
 

 

 

 

 

 

 

Design and Implementation of a SoC-Based Real-Time Vector Tracking GPS Receiver 

by 

Brian A. Keyser 

 

 

A thesis submitted to the Graduate Faculty of 
Auburn University 

in partial fulfillment of the 
requirements for the Degree of 

Master of Science 
 

Auburn, Alabama 
May 10, 2015 

 

Keywords: GPS, software receiver, vector tracking, FPGA 

Copyright 2015 by Brian A. Keyser 

Approved by: 

David Bevly, Chair, Albert J. Smith, Jr. Professor 
Peter Jones, Woltosz War Eagle Motor Sports Professor 

Victor Nelson, Professor of Electrical Engineering 
 

 

 



ii 

 

Abstract 

 This thesis provides the design and implementation of a GPS receiver which utilizes 

advanced tracking algorithms on a small, low cost platform. The tracking algorithms used are of 

a class of algorithms known as vector tracking. Vector tracking receivers have been known to 

have an increased immunity to jamming and maintain signal lock on weaker signals. These 

benefits often come at the price of computation time, as the algorithms can require extensive 

matrix inversion and impose critical timing requirements on the receiver. To handle the 

computational burdens, a system-on-chip implementation was chosen using the Xilinx Zynq 

architecture. This architecture couples an FPGA with a dual-core ARM processor in a small 

package and can be acquired on development boards at a low cost. This thesis demonstrates how 

this architecture is utilized to overcome the strict timing requirements of a real-time vector 

tracking GPS receiver. The design and implementation of the receiver is described such that it 

can be used as an aide in the development of other advanced acquisition, tracking, or navigation 

algorithms. Performance results are given in regards to tracking, positions, and processing times. 
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Chapter 1 

1 Introduction 

1.1 Motivation 

Since the Global Positioning System (GPS) was first declared operational in 1995, 

significant amounts of research have gone into improving the accuracy and reliability of GPS 

[1]. With the removal of Selective Availability in 2000, civilian users were able to see drastic 

increases in the accuracy of GPS receivers. The integration of more constellations (GLONASS, 

Galileo, Bei-Duo, etc.) has helped to improve the overall accuracy and reliability of satellite 

navigation systems as well [2]. Still, there are situations where satellite navigation is hindered by 

the availability and strength of the satellite signals. These situations can be in large cities (urban 

canyon) or heavily wooded areas (dense foliage). While operating in these situations, a GPS 

receiver may be unable to track satellites due to blocked line-of-sight availability or weakened 

signals. While other navigation methods such as odometry or inertial systems can be used to aid 

GPS in these situations, it is imperative that GPS remain accurate and reliable throughout these 

situations. 

Consider navigating through an urban canyon such as in Figure 1-1 using GPS or some 

other type of satellite navigation. Because GPS requires clear line-of-sight from the user to the 

satellite, often buildings can obstruct the user and cover most of the area where satellites would 
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be seen. Not only can this adversely affect the accuracy of the user’s position and velocity, but if 

enough satellites are blocked then this situation can prevent satellite navigation altogether. 

 

Figure 1-1 : Urban Canyon 

 Likewise, in areas with heavy foliage, the GPS signals can be attenuated or even 

completely blocked. Since the GPS signals are already extremely weak once reaching the surface 

of the Earth, any additional attenuation can cause severe negative impacts on navigation 

solutions. 

 In recent decades, numerous efforts have been made to mitigate the negative performance 

that satellite navigation methods incur from these situations. Vector tracking has been one effort 
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where significant strides have been made towards such improvements [3] [4] [5] [6] [7]. This 

method involves modifying the signal tracking process to utilize an optimal estimation 

technique, which enables satellites with stronger received signals to aid in the tracking of weaker 

signals. Several benefits can result from aiding the tracking loops, such as a more robust 

navigation solution in adverse environments and instant reacquisition of satellites after short 

losses of line-of-sight. 

 However these benefits come at a cost. Because vector tracking is involved at the signal 

processing level of the receiver, it cannot be implemented on commercial receivers that do not 

allow modifications to the tracking algorithms (which includes most, if not all Commercial-Off-

The-Shelf receivers). Furthermore, the integration of the optimal estimation techniques requires 

significant processing abilities. When cost and size are not a concern, computational intensity 

isn’t an issue. However there is a large demand for reliable navigation utilities with small, low 

cost, low-power implementations. 

 The work described in this thesis seeks to resolve these issues. Others have documented 

some of the issues involved in this implementation, however a vector tracking receiver in a small 

and inexpensive package has yet to be completed [8] [5].  

 A small, low-cost hardware platform is chosen that is able to handle the computational 

burden of vector tracking. A GPS receiver which implements a type of vector tracking 

algorithms is designed and constructed on a Zynq XC7Z020. The platform used is highly 

programmable, and the implementation details are given in the thesis. This enables readers to 

pursue expansion of the receiver developed in this work so that perhaps more advanced 

algorithms can be easily implemented or other constellations can be integrated. 
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1.2 Software Receivers 

Software receivers have emerged in recent years as a major tool in the development of 

wireless communications [9] [10]. Software receivers are easily programmed and reprogrammed 

and thus have become a great development tool for researching new communication systems and 

signal processing algorithms. Because processing speeds continue to increase, software receivers 

can be first quickly tested using post-processed data before being implemented in a real-time 

design. 

Developing GPS receivers from a software receiver serves many purposes. First, there is 

immense flexibility in the design process, as well as numerous means by which to analyze 

performance [2]. Some software receivers offer real-time operations, others are used as a post-

processing tool to aid in the evaluation of new techniques and algorithms. Often times, these can 

lend themselves to be developed into hardware, as a full-hardware implementation or a mixture 

of hardware and software.  

 

1.3 System-On-Chip 

A system-on-chip (SoC) design is one in which an entire computing system (including 

processing, clocking, memory, etc.) is implemented on a single chip. This allows for significant 

improvements in terms of: 

• Ease of implementation 

• Signal quality 

• Power consumption 
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• Size 

Many new designs are moving toward SoC implementations because advances in technology 

are allowing more components to be put on smaller platforms and become integrated into smaller 

packages [11]. The SoC used in this work comprises two main components: an FPGA and a 

microprocessor. 

1.3.1 Field-Programmable Gate Array   

A Field-Programmable Gate Array (FPGA) is essentially programmable hardware. They 

are integrated circuits that are made up of programmable logic blocks (PLB), input/output (I/O) 

cells, interconnect, and configuration memory, as in Figure 1-2 [12]. The actual function of an 

FPGA can be programmed into it, such that the same hardware can be utilized in an unlimited 

number of ways. By configuring the PLBs, I/Os, and interconnects, the function of the FPGA 

can be set, reset, or even modified during operation. 

FPGAs are often used in the process of designing application specific integrated circuits 

(ASIC). ASICs are designed for a single hardware implementation; however, they can perform 

the functions in that implementation with great speed and efficiency. ASICs tend to be smaller, 

faster, less expensive, and use less energy than their FPGA counterparts. But this comes at a very 

high initial cost to produce an ASIC. An FPGA can be used as a means of prototyping a 

particular hardware implementation prior to making ASICs, so that multiple iterations of the 

ASIC do not need to be produced as the hardware implementation is refined.  
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Figure 1-2 : FPGA Layout [12] 

FPGAs have many qualities that make them great platforms for GPS receivers. As 

mentioned above, the ability to be reprogrammed allows for flexibility and forgiveness during 

the design process. Even during operation, FPGAs can often operate near the speeds of 

comparable ASICs, although at a small fraction of the development costs. FPGAs are also highly 

parallelizable; functions that need to occur at the same time can be programmed onto separate 

parts of the FPGA and allowed to run simultaneously. This is particularly helpful in the design of 

GPS receivers, as tracking channels need to operate quickly and simultaneously [13] [14]. 

There are other aspects of FPGAs, however, that are less desirable for this application. 

Power consumption has long been an area of concern for more capable FPGAs.  Long strides 

have been made in this area as manufacturers have begun providing low power options, and 

often designs can be modified to require less power. Also, sometimes simple mathematic 
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calculations can be expensive in terms of FPGA resources. This is particularly difficult when an 

operation only needs to be completed once – the FPGA resources must be allocated for this 

operation. There are options to reconfigure FPGAs during operation (Run-Time 

Reconfiguration); however this is one of the more complicated topics in regards to FPGA design 

[12]. Along those lines, FPGA definitions are produced from Verilog/VHDL models (VHSIC 

[Very-High-Speed Integrated Circuit] Hardware Description Language), neither of which is as 

common among young engineers as C or C++. Again, strides have been made to allow 

programming of FPGAs through other programming environments, such as MATLAB or 

LabVIEW, but these are still only growing in familiarity and popularity. 

1.3.2 Specialized Cores 

As a result of seeing customers repeatedly use FPGAs for similar functions, FPGAs also 

now integrate more specialized functions into the fabric of the chips. Block RAMs (BRAM), 

Digital Signal Processing (DSP) slices, and microprocessors are just some of the specialized 

cores now available within FPGAs. The integration of these devices is what makes the SoC 

structure able to accomplish so much. 

1.4 Contributions and Outline 

On the topic of vector tracking algorithms, much work has been done in the development 

and validation of such algorithms. Some work has also been done in developing a vector tracking 

receiver for use on a home PC [15]. Previous efforts at developing a small, low cost solution to a 

real-time vector tracking receiver have come up short due to a lack of sufficient hardware at the 

time [8]. This thesis provides a highly programmable platform for use in the design, testing, and 
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implementation of advanced algorithms for software receivers. A real-time vector tracking GPS 

receiver has yet to be implemented on a small, low cost platform and thus this thesis provides 

details to the design and implementation of such a receiver. 

A background of the Global Positioning System and the signal structure of the satellite 

signals will be provided in Chapter 2. This lays the foundation for how the processing of the GPS 

signals will be accomplished on the SoC. Chapter 3 lays out the typical structure of a GPS 

receiver, explaining the processes that a receiver uses to produce a navigation solution. The 

algorithms used in the vector tracking receiver will be developed and the use of such algorithms 

in the vector receiver will be discussed. Implementation details are given in Chapter 4 where the 

allocation of processing tasks, hardware design of the FPGA, and software design of the ARM 

programs are explained. Chapter 5 highlights the results of the work, showing navigation 

performance as well as processing performance. Because the performance in terms of the 

accuracy of the navigation solution has been well documented for these algorithms, more effort 

is given to the processing performance and the effect this has on the receiver’s operation. Finally, 

conclusions from the work are presented in Chapter 6 along with possible expansions and 

improvements for the receiver. 
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Chapter 2 

2 Overview of GPS Signal Structure 

 

2.1 Background 

This chapter discusses the structure of GPS signals and the properties of the codes 

transmitted. The unique properties of these codes will be the basis of how the receiver acquires 

and tracks these signals. The data carried by the signals will also be introduced. 

GPS users rely on electromagnetic waves sent from the satellites orbiting Earth and 

received by their antenna. In the operation of a GPS receiver, the receiver does not send any 

information or signals back to the satellites; it only receives signals and determines user position, 

velocity, and time based on the processing of the received signals.  

In general, a radio signal can be described as: 

 𝑠 = 𝐴𝐴𝐴𝐴(2𝜋𝜋𝜋 + 𝜃) (2.1) 

where 𝐴 is the amplitude, 𝑓 is the frequency in Hz, and 𝜃 is the initial phase [16]. Information 

can be carried by the signal by modulating any of these three parameters. Amplitude modulation 

(AM) and frequency modulation (FM) are commonly used today. As the names imply, AM 

modulates the amplitude of the signal and FM modulates the frequency. When the phase is 
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modulated, it is called phase modulation. An example of these modulation methods can be seen 

Figure 2-1. 

 

Figure 2-1 : Modulation Techniques 

 

 GPS is a phase modulated signal with phases of 0 and π; because it modulates between 

two phases, it is called a binary phase-shift keying (BPSK) signal [17]. The phase modulation 

signal in Figure 2-1 shows a BPSK signal. A single frequency is used and a shift in phase is used 

to indicate a change in data. This can be related as multiplying the signal by a ±1 to shift the 

phase (notice that for a shift in data, the BPSK signal of Figure 2-1 changes from a value of +1 to 

-1). The rate in which the data is transmitted plays a key role in the frequency spectrum which 

the BPSK signal occupies, which is explained more in the description of the signal from the 

Frequency Domain. 
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2.2 Time Domain Description 

GPS satellites broadcast three signals simultaneously. Each signal comprises a carrier, 

code, and navigation data as seen in Figure 2-2. The code and navigation data are represented as 

square waves shifting between ±1, while the carrier is a sinusoidal wave. The transmitted signal 

is the product of all three components. Note that in Figure 2-2 the x-axis is not to scale: each 

component of the final signal has a vastly different frequency. This serves as an illustrative 

example of how the three components are multiplied together to produce the transmitted signal.  

 

 

Figure 2-2 : GPS Signal Structure 

 

The three signals can be described as below [1] 

 
𝑠𝐿1(𝑡) = �2𝑃𝐶𝐷(𝑡)𝑥(𝑡) cos(2𝜋𝑓𝐿1𝑡 + 𝜃𝐿1) 

+�2𝑃𝑌1𝐷(𝑡)𝑦(𝑡)sin(2𝜋𝑓𝐿1𝑡 + 𝜃𝐿1) 
(2.2) 
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 𝑠𝐿2(𝑡) = �2𝑃𝑌2𝐷(𝑡)𝑦(𝑡)cos (2𝜋𝑓𝐿2𝑡 + 𝜃𝐿2) (2.3) 

 

These three signals are comprised of two different frequencies and two different codes. The 

civilian code is broadcast on the L1 frequency (𝑓𝐿1 = 1575.42 𝑀𝑀𝑀). The military code is 

broadcast on both the L1 frequency and the L2 frequency (𝑓𝐿2 = 1227.60 𝑀𝑀𝑀). Because the 

military code is not available to civilian users, this thesis will focus solely on the civilian code 

(the top line of (2.2)). 

 The civilian code is made up of four components: amplitude (�2𝑃𝐶); navigation data 

(𝐷(𝑡)); spread spectrum code (𝑥(𝑡)) and a high frequency carrier (cos(2𝜋𝑓𝐿1𝑡 + 𝜃𝐿1)). The 

amplitude of the signal is related to the average power in the transmitted signal [1]. Once the 

signal is received at a GPS receiver’s antenna, this amplitude has decreased due to the distance 

the signal has traveled as well as other environmental effects. The navigation data, which will be 

described in more detail later, is transmitted at 50 bits per second and contains information about 

the satellites. The spread spectrum code is a unique code to each satellite. It is a pseudo-random 

sequence that is 1023 chips long and transmitted at a chipping rate of 1.023 MHz. Chips and 

chipping rate are generally used when referencing the GPS spread spectrum code because the 

“chips” are pseudo-random and do not actually carry any information like “bits” do [18]. The 

high frequency (radio frequency, RF) carrier is a sinusoidal wave with a given frequency and 

initial phase. The carrier is realized as a cosine wave at the L1 frequency; the initial phase is 

considered to be zero. However it should be noted that there is likely to be a phase difference 

between the transmitted signal and the receiver, even if the frequency is properly determined. All 

four components are multiplied together to result in the transmitted signal. 
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2.3 Frequency Domain Description 

Some signal processing techniques are greatly utilized by means of a good understanding 

of the frequency domain representation of the GPS signal. This can be accomplished by taking 

the Fourier Transform of the time domain signal. Beginning with Equation (2.4) 

 𝑠𝐶/𝐴(𝑡) = �2𝑃𝐶𝑥(𝑡)cos (2𝜋𝑓𝐿1𝑡) (2.4) 
 

note that the navigation data is missing from the equation. The spread spectrum code is used in 

place of both the spread spectrum code and the navigation data because it simplifies our analysis 

without modifying the outcome [1]. The period of a bit in the navigation data is 20 milliseconds, 

during which the spread spectrum code will have gone through 20x1023=20460 chips. The effect 

of the navigation data is essentially to flip the sign of all 20460 chips of the spread spectrum 

code. The net effect of this on the Fourier Transform is negligible. In (2.4), we also ignore the 

initial phase, as it can be considered zero for this analysis. 

 The Modulation property of Fourier Transforms states that a signal multiplied by a 

sinusoid simply shifts the Fourier Transform of the original signal to the positive and negative of 

the modulating frequency as in Equation (2.5).  

 ℱ{𝑎(𝑡) cos(2𝜋𝑓0𝑡)} =
1
2
𝐴(𝑓 − 𝑓0) +

1
2
𝐴(𝑓 + 𝑓0) (2.5) 

 

Applying (2.5) to (2.4) results in 

 𝐹�𝑠𝐶 𝐴⁄ (𝑡)� =
�2𝑃𝐶

2
𝑋(𝑓 − 𝑓𝐿1) +

�2𝑃𝐶
2

𝑋(𝑓 + 𝑓𝐿1) (2.6) 
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All that is needed is the Fourier Transform of the spread spectrum code. The majority of 

the impact of the spread spectrum code on the Fourier Transform can be seen by simplifying the 

code into a single pulse that is the width of a chip. The Fourier Transform of a pulse with 

amplitude 𝐴 and duration 𝑇 is given by (2.7). 

 𝐹 �𝐴𝐴 �
𝑡
𝑇
�� = 𝐴𝐴𝐴(𝑓𝑓) = 𝐴𝐴

sin (𝜋𝜋𝜋)
𝜋𝜋𝜋

= 𝐴𝐴𝐴𝐴𝐴𝐴(𝜋𝜋𝜋) (2.7) 

 

 The amplitude of the spread spectrum code is unity, and the period is approximately 1 

microsecond. The time domain and frequency domain representation of this can be seen in 

Figure 2-3. Notice that the frequency domain representation is shown as the magnitude, such that 

the sinc function is always positive. 

 

Figure 2-3 : Pulse - Time Domain and Frequency Domain Representation 

 When the pulse in Figure 2-3 is modulated using the cosine carrier at the L1 frequency, 

the Fourier Transform is simply the sinc function in Figure 2-3, shifted to +𝑓𝐿1 and −𝑓𝐿1. The 

frequency spectrum of the civil signal will be dominated by this frequency-shifted sinc function. 

However, because the signal has been simplified, some other characteristics of the spectrum have 
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left out. The navigation data and the carrier phase offset will both have very small effects on the 

final spectrum, as well as the influence of the code as an entire sequence instead of a single pulse 

[1]. Additionally, there is the consideration of the repetition of the code. With all things 

considered, the final spectrum would be dominated by the frequency-shifted sinc function 

multiplied by a series of delta functions in spacings of 1 kHz. 

 This analysis aids in the understanding of how the signal shifts in frequency due to up or 

down converting, as well as gives a good understanding of the bandwidth that the signal 

occupies. The GPS signals can all be contained within the 2 MHz width of the main lobe in 

Figure 2-3. Thus, whenever the signal is filtered, a bandpass filter of 2 MHz bandwidth centered 

on the carrier frequency can be utilized. 

2.4 Received Signal Power 

When GPS signals reach the Earth’s surface, they are very weak. The input power level for 

the antenna on the satellites is only about 50 Watts, and only half of that is devoted to the civilian 

signal [1]. Consequently, the specification for the minimum received power level for civilian 

users on the Earth’s surface (given no other hindrances to the signal) is -160 dBW. In general, 

signal power is slightly stronger and a received power of about 10−16 Watts is normally 

observed in clear skies [1]. This, unfortunately, is well below the level that is detected by an 

antenna. Consequently, the signals described in the Time and Frequency Domain sections above 

cannot be seen by hooking an oscilloscope or a spectrum analyzer up to an antenna. Signal 

power level is the limiting factor to the use of GPS, as that makes it very easy to overwhelm with 

other signals (intentionally and unintentionally). There is, however, a structure within the GPS 

signals that allow it to be detected amongst greater powered signals. The carefully constructed 
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spread spectrum codes (Gold Codes) have unique correlation properties that give the signals an 

extra boost to be detected amongst noise [17]. These codes, as well as the utilization of their 

correlation properties, are the topic of the following section.  

 

2.5 Gold Codes 

The GPS civilian signal utilizes codes that are termed Gold codes or Gold sequences 

(also referred to as Coarse Acquisition Codes or C/A Codes) [19]. They are pseudorandom 

binary sequences that have unique correlation properties that benefit the GPS signals in multiple 

ways. Not only does this give the processing gain necessary to allow the signals to be detected 

amongst noise, but it also enables all of the satellites to broadcast on the same frequency and 

occupy the same frequency spectrum. 

 

Figure 2-4 : C/A Code Generation 
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The Gold Codes are generated using two maximal length linear shift register sequences 

[20]. The generation of the signals follows the diagram in Figure 2-4. The diagram consists of 

two shift registers, G1 and G2, and the output is a combination of certain combinations of the 

elements in the registers. The generation begins with both registers filled with ones. Two 

elements from G2 are passed through an exclusive-or (XOR), the G2 Selector output is XOR’d 

with the last element in G1, and the result is the output. The element returned to the beginning of 

each register is also a combination of multiple elements. Each GPS satellite uses a different pair 

of elements from G2 in the G2 Selector to generate the output; this is how the different codes are 

determined for all of the satellites. There are 37 unique combinations for the G2 elements, of 

which 32 are used for the C/A Codes [17]. Both shift registers will return to being filled with 

ones after producing 1023 outputs, after which they will repeat. Thus each of the Gold Codes is 

1023 elements long. 

The GPS C/A codes are also called pseudorandom noise (PRN) sequences. The 

sequences may appear random just due to the fact that they do not repeat for over 1000 samples; 

however, the name implies more and serves as a good introduction to the correlation properties 

of the codes. Consider a sequence generated by tossing a coin and writing +1 for heads and -1 for 

tails. If one were to guess what the value of any one toss was, it would be a guess or random. 

Furthermore, the expected value of the outcome would be zero; even though a zero cannot be 

generated, there should be approximately equal amounts of +1s and -1s. Now, if two sequences 

are generated in this fashion, there would be no correlation between the two, meaning that 

knowledge of the values in one sequence will not enable you to predict the values in the other 

sequence. Thus it would be said that these sequences are not correlated. Also, when in the middle 

of generating one sequence, knowledge of all of the past values of the coin toss cannot help 
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predict the value of the next coin toss (remember that it is “expected” to be zero, but that won’t 

happen). Thus we would say that each sequence is not correlated with itself in time [21]. These 

properties which make up our fictitious random sequences are found in the Gold Codes. 

Correlation is a measurement of the similarity of two waveforms: auto-correlation 

measures the similarity between a waveform and a time-shifted version of the same waveform, 

and cross-correlation measures the similarity between a waveform and all time-shifted versions 

of another waveform [1]. Naturally, the auto-correlation of a sequence will have a maximum 

value with a time shift of zero. Because the Gold Codes are not correlated in time, the auto-

correlation is nearly zero with every other time shift. This can be seen in Figure 2-5, where the 

replica was shifted to give a correlation peak at 823 chips. In Figure 2-5, the normalized auto-

correlation is plotted versus a shift in chips. Because the code length is 1023, the maximum value 

would be 1023 for a time shift of zero. In Figure 2-5, the values are normalized to this maximum 

value. There are some interesting things to note about this idealized auto-correlation that will aid 

in some of the signal processing in the receiver: 

• The normalized value at the idealized peak is 1 

• The normalized value at ±1/2 chips is 0.5 

• The normalized value at ±1 chip is ≈0 

• At whole chip delays, the normalized auto-correlation will take on values of [-1/1023, -

65/1023, 63/1023] precisely 

• The side lobes (whole chip delays other than the peak) will be at least 24 dB weaker than 

the peak. 
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In particular, take notice of the first three bullets. The autocorrelation will take on the shape 

of a triangle around the peak, where half of the amplitude will be at a half chip distance from the 

peak and the amplitude will be ≈0 at 1 chip distance and greater. 

 

Figure 2-5 : Normalized Auto-Correlation of GPS Gold Codes 

 Similar to the auto-correlation, the cross-correlation of the Gold Codes can be well 

predicted. The cross-correlation of two GPS Gold Codes is shown in Figure 2-6. For all time 

shifts, the correlation value is near zero. In fact, just as with the auto-correlation, these values can 

be predicted. The normalized cross-correlation of two GPS Gold Codes (at whole chip delays) 

will take on the values [-1/1023, -65/1023, 63/1023] precisely. This ensures that the cross-

correlation will be at least 24 dB weaker than an auto-correlation peak. 
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Figure 2-6 : Cross-Correlation of GPS Gold Codes 

These correlation properties allow the GPS constellation (which consists of up to 32 

satellites) to continuously transmit different data from each satellite at the same time. This 

scenario can be likened to AM or FM radio stations. All radio stations in a particular area 

transmit different information at the same time. However these are all transmitted on different 

frequencies, which allow the radio in your car to hone in on one station. GPS on the other hand, 

transmits from every satellite on the same frequency. The information can be decoded from each 

satellite by knowledge of the Gold Code being transmitted from that satellite. This concept is 

called code division multiple access (CDMA). 

2.6 Navigation Data  

As mentioned before, in addition to the Gold Code and carrier, the GPS satellites also 

broadcast navigation data at 50 bits per second. This data creates another modulation to the phase 

of the carrier, again between 0 and π. The navigation data consists of timing information as well 
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as satellite orbital parameters. There are five subframes in the GPS Navigation Data; each 

subframe contains 10 words of 30 bits each (300 bits per subframe, 1500 bits total), and the 

sequence of subframes repeats indefinitely. At the beginning of each subframe are a Telemetry 

word (used for signaling the beginning of a subframe) and a Handover word (used for 

determining Time of Week, configuration flags, and subframe ID). Every word following these 

two contain information about the current satellite’s orbital parameters (called Ephemeris and is 

found in the first three subframes) or information about all of the satellites in orbit (called 

Almanac and is found in the last two subframes). The navigation data is essential to determining 

the user position, velocity, and time. For more information about the structure of the navigation 

data subframes and calculating satellite positions from their parameters, see the GPS ICD [22].  
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Chapter 3 

3 GPS Receiver Structure 

 

3.1 Front End 

GPS front-ends follow the same general structure of other RF receivers. The primary 

purpose of the front-end is to bring the RF signal down to a frequency that can be easily sampled 

by an Analog to Digital Converter (ADC). Front-ends also have secondary purposes of filtering 

and amplifying the signal, generally in the analog domain, so that signal processing in the digital 

domain can be done more easily [23]. A typical structure of a front-end is shown in Figure 3-1. 
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Figure 3-1 : Front-End Block Diagram 

The signal path begins with the antenna receiving the RF signal. Antennas are 

constructed to be receptive of particular frequencies, thus a GPS antenna will be designed for 

either the L1 or L2 frequency (or sometimes both). The signal is very weak at this point, and 

must be amplified. Ideally, this amplification will occur very close to the antenna so that the 

weak RF signal is not subjected to more noise. In an active antenna, power is fed to the antenna 

so that an amplifier is placed inside the antenna. In a passive antenna, this amplification must be 

done outside of the antenna. An active antenna is shown in Figure 3-1. A bias-tee is shown 

following the antenna; the bias-tee is used to power the antenna through the same cable that the 

RF signal is passed through. A schematic of a bias-tee is shown in Figure 3-2. DC power is 

applied to Port 1, which is passed to the antenna through Port 2. Port 3 is the RF output that goes 

to the front-end. 
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Figure 3-2 : Bias Tee Schematic 

After the bias-tee, the RF signal is filtered and amplified again. The purpose of filtering is 

to eliminate some of the frequency content of the received RF signal. As mentioned in Chapter 2, 

the frequency spectrum of the GPS signals is well known and only occupies a particular 

frequency band. With this knowledge, a band-pass filter can be used to attenuate signals in 

frequencies outside of the GPS spectrum. 

 Following this stage of filtering and amplification, a local oscillator is used to down 

convert the RF signal to a frequency that is more easily sampled by the ADC. Recall from 

trigonometric identities, that the product of two sinusoids is the sum and difference of the 

frequencies, as in (3.1). 

 
A1 sin(2𝜋𝑓1) ∗ 𝐴2 sin(2𝜋𝑓2)

=
𝐴1𝐴2

2
sin�2𝜋(𝑓1 − 𝑓2)� +

𝐴1𝐴2
2

sin�2𝜋(𝑓1 + 𝑓2)� 
(3.1) 

 Thus if 𝑓1 is the L1 GPS frequency, a local oscillator (LO) can be chosen to bring the 

difference of the two frequencies to a desired value. The mixing process is called either down-
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conversion or up-conversion, depending on whether the desire is to keep the difference or the 

sum (in this case, it is called down-conversion as the desire is to keep the lower frequency). 

Because the down-conversion process has the effect of decreasing the signal amplitude and 

adding unwanted frequency content, the down-converted signal is both amplified and filtered 

again. 

 In Figure 3-1, three separate filtering and amplification stages exist in the signal path. 

This may seem slightly redundant, however there is special purpose to it (often times, front-ends 

may have more than 3 filtering and amplification stages). The amplification in the antenna is 

used because the antenna and receiver are generally not in the exact same position, and thus the 

signal must traverse some distance; if the signal is not amplified, then the signal may become 

overwhelmed by noise in the local environment. Generally speaking, IF amplifiers have lower 

cost than RF amplifiers, thus many front-ends are heavy in IF amplifiers [17]. However, it is also 

desirable to have amplifiers in different frequency ranges; thus in the front-end, multiple 

amplifiers are used to increase the signal power throughout the conversion process [23]. Filter 1 

is used to limit the input bandwidth of the signal; Filter 2 is used to suppress unwanted 

frequencies generated by the mixer; Filter 3 is used to limit noise generated by IF amplifiers 

[17]. 

 The final stage of the front-end is the ADC. Here, the IF signal is sampled into discrete 

values for digital signal processing. There are various ADCs that can be used, and they are 

generally described by sampling frequency and number of bits in the output. Most GPS receivers 

use at least 2 bits, while the sampling frequency is dependent on the IF and processing 

constraints [2]. 
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3.2 Traditional Receiver 

As described above, the RF front-end handles the analog signal processing prior to the 

digital signal processing that occurs in the remainder of the receiver. The operations of a typical 

GPS receiver will be described here as they occur following the processing from the front-end. In 

general, the satellite signals are first detected in the Acquisition process, followed by the 

Tracking process, where the signals will be tracked with local replicas such that navigation data 

can be retrieved and ranging information can be extracted. With navigation data and ranging 

information, the receiver can produce a navigation solution. 

3.2.1 Acquisition 

Acquisition serves two main functions in a GPS receiver. First, acquisition reveals to the 

receiver which satellites are present in the incoming signal. This can be estimated given other 

information such as time and approximate location, but a stand-alone receiver with no such 

information must run through an acquisition sequence to determine which satellites are available. 

Second, acquisition gives the receiver approximate values for the code phase and carrier 

frequency for a particular satellite. These approximations will be passed along to the tracking 

loops to enable them to begin tracking the incoming satellite’s signal. These two functions are 

accomplished simultaneously. 

Two acquisition schemes will be discussed in this thesis: serial search and parallel code 

phase search. In both schemes, the correlation properties of the PRN codes will be exploited; 

however each one operates in a different domain. Each scheme generates a local estimate of a 

particular satellite’s incoming signal (PRN sequence modulated on an intermediate frequency 
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carrier) and correlates that estimate with the data received from the RF front-end. If there is a 

“spike” in the correlation, then the satellite is present and the parameters used to generate the 

local estimate can be used by a tracking loop. A spike is a single value that raises a significant 

value above the other values as in the plots in Figure 2-5. If there is not a spike in the correlation, 

then the receiver can either search for a different satellite or change the local estimate and 

correlate again. Unfortunately, the presence of a spike is a bit of a relative definition. Signal 

strength, among other factors, can determine how large a spike is; this could produce inaccurate 

results if the receiver is only searching for a certain threshold. Instead, the receiver will generate 

a table of correlation values with one axis as code phase and the other axis as carrier frequency. 

Once the table has been filled, a search of all the correlation values can be done and the presence 

or absence of a relative peak can be determined. While both schemes follow this generic 

sequence, they accomplish the task in very different ways. 

3.2.1.1 Serial Search Acquisition 

The serial search acquisition method is the simpler of the two and easier to implement. It 

is the more intuitive of the two because it implements the correlation process in the time domain. 

Figure 3-3 shows a block diagram of the correlation process in the serial search algorithm. 
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Figure 3-3 : Serial Search Acquisition Block Diagram 

The incoming signal in Figure 3-3 is mixed with the output from a PRN Generator. The 

PRN Generator produces a replica of the satellite’s Gold Code, represented as +1s and -1s. The 

result is then split into two branches: an In-phase branch and a Quadrature branch. The In-phase 

branch (the top branch in Figure 3-3) is mixed with the Carrier Generator’s output. The Carrier 

Generator’s output is a sine wave at the frequency of the IF plus an estimated Doppler frequency. 

The result of this mixing is summed and squared. In the Quadrature branch, a similar process 

occurs, except the Carrier Generator’s output is shifted by 90° (resulting in a cosine wave). Once 

both branches are summed and squared, the branches are summed together to give the correlation 

output. The In-phase and Quadrature branches are both required to account for an error in the 

carrier phase between the incoming signal and the local replica. If only one branch is used, then 

there can exist a maximum carrier phase error of 𝜋
2
 (intuitively it would be 𝜋, however a phase 

difference of 𝜋 is the same waveform multiplied by -1 and the correlation value will be the same 
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magnitude). This carrier phase error can significantly reduce the correlation value magnitude. By 

adding the 2nd branch, this carrier phase error is reduced to a maximum of 𝜋
4
.  

The correlation output is stored in a table like the one shown in Figure 3-4. The table 

consists of an axis of code phases and an axis of Doppler frequencies. The PRN Generator will 

shift its output to give a different time delay in the generated Gold Code; the Carrier Generator 

will use different Doppler frequencies in generating the local carrier. Once this table is full, a 

local spike can be detected and the code phase and Doppler frequency associated with that spike 

will be used in the tracking channel. 
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Figure 3-4 : Acquisition Search Table 

 Due to the autocorrelation properties of the Gold Code, the size of the code phase bins in 

Figure 3-4 must be at least ½ a chip wide. This ensures that at worst, the peak of the correlation 

is offset by ¼ of a chip from the theoretical peak, meaning that half the correlation magnitude 
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still remains. The size of the Doppler bins is driven by the pull-in region of the tracking loops; 

this is discussed more during the hardware implementation section of this paper. 

3.2.1.2 Parallel Code Phase Search Algorithm 

Although simple, the Serial Search Algorithm can take a very long time. Consider using a 

Doppler search span of ±5 kHz, in bins of about 200 Hz. This requires 10000
200

+ 1 = 51 Doppler 

bins to search. Include that with 2046 code phase bins (for ½ chip width bins) and the total size 

of the Acquisition Search Table is 104346 elements. Some architectures such as FPGAs allow 

for some parallelization of this process, where multiple correlators can be set up as in Figure 3-3 

to process multiple code phases or Doppler frequencies at once. However, there are digital signal 

processing techniques that can be utilized to provide even greater processing gains. 

It is well known that the Discrete Fourier Transform (DFT) can be used to compute 

circular convolution of two signals [24]. This is a very useful tool, however in GPS the goal is 

for circular cross-correlation rather than convolution [25]. In [2], it is shown that to perform a 

circular cross-correlation of two signals, one must simply take the complex conjugation of one of 

the DFT outputs prior to the multiplication in the frequency domain.  

 The benefit to the Parallel Code Phase Algorithm is that each iteration of the algorithm is 

able to produce the correlation value for an entire set of code phases. This allows one complete 

column of Figure 3-4 to be searched with one step; in addition, the bin sizes will be based on the 

size of the DFTs, which could accomplish high accuracy results without extensive processing. 

The overall structure for the Parallel Code Phase Algorithm is shown in Figure 3-5. This method 

must still search over all of the Doppler bins as described in the Serial Search, so the process 

begins with mixing the incoming signal with an In-phase and Quadrature estimation of the 
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carrier. The mixing results are combined and used in a DFT. The replica C/A code is also 

processed through a DFT and then the complex conjugate of the result is multiplied with the 

frequency components of the carrier portion. The inverse DFT is taken of the product, and the 

magnitude is squared to generate the output. 

 

 

Figure 3-5 : Parallel Code Phase Search 

 The algorithm for the Parallel Code Phase Search lends itself to be processed much more 

quickly than the Serial Search, if simply for the fact that the algorithm only needs to repeat over 

the Doppler search bins. This reduces the number of searches from 104346 to 51. Moreover, the 

development of Fast Fourier Transforms (FFT) as a means of quickly producing DFT results 

enables this process to be completed even faster. Fortunately, FFTs come easily packaged for 

FPGAs and can even be clocked fast enough to produce very low latencies. This topic is 

explored more in Section 4.3.1. 
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3.2.2 Tracking 

Once Acquisition has finished the search table for a satellite, it will pass the satellite 

number, code phase estimate, and Doppler frequency estimate to a tracking loop. The tracking 

process will bring these into more accurate estimates and continue to update these estimates by 

correlating the incoming signal with a locally generated replica. The correlation outputs are used 

in feedback loops to determine any adjustments that need to be made to the replica signal to 

maintain lock on the incoming signal. In each tracking loop, the code phase and Doppler 

frequency are tracked in two separate feedback loops that occur in parallel. The code phase 

feedback loop is called a delay-lock-loop and the carrier feedback loop is either a frequency-

lock-loop or phase-lock-loop. 

3.2.2.1 Delay-Lock-Loop 

In its basic form, a DLL is simply a feedback control loop: the controller is the 

Numerically Controlled Oscillator (NCO), the plant is a bank of correlators, and the sensor is the 

discriminator. A block diagram of a DLL is shown in Figure 3-6. 
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Figure 3-6 : Delay-Lock-Loop Block Diagram 

 The incoming signal is split into three branches: Early, Prompt, and Late. Each branch 

multiplies the incoming signal with a time-shifted version of the C/A code. The Prompt branch is 

being tracked such that it is the most closely aligned with the incoming signal. The Early branch 

is shifted forward in time by 𝛿 chips while the Late branch is shifted in the opposite direction by 

𝛿 chips. A typical value for 𝛿 is ½ chips, but this can be adjusted to either increase the accuracy 

(decrease 𝛿) or increase the bandwidth (increase 𝛿). A time domain explanation of the signal in 

the three branches is shown in Figure 3-7. 
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Figure 3-7 : Early-Prompt-Late Alignment 

 After the incoming signal is multiplied by the Early, Prompt, and Late replicas, each 

branch accumulates samples for a given amount of time. Typically, 1 millisecond is used for the 

accumulation period (Integration period) because the C/A Code repeats every millisecond. The 

Integration period, however, can be increased for greater accuracy. 

 The Discriminator in Figure 3-6 is used as a means of converting the three correlator 

outputs into an error between the Prompt replica and incoming signal. There are several different 

code phase discriminators, which fall into two categories: Coherent and Non-Coherent. A list of 

common discriminators is shown in Table 3-1. Each discriminator has different pull-in 

characteristics, meaning that they behave differently to errors between the replicas and the 

incoming signal. This work implements a Normalized Early Minus Late Power discriminator 

because it has favorable response to code phase errors greater than ½ chips [2]. 
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Table 3-1 : Common DLL Discriminators 

Type Discriminator Equation Name 

Coherent 𝐼𝐸 − 𝐼𝐿 Early Minus Late 

Non-Coherent (𝐼𝐸2 + 𝑄𝐸2) − (𝐼𝐿2 + 𝑄𝐿2) Early Minus Late Power 

Non-Coherent 
(𝐼𝐸2 + 𝑄𝐸2) − (𝐼𝐿2 + 𝑄𝐿2)
(𝐼𝐸2 + 𝑄𝐸2) + (𝐼𝐿2 + 𝑄𝐿2)

 Normalized Early Minus 
Late Power 

Non-Coherent 𝐼𝑃(𝐼𝐸 − 𝐼𝐿) + 𝑄𝑃(𝑄𝐸 − 𝑄𝐿) Dot Product 

 

 The output of the discriminator is often filtered using a 2nd order low-pass filter. If the 

discriminator is normalized, then this output becomes an adjustment to the NCO driving the 

generation of the C/A Code. In its simplest form, the discriminator will tend to slow down the 

NCO if the Early branch is greater than the Late branch as in Figure 3-8. 

 

Figure 3-8 : Ideal Autocorrelation Function with Early, Prompt, and Late Outputs [8] 
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3.2.2.2 Carrier Tracking Loop 

Just as a DLL fine tunes the code phase of the incoming signal, the Carrier Tracking 

Loop (CTL) fine tunes the carrier replica to match the incoming carrier in both phase and 

frequency. The CTL follows a similar structure to that of the DLL, in particular to its 

resemblance of a feedback control loop. For the moment, it will be assumed that the C/A code is 

perfectly matched and has already been wiped from the incoming signal, leaving only the IF 

carrier wave. This is the point where Figure 3-9 begins. 

 

Figure 3-9 : Carrier Tracking Loop 

 The reference carrier is split into two branches: In-phase (I) and Quadrature (Q). The I-

branch is mixed with the sine of the output from the NCO while the Q-branch is mixed with the 

cosine of the output. Recall from (3.1) that when two sinusoids are mixed, the output is the sine 

of the sum and difference of their phase arguments. Each branch accumulates over an integration 

period (typically 1 millisecond), which effectively eliminates the high frequency component of 
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the mixing process. This output is then passed through a discriminator; the discriminator value is 

normally filtered and applied as an adjustment to the Carrier NCO. 

 Typically, the CTL will be described as either a Frequency-Lock-Loop (FLL) or a Phase-

Lock-Loop (PLL). As the names imply, an FLL locks to the incoming signal’s frequency and a 

PLL locks to the incoming signal’s phase. FLLs tend to have a greater pull-in range, thus 

allowing the Doppler estimate from the acquisition process to be less accurate [26]. However, 

since FLLs don’t match phase with the incoming signal, the I- and Q-branches do not become 

distinguishable and the navigation data bits cannot be recovered from an FLL. In this work, the 

tracking loops begin with an FLL and once locked in frequency will shift to a PLL. Aside from 

the difference in discriminators, the two loops have the same structure. The discriminators for the 

FLL and PLL are shown in Table 3-2. The subscript 𝑝 indicates that the value is taken from the 

Prompt branch correlator output, and the subscript 𝑝1 indicates the first of two successive 

integration periods. 

Table 3-2 : CTL Discriminators 

Name Discriminator Equation 

Phase Discriminator (PLL) atan �
𝑄𝑃
𝐼𝑃
� 

Phase-Difference Discriminator 
(FLL) 

atan �𝑄𝑃1𝐼𝑃1
� − atan �𝑄𝑃2𝐼𝑃2

�

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃 (𝑠)
 

   

3.2.2.3 Complete Tracking Loop 

The complete tracking loop combines both the DLL and the CTL as shown in Figure 

3-10. The Prompt branch of the DLL encompasses the CTL, allowing both tracking loops to 
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operate simultaneously. Also notice that the DLL now utilizes two sets of the Early, Prompt, and 

Late branches – one for the I-branch and one for the Q-branch.   

 

Figure 3-10 : Complete GPS Tracking Loop [8] 

3.2.2.4 Ranging Information 

One of the main purposes of the tracking loops is to obtain ranging information. From 

each tracking loop that is locked in both code phase and carrier phase, the receiver can obtain 

estimates of range to the satellite and relative velocity with respect to the satellite. The relative 

velocity between the satellite and user is directly related to the Doppler frequency of the 

incoming signal. This measurement is easily obtained by using the frequency command of the 

Carrier NCO and relating it to the change in range by (3.2). 
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𝑓𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = (𝑓𝑅 − 𝑓𝑇) = −

𝑟̇
𝜆

 (3.2) 

 

Where 𝑓𝑅 and 𝑓𝑇 are the received and transmitted frequencies, respectively, 𝜆 is the wavelength, 

and 𝑟̇ is the change in range (range rate). Because the measurement (Doppler frequency) is 

actually biased by the receiver clock drift, the measured value is termed the pseudorange rate [1]. 

 The range measurement is effectively as simple: measure the time between when a signal 

is sent and when it is received, then multiply it by the speed of light as in (3.3).  

 𝜌 = (𝑡𝑅 − 𝑡𝑇)𝑐 (3.3) 

 

Where 𝑡𝑅 and 𝑡𝑇 are the received and transmitted times, respectively, 𝑐 is the speed of light, and 

𝜌 is the pseudorange. As with the range rate, because the receiver time is biased the actual 

measurement is termed the pseudorange. Because of the highly accurate and synchronized 

characteristics of the GPS signals, every chip that is transmitted contains precise information 

about the time it was sent. Until the navigation data bits have been decoded and GPS Time 

established, this timing information is ambiguous. However, once the receiver has knowledge of 

GPS time, it needs only to keep track of where in the C/A Code the tracking loop is to know 

what the transmitted time is (and can use the GPS time for the receive time). 

 

3.2.3 Navigation Solution 

The Navigation Solution is the main purpose of the GPS receiver; here, the user’s 

position and velocity are determined, as well as GPS Time. In order for this to occur, the receiver 
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needs to know the orbital parameters of the satellites being tracked in addition to the 

pseudorange measurements (for position determination) and the pseudorange rate measurements 

(for velocity determination). 

The orbital parameters for the satellites come from the Ephemeris of the navigation data 

bits. The navigation data is received from the In-phase branch of the tracking loops and decoded 

in the receiver to give position and velocity of the satellite. The navigation data also provides 

GPS Time at the beginning of each subframe. Thus from the navigation data and the tracking 

loop’s knowledge of the C/A Code phase, the satellite’s position and velocity are known as well 

as the time at which the signal was transmitted. 

In order to get pseudorange measurements, the receiver must know the time of the 

received signal. Until a navigation solution is computed, however, the receiver does not yet 

know GPS Time (unless that information is provided from an outside source; a stand-alone 

receiver is assumed here). What is known, though, is the relative receive time of multiple 

tracking loops. When the receiver detects the beginning of a subframe from one of the tracking 

loops, it can keep track of how many clock cycles occur between then and when it detects the 

beginning of the same subframe on the other tracking loops. Because the satellites are 

synchronized and the beginning of the subframe was sent at the same time from all of the 

satellites, a relative pseudorange can be found for all of the satellites. Given this, the 

pseudoranges can be approximated by assigning them values between 65 and 83 milliseconds 

(standard bounds for pseudoranges, in time, for a receiver on the Earth’s surface) while 

maintaining their relative differences [2]. Using these estimates of the pseudoranges and the 

satellite orbital parameters, a least squares estimate of the user position can be calculated. As 
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described in the following section, this will also correct the receiver’s time, such that the next 

pseudorange measurements will be correct.  

 

3.2.3.1 Position Estimation 

A description of the method used for estimation of the receiver’s position begins with the 

definition of the pseudoranges given in (3.4).  

 𝜌𝑐
(𝑘) = 𝑟(𝑘) + 𝑐 ∗ 𝛿𝑡𝑢 + 𝜀𝜌̃

(𝑘) (3.4) 

 

This simplification assumes corrections due to atmospheric errors and satellite clock errors 

have already been applied. The atmospheric errors are due to changes in the signal speed as it 

passes through the ionosphere and troposphere; these errors can be estimated with simple models 

or received from an outside source. The satellite clock errors are very small timing errors in the 

satellite clocks; the parameters describing these errors are broadcast in the navigation data. 𝜌𝑐
(𝑘) 

is this “corrected” pseudorange; 𝑟(𝑘) is the true range; 𝑐 is the speed of light; 𝛿𝑡𝑢 is the receiver’s 

clock bias; and 𝜀𝜌̃
(𝑘) is the combined effect of any unaccounted for residual errors. The 

superscript (𝑘) denotes that the value corresponds to the 𝑘𝑡ℎ satellite. 

 Let the receiver’s position be denoted as 𝒙 = (𝑥𝑢,𝑦𝑢, 𝑧𝑢) and the position of the 𝑘𝑡ℎ 

satellite as 𝒙(𝒌) = (𝑥(𝑘),𝑦(𝑘), 𝑧(𝑘)). The true range can be described as: 

 
𝑟(𝑘) = �(𝑥(𝑘) − 𝑥𝑢)2 + (𝑦(𝑘) − 𝑦𝑢)2 + (𝑧(𝑘) − 𝑧𝑢)2 = �𝒙(𝒌) − 𝒙� (3.5) 

 

Substituting 𝑏 for 𝑐 ∗ 𝛿𝑢, (3.4) can be rewritten as: 
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 𝜌𝑐
(𝑘) = �𝒙(𝒌) − 𝒙� + 𝑏 + 𝜀𝜌̃

(𝑘) (3.6) 

 

 In the pseudorange measurement equation, the satellite positions are known from the 

ephemeris data, the pseudorange measurement is known from the tracking loop (or for the first 

calculation, estimated), and the error term is assumed to be zero-mean. That leaves four 

unknowns: the receiver clock bias 𝑏, and the three coordinate values describing the receiver 

position 𝒙. These four unknowns are the same in all of the pseudorange measurement equations, 

regardless of which satellite (notice that in (3.6) none of the unknowns have a superscript). Thus, 

the receiver’s position can be determined if at least four satellites are available. 

 If only four pseudorange measurements are available, then the four unknowns can be 

solved for easily. However, more satellites may be available for measurements (in fact, it is 

desired that there are more than four). If more than four pseudorange measurements are 

available, then the system of pseudorange measurement equations is over determined. In a 

situation such as this, a popular estimation technique called Least Squares can be used to solve 

for the receiver’s position and clock bias [1]. 

 Generally, this process begins with an initial guess for the receiver position and clock 

bias: 𝒙𝟎 = (𝑥0,𝑦0, 𝑧0) and 𝑏0. Given the initial guess, an approximation for the pseudorange 

(𝜌0
(𝑘)) can be derived 

 
𝜌0

(𝑘) = �𝒙(𝒌) − 𝒙𝟎� + 𝑏0 (3.7) 

 

 Let the true receiver position and clock bias be 𝒙 = 𝒙𝟎 + 𝜹𝜹 and 𝑏 = 𝑏0 + 𝛿𝛿, where 𝜹𝜹 

and 𝛿𝛿 are unknown corrections that need to be applied to the initial estimates to get the true 

values. A system of linear equations can be developed which allow 𝜹𝜹 and 𝛿𝛿 to be solved for 
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𝛿𝜌(𝑘) = 𝜌𝑐
(𝑘) − 𝜌0

(𝑘) 

           = �𝒙(𝒌) − 𝒙𝟎 − 𝜹𝜹� − �𝒙(𝒌) − 𝒙𝟎� + (𝑏 − 𝑏0) 

           ≈
(𝒙(𝒌) − 𝒙𝟎)
‖𝒙(𝒌) − 𝒙𝟎‖

∙ 𝜹𝜹 + 𝛿𝛿 

           = −𝟏(𝒌) ∙ 𝜹𝜹 + 𝛿𝛿 (3.8) 
 

 In (3.8), −𝟏(𝒌) represents a line of sight vector from the initial estimate of the receiver’s 

position to the 𝑘𝑡ℎ satellite, and 𝒂 ∙ 𝒃 represents the dot product of two vectors. 

 Given a set of pseudorange measurements from K satellites, the set of linear equations 

becomes 

 𝜹𝜹 =

⎣
⎢
⎢
⎡𝛿𝜌

(1)

𝛿𝜌(2)

⋮
𝛿𝜌(𝐾)⎦

⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡�−𝟏

(1)�
𝑇

1

�−𝟏(2)�
𝑇

1
⋮

�−𝟏(𝐾)�
𝑇

1⎦
⎥
⎥
⎥
⎤

�𝜹𝜹𝛿𝛿� 
(3.9) 

 

 The matrix containing the line-of-sight vectors is termed the geometry matrix and if often 

simply noted as 𝑮. The solution to the system of equations is given in  

 �𝜹𝜹𝛿𝛿� = (𝑮𝑇𝑮)−1𝑮𝑇𝜹𝜹 (3.10) 

 

 The corrections can then be added to the initial estimates 

 𝒙𝟏 = 𝒙𝟎 + 𝜹𝜹 
𝑏1 = 𝑏0 + 𝛿𝛿 (3.11) 

 

 This can be repeated until the corrections that are calculated become very small. This 

method of calculating corrections based on previous estimates is known as the Newton-Raphson 

Method. One small draw back to this method is that it has the possibility of converging on an 
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incorrect solution. This can be handled well if the initial estimate is fairly well known. 

Fortunately, for a GPS receiver located on the Earth’s surface, an initial estimate at the center of 

the Earth will allow the Newton-Raphson Method to converge on the correct solution. 

3.3 Vector Receiver 

Vector tracking receivers have been studied in the GNSS community for decades. 

Research has shown that receivers have improved immunity to noise and jamming, as well as the 

benefit of instantaneous reacquisition of satellites after temporary loss of line-of-sight [3] [27] 

[28] [29]. At its heart, a vector tracking receiver utilizes a Kalman filter to estimate the 

navigation solution. This navigation solution then becomes the basis for updating the tracking 

loops. This method allows the inherent cross correlation between tracking loops to be exploited. 

Because the Kalman filter can adapt the influence each tracking loop has on the navigation 

solution, stronger satellite signals can aid in the tracking of weaker satellite signals. 

As described in the previous section, traditional receivers (termed scalar tracking 

receivers from hence forth) have a tracking loop that updates a local signal replica in a single 

feedback loop (sometime termed channel). Each channel tracks one satellite and only interacts 

with the navigation solution process by supplying pseudorange and pseudorange rate 

measurements. This structure is shown in Figure 3-11. 
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Figure 3-11 : Scalar Tracking Block Diagram 

 Vector tracking receivers take the diagram in Figure 3-11(where each Tracking Loop 

block has an individual feedback loop) and convert it into a “shared” feedback loop as in Figure 

3-12. The output of the navigation solution is fed back into all of the tracking loops to aid in the 

estimation of the code and carrier NCO frequencies. Note that now the “tracking loops” are no 

longer using their internal feedback loops and now only consist of the signal correlation and 

discriminators. Also, the discriminators (which are described in more detail in Section 4.5) are 

slightly different such that the outputs of the channels are now errors in the pseudoranges and 

pseudorange rates. 
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Figure 3-12 : Vector Tracking Block Diagram 

3.3.1 Algorithms 

The vector tracking approach used in this research is known as a vector delay frequency 

lock loop (VDFLL). The navigation solution uses a single, centralized Extended Kalman filter to 

estimate the code phase and carrier frequency for each satellite being tracked. In this work, the 

states of the Kalman filter are the user’s position, velocity, clock bias, and clock bias rate (clock 

drift) 
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 𝒙� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝑥
𝑥̇
𝑦
𝑦̇
𝑧
𝑧̇
𝑏
𝑏̇⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 

(3.12) 

 The states are referenced in the Earth-Centered Earth-Fixed (ECEF) coordinate frame. 

The discretized time updates for the Kalman filter are described in detail in [30] and presented in 

(3.13). 

 

 𝒙�𝑘+1 = 𝐴𝑑𝒙�𝒌 + 𝑄𝑑 (3.13) 
 

Where 

 

 𝐴𝑑 = �

𝜶 𝟎𝟐𝟐𝟐
𝟎𝟐𝟐𝟐 𝜶

𝟎𝟐𝟐𝟐 𝟎𝟐𝟐𝟐
𝟎𝟐𝟐𝟐 𝟎𝟐𝟐𝟐

𝟎𝟐𝟐𝟐 𝟎𝟐𝟐𝟐
𝟎𝟐𝟐𝟐 𝟎𝟐𝟐𝟐

𝜶 𝟎𝟐𝟐𝟐
𝟎𝟐𝟐𝟐 𝜶

� (3.13a) 

 

 𝜶 = �1 𝑇
0 1� 

 
(3.13b) 

 

 𝑄𝑑 = �

𝑸𝒙 𝟎𝟐𝟐𝟐
𝟎𝟐𝟐𝟐 𝑸𝒚

𝟎𝟐𝟐𝟐 𝟎𝟐𝟐𝟐
𝟎𝟐𝟐𝟐 𝟎𝟐𝟐𝟐

𝟎𝟐𝟐𝟐 𝟎𝟐𝟐𝟐
𝟎𝟐𝟐𝟐 𝟎𝟐𝟐𝟐

𝑸𝒛 𝟎𝟐𝟐𝟐
𝟎𝟐𝟐𝟐 𝑸𝒄

� 

 

(3.13c) 
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 𝑄𝑥 =

⎣
⎢
⎢
⎡𝜎𝑥2

𝑇3

3
𝜎𝑥2

𝑇2

2

𝜎𝑥2
𝑇2

2
𝜎𝑥2𝑇 ⎦

⎥
⎥
⎤
 

 

(3.13d) 

 

 𝑄𝑦 =

⎣
⎢
⎢
⎡𝜎𝑦2

𝑇3

3
𝜎𝑦2

𝑇2

2

𝜎𝑦2
𝑇2

2
𝜎𝑦2𝑇 ⎦

⎥
⎥
⎤
 

 

(3.13e) 

 

 𝑄𝑧 =

⎣
⎢
⎢
⎡𝜎𝑧2

𝑇3

3
𝜎𝑧2

𝑇2

2

𝜎𝑧2
𝑇2

2
𝜎𝑧2𝑇 ⎦

⎥
⎥
⎤
 

 

(3.13f) 

 

 𝑄𝑐 =

⎣
⎢
⎢
⎡𝜎𝑏2𝑇 + 𝜎𝑟2

𝑇3

3
𝜎𝑟2

𝑇2

2

𝜎𝑟2
𝑇2

2
𝜎𝑟2𝑇 ⎦

⎥
⎥
⎤
 

 

(3.13g) 

 

 In (3.13), 𝜎𝑥2 is the variance of the state 𝑥. This value, along with the variance of 𝑦 and 𝑧, 

can be tuned based on the expected dynamics of the receiver. 𝜎𝑏2 is the variance of the receiver 

clock bias and 𝜎𝑟2 is the variance of the receiver clock drift. In the absence of statistical analysis 

on the receiver clock, rule-of-thumb values of 𝑐2 × 10−19 m for clock bias variance and 

4𝜋𝑐2 × 10−20 m/s can be used from [31]. 

 The output equation of the system relates the states to the outputs by a matrix containing 

vectors of line-of-sight unit vectors to each of the satellites being tracked. Both positions and 

derivatives (velocities) are related using line-of-sight unit vectors as shown in (3.14) and (3.15). 
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 𝑦�𝑘 = 𝐶𝒙�𝒌 + 𝜈̅ (3.14) 
 

 𝐶 =

⎣
⎢
⎢
⎢
⎡
𝑎𝑖,1 0 𝑎𝑗,1 0 𝑎𝑘,1 0 1 0
0 𝑎𝑖,1 0 𝑎𝑗,1 0 𝑎𝑘,1 0 1

⋮
𝑎𝑖,𝑁 0 𝑎𝑗,𝑁 0 𝑎𝑘,𝑁 0 1 0
0 𝑎𝑖,𝑁 0 𝑎𝑗,𝑁 0 𝑎𝑘,𝑁 0 1⎦

⎥
⎥
⎥
⎤

 (3.15) 

 

 The measurement update in the Kalman filter uses residuals as described in (3.16).  

 𝒙�𝒌
(+) = 𝒙�𝒌

(−) + 𝐾𝑘(𝑦�𝑘 − 𝐶𝒙�𝒌
(−)) (3.16) 

 

Recall that in Figure 3-12, the inputs to the navigation solution (EKF) are the residuals of 

the system. Thus (3.16) becomes (3.17) and the measurement update becomes a simple 

correction to the previous state estimate based on the outputs of the tracking channels. 

 𝒙�𝒌
(+) = 𝒙�𝒌

(−) + 𝐾𝑘𝜀𝑘    (3.17) 
 

3.3.2 Asynchronous vs. Synchronous Measurement Updates  

A major issue in the implementation of these algorithms is the timing of the measurement 

updates [32]. With vector tracking, the measurements come from the correlator outputs in the 

tracking loops. For a measurement update to contain measurements from all of the channels, the 

filter must wait for all of the channels to finish an integration period. This must also be the same 

integration period. Because all of the channels will finish an integration period at different time, 

the filter may update too late for some channels. 
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Figure 3-13 : Vector Update Timing Diagram 

 Figure 3-13 is a timing diagram used to highlight the timing issue associated with the 

vector measurement updates. Shown are four tracking channels across three different 20 

millisecond integration periods. The time axis corresponds to the receiver time; the colors 

correspond to identical transmit times, such that the beginning of the green section on Channel 1 

was transmitted at the exact same time as the beginning of the green section on Channel 2.  

 There is a very drastic difference between Channel 1 and Channel 2, although this 

situation is completely possible. It is known that transit time for satellite signals range from 65 to 

83 milliseconds. Because this difference is less than 20 milliseconds, it can be assumed that 

received signals will not overlap by a whole data bit. However, as illustrated above, as little as 2 

milliseconds can be left for overlap. Notice how the blue integration period of Channel 4 ends 

very near to the beginning of the gold integration period of Channel 2. Ideally, the NCO 

adjustments based on the blue integration period should be made to the green integration period. 

If the Kalman filter equations can be updated quickly enough, then these updates may be 

applicable for the green integration period for Channels 1, 3, and 4. However, once the updates 

have been calculated, the green integration period for Channel 2 will be nearly over. To 

overcome this issue, the receiver can use the Correlator outputs from the blue integration period 

and predict the NCO adjustments required for the gold integration period. Thus the NCO 
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adjustments will be applied one integration period late; however they will be calculated based on 

a prediction of the values of the Kalman filter states at the point that the brown integration period 

begins. This measurement update method for the filter is termed Synchronous updating [8]. 

 Another method, called Asynchronous updating, was described in [33] and helps to 

overcome some of the shortcomings of Synchronous updates. Figure 3-14 will be used as a 

reference to the timing of these asynchronous updates and how the measurement update needs to 

be modified to account for this new method. Figure 3-14 is similar to Figure 3-13: the time axis 

shows the receiver time and four channels are shown in regards to their receive time for the 

beginning and middle of common integration periods. Note that the receive times for the 

start/end of integration periods (termed Integrate and Dump in the figure) are staggered due to 

differing distances to the satellites. 

 

 

Figure 3-14 : Diagram of Staggered Data Bit Arrival Times [33] 
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 The measurements from the tracking channels, while calculated at the end of an 

integration period, most closely resemble the state of the vector at the middle of an integration 

period. For Channel 1, presume that the filter states have previously been propagated to the 

middle of the integration period of Channel 1 (𝑥�−(𝑘)) via a time update of the Kalman filter. The 

measurements collected at the end of this integration period (𝜖(𝑘)) represent the difference 

between the true state (𝑥(𝑘)) and this previously propagated estimate as in (3.18). 

 𝜖(𝑘) = 𝐶(𝑘)[𝑥(𝑘) − 𝑥�−(𝑘)] + 𝜈(𝑘) (3.18) 
 

Here, no adjustments will be made and the measurement update can proceed as in (3.19). 

 𝑥�+(𝑘) = 𝑥�−(𝑘) + 𝐾(𝑘)𝜖(𝑘) (3.19) 
 

For the subsequent channels, the measurement represents the difference between the true 

state and the estimate of the state from when the NCOs were last updated for that channel; this is 

different than the last state estimate. For example, the residuals for the second channel need to 

be: 

 𝜖(𝑘 + 1) = 𝐶(𝑘 + 1)[𝑥(𝑘 + 1) − 𝑥�−(𝑘 + 1)] + 𝜈(𝑘 + 1) (3.20) 
 

However, the state estimate 𝑥�−(𝑘 + 1) is the forward propagation of the states after the 

measurement update from the first channel. When the NCOs for Channel 2 were updated, the 

state estimate was still 𝑥�−(𝑘) rather than 𝑥�−(𝑘 + 1). The residuals from the second channel are 

actually: 

 𝜖∗(𝑘 + 1) = 𝐶(𝑘 + 1)[𝑥(𝑘 + 1) − 𝑥�∗−(𝑘 + 1)] + 𝜈(𝑘 + 1) (3.21) 
 

Here, 𝑥�∗−(𝑘 + 1) is the state estimate when this channel began the last integration period. 

It can be related to 𝑥�−(𝑘 + 1) by (3.22). 
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 𝑥�∗−(𝑘 + 1) = 𝑥�−(𝑘 + 1) − 𝐴(𝑘,𝑘 + 1)𝐾(𝑘)𝜖(𝑘) (3.22) 
 

Thus, because the states were updated between when the Channel 2 NCOs were updated and the 

measurements were generated for Channel 2, the raw measurements can be corrected for the 

Channel 1 measurement update by (3.23) 

 𝜖(𝑘 + 1) = 𝜖∗(𝑘 + 1) − 𝐶(𝑘 + 1)𝐴(𝑘, 𝑘 + 1)𝐾(𝑘)𝜖(𝑘) (3.23) 
 

A more general formulation for the adjustment of the residuals is given in [33] and restated 

below: 

 𝜖(𝑘 + 𝑁) = 𝜖∗(𝑘 + 𝑁) − 𝐶(𝑘 + 𝑁) � 𝐴(𝑚,𝑘 + 𝑁)𝐾(𝑚)𝜖(𝑚)
𝑘+𝑁−1

𝑚=𝑘

 (3.24) 

 

For all updates after the first, the 𝐶(𝑘 + 𝑁) matrix will be needed. This matrix is related 

to the unit vector from the user to the satellite on channel 𝑁. In the asynchronous updates of the 

vector receiver, this matrix only differs slightly from that described in (3.15) 

 𝐶(𝑘 + 𝑁) = �𝑢𝑥 0
0 𝑢𝑥

𝑢𝑦 0
0 𝑢𝑦

𝑢𝑧 0
0 𝑢𝑧

1 0
0 1� (3.25) 

  

The receiver described in this thesis implements the asynchronous measurement method. 

This simplifies the timing of the measurement updates and enables the updates to occur more 

quickly. The goal in using the asynchronous method is to limit the time that the receiver is 

operating with “old” NCO frequency commands.  
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Chapter 4 

4 Receiver Implementation 

 

4.1 Receiver Overview 

The receiver hardware described previously in Chapter 3 can be simplified as in the 

diagram in Figure 4-1. The RF Front-End receives an RF signal from the antenna. This signal is 

amplified, filtered, and shifted in frequency before it is passed to an analog-to-digital converter. 

These samples, along with the sample clock, are passed to the FPGA for signal processing. After 

the RF Front-End down-converts and samples the incoming signal, the receiver can be broken 

down into two processing areas: IF processing and baseband processing.  

 

 

Figure 4-1 : Receiver Hardware Overview 
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The IF processing includes: generating the local signal replica and correlating it with the 

incoming signal. Any counters or other modules used for book-keeping are also considered part 

of the IF processing. This includes: a global counter used to align the incoming data with the 

receiver’s internal time; a code accumulator; and a carrier cycle accumulator in each tracking 

loop to keep record of carrier cycles. All IF processing must be performed at or above the 

sampling frequency of the ADC in the front-end to meet real-time requirements. The sampling 

frequency for the receiver constructed here is 16.368 MHz. In addition to a high data rate for the 

incoming data, all modules must run in parallel. In commercial receivers, this is often 

accomplished on application specific integrated circuits (ASICs). The development of ASICs can 

be expensive and unforgiving, despite showing great performance. For research projects or 

prototypes however, FPGAs can be used to efficiently perform these high frequency parallel 

tasks on a reprogrammable platform. 

The Baseband processing includes the updates for the tracking loops, as well as the 

navigation solution calculations. The tracking loop updates operate at frequencies from 50 Hz to 

1 kHz. While the baseband processing happens at slower rates than the IF processing, many of 

the computations done in the baseband processing can be very time intensive and complex. In the 

vector receiver implemented in this research, the filter updates require matrix multiplications of 

varying sizes as well as matrix inversions. To handle these requirements in a very flexible 

fashion, a micro-processor or similar structure can be used. 

4.2 Hardware Selection 

Other vector tracking receivers have been attempted on FPGAs before [8]. A major 

drawback to an all-FPGA approach is the need for a processor capable of completing baseband 
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tasks quickly. Soft-core processors can be implemented on FPGAs which can perform many of 

these tasks. This can be very helpful as the processor and the FPGA can be incorporated together 

in a single chip. However, soft-core processors tend to run slower than comparable hard-core 

processors and also lack acceleration architecture that can increase performance. 

In order to continue the use of an FPGA, yet overcome the drawbacks to a soft-core 

processor, the receiver developed in this thesis is implemented on a Zynq All-Programmable 

platform. The Zynq is a System-on-Chip (SoC) that incorporates an FPGA with a dual-core 

ARM processor on a single chip. This allows the FPGA and processor to maintain the same tight 

coupling seen with soft-core processors while gaining the performance from including a hard-

core processor with two cores. As seen in Figure 4-2, the Zynq architecture allows for use with a 

variety of interfaces and customization. 
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Figure 4-2 : Zynq Architecture Overview [11] 

The development board used for this receiver is the Zedboard from AVNET. The 

Zedboard incorporates a Zynq -7000 SoC XC7Z020-CLG484-1 as well as a variety of peripheral 

interfaces and memory options. The chip used on the Zedboard comprises an Artix-7 FPGA with 

85k logic cells and 220 digital signal processing (DSP) slices. The processor is a dual ARM 

Cortex –A9 core clocked at 667 MHz and integrating a NEON SIMD engine. At the writing of 

this thesis, the Zedboard can be purchased for under $400. 

While this receiver is fully implementable on the Zedboard, the Zynq platform allows for 

certain scalability. For more inexpensive options, Zynq chips can be purchased that have only 

28k logic cells and 80 DSP slices. On the other hand, for more capabilities (and higher cost) 
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Zynq chips can be purchased that have 444k logic slices and 2020 DSP slices, as well as 

processor cores that are clocked at up to 1 GHz. 

The RF front end for this receiver is a MAX2769 from Maxim Integrated Circuits. It is a 

complete front-end and has the capability of being used for GPS, GLONASS, or GALILEO. A 

block diagram of the front-end can be seen in Figure 4-3. There are also many configurable 

parameters such as intermediate frequency (IF), filter type and order, automatic gain control 

(AGC) settings, and sampling frequency [34]. Some of the settings used for this receiver are 

shown in Table 4-1. 

Table 4-1 : RF Front-End Settings 

Sampling Frequency 16.368 MHz 

Intermediate Frequency 4.092 MHz 

IF Filter Bandwidth 2.5 MHz 

IF Filter Order 5th 
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Figure 4-3 : MAX2769 Block Diagram [34] 

4.3 Receiver Structure 

With an understanding of the processing requirements of the receiver and the hardware 

used in constructing the receiver, the operations of the receiver can also be broken off into 

different parts of the hardware. The overall organization of the Zynq is described in Figure 4-4 

and will be described in detail throughout this section.  
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Figure 4-4 : Receiver Structure [32] 

 

The yellow portion of Figure 4-4 indicates the FPGA and the orange indicates the 

processor. In the FPGA, there are different modules for the different operations of the receiver. 

The Acquisition module handles the tasks associated with the acquisition algorithm; the Global 

Counter handles scheduling and synchronization; and the Correlator channels operate as tracking 

loops. The black arrows in the FPGA indicate signals that pass between modules. Because 

FPGAs allow for easy routing of signals between these modules, information can be shared 

between the sections of the FPGA with relative ease. The red arrows indicate communication 

from each of the modules to the processor. This is an example of one of the major benefits of the 

system-on-chip architectures: each module on the FPGA holds register space in the memory of 

the processor. This allows for easy access to these register spaces from either the FPGA or the 

processor. 
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The structure shown in Figure 4-4 is made available by incorporating the modules into 

custom peripherals with processor bus access. The processor bus is adopted from the Advanced 

eXtensible Interface (AXI) protocol, which is part of a popular family of microcontroller buses 

called ARM AMBA. By wrapping these modules in VHDL-defined AXI peripherals, the 

modules can be used on a variety of platforms. 

4.3.1 Acquisition Structure 

The acquisition structure follows the basis of an acquisition method called Averaging 

Correlation. Averaging Correlation is a deviation from the Parallel Code Phase Search described 

in Section 3.2.1.2 that seeks to shrink the size of the FFT without adversely affecting the 

correlation output [35] [36] [37]. Because FFTs require lengths of power-of-two to operate, 

several different methods exist to help data accommodate this requirement; zero-padding, 

pseudorandom-subsampling, and averaging correlation are just three examples of some 

commonly used methods for FPGA implementation [38]. Averaging correlation is used in this 

work due to its simplicity and effectiveness in reducing the size of the FFT and data storage 

needs without compromising detection. 
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Figure 4-5 : Averaging Correlation Acquisition Block Diagram 

A block diagram of the Acquisition Structure is shown in Figure 4-5. The averaging 

correlation implementation in this work records 16384 samples of incoming data into BRAM 

and operates on this data throughout the search for a given satellite. This data is mixed with a 

local carrier replica then down-sampled through averaging to a length of 1024. This averaged 

data is then fed as the input to one of two FFTs (one is a forward FFT, the other an inverse FFT). 

The C/A Code in this implementation has been preprocessed and stored in BRAM. Because the 

FFT length is only 1024, if both the real and imaginary components of the C/A Code’s frequency 

content are held in 4 bit values then all 32 satellites can be stored in one of the 36 kB BRAM. 

The output of this BRAM is the complex conjugate of the FFT of the C/A Code and can be 

directly multiplied with the FFT of the incoming signal. This product is then fed to the IFFT and 

the magnitude of the result is squared and passed to the processor for storage. 

The major caveat to the averaging correlation is deciding which data samples to average 

over. For 16.368 MHz, approximately every 16 samples will be averaged into 1 sample. If the 

true beginning of the PRN sequence in the received signal happens to coincide with the 15th 

sample stored, then the averaging effect can actually prevent acquisition of the signal. To 
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alleviate this issue, the process is repeated for different starting points for the averaging. Notice 

that 16 extra samples are stored in BRAM (16384 as opposed to 16368). This allows the process 

to begin averaging as late as the 15th sample and still have enough data to finish averaging. To be 

as accurate as possible, 16 different starting points should be used. Even if this process is 

repeated 16 times, it will still be faster than computing an FFT that is 16 times longer (in terms 

of data length). However, considering that the Acquisition process only needs to be as accurate 

as half a chip, this implementation only repeats for every other starting point such that the 

averaging correlation process is only computed 8 times. 

4.3.2 Tracking Structure 

The overall structure of the tracking channels is shown in Figure 4-6, which is similar to 

Figure 3-10 shown previously. However in this section the tracking loop is described in its 

relevance to implementation in the AXI Bus on the FPGA. Note that everything shown in Figure 

4-6 is contained in the FPGA; this structure interacts with the microprocessor through the AXI 

Interconnect on the right side of the figure. 
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Figure 4-6 : Tracking Channel Module [32] 

The incoming signal (arrows on the left-most side) is mixed with a local carrier and code 

replica. The correlation is completed by summing the output of the mixed signals for a specified 

integration period. Early, Prompt, and Late code replicas are generated and In-phase and Quadra-

phase carrier replicas are generated. The outputs of the module now become the correlation 

results and accumulator values (along with code phase and carrier phase). These outputs are 

mapped directly to registers in the processor via the AXI Interconnect. Furthermore, whenever 

the end of an integration period occurs (for this receiver, 1 millisecond integration periods are 

used and thus the end of an integration period is defined as the end of a PRN sequence), the 

output values are latched into the registers and an interrupt signal is sent to the processor’s 

interrupt controller. When the loop updates are completed, the processor writes updated values to 
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the NCO command registers. These are mapped directly to the code and carrier NCOs such that 

there is low latency between the processor writing updated values and the NCOs modifying their 

phase increments. 

In addition to tracking the incoming signal, the receiver will include other tracking loops 

similar to Figure 4-6 but at greater spacings than the whole chip width from Early to Prompt. 

Recall that when the replica is offset by more than a chip from the incoming signal that the 

correlation value will be approximately zero. In fact, this value can be taken to be noise in the 

loop since there should be no correlation between the signals. These tracking loops with greater 

spacings are called noise correlators since they will be used to get an estimate of the noise in the 

receiver. For each tracking channel (where there is a structure like Figure 4-6), there will be three 

more structures similar to Figure 4-6 to “track noise.” 

4.3.2.1 PRN Generator 

The PRN Generator is the key element driving the timing in each tracking channel. 

Recall from Section 2.5 that the satellites generate the C/A Code from unique combinations of 

two shift registers. The PRN Generator used in the hardware of this receiver mimics the 

generation of the C/A Code in the satellites. Figure 4-7 repeats the structure of the PRN 

Generator. The values in the shift registers are shifted on the rising edge of the Code NCO’s 

output so that the generation of the local replica of the C/A Code is clocked by the Code NCO. A 

very important aspect of the PRN Generator is that it defines the beginning/end of integration 

periods in the Tracking Channels. It accomplishes this by triggering a signal when both shift 

registers are filled with 1’s (this only occurs at the beginning of the C/A Code). Thus each 
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tracking loop has a rising-edge reference to the beginning/end of a PRN sequence to use for 

processor interrupts (and resets for the accumulators as described below). 

 

Figure 4-7 : PRN Generator 

4.3.2.2 NCOs and Accumulators 

It is apparent that the NCOs are pivotal in the generation of the local replica of the satellite 

signal. Each NCO is effectively given a frequency command; this value is stored in a register and 

can be changed at any point in time. Once it is changed, the change in frequency can be noticed 

on the output on the following clock cycle (this enables the processor to update the NCO 

commands quickly and effectively as soon as it finishes the tracking updates). The NCOs used in 

this work have three outputs: a sine wave, a cosine wave, and a phase. For the Carrier NCO, the 

sine wave and cosine wave are used to mix with the incoming signal. For the Code NCO, just the 

sign of the sine wave is used to drive the PRN Generator. The phase output for each NCO is also 

used to aid in more accurate ranging measurements. 
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The Code Accumulator from Figure 4-6 can be viewed as a “chip counter.” The processor 

sets the Code Accumulator to begin synchronized with the beginning of a GPS Subframe. From 

that point, whenever the Code NCO triggers the PRN Generator the Code Accumulator 

increments by 1. The Code Accumulator continues to count up until the end of a Subframe (6 

seconds = [1023 chips/sec * 1000 msec/sec * 6 sec] = 6,138,000 chips) and then resets. The 

benefit to this is to enable the receiver to have direct access to the transmit time of the signal at 

any point in time. As mentioned before, each chip in the received signal contains precise timing 

information. In fact when the tracking loop is properly aligned with the incoming signal, the 

local replica is the receiver’s best estimate of the transmit time. Therefore, the Code 

Accumulator value (or the number of chips since the beginning of the last subframe), when 

combined with the Time of Week (found from the Z-Count in the Ephemeris Data) as in (4.1), 

gives the transmit time of that particular chip. 

 

 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ∗
1

1,023,000
 (4.1) 

 

It is possible that the receiver may need to know the transmit time more accurately than 

the period of a chip. This accuracy can be acheived by reading the phase value from the Code 

NCO and converting it to seconds using (4.2). 

 

 𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐶𝐶𝐶𝐶𝐶ℎ𝑎𝑎𝑎 ∗
1

2𝑁𝑁𝑁 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵𝐵𝐵 ∗
1

1,023,000
 (4.2) 

 

 The receiver requests pseudorange measurements from the tracking channels 

simultaneously. Thus all of the tracking channels are at a different point in their C/A Code due to 
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different distances traveled for each signal. With the Code Accumulator, the receiver can request 

these measurements at any point in time. When a measurement request is made, the receiver 

latches both the Code Accumulator value and the Code NCO phase value from each channel, and 

writes them to the processor registers. Then, using the receiver’s internally kept time, the 

pseudoranges can calculated using (4.3). 

 

 𝜌(𝑘) = �𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒(𝑘)� ∗ 𝑐 (4.3) 

  

Where 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑚𝑒 is the receiver’s time, 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑒(𝑘) is the transmit time of the signal 

for the 𝑘𝑡ℎ satellite (calculated using (4.1) and (4.2)), and 𝑐 is the speed of light. 

4.4 Scalar Updates 

When the receiver is operating in scalar receiver mode, each tracking channel operates 

independently of the other tracking channels. At the end of a correlation period for each channel, 

the processor will use the correlation outputs to calculate new commands for the NCOs. While 

the end of correlation periods occur relatively slowly, the processor must respond to each 

channel as quickly as possible to ensure that data is not missed. 

For this research, a 1 millisecond integration time is used when the receiver is in scalar 

mode. The end of an integration period, which is determined by the end of a PRN sequence in 

the PRN generator, triggers an interrupt in the processor and provides a trigger to latch the values 

of the correlation outputs. As described above, the processor will access the correlation values 

from registers that are controlled by the AXI Bus. When the interrupt is triggered in the 

processor, the update sequence is as shown in Figure 4-8. 
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Figure 4-8 : Scalar Updates Flow Graph 



70 

 

The correlator values are retrieved from the AXI Bus and saved in local memory. Only 

the six primary correlator values are necessary for scalar updates; however the noise correlators 

are also stored for carrier-to-noise ratio estimation. The code discriminator is then calculated and 

filtered. A normalized early-minus-late power discriminator is used for the code. The 

discriminator value is filtered by a 2nd order low pass filter; this value is now a correction to the 

code NCO frequency. The carrier discriminator is calculated and filtered in a similar way. 

Initially, the carrier discriminator is a frequency discriminator which causes the carrier tracking 

loop to operate as an FLL. The new NCO commands are generated from the filtered 

discriminator outputs and written to the NCO command registers. The update then checks if the 

FLL is in frequency lock by using a binary up-down counter. Once the FLL has reached 

frequency lock, the channel will switch to a PLL in order to accurately pull off navigation data 

bits. The check for phase lock determines when the channel can begin extracting navigation data 

bits.  

As mentioned before, this update must be done as quickly as possible to ensure that no 

data is lost. It is not generally good practice to do any computations within an interrupt, however 

in this case the computations are considered to be the greatest priority at the time. Several timing 

requirements must be taken into consideration when doing this. Complications can arise when 

several channels have integration periods that end at or near the same time. In this processor, 

interrupt signals are buffered such that no interrupts are missed; however, a cascading effect can 

occur. Consequently, for scalar processing updates, a maximum processing time can be 

determined by the necessity that all channels must be able to be updated within the time of one 

integration period. For this work, a 1 millisecond integration time and 12 channel receiver are 

considered to give a scalar update limit of 83 microseconds. 
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 𝑈𝑈𝑈𝑈𝑈𝑈 𝐿𝐿𝐿𝐿𝐿 =
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃 

# 𝑜𝑜 𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎
=

1 𝑚𝑚
12 𝑐ℎ.

= 83 𝜇𝜇𝜇𝜇 (4.4) 

 

 

While this gives an upper limit to reach real-time operation, other considerations exist. 

As more updates occur at or around the same time, the update for the last channel can begin a 

significant amount of time past the end of the integration last period. Because the correlator 

values are latched at the end of an integration period, this data will not be lost until the end of the 

next integration period. However, the longer the channel must wait to update the NCO 

commands, the longer the tracking channel is operating on “old” information. This can lead to 

negative performance characteristics, particularly in high dynamic operations. 

 

4.5 Vector Updates 

When the receiver operates as a vector tracking receiver, the updates take on a very 

different process. The interrupts that occur from the PRN Generator continue to interrupt the 

processor; however because the integration period for the vector receiver is increased to 20 

milliseconds, the correlation outputs are summed in the processor until the integration period is 

complete. Thus, for 19 out of every 20 interrupts, the processor simply adds the correlator values 

to accumulated values and allows the tracking loop to continue operating with the same NCO 

values. The processor’s operation for the 20th interrupt is described in this section.  A summary 

of the steps used in the vector updates is given in Figure 4-9. 
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Figure 4-9 : Vector Update Flow Graph 
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Time Update 

 The receiver uses the Code NCO frequency to determine how much time has passed since 

that channel began its integration period. Because the NCO frequency will not change 

throughout the integration period, this can also be used to easily calculate the middle of the 

integration period. Recall from Section 3.3.2 that the state estimates are calculated for the middle 

of the integration periods, as opposed to the end. The time update for the states and the state 

covariance matrix will be calculated using the time difference between the last measurement 

update and the middle of the recently completed integration period. 

 
𝒙�𝒌+𝟏

(−) = 𝐴𝑘,𝑘+1𝒙�𝒌
(+) (4.5) 

 

 𝑃𝑘+1
(−)  = 𝐴𝑘,𝑘+1𝑃𝑘

(+)𝐴𝑘,𝑘+1
𝑇 + 𝑄𝑑 (4.6) 

 

Calculating Carrier-to-Noise Ratio 

 An accurate estimation of the carrier-to-noise ratio is key for the operation of the vector 

receiver; without it, the receiver has no reference to determine the quality of measurements taken 

from the tracking loops. First, the receiver calculates the variance of all of the noise correlator 

outputs. The noise correlator outputs are assumed to be thermal noise and thus the variance of 

the thermal noise changes slowly over time [33]. To achieve an accurate estimate of the noise 

variance, the variance is filtered through a moving average filter using (4.7) 

 𝜎�𝜂2  = (1 − 𝛼𝜂)𝜎�𝜂2 + 𝛼𝜂𝜎𝜂2 (4.7) 

 

where 𝜎�𝜂2 is the running average of the noise variance, 𝜎𝜂2 is the instantaneous noise variance 

from the current noise correlator outputs, and 𝛼𝜂 is the filtering value. 
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 The signal amplitude is estimated in a similar manner. The instantaneous amplitude is 

calculated based on the current correlator outputs, then the amplitude is smoothed using a 

moving average filter. The instantaneous amplitude is calculated using the Early and Late 

correlators to help account for any error that may exist in the Prompt correlator. 

 𝐴 = (𝐼𝐼 + 𝐼𝐼)2 + (𝑄𝑄 + 𝑄𝑄)2 (4.8) 

 

 In (4.8), 𝐴 is the instantaneous signal amplitude, and 𝐼𝐼, 𝐼𝐼,𝑄𝑄,𝑄𝑄 are correlator 

outputs. The moving average filter for the amplitude is implemented in the same manner as (4.7), 

resulting in a running average for the signal amplitude 𝐴̃. With the noise variance and signal 

amplitude, the carrier-to-noise ratio can be calculated using (4.9). 

 𝐶/𝑁𝑜 = 10 log10
𝐴̃ − 4𝜎�𝜂2

2𝑇𝜎�𝜂2
 (4.9) 

 

Where 𝑇 is the integration period (20 milliseconds). 

Generating Measurement Covariance 

 After calculating the Carrier-to-Noise ratio, the estimate of the signal amplitude and noise 

variance can be used to generate the measurement covariance matrix for the given satellite. 

Taken from [30], 

 
𝐸{𝜈𝑅2} =

8𝛿𝜎�𝜂4 + 4𝐴̃2𝛿𝜎�𝜂2𝑓(𝜌𝑒)
2𝐴̃2

 
 

𝑓(𝜌𝑒) = 2
𝜌𝑒2

𝛿2
+

1
2

 

(4.10) 

 

And 
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𝐸{𝜈𝑅𝑅2 } =

𝜎�𝜂4

2𝐴̃2
+

1
4
𝑅2(𝜌𝑒)𝜎�𝜂2 (4.11) 

 

Where 𝜌𝑒 is the range error, 𝛿 is the width of a chip, and 𝑅(𝜌) is the correlation function. Both 

equations assume that the range error is less than ½ of a chip width. 

Generate the Geometry Matrix 

 As mentioned in Section 3.3.2, the Geometry matrix used in this method of measurement 

updates is only related to one satellite. For completeness, (3.25) is repeated here. 

 𝐶(𝑘 + 𝑁) = �𝑢𝑥 0
0 𝑢𝑥

𝑢𝑦 0
0 𝑢𝑦

𝑢𝑧 0
0 𝑢𝑧

1 0
0 1� (4.12) 

 

Calculating the Kalman Gain 

 The Kalman gain is calculated using (4.13).  

 𝐾(𝑘) = 𝑃−(𝑘)𝐶𝑇(𝑘)[𝐶(𝑘)𝑃−(𝑘)𝐶𝑇(𝑘) + 𝑅]−1 
 (4.13) 

 

This step is where some of the computational burden is lifted from the processor by 

implementing the Asynchronous method described in Section 3.3.2. Here, only two 

measurements are used for each update, range error and range-rate error for one satellite. In the 

Synchronous method, range and range-rate error for each satellite being tracked would be used 

(2*N measurements, where N is the number of active channels used in the update). By using 

only 2 measurements to update in the Asynchronous method, the matrix inversion used to 

calculate the Kalman gain is only a 2x2, which is trivial. In the Synchronous method, the 

inversion would be 2Nx2N. 
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Generating Measurements 

In the receiver scalar mode, the receiver generated pseudorange and pseudorange rate 

measurements from the tracking loops as described in Section 3.2.2.4. Measurements for vector 

tracking mode are slightly different and thus are generated in a different manner. The 

measurements are pseudorange and pseudorange rate errors. Fortunately, these can be calculated 

directly from the correlator outputs as in (4.14) and (4.15). 

 𝑌𝑅 = 𝐼𝐸2 + 𝑄𝐸2 − 𝐼𝐿2 − 𝑄𝐿2 (4.14) 

 

 𝑌𝑅𝑅 = 𝑡𝑡𝑡−1 �
𝑌𝑐𝑐𝑐𝑐𝑐
𝑌𝑑𝑑𝑑

� (4.15) 

 

Where: 

 𝑌𝑐𝑐𝑐𝑐𝑐 = 𝐼𝑃1 ∗ 𝑄𝑃2 − 𝐼𝑃2 ∗ 𝑄𝑃1 (4.15a) 

 

 𝑌𝑑𝑑𝑑 = 𝐼𝑃1 ∗ 𝐼𝑃2 + 𝑄𝑃1 ∗ 𝑄𝑃2 (4.15b) 

 

Recall from Section 3.3.2 that the measurements generated at the end of an integration 

period need to be adjusted for any updates to the states that have occurred since the beginning of 

the integration period. The correction is repeated here for reference 

 𝜖(𝑘 + 𝑁) = 𝜖∗(𝑘 + 𝑁) − 𝐶(𝑘 + 𝑁) � 𝐴(𝑚,𝑘 + 𝑁)𝐾(𝑚)𝜖(𝑚)
𝑘+𝑁−1

𝑚=𝑘

 (4.16) 

 

 The summation in (4.16) is stored as a vector of corrections for all of the channels. When 

a channel corrects its measurements, it then computes the projection of its corrections to the 
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other channels. For example, in Figure 4-10, after Channel 1 computes its corrected 

measurements, it projects this correction forward for Channel 2 by adding 𝐴(𝑘, 𝑘 + 1)𝐾(𝑘)𝜖(𝑘) 

to the Channel 2 correction value in the vector of channel corrections. 𝐴(𝑘,𝑘 + 1) is estimated 

as the difference between the beginning of the completed integration period on Channel 1 

(located by point A in Figure 4-10) and the beginning of the current integration period on 

Channel 2 (located by point B in Figure 4-10). Note that the receiver time in which this update is 

occurring is at point C, while the states are being updated for the time at point k. 

 

Figure 4-10 : Asynchronous State Estimate Updates 

 The corrected measurements will be propagated forward for each channel and applied to 

that channel’s correction in the correction vector. Once completed, the current channel will clear 

its value in the correction vector so that it can be updated when the other channels complete their 

measurement updates. 
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Measurement Update of States/State Covariance 

The state estimates are updated with the corrected measurements as well as the state 

covariance matrix as shown below. 

 𝑥�+(𝑘) = 𝑥�−(𝑘) + 𝐾(𝑘)𝜖(𝑘) (4.17) 

 

 𝑃+(𝑘) = [𝐼8𝑥8 − 𝐾(𝑘)𝐶(𝑘)]𝑃−(𝑘) (4.18) 

 

Calculating New Tracking Parameters 

 With the new estimates of the states, the receiver can now generate new frequency 

commands for the NCOs. To generate the Code NCO value, the pseudorange must be calculated. 

This is accomplished in a slightly different manner than during the scalar receiver mode. First, an 

index is kept which tracks the receiver’s time when the beginning of the data bit being integrated 

over was transmitted from the satellite. This time is compared to the current receiver’s time to 

get the pseudorange (note that the time base for these calculations remains in receiver time – the 

clock drift is accounted for in the Kalman filter as one of the states). An estimated pseudorange 

is then generated based on the user position, satellite position, atmospheric effects, and receiver 

clock dynamics. The difference in the measured pseudorange and the estimated pseudorange 

represents an error in the code phase. Dividing this by the integration period gives an error in the 

code frequency, which is applied to the current NCO frequency. 

 Just as the Code NCO is updated based on the user and satellite positions, the Carrier 

NCO is updated based on the user and satellite velocities. More specifically, the line-of-sight 

velocity between the user and satellite can, by definition of the Doppler effect, determine the 

offset in frequency [30].   



79 

 

 𝑓𝐶𝐶𝐶𝐶 𝑁𝑁𝑁 = �1 −
𝑉𝑉𝑙𝐿𝐿𝐿
𝑐

�
𝑓𝐿1

1 − 𝑏̇
𝑐

− 𝑓𝐿1 + 𝑓𝐼𝐼 
(4.19) 

Where 𝑓𝐶𝐶𝐶𝐶 𝑁𝑁𝑁 is the new NCO frequency, 𝑉𝑉𝑙𝐿𝐿𝐿 is the line-of-sight velocity, 𝑓𝐿1 is the L1 

frequency, 𝑓𝐼𝐼 is the intermediate frequency of the receiver, and 𝑏̇ is the receiver clock drift. 

4.6 Transition from Scalar to Vector 

The transition of GPS receiver from scalar mode to vector mode can be very difficult and 

must happen very quickly. The receiver first runs until a scalar position solution is calculated and 

then transitions into the vector mode. A scalar navigation solution is necessary to “kick-off” 

vector tracking because the generation of the NCO commands requires an initial estimate of the 

states. Recall that, when this transition occurs, each of the channels is at a different point in the 

received signal. In vector tracking, the integration periods increase to 20 milliseconds, which will 

occur during a navigation data bit. It is important to have all of the channels integrating over the 

same data bit, and thus after the scalar position has been determined the receiver will project 

when these longer integration periods will begin.  

From the time that the scalar navigation solution was determined to the beginning of the 

first 20 millisecond integration period, the receiver continues to run scalar updates on all of the 

channels. This keeps the phases of all of the channels locked with the incoming signal. During 

this time, the receiver also transitions the scalar navigation solution into the states of the vector 

tracking receiver. This represents the first state estimate of the receiver and is valid for the 

receiver time associated with the scalar navigation solution. In order to ensure that the residuals 

calculated from the correlator outputs are representative of the error on the state estimate, the 

states are projected forward to the beginning of the first 20 millisecond integration period on 
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each channel. These projected state estimates are used in calculating the NCO commands for 

each channel to begin its integration period. 

 

4.7 Navigation Solution 

The overall purpose of a GPS receiver is to determine the user’s position, velocity and 

time. All of the work of acquiring the satellite signals, tracking the signals, and decoding 

navigation data bits is for the purpose of generating a navigation solution. In Section 3.2.3, the 

Least Squares method was explained which is used when the receiver operates in scalar mode. In 

Section 3.3.1, the states of the Kalman filter used in vector mode described states that are in fact 

the navigation solution. This section will briefly describe how these methods are called in the 

receiver such that a Navigation Solution can be generated. 

 In general, the receiver needs to have some specified output rate at which the navigation 

information is output. In the FPGA, the receiver implements a global counter that runs off the 

sample clock to provide the processor with 1 second interrupt signals. Periodically, this counter 

must be corrected for drift in the sample clock. When the processor acknowledges the interrupt 

signal, it will generate a navigation solution based on whether it is in scalar or vector mode. 

 In scalar mode, the Least Squares method must be used. The interrupt signal, when 

triggered, also latches the values for the Code and Carrier Accumulators as well as the Code and 

Carrier NCO phases on each channel. This is to secure the information needed for the 

pseudorange measurements, and to ensure that the pseudorange measurements for each channel 

are synchronized to the call for a navigation solution. The receiver can then calculate the satellite 

positions and perform the Least Squares solution for the navigation solution. 
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 In vector mode, no values need to be latched from the FPGA. In fact, because the states 

of the filter are updated whenever a measurement is collected, the navigation solution can be 

accessed with ease at any time. There is likely to be some time difference between when the last 

measurement update occurred and the navigation solution is called. To adjust for this, a time 

update is performed to bring the states up to the receiver time when the interrupt triggered. 
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Chapter 5 

5 Performance Results 

The receiver described in the previous chapter has been initially implemented in C++ for 

preliminary analysis and testing for functionality. The results from the C++ receiver showed 

success in the receiver’s ability to continue tracking satellites in the vector mode. The FPGA 

design was then completed and implemented on the ZedBoard. Initially in lieu of a live-sky test, 

data was recorded from the RF front-end, then played back into the receiver at slightly faster 

than real-time operation. The results from the ZedBoard implementation are presented here to 

show a continuation of signal tracking when the receiver is in vector mode. The receiver was 

then tested with a live-sky; the position results of the live-sky test are presented.   

5.1 Tracking Results 

Correlator outputs from Channel 0 in the receiver are shown in Figure 5-1. To ease the 

processor’s burden, the correlator outputs were only saved when a navigation solution was called 

(once every second). For approximately 2/3 of the data run shown (~0-60 seconds), the receiver 

was tracking the satellite using scalar updates. Once enough satellites were available that a 

navigation solution could be calculated, the receiver generated scalar navigation solutions for 

two seconds before switching to vector mode. After switching to vector mode, the receiver ran 

for about 30 seconds (~60-90 seconds). 
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Figure 5-1 : Channel 0 Correlator Outputs 

 The receiver maintained lock on the satellite and transitioned smoothly from scalar to 

vector mode. In Figure 5-1, the Early/Prompt/Late power is shown to indicate that the signal 

power remained in the Prompt replica; however the individual I and Q legs are not 

distinguishable from this plot. Figure 5-2 shows the distinction between the different branches of 

the receiver. 

 

Figure 5-2 : Ch. 0 Correlator Outputs (I & Q) 
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 Even though Figure 5-1 shows that the majority of the correlation power remains in the 

Prompt branch (showing lock on the C/A code), Figure 5-2 shows that the In-phase branch loses 

correlation power to the Quadrature branch after the receiver switches to vector mode. This is a 

result of the receiver only tracking frequency lock in vector mode. The filter implementation 

only predicts the Carrier frequency and doesn’t attempt to track the Carrier phase. Accurate 

ranging information is still available when tracking frequency lock; however navigation data 

cannot be recovered unless the receiver has carrier phase lock. 

 Figure 5-3 shows the correlator outputs for the other channels used in the Navigation 

Solution. Note that the time at which Channel 3 begins reporting values is approximately the 

time when the transition to vector mode begins. 

 

Figure 5-3 : Correlator Outputs for All Channels 
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5.2  Position Results 

As mentioned before, the results in Section 5.1 were gathered without the use of an 

antenna. After confirmation that the receiver continued to track satellites while in vector mode, 

the receiver was connected to an antenna for a live-sky test. As before, once the receiver was 

able to calculate a navigation solution in scalar mode for two seconds, it switched to vector mode 

and continued reporting positions for approximately 30 seconds. 

 

Figure 5-4 : Position Results 
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The dots in Figure 5-4, show the position output of the receiver across the 30 second 

period. The blue oval denotes the two positions reported while the receiver was in scalar mode, 

while the orange oval denotes the positions reported while the receiver was in vector mode. The 

“true position” of the receiver is marked by the gold star (the “true position” is estimated by 

observation of the map). 

 It is clear that the receiver experiences a large shift in position when the receiver switches 

to vector mode. Once this shift has occurred, the receiver becomes more steady; however it is 

clear that there is a bias in the positions reported in vector mode. There are several ways in 

which the accuracy of the receiver can be improved and this bias removed. Improvements to the 

pseudorange estimate equation (in particular the atmospheric models) can be made to help 

eliminate this bias.   

5.3 Hardware Results 

While the scalability of the Zynq architecture gives freedom to select larger hardware if 

needed, it was desired to implement this receiver on the Zynq 7020 found on the Zedboard. 

Thus, the resource utilization of a 12 and 16 channel vector tracking receiver was studied; the 

results are shown in Table 5-1. 
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Table 5-1: Resource Utilization 

 
12 Channels 16 Channels 

Registers 31% 42% 

LUTs 58% 77% 

Occupied Slices 84% 96% 

DSP Slices 0% 0% 

36KB BRAM 1% 1% 

18KB BRAM 4% 6% 

Processor Cores 50% 50% 

 

The 16 channel approaches utilization of all available logic slices, however without 

occupying almost 25% of look-up tables and almost 60% of the registers. The implementation 

leaves free many of the available block RAMs as well as all of the DSP slices. While the DSP 

slices would be very effective if used for the Correlator modules, their lack of use here simply 

shows room for further optimization. Also, to complete the tracking loop updates and navigation 

solution, only one of the processor cores has been utilized, freeing up the other processor for 

other tasks. Note that the results in Table 5-1 do not show the Acquisition structure described in 

Section 4.3.1, although that is nearly completely contained in DSP slices and BRAM. 

The results shown in Figure 5-1, Figure 5-2, and Figure 5-3 are with the receiver only 

applying vector tracking updates to four channels. With so few channels, real-time operation is 

much easier because the more channels that are added the more measurement updates the 

receiver must finish in a given amount of time. Thus, an investigation into the timing results of 

the receiver was done in order to understand how many channels the receiver could operate with. 
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Recall that the measurement updates only occur every 20 milliseconds on each channel. 

However, the current configuration of the receiver has each channel reporting its correlator 

outputs to the processor every millisecond. This can easily be adjusted, however we shall keep 

this restraint for now. To test the amount of time each measurement update took, an output pin 

was flagged high at the beginning of the update and pulled back low at the end. This pin was 

observed on an oscilloscope and the duration of a measurement update is 77 microseconds.  In a 

worst case scenario, all of the channels would need to complete a measurement update at the 

same time. If this were to occur, the processor would need to handle all of these updates 

sequentially and in less than a millisecond (such that the tracking channels could report their 

correlator values to the processor and no data is lost). This implies that a 12 channel receiver can 

be implemented in the current form. 

 # 𝑜𝑜 𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎 =
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑃𝑃𝑃𝑃𝑃𝑃 
𝑈𝑈𝑈𝑈𝑈𝑈 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

=
1 𝑚𝑚

77 𝜇𝜇𝜇𝜇
= 12.98 𝐶ℎ𝑎𝑎𝑎𝑎𝑎𝑎 (5.1) 

 

 Again, this scenario is highly unlikely and the 1 millisecond time restraint is rather 

arbitrary. For a true restriction on the real-time operability of the receiver as it handles 

measurement updates would consider a 20 millisecond integration period. This would allow for a 

259 Channel receiver. 

 There is more to consider than simply fitting all of the required processing into the real-

time constraints. When a measurement update begins, the tracking channel will have just 

completed an integration period and will continue tracking into the next one. While the 

measurement update is being completed in the processor, the tracking channel is correlating new 

data with NCO values from the previous integration period. During the 77 microseconds of the 

measurement update, 1260 new data samples are correlated in the new integration period. While 
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this is less than 0.4% of the total samples in the integration period, the effect of this can be 

worsened by the scenario described above (i.e. two or more channels requiring measurement 

updates at the same or near the same time). During static situations, this is unlikely to have a 

drastic effect, as the NCO values will not change greatly from one integration period to the next. 

However, the effect this may have on high dynamic situations has yet to be investigated. 
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Chapter 6 

6 Conclusions and Future Work 

6.1 Conclusions and Contributions 

The work described in this thesis has addressed the problem of implementing 

computationally burdensome GPS algorithms in a small package on a low-cost platform. A 

highly programmable architecture was used that enables redefinition, modification, and 

expansion. Implementation details have been provided which detail not only how vector tracking 

algorithms can be implemented on an SoC, but also serve as a guide for how to employ other 

advanced acquisition, tracking, or navigation algorithms on such a platform. 

There are certain environments where GPS receivers can have difficulty operating; in 

particular urban canyons and dense foliage can block or weaken the already very weak GPS 

satellite signals. Research has been done in mitigating the negative effects of such adverse 

conditions, and a class of tracking algorithms called vector tracking has been proven in 

simulation to provide improvements for these environments. With vector tracking, weak signals 

can be tracked effectively with aiding from stronger signals. Additionally, following brief 

outages receivers can instantaneously reacquire the lost satellite signals. While the benefits of 

vector tracking have been noted, the difficulties in implementing a receiver that utilizes such 

algorithms have also been noted. In particular there is a large computational burden associated 
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with noise estimation in the tracking loops as well as Kalman filter operations to update the 

tracking loops. With the current state of processing technologies, there is little that cannot be 

computed on the best of today’s computers. However, many of the applications that wish to use 

GPS in these adverse conditions require that the solution be small and low cost. 

6.2 Future Work 

While the vector tracking algorithms have been successfully implemented, there is still 

more that needs to be investigated regarding this implementation. As mention in Section 5.3, the 

latency in the measurement updates may have an effect on high dynamic situations; as more 

satellites are being tracked, the processing latency will have a greater effect. To investigate this, 

the receiver implemented in this thesis should be compared to a post-process software receiver in 

a dynamic situation. The number of satellites being tracked should be noted and increased as 

much as possible. The correlator outputs will be a good indication of whether the predictions for 

the new NCO values are applied soon enough in the integration period to enable effective 

tracking. 

A natural step in future progress of the receiver is to incorporate an IMU into the Kalman 

filter. There are several ways that have been explored that range from different levels of coupling 

between the IMU data and the tracking loops. A goal of this work is to incorporate a Loosely 

Coupled implementation first, then progress into Deep Integration if the chosen hardware is 

permitting. The IMU integration will add another computational burden to the filter updates and 

thus care must be taken to ensure that the processor can handle the added measurements.  

Because this work only focused on the use of GPS signals for the receiver, the receiver 

would benefit greatly from the inclusion of other satellite constellations. As mentioned at the 
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beginning of this thesis, there are several other constellations being launched which can be 

utilized to increase the accuracy of the receiver. However, to accommodate more constellations 

there will need to be more channels. Because the percentage of occupied slices in the FPGA is 

approaching 100% for 16 channels, some measures will need to be taken to allow for this 

expansion. Different optimization schemes could be used in the synthesis of the VHDL, and the 

DSP slices have still yet to be used. Also, as mentioned before, there are other Zynq options that 

would allow for the use of a larger FPGA.  
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8 Appendix 

9 IF Data Recorder 

There are several tools and techniques available for test and verification of embedded 

systems. GPS receivers pose a special constraint in that the data to be processed in the system 

spans several different operating frequencies: radio frequency, intermediate frequency, and 

baseband. Fortunately in this thesis, because the RF signal processing is done on a commercial 

product (the GPS front-end), the design of the receiver is only concerned with test and 

verification within the IF and baseband. This can be particularly difficult for the IF, as there are 

more limited tools available that allow for analysis at such high speeds. To help overcome this 

difficulty, a high-speed digital I/O card from National Instruments was utilized as an IF data 

recorder. The data recorded from the device was used in both a C++ software receiver for testing 

baseband operations and played back into the FPGA for testing IF operations. The set-up and use 

of the IF data recorder is outlined in this appendix. 

The IF data recorder used for this work was developed around a National Instruments 

PCIe card, the NI-6537B. The device has 32 digital I/O ports, all of which can be operated at 

frequencies as high as 50 MHz. There are also other application specific pins such as an input 

clock (for use with an external reference oscillator) or an output for the onboard sample clock. 

The device is easily programmed in LabVIEW, and can be housed in most desktop PCs. In this 

work, it was housed in a small ruggedized PC so as to allow for its use in mobile environments. 
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The IF data recorder served two functions in this work: to record sampled data from the GPS 

front-end, and to play that same sampled data back into the receiver. 

 

Figure A.1 : NI 6537B 

 

Figure A.2 : Ruggedized PC 

http://downloadt.advantech.com/download/downloadlit.aspx?LIT_ID=9b74b688-9b4d-4cb6-b268-34be8c4b6c66
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Recording IF data for testing was instrumental in the development of this receiver. The 

data recorded from the front-end is sampled at 16.368 MHz and has 2 bit quantization (sign and 

magnitude). The front-end outputs the ADC sample clock along with the data samples, and thus 

the IF data recorder can use the ADC clock as an external reference to collect the data. The 

LabVIEW program simply pulls samples into a buffer then writes them to a binary file. One of 

the great benefits of having a file with sampled data from the front-end is that this data can be 

used in the development of the software of the receiver while the hardware of the receiver is 

being developed in parallel. For this work, a software receiver was developed in C++ to aid in 

the development of the processor tasks without the use of the FPGA. To use this C++ receiver, a 

data file was needed. 

 

Figure A.3 : LabVIEW Program User Interface 

The ability to play the recorded data back at real-time speeds was also pivotal in the 

development of the receiver. When the IF data recorder was used as a digital output, it would 
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read values from a binary file into a buffer, then write the buffer to the output pins at a specified 

rate. The device would also output the internal sample clock for reference. This effectively 

allowed the IF data recorder to replace the front-end while playing data that is already well 

known (from being used in the development of the software receiver as mentioned above). This 

functionality was utilized in the test and verification of the FPGA design. After a portion of the 

FPGA design was verified in simulations, the FPGA could be programmed and tested against 

predicted values from the software receiver. 

Part of what made the IF data recorder useful for the test and verification of the FPGA 

designs was the use of the ChipScope IP cores from Xilinx. ChipScope allows signals in the 

FPGA to be stored and then output through the JTAG port for inspection. In utilizing ChipScope, 

input data could be compared to processed data at the sampling frequency. This was particularly 

useful to check the components of the tracking loops such as the NCOs and multiply-

accumulates. ChipScope can store large enough sets of data that entire integration periods could 

be observed. The signals saved during the integration period can then be compared to expected 

values from both FPGA simulation and the software receiver. 

Despite the high frequencies of the sampled data, the IF data recorder enabled analysis of 

the FPGA operations on a clock cycle level. The IF data recorder also enabled the simultaneous 

development of the software receiver and the FPGA, and allowed a common verification link 

between the two.   
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