Results on Quasi-Factor Pair Latin Squares

Up until this point, we have been concerned with making every ordered factor pair of

an n× n grid an (a, b)-Sudoku latin square. We have seen that this can sometimes be done;

however, for some orders it is simply impossible. What happens if we are only concerned

with some of the ordered factor pairs? When a factor pair latin square does not exist, how

many ordered factor pairs can we have and still satisfy the conditions of an (a, b)-Sudoku

latin square? Let P be a list of ordered factor pairs. A semi-factor pair latin square of order

n, denoted SFPLS(n, P), is an (a, b)-Sudoku latin square of order n for every ordered factor

pair in P . Let F be the largest of such sets of ordered factor pairs such that a SFPLS(n, P)

exists. A quasi-factor pair latin square of order n, denoted QFPLS(n, F), is an (a, b)-Sudoku

latin square of order n for every ordered factor pair in F .

5.1 Order Twelve

The first order for which there does not exist a factor pair latin square is order twelve;

so, that is a natural place to start. It should be noted that removing either the 6 × 2 or

the 2 × 6 ordered factor pairs from the list of ordered factor pairs of order twelve will not

yield a QFPLS(12, {1× 12, 12× 1, 2× 6, 3× 4, 4× 3}) or a QFPLS(12, {1× 12, 12× 1, 6×

2, 3 × 4, 4 × 3}) by the exact same proof of Theorem 4.1 (the transpose of the n × n array

would violate Theorem 4.1). Removing either the 3 × 4 or the 4 × 3, however, will yield a

QFPLS(12, {1×12, 12×1, 2×6, 6×2, 3×4}) or QFPLS(12, {1×12, 12×1, 2×6, 6×2, 4×3}).

A QFPLS(12, {1× 12, 12× 1, 2× 6, 6× 2, 3× 4}) is presented in Figure 5.1.

37

1 2 3 4 5 6 7 8 9 10 11 12

7 8 9 10 11 12 1 2 3 4 5 6

5 6 11 12 3 4 9 10 1 2 7 8

9 10 1 2 7 8 5 6 11 12 3 4

3 4 5 6 9 10 11 12 7 8 1 2

11 12 7 8 1 2 3 4 5 6 9 10

12 11 10 9 8 7 6 5 4 3 2 1

6 5 4 3 2 1 12 11 10 9 8 7

8 7 2 1 10 9 4 3 12 11 6 5

4 3 12 11 6 5 8 7 2 1 10 9

2 1 8 7 12 11 10 9 6 5 4 3

10 9 6 5 4 3 2 1 8 7 12 11

Figure 5.1: QFPLS(12, {1× 12, 12× 1, 2× 6, 6× 2, 3× 4})

5.2 Order Twenty-Four

We took the proof of Theorem 4.1 and generalized it to Theorem 4.2. Moreover, the

3× 4 as well as the 4× 3 regions can be thought of as c× d blocks in Theorem 4.2. One is

tempted to think that if we are given an inadmissible value n for a factor pair latin square

that satisfies the hypothesis of Theorem 4.2 and remove the c × d ordered factor pair from

the list of ordered factor pairs, then we can construct a quasi-factor pair latin square of that

order where |F | is one less than the number of ordered factor pairs of n. This is precisely

what the following conjecture states.

Conjecture 5.1. If we were to remove all of the c × d ordered factor pairs as stated in

Theorem 4.2 from the list F , we would get a QFPLS(n, F).

This conjecture is false; however, since Lemma 5.2 shows that there does not exist

a quasi-factor pair latin square of order twenty-four which has seven ordered factor pairs.

Twenty-four is an important number for this result as none of the other negative results from

Chapter 4 covers order twenty-four; so, if this conjecture has any shot at being true, it would

have to work for order twenty-four. Theorem 5.3, however, will show that this conjecture is

false.

38

Lemma 5.2. There does not exist a QFPLS(24, {1×24, 24×1, 2×12, 12×2, 3×8, 4×6, 6×4})

or a QFPLS(24, {1× 24, 24× 1, 2× 12, 12× 2, 8× 3, 4× 6, 6× 4}).

Proof. Without loss of generality, use F = {1× 24, 24× 1, 2× 12, 12× 2, 3× 8, 4× 6, 6× 4}.

Note that it does not matter whether we use 3 × 8 or 8 × 3 as the bad ordered factor pair

as a transposition will get the other. Fill in the first (top left) 2 × 12 factor pair with the

twenty-four symbols. Now, cells (3, 7) and (3, 8) cannot be filled, for they are in a 3×8 block

that contains the first eight columns of the above 2× 12 and a 4× 6 block that contains the

last four columns of the above 2× 12. Moreover, they contain all of the symbols, making it

impossible to fill the remaining cells.

As before, it may be possible to define a QFPLS(n, F) for these inadmissible values;

however, it would be useless to pick any of the ordered factor pairs that satisfy Theorem 4.2

of the form a × b, since the result of the Theorem 4.2 would hold for the transpose of the

proposed quasi-factor pair latin square.

As for order twenty-four, removing the 2× 12 or the 12× 2 ordered factor pairs would

not result in a quasi-factor pair latin square of order twenty-four with seven ordered factor

pairs. Lemma 5.2 tells us that removing either the 8 × 3 or the 3 × 8 ordered factor pair

will not produce the desired quasi-factor pair latin square either. The last ordered factor

pair to worry about would be the 4 × 6 or the 6 × 4. Removing one of these factor pairs,

however, will not produce a quasi-factor pair latin square of order twenty-four with seven

ordered factor pairs as the following theorem will show.

Theorem 5.3. There does not exist a quasi-factor pair latin square of order twenty-four

with seven rectangles.

Proof. We have already seen from Lemma 5.2 that removing the 3 × 8 or the 8 × 3 or-

dered factor pairs will not yield a quasi-factor pair latin square of order twenty-four with

seven ordered factor pairs. We have also observed above that removing either the 2 ×

12 or the 12 × 2 ordered factor pairs will not yield a quasi-factor pair latin square of

39

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5 6 7 8 9 10 11 12

7 8 9 10 11 12 1 2 3 4 5 6 19 20 21 22 23 24 13 14 15 16 17 18

19 20 21 22 23 24 13 14 15 16 17 18 7 8 9 10 11 12 1 2 3 4 5 6

5 17 11 23 3 4 9 10 7 19 1 13 6 18 12 24 15 16 21 22 8 20 2 14

6 18 12 24 15 16 21 22 8 20 2 14 5 17 11 23 3 4 9 10 7 19 1 13

9 10 7 19 1 13 5 17 11 23 3 4 21 22 8 20 2 14 6 18 12 24 15 16

21 22 8 20 2 14 6 18 12 24 15 16 9 10 7 19 1 13 5 17 11 23 3 4

11 23 6 18 7 8 16 24 1 13 9 10 3 4 5 17 19 20 12 15 2 14 21 22

3 4 5 17 19 20 12 15 2 14 21 22 11 23 6 18 7 8 16 24 1 13 9 10

15 16 1 13 10 21 11 23 5 17 7 19 12 24 2 14 22 9 3 4 6 18 8 20

12 24 2 14 22 9 3 4 6 18 8 20 15 16 1 13 10 21 11 23 5 17 7 19

2 1 4 3 6 5 8 7 10 9 12 11 14 13 16 15 18 17 20 19 22 21 24 23

14 13 16 15 18 17 20 19 22 21 24 23 2 1 4 3 6 5 8 7 10 9 12 11

8 7 10 9 12 11 2 1 4 3 6 5 20 19 22 21 24 23 14 13 16 15 18 17

20 19 22 21 24 23 14 13 16 15 18 17 8 7 10 9 12 11 2 1 4 3 6 5

17 5 23 11 4 3 10 9 19 7 13 1 18 6 24 12 16 15 22 21 20 8 14 2

18 6 24 12 16 15 22 21 20 8 14 2 17 5 23 11 4 3 10 9 19 7 13 1

10 9 19 7 13 1 17 5 23 11 4 3 22 21 20 8 14 2 18 6 24 12 16 15

22 21 20 8 14 2 18 6 24 12 16 15 10 9 19 7 13 1 17 5 23 11 4 3

23 11 18 6 8 7 24 16 13 1 10 9 4 3 17 5 20 19 15 12 14 2 22 21

4 3 17 5 20 19 15 12 14 2 22 21 23 11 18 6 8 7 24 16 13 1 10 9

16 15 13 1 21 10 23 11 17 5 19 7 24 12 14 2 9 22 4 3 18 6 20 8

24 12 14 2 9 22 4 3 18 6 20 8 16 15 13 1 21 10 23 11 17 5 19 7

Figure 5.2: QFPLS(24, {1× 24, 24× 1, 2× 12, 12× 2, 4× 6, 6× 4})

order twenty-four with seven ordered factor pairs. Without loss of generality, let F =

{1× 12, 12× 1, 2× 6, 6× 2, 3× 8, 8× 3, 4× 6}. A similar argument can be made if one were

to remove the 4× 6 ordered factor pair instead of the 6× 4 ordered factor pair. Let a = 2,

b = 12, c = 3, d = 8, f = 4, and g = 6 in Theorem 4.3.

One can, however, produce a quasi-factor pair latin square by removing two ordered

factor pairs. Figure 5.2 is a QFPLS(24, {1× 24, 24× 1, 2× 12, 12× 2, 4× 6, 6× 4}).

40

Chapter 6

Mappings to other Problems

It is important to be able to word this problems in different ways in order to use theorems

and techniques from other problems in mathematics. The most natural problem to map the

problem of finding a factor pair latin square of order n is the exact cover problem described

below, which is an NP -complete problem.

Of course, if one were to attempt at finding factor pair latin squares of a given order

that either hasn’t been explicitly found or ruled out by a previous theorem, one could write

a brute force backtracking algorithm to attempt to come across a factor pair latin square

of that order. This of course is not a very efficient way to do it; however, we do this in

Appendix C.

6.1 Exact Cover Problem

Of all of the NP -complete problems, the exact cover problem is the easiest NP -complete

problem to map the problem of finding a factor pair latin square of order n. Given a collection

C subsets of a set C, an exact cover is a sub-collection C ∗ of C such that each element in

C is contained in exactly one subset in C ∗. That is to say that the intersection of any two

sets in C ∗ is empty while the union of all of the subsets in C ∗ is all of C. Equivalently, this

can be thought of as a bipartite graph. A bipartite graph is a graph G whose vertices can

be partitioned into two sets A and B such that every edge in G connects a vertex in A to a

vertex in B. Define a bipartite graph H with bipartition (C , C), where the vertices on the

C side are subsets of C and the vertices on the C side are elements of the set C. We connect

vertices on the C side with vertices on the C side if and only if the set on the C side is a

41

subset of the set on the C side. We are looking to pick a set of vertices on the C side that

cover (or hit) each vertex on the C side exactly once.

To explicitly find a solution to a factor pair latin square of order n, one can translate the

factor pair latin square of order n into an exact cover problem. We will use the notion of the

bipartite graph in order to draw this connection. Define a bipartite graph with bipartition

(P, C). Let the n3 vertices on the P side be ordered triples (r, c, s) denoting that symbol

s is in row r and column c. On the other hand, let the C side have n2 (k + 1) vertices where

k is the number of ordered factor pairs of order n. The first n2 of which can be identified

as each cell in the n × n grid. That is to say that the first n2 vertices on the C side can

be ordered pairs (r, c) where r denotes the row and c denotes the column of each cell. Now,

order the rectangles that are required to be latin in some fashion. Since each factor pair has

to see every symbol exactly once, the rest of the n2k vertices can be labeled as ordered pairs

(f, s) where f denotes the rectangle for which the symbol s is in. Moreover, an edge can be

drawn connecting vertices from P to vertices in C if and only if the triplet (r, c, s) from P

is a cell in f of (f, s) on the C side and the symbols are the same. We are looking for a set

of vertices on the P side to cover the C side in such a way that the vertices on the C side

are covered by only one vertex from the P side.

This observation lets us use smarter algorithms such as Donald Knuth’s Algorithm X

(sometimes known as the Dancing Links Algorithm or the DLX algorithm for short) from

[9] to aid in solving factor pair latin squares. Coding for this algorithm can be referenced in

Appendix D. It should be noted that the exact cover problem is one of Richard M. Karp’s

NP -complete problems in [8].

6.2 Resolvable 1-Designs

A 1-design, 1− (v, k, λ), is a pair (V,B) where V is a set of size v and B is a collection

of b subsets of size k called blocks such that each element of V is contained in exactly λ

blocks. It should be noted that repeated blocks are allowed at times. A parallel class is a set

42

of blocks that partition the set of points. A 1-design is said to be resolvable if there exists a

partition R into parallel classes [6].

Theorem 6.1 (Modified from [1]). Let f be the number of ordered factor pairs of order n.

A factor pair latin square of order n is equivalent to a resolvable block design on fn points

with block size f .

Proof. Let Ri denote the set of cells which contain symbol i. Since each symbol occurs in

every symbol and every factor pair exactly once, Ri forms a partition of the point set V .

Moreover, since each cell contains exactly one symbol, every block will occur in exactly one

parallel class.

Given a resolvable block design on fn points with block size f , one can create a factor

pair latin square. Name each parallel class with a symbol 1 through n. Each parallel class

will determine where the symbols should go within the n× n grid.

6.3 Multiple Gerechte Designs

A gerechte design is an n×n grid partitioned into n regions (possibly of different shapes

and possibly disconnected) with n cells in each region such that each row, column, and region

is latin. A mutliple gerechte design is a latin square for which multiple gerechte designs are

satisfied [1]. Factor pair latin squares are particular kinds of multiple gerechte designs.

A gerechte skeleton of order n is an n × n array whose n2 cells are partitioned into

n regions containing n cells each. E. R. Vaughan has shown in [11] that deciding if a

given gerechte skeleton has a completing is NP -complete; however, if the gerechte skeleton

is restricted to contiguous regions, the answer is unknown. Similarly, if the regions are

required to be rectangles, the solution is unknown. The problem of finding a completion to

a factor pair latin square is even more specific, since we are requiring multiple particular

gerechte skeletons.

Perhaps more importantly to the design of experiments, a further question is whether

or not a design has an orthogonal mate. Two latin squares of size n, L = ai,j on symbol set

43

S and L′ = bi,j on symbol set S ′, are said to be orthogonal if every element in S × S ′ occurs

exactly once among the n2 pairs (ai,j, bi,j) , 1 ≤ i, j ≤ n. A set of latin squares are mutually

orthogonal if every pair of latin squares in the set are mutually orthogonal [6].

A natural question is how many mutually orthogonal factor pair latin squares can be

found of a given order. The following theorem gives a maximum number of mutually orthog-

onal factor pair latin squares.

Theorem 6.2 (Modified from [1]). Let d denote the maximum size of the intersection between

any two rectangles in a factor pair latin square of order n. There exists at most n−d mutually

orthogonal factor pair latin squares of order n.

Proof. Say that rectangles A1 and A2 have the biggest intersection. Moreover, let d =

|A1 ∩ A2|. Let c be a cell in A1 \ A2. By renaming the cells in each latin square in the set

of mutually orthogonal factor pair latin squares, we can say that cell c has symbol 1 in cell

c of each of the mutually orthogonal factor pair latin squares. Moreover, symbol 1 must

occur exactly once in A2 and not in A1 in each of the factor pair latin squares; however,

each subsequent factor pair latin square must have symbol 1 in a different cell within A2,

since (1, 1) has already occurred in cell c. Hence, there can be at most |A2 \ A1| mutually

orthogonal factor pair latin squares.

R. A. Fisher suggests that Latin squares can be used in many different agricultural

experiments in [1]. Latin squares by themselves are good at eliminating two nuisance vari-

ables; however, they lack the ability to take into account different kinds of terrain or subtleties

within soil samples around a given plot. In particular, gerechte designs along with factor pair

latin squares can be used to ensure that treatments are evenly distributed among different

types of soils present on a given square plot of land. Factor pair latin squares are nice for

this purpose, since it is typical and convenient to have rectangular shaped plots. So, if an

experiment is being done where there are two nuisance variables, but also want to take the

difference in terrain into consideration, a factor pair latin square is something to consider.

44

It is also reasonable to remove more than two nuisance variables or to do another set of

experiments on the same plot in a short period of time. In the latter case, it is sensible to

treat the previous experiment as another nuisance variable that should be removed. This

can be done by using a factor pair latin square that is mutually orthogonal factor pair latin

square.

6.4 Pigeon-Hole Principle

As with Sudoku puzzles, finding a factor pair latin square of a given order can be worded

as an integer programming problem. This method is adapted from a similar technique for

completing Sudoku puzzles in [10]. Let f be the number of ordered factor pairs of order n.

Notice that each factor pair emits n rectangular regions within the factor pair latin square.

Moreover, there are fn rectangles that all must be latin (this includes rows and columns).

This problem becomes difficult in that some of these regions overlap. Let S = {1, 2, . . . , n}

denote the set of symbols, C = {1, 2, . . . , n2} denote the set of cells, F denote the set

of factor pairs {F1, F2, . . . , Ff}. For each factor pair in F , let B be the set of blocks

{B1, B2, . . . , Bn}. Define n3 variables xi,j, where xi,j = 1 says that symbol j is assigned to

cell i and xi,j = 0 otherwise. The n3 variables must follow two constraints. First, each cell

must contain only one symbol. That is to say that for c ∈ C,
∑

s∈S xc,s = 1. Moreover, each

block within each factor pair must be latin; so, for every factor pair in F and every block

B ∈ B,
∑

b∈B xb,s = 1, s ∈ S. Moreover, if the factor pair latin square is partially completed,

one must make the prescribed cells equal to 1. That is to say that if cell xi contains symbol

j, one must force the variable xi,j = 1. For all unassigned cells xi,j = 0 for all i ∈ C, j ∈ S.

Hence, we are looking for a 0, 1 solution to the set of equations defined above.

The pigeon-hole principle says that given a subset M ⊆ I of indices from the symbol

set S and D a subset of squares all contained in a single block B such that a) |M | = |D|

and b) Cp ⊆M for every p ∈ D. Then the elements of M can be removed from Cp for each

p ∈ B \D.

45

The above technique, sometimes referred to as a rule gives a way to at least narrow

down the choices one can make given a partially filled factor pair latin square of order n.

This method is enough to solve most of the difficulty levels in Sudoku; however, it is not

known when a factor pair latin square is uniquely determined. This would be a problem for

another day.

46

Chapter 7

Open Problems

This dissertation has discussed several things when dealing with factor pair latin squares.

Namely, it has addressed some existential problems; however, necessary and sufficient condi-

tions have not been shown. Progress has been made towards that goal; however, it remains

an open problem.

Open Problem 7.1. What are the necessary and sufficient conditions for a factor pair latin

square of order n to exist?

In Chapter 3, we discussed necessary conditions for when factor pair latin squares exist.

Moreover, if four or less rectangles overlap at any given point, necessary and sufficient

conditions hold to fill that set of rectangles. A natural question is can this be extended

to the entire factor pair latin square. Since we’ve shown that the necessary conditions in

Theorem 3.5 are not sufficient, what conditions need to be added so that an n-uniform

hypergraph with five or more edges can be n-rainbow colored?

Open Problem 7.2. If four or less rectangles overlap throughout an n × n grid, can the

completion of those four rectangles be extended to the entire factor pair latin square?

Open Problem 7.3. In an n-uniform hypergraph with five or more edges, what are the

necessary and sufficient conditions for properly rainbow n-coloring the hypergraph?

Simpler problems can be tackled first, however. Namely, are there other constructions

for when a factor pair latin square of order n exists. Powers of primes and twice a prime

number have been shown in Chapter 2, but what about a prime times another prime?

Open Problem 7.4. Does there exist a factor pair latin square of order 3p where p is a

prime numbers?

47

Open Problem 7.5. Does there exist a factor pair latin square of order pq where p and q

are both prime numbers?

Similarly, looking at the list of inadmissible values in Appendix B, it seems that the

farther out that we go, the less likely a given number is to be a factor pair latin square.

Asymptotically, it seems that perhaps the only admissible orders for factor pair latin squares

are primes, powers of primes, and numbers that have prime factorization pq where p and q

are both prime numbers.

Open Problem 7.6. Asymptotically, does there exist any factor pair latin squares other

than those that have prime factorization pα or pq where p and q are prime numbers and

alpha is a positive integer?

We have also done some work in mapping the problem of finding a factor pair latin

squares for a given order n. A natural question is what is the complexity of completing a

partially filled factor pair latin square?

Open Problem 7.7. What is the complexity of completing a partially filled factor pair latin

square of order n?

Similarly, only the surface of quasi-factor pair latin squares has been touched. Almost

nothing is known as to when a factor pair latin square cannot be formed, what is the largest

set of ordered factor pairs one can have within an n× n grid. A natural approach is to see

how many ordered factor pairs need to be removed if n satisfies the hypothesis for Theorems

4.3, 4.6, or 4.9.

Open Problem 7.8. For what orders are there quasi-factor pair latin squares where only

one ordered factor pair needs to be removed?

Another idea would be to look at the prime factorization of these numbers. It would

be nice to have theorems that simply relied on the prime factorization as apposed to the

ordered factor pairs.

48

Open Problem 7.9. Given a prime factorization of n, what conditions are necessary to

guarantee that there does not exist (or that there does exist) a factor pair latin square of

order n?

These are just a few open problems related to factor pair latin squares. There are many

directions that one could take this problem. This dissertation aims to serve as a jumping

off point into related problems with factor pair latin squares, quasi-factor pair latin squares,

gerechte designs, and multiple gerechte designs.

Once we know for what orders factor pair latin squares exist, a natural question to ask

would be to ask about how many cells must be prescribed in the factor pair latin square of

order n in order for the solution to be unique.

Open Problem 7.10. Given a partially filled factor pair latin square of order n, what is

the least number of cells that need to be prescribed in order to make the solution of the factor

pair latin square of order n unique?

49

Bibliography

[1] R. A. Bailey, Peter J. Cameron, and Robert Connelly, Sudoku, gerechte designs, reso-
lutions, affine space, spreads, reguli, and Hamming codes, Amer. Math. Monthly 115
(2008), no. 5, 383–404. MR 2408485

[2] bbi5291, DLX and Sudoku Solver, Tue May 26, 2009 3:07 pm.

[3] W. U. Behrens, Mudra, a.: Statistische methoden für landwirtschaftliche versuche. ver-
lag parey, berlin und hamburg 1958, 344 seiten mit 38 abb. ganzleinen, dm 58,60,
Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 81 (1958), no. 2, 160–161.

[4] Lloyd L. Dines, Systems of linear inequalities, Ann. of Math. (2) 20 (1919), no. 3,
191–199. MR 1502553

[5] Howard Garns, Number place, Dell Pencil Puzzles and Word Games 16 (1975), 6.

[6] R. L. Graham, M. Grötschel, and L. Lovász (eds.), Handbook of combinatorics (vol. 2),
MIT Press, Cambridge, MA, USA, 1995.

[7] R. Hill, A first course in coding theory, Oxford Applied Linguistics, Clarendon Press,
1986.

[8] Richard M. Karp, Reducibility among combinatorial problems, Complexity of computer
computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights,
N.Y., 1972), Plenum, New York, 1972, pp. 85–103. MR 0378476 (51 #14644)

[9] Donald E. Knuth, Dancing links, Millenial Perspectives in Computer Science (2000),
187 – 214.

[10] J. Scott Provan, Sudoku: strategy versus structure, Amer. Math. Monthly 116 (2009),
no. 8, 702–707. MR 2572105 (2010k:05044)

[11] E. R. Vaughan, The complexity of constructing gerechte designs, Electron. J. Combin.
16 (2009), no. 1, Research Paper 15, 8. MR 2475538 (2009k:05041)

50

Appendices

51

Appendix A
Inadmissibility Code

The following code to compute the inadmissible values described in Chapter 4 was
written in Python:

import math

import sys

import time

This program is intended to list some of the inadmissible numbers

from 0 to some desired amount for Factor Pair Latin Squares (FPLS).

Inadmissible values for factor pair latin square up to 5000 using

Theorem 4.3, Theorem 4.6, and Theorem 4.9
will be determined.

EndValue = 5000

Find Factor pairs of n

def FactorPairs(value):

if value < 1:

return []

Append 1 × n factor pair

factors = [[1, value]]

Append n × 1 factor pair

factors.append([value,1])

for i in xrange(2, int(math.sqrt(value))+1):

if value % i == 0:

#Append a × b factor pair

factors.append([i, value / i])

#If a 6= b, append b × a factor pair

if i != (value/i):

factors.append([value/i, i])

return factors

define array to sort and print for later

inadmissible = []

Known Inadmissible Values:

for n in xrange(0,EndValue):

52

FP = FactorPairs(n)

for s in xrange(0,len(FP)):

for t in xrange(0,len(FP)):

for u in xrange(0,len(FP)):

for v in xrange(0,len(FP)):

a = FP[s][0]

b = FP[s][1]

c = FP[t][0]

d = FP[t][1]

f = FP[u][0]

g = FP[u][1]

h = FP[v][0]

j = FP[v][1]

if n not in inadmissible:

Inadmissible Values from Theorem 4.3
if ((a < c) and (c < f) and (g < d) and (d < b)):

if ((g*int(math.floor(d/float(g))) < d) and

(g*int(math.ceil(d/float(g))) >= b)):

inadmissible.append(n)

Inadmissible Values from Theorem 4.6
if ((a < c) and (c < f) and (g < d) and (d < b) and (b%d !=0)):

if ((d*int(math.floor(b/float(d))) <

g*int(math.floor(b/float(g)))) and

(g*int(math.floor(b/float(g))) <

d*int(math.ceil(b/float(d)))) and

(d*int(math.ceil(b/float(d))) <=

g*int(math.ceil(b/float(g))))):

inadmissible.append(n)

Inadmissible Values from Theorem 4.9
if ((h < a) and (a < c) and (c < f) and (g < d) and (d < b) and

(b < j) and (d%g == 0) and (a%h == 0) and (f%c == 0) and

(j%b == 0) and (h > c-a) and (g > b-d)):

if (((b-g*math.floor(b/float(g)))*(h*math.ceil(c/float(h))-c))

< ((2*a-h*math.ceil(c/float(h)))*

(g*math.ceil(b/float(g))-b))):

inadmissible.append(n)

Sort and Remove Duplicates

def RemoveDuplicates(list):

list.sort()

last = list[-1]

for i in range(len(list)-2, -1, -1):

if last == list[i]:

del list[i]

else:

53

last = list[i]

f = open(’InadmissibleValues.txt’,’w’)

Sort and print that list

if(len(inadmissible) != 0):

RemoveDuplicates(inadmissible)

f.write(str(inadmissible))

f.write(’\n’)

print inadmissible

f.write(’number of inadmissible values:’)

f.write(str(len(inadmissible)))

print ’number inadmissible:’, len(inadmissible)

else:

print ’No inadmissible values.’

f.write(’No inadmissible values.’)

54

Appendix B
Inadmissible Values

The first numbers below 5, 000 that are inadmissible by the above code: {12, 20, 24, 28,
30, 36, 40, 42, 44, 48, 56, 60, 63, 66, 70, 72, 76, 80, 84, 88, 90, 92, 96, 99, 100, 102, 104, 105,
108, 110, 112, 120, 124, 126, 130, 132, 135, 138, 140, 144, 150, 152, 153, 154, 156, 160, 165,
168, 170, 172, 174, 176, 180, 182, 184, 188, 189, 190, 192, 195, 196, 198, 200, 204, 208, 210,
216, 220, 224, 225, 228, 230, 232, 234, 236, 238, 240, 246, 248, 252, 255, 260, 264, 266, 268,
270, 272, 273, 276, 280, 282, 284, 285, 286, 288, 290, 294, 296, 297, 300, 304, 306, 308, 312,
315, 316, 318, 320, 322, 324, 330, 332, 336, 340, 342, 344, 348, 350, 351, 352, 354, 357, 360,
364, 368, 370, 372, 374, 376, 378, 380, 384, 385, 387, 390, 392, 396, 399, 400, 405, 408, 412,
414, 416, 418, 420, 424, 426, 428, 429, 430, 432, 435, 440, 441, 442, 444, 448, 450, 455, 456,
459, 460, 462, 464, 468, 470, 472, 476, 477, 480, 483, 484, 488, 490, 492, 494, 495, 496, 498,
500, 504, 506, 508, 510, 513, 516, 518, 520, 522, 524, 525, 528, 530, 532, 534, 536, 540, 544,
546, 549, 550, 552, 556, 558, 560, 564, 567, 568, 570, 572, 574, 575, 576, 580, 585, 588, 590,
592, 594, 598, 600, 604, 606, 608, 612, 615, 616, 620, 621, 624, 627, 630, 632, 636, 638, 639,
640, 642, 644, 645, 646, 648, 650, 652, 656, 658, 660, 663, 664, 668, 670, 672, 675, 678, 680,
682, 684, 688, 690, 693, 696, 700, 702, 704, 708, 711, 714, 715, 716, 720, 725, 726, 728, 730,
732, 735, 736, 738, 740, 741, 742, 744, 748, 750, 752, 754, 756, 759, 760, 764, 765, 768, 770,
774, 777, 780, 782, 783, 784, 786, 790, 792, 796, 798, 800, 801, 804, 806, 808, 810, 812, 814,
816, 819, 820, 822, 824, 825, 828, 830, 832, 836, 837, 840, 844, 846, 848, 850, 852, 854, 855,
856, 858, 860, 861, 864, 868, 870, 872, 873, 874, 876, 880, 882, 884, 885, 888, 890, 891, 892,
894, 896, 897, 900, 902, 908, 910, 912, 918, 920, 924, 928, 930, 936, 938, 940, 944, 945, 946,
948, 950, 952, 954, 956, 957, 960, 962, 963, 966, 968, 969, 970, 972, 975, 976, 980, 984, 986,
987, 988, 990, 992, 996, 1000, 1001, 1002, 1004, 1008, 1012, 1015, 1016, 1020, 1023, 1026,
1030, 1032, 1035, 1036, 1038, 1040, 1044, 1048, 1050, 1052, 1053, 1054, 1056, 1060, 1062,
1064, 1065, 1066, 1068, 1070, 1071, 1072, 1074, 1078, 1080, 1084, 1085, 1088, 1089, 1090,
1092, 1095, 1098, 1100, 1102, 1104, 1105, 1106, 1110, 1112, 1116, 1118, 1120, 1122, 1125,
1128, 1130, 1131, 1132, 1134, 1136, 1140, 1144, 1146, 1148, 1150, 1152, 1155, 1160, 1161,
1162, 1164, 1166, 1168, 1170, 1173, 1175, 1176, 1178, 1180, 1182, 1184, 1185, 1188, 1190,
1192, 1196, 1197, 1200, 1204, 1206, 1208, 1209, 1210, 1212, 1215, 1216, 1218, 1220, 1221,
1222, 1224, 1225, 1228, 1230, 1232, 1236, 1239, 1240, 1242, 1244, 1246, 1248, 1254, 1256,
1258, 1260, 1264, 1269, 1270, 1272, 1274, 1275, 1276, 1278, 1280, 1281, 1284, 1287, 1288,
1290, 1292, 1295, 1296, 1298, 1300, 1302, 1304, 1305, 1308, 1311, 1312, 1316, 1320, 1323,
1324, 1326, 1328, 1330, 1332, 1334, 1335, 1336, 1340, 1342, 1344, 1350, 1352, 1353, 1356,
1358, 1359, 1360, 1362, 1364, 1365, 1368, 1370, 1372, 1376, 1377, 1380, 1384, 1386, 1388,
1390, 1392, 1394, 1395, 1398, 1400, 1404, 1406, 1408, 1410, 1416, 1419, 1420, 1422, 1424,
1425, 1426, 1428, 1430, 1431, 1432, 1434, 1435, 1436, 1440, 1442, 1443, 1444, 1448, 1449,
1450, 1452, 1456, 1460, 1462, 1464, 1468, 1470, 1472, 1476, 1479, 1480, 1482, 1484, 1485,
1488, 1490, 1494, 1496, 1498, 1500, 1504, 1506, 1508, 1512, 1515, 1516, 1518, 1520, 1521,
1524, 1526, 1528, 1530, 1532, 1534, 1536, 1539, 1540, 1542, 1545, 1547, 1548, 1550, 1554,

55

1558, 1560, 1564, 1566, 1568, 1570, 1572, 1575, 1576, 1578, 1580, 1581, 1584, 1586, 1590,
1592, 1596, 1598, 1599, 1600, 1602, 1606, 1608, 1610, 1611, 1612, 1614, 1615, 1616, 1617,
1620, 1624, 1625, 1628, 1630, 1632, 1634, 1635, 1638, 1640, 1644, 1645, 1647, 1648, 1650,
1652, 1656, 1659, 1660, 1664, 1665, 1666, 1668, 1670, 1672, 1674, 1676, 1677, 1680, 1683,
1686, 1688, 1690, 1692, 1694, 1696, 1700, 1701, 1702, 1704, 1705, 1708, 1710, 1712, 1716,
1720, 1722, 1724, 1725, 1728, 1729, 1730, 1734, 1736, 1738, 1740, 1742, 1743, 1744, 1746,
1748, 1749, 1750, 1752, 1755, 1756, 1758, 1760, 1764, 1768, 1770, 1772, 1773, 1775, 1776,
1780, 1782, 1784, 1785, 1786, 1788, 1790, 1792, 1794, 1798, 1800, 1802, 1804, 1806, 1812,
1815, 1816, 1818, 1820, 1824, 1825, 1826, 1827, 1830, 1832, 1833, 1834, 1836, 1840, 1845,
1846, 1848, 1850, 1852, 1854, 1856, 1860, 1862, 1863, 1866, 1868, 1869, 1870, 1872, 1876,
1880, 1881, 1884, 1886, 1887, 1888, 1890, 1892, 1896, 1898, 1900, 1902, 1904, 1908, 1911,
1912, 1914, 1916, 1917, 1918, 1920, 1924, 1925, 1926, 1930, 1932, 1935, 1936, 1938, 1940,
1944, 1946, 1947, 1948, 1950, 1952, 1953, 1956, 1960, 1964, 1965, 1968, 1970, 1971, 1972,
1974, 1976, 1978, 1980, 1984, 1988, 1989, 1990, 1992, 1995, 1996, 1998, 2000, 2001, 2002,
2004, 2006, 2007, 2008, 2010, 2012, 2013, 2014, 2016, 2020, 2024, 2025, 2028, 2030, 2032,
2034, 2037, 2040, 2044, 2046, 2050, 2052, 2058, 2060, 2064, 2068, 2070, 2072, 2074, 2076,
2079, 2080, 2082, 2085, 2086, 2088, 2090, 2091, 2092, 2093, 2096, 2097, 2100, 2104, 2106,
2107, 2108, 2109, 2112, 2114, 2115, 2116, 2118, 2120, 2121, 2124, 2128, 2130, 2132, 2133,
2134, 2135, 2136, 2139, 2140, 2142, 2144, 2145, 2146, 2148, 2150, 2152, 2154, 2156, 2160,
2162, 2163, 2168, 2169, 2170, 2172, 2175, 2176, 2178, 2180, 2184, 2185, 2188, 2190, 2192,
2193, 2196, 2200, 2204, 2205, 2208, 2210, 2212, 2214, 2216, 2220, 2222, 2223, 2224, 2226,
2230, 2232, 2233, 2235, 2236, 2240, 2242, 2244, 2250, 2252, 2254, 2255, 2256, 2259, 2260,
2261, 2262, 2264, 2266, 2268, 2270, 2272, 2275, 2277, 2278, 2280, 2282, 2284, 2288, 2290,
2292, 2294, 2295, 2296, 2298, 2300, 2303, 2304, 2310, 2314, 2316, 2318, 2320, 2322, 2324,
2325, 2328, 2330, 2331, 2332, 2334, 2336, 2337, 2338, 2340, 2344, 2345, 2346, 2348, 2349,
2350, 2352, 2354, 2356, 2358, 2360, 2364, 2365, 2366, 2368, 2370, 2376, 2378, 2379, 2380,
2384, 2385, 2387, 2388, 2390, 2392, 2394, 2396, 2397, 2398, 2400, 2403, 2405, 2406, 2408,
2412, 2415, 2416, 2418, 2420, 2421, 2422, 2424, 2425, 2428, 2430, 2431, 2432, 2436, 2438,
2440, 2442, 2444, 2445, 2448, 2450, 2451, 2456, 2457, 2460, 2464, 2466, 2470, 2472, 2475,
2476, 2478, 2480, 2484, 2488, 2490, 2492, 2493, 2494, 2496, 2499, 2500, 2502, 2506, 2508,
2511, 2512, 2514, 2516, 2520, 2522, 2524, 2528, 2530, 2532, 2534, 2535, 2536, 2538, 2540,
2541, 2542, 2544, 2546, 2548, 2550, 2552, 2553, 2556, 2560, 2562, 2565, 2568, 2570, 2572,
2574, 2576, 2580, 2583, 2584, 2585, 2586, 2588, 2590, 2592, 2596, 2597, 2600, 2601, 2604,
2608, 2610, 2613, 2616, 2618, 2619, 2620, 2622, 2624, 2625, 2626, 2628, 2630, 2632, 2635,
2636, 2639, 2640, 2646, 2648, 2650, 2652, 2655, 2656, 2658, 2660, 2664, 2666, 2668, 2670,
2672, 2673, 2674, 2676, 2678, 2679, 2680, 2682, 2684, 2685, 2686, 2688, 2690, 2691, 2694,
2695, 2697, 2698, 2700, 2702, 2703, 2704, 2706, 2709, 2712, 2714, 2716, 2717, 2718, 2720,
2724, 2726, 2727, 2728, 2730, 2732, 2736, 2740, 2744, 2745, 2748, 2750, 2751, 2752, 2754,
2756, 2760, 2764, 2766, 2768, 2769, 2770, 2772, 2774, 2775, 2776, 2780, 2781, 2784, 2788,
2790, 2792, 2793, 2794, 2796, 2800, 2802, 2805, 2806, 2808, 2812, 2814, 2816, 2817, 2820,
2821, 2822, 2826, 2828, 2829, 2830, 2832, 2835, 2838, 2840, 2842, 2844, 2847, 2848, 2850,
2852, 2856, 2860, 2862, 2864, 2865, 2868, 2870, 2871, 2872, 2874, 2875, 2876, 2880, 2882,
2884, 2886, 2888, 2889, 2890, 2892, 2895, 2896, 2898, 2900, 2904, 2905, 2907, 2908, 2910,
2912, 2914, 2915, 2916, 2919, 2920, 2924, 2925, 2926, 2928, 2930, 2936, 2937, 2938, 2940,
2944, 2945, 2946, 2948, 2950, 2952, 2956, 2958, 2960, 2961, 2964, 2967, 2968, 2970, 2972,

56

2975, 2976, 2979, 2980, 2982, 2984, 2985, 2988, 2990, 2992, 2996, 2997, 3000, 3003, 3004,
3006, 3008, 3009, 3010, 3012, 3016, 3018, 3020, 3021, 3024, 3025, 3026, 3030, 3032, 3034,
3036, 3038, 3040, 3042, 3045, 3048, 3050, 3052, 3054, 3056, 3058, 3059, 3060, 3064, 3066,
3068, 3069, 3070, 3072, 3074, 3075, 3078, 3080, 3082, 3084, 3087, 3090, 3094, 3096, 3100,
3102, 3105, 3108, 3111, 3112, 3114, 3116, 3120, 3122, 3124, 3126, 3128, 3130, 3132, 3135,
3136, 3140, 3141, 3144, 3146, 3148, 3150, 3152, 3156, 3159, 3160, 3162, 3164, 3168, 3170,
3172, 3174, 3176, 3180, 3182, 3184, 3185, 3186, 3190, 3192, 3195, 3196, 3198, 3200, 3201,
3204, 3206, 3210, 3212, 3213, 3216, 3219, 3220, 3222, 3224, 3225, 3228, 3230, 3231, 3232,
3234, 3240, 3243, 3244, 3245, 3248, 3250, 3252, 3255, 3256, 3260, 3262, 3264, 3266, 3267,
3268, 3270, 3276, 3278, 3280, 3285, 3286, 3288, 3289, 3290, 3292, 3294, 3296, 3298, 3300,
3302, 3303, 3304, 3306, 3308, 3311, 3312, 3315, 3318, 3320, 3322, 3324, 3325, 3328, 3330,
3332, 3336, 3339, 3340, 3342, 3344, 3345, 3348, 3350, 3352, 3354, 3355, 3356, 3358, 3360,
3363, 3366, 3367, 3368, 3370, 3372, 3375, 3376, 3378, 3380, 3381, 3382, 3384, 3388, 3390,
3392, 3393, 3395, 3396, 3400, 3402, 3404, 3408, 3410, 3414, 3416, 3417, 3420, 3422, 3423,
3424, 3429, 3430, 3432, 3434, 3435, 3436, 3438, 3440, 3441, 3444, 3445, 3448, 3450, 3451,
3452, 3456, 3458, 3460, 3465, 3468, 3470, 3471, 3472, 3474, 3476, 3477, 3478, 3480, 3483,
3484, 3486, 3488, 3490, 3492, 3496, 3498, 3500, 3504, 3507, 3510, 3512, 3514, 3515, 3516,
3519, 3520, 3522, 3525, 3526, 3528, 3530, 3531, 3532, 3534, 3535, 3536, 3537, 3538, 3540,
3542, 3544, 3546, 3548, 3549, 3550, 3552, 3553, 3555, 3556, 3558, 3560, 3562, 3564, 3565,
3567, 3568, 3570, 3572, 3575, 3576, 3580, 3584, 3585, 3586, 3588, 3590, 3591, 3594, 3596,
3597, 3598, 3600, 3604, 3605, 3608, 3610, 3612, 3614, 3616, 3618, 3620, 3624, 3625, 3626,
3627, 3628, 3630, 3632, 3633, 3634, 3636, 3640, 3644, 3645, 3648, 3650, 3652, 3654, 3657,
3658, 3660, 3663, 3664, 3666, 3668, 3670, 3672, 3674, 3675, 3676, 3680, 3682, 3684, 3686,
3688, 3689, 3690, 3692, 3696, 3700, 3702, 3704, 3705, 3708, 3710, 3712, 3717, 3718, 3720,
3724, 3725, 3726, 3728, 3730, 3732, 3735, 3736, 3738, 3740, 3741, 3744, 3750, 3752, 3756,
3760, 3762, 3765, 3768, 3770, 3772, 3774, 3776, 3780, 3782, 3784, 3788, 3789, 3790, 3792,
3794, 3795, 3796, 3798, 3800, 3801, 3804, 3806, 3807, 3808, 3810, 3813, 3816, 3818, 3819,
3820, 3822, 3824, 3825, 3828, 3830, 3832, 3834, 3835, 3836, 3838, 3840, 3842, 3843, 3844,
3846, 3848, 3850, 3852, 3854, 3857, 3860, 3861, 3864, 3868, 3870, 3872, 3874, 3875, 3876,
3878, 3879, 3880, 3882, 3884, 3885, 3886, 3888, 3890, 3892, 3894, 3895, 3896, 3900, 3904,
3906, 3910, 3912, 3913, 3914, 3915, 3916, 3918, 3920, 3922, 3924, 3926, 3927, 3928, 3930,
3932, 3933, 3936, 3939, 3940, 3942, 3944, 3948, 3950, 3951, 3952, 3954, 3956, 3960, 3964,
3965, 3968, 3969, 3970, 3972, 3975, 3976, 3978, 3980, 3984, 3990, 3992, 3996, 3999, 4000,
4002, 4004, 4005, 4008, 4012, 4014, 4016, 4017, 4018, 4020, 4024, 4025, 4026, 4028, 4030,
4032, 4035, 4040, 4041, 4042, 4044, 4046, 4047, 4048, 4050, 4056, 4059, 4060, 4062, 4064,
4066, 4068, 4070, 4071, 4072, 4074, 4076, 4077, 4080, 4081, 4086, 4088, 4090, 4092, 4094,
4095, 4098, 4100, 4102, 4104, 4108, 4110, 4113, 4114, 4116, 4118, 4120, 4122, 4123, 4124,
4125, 4128, 4130, 4131, 4134, 4136, 4140, 4142, 4144, 4147, 4148, 4150, 4152, 4154, 4156,
4158, 4160, 4161, 4164, 4165, 4170, 4172, 4173, 4176, 4180, 4182, 4184, 4185, 4186, 4188,
4190, 4191, 4192, 4194, 4199, 4200, 4202, 4203, 4204, 4206, 4208, 4209, 4212, 4214, 4215,
4216, 4218, 4220, 4221, 4224, 4228, 4230, 4232, 4233, 4234, 4235, 4236, 4238, 4239, 4240,
4242, 4245, 4246, 4248, 4250, 4251, 4252, 4256, 4257, 4260, 4263, 4264, 4266, 4268, 4270,
4272, 4275, 4278, 4280, 4284, 4288, 4290, 4292, 4293, 4294, 4296, 4298, 4300, 4301, 4302,
4304, 4305, 4308, 4312, 4314, 4316, 4318, 4320, 4323, 4324, 4325, 4326, 4328, 4329, 4330,
4332, 4334, 4335, 4336, 4338, 4340, 4342, 4344, 4346, 4347, 4348, 4350, 4352, 4355, 4356,

57

4360, 4364, 4365, 4366, 4368, 4370, 4375, 4376, 4380, 4382, 4384, 4386, 4389, 4390, 4392,
4396, 4400, 4402, 4404, 4407, 4408, 4410, 4412, 4416, 4420, 4422, 4424, 4425, 4428, 4430,
4432, 4433, 4437, 4438, 4440, 4444, 4446, 4448, 4450, 4452, 4454, 4455, 4456, 4458, 4460,
4464, 4465, 4466, 4470, 4472, 4473, 4476, 4480, 4482, 4484, 4485, 4488, 4490, 4492, 4494,
4495, 4496, 4498, 4500, 4504, 4508, 4510, 4512, 4514, 4515, 4518, 4520, 4522, 4524, 4526,
4527, 4528, 4530, 4532, 4536, 4539, 4540, 4544, 4545, 4548, 4550, 4551, 4554, 4556, 4557,
4558, 4560, 4563, 4564, 4566, 4568, 4570, 4572, 4575, 4576, 4578, 4580, 4582, 4584, 4585,
4588, 4590, 4592, 4596, 4598, 4599, 4600, 4602, 4604, 4606, 4608, 4611, 4615, 4617, 4620,
4623, 4624, 4626, 4628, 4630, 4632, 4634, 4635, 4636, 4638, 4640, 4641, 4642, 4644, 4648,
4650, 4652, 4653, 4654, 4655, 4656, 4660, 4662, 4664, 4665, 4668, 4670, 4672, 4674, 4675,
4676, 4680, 4683, 4684, 4686, 4688, 4689, 4690, 4692, 4695, 4696, 4698, 4700, 4704, 4706,
4708, 4710, 4712, 4715, 4716, 4719, 4720, 4725, 4728, 4730, 4732, 4734, 4736, 4740, 4743,
4745, 4746, 4748, 4750, 4752, 4753, 4756, 4758, 4760, 4761, 4764, 4767, 4768, 4770, 4773,
4774, 4776, 4779, 4780, 4782, 4784, 4785, 4788, 4790, 4792, 4794, 4795, 4796, 4797, 4800,
4806, 4807, 4809, 4810, 4812, 4814, 4815, 4816, 4818, 4820, 4824, 4826, 4828, 4830, 4832,
4833, 4836, 4838, 4840, 4842, 4844, 4845, 4848, 4850, 4851, 4854, 4856, 4858, 4860, 4862,
4864, 4865, 4870, 4872, 4875, 4876, 4880, 4884, 4886, 4887, 4888, 4890, 4892, 4896, 4898,
4899, 4900, 4902, 4904, 4905, 4908, 4912, 4914, 4920, 4921, 4922, 4923, 4924, 4925, 4926,
4928, 4929, 4930, 4932, 4935, 4940, 4941, 4944, 4945, 4947, 4950, 4952, 4953, 4956, 4958,
4959, 4960, 4962, 4964, 4966, 4968, 4970, 4972, 4975, 4976, 4977, 4978, 4980, 4982, 4983,
4984, 4986, 4988, 4990, 4992, 4994, 4995, 4998}

58

Appendix C
Backtracking Program

The following program is a backtracking algorithm written in Python for finding or
solving a partial factor pair latin square of order n.

import math

import sys

import time

#Size of Factor Pair Latin Square

n = 9

#Define the empty Array of size n
grid = [[0 for x in xrange(n)] for y in xrange(n)]

#construct the Factor Pair Latin Square

#name the first row 1 . . . n
for i in xrange(0,n):

grid[0][i] = i+1

#Note: You can enter a partially filled in FPLS by putting

#grid = [[#,#,#, . . . ,#], [#,#,#, . . . ,#], . . . , [#,#,#, ...,#]]
#Any unfilled cell, make 0

#Find Factor pairs of n

def FactorPairs(value):

if value < 1:

return []

#Append 1 × n factor pair

factors = [[1, value]]

#Append n × 1 factor pair

factors.append([value,1])

for i in xrange(2, int(math.sqrt(value))+1):

if value % i == 0:

#Append a × b factor pair

factors.append([i, value / i])

#If a 6= b, append b × a factor pair

if i != (value/i):

factors.append([value/i, i])

return factors

59

#Declare Variables

#General Factor Pair Check (including Rows and columns)

#Requires a list to be passed to it. i.e. array[]

def Checker(list):

for i in xrange(0,n-1):

for j in xrange(i+1,n):

if list[i] != 0 and list[i] == list[j]:

return False

return True

#General Factor Pair Checker

def GeneralChecker(position):

#Check the a × b squares

#It should be noted that we only need to check the a × b squares,

#since the b × a squares will be checked as the next (or previous)

#factor pair in FactorPairs(n)

number1 = FactorPairs(n)[position][0]

number2 = FactorPairs(n)[position][1]

row = []

for level in xrange(0,n,number1):

for section in xrange(0,n,number2):

for i in xrange(level,level+number1):

for j in xrange(section,section+number2):

row.append(grid[i][j])

if len(row) == n:

if Checker(row) == False:

return False

row = []

return True

def OverallCheck(list):

for i in xrange(0,len(FactorPairs(n))):

if GeneralChecker(i) == False:

return False

return True

#Define Positions that are unchangeable (i.e. Fixed.)

Forbidden = [[0 for x in xrange(n)] for y in xrange(n)]

for row in xrange(0,n):

for column in xrange(0,n):

if grid[row][column] != 0:

Forbidden[row][column] = 1

#Solver

60

def Solve(row, column):

#In case the cell passed to function is fixed, go to next non-fixed cell

while (Forbidden[row][column] == 1):

#Try next cell

column = column + 1

#Advance row if necessary

if (column > (n-1)):

column = 0

row = row + 1

if (row > (n-1)):

return True

#Once we have our cell coordinates, substitute in a number and check it

for intGuess in xrange(1,n+1):

intTryRow = 0

intTryColumn = 0

grid[row][column] = intGuess

#Print each guess to see what’s going on.

for i in grid:

print i

print ’-----------’

#If good, Solve the next one

if(OverallCheck(grid)):

#Try the next square, preserving current values

intTryColumn = column + 1

intTryRow = row

#Check if the tow needs to be advanced

if (intTryColumn > (n-1)):

intTryColumn = 0

intTryRow = intTryRow + 1

if (intTryRow > (n-1)):

return True

#check if we’re done

if(Solve(intTryRow, intTryColumn)):

return True

#If none of the numbers we’ve checked are right, put this cell back to 0

#and return False

grid[row][column] = 0

return False

t = time.clock()

Solve(0,0)

#Double Check

#print grid

for i in grid:

61

print i

#Double check

print ’Double Check:’

if OverallCheck(grid) == False:

print ’This IS NOT a Factor Pair Latin Square’

sys.exit()

for i in xrange(0,n):

for j in xrange(0,n):

if grid[i][j] == 0:

print ’This IS NOT a Factor Pair Latin Square’

sys.exit()

print ’This IS INDEED a Factor Pair Latin Square!’

print ’Took %.3f seconds.’ % (time.clock()-t)

62

Appendix D
DLX Code

The following program is a C++ implementation of Donald Knuth’s DLX algorithm. It
is a modified version of bbi5291’s code posted on Computer Science Canada public forum.
Expressed and written consent to use and edit this file has been given by the author.[2]

D.1 Header File

//The following code is based on the paper "Dancing Links" by D. E. Knuth.

//See http://www-cs-faculty.stanford.edu/~uno/papers/dancing-color.ps.gz

#ifndef DLX_H

#define DLX_H

#include <cstring>

#include <climits>

struct data_object //A module in the sparse matrix data structure.

{

data_object* L; //Link to next object left.

data_object* R; // " right.

data_object* U; // " up.

data_object* D; // " down.

data_object* C; //Link to column header.

int x; //In a column header: number of ones

//in the column. Otherwise: row index.

void cover() //Covers a column.

{

data_object* i=D;

data_object* j;

R->L=L;

L->R=R;

while (i!=this)

{

j=i->R;

while (j!=i)

{

j->D->U=j->U;

j->U->D=j->D;

j->C->x--;

j=j->R;

}

i=i->D;

63

}

}

void uncover() //Uncovers a column.

{

data_object* i=U;

data_object* j;

while (i!=this)

{

j=i->L;

while (j!=i)

{

j->C->x++;

j->D->U=j;

j->U->D=j;

j=j->L;

}

i=i->U;

}

R->L=this;

L->R=this;

}

};

//Standard S-heuristic suggested in Knuth’s paper: pick the column with

//the fewest ones. Takes the root of the sparse matrix structure as an

//argument; returns a pointer to the column header with the fewest ones.

data_object* DLX_Knuth_S_heuristic(data_object* root)

{

data_object* P=root->R;

data_object* res;

int best=INT_MAX/2;

while (P!=root)

{

if (P->x<best)

{

best=P->x;

res=P;

}

P=P->R;

}

return res;

}

template <typename Func1,typename Func2>

/*

Actual recursive function implementing Knuth’s Dancing Links method.

h is the root of the sparse matrix structure.

64

O is the stack that will contain a list of rows used.

*/

void DLX_search(data_object* h,int k,int* O,Func1 send_row,

Func2 choose_column)

{

int i;

data_object *r,*c,*j;

if (h->R==h) //done - solution found

{

//send rows used in solution back...

for (i=0; i<k; i++)

send_row(O[i]);

//-1 signifies end of solution

send_row(-1);

return;

}

//otherwise

c=choose_column(h); //choose a column to cover

c->cover(); //cover it

r=c->D;

while (r!=c)

{

O[k]=r->x;

j=r->R;

while (j!=r)

{

j->C->cover();

j=j->R;

}

DLX_search(h,k+1,O,send_row,choose_column);

//set r <- O[k], and c<- C[r], this is unnecessary

j=r->L;

while (j!=r)

{

j->C->uncover();

j=j->L;

}

r=r->D;

}

c->uncover();

}

template <typename random_access_iterator,typename Func1,typename Func2>

/*

Meta-implementation of Knuth’s Dancing Links method for finding

solutions tothe exact cover problem.

65

PARAMETERS:

int rows: Number of rows in the matrix.

int cols: Number of columns in the matrix.

random_access_iterator buf: A random access iterator to ints (either 0 or

1), the entries of the matrix, in row major order.

Func1 send_row: A function object with return type void which takes as a

parameter the index of a row in a solution to the problem. (e.g. store

it in a buffer or print it out) -1 signifies the end of a solution.

Func2 choose_column: A deterministic function object taking as a parameter

a data_object* (the root) and returning a data_object* (the header of the

column to choose.)

*/

void DLX_dancing_links(int rows,int cols,random_access_iterator buf,

Func1 send_row,Func2 choose_column)

{

//step 1: construct the linked-list structure.

//We can do this by iterating through the rows and columns. Time is

//linear in the number of entries (optimal).

//Space used is linear in the number of columns + the number of rows

// + the number of ones.

int i,j;

data_object* root=new data_object; //root

data_object* P=root; //left-right walker

data_object* Q; //top-down walker

//array of pointers to column headers

data_object** walkers=new data_object*[cols];

//auxiliary stack for recursion

int* st=new int[rows];

for (i=0; i<cols; i++)

{

//create a column header and L/R links

(P->R=new data_object)->L=P;

//store a pointer to the column header

walkers[i]=Q=P=P->R;

P->x=0; //reset popcount

for (j=0; j<rows; j++)

if (buf[i+cols*j]) //a 1 in the current location?

{

//create a data object and U/D links

(Q->D=new data_object)->U=Q;

Q=Q->D; //advance pointer

Q->C=P; //link to the column header

P->x++; //increment popcount for this column

Q->x=j; //note the row number of this entry

66

}

Q->D=P; //complete the column

P->U=Q;

}

P->R=root; //complete the column list

root->L=P;

//eliminate empty columns

P=root;

for (i=0; i<cols; i++)

{

P=P->R;

if (!P->x)

{

P->L->R=P->R;

P->R->L=P->L;

}

}

//now construct the L/R links for the data objects.

P=new data_object;

for (i=0; i<rows; i++)

{

Q=P;

for (j=0; j<cols; j++)

if (buf[j+cols*i]) //a one

{

//in _this_ row...

walkers[j]=walkers[j]->D;

//create L/R links

(Q->R=walkers[j])->L=Q;

//advance pointer

Q=Q->R;

}

if (Q==P) continue;

Q->R=P->R; //link it to the first one in this row.

P->R->L=Q; //link the first one to the last one.

}

delete P; //P is no longer needed

delete walkers; //walkers are no longer needed

//step 2: recursive algorithm

DLX_search(root,0,st,send_row,choose_column);

delete st;

P=root->R;

while (P!=root) //deallocate sparse matrix structure

{

Q=P->D;

67

while (Q!=P)

{

Q=Q->D;

delete Q->U;

}

P=P->R;

delete P->L;

}

delete root;

}

//If no heuristic is specified, Knuth’s S heuristic is used - select the

//column with the fewest ones to minimize the breadth of the search tree.

template <typename random_access_iterator,typename Func1>

void DLX_dancing_links(int rows,int cols,random_access_iterator buf,

Func1 send_row)

{

DLX_dancing_links(rows,cols,buf,send_row,DLX_Knuth_S_heuristic);

}

#endif

D.2 CPP File

#include <iostream>

#include <stdio.h>

#include <math.h>

#include <cstdlib>

#include <stdlib.h>

#include "dlx.h"

using namespace std;

#define block(r,c,i) (FParray[i][0]*((r)/FParray[i][0])+\

((c)/FParray[i][1]))

// Define the order of the FPLS(n)

#define N 23

const int intCount = 2; //Number of Factors (Factor Pairs)

const int Columns = 1587; //N*N*(intCount+1)

const int Rows = 12167; //N*N*N

int matrix[Rows][Columns]; //DLX Matrix

int grid[N][N]; //End Product

68

// Number of Factor Pairs = Number of factors

int FactorCount(int n)

{

int factorCount;

factorCount = 0;

for (int i = 1; i < n+1; i++)

{

if (n % i == 0)

factorCount++;

}

return factorCount;

}

void f(int x)

{

int i;

int c;

int r;

if (x+1)

{

i=x%N; x/=N;

c=x%N; r=x/N;

grid[r][c]=i+1;

}

else

{

for (r=0; r<N; r++,putchar(’\n’))

for (c=0; c<N; c++)

{

cout << grid[r][c];

if (c != N-1)

cout << " & ";

if (c == N-1)

cout << " \\nl";

}

printf("\n");

exit(0);

}

}

void cover_col(int col)

{

for (int row=0; row<(N*N)*N; row++)

69

if (matrix[row][col])

{

matrix[row][col]=0;

memset(matrix[row],0,sizeof(matrix[row]));

}

}

void cover_row(int row)

{

for (int col=0; col<(N*N)*(intCount+1); col++)

if (matrix[row][col])

{

matrix[row][col]=0;

cover_col(col);

}

}

int main()

{

// Calculates the factor Pairs.

int FParray[intCount][2];

int whichPair;

whichPair = 1;

FParray[0][0] = 1;

FParray[0][1] = N;

FParray[1][0] = N;

FParray[1][1] = 1;

for (int i = 2; i < (floor(sqrt(N))+1); i++)

{

if (N % i == 0)

{

whichPair++;

FParray[whichPair][0] = i;

FParray[whichPair][1] = N/i;

if (i != (N/i))

{

whichPair++;

FParray[whichPair][0] = N/i;

FParray[whichPair][1] = i;

}

}

}

for (int row=0,r=0; r<N; r++)

70

for (int c=0; c<N; c++)

for (int i=0; i<N; i++,row++)

{

//uniqueness constraint

matrix[row][r+N*c]=1;

//Factor Pair constraint (including Row & column)

for (int pair = 0; pair < intCount; pair++)

{

matrix[row][(pair+1)*(N*N)+i+N*(block(r,c,pair))] = 1;

}

}

putchar(’\n’);

DLX_dancing_links((N*N)*N,(N*N)*(intCount+1),(int*)&matrix,f);

return 0;

}

71

	Abstract
	Acknowledgments
	List of Figures
	Introduction
	History
	Plan of Attack

	Known Constructions of Factor Pair Latin Squares
	Power of Primes
	Twice a Prime

	Wording as a k-Uniform Hypergraph
	Three Edges
	Four Edges
	Greater than Four Edges

	Negative Results on Factor Pair Latin Squares
	Generalizing Order Twelve
	Generalizing Order Twenty
	General Order Twenty-Eight

	Results on Quasi-Factor Pair Latin Squares
	Order Twelve
	Order Twenty-Four

	Mappings to other Problems
	Exact Cover Problem
	Resolvable 1-Designs
	Multiple Gerechte Designs
	Pigeon-Hole Principle

	Open Problems
	Bibliography
	Appendices
	Inadmissibility Code
	Inadmissible Values
	Backtracking Program
	DLX Code
	Header File
	CPP File

