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Abstract 
 
 

Many dynamical systems can be modeled by a set of linear/nonlinear ordinary differential 

equations with periodic time-varying coefficients. The state transition matrix  ,t Φ  associated 

with the linear part of the equation can be expressed in terms of the periodic Lyapunov-Floquét 

(L-F) transformation matrix  ,t Q  and a time-invariant matrix  R . Computation of 

 ,t Q  and  R   in symbolic form as a function of system parameters   is of paramount 

importance in stability, bifurcation analysis, and control system design.  In the past, a 

methodology has been presented for computing  ,t Φ  in a symbolic form, however  ,t Q  

and  R  have never been calculated in a symbolic form. Since  ,t Q  and  R  were 

available only in numerical forms, general results for parameter unfolding and control system 

design could not be obtained in the entire parameter space. In this work a technique for symbolic 

computation of  ,t Q , and  R  matrices is presented.  First,  ,t Φ  is computed 

symbolically using the shifted Chebyshev polynomials and Picard iteration method suggested in 

the literature. Then  R  is computed using an integral quadrature formula. Finally  ,t Q  is 

computed using the matrix exponential summation method. Using Mathematica, the symbolic 

computation of  ,t Q  and  ,t R , associated with the damped Mathieu equation, is 

presented for stable, unstable, and critical cases. Bifurcation and parameter unfolding is 

investigated for the critical case, and compared to the results in the literature. The stable case of a 

linearized inverted double pendulum is presented to illustrate the application to a moderately 

large system.  

  



iii 
 

Acknowledgments 
 
 

 The author is gratefully indebted to Professor S. C. Sinha, Department of Mechanical 

Engineering, for his invaluable assistance and guidance in the completion of this research and 

thesis. He would also like to thank Dr. George T. Flowers, Professor of Mechanical Engineering 

and Dean of the Graduate School, and Professor Dr. Dan B. Marghitu, Department of 

Mechanical Engineering. 

 The author would also like to thank his family for always being supportive and loving, as 

well as instilling a mentality of hard work and determination, and God, for blessing us with 

challenging and interesting mechanical problems, as well as the ability to solve them. 

  



iv 
 

Table of Contents 

 

1.  Historical Background and Introduction ................................................................................. 1 

2.  Mathematical Background ....................................................................................................... 7 

2.1  Localization about An Equilibrium Point or Periodic Solution ....................................... 7 

2.2  Floquét Theory ................................................................................................................. 8 

2.3  Lyapunov-Floquét Theory................................................................................................ 9 

2.4  Picard Iteration ............................................................................................................... 10 

2.4  Cayley-Hamilton Theorem ............................................................................................. 11 

3.  Properties of the Chebyshev Polynomials of the First Kind ................................................. 14 

3.1  The Shifted Chebyshev Polynomials Of The First Kind................................................ 15 

3.2  Product Of Shifted Chebyshev Polynomials .................................................................. 16 

3.3  Integration Of Shifted Chebyshev Polynomials ............................................................. 17 

4.  Computation of the State Transition Matrix in Symbolic Form ............................................ 19 

5.  Computation of the L-F Transformation Matrix in a Symbolic Form .................................. 24 

5.1  Series Method 1 .............................................................................................................. 25 

5.2  Series Method 2 .............................................................................................................. 26 

5.3  The Integral Quadrature Method .................................................................................... 26 

6.  Applications ........................................................................................................................... 29 

6.1  Damped Mathieu Equation ............................................................................................. 29 

6.1.1  Stable Case .............................................................................................................. 31 

6.1.2  Unstable Case.......................................................................................................... 34 



v 
 

6.1.3  Critical Case ............................................................................................................ 37 

6.1.4  Controller Design .................................................................................................... 41 

6.3  Inverted Double Pendulum............................................................................................. 42 

7.  Discussion and Conclusions .................................................................................................. 47 

8.  References ............................................................................................................................. 49 

9.  Appendix ............................................................................................................................... 55 

Program to Compute STM of Damped Mathieu Equation ....................................................... 55 

Program to Compute R and Q of Damped Mathieu Equation .................................................. 56 

Program to Compute Relative Error for Damped Mathieu Equation (Stable Case) ................. 58 

Program to Compute STM of Inverted Double Pendulum ....................................................... 60 

Program to Compute R and Q of Inverted Double Pendulum .................................................. 62 

Custom “functions” Programs ................................................................................................... 63 

 

 
  



vi 
 

List of Tables 
 
 

Table 1: Critical eigenvalue c  as a function of   ....................................................................... 40 

  



vii 
 

List of Figures 
 
 

Figure 1: CPU Time vs Number of Gaussian Nodes of the Damped Mathieu Equation ............. 30 

Figure 2: CPU Time vs Number of Summation Terms of the Damped Mathieu Equation .......... 31 

Figure 3: Relative Error vs Number of Gaussian Nodes of the R Matrix (Stable) ....................... 32 

Figure 4: R Matrix over 2 Periods of the Damped Mathieu Equation (Stable) ............................ 33 

Figure 5: Relative Error vs Number of Summation Terms for the Q Matrix (Stable) .................. 33 

Figure 6: T-Periodic Q(t) Matrix of Damped Mathieu Equation (Stable) .................................... 34 

Figure 7: Relative Error Compared to Gaussian Nodes for R Matrix (Unstable) ........................ 35 

Figure 8: R Matrix over 2 Periods of Damped Mathieu Equation (Unstable) .............................. 36 

Figure 9: Relative Error vs Number of Expansion Terms for the Q Matrix (Unstable) ............... 36 

Figure 10: 2T-Periodic Q(t) Matrix of Damped Mathieu Equation (Unstable) ............................ 37 

Figure 11: Relative Error Compared to Gaussian Nodes for R Matrix (Critical) ......................... 39 

Figure 12: Stability Plot of Closed Loop System ......................................................................... 41 

Figure 13: Inverted Double Pendulum .......................................................................................... 42 

Figure 14: CPU Time vs Number of Gaussian Nodes of the IDP ................................................ 44 

Figure 15: CPU Time vs Number of Summation Terms of the IDP ............................................ 44 

Figure 16: Relative Error Compared to Gaussian Nodes of R Matrix of the IDP ........................ 45 

Figure 17: R Matrix over 2 Periods of the Inverted Double Pendulum ........................................ 46 

Figure 18:Relative Error vs Number of Expansion Terms of the Q Matrix of the IDP ............... 46 

Figure 19: T-Periodic Q Matrix of the Inverted Double Pendulum .............................................. 47 

  



viii 
 

Nomenclature 
 
 

STM  state transition matrix 

FTM  Floquét transition matrix 

L-F  Lyapnuov-Floquet 

a   1 n  vector of Chebyshev coefficients of function f   

A    n n  system matrix 

cA    n n  constant part of system matrix 

pA    n n  periodic part of system matrix 

 tA    n n  time dependent system matrix 

 A   n n  parameter dependent system matrix 

 ,t A   n n  time and parameter dependent system matrix 

( , ) A  n n  normalized time and parameter dependent 1-periodic system matrix  

b   1 n  vector of Chebyshev coefficients of function g   

 B    nm n  Chebyshev coefficient matrix of    , ,p m  Φ   

nc    coefficient number n   

C    n n  (generally) complex form of constant L-F transformation matrix 

 C   n n  (generally) complex form of constant L-F transformation matrix in terms of 

symbolic parameters 

id    1n  Chebyshev coefficient vector of  if t   

 D   nm n  Chebyshev coefficient matrix of  , A   
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 f    an arbitrary function f   

F    an n n  constant matrix 

 g    an arbitrary function g   

G    m m  integration operational matrix 

Ĝ    nm nm  expanded integration operational matrix 

I    n n  identity matrix 

Î    nm n  identity coefficient matrix 

k   an integer 

 tL   n n  complex KT-periodic L-F transformation matrix 

 ,t L   n n  complex parameter dependent KT-periodic L-F transformation matrix 

M  dummy matrix which we wish to obtain the natural logarithm of 

m    number of Chebyshev polynomials used 

n  dimension of first order system 

p   number of Picard iterations used 

1P   constant part of the follower force 

2P   amplitude of the periodic part of the follower force 

 P    nm n  matrix used in to compute    , ,p m  Φ  

 tQ    n n  real 2KT-periodic L-F transformation matrix 

 ,t Q  n n  real time dependent 2KT-periodic L-F transformation matrix 

aQ  m m  product operational matrix in terms of coefficient vector a  
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ˆ
AQ   nm nm  expanded product operational matrix in terms of coefficient matrix A   

 ˆ ,t Q  n n  real form of approximate periodic L-F transformation matrix in terms of 

time and symbolic parameters 

R    n n  real constant system matrix after L-F transformation 

 R   n n  real constant parameter dependent system matrix after L-F transformation  

R̂   n n  approximate real constant system matrix after L-F transformation 

 ˆ R   n n  approximate real constant parameter dependent system matrix after L-F 

transformation 

n   Euclidean n-space 

t    real time 

0t    initial real time 

T    principal period 

 nT t    standard Chebyshev polynomial of the first kind 

 nT t   shifted Chebyshev polynomial of the first kind 

 tT    1m  vector of shifted Chebyshev polynomials 

 ˆ tT   nm n  expanded shifted Chebyshev polynomial matrix 

 w t    weight function 

x    generalized coordinate 

0x   initial value of state vector 

0x   1n  initial condition vector 

x    1n  state vector 
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   ,kx t    k th approximation to the solution using Picard iteration 

 ,t x   1n  time and parameter dependent state vector 

 ,t z   1n  state vector after appling the L-F transformation 

    symbolic parameter set 

k    real part of the k-th Floquét multiplier 

k    imaginary part of k-th Floquét multiplier 

i    period of the function  if t   

    loading angle of follower force 

    Floquét multiplier (characteristic multiplier) 

    a small perturbation 

 tΦ    n n  time dependent state transition matrix 

 ,t Φ  n n  time and parameter dependent state transition matrix 

   , ,p m  Φ  n n  parameter dependent STM approximated using p  iterations and m  

polynomials 

 TΦ   n n  Floquét transition matrix 

 ,T Φ  n n  parameter dependent Floquet transition matrix 

    normalized time 

c    critical eigenvalue 

    frequency of excitation 

 e     matrix exponential function 
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1. HISTORICAL BACKGROUND AND INTRODUCTION  

As far back as 1831, Faraday is credited with recording the very first physical parametric 

behavior by vibrating a membrane. As Mathieu [1] began to steer his research towards the 

analysis of the motion of elliptical membranes, he eventually produced his very well-known 

“Mathieu equation” – a special case of Hill’s equation – in 1868. Fifteen years later, Floquét [2] 

established a canonical form, known as the Floquét normal form, of solutions of linear time-

periodic systems which provide stability characteristics. This was done by providing a coordinate 

change, known as the monodromy matrix, which transforms the state transition matrix (STM) 

into a periodic and a constant matrix. The STM evaluated at the end of the principal period is 

known as the Floquét transition matrix (FTM). This advancement allowed for great insight into 

the study of stability of the solutions of periodic systems. Hill [3] is credited for investigating the 

perigee of the moon as a harmonic oscillator within a periodically varying gravitational field in 

1886, which resulted in a second order differential equation with a periodic function. His 

research formed a special set of differential equations known as Hill equations. Depending on the 

shape of the periodic function, the solutions may remain bounded for all time, or grow 

exponentially. Lyapunov [4] then enhanced the fundamental factoring of Floquét’s theorem by 

proving the existence of a linear, invertible, periodic transformation matrix in 1896, known as 

the Lyapunov transformation. In combination, these two theories are known as the Lypanuov-

Floquét (L-F) theorem, and is an extremely powerful tool in the analysis of the stability and 

control of linear and nonlinear time-periodic systems.  A detailed analysis of time periodic 

systems can be found in the literature [5][6]. 
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While much work has been done in the analysis of linear time-invariant systems, the 

modeling of real-world mechanisms and processes very often leads to a linear time-periodic sets 

of differential equations. This is true for dynamic systems such as: 

i. asymmetric rotors-bearing systems [7][8][9] 

ii. helicopter rotor blades in forward flight [11][12] 

iii. structures subjected to periodic loading [13][14][15][16] 

iv. robots performing repetitive tasks [17][18] 

v. attitude stability of satellites [19][20] 

vi. ship dynamics [21] 

vii. quantum mechanics [22] 

viii. electrical circuits [23][24] 

ix. heartbeats [26][27] 

Thus, from an engineering and scientific standpoint, the study and analysis of linear time-period 

systems is of paramount importance – specifically the response and stability under various 

excitation regimes. 

Typically, the equilibria and periodic solutions of physical time-periodic phenomena 

represent steady-state operation. Thus the stability and bifurcation of such phenomena is 

determined by the perturbed equations of motion about the equilibrium or periodic solutions. 

Generally, a set of time-periodic quasilinear equations are obtained from the Taylor series 

expansion about these solutions, which is possible if the equilibria point or periodic solution is 

hyperbolic. In many situations, the perturbed linearized equations are sufficient for the prediction 

of local stability and bifurcation, therefore the problem can be reduced to a set of linear 

differential equations with periodic coefficients. Upon application of the Lyapunov-Floquét 
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theorem, the original time-periodic system is transformed into a time-invariant system with no 

loss of generality, thus allowing the accurate application of time-invariant analysis methods such 

as center manifold reduction and time-dependent normal forms. The stability conditions are 

determined by the eigenvalues (Floquét multipliers) of the FTM, which must lie inside the 

complex unit circle in order for the system to be stable. With the FTM and L-F transformation 

computed in a symbolic form, it is possible to determine stability conditions, compute controller 

gains, and investigate parameter unfolding in the entire parameter space. 

 While closed form solutions of periodic systems are only available in a small number of 

special cases known as commutative systems [28], several methods have been developed to 

determine the behavior and stability of such systems, including Hill’s infinite determinants 

method [3][20], perturbation method [29][30], averaging method [31], and Floquét theory with 

numerical integration [2]. However, each of the methods has its limitations. Hill’s method can 

only be used to determine the stability boundaries of a given system, and Floquét’s method is 

strictly numerical. Furthermore, the former method is not ideal for digital computation. 

Similarly, the perturbation and averaging methods can only be applied to systems where the 

periodic coefficients can be expressed in terms of a small parameter. 

 Several authors [14][30][32] have attempted to determine the response and stability from 

an approximate form of a system with periodic coefficients. These methods typically involve 

replacing the periodic coefficient elements with piecewise constants or linear functions. Hsu and 

Friedmann et al. applied such a technique by approximating the periodic matrix by a series of 

step functions and computing the STM during the first principal period. This yielded the stability 

criteria, etc. for numerical evaluation. While this technique is straightforward, it is limited by its 

second order nature. A higher order algorithms must be employed for more accurate 



4 
 

approximations, such as Runge-Kutta-Gill method, along with Floquét theory in order to 

determine stability conditions. While this approach has been performed by several authors, with 

Gaonkar et al. [33] proving the use of Hamming’s fourth order predictor-corrector method in a 

single pass scheme as computationally very efficient, it is also limited by its numerical nature. 

Recently Sinha and Wu [34] proposed an innovative and efficient numerical scheme for 

the analysis of linear systems with periodically varying parameters. The approach is based on the 

idea that the state vector and the periodic matrix of the system can be expanded in terms of 

Chebyshev polynomials over the principal period. Such an expansion converts the original 

problem into a set of linear algebraic equations from which the solution in the interval of one 

period can be obtained. Further, the technique is combined with Floquét theory to provide the 

stability conditions via the eigen-analysis procedure. Sinha, Pandiyan, and Bibb [35] computed 

the L-F transformation matrices  tR  and  tQ  by factoring the  tΦ  (STM) matrix. The L-F 

transformation can be used to transform the linear time periodic system to a time-invariant 

system. Sinha and Joseph [36] introduced optimal control theory in conjunction with Floquét 

analysis to design full state and observer based controllers for periodic systems. Sinha and 

Pandiyan [37] then used these transformed equations to construct solutions of nonlinear time-

periodic systems via time-dependent normal form and center manifold theories. For the first 

time, Sinha and Butcher [38] presented a symbolic computation of the STM for linear time 

periodic dynamical systems. Dávid and Sinha [39] then presented a local semi-analytical method 

of quantitative bifurcation analysis for parameter unfolding in time-periodic nonlinear systems 

by using the L-F transformation in the neighborhood of the bifurcation point.  

The critical limitation of these previous methods is the inability to determine the L-F 

transformation matrix in a symbolic form. Since the L-F transformation was available only in 
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numerical form, general results for parameter unfolding and control system design [10] could not 

be obtained in the entire parameter space. In this work, a technique for symbolic computation of

 ,t Φ , L-F transformation  ,t Q , and the time-invariant  R  matrices is presented.  

Concerning the computation of the L-F transformation matrix  ,t Q , two avenues of solution 

are available; one which computes  ,t Q  first then  R , and a second avenue which 

computes  R  and then  ,t Q . The first method requires the computation of the FTM raised 

to the t T  power in a symbolic form, and the second requires the computation of the natural 

logarithm of the FTM squared in a symbolic form. As the chain rule of differentiation is not 

feasibly applied to a matrix raised to an arbitrary power, the second method is presented in this 

thesis. As such, three possible methods for computing the natural logarithm of the FTM squared 

are presented, two of which are based on series expansion, while the third is an integral 

quadrature (IQ) approach. The IQ approach turned out to be the superior method, as its 

convergence is guaranteed for all sets of eigenvalues of the FTM. Using Mathematica, this 

approach has successfully been applied to the well-known Mathieu equation and a time-periodic 

double inverted pendulum system in order to demonstrate the applicability of the proposed work. 

Chapter 2 contains details pertaining to the general theory of the analysis of linear time-

periodic systems. This includes Floquét theory, with a short description of its application as well 

as stability criteria, the L-F transformation, and a general outline of Picard iteration which can be 

used to approximate integral solutions of linear time-period systems. 

Chapter 3 contains information regarding the shifted Chebyshev polynomials, which is a 

method of expanding an arbitrary function in terms of an orthogonal polynomial of the thn  

order. Two operational matrices, the product operational matrix and integration operational 
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matrix are introduced and explained. These matrices, along with Picard iteration, are used in the 

method developed by Sinha and Butcher [38] to compute the STM in a symbolic form over the 

domain 0 1t   which is shown in Chapter 4. 

Chapter 5 presents three feasible approaches to computing the L-F transformation matrix 

in a symbolic form. Two methods based on series expansion are presented, as well as a third 

method based on a quadrature formula. 

Chapter 6 illustrates the application and usefulness of the L-F transformation matrix in a 

symbolic form. The method of Chapter 5 is applied to several parameter sets of the well-known 

damped Mathieu equation, and a double inverted pendulum. A run-time study based on CPU 

time compared to the number of Gaussian nodes and summation terms is presented. The integral 

quadrature scheme of numerical integration is used, and ‘relative error’ calculations compared to 

the number of Gaussian nodes and summation terms are presented for both systems. Bifurcation 

and parameter unfolding is investigated for the Mathieu equation. The results are then compared 

to results produced by David and Sinha [39] in which a curve-fitting technique was used. 
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2. MATHEMATICAL BACKGROUND 

2.1 LOCALIZATION ABOUT AN EQUILIBRIUM POINT OR PERIODIC SOLUTION 

Given the general form of a parameter dependent nonlinear dynamics system with time-periodic 

coefficients as 

  , ,t x F x   (1) 

where nx  ,    , , , ,t T t  F x F x  with the principal period T , and   is the set of system 

parameters. We can assume for all time t  the 0 0x  point is an equilibrium point of 

 ,0, 0t  F  given a range of parameters ,j k       without the loss of generality, as any 

nonzero equilibrium point can be transformed to zero by a change of coordinates. Or, for all time 

t   there exists a known periodic solution    0 0 0t t T  x x  for a given range of parameters 

,j k      . Linearizing equation (1) about the equilibrium or periodic solution can be done by 

Taylor series expansion of the nonlinear term(s). The localized form is given by 

        1

2, , , , , , ,
k

kt t t O t       x A x f x f x x    (2) 

where  
0

,t 




 x x

F
A

x
 is an n n  matrix and is KT-periodic in time. The higher order terms 

0

i
i i





 x x

F
f x

x
  are the i-th order homogeneous monomials of ix  and are also KT-periodic in 

time.  
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2.2 FLOQUÉT THEORY 

Floquét theory focuses on predicting the stability and response of linear differential 

equations with periodic coefficients.  It is extremely useful in stability analysis, as once the 

problem is solved for one full period, solutions are known for all time t . 

Consider a linear time periodic system in state-space form given by  

 ( , )t x A x   (3)   

where  ,t A  is a -periodicT  n n  matrix such that    , ,t T t  A A  and  ,t Φ  is the 

STM of equation (1) with  0, Φ I , the n n  identity matrix. Then according to Floquét 

theory, 

        , , , ;    0t t t   Φ A Φ Φ I   

and 

  ( , ) ( , )t T t   Φ Φ F   (4) 

which indicates 

  ( , )T  Φ F   (5) 

where F  is a constant matrix and  

 0 0( , , ) ( , ) ( , , )t T t t t T t    Φ A Φ   (6) 

For time greater than one principal period the STM is given by 

 ( , ) ( , ) ( , )kt T   Φ Φ Φ   (7) 
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where ,t kT    [0, ],t T  1, 2,3k    Equation (7) is significant in the study of periodic 

differential equations since it indicates that if a solution is known for the time variations in the 

principal period, then the solution is known for all time. 

The stability conditions are based on the Floquét multipliers (eigenvalues) of the FTM.  

Let k  where 1, 2,...,k n  denote the eigenvalues of the FTM, then the system is asymptotically 

stable if all k  lie inside the unit circle of the complex plane (the magnitude of all k  is less than 

one). The system is unstable if one or more eigenvalues of the FTM lie outside of this unit circle 

(the magnitude of one or more k  is greater than one). Stability can also be expressed in terms of 

the characteristic exponents. Let    Re Imk k ki     then the ‘characteristic exponents’ of 

the system are k ki   where 

  
 

1
ln

Im1
arctan

Re

k k

k
k

k

T

T

 








 
   

 

  (8) 

The system is stable if 0ka   for 1, 2,...,k n . A detailed explanation of Floquét theory can be 

found in [5] and [6].  

2.3 LYAPUNOV-FLOQUÉT THEORY 

As a corollary to the Floquét theory, the L-F theorem states that the STM of equation (49) 

can be written as the product of two n n  matrices such as 

 
 

     
( , )  ( , ) ;

0, 0, ,

C tt t e

T

 
  



  

Φ L

Φ L L I
  (9) 
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where ( , )t L  is a T -periodic n n  matrix and  C  is a time invariant n n  matrix. In 

general,  L  and  C  are complex. ( , )t Φ  can also be factored as 

 
 

     
( , )  ( , ) ;

0, 0, 2 ,

tt t e

T

 
  



  

RΦ Q

Φ Q Q I
   (10) 

where ( , )t Q  is real and 2T-periodic and  R  is a real time invariant matrix. The 

computation of  ,t Q  and  R is not a simple task, except in the special class of 

commutative systems [40]. 

By applying the coordinate change 

  ,t x Q z   (11) 

to the localized system (2) we obtain the form 

        1
2, , , ... , ,kt f t f t        z R z Q z z   (12) 

where          1 , , , ,t t t t        R Q A Q Q . Hence the linear part of (2) has been 

transformed into a completely autonomous linear part and the nonlinear part has become 2KT-

periodic. This transformation maintains all stability and bifurcation characteristics, therefore (12) 

is dynamically equivalent to (2). 

A note of interest: If all of the Floquét multipliers lie in the left half of the complex plane, 

then ( , )t Q  is 2T-periodic and has symmetry of   ( , ) ,t T t   Q Q . However, if some of 

the Floquét multipliers lie in the right half of the complex plane, the real and complex L-F 

transformations coincide, both being T-periodic and real.  

2.4 PICARD ITERATION 

Given the first order nonhomogeneous differential equation 
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     0
0, ,     

dx
f x t t x t x

dt
      (13) 

This differential equation may be expressed in an equivalent integral form as  

    
0

0 ,
t

t
x t x f x d         (14) 

where  is a dummy variable.  An approximation of  1 ( )x t  may be determined by assuming the 

initial approximation as  0 0( )x t x and substituting it on the right-hand side of equation (14). 

The  1 ( )x t  is substituted back into the integral to generate the second approximation  2 ( )x t .  

This process, called Picard iteration, can be carried out k  times in order to determine  1 ( )kx t  

which satisfies the recurrence equation 

   
0

( 1) 0( ) , .    
tk k

t
x t x f x d        (15) 

thus generate a sequence of approximations to the true solution  x t  [41]. In contrast to 

asymptotic techniques, all of the system parameters are treated equally in Picard iteration so that 

the convergence varies radially in the parameter space.  This technique is of great importance in 

proving the existence of solutions of equation (13). However, the difficulty of evaluating the 

integral in equation (14)  has made it impractical for general numerical computations even for 

special cases of linear time-varying equations.  This impracticality can be avoided by expanding 

the periodic system matrix in Chebyshev polynomials.  By employing the associated operational 

matrices defined in Chapter 3, the successive integrations associated with the Picard iterations 

are replaced by matrix multiplications. 

2.4 CAYLEY-HAMILTON THEOREM  

In linear algebra, the Cayley–Hamilton theorem (named after the mathematicians Arthur Cayley 

[42] and William Rowan Hamilton [43]) states that every square matrix over a commutative ring 
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(such as the real or complex field) satisfies its own characteristic equation [44]. The 

characteristic polynomial of  A , where A  is an n n  constant matrix and   is a set of 

parameters, is obtained by 

     det 0    P I A   (16) 

 where "det"  is the determinant operation and I  is the identity matrix. 

The characteristic polynomial is of the thn  order polynomial form 

   1
0 1 1... 0n n

n nP c c c c   
        (17) 

The Cayley-Hamilton theorem states that the matrix  A  itself must also satisfy this equation, 

therefore 

         1
0 1 1...n n

n nP c c c c   
     A A A A I 0   (18) 

then  

 
     1 2

0 1 1...n n
n

n

c c c
c


  




     

A
A A I I   (19) 

By pre-multiplying both sides by  1 A  we obtain 

       1 1 2
0 1 1

1
...n n

n
n

c c c
c

    



   A A A I   (20) 

This method is a computationally efficient technique to determine the inverse of a square 

symbolic matrix. 

The Cayley-Hamilton theorem also provides a relationship between powers of  A . 

For example, given 

  
a b

c d


 
  
 

A   (21) 
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The characteristic polynomial is of the form 

    2 0a b ad bc        (22) 

For simplicity, let a b    and ad bc   , and 

 2      (23) 

then 

    
    

2

3 2 2

4 3 2 4 2 2

  

         

             

 

     

       

  (24) 

and so forth. Thus, the powers of an n n  matrix can be written in terms of the a polynomial 

whose highest power is 1n . We know the matrix  A  must also satisfy this polynomial, 

therefore we can compute  k A  via a polynomial whose highest power is  1n A . This 

greatly reduces computation time in determining the exponential of a symbolic matrix. This 

scheme allows one to simplify the expression in a scalar polynomial form, then substitute the 

matrix in the final expression which eliminates repeated matrix multiplication.  
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3. PROPERTIES OF THE CHEBYSHEV POLYNOMIALS OF THE FIRST KIND 

The Chebyshev polynomials, named after Pafnuty Chebyshev, are a sequence of 

orthogonal polynomials of degree n  and compose a sequence which are related to de Moivre's 

formula and can be defined recursively. Chebyshev polynomials of the first kind are denoted 

 kT x  [45]. 

These polynomials are important in approximation theory because the roots of the 

Chebyshev polynomials of the first kind, which are also called Chebyshev nodes, are used as 

nodes in polynomial interpolation. The resulting interpolation polynomial minimizes the problem 

of Runge's phenomenon and provides an approximation that is close to the polynomial of best 

approximation to a continuous function under the maximum norm.  

Chebyshev polynomials arise as the solution to the Chebyshev differential equation 

  2 21 0x y xy n y       (25) 

Which is a special case of the Sturm-Liouville differential equation. 

Chebyshev polynomials of the first kind are defined by the relationship  

    
     1 2 1 22 21 2 !

1 1
2 !

k k
k

k k

k dk
T t t t

k dt


     (26) 

And are orthogonal over the interval  1,1  with respect to the weight function 

  1 221 t   (27) 

The Chebyshev polynomials are related to the trigonometric functions and can also be obtained 

from 

 
     cos ;    cos ;    0, ;

                             0,1, 2,...
kT t k t

k

     


  (28) 
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3.1 THE SHIFTED CHEBYSHEV POLYNOMIALS OF THE FIRST KIND 

The shifted Chebyshev polynomials ( )kT t are defined in terms of standard Chebyshev 

polynomials of the first kind by the relation: 

 ( ) (2 1);    [0,1]k kT t T t t      (29) 

which is obtained by using the change of variable 

 ( 1) / 2.t t     (30) 

The shifted Chebyshev polynomials are orthogonal over the interval [0,1] with respect to the 

weight function 

 
1
22( ) ( )w t t t     (31) 

The recurrence relation is given by  

 1 1( ) 2(2 1) ( ) ( );k k kT t t T t T t  
      (32) 

The orthogonality relationships are given by  

 
1
2

1 2

0

0

( ) ( )( ) 2 0

0
j k

j k

T t T t t t dt j k

j k




 


   
  

   (33) 

Thus, any continuous function  f t  can be approximated in terms of Chebyshev polynomials of 

the first kind as 

    
0

k k
k

f t a T t






   (34) 

where ka  are called Chebyshev coefficients of the function  f t . 

In matrix form 

 ( ) ( )Tf t t a T   (35) 
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where   and ta T  are given as 

 
 

 
0 1 2 1

0 1 2 1

, ,

( ) , ,

k

k

a a a a

t T T T T



    






a

T




  (36) 

and 

 

0 1 2 1

0 2 1 3 2
1

1 3 0 4
2

0 2( 1)2
1

( ) ( ) ( ) ( )

( ( ) ( )) ( ( ) ( )) ( ( ) ( ))
( )

2 2 2

( ( ) ( )) ( ( ) ( ))
( ) ( ) ( )

2 2

( ( ) ( ))( ( ) ( ))
( )

2 2

m

m m

T

mm m
m

T t T t T t T t

T t T t T t T t T t T t
T t

T t T t T t T t
t t T t

T t T tT t T t
T t

   


     
 

   
  

  
 



  

 















T T





 

    

 











 
 



  (37) 

 

3.2 PRODUCT OF SHIFTED CHEBYSHEV POLYNOMIALS 

The product of any two functions, expanded in terms of shifted Chebyshev polynomials of the first 

kind, is given by the recurrence relation 

        1
;    , 0,1, 2,3...

2j k j k j kT T T t T t T t j k   
 

       (38) 

Let the two functions be defined as  f t  and  g t  where 

        
1 1

0 0

;      g
m m

k k k k
k k

f t a T t t b T t
 

 

 

     (39) 

then 

     ( ) ( )Tt tf t g t   T T ba   (40) 

Equation (40) can be written in matrix form using the cross-product relationship of two Chebyshev 

vectors as 

      T
af t g t t T Q b   (41) 
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where aQ  is defined as the product operational matrix corresponding to  f t  given by 

 

11 2
0

1 3 22
1 0

1 3 4
2 0

2( 1)2
1 0

2 2 2

2 2 2

2 2

2 2

m

m m

a

mm m
m

aa a
a

a a a aa
a a

a a a
a a

aa a
a a








 
 
 

   
   
 
 
 
 

  

Q





 

    

 

  (42) 

and ka  coefficients in which 1k m   are set to zero. 

Recurrence relations also exist for the integration of Chebyshev polynomials: 

 | 1|1
20

( )( )1 ( 1)
( ) ;    0,2,3,

4 1 1 2( 1)

k
t kk

k

T tT t
T t d k

n n k



 

  
     

    
   (43) 

For 1k  the result is expressed as 

 2 00

1
( ) ( ) ( )

8

t

kT t d T t T t        (44) 

The product operational matrix is crucial in reducing the amount of matrix multiplication 

required, which in turn increases computational efficiency. 

3.3 INTEGRATION OF SHIFTED CHEBYSHEV POLYNOMIALS 

The general recursive formula for integration of an 1n  vector of shifted Chebyshev 

polynomials of the first kind is given by 

 
 

   0 2

1 1 1 00 0 0k times
 

kt k
k kd d d t

 
     

     T G T    (45) 

where G  is the n n  integration operational matrix given by 
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1 2 1 2 0 0 0

1 8 0 1 8 0 0

1 6 1 4 0 1 12 0

1 16 0 1 8 0

1

4( 1)

( 1) 1
0 0 0 0

2 ( 2) 4( 2)

m

m

m m m

 
  
  
  
 
 

 
  
 

   

G




 

    
  (46) 

and all 'sk  are dummy variables. Use of the G  matrix results in a forward difference recurrence 

procedure in which the  1 thm  term is truncated in order to keep the vector lengths consistent. 

Let the nm n  Chebyshev polynomial matrix be defined as 

    ˆ t t  T I T   (47) 

where   denotes the Kronecker product and ˆ  G I G  and is of dimension nm nm . 

Equation (45) becomes 

 
 

   0 2

1 1 1 00 0 0k times

ˆˆ ˆ 
kt k

k kd d d t
 

     
     T G T    (48) 
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4. COMPUTATION OF THE STATE TRANSITION MATRIX IN SYMBOLIC FORM 

Sinha and Butcher [38] have outlined a technique for computing the STM for a linear 

time-periodic dynamical system explicitly as a function of the systems parameters via Picard 

Iteration and expansion in shifted Chebyshev polynomials. When this STM is evaluated at the 

end of the principal period, the parameter-dependent FTM is obtained, and hence it is possible to 

express the local stability conditions in a closed form. For completion, this method is outlined 

briefly. 

Consider the linear time-periodic system 

 0( , ) ( , ) ( , ),     (0, )t t t    x A x x x   (49) 

where ( , ) nt  x  is the state vector which depends on the time t  , L  is the parameter 

vector, and ( , )t x  is the derivative with respect to time of the state vector.  

The n n  matrix ( , )t A  can be written as 

     1 1 2 2( , ) ( ) , ( ) , ... ( ) ,r rt f t f t f t         A A A A  where the functions if   is periodic 

such that    i i if t f t    with period iB  for 1,...,i r and the n n   i A  constant matrix 

contains the coefficients of these periodic functions. Assuming the frequencies commensurate, 

the lowest positive number T  such that i qq B T  for positive integers iq  is the ‘princial period’ 

of the system matrix    , ,t t T  A A . The fundamental solution matrix ( , )t Φ  of 

equation (49) satisfies ( , ) ( , ) ( , )t t t  Φ A Φ  where (0, ) Φ I  and the solution for the given 

initial conditions may be expressed as 0( , ) ( , )t t x Φ x . 

An equivalent integral form of equation (49) is 
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 0

0
( , ) ( , ) ( , )

t
t d       x x A x   (50) 

As the zeroth approximation, let 0 0( , ) (0, ) .t   x x x  Use of equation (50) to determine the 

 1k th  term is then 

 

1

( 1)

0 ( )

0

0

0 1 10 0

0
0 00 0

( , )

   ( , ) ( , )

   ( , )

      ( , ) ( , ) ...

       ( , )... ( , )

k

k

t k
k k k

t

k k

t

k k k k

t

k k

t

d

d

d d d

d d







    

  

      

     



 

 

 

 

 





 

 

x

x A x

I A

A A

A A x

  (51) 

where 0 1, ,..., k     are dummy variables. This series of integrals is an approximation to the 

fundamental matrix ( , )t Φ  because it is truncated at a finite number of terms, while the true 

solution is an infinite series.   

If ( , ) ( )t  A A , that is to say, is a constant matrix, then this series results in the power 

series definition of the exponential solution of equation (50), such that 

 

( )

2

( , )

[ ( ) ] [ ( ) ]
          ( ) ...

2! !

t

n

t e

t t
t

n



 



 
     
 

A 0

0

x x

A A
I A x

  (52) 

Unfortunately, the symbolic evaluation of the fundamental matrix via equation (51), in 

general, leads to complicated expressions for ( , )t Φ  and is not efficient due to the necessary 

repeated integration by parts. Instead, the following approach is taken which results in a more 

efficient approximation of ( , )t Φ .  
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 The transformation t T  is applied to equation (49)  which normalizes the system 

matrix’s principal period to one. The equation then becomes 

 
( , )

( , ) ( , )
d

d

     



x

A x   (53) 

where 0( 1, ) ( , ),  (0, )      A A x x , 

1 1 2 2( , ) ( ) ( ) ( ) ( ) ( ) ( )k kf f f          A A A A , ( ) ( 1)i if f   , and 

( ) ( ),  1, ,i k  i iA TA  . The Chebyshev polynomial matrix ˆ ( )TT  is used to expand the 

normalized system matrix in m  shifted Chebyshev polynomials of the first kind as  

 ˆ( , ) ( ) ( )    TA T D   (54) 

where the nm n  Chebyshev coefficient matrix ( )D  is defined as 

 
1

( ) ( )
r

i i
i

 


 D A d   (55) 

The 1m  column vectors id  contain the known coefficients of the Chebyshev expansion of the 

1-periodic functions as 

 
*

1
* *

0

( ) ( ) ( ) ( )
j

m
T T

i ij i
j

f d T   




   iT d d T   (56) 

where *( ) (0 1)jT     are the Chebyshev polynomials. Then, using the integration operational 

matrix and the identity coefficient matrix, equation (51) can be written as 

 

(1, ) 0
0 00

0

ˆ( , ) ( ) ( )

ˆˆ ˆ               ( ) ( ) ,

m T

T T

d


    

 

    
   

x I T D x

T I G D x
  (57) 
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where the superscript  1,m  indicates that the first Picard iteration is approximated by m  

Chebyshev polynomials.  Furthermore, using the product operational matrix equation (52) can 

be written as 

 

(2, ) 0
1 1 10

0
1 10

0

ˆ ˆˆ ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆˆ ˆ ˆ                ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆˆ ˆ                ( ) ( ) ( ) ( )

m T T T T

T T T T
D

T T T T
D

d

d





   

  



        
       

    





x α T α I G D α D α T T G D α x

T I G D α T Q α G D α x

T I G D α G Q α G D α x

  (58) 

where 
1

ˆ ( ) ( )
i

r

i d
i

 


 DQ A Q  is expressed in terms of the product operational matrices 
idQ  

corresponding to the Chebyshev coefficients of the periodic functions ( )if t .  Continuing in this 

way, the approximate fundamental matrix solution of equation (49) over the principal period can 

be written in terms of the Chebyshev polynomials as 

 
 

( , )

1

1

( , )

ˆ ˆ ˆ           ( ) ( ) ( ) ( ) ( )

p m

p
kT T

k

 

    





  
   
  


Φ

T I L P T B
  (59) 

where ( )B  contains the Chebyshev coefficients of the elements of ( , ) Φ  and is expressed in 

terms of 
1

ˆ( ) ( )
i

r
T

i d
i

 


    L A G Q  and 
1

ˆ( ) ( )
r

T
i i

i

 


    P A G d  which are nm nm , 

respectively.  By selecting a value for p, the number of Picard iterations, this truncated 

expression gives an approximate solution to any desired degree of accuracy.  While this is valid 

only in the interval [0, ]t T or [0,1],   the solution can be easily extended for ( 1)t T   by 

utilizing the formula  

 ( , ) ( , ) ( , )( , ) ( , ) (1, ) ,
kp m p m p m       Φ Φ Φ   (60) 
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where ,  [0,1],  1, 2,k k        The matrix    , 1,p m Φ  is the FTM whose eigenvalues 

(Floquét multipliers) determine the stability characteristics of the system. While these 

expressions are in terms of normalized time, the substitution   = t/T yields the result in real time 

 Thus the integrations in equation (51) are replaced by the more computationally efficient 

matrix multiplications in equation (59), and an approximation to the fundamental matrix in terms 

of the shifted Chebyshev polynomials is made by including a finite number p of Picard iterations 

and an appropriate number m of Chebyshev polynomials (which determines the sizes of the 

various matrices).   
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5. COMPUTATION OF THE L-F TRANSFORMATION MATRIX IN A SYMBOLIC FORM 

Obviously, one must first compute the STM ( , )t Φ  in a symbolic form as described in 

the previous section. In order to continue the system analysis in a fully symbolic form, the L-F 

transformation matrix  ,t L  and the time-invariant matrix  C  (generally complex 

matrices), or the  ,t Q  and  R  real matrices must be computed as functions of a set of 

parameters. In this thesis, only the real form of the L-F transformation  ,t Q  and the time-

invariant matrix  R  will be considered.  

From equation (10) ,  

 
 

     
( , ) ( , )  

0, 0, 2 ,

tt t e

T

 
  


  

RΦ Q

Φ Q Q I
  (61) 

by applying the 2T-periodic L-F transformation  ,t Q  

      , , ,t t t  x Q z   (62) 

we obtain a real representation of equation (2) as 

            1
1, , , , , ... , ,kt t t f t f t          z R z Q z z   (63) 

assuming equation (2) is nonlinear, where          1 , , , ,t t t t        R Q A Q Q  is a 

linear time-invariant matrix.  

Evaluating equation (61) at 2t T   

      222 , , R TT T e   Φ Φ I   (64) 

then it follows that 
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     21
ln ,

2
T

T
 R Φ   (65) 

Assuming that  R  is known,  ,t Q  may be obtained from equation (61) as 

      , , tt t e    RQ Φ   (66) 

For symbolic computation, equation (61) can be computed as such: 

      
0

ˆ , ,
!

k kk N

k

t
t t

k
 





 
  

  


R
Q Φ   (67) 

A number of methods are available for the numerical computation of the natural 

logarithm of a matrix. Since almost all of them involve computation of eigenvalues, they are not 

suitable for this work. However, several authors have presented feasible methods of computation 

the natural logarithm of matrices, two based on series expansion [46][47][48][49] and one based 

on integral quadrature [50][51]. 

5.1 SERIES METHOD 1 

Let 

  A I M   (68) 

where A  is a dummy matrix, M  is the matrix of which the real natural logarithm is desired. 

Assuming   1 A , where   A  is the spectral radius of A , we have 

    
1

ln ln
k

k k





    A
M I A   (69) 

This method is severely limited by the constraint placed of the spectral radius of the matrix, as 

the series will only converge if the magnitudes of all of the eigenvalues of the matrix are less 

than one (ie: the system is stable). In a symbolic form, the parameters are not known in advance; 

thus it is impossible to predict if this series will converge. 
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5.2 SERIES METHOD 2 

For arbitrary matrix Y , since        1
ln ln ln

     I Y I Y I Y I Y ; using conformal 

transformation    1  M Y I Y I and results of Series Method 1, it can be shown that 

     
2 11

0

1
ln 2

2 1

k

k k

 



    M M I M I   (70) 

And the restriction of Series Method 1 has become    0 A , where   ,  1,...,i i n M  

indicates the spectrum of M . Hence, for this series to converge the real parts of all eigenvalues 

must be greater than zero (ie: the system must be unstable). Similar to Series Method 1, it is not 

possible to determine whether this series will converge. 

 As previously mentioned, these methods are not ideal for symbolic computations as the 

determination of spectral radius and spectrum calculations require eigen-analysis. While possible 

in a symbolic form for smaller dimensional systems, it typically requires a great deal of 

computing power. Also, as a bifurcation analysis is performed near the stability boundaries, these 

series expansion will likely converge very slowly. If one does decide to pursue this method, 

  1M I  may be computed in a symbolic form via the Cayley-Hamilton theorem as described in 

Section 2.4. 

5.3 THE INTEGRAL QUADRATURE METHOD 

The integral quadrature (IQ) method is an alternative technique for determining the real natural 

logarithm of a matrix based on a continuous model. This method determines the desired natural 

logarithm of a given matrix based on the solution of an ordinary differential equation as shown 

below. 
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Let the s  dependent matrix  sX  be defined as 

      : ,    0 1ss e s s    XX M I I   (71) 

thus  sX  is well defined, real,  0,1s , and  1X  defines  log M  based on the following 

theorem: 

 Let n nM   be nonsingular. Then, there exists a real  lnX M  if and only if M  has 

an even number of Jordan blocks of each size for every negative eigenvalue. If M  has any 

eigenvalue on the negative real axis, then no real logarithm of M  can be a primary matrix 

function of M  [52][53]. 

 sX  satisfies the differential equation 

 
   

 
,    0 1

0 0

se s   



XX M I

X


  (72) 

and M  and  seX  commute such that    s se eX XM M .  

By equation (71) the explicit solution can be written as 

       1 1

0
,    0 1t s ds s


     X M I M I I   (73) 

where s  is a dummy variable. Hence 

         1 1

0
ln 1 s ds


    M X M I M I I   (74) 

Computation of the natural logarithm of the matrix M  can then be computed by any type of 

numerical integration technique, such as Simpson’s method, quadrature rules, etc. where

   1
s


 M I I  may be computed via Cayley-Hamilton theorem. In this work, Gaussian 

quadrature will be implemented to approximate  R , represented by  ˆ R . Unlike the 
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previously stated series methods, the ODE method is not constrained by eigenvalue limitations, 

and thus this method converges for all parameter values. Applying this result to equation (65) we 

can determine  ˆ R  as 

          112 2

0

1ˆ , ,
2

T T s ds
T

  


   R Φ I Φ I I   (75) 
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6. APPLICATIONS 

6.1 DAMPED MATHIEU EQUATION 

Consider the well-known Mathieu equation 

 ( cos ) 0x dx a b t x       (76) 

which has a period of 2 ,  where 2T       for simplicity and ,  ,  and a b d  are the system 

parameters denoted by  .  The time t  is normalized as t T   and equation (76) is written in 

state-space form as 

  ( , ) ( ) cos 2c pa d b    x A A x   (77) 

where 

 
0 1 0 0

( , ) ,   ( )
0c pa d b

a d b

   
         

A A   (78) 

1 2(  )T x xx  and the derivatives are with respect to . Then the STM of the original second order 

system is given by equation (59)  as 

 

( , )

2
2

ˆ( , ) ( ) ( )

0 0ˆ        ( ) ( )
0 0 1

p m T

m

m

I

I

 
 

   

 



   
    

  
T

Φ T B

T B
  (79) 

The product operational matrices for ( )  1cf    and   c( o) s2pf    are utilized in the 

approximation. The approximation was performed with 15m   Chebyshev expansion terms and 

24p   Picard iterations, which was shown to be sufficiently accurate by Sinha and Butcher 

[38]. All computations were performed on a 64-bit Windows 7 Home Premium PC with a 4.0 

GHz AMD FXTM 8350 Eight-Core processor and 8 GB of RAM. The STM  , Φ  in terms of 
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the parameters ,  ,  and a b d  is first computed in symbolic form. This process required 48.22 

seconds of CPU time. 

 The IQ method was implemented to determine  ˆ R , the approximate  R  matrix , by 

equation (75).  

A time study was performed to determine the amount of CPU time required for a given 

number of nodes used and is shown in Figure 1. 

 

Figure 1: CPU Time vs Number of Gaussian Nodes of the Damped Mathieu Equation 

 

Clearly, the CPU time required varies linearly with the number of Gaussian nodes implemented 

in the numerical integration approximation for  ˆ R . Figure 2 shows the CPU time required to 

compute  ˆ , Q  by equation (67) for a given number of summation terms. 
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Figure 2: CPU Time vs Number of Summation Terms of the Damped Mathieu Equation 

 

6.1.1 Stable Case 

 The parameter set 0.5,  4.0,  0.3a b d    was chosen, which produces characteristic 

multipliers of  0.578814 0.637019i  with absolute values of 0.860708, indicating that this 

parameter set is stable. Figure 3 displays a logarithmic plot of the ‘relative error’ of the 

numerically approximated R̂  matrix compared to the numerical solution computed using a 

Runge-Kutta type algorithm.  
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Figure 3: Relative Error vs Number of Gaussian Nodes of the R Matrix (Stable) 

‘Relative error’ is defined as  

 
ˆ

f
rel

f

Err



R R

R
  (80) 

where R̂  is defined as the approximate solution, R  is the numerical solution, and 
f
  is the 

Frobenius norm. It is easily noticed that in a simple 2 2x  system the ‘relative error’ decreases 

rapidly with the increase of Gaussian nodes. It was noted that 11 nodes are required to achieve a 

‘relative error’ on the order of 71 10 , which corresponds to a CPU time of only 2.93 seconds. 

Beyond 11 nodes numerical error due to machine-precision values occurs. Implementing 11 

nodes, R̂  evaluates to 

 
0.03798 1.2532

0.5822 0.337
ˆ

9

 
  




R   (81) 

where R̂  is truncated at 4 decimal places. 

Figure 4 illustrates the time-invariant nature of the R̂  matrix over 2 periods. 
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Figure 4: R Matrix over 2 Periods of the Damped Mathieu Equation (Stable) 

 ˆ Q  is then computed by equation (67) and the ‘relative error’ (using an expression similar to 

equation (80)) is shown in Figure 5. 

 

Figure 5: Relative Error vs Number of Summation Terms for the Q Matrix (Stable) 

Computing  ˆ TQ  with 10 summation terms, we obtain 

  
9

9

1 01 9.08387 10

0 14.2201 10 1
T





   
        

Q   (82) 
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As both characteristic multipliers are on the right half of the complex plane,  ˆ TQ  is T-periodic, 

as shown in Figure 6. 

 

Figure 6: T-Periodic Q(t) Matrix of Damped Mathieu Equation (Stable) 

6.1.2 Unstable Case 

The parameter set 12.0,  7.0,  0.3a b d    was chosen, which produces characteristic 

multipliers of  1.28285,  0.577091   with absolute values of  1.28285,  0.577091 , which 

makes this parameter set is unstable. Figure 7 displays a logarithmic plot of the ‘relative error’ of 

the numerically approximated R̂  matrix compared to its numerical solution. 
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Figure 7: Relative Error Compared to Gaussian Nodes for R Matrix (Unstable) 

It was observed that 7 nodes are required to achieve a ‘relative error’ on the order of 61 10 . In 

this case, beyond 7 nodes the numerical computation error begins to occur due to the nature of 

machine precision values. Implementing 7 nodes, R̂  evaluates to 

 
0.1577 0.0514

3.0961 0.1422
ˆ   

  



R   (83) 

where R̂  is truncated at 4 decimals. 

Figure 8 illustrates the time-invariant nature of the R̂  matrix over 2 periods. 
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Figure 8: R Matrix over 2 Periods of Damped Mathieu Equation (Unstable) 

 ˆ Q  is then computed by equation (67) and the ‘relative error’ is shown in Figure 9. 

 

Figure 9: Relative Error vs Number of Expansion Terms for the Q Matrix (Unstable) 

Computing  ˆ 2TQ  with 11 expansion terms we obtain 

  
9

8

1 01 1.172 10ˆ 2
0 17.055 10 1

T




    
        

Q   (84) 

As both characteristic multipliers are on the right half of the complex plane,  ˆ Q  is 2T-

periodic, as shown in Figure 10. 
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Figure 10: 2T-Periodic Q(t) Matrix of Damped Mathieu Equation (Unstable) 

Thus this method of analysis is feasible for application to stable as well as unstable systems in a 

symbolic form. Due to the nature of the polynomial expansion, each matrix element is a very 

large polynomial, thus the elements themselves are not shown here as they can have, on average, 

over hundreds of arguments. Of course, the number of arguments depends on the level of 

accuracy desired - which is dependent on the number of Picard iterations and Chebyshev 

expansion terms, as well as the number of system parameters left in symbolic form. 

6.1.3 Critical Case 

 For nonlinear systems it is desirable to ascertain the type of bifurcation a system goes 

through when the control parameter is given a small perturbation   from its critical value (say 

c ). This change in control parameter ( c    ) changes the linear part of the equation and 

thus the eigenvalues of the matrix can be directly related to  . 

 However, such a procedure cannot be directly applied to a time-periodic system due to 

the fact that the linear part is time-periodic. Nevertheless, one can use the L-F transformation 

 ,t Q  in equation (2) and obtain equation (12) where the  R  matrix is time-invariant. Then, 
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one can relate the changes in the control parameter   to the eigenvalues of  R . But, in order 

to do so,  ,t Q  must be symbolically computed such that  R  is also in symbolic form. 

Since the main goal of this research is to compute  ,t Q  and  R  in symbolic form, the 

‘parameter unfolding’ in bifurcation of time-periodic systems can be easily studied. Recently, 

David and Sinha [39] used a numerical form of  tQ  (evaluated at c  ) and attempted to 

approximate  c R  using Taylor series expansion and ‘curve fitting’ methods. Using the 

results of the present work,  ˆ
c R  can be computed almost exactly for all values of  . The 

approximate values of R  as computed in [39] are compared with the results obtained here for 

the Mathieu equation: 

 ( cos ) 0cx dx a b t x       (85) 

Selecting parameters of 3.91778734,  4.0,  0.31623ca b d    and 2.0   we obtain 

characteristic multipliers of  ,  0.9999999957 0.3702910945  indicating that the system 

undergoes a symmetry breaking bifurcation. For increased accuracy,  , Φ  was computed 

with 32m   Chebyshev expansion terms and 30p   Picard iterations. With  ˆ R  and 

 ˆ , Q  in symbolic forms, we may fix the values of and b d  and investigate the dynamics of 

the bifurcation by introducing small changes in ca . Figure 11 displays the ‘relative error’. 
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Figure 11: Relative Error Compared to Gaussian Nodes for R Matrix (Critical) 

12 Gaussian nodes were implemented in the analysis. R̂  at ca  is found to be 

 
0.48907 0.01542

15.99016 0.5043
ˆ

9








 

R   (86) 

with eigenvalues of R̂  being  90.993466,  4.28304 10   , where the latter eigenvalue is 

known as the critical eigenvalue c  . A small bifurcation parameter   was introduced into the 

symbolic computation of  ˆ aR  such that ca a    and the change in the critical eigenvalue 

was investigated as shown in Table 1. 
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Table 1: Critical eigenvalue c  as a function of    

Bifurcation  
Parameter 

ca a    

Critical Eigenvalue c  

Numerical Value Symbolic Method 
Linear Relation 

Sensitivity 
Analysis [39] 

Quadratic Relation 
Sensitivity 

Analysis [39] 

Quadratic 
Relation Curve 

Fitting [39] 
0.0001 0.000086777 0.000086777 0.000086800 0.000086781 0.000008648 
0.001 0.00086615 0.00086615 0.00868000 0.00086615 0.00085553 
0.005 0.0042941 0.0042941 0.0043400 0.0042963 0.0424840 
0.01 0.0084981 0.0084981 0.0086800 0.0084946 0.0084234 
0.02 0.016645 0.016645 0.017360 0.016618 0.016554 
0.03 0.024460 0.024460 0.026040 0.024371 0.024391 
0.04 0.031958 0.031958 0.034720 0.031754 0.031934 
0.05 0.039155 0.039155 0.043400 0.038765 0.039185 
0.06 0.046065 0.046065 0.052080 0.045405 0.046142 
0.08 0.059069 0.059069 0.694400 0.057574 0.059178 
0.1 0.071057 0.071057 0.086800 0.068260 0.071040 

0.15 0.097048 0.097048 0.130200 0.088484 not valid 

 

This data can be compared to the results obtain by Dávid and Sinha [39] in which linear 

 0.868c  , quadratic  20.868 1.854c    , and curve fitting  20.865 1.635c     

methods were implemented to approximate the critical eigenvalues. The numerical values were 

computed using a Runge-Kutta type algorithm. It is noticed that the values computed via the 

symbolic method presented in this thesis match exactly (truncated to at max 6 decimals) with the 

numerical values for all bifurcation parameters tested. The curve fitting method is the second 

most accurate approximation. However, the versal deformation of the normal form must remain 

on the center manifold in order to provide an accurate approximation of the system dynamics. 

Thus, the bifurcation parameter can only be increased until the critical eigenvalue is at least one 

order of magnitude less than the stable eigenvalue. The symbolic method is not limited by 

working on the center manifold, which means   may be of any magnitude as long as the 

approximation of the STM and the time-invariant matrix is of high enough accuracy to provide 

correct results. 
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6.1.4 Controller Design 

Because  ˆ R  can be computed in a symbolic form and is time-invariant, controller design can 

be easily performed by implementing the Routh-Hurwitz criterion for stability. 

Consider the damped Mathieu equation with control 

  
0 1 0

cos 2a b d u
   

         
x x   (87) 

setting 

  1 cos 2u kx     (88) 

the closed-loop system is 

    
0 1

( )cos 2
t

a b k d
 

      
x x   (89) 

where k  is an unknown control gain. The STM is computed with 24,  15p m  . Letting 

20.0,  2.5b d  , we can generate a stability map from  ˆ ,a kR  (80 Gaussian nodes used) as 

shown in Figure 12. The shaded area indicates the stable region. 

 

Figure 12: Stability Plot of Closed Loop System 
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Classical methods, which typically require small parameter values, are impractical for a case 

such as this. However, this symbolic method is not limited by the need for small parameter 

values, thus accurate results can be obtained for even large values of parameters and control 

gains. 

6.3 INVERTED DOUBLE PENDULUM 

 To prove the viability of this method’s application to higher order systems, consider the 

inverted double pendulum (IDP) subjected to both a constant and periodically-varying follower 

force as shown in Figure 13. 

 

Figure 13: Inverted Double Pendulum 

The time-periodic equations of motion for this system are given by[35] and [38], 

 

     
   

   
    
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1 2 1 2
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2 1 1 2 2 1 1 2 1 2 2
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B B B

k k p t

B B
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        

   

        

   

      

    

     

    

    

    
  (90) 
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where 2/k k ml  is the normalized stiffness, 2
1 1 /B b ml  and 2

2 2 /B b ml  are the normalized 

damping constants,    1 2 1 2
ˆ ˆ cos / cosp t P P t ml P P t      is the normalized applied load,   

is load the direction parameter, and   is the excitation frequency of the applied load. Denoting 

   1 2 3 4 1 2 3 4      T x x x x     x  as the state vector and retaining only linear terms, in state space 

form equation (90) becomes 

    

     

1 1

2 2
1

2 2
3 3

4 413
2 22

0 0 1 0

0 0 0 1

3

2 2 2

5
2 2 2

2 2

x x

x xp t k p t B
k B Bx x

x xk p t B
k p t B B

 
                                
 






  (91) 

The STM  , pΦ  is computed using the symbolic method as previously detailed via equation 

(59). Once again, the approximation was performed with 15m   Chebyshev expansion terms 

and 24p   Picard iterations.  
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  (92) 

Values of 1 1.0P  , 1k  , 1 2 1B B  , 2  , and 1   were chosen while 2P  remains 

symbolic. A total CPU time of 56.83 seconds was required to perform the computation of 

 , pΦ .  

A computation-time study was performed to determine the amount of CPU time required 

for a given number of nodes used, shown in Figure 14. 
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Figure 14: CPU Time vs Number of Gaussian Nodes of the IDP 

Again, the CPU time required varies linearly with the number of Gaussian nodes implemented in 

the numerical approximation for  ˆ R . Figure 15 shows the CPU time required to compute 

 ˆ ,t Q  for a given number of summation terms. Notice, due to the increased size in the system 

matrix, the time required is greatly increased compared to the Mathieu system. 

 

Figure 15: CPU Time vs Number of Summation Terms of the IDP 
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A values of 2 0.7P   was selected. Figure 16 displays a logarithmic plot of the ‘relative 

error’ of the numerically approximated R̂  matrix compared to its Runge-Kutta type numerical 

solution. 

 

Figure 16: Relative Error Compared to Gaussian Nodes of R Matrix of the IDP 

Again, for the larger 4 4  system the ‘relative error’ decreases linearly with the increase of 

Gaussian nodes. It was noted that 48 nodes are required to achieve a ‘relative error’ on the order 

of 71 10 , this corresponds to a CPU time of 2.11 seconds in symbolic form. Beyond 48 nodes 

numerical error due to the use of machine-precision values occurs. Implementing 48 nodes, R̂  

evaluates to 

 

0.0190 0.0188 0.9844 0.0147

0.0412 0.0387 0.0205 0.9824ˆ
0.9692 0.4631 1.4889 0.9838

1.9302 1.4244 2.4565 1.9531

 
  
  
 

  

R   (93) 

Figure 17 shows the values of 41R̂  and 32R̂  with respect to time. Other elements show similar 

behavior. 
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Figure 17: R Matrix over 2 Periods of the Inverted Double Pendulum 

 ˆ tQ  is then computed by equation (67) and the ‘relative error’ is shown in Figure 18. 

 

Figure 18:Relative Error vs Number of Expansion Terms of the Q Matrix of the IDP 

Computing  ˆ TQ  with 15 expansion terms we obtain 

  

8

8
8

8

8

1 0 0 01 10 9.6 1.4 1.1

0 1 0 02.5 1 10 2.3 1.8ˆ 1 10  
0 0 1 03.6 2.3 1 10 2.6

0 0 0 15.9 3.8 5.6 1 10

T 

    
          
    
   

   

Q   (94) 
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The Floquét multipliers are  0.8453 0.4125 ,  0.3664,  0.0931i ;  thus we can expect a T-

periodic  ˆ tQ , as shown in Figure 19. 

 

Figure 19: T-Periodic Q Matrix of the Inverted Double Pendulum 

 

7. DISCUSSION AND CONCLUSIONS 

For a linear system with time-periodic coefficients, the state transition matrix (STM) ,  ,t Φ , 

can be written as      , , tt t e   RΦ Q , where   is a set of system parameters. In this work a 

technique for the computation of the real Lyapunov-Floquét (L-F) transformation matrix 

 ,t Q  and the time-invariant matrix  R  in a symbolic form as a function of system 

parameters for time-periodic linear systems is presented. This allows symbolic computation of 

general results for parameter unfolding and control system design in the entire parameter space. 

By first implementing the Chebyshev expansion and Picard iteration methods, which is based on 

the integral form of the original equation, the STM and Floquét transition (FTM) matrices are 

computed in a symbolic form. The time-invariant matrix  R  is computed first from the 

symbolic form of  ,t Φ  using an integral representation and the Gaussian quadrature method. 

Then,  ,t Q is computed from  ,t Φ  using the series representation of the exponential of 
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 R . However, two alternate methods for computing  R , based on natural logarithmic 

series expansions, are also presented. This first series method requires the Floquét multipliers to 

be inside the unit circle, while the second requires the opposite for convergence. These methods 

are not suitable for symbolic computations since the stability properties of a system could not be 

ascertained beforehand. The symbolic computation of  ,t Q  and  ,t R , associated with the 

damped Mathieu equation, is presented for stable, unstable, and critical cases. Bifurcation and 

parameter unfolding is investigated for the critical case, and compared to the results in the 

literature. The stable case of a linearized inverted double pendulum is presented to illustrate the 

application to a moderately large system. The technique presented here is computationally 

efficient and practical for the cases considered, and is expected to be convergent over the entire 

parameter space. It is anticipated that these results will be used to obtain general results for 

parameter unfolding and control system design for a large class of problems in the near future. 
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9. APPENDIX 

PROGRAM TO COMPUTE STM OF DAMPED MATHIEU EQUATION 

ClearAll["Global`*"] 
 
SetDirectory[NotebookDirectory[]]; 
Off[NIntegrate::ncvb] 
Off[General::infy] 
<<functions`                                                                   (* call function file *) 
(*---------------------------------------------------------------*) 
(* Damped Mathieu equation normalized in state-space form and symbolically solved *) 
(* y'' + dy' + [a + b cos(wt)]y = 0 *) 
 
(* Inputs -------------------------------------------------------*) 
p=24;                                                             (* Number of Picard iterations *) 
m=15;                                           (* Number of Chebyshev expansion terms *) 
w=2.0 Pi;                                                                                                       (* omega *) 
T=2 Pi/w;                                                                    (* normalization factor *) 
 
(* Ac is constant matrix, Ap is periodic matrix ----------------*) 
(* f1=1;f2=Cos[2 Pi #] *) 
Ac=T{{0,1},{-a,-d}};                                              (* Constant matrix *) 
Ap=T{{0,0},{-b, 0}};                                                  (* Periodic matrix *) 
n=Length[Ac]; 
 
(* Define G and transpose G -------------------------------------*) 
G=fG[m]; 
Gt=Transpose[G]; 
 
(* Cheb coefficients in matrices q1 and q2 ----------------------*) 
dc=UnitVector[m,1]; 
Qc=fQ[m,dc]; 
 
dp=ChebyCoeff[Cos[2 Pi #]&,m]; 
Qp=fQ[m,dp]; 
 
(* Define L ---------------------------------------------------- *) 
L1=KroneckerProduct[Ac,Gt.Qc]; 
L2=KroneckerProduct[Ap,Gt.Qp]; 
L=Simplify[L1+L2]; 
 
(* Define P ---------------------------------------------------- *) 
P1=KroneckerProduct[Ac,Gt.Transpose[{dc}]]; 
P2=KroneckerProduct[Ap,Gt.Transpose[{dp}]]; 
P=Simplify[P1+P2]; 
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(* Define ihat ------------------------------------------------- *) 
ihat=KroneckerProduct[IdentityMatrix[n],Transpose[{dc}]]; 
 
(* Define Tstar // That -----------------------------------------*) 
Tstar=Transpose[{Table[ChebyshevT[j,2t-1],{j,0,m-1}]}]; 
That=KroneckerProduct[IdentityMatrix[n],Tstar]; 
 
(* Perform iterations on L matrix -------------------------------*) 
temp=IdentityMatrix[m n]; 
sumL=IdentityMatrix[m n]; 
 
For[k=1,k<=p,k++, 
Print["working on k=".k+1]; 
temp=Expand[temp.L]; 
sumL=Expand[sumL+temp]; 
] 
 
(* Chebyshev coefficient matrix Bhat-----------------------------*) 
B=ihat+sumL.P; 
 
(* Normalize 2nd order system*) 
dia1=Join[Table[w/(2 Pi),{j,1,m}],Table[1,{j,1,m}]]; 
dia2=Join[Table[(2 Pi)/w,{j,1,n/2}],Table[1,{j,1,n/2}]]; 
B=DiagonalMatrix[dia1].B.DiagonalMatrix[dia2]; 
 
(* Determine STM-------------------------------------------------*) 
stm=Transpose[That].B; 
stm=Simplify[stm]; 
(* Export STM --------------------------------------------------*) 
Export["STM_Damped_Mathieu_Equation_24_15.wdx",stm] 
 
PROGRAM TO COMPUTE R AND Q OF DAMPED MATHIEU EQUATION 

(*---------------------------------------------------------------*) 
(*             Damped Mathieu Equation Stable Case               *) 
(*---------------------------------------------------------------*) 
ClearAll["Global`*"] 
SetDirectory[NotebookDirectory[]]; 
 
(*a=0.5;b=4.0;d=0.3;*) 
stm=Import["STM_Damped_Mathieu_Equation_24_15.wdx"]; 
 
(*---------------------------------------------------------------*) 
(*               Compute Time-Invariant Matrix R                 *) 
(*---------------------------------------------------------------*) 
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Needs["NumericalDifferentialEquationAnalysis`"] 
GQ[n0_,stm0_]:= 
Module[{n=n0,stm=stm0}, 
 
gq=GaussianQuadratureWeights[n,0,1]; 
xi=gq[[All,1]]; 
wi=gq[[All,2]]; 
 
ftm=stm/.{t->1.0}; 
ftm2=ftm.ftm; 
r=Length[ftm2]; 
 
X=ftm2-IdentityMatrix[r]; 
G=(ftm2-IdentityMatrix[r]) t+IdentityMatrix[r]; 
 
cp=Collect[CharacteristicPolynomial[G,x],x]; 
cl=CoefficientList[cp,x]; 
Ginv=-(1/cl[[1]])(Sum[cl[[k+2]] MatrixPower[G,k],{k,0,r-1}]); 
 
Rap=Chop[(1/2)X.(Sum[wi[[k]](Ginv/.{t->xi[[k]]}),{k,1,n}])] 
] 
 
Rap=[11,stm]; 
 
Qf[n0_,ftm0_,Rap0_]:= 
Module[{n=n0,ftm=ftm0,Rap=Rap0}, 
A=-Rap; 
arrayLength = Length[A]; 
cp=Collect[CharacteristicPolynomial[A,\[Lambda]],\[Lambda]]; 
cl=CoefficientList[cp,\[Lambda]]; 
 
sum = 0; 
For[k=0,k<n+1,k++, 
Which[ 
k<arrayLength,   
sum += \[Lambda]^k / k!, 
 
k==arrayLength,   
lsub= Collect[-Sign[cl[[Length[cl]]]](cp-Sign[cl[[Length[cl]]]]\[Lambda]^(Length[cl]-
1)),\[Lambda]]; 
sum += lsub/k!; 
\[Lambda]next = lsub;, 
 
k>arrayLength,   
\[Lambda]next=Collect[\[Lambda]next \[Lambda],\[Lambda]]/.{\[Lambda]^arrayLength->lsub}; 
sum+=\[Lambda]next/k!; 
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] 
] 
se=N[Collect[sum,\[Lambda]]]; 
cl=CoefficientList[se,\[Lambda]]; 
 
sol=Sum[MatrixPower[A t,j-1] cl[[j]],{j,1,Length[cl]}]; 
Qap=ftm.sol/.{t->1} 
] 
 
Qap=[9,stm,Rap]; 
 
PROGRAM TO COMPUTE RELATIVE ERROR FOR DAMPED MATHIEU EQUATION (STABLE CASE) 

(*---------------------------------------------------------------*) 
(*             Damped Mathieu Equation Stable Case               *) 
(*---------------------------------------------------------------*) 
ClearAll["Global`*"] 
SetDirectory[NotebookDirectory[]]; 
 
a=0.5;b=4.0;d=0.3; 
stm=Import["STM_Damped_Mathieu_Equation_24_15.wdx"]; 
 
(*---------------------------------------------------------------*) 
(*               Compute Time-Invariant Matrix R                 *) 
(*---------------------------------------------------------------*) 
Needs["NumericalDifferentialEquationAnalysis`"] 
GQ[r0_,stm0_]:= 
Module[{r=r0,stm=stm0}, 
 
gq=GaussianQuadratureWeights[r,0,1]; 
xi=gq[[All,1]]; 
wi=gq[[All,2]]; 
 
ftm=stm/.{t->1.0}; 
ftm2=ftm.ftm; 
n=Length[ftm2]; 
 
X=ftm2-IdentityMatrix[n]; 
G=(ftm2-IdentityMatrix[n]) t+IdentityMatrix[n]; 
 
cp=Collect[CharacteristicPolynomial[G,x],x]; 
cl=CoefficientList[cp,x]; 
Ginv=-(1/cl[[1]])(Sum[cl[[k+2]] MatrixPower[G,k],{k,0,n-1}]); 
 
Rap=0.5X.(Sum[wi[[k]](Ginv/.{t->xi[[k]]}),{k,1,r}]) 
] 
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(*---------------------------------------------------------------*) 
(*                Compute Relative Error Plot for R              *) 
(*---------------------------------------------------------------*) 
(* Number of Nodes Used *) 
ni=1;no=15; 
(* Exact Numerical R Matrix *) 
Rex=Import["R_Mathieu_RK_Stable.wdx"]; 
 
(* Relative Error Based on Forbenius Norm *) 
RAppErr=Table[(Norm[GQ[n,stm]-Rex,"Frobenius"])/Norm[Rex,"Frobenius"],{n,ni,no}]; 
 
(* Plot Relative Error *) 
RErrPlot=ListLogPlot[RAppErr, 
PlotRange->All, 
DataRange->{ni,no},PlotLabel->"Relative Error vs Number of Gaussian Nodes of the R 
Matrix", 
AxesLabel->{"Nodes","Relative Error"}, 
AspectRatio->1/GoldenRatio, 
BaseStyle->{FontFamily->"Times",FontSize->12}, 
PlotStyle->{PointSize[0.01]}, 
ImageSize->100 6 
] 
 
GQ[11,stm] 
Export["R_Mathieu_Error_Stable.eps",RErrPlot] 
 
Qf[n0_,ftm0_,Rap0_]:= 
Module[{n=n0,ftm=ftm0,Rap=Rap0}, 
A=-Rap; 
arrayLength = Length[A]; 
cp=Collect[CharacteristicPolynomial[A,\[Lambda]],\[Lambda]]; 
cl=CoefficientList[cp,\[Lambda]]; 
 
sum = 0; 
For[k=0,k<n+1,k++, 
Which[ 
k<arrayLength,   
sum += \[Lambda]^k / k!, 
 
k==arrayLength,   
lsub= Collect[-Sign[cl[[Length[cl]]]](cp-Sign[cl[[Length[cl]]]]\[Lambda]^(Length[cl]-
1)),\[Lambda]]; 
sum += lsub/k!; 
\[Lambda]next = lsub;, 
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k>arrayLength,   
\[Lambda]next=Collect[\[Lambda]next \[Lambda],\[Lambda]]/.{\[Lambda]^arrayLength->lsub}; 
sum+=\[Lambda]next/k!; 
] 
] 
se=N[Collect[sum,\[Lambda]]]; 
cl=CoefficientList[se,\[Lambda]]; 
 
sol=Sum[MatrixPower[A t,j-1] cl[[j]],{j,1,Length[cl]}]; 
Qap=ftm.sol/.{t->1} 
] 
(*---------------------------------------------------------------*) 
(*      Q Relative Error vs Number of Expansion terms @ t=T      *) 
(*---------------------------------------------------------------*) 
ni=1;no=15; 
ftmex=Import["FTM_Mathieu_RK_Stable.wdx"]; 
Qex=(ftmex.MatrixExp[-Rex]); 
NormQex=Norm[Qex,"Frobenius"]; 
NormQap=Table[Norm[Qf[n,Rap,ftm.ftm],"Frobenius"],{n,1,5}]; 
 
QErr=Table[Norm[(Qf[n,ftm,Rap]/.{t->1})-Qex,"Frobenius"]/NormQex,{n,ni,no}]; 
 
QErrPlot=ListLogPlot[QErr, 
PlotRange->All, 
PlotLabel->"Relative Error vs Number of Summation Terms for the Q Matrix", 
AxesLabel->{"Summation Terms","Relative Error"}, 
AspectRatio->1/GoldenRatio, 
BaseStyle->{FontFamily->"Times",FontSize->12}, 
PlotStyle->PointSize[0.01], 
ImageSize->100 6 
] 
 
Qf[10,ftm,Rap] 
Export["Q_Mathieu_Error_Stable.eps",QErrPlot] 
 
PROGRAM TO COMPUTE STM OF INVERTED DOUBLE PENDULUM 

ClearAll["Global`*"] 
SetDirectory[NotebookDirectory[]]; 
Off[NIntegrate::ncvb] 
Off[General::infy] 
<<functions` 
 
(* Double inverted pendulum normalized in state-space solved symbolically *) 
(* Inputs -----------------------------------------------------*) 
p=24; 
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m=15; 
w=2.0 Pi; (*frequency of periodic force *) 
T=2 Pi/w; (* normalization factor *) 
F1=1.0; 
b1=1.0; 
b2=1.0; 
g=1; (* angle of F2 applied *) 
 
(* Ac is constant matrix, Ap is periodic matrix ------------*) 
(* f1=1;f2=Cos[2 Pi #] *) 
Ac=T{{0,0,1,0},{0,0,0,1},{(F1-3)/2,(2-F1)/2,-b1/2-b2,b2},{(5-F1)/2,F1(3/2-g)-2,b1/2+2b2,-
2b2}}; 
Ap=T{{0,0,0,0},{0,0,0,0},{F2/2,-F2/2,0,0},{-F2/2,F2(3/2-g),0,0}}; 
n=Length[Ac]; 
 
(* Define G and transpose G ------------------------------------*) 
G=fG[m]; 
Gt=Transpose[G]; 
 
(* Cheb coefficients in matrices q1 and q2 ----------------------*) 
dc=UnitVector[m,1]; 
Qc=fQ[m,dc]; 
 
dp=ChebyCoeff[Cos[2 Pi #]&,m]; 
Qp=fQ[m,dp]; 
 
(* Define L (Eq 66a)---------------------------------------- *) 
L1=KroneckerProduct[Ac,Gt.Qc]; 
L2=KroneckerProduct[Ap,Gt.Qp]; 
L=Simplify[L1+L2]; 
 
(* Define P (Eq 66b)---------------------------------------- *) 
P1=KroneckerProduct[Ac,Gt.Transpose[{dc}]]; 
P2=KroneckerProduct[Ap,Gt.Transpose[{dp}]]; 
P=Simplify[P1+P2]; 
 
(* Define ihat ------------------------------------------------ *) 
ihat=KroneckerProduct[IdentityMatrix[n],Transpose[{dc}]]; 
 
(* Define Tstar // That ---------------------------------------*) 
Tstar=Transpose[{Table[ChebyshevT[i,2t-1],{i,0,m-1}]}]; 
(*Tstar=ConstantArray[1,{m,1}];*) 
That=KroneckerProduct[IdentityMatrix[n],Tstar]; 
 
(* Perform iterations on L matrix ------------------------------*) 
temp=IdentityMatrix[m n]; 
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sumL=IdentityMatrix[m n]; 
 
For[j=1,j<=p,j++, 
Print["working on j=".j+1]; 
temp=Expand[temp.L]; 
sumL=Expand[sumL+temp]; 
] 
 
(* Chebyshev coefficient matrix bhat (Eq 64)-------------------*) 
B=ihat+sumL.P; 
 
(* Normalize if 2nd order system*) 
dia1=Join[Table[w/(2 Pi),{j,1,2m}],Table[1,{j,1,2m}]]; 
dia2=Join[Table[(2Pi)/w,{j,1,2}],Table[1,{j,1,2}]]; 
 
B=Chop[DiagonalMatrix[dia1].B.DiagonalMatrix[dia2]]; 
 
(* Determine STM and FTM ----------------------------------------*) 
stm=Chop[Transpose[That].B]; (*Print["STM = ",STM]*) 
stm=Simplify[stm]; 
Export["STM_Inverted_Double_Pendulum_24_15.wdx",stm] 
 
PROGRAM TO COMPUTE R AND Q OF INVERTED DOUBLE PENDULUM 

ClearAll["Global`*"] 
SetDirectory[NotebookDirectory[]]; 
 
w=2.0 Pi;  T=2 Pi/w; 
F2=0.7; 
stm=Import["STM_Inverted_Double_Pendulum_24_15.wdx"]; 
ftm=Chop[stm/.{t->1}]; 
(*R=Import["R_Simplified_F2_IDP.wdx"]; 
R=Chop[R,10^-80];*) 
Eigenvalues[ftm] 
Abs[Eigenvalues[ftm]] 
ftm2=Chop[ftm.ftm]; 
n=Length[ftm2]; 
 
X=Simplify[Chop[ftm2-IdentityMatrix[n]]]; 
G=Simplify[Chop[(ftm2-IdentityMatrix[n]) t+IdentityMatrix[n]]]; 
 
cp=Collect[CharacteristicPolynomial[G,x],x]; 
cl=CoefficientList[cp,x]; 
 
Ginv=Chop[-(1/cl[[1]])(Sum[cl[[k+2]] MatrixPower[G,k],{k,0,n-1}])]; 
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(* Gaussian Approximation Function *) 
Needs["NumericalDifferentialEquationAnalysis`"] 
GQ[n0_,X0_,G0_]:= 
Module[{n=n0,X=X0,Ginv=G0}, 
gq=GaussianQuadratureWeights[n,0,1]; 
xi=gq[[All,1]]; 
wi=gq[[All,2]]; 
Rap=Chop[0.5X.(Sum[wi[[k]](Ginv/.{t->xi[[k]]}),{k,1,n}])] 
] 
 
Qf[n0_,ftm0_,Rap0_]:= 
Module[{n=n0,ftm=ftm0,Rap=Rap0}, 
A=-Rap; 
arrayLength = Length[A]; 
cp=Collect[CharacteristicPolynomial[A,\[Lambda]],\[Lambda]]; 
cl=CoefficientList[cp,\[Lambda]]; 
 
sum = 0; 
For[k=0,k<n+1,k++, 
Which[ 
k<arrayLength,   
sum += \[Lambda]^k / k!, 
 
k==arrayLength,   
lsub= Collect[-Sign[cl[[Length[cl]]]](cp-Sign[cl[[Length[cl]]]]\[Lambda]^(Length[cl]-
1)),\[Lambda]]; 
sum += lsub/k!; 
\[Lambda]next = lsub;, 
 
k>arrayLength,   
\[Lambda]next=Collect[\[Lambda]next \[Lambda],\[Lambda]]/.{\[Lambda]^arrayLength->lsub}; 
sum+=\[Lambda]next/k!; 
] 
] 
se=N[Collect[sum,\[Lambda]]]; 
cl=CoefficientList[se,\[Lambda]]; 
 
sol=Sum[MatrixPower[A t,j-1] cl[[j]],{j,1,Length[cl]}]; 
Qap=ftm.sol/.{t->1} 
] 
 
Qap=[9,stm,Rap]; 
 
CUSTOM “FUNCTIONS” PROGRAMS 

BeginPackage["functions`"] 
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ChebyCoeff::usage="ChebyCoeff[func,m] returns cheb coeffs of order m of func (format: Cos[2 
Pi #]&)"; 
fG::usage"G matrix" 
fQ::usage"Q matrix" 
 
Begin["`Private`"] 
 
ChebyCoeff[func_, m0_] :=  
 Module[{m = m0}, 
  f[t] = func[t]; 
  Tn[t] = ChebyshevT[j, 2*t - 1]; 
  wt[t] = 1/Sqrt[t - t^2]; 
  p = Table[NIntegrate[f[t]*Tn[t]*wt[t], {t, 0, 1}]/(Pi/2), {j, 0, m - 1}]; 
  p[[1]] = p[[1]]/2; 
    p 
] 
 
fG[m0_]:= 
 Module[{m=m0}, 
 TopDiag=Array[1/(4(#-1))&,m-1,2];TopDiag[[1]]=1/2; 
 BotDiag=Prepend[Array[-1/(4(#-2))&,m-2,3],0]; 
 LeftCol=ReplacePart[Array[((-1)^#)/(2#(#-2))&,m],2->-1/8]; 
 
 mat=DiagonalMatrix[TopDiag,1]+DiagonalMatrix[BotDiag,-1]; 
 mat[[All,1]]=LeftCol; 
 G=mat 
] 
 
fQ[x0_,y0_]:= 
 Module[{m=x0,p=y0}, 
  mult[i_,j_]:=mult[i,j]=(tstar[Abs[i-j]]+tstar[i+j-2])/2; 
  ptab=Table[Expand@Sum[c[i-1]*mult[i,j],{i,m}],{j,m}]; 
  q=Table[Coefficient[j,tstar[i-1],1],{j,ptab},{i,m}]//Transpose; 
 
 Q= q /. Table[c[i] -> p[[i + 1]], {i, 0, m-1}] 
] 
 
End[] 
EndPackage[] 
 


