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Abstract

This dissertation is mainly concerned with the Generalized signed-rank estimation of

model parameters in complex regression models, specifically nonlinear models with multi-

dimensional indices and two-phase linear models. First we consider a nonlinear regression

model when the index variable is multidimensional. Such models are useful in signal pro-

cessing, texture modeling, and spatio-temporal data analysis. A generalized form of the

signed-rank estimator of the nonlinear regression coefficients is proposed. This general form

of the signed-rank estimator includes Lp estimators and hybrid variants. Sufficient condi-

tions for strong consistency and asymptotically normality of the estimator are given. It

is shown that the rate of convergence to normality can be different from
√
n. The suffi-

cient conditions are weak in the sense that they are satisfied by harmonic type functions for

which results in the current literature are not applicable. A simulation study shows that the

certain generalized signed-rank estimators (eg. signed-rank) perform better in recovering

signals than others (eg. least squares) when the error distribution is contaminated or is

heavy-tailed. For two-phase regression models, we consider two-phase random design linear

models with arbitrary error densities and where the regression function has a fixed jump at

the true change-point. We establish the consistency and the limiting distributions of signed-

rank estimators of the model parameters. The left end point of the minimizing interval with

respect to the change-point, herein called the signed-rank estimator r̂n of the change-point

parameter r, is shown to be n-consistent and the underlying process, of the standardized

change-point parameter, is shown to converge weakly to a compound poisson process. This

process obtains maximum over a bounded interval and n(r̂n−r) converges weakly to the left

end point of this interval.
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Chapter 1

Introduction

1.1 Background

The historical approach to fitting linear and nonlinear models of the form:

yt = f(xt, θ) + εt, t ≤ n,

for some generic function f (linear or nonlinear) where t = (t1, t2, . . . , tk) and

n = (n1, n2, . . . , nk) ∈ Nk which is the set of k dimensional non-negative integer values; ≤ de-

notes the partial ordering, that is, for m = (m1,m2, . . . ,mk) ∈ Nk and n = (n1, n2, . . . , nk) ∈

Nk, m ≤ n if mi ≤ ni for i = 1, 2, . . . , k, proceeds by finding coefficient estimate θ̂ of θ0

that minimizes the sum of squared errors:
∑

t≤n(yt − f(xt, θ))
2. Such estimators, known as

least squares estimators, are computationally simple and possess general optimality prop-

erties was recently developed by Bansal et al. (1999), Kundu (1993) and others. However,

the optimality can be lost due to the existence of even a single extreme outlying data point.

This problem is seen with the sample mean, y, which is itself the least squares solution to

the model yt = θ0 + εt. To overcome this problem, we briefly survey a few approaches that

have been taken to develop estimators of the θ coefficients that are not as easily affected as

the least-squares estimators. Two methods have been investigated: one is a generalization

of least-squares estimation called M-estimation, and the other is the so-called generalized

rank based estimation methods referred to as generalized signed-rank regression methods.

For each of these two approaches a first method was developed to downweight outlier data

points, but was later shown to be susceptible to high leverage points (outliers in the x space)
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in regression problems, and newer methods have emerged to address both outlier and leverage

problems.

One approach that has been used to lessen the impact of outliers in linear and nonlin-

ear models is to use the least absolute deviation also known as the L1 regression, that is,

finding coefficient estimates θ̂ that minimizes
∑

t≤n |yt − f(xt, θ)|. A further generalization

to this, was made by Huber (1964). He obtained the so-called M-estimators by minimiz-

ing
∑

t≤n ρ
(
yt−f(xt,θ)

σ̂t

)
, where ρ(·) is a symmetric function and σ̂t is an estimate of the

standard devaition of the errors εt. It was shown that these M-estimators have the advan-

tage of downweighting outliers while retaining efficiency when compared to least squares

estimators. However, the original M-estimators can be affected by leverage points (out-

liers in the x space) in regression problems. A type of M-estimator developed to protect

against outliers and leverage points, is the least trimmed squares estimator that minimizes∑
t≤m(yt − f(xt, θ))

2
(|t|), where m ≤ n. This estimator ignores the largest n −m residuals.

However, the fact that it does not use the entire data results in a loss of efficiency. More

recently, Yohai (1987) and others have developed extensions of these methods, called MM

estimators, that protect against both outliers and leverage points while retaining efficiency.

At the time when Huber (1964) and others were developing the theory of M-estimators,

methods based on ranking were known as R-estimation and were used for simple problems

such as estimating location and scale or making location comparisons for two-sample prob-

lems. They were not considered to be generalizable to linear and nonlinear models. Later

Abebe et al. (2012), Bindele and Abebe (2012), and others showed that generalized signed-

rank estimators could also be cast as estimators obtained by minimizing,∑
t≤n a

(
R(zt(θ))

)
ρ
(
zt(θ)

)
, where R(zt(θ)) is the rank of zt(θ) = yt−f(xt, θ), a(·) some score

function and ρ(·) is a positive convex function. The generalized signed-rank estimators, can

be used for any general linear model, and have been shown to have high efficiency compared

to least squares estimators. However, these generalized signed-rank estimators, can also be
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affected by leverage points in regression problems. A weighted Wilcoxon (WW) method were

later developed to take care of leverage points and shown to possess highly efficient.

1.2 Contribution

The first part of this Ph.D dissertation is concerned with the study of conditions suffi-

cient for strong consistency and asymptotic normality of a class of estimators of parameters of

nonlinear regression models with multidimensional indices. The study consider an extension

of the work done by Abebe et al. (2012), and Bindele and Abebe (2012) on the consistency of

a certain class of estimator of nonlinear regression models and Bounded influence nonlinear

signed-rank regression . In the sense that the study considers continuous functions depending

on a vector of parameters and a set of random regressors. A new definition of the gener-

alized form of the signed-rank norm is given using the multidimensional indices approach.

The estimators chosen are minimizers of a generalized form of the signed-rank norm, that

is, minimizing 1
|n|
∑

t≤n a
(
t
)
ρ
(
|z(θ)|(|t|)

)
, where zt(θ) = yt− f(xt, θ) and |z(θ)|(|t|) is the |t|th

ordered value among |z1(θ)|, . . . , |zn(θ)|. The function ρ : R+ → R+ is continuous, convex

and strictly increasing. The numbers an(t) are scores generated as an(t) = ϕ+(|t|/(|n|+1)),

for some bounded nondecreasing score function ϕ+ : (0, 1) → R+ that has at most a finite

number of discontinuities. The generalization allows to make consistency statements about

minimizers of a wide variety of norms including the L1 and L2 norms. By extending their

results to the case on multidimensional indices, it is shown that the sufficient conditions in

estimations are weak in the sense that they are satisfied by harmonic type functions for which

results in the current literature are not applicable. Examples and Monte Carlo simulation

experiments demonstrate the robustness and efficiency of the proposed estimator.

The second part of this dissertation, considers a two-phase random design linear models

with arbitrary error densities and where the regression function has a fixed jump at the

true change-point. This may also be considered as a type of pathological nonlinear model

due to the non-zero jump in the model. In this particular case, important work has been
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done in the estimation of the regression parameters involving the least squares method and

eventually the M-estimation method in the literature. As pointed out by many authors, the

statistical inference in such models is heavily influenced by the continuity or discontinuity

of the regression function at the change-point. Here we consider the case where we have a

discontinuity of the regression function at the change-point defined as for j = 1, 2 and for

θj = (θ0
j , θ

1
j ) ∈ R2 the linear function fθj(x) = θ0

j + θ1
jx then we consider the following model

of two-phase linear regression function

kθ(x) = fθ1(x) · I[−∞,r](x) + fθ2(x) · I(r,∞](x),

where x ∈ R, θ := (θ?, r) = (θ1, θ2, r) ∈ Θ = K × R, for a compact set K of R4, and R

represents the compactification of the real line. Here IA represents the characteristic function

of the set A. For a set of independent observations (Xi, Yi), i = 1, 2, . . . , n, and for some

unknown θ ∈ R5, we let

Yi = kθ(Xi) + ei, i = 1, 2, . . . , n

where the ei, i = 1, 2, . . . , n are independent identically distributed (i.i.d.) random variables

together with the assumption that the two line segments are different and that

d ≡ θ0
2 − θ0

1 + r(θ1
2 − θ1

2) is fixed and non-zero.

The least squares method or the M-estimation method may not provide suitable esti-

mators in the existence of even a single extreme outlier data point. To this end, we consider

a particular case of the generalized signed-rank estimation called the signed rank estimation

to provide suitable estimators which is obtained by minimizing the objective function

Dn(θ) :=
1

n

n∑
i=1

an(R(|ei(θ)|))|ei(θ)|, θ ∈ Θ,

4



where R(|ei(θ)|) is the rank of |ei(θ)| among |e1(θ)|, . . . , |en(θ)|. The numbers an(i) are scores

generated as an(i) = ϕ(i/(n + 1)), for some bounded and nondecreasing score function

ϕ : (0, 1) → R+ that has at most a finite number of discontinuities. To illustrate this case

a simulation study is conducted and shows that the rank estimator perform better than

the least squares estimator when dealing with the existence of a single extreme outlier data

point. Also, under some suitable conditions, we obtain the consistency, and the limiting

distributions of signed-rank estimators of the underlying parameters in these models. The

left end point of the minimizing interval with respect to the change point, herein called

the R-estimator r̂n of the change-point parameter r is shown to be n-consistent and the

underlying R-process, as a process in the standardized change-point parameter, is shown

to converge weakly to a compound poisson process. This process obtains maximum over a

bounded interval and n(r̂n− r) converges weakly to the left end point of this interval. These

results are different from those available in the literature for the case of two-phase linear

regression models when jump sizes tends to zero as n tends to infinity.
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Chapter 2

Generalized Signed-Rank Estimator for Nonlinear Models with Multidimensional Indices

2.1 Introduction

Models with multidimensional indices play an important role for spatial or spatio-

temporal modeling, signal processing Rao et al. (1994); McClellan (1982), and texture mod-

eling Francos et al. (1993); Yuan and Rao (1992); Zhang and Mandrekar (2001). An example

of a spatio-temporal model would be the one with three dimensional indices that can be used

to study deforestation in a specific area over time. Most models in these areas are nonlinear

and there has been extensive work in the literature on nonlinear regression models with one

dimensional index Wu (1981); Jennrich (1969); Gallant (1987). A classic nonlinear regression

model with one dimensional index can be defined as follows:

yt = f(xt,θ) + εt, t = 1, 2, . . . , n, (2.1)

where the observed data are {(yt, xt), t = 1, 2, . . . , n} with yt ∈ R is random and xt ∈ Rm

are constant vectors, Θ ⊂ Rp is the parameter set with θ ∈ Θ an unknown parameter

vector, the εt for t = 1, 2, . . . , n are unobserved random errors, and f is a known function.

Jennrich (1969) and Wu (1981) gave some sufficient conditions based on the function f , the

design x, and the error distribution to establish certain asymptotic properties of the least

squares estimators of θ. As discussed in Kundu (1993), however, some of the Lipschitz type

conditions on f imposed in Jennrich (1969) and Wu (1981) are not satisfied if the function

f is of harmonic type.
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In this paper we consider the extension of model (2.1) to the one with multidimensional

indices given by

yt = f(xt,θ) + εt, t ≤ n, (2.2)

where t = (t1, t2, . . . , tk) and n = (n1, n2, . . . , nk) ∈ Nk which is the space of k dimensional

non-negative integer values; ≤ denotes the partial ordering, that is, for m = (m1,m2, . . . ,mk) ∈

Nk and n = (n1, n2, . . . , nk) ∈ Nk, m ≤ n if mi ≤ ni for i = 1, 2, . . . , k. The set {εt, t ∈ Nk}

is a φ-mixing (a weakly dependent) field of random variables with mean 0, θ ∈ Θ ⊂ Rp is

a parameter vector, {xt, t ∈ Nk} a set of known field of constant vectors, and f is a known

nonlinear function. For signal processing models (see Rao et al. (1994) for an example), yt,

f(·, ·) and εt may be real or complex-valued. For notational convenience we assume them to

be real-valued.

We are interested in robust estimators of θ. Our goal is to find sufficient conditions

on the function f(·, ·) so that these estimators are strongly consistent and asymptotically

normal as |n| =
∏k

i=1 ni → ∞. Our results will also be of interest in the one dimensional

case since they can be applied to harmonic type functions. This is not the case for Wu’s and

Jennrich’s sufficient conditions (see Kundu (1993)). Bindele and Abebe (2012) were able to

establish the asymptotic and robustness properties of the generalized signed-rank estimator

(GSR) for nonlinear regression models with iid errors without imposing such Lipschitz type

sufficient conditions. Thus the GSR estimator will be a good candidate for dealing with

multidimensionally indexed nonlinear models that are of the harmonic variety. We should

note that asymptotic normality of the signed rank estimator for the classic nonlinear models

with dependent errors was recently established by Bindele (2014).

Example 1. Consider the model

yt = cos(2πtθ) + εt, where t = 1, 2, . . . , n, θ ∈ [0, 1/2] . (2.3)
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This is a nonlinear model with important applications in modeling time series data. Note

that the function is harmonic for θ ∈ (0, 1/2). See, for example, Kundu (1993), Rice and

Rosenblatt (1988), or Hannan (1973).

Example 2. The following nonlinear regression model involves superimposed sinusoidal sig-

nals:

yt =
m∑
k=1

αk cos(t1λ1k + t2λ2k) + εt, (2.4)

where t = (t1, t2), α′ks are real unknown parameters, and λ1k, λ2k are unknown parameters in

[0, π]. This model can be used to model textures as discussed by Rao et al. (1994) and Zhang

and Mandrekar (2001). Focusing on the case m = 1, we will illustrate the strong consistency

and the asymptotic normality of the GSR estimator for (2.4).

Example 3. A more general form of the model (2.3) is the frequency model

y(m,n) =

p∑
i=1

[Ak cos(mλk + nµk) +Bk sin(mλk + nµk)] +X(m,n) , (2.5)

where Ak, Bk ∈ R, λk, µk ∈ [0, π] are unknown and X(m,n) is a random field, possibly non-

Gaussian. Given the number of components p and a sample {y(m,n) : m = 1, . . . ,M ; n =

1, . . . , N}, the problem of interest is to estimate Ak, Bk, λk, µk and recover the signal. Once

again, this function is harmonic if λk, µk ∈ (0, π). Such models (2.5) are useful in signal

processing Kay (1999) and time series analysis Brillinger (1986). For model (2.5) with

Gaussian random field errors, consistency and asymptotic normality of the LS estimator were

established by Rao and Zhao (1993). More recently, Nandi (2012) established the asymptotic

properties of the LS estimator for symmetric α-stable errors.

Below are examples of 3D image plot of y(m,n) in model (2.5) for p = 1 when there

noise are assumed the come from a normal distribution, Cauchy distribution with location

parameter 0 and scale parameter 0.025 and a t-distribution with 5 degree of freedom.

8



m

n
y(m

,n)

Figure 2.1: Signal plot of y(m,n) with Gaussian N(0, 0.25) field perturbations

m

n
y(m

,n)

Figure 2.2: Signal plot of y(m,n) with Cauchy(0, 0.25) field perturbations
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m

n
y(m

,n)

Figure 2.3: Signal plot of y(m,n) with t5 field perturbations

Figure 2.4 below represents the two dimensional image plot of y(m,n) in model (2.5)

for p = 1 when there is no noise. We will use this model in our Monte Carlo simulation

experiments to study the robustness of the GSR estimator.
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Figure 2.4: Image plot of the signal.

Several variants of the aforementioned harmonic regression models have been applied

recently for modeling water quality (Autin and Edwards, 2010), for economic recessions

(Bujosa et al., 2013), and chirp signals (Lahiri et al., 2013, 2014). For such models, Mitra

et al. (2011) developed robust M -estimates for sequential estimation of sinusoidal signals

while Lahiri et al. (2014) considered least absolute deviations estimation of one-dimensional

chirp signals. Other notable works in this area include Lee and Haberman (2013), Nandi et

al. (2013); Nandi and Kundu (2013), as well as the book by Kundu and Nandi (2012). As

discussed above, we will develop GSR estimation for the general nonlinear regression model

with multidimensional indices, including harmonic regression models.

2.2 Generalized Signed-Rank Estimators

Consider model (2.2). We shall assume that θ is in the parameter space Θ, θ0 is the

true value of θ which is an interior point of Θ, and x ∈ Rp. We define the GSR estimator of

11



θ0 to be any vector θ̂n minimizing

Dn(θ) =
1

|n|
∑
t≤n

an(t)ρ(|z(θ)|(|t|)) (2.6)

where zt(θ) = yt− f(xt,θ) and |z(θ)|(|t|) is the tth ordered value among |z1(θ)|, . . . , |zn(θ)|.

The function ρ : R+ → R+ is continuous, convex and strictly increasing. The numbers an(t)

are scores generated as an(t) = ϕ+(|t|/(|n| + 1)), for some bounded nondecreasing score

generating function ϕ+ : (0, 1) → R+ that has at most a finite number of discontinuities.

Since Dn(θ) is continuous in θ, Lemma 2 in Jennrich (1969) implies the existence of a

minimizer of Dn(θ). Because ϕ+ is positive and nondecreasing, Dn defines a norm on

R|n| by Theorem 2.1 of McKean and Schrader (1980). Boundedness of ϕ+ simplifies our

consistency argument; however, it can be weakened to an Lp integrability condition (see

Remark 2 below). As shown in Bindele and Abebe (2012), boundedness of ϕ+ is also one of

the sufficient conditions for bounded influence function of the GSR estimator.

It is clear that the least squares (LS) and the least absolute deviation (LAD) estimators

are particular cases of GSR estimators. In fact the LS estimator is obtained by taking ϕ+ ≡ 1

and ρ(t) = t2, t ≥ 0 while the LAD estimator is obtained by taking ϕ+ ≡ 1 and ρ(t) = t.

The LS case has been discussed by Bansal et al. (1999) and Nandi (2012) among others.

It is perhaps much more intuitive to consider an equivalent representation of (2.6) by

switching the ordering from ρ to an and joint ranking of the absolute residuals |zt(θ)| in one

dimension. This is given by

Dn(θ) =
1

|n|
∑
t≤n

an(R(|zt(θ)|)ρ(|zt(θ)|) ,

where R(|zt(θ)|) is the rank of |zt(θ)| among all |n| univariate residuals.

12



2.3 Strong Consistency

Let θ0 be the true parameter vector. Our objective is to prove the strong consistency

of θ̂n in the sense that θ̂n → θ0 a.s. as |n| → ∞. Note that if {yt,1 ≤ t ≤ n} is the

observed data, where 1 = (1, 1, . . . , 1) ∈ Nk, then the total number of observations is |n|.

For t ≤ n assume that xt and εt = yt − f(xt,θ) are independent random variables with

distributions H and G, respectively. Let G̃θ denote the distribution of |z(θ)| and define

G̃−1
θ (s) = inf{y : G̃θ(y) ≥ s} as the quantile function corresponding to the distribution

function G̃θ. Let ξ1, . . . , ξn be a sequence of |n| iid random variables uniformly distributed

on [0, 1] and let ξ(1) ≤ · · · ≤ ξ(|n|) be their order statistics. Then the joint distributions of

the random vectors (|z(θ)|(1), . . . , (|z(θ)|(|n|)) and (G̃−1
θ (ξ(1)), . . . , (G̃

−1
θ (ξ(|n|))) coincide. Thus

we can rewrite Dn(θ) in equation (2.6) as

Dn(θ) =
1

|n|
∑
t≤n

an(t)(ρ ◦ G̃−1
θ )(ξ(|t|)) (2.7)

and θ̂n = Argmin Dn(θ)
θ∈Θ

. To prove the strong consistency, we will use Lemma 2.1 in Bansal

et al. (1999) and an extension to random fields of Lemma 1 in Wu (1981). We first make the

following assumptions on the function f(·, ·), the parameter space Θ, and the distribution

G:

A1 : The parameter space Θ is compact and the function f(·, ·) is continuous with contin-

uous derivatives.

A2 : G has Lebesgue density g that is symmetric about 0 and strictly decreasing on R+.

A3 : P (f(x,θ) = f(x,θ0)) < 1 for any θ 6= θ0.

A4 : For 1 < q < ∞, there is an integrable function h not depending on θ such that

|ρ(G̃−1
θ (v))| ≤ h(v), for all θ ∈ Θ with E[hq(Y )] <∞.

13



Remark 1. Assumption A3 is needed for θ0 to be identified. In our proof all we need is

that the space defined by

Ωϕ+

θ,θ0
= {s ∈ (0, 1) : G̃θ(s) 6= G̃θ0(s) and ϕ+(s) > 0},

has positive measure for θ 6= θ0.

Remark 2. Since ϕ+ is bounded, we can always find a p such that ‖ϕ+‖p < ∞, where

1/p + 1/q = 1 and 1 < q < ∞. Then A4 and Holder’s inequality ensure that the product

(ϕ+)(ρ ◦ G̃−1
θ ) is integrable. Furthermore, since ρ is a convex function, the Minkowski’s

inequality yields

{E[ρ(|zt(θ)|)]q}1/q ≤ {E[ρ(|εt|)]q}1/q + {E[ρ(|f(xt,θ)− f(xt,θ0)|)]q}1/q.

Thus separate conditions on ε and f are sufficient for E[ρ(|z(θ)|)]q <∞.

Remark 3. Assumption A2 admits a wide variety of error distribution examples of which

are the normal, the logistic, and the Cauchy distributions with location parameter equal to 0

which we are going to explore in Section 3.5.

Remark 4. Under assumptions A1–A3, we can use a similar strategy as in Hossjer (1994)

to show that for any s > 0, for θ 6= θ0 and for all t ≤ n,

G̃θ(s) = P (|εt − {f(xt,θ)− f(xt,θ0)}| ≤ s) < EX{Pεt(|εt| ≤ s)} = G̃θ0(s).

Definition 1. A random field {Xn,n ∈ Nk} is said to be uniformly integrable if

lim
c→∞

sup
n∈Nk

E[|Xn|I{|Xn|≥c}] = 0,

where IV is the indicator function of the set V .
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Let us consider the random field {Cn(U),n ∈ Nk}, with, Cn(U) =
∑
t≤n

an(t)IBn,t(U) for

t ≤ n, and where U is a random variable that is uniformly distributed on [0, 1], and Bn,t is

defined as:

Bn,t =

{
s :

(|t| − 1)

|n|
< s ≤ |t|

|n|

}
,

and an(t) = ϕ+(|t|/(|n| + 1)). Uniform integrability of {Cn(U)} will be used in our proof

of the consistency of θ̂n. To that end, it is easy to see that Cn(U) converges a.s. pointwise

to ϕ+(U) and that Cn is a step function. Thus, the condition for uniform integrability of

{Cn(U)} becomes

lim
c→∞

sup
n∈Nk

1

|n|
∑
t∈Ac

|ϕ+(|t|/(|n|+ 1))| = 0,

where Ac = {t : |ϕ+(|t|/(|n|+ 1))| > c} . This condition is satisfied since we have conver-

gence a.s. in L1(0, 1) of Cn(U). Moreover, for 1 ≤ p <∞, the quantity supn∈Nk E[‖Cn(U)‖p]

is finite, that is

sup
n∈Nk

{
|n|−1

∑
t≤n

|ϕ+(|t|/(|n|+ 1))|p
}1/p

<∞ . (2.8)

Remark 5. Assumption A4, equation (2.8), the uniform integrability of {Cn(U)}, and the

fact that ρ ◦ G̃−1
θ is continuous on [0, 1] guarantee that Dn(θ)−µn(θ)→ 0 pointwise a.s. for

all θ ∈ Θ, where

µn(θ) =

∫ 1

0

Cn(u)ρ ◦ G̃−1
θ (u)dF (u) <∞.

and F (u) = u is the distribution function of U .

Since the score generating function ϕ+ is bounded, the a.s. convergence of Cn to ϕ+

is uniform on [0, 1] as |n| → ∞. Thus, from Theorem 1 of Baklanov (2006), we obtain,

µn → µ a.s. as |n| → ∞, where µ : Θ→ R is a function defined as

µ(θ) =

∫ 1

0

ϕ+(s)ρ ◦ G̃−1
θ (s)ds . (2.9)
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The lemma below contains an extension to multidimensional indices of Theorem 1 of Bak-

lanov (2006).

Lemma 1. Under A1–A4, we have that for all θ ∈ Θ

Dn(θ)→ µ(θ) a.s. as |n| → ∞ ,

where µ satisfies

inf
‖θ−θ0‖≥δ

µ(θ) > µ(θ0) for every δ > 0 .

Proof. Under A1–A4, the a.s. pointwise convergence of Dn(θ) follows the same approach

as the proof of Theorem 1 in Baklanov (2006), expression (2.7), and Remark 5 which also

provides the function given by equation (2.9).

To establish the last part of Lemma 1, we take in consideration the fact that the function

ρ is strictly increasing and positive on R+, and Remark 12 above. That is, for θ ∈ {θ :

‖θ − θ0‖ ≥ δ},

µ(θ)− µ(θ0) =

∫
ϕ+(s)[ρ ◦ G̃−1

θ (s)− ρ ◦ G̃−1
θ0

(s)]ds

=

∫
ϕ+(s)[ρ(G̃−1

θ (s))− ρ(G̃−1
θ0

(s))]ds

> 0, (2.10)

where inequality (2.10) follows from the strictly increasing property of the function ρ, and

Remark 12. It then follows that µ(θ) > µ(θ0) whenever θ 6= θ0. Thus from the compactness

of Θ∗ = {θ : ‖θ − θ0‖ ≥ δ}, we obtain that

inf
‖θ−θ0‖≥δ

µ(θ) > µ(θ0) for every δ > 0.

The theorem below gives the strong consistency of GSR estimators.
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Theorem 2.1. Under A1–A4, we have

θ̂n → θ0 a.s. as |n| → ∞.

Proof. To establish the proof of Theorem 2.1, we follow the same strategy as in the proof of

Theorem 1 in Abebe et al. (2012). Thus technical details can be found in that paper. By

Lemma 1 of Wu (1981), to establish the consistency of θ̂n, it is sufficient to show that

lim inf
|n|→∞

inf
‖θ−θ0‖≥δ

[Dn(θ)−Dn(θ0)] > 0 a.s. (2.11)

But observe that

inf
‖θ−θ0‖≥δ

[Dn(θ)−Dn(θ0)] ≥ inf
‖θ−θ0‖≥δ

(An(θ)) + inf
‖θ−θ0‖≥δ

(B(θ,θ0)) +Qn(θ0),

where An(θ) = Dn(θ)− µ(θ), B(θ,θ0) = µ(θ)− µ(θ0), and Qn(θ0) = µ(θ0)−Dn(θ0). As

a result of Remark 5 and Lemma 1

lim inf
|n|→∞

inf
‖θ−θ0‖≥δ

Qn(θ0) = 0 a.s.

Due to the second part of Lemma 1, we have

inf
‖θ−θ0‖≥δ

B(θ,θ0) > 0.

For the statement given in (2.11) to hold, it suffices to show that

lim inf
|n|→∞

inf
‖θ−θ0‖≥δ

An(θ) = 0 a.s.

By Lemma 1, we have An(θ)→ 0 a.s. uniformly for all θ ∈ Θ such that ‖θ−θ0| ≥ δ. An(θ)

being uniformly convergent and continuous on the compact set Θ∗ = {θ : ‖θ − θ0‖ ≥ δ}, it

17



follows from Lemma 3 in Abebe et al. (2012) that An(θ) is equicontinuous on Θ∗. It follows

that

lim inf
|n|→∞

inf
‖θ−θ0‖≥δ

An(θ) = 0 a.s.,

and the proof is complete.

We now illustrate the sufficient conditions for strong consistency using a simple example.

Example 4. Consider GSR estimators of the parameter θ in model (2.3) given in Example 1.

For simplicity, we will assume that the errors are i.i.d. from N(0, σ2) with σ < ∞ and

ρ(s) = s. From Theorem 2.1, showing strong consistency amounts to showing that A1–

A4 are satisfied under model (2.3). A1 is satisfied because the parameter space [0, 1
2
] is

compact. A2 is immediate since G is normal with mean 0. To verify A3, we let θ and θ0

be any two points in Θ = [0, 1
2
] such that θ0 6= θ. A3 follows since we can always find a

t = 1, 2, . . . , n such that | cos(2πθt)− cos(2πθ0t)| > 0. Since xt = t is fixed, assumption A4

holds if E(|ε|q) <∞ for 1 < q <∞. Then we can show that

E(|ε|q) ≤ E(|ε|dqe) =
σdqe2dqe/2Γ

(
dqe+1

2

)
√
π

<∞ , (2.12)

where d·e is the ceiling function. Thus the GSR estimators for model (2.3) are strongly

consistent.

Example 5. Under assumptions A1–A4, GSR estimators for model (2.4) given in Exam-

ple 2 are strongly consistent. For notational convenience, we assume that m = 1 and deal

only with

yt = α cos(λ1t1 + λ2t2) + εt, 1 ≤ t ≤ n, (2.13)

where λ1 ∈ [−π, π] and λ2 ∈ [0, π]. Further, we assume that m ≤ |α| ≤ M < ∞, for some

M > m > 0. This is a reasonable assumption since α represents the amplitude of the waves.

From Theorem 2.1, showing strong consistency amounts to showing that A1–A4 are satisfied
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under model (2.13).

The parameter space Θ is

{(α, λ1, λ2) : m ≤ α ≤M,λ1 ∈ [−π, π], λ2 ∈ [0, π]}.

Clearly A1 is satisfied. Remark 3 ensures that for a chosen distribution of the errors εt for

all t ≤ n, assumption A2 can be easily verified. To verify A3, we let θ = (α, λ1, λ2)T and

θ0 = (α0, λ10, λ20)T be any two points in Θ such that θ0 6= θ. Then we can always find a

t = (t1, t2) such that

|α cos(λ1t1 + λ2t2)− α0 cos(λ10t1 + λ20t2)| > 0.

Thus A3 is immediate. Remark 2 can be used to easily verify assumption A4. Thus the

GSR estimators for model (2.4) are strongly consistent.

2.4 Asymptotic Normlity

Put Γθ(s) = ρ[G̃−1
θ (s)] for s ∈ [0, 1] and λt = an(R(ξ|t|)), where R(ξ|t|) is the rank of ξ|t|

among ξ1, . . . , ξn. Then (2.6) can be rewritten as

Dn(θ) =
1

|n|
∑
t≤n

an(t)(ρ ◦ G̃−1
θ )(ξ|t|) =

1

|n|
∑
t≤n

λtΓθ(ξ|t|).

A4 shows that ‖λt‖ < ∞. Set Sn(θ) = DβθDn(θ) and Φθ(s) = DβθΓθ(s) for |β| = 1, where

Dβθ is the differential operator defined by Dβθ = ∂|β|

∂θ
β1
1 ...∂θ

βp
p

with β = (β1, . . . , βp) ∈ Nn
0 ,N0 =

N ∪ {0} the multi-index and |β| =
∑p

i=1 βi. Let the |n| × p matrix X∗ be the matrix of Φθ

evaluated at all |n| residuals z(θ) and hntt be the |t|th diagonal element of the hat-matrix

19



X∗(X∗TX∗)−1X∗T . It follows that θ̂n is a zero of

Sn(θ) =
1

|n|
∑
t≤n

λtΦθ(ξ|t|). (2.14)

In the discussion to follow, as in Bindele and Abebe (2012), we will let Wm,p(Ω) be the usual

Sobolev space on an open neighborhood Ω of R|n| defined as

Wm,p(Ω) =
{

Γ ∈ Lp(Ω) : Dβ
θΓ ∈ Lp(Ω) with |β| ≤ m

}
.

To establish the asymptotic normality of θ̂n, we will need the following regularity conditions

in addition to assumptions A1– A4:

A5 : Let {Mn,n ∈ Nk} be a field of k × k non-singular matrices such that

1

|n|
MT

n

∑
t≤n

{∇θf(xt,θ)}{∇θf(xt,θ)}TMn

converges to a positive definite matrix Σθ0 uniformly as |n| → ∞ and ‖θ − θ0‖ → 0.

A6 : lim
|n|→∞

max
1≤t≤n

hntt = 0.

A7 : θ → Γθ(t) is a map in W 3,p(B), where B is a neighborhood of θ0 for every fixed t.

A8 : Aθ0 = E[ϕ+(ξ)[DβθΦθ(ξ)]θ=θ0 ], where ξ ∼ U(0, 1), is a positive definite matrix for

|β| = 1.

A9 : There exist functions ψβ ∈ W 2,p(R) independent of θ such that |DβθΦθ(s)| ≤ ψβ(s) for

every θ ∈ B and |β| ≤ 2.

Note that A6–A9 are generalizations of assumption 4 and 5 in Bansal et al. (1999).

So for our example in this section we are going to show that the assumptions A6–A9 are

satisfied. More details about these general assumptions can be found in Bindele and Abebe

(2012).
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Remark 6. Under A2– A4, Lemma 1 gives the pointwise almost sure convergence of Dn(θ)

for any θ ∈ Θ. If in addition A9 holds, then we have [DβθSn(θ)]θ=θ0 → Aθ0 a.s., where

Aθ0 ≡ E[ϕ+(ξ)[DβθΦθ(ξ)]θ=θ0 ] for any β such that |β| ≤ 2.

The following theorem gives the asymptotic normality of θ̂n. After proper scaling, the

proof can be formulated along the lines as in Bindele and Abebe (2012) and Bindele (2014).

Thus we will focus on the unique aspects of the proof. The interested reader can find the

details in the aforementioned papers.

Theorem 2.2. Under assumptions A1–A9,

√
|n|(Mn)−1(θ̂n − θ0)→D Nk(0, A−1

θ0
Σθ0A

−1
θ0

),

where Σθ0 = E[ϕ+(ξ)Φθ0(ξ)(Φθ0(ξ))
T ].

Proof. The argument proceeds by the Taylor expansion at θ0 of Sn(θ), we get

0 = Sn(θ̂n) = Sn(θ0) + Ṡn(θ0)(θ̂n − θ0)

+
1

2
(θ̂n − θ0)′S̈n(γn)(θ̂n − θ0),

where γn is a point between θ0 and θ̂n,

Ṡn(θ0) = [DβθSn(θ)]θ=θ0 , for |β| = 1

and

S̈n(θ0) = [DβθSn(θ)]θ=θ0 for |β| = 2.

Now using A5, A6, and Theorem 3.5.4 of Hettmansperger and McKean (2011) with X

replaced by Mnf
′(x,θ0), we have

√
|n|M−1

n Sn(θ0)→ Np (0,Σθ0)
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in distribution. Also Ṡn(θ0) converges almost surely to Aθ0 and hence in probability. By

A7 and Theorem 2.1, lim|n|→∞ P ({γn ∈ B}) = 1, where B is neighborhood containing θ0.

So under the event {γn ∈ B},

‖S̈n(γn)‖ ≤ C
1

|n|
∑
t≤n

ψ(ξ|t|),

where C stands for the bound on the score function. The right hand side of the above

inequality is bounded in probability by the law of large numbers for |n| sufficiently large.

These and the consistency of θ̂n for θ0 give

−Sn(θ0) =
[
Aθ0op(1) +

1

2
(θ̂n − θ0)Op(1)

]
(θ̂n − θ0)

= (Aθ0 + op(1))(θ̂n − θ0),

since (θ̂n − θ0)Op(1) = op(1)Op(1) → 0 in probability. Also with probability tending to 1,

the matrix Aθ0 + op(1) is invertible. Thus

√
|n|M−1

n (θ̂n − θ0) = −
√
|n|M−1

n A−1
θ0
Sn(θ0) + op(1) .

Application of Slutsky’s lemma, noting that
√
|n|M−1

n Sn(θ0) is asymptotically normal, com-

pletes the proof.

Remark 7. Assumption A5 is the same as assumption A5(i) of Bansal et al. (1999). As

discussed in Bansal et al. (1999), if assumption A5 holds only for a subsequence of {n,n ∈

Nk} such that |n| → ∞, then the result of Theorem 2.2 holds for that subsequence.

We will look at a couple of examples to illustrate the above asymptotic normality result.

Example 6. Let us reconsider the situation in Example 4 and establish conditions for asymp-

totic normality of the GSR estimator. Let θ̂n be a GSR estimator of the true parameter vector
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θ0. In order to apply Theorem 2.2, we need to verify assumptions A5– A9. Since f is contin-

uous with continuous derivative f ′t(θ) = −2πt sin(2πθt), we may take θ = θ0 and determine

Mn so that A5 is true. Consider

1

n

n∑
t=1

[f ′t(θ0)][f ′t(θ0)]T =
1

n

n∑
t=1

[f ′t(θ0)]2 =
1

n

n∑
t=1

4π2t2 sin2(2πθ0t) = O(n2) .

Thus, if we take Mn = n−1, we will have

1

n
MT

n

n∑
t=1

[f ′t(θ0)][f ′t(θ0)]TMn =
1

n3

n∑
t=1

4π2t2 sin2(2πθ0t) → 2/3

as n→∞. Thus, A5 is satisfied with Mn = n−1 and Σθ0 = 2/3. To verify assumption A6,

let us take ϕ+ ≡ 1 so that we do not deal with complicated derivatives that add nothing to the

argument. Since hntt is the tth diagonal element of the hat-matrix X∗(X∗TX∗)−1X∗T , where

we denote the n×p matrix X∗ by X∗ = (Φθ0(x1), . . . ,Φθ0(xn)) and Φθ(t) = Dβ
θΓθ(t) for |β| =

1, with Γθ(t) = G̃−1
θ (t). So if xtt are the diagonals entries of X∗, then hntt = x2

tt/
∑n

t=1 x
2
tt,

where xtt = sgn(εt)× 2πt sin(2πθ0t). Thus we have that

hntt =
4π2t2 sin2(2πθ0t)∑n
t=1 4π2t2 sin2(2πθ0t)

=
t2 sin2(2πθ0t)∑n
t=1 t

2 sin2(2πθ0t)
.

Therefore,

max
1≤t≤n

hntt = max
1≤t≤n

t2 sin2(2πθ0t)∑n
t=1 t

2 sin2(2πθ0t)
≤ n2∑n

t=1 t
2 sin2(2πθ0t)

→ 0 as n→∞,

since the denominator is O(n3) as we have seen above. We conclude that

lim
n→∞

max
1≤t≤n

hntt = 0.
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As before, to simplify computational matters while studying assumptions A7, A8, and A9,

we will consider the LAD case; that is, ρ is the identity function and ϕ+ ≡ 1. We ob-

serve that, for every 1 ≤ p < ∞, | cos(2πθt)|p, |2πt sin(2πθt)|p, |4π2t2 cos(2πθt)|p, and

|8π3t3 sin(2πθt)|p are all integrable on B = (0, 1/2), an open neighborhood of θ0 in R. Thus

the function θ → Γθ(t) is a map in W 3,p(B) for every fixed t; assumption A7 is there-

fore satisfied. Moreover, A7, implies that Φθ is well defined since Φθ is the weak deriva-

tive of a function on W 3,p(B). Likewise, the weak derivatives of Φθ is also well defined.

Thus, Aθ0 = 2G′(θ0) as in page 25 in Hettmansperger and McKean (2011). Hence as-

sumption A8 is satisfied. We have that |DβθΦθ(t)| ≤ (2πt)β = ψβ(t) for every θ ∈ B and

|β| ≤ 2, with ψβ ∈ W 2,p(K), where K = (0, T ]. Thus assumption A9 is also satisfied. Since

A−1
θ0

Σθ0A
−1
θ0

= {6(G′(θ0))2}−1, we can then conclude from Theorem 2.2 that,

n3/2(θ̂n − θ0) converges in distribution to N
(

0,
1

6(G′(θ0))2

)
as n→∞ .

Example 7. We now consider asymptotic normality of the GSR estimator for model (2.4)

considered in Bansal et al. (1999) which is also given in Example 2. Dealing with model

(2.4), we will show that the parameters of the asymptotic normal distribution depend on

subsequences of n.

Let θ̂n = (α̂n, λ̂1n, λ̂2n)T be a GSR estimator of the true parameter vector θ0 = (α0, λ10, λ20)T .

Let Mn = diag(1, n−1
1 , n−1

2 ). In order to apply Theorem 2.2, we need to verify assumptions

A5–A9. A detailed computation verifying Assumption A5 is given in Bansal et al. (1999)

where it was shown that

Σθ0 =


1
2

0 0

0 α2
0/6 α2

0/8

0 α2
0/8 α2

0/6

 if min(n1, n2)→∞ .
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Two more versions of Σθ0 are given in Bansal et al. (1999) corresponding to the cases where

n1 is fixed but n2 →∞ and vice versa. They will not be given here. Also the verification of

assumption A6 follows the same approach as the one in Example 6 above and for sake of

brevity will not be given here. To simplify computational matters while studying assumptions

A7, A8, and A9, we will consider the LAD case; that is, ρ is the identity function and

ϕ+ ≡ 1. We observe that, for every 1 ≤ p < ∞, | cos(λ1t1 + λ2t2)|p, | sin(λ1t1 + λ2t2)|p,

|αti sin(λ1t1 + λ2t2)|p, |αt2i cos(λ1t1 + λ2t2)|p, and |αt3i sin(λ1t1 + λ2t2)|p are all integrable on

B = (m,M)× (−π, π)× (0, π), an open neighborhood of θ0 in R3 and for all i = 1, 2. Thus

the function θ → Γθ(t) is a map in W 3,p(B) for every fixed t; assumption A7 is therefore

satisfied. As in the previous example Aθ0 = 2G′(θ0) which verifies assumption A8. Moreover,

|DβθΦθ(t)| ≤ α(t)β = ψβ(t) for every θ ∈ B and |β| ≤ 2, with ψβ ∈ W 2,p(K), where K is

a compact subset of R. Thus assumption A9 is also satisfied. Thus we can conclude from

Theorem 2.2 that,
√
n1n2

(
(α̂ − α0), n1(λ̂ − λ10), n2(λ̂2 − λ20)

)
converges in distribution to

N3(0, A−1
θ0

Σθ0A
−1
θ0

) as either min(n1, n2)→∞ or n2 →∞ while n1 is held fixed, or n1 →∞

while n2 is held fixed, where Σθ0 is defined as above.

2.5 Simulation Study

In this section, we provide results of some numerical experiments based on simulation

to see how the proposed estimator works for finite samples. We use the same simulation

settings as in Kundu and Nandi (2003) where they used the two dimensional model with

stationary random field errors

y(m,n) = A cos(mλ+ nµ) +B sin(mλ+ nµ) +X(m,n) ,
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where Ak, Bk ∈ R, λk, µk ∈ (0, π) are unknown and X(m,n) is a random field. In the

simulation, X(m,n) is generated as

X(m,n) = e(m,n) + 0.25e(m− 1, n) + 0.25e(m+ 1, n) + 0.25e(m,n− 1) + 0.25e(m,n+ 1),

where e(m,n) are i.i.d. from normal, logistic, and Cauchy random variables with location

zero and scale σ = 0.25 and also the Student t random variable with degrees of freedom 2 and

5. We used m,n = 1, . . . , 40 and the true parameter value θ = (A,B, λ, µ) = (4, 4, 1.886, 1.1).

We replicated the procedure 1000 times and calculated the average the mean squared error

(MSE) of the least squares (LS), signed-rank (SR), and least absolute deviations (LAD)

estimators of the unknown parameters over these replications. These are obtained by taking

[φ+(u) = 1, ρ(t) = t2], [φ+(u) = u, ρ(t) = t], and [φ+(u) = 1, ρ(t) = t] in (2.6), respectively.

The results are reported in the tables below for different values of σ and using the student

t-distribution with different degrees of freedom 2 and 5, and where N , L, and C stand for

Normal, Logistic and Cauchy distribution (Dist.) respectively.
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Scale Dist LS SR LAD

A B λ µ A B λ µ A B λ µ

N Est 4.001 4.000 1.886 1.100 4.001 3.999 1.886 1.100 4.001 3.999 1.886 1.100

MSE 3.803e-4 3.640e-4 2.187e-8 2.147e-8 4.092e-4 3.873e-4 2.294e-8 2.276e-8 5.792e-4 5.394e-4 3.340e-8 3.323e-8

σ = .25 L Est 3.999 4.001 1.886 1.100 3.999 4.001 1.886 1.100 4.000 4.000 1.886 1.100

MSE 1.247e-3 1.153e-3 6.920e-8 6.930e-8 1.122e-3 1.048e-3 6.501e-8 6.387e-8 1.387e-3 1.307e-3 8.575e-8 8.864e-8

C Est 3.984 3.847 1.787 1.123 3.993 3.993 1.885 1.100 3.995 3.991 1.885 1.100

MSE 65.777 47.724 0.157 0.106 2.245e-2 4.275e-2 3.002e-4 2.303e-7 1.660e-2 4.321e-2 2.994e-4 8.084e-7

N Est 3.998 4.001 1.886 1.100 3.999 4.001 1.886 1.100 3.999 4.000 1.886 1.100

MSE 1.414e-3 1.489e-3 8.621e-8 8.281e-8 1.425e-3 1.496e-3 8.899e-8 8.559e-8 1.831e-3 2.029e-3 1.222e-7 1.241e-7

σ = .5 L Est 4.000 3.998 1.886 1.100 3.999 3.998 1.886 1.100 3.997 4.001 1.886 1.100

MSE 4.918e-3 4.498e-3 2.790e-7 2.629e-7 4.388e-3 3.966e-3 2.583e-7 2.393e-7 5.359e-3 5.141e-3 3.457e-7 3.148e-7

C Est 5.536 6.288 1.737 1.126 3.982 3.975 1.884 1.100 3.987 3.981 1.884 1.100

MSE 1616.191 1754.342 0.390 0.156 5.841e-2 1.116e-1 7.411e-4 7.890e-7 4.814e-2 7.004e-2 8.007e-4 9.756e-5

N Est 3.999 4.001 1.886 1.100 4.000 4.000 1.886 1.100 4.000 4.000 1.886 1.100

MSE 6.594e-3 5.860e-3 3.473e-7 3.174e-7 6.392e-3 5.740e-3 3.410e-7 3.259e-7 8.495e-3 8.426e-3 5.333e-7 4.891e-7

σ = 1 L Est 3.998 3.995 1.886 1.100 4.001 3.993 1.886 1.100 3.997 3.994 1.886 1.100

MSE 3.153e-2 4.091e-2 1.476e-4 1.201e-6 2.664e-2 3.673e-2 1.470e-4 1.041e-6 2.817e-2 4.342e-2 1.486e-4 1.504e-6

C Est 7.262 7.901 1.737 1.085 3.906 3.882 1.874 1.101 3.953 3.933 1.880 1.100

MSE 1287.652 2893.719 0.400 0.277 0.310 0.480 6.030e-3 3.271e-4 0.160 0.290 2.759e-3 2.489e-5

t2 Est 3.960 3.927 1.880 1.101 3.994 3.993 1.886 1.100 3.995 3.999 1.886 1.100

MSE 0.255 0.304 3.633e-3 1.211e-3 2.238e-2 3.367e-2 1.463e-4 7.075e-7 1.512e-2 1.385e-2 8.930e-7 8.939e-7

t5 Est 3.996 4.003 1.886 1.100 3.996 4.004 1.886 1.100 3.993 4.008 1.886 1.100

MSE 1.009e-2 9.315e-3 5.664e-7 5.583e-7 7.464e-3 6.881e-3 4.601e-7 4.409e-7 9.740e-3 9.207e-3 6.541e-7 5.620e-7

Some of the points are very clear from the entries in the table. It is observed that as

σ increases the MSEs and biases of all methods increase. For our method we also observed

that biases are quite small and when σ = 1 the SRs performs better than the LS and the

LAD. Looking at the Student t distribution we can see SR performs better than LS for both

cases considered and better than the LAD for 2 degree of freedom. The above table tells us

also that based on the 1000 repetitions, under errors from the Normal, Logistic, and Cauchy
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Table 2.1: Estimated relative efficiencies versus LS
Method Distribution A B λ µ
LAD Normal 0.656 0.675 0.655 0.646

Logistic 0.899 0.882 0.807 0.782
t5 1.036 1.012 0.866 0.993

SR Normal 0.929 0.940 0.953 0.943
Logistic 1.112 1.100 1.064 1.085
t5 1.352 1.354 1.231 1.266

distribution, LS has larger spread (in terms of the MSE) and bias than the SR while for

the Student t distribution errors with degrees of freedom 5, it appears that for very few of

the amplitude, the SR has much larger variability bias than the LS. We also notice that for

heavy-tailed distributions, the efficiency gain by the SR is considerable.

In Table 2.1 we report the estimated relative efficiencies versus LS of SR and LAD

estimators. These are calculated by taking the ratio of the LS MSE to SR and LAD MSEs,

respectively, obtained from our simulation experiment. For brevity, we only report the

results for the normal, logistic, and t5 distributions. However, we note that LS performs very

poorly in the case of the heavy-tailed Cauchy and t2 distributions as expected. Following

our discussion, we will report bias results related to Cauchy and t2 in Figure 2.5.

The relative efficiency results reported in Table 2.1 are close to the theoretical asymptotic

relative efficiency (ARE) results for the normal and logistic distributions for the simple

location problem under iid errors. The AREs of SR to LS under normal, logistic, and t5

error distributions are 0.955, 1.096, and 1.241, respectively. On the other hand, the AREs

of LAD to LS under normal, logistic, and t5 error distributions are 0.637, 0.822, and 0.961,

respectively. For more on the ARE, please see Hettmansperger and McKean (2011).

As mentioned above, we also studied the absolute bias in estimated response. For

this, we let θ̃ be the average estimated parameter over the 1000 replications. Let ỹ be the

estimated value of y at the average. The plots given in Figure 2.5 give values of |y − ỹ|

for normal, Cauchy, and t2 distributions. A dark shade indicates small bias and light shade
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indicated large biases. It is clear that SR and LAD recover the signal much more accurately,

on average, than LS when the noise distribution is heavy-tailed.
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Figure 2.5: Residual Plots
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We can also compare the estimates using their Density Profiling Plot (DPP). The DPP

displays a two-dimensional graph of the intensities of the pixels along a rectangular section.

The x-axis represents the distance along the lines and the y-axis represents the pixels in-

tensity. We use ImageJ (see [23]) to obtain the density profiling plots (DPP). Figure 2.6

below are respectively the LS, LAD, and SR corresponding DPP. From these DPPs, it is

clear the the SR method produces a better pixel intensity, particularly after the a distance

of 400 pixels than the LS and the LAD methods. Therefore, we can infer that our proposed

method SR extracts better signal than the other two. Other methods for comparing these

images exist such as measuring sharpness, the noise, the contrast, distortion and resolution.

For brevity we choose to compare them using DPP.

2.6 Conclusion

In this chapter we considered the multidimensional indices nonlinear model and for

application purposes we considered the general two dimensional frequency model which was

originally discussed in Zhang and Mandrekar (2001) and Kundu (1993). We considered the

generalized signed-rank (GSR) estimation of the unknown parameters under the assumption

of additive stationary errors. Our approach is quite general including least squares and least

absolute deviations methods and our assumptions are different from those of Kundu (1993)

and Zhang and Mandrekar (2001) and they are generalizations to the multidimensional

case of the assumptions in Bindele and Abebe (2012). We observe through our simulation

that small sample efficiency results closely mimic the asymptotic efficiency of the proposed

estimator. Our results can be considered generalizations of those in Bansal et al. (1999);

Kundu (1993). Note that we have not considered the estimation of the number of components

present in superimposed sinusoidal signals. In practice, this is an important problem can be

found by studying the plot of the periodogram function as discussed in Kundu and Nandi

(2003).
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Chapter 3

Signed-Rank Estimator for Two-Phase Linear Models

3.1 Introduction

A two-phase linear regression model is piecewise linear over different domains of the

design variable, each segment possibly being a different straight line. There are two types

of such models, called restricted and unrestricted. In the restricted case, the regression

function is continuous at the change-point but not differentiable while in the unrestricted

case, it is discontinuous. The statistical inference in such models is heavily influenced by the

continuity or discontinuity of the regression function at the change-point. Most of the infer-

ence about the change-point has been developed when the regression function is continuous

and the design is non-random: Hudson (1996) gave a concise method for calculating the

least-squares estimator (LS) for the change-point while Hinkley (1969) and Hinkley (1971)

derived asymptotic results for maximum likelihood estimate (MLE) of the point of inter-

section for the special case of two line segments under normally distributed errors. Under

continuity and suitable identifiability assumptions, Feder (1974a) derived the asymptotic

distributions of the LS and the log likelihood ratio statistic for the two-phase non-random

design regression model with the Gaussian errors. Schulze (1987) provides a collection of

existing methods mainly focusing on the least-squares estimation, testing of hypotheses and

testing of model stability for analyzing data using multiphase regression models.

Examples of important applications of these models in various scientific fields are dis-

cussed by numerous researchers. Anderson and Nelson (1975) used a special type of the

restricted case of a two-phase regression model Sprent (1961), called linear-plateau model,

to predict crop yield based on the amount of nitrogen in the soil.Eubank (1984) gave ex-

amples of a variety of applications where the regression function is difficult or impossible
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to specify, but can be approximated by simpler segmented models. Some other important

examples are listed in paper of Müller and Stadtmüller (1999) and references therein.

The review paper of Bhattacharya (1994) discusses various aspects of change-point anal-

ysis including testing of hypothesis of no change, interval and point estimation of a change-

point, changes in non-parametric models, changes in regression, and detection of a change in

distribution of sequentially observed data. In particular, he discusses MLE of the change-

point of a discontinuous two-phase linear regression model and the limiting behavior of the

log-likelihood ratio process when the errors are Gaussian. In both problems the jump size

at the change-point is assumed to tend to zero at the rate slower than n−1/2 as the sam-

ple size n tends to infinity. See also Csörgo and Horváth (1988), van de Geer (1988) and

Bhattacharya (1990) for many other results in this case. Most of the above literature deals

with the parametric setup. Müller (1992), Wu and Chu (1993), Loader (1996) and Müller

and Song (1997), among others, use non-parametric curve estimation methods to construct

estimates of the change-point in non-random design regression models. Although M-type

robust estimators exist for such models; to our knowledge, there is no result available on the

limiting distribution of the Signed-Rank Estimator of the change-point or on the limiting

behavior of the dispersion function for a two-phase random design linear regression model

with a fixed jump size at the change-point.

We obtain the consistency and the limiting distribution of the the Signed-Rank Esti-

mator of the underlying parameters in the discontinuous case with fixed jump size of the

regression function in the two-phase linear regression models with random designs vari-

ables and general error distributions. The SR-estimator r̂n of the change-point parameter

r is shown to be n-consistent and the underlying dispersion function, as a process in the

standardized change-point parameter, is shown to converge weakly to a compound Poisson

process. This process attains maximum over a bounded random interval and as a result

n(r̂n − r) converges weakly to the left end point of this interval. These findings are thus

different from those in the case when the jump size tends to zero as n→∞.
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The rest of this is section is organized as follows. Section 3.2 describes the model

and and a computational scheme for SR-estimators. Section 3.3 proves the consistency of

the SR-estimator and n-consistency of the change-point estimator. Section 3.4 derives the

limiting properties of the coefficient parameter estimator and the limiting distribution of the

change-point estimator. Section 3.5 reports a simulation study and applications.

3.2 Model Definition and Signed-Rank Estimation

Define for j = 1, 2 and for θj = (θ0
j , θ

1
j ) ∈ R2 the linear function fθj(x) = θ0

j + θ1
jx. We

consider the following model of two-phase linear regression function

kθ(x) = fθ1(x) · I[−∞,r](x) + fθ2(x) · I(r,∞](x),

where x ∈ R, θ := (θ?, r) = (θ1, θ2, r) ∈ Θ = K × R, for a compact set K of R4, and R

represents the compactification of the real line. Here IA represents the characteristic function

of the set A. For a set of independent observations (Xi, Yi), i = 1, 2, . . . , n, and for some

unknown θ ∈ R5, we let

Yi = kθ(Xi) + ei, i = 1, 2, . . . , n (3.1)

where the ei, i = 1, 2, . . . , n are independent identically distributed (i.i.d.) random variables.

Remark 8. Note that model (3.1) has been considered by Koul and Qian (2002), Koul et

al. (2003), and Ciuperca (2008) for nonlinear functions fθi(x) and multiple-phase changes.

We will assume that the two line segments are different and that

d ≡ θ0
2 − θ0

1 + r(θ1
2 − θ1

2) is fixed and non-zero. (3.2)

This identifiability condition will imply that for all regression parameters, the function

kθ(x) is not a continuous function of r at the true break point. This essentially means that
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the function kθ(x) is either lower-semicontinuous or upper-semicontinuous at the true beak

point. In the case of lower-semicontinuity at the true beak point, we have one of the two cases

in Figure 3.1 below. We only need to design methods that minimize lower-semicontinuous

d

r

d

r

Figure 3.1: function kθ(x): d=vertical jump, r=break point

dispersion functions at the true break point since, in the case of upper-semicontinuity, we

can use the fact that for a function f

lim sup(−f) = − lim inf f.

Let X = (X1, X2, · · · , Xn) and Y = (Y1, Y2 · · · , Yn). We define for 1 ≤ i ≤ n, ei(θ) =

Yi − kθ(Xi) and let e(θ) := Y − kθ(X). The dispersion function Dn is then defined as

Dn(θ) :=
1

n

n∑
i=1

an(R(|ei(θ)|))|ei(θ)|, θ ∈ Θ, (3.3)

where R(|ei(θ)|) is the rank of |ei(θ)| among |e1(θ)|, . . . , |en(θ)|. The numbers an(i) are scores

generated as an(i) = ϕ(i/(n + 1)), for some bounded and nondecreasing score function ϕ :
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(0, 1)→ R+ that has at most a finite number of discontinuities. An estimator θ̂n = θ̂n(X, Y )

is called a signed rank estimator for θ if θ̂n = arg min
θ∈Θ

Dn(θ), a.s.

Remark 9. We note, following McKean and Schrader (1980), that the expression nDn(e) =∑n
i=1 an(R(|ei|))|ei| defines a pseudo-norm on R.

Remark 10. Since Dn(θ) is piecewise linear and monotone, so there is an interval around

the point r such that Dn(θ) is monotone continuous on that interval. Thus Dn(θ) is lower

semicontinuous on that interval.

Remark 11. Because Θ×X is compact and from Remark 10, Dn(θ) is lower semicontinuous.

It results from Theorem 10.19 in Stakgold and Holst (2011) that a minimizer of Dn(θ) exists.

To construct the signed-rank estimator, we will use the same approach as in Koul et

al. (2003), and Ciuperca (2008): for a given r ∈ R, we find θ̂?n(r) = arg min
(θ1,θ2)∈K

Dn(θ);

since by Remark 8, the change-point is fixed, the estimator θ̂?n(r) is constant in r over

any interval of two consecutive ordered X ′is. At the second stage, compute the minimizer

r̂n := arg min
r∈X

Dn(θ̂?n(r)), where X = {X(i), 1 ≤ i ≤ n}. Then the estimator θ̂n = (θ̂?n(r̂n), r̂n)

is the signed-rank estimator of the underlying parameter θ.

3.3 Consistency

To begin with we shall state the needed assumptions: the zi = (xi, yi) are i.i.d. random

vectors such that xi and ei = yi−kθ(xi) are independent random variables with distributions

G and F respectively, and denote the distribution of zi by K. We also assume the following.

B1 : The score-generating function ϕ is non-negative, non-decreasing and bounded with a

finite number of discontinuities.

B2 : F has a density f that is even and strictly decreasing for positive values of e and

EF [|e|r] <∞ for some r ≥ 1.

36



B3 : G has Lebesgue density g that is continuous and positive at r and E[X2] <∞.

B4 : P (kθ(X) = kθ0(X)) < 1 for any θ 6= θ0.

B5 : For 1 ≤ α ≤ ∞, assume there exist a function h such that |F−1
θ (y)| ≤ h(y),∀θ ∈ Θ

with E[hα(Y )] <∞.

Comments on the assumptions

Assumption B1 is a classical assumption in rank-estimation theory meant to assure that

dispersion function defined by Equation (3.3) is a pseudo-norm.

Assumption B2 admits a wide variety of error distributions, examples of which include the

normal, the double exponential, and the Cauchy with location parameter equal to 0 which

we are going to explore in Section 3.5.

Assumption B4 is needed for θ0 to be identified.

Since ‖ϕ‖β < ∞ for β such that 1/α + 1/β = 1, Assumption B5 puts h and ϕ in

conjugate spaces when β ∈ (1,∞). Holder’s inequality ensures that the product ϕF̃−1
θ is

integrable, where F̃θ is the distribution function of |ei(θ)|.

Remark 12. Under assumptions B1–B4, we can use a similar strategy as

in Nguelifack et al. (2015) to show that for any t > 0 and θ 6= θ0,

F̃θ(t) = PK(|e− kθ(X)| ≤ t) = EGPF (|e− kθ(X)| ≤ t|X) < EGPF (|e| ≤ t) = F̃θ0(t).

We let ‖ · ‖ denote a norm on R4. For γ = (γ?, s) ∈ Θ, we define, for a positive real δ, a

compact neighborhood of γ in Θ by

Nδ(γ) = {θ = (θ?, r) ∈ Θ : ‖θ? − γ?‖ ≥ δ, |r − s| ≥ δ}.
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Moreover, the dispersion function in (3.3) can be re-written as

Dn(θ) :=
1

n

n∑
i=1

an(i)F̃−1
θ (ξ(i)), θ ∈ Θ, (3.4)

where ξ(i) are order statistics from the uniform U(0, 1) distribution, and F̃−1
θ (t) = inf{y :

F̃θ(y) ≥ t} is the quantile function corresponding to the distribution function F̃θ. Note that

the two notations of Dn(θ) are equivalent since the joint distribution of the random vectors

|e(θ)|(i) and (F̃−1
θ (ξ(i))), 1 ≤ i ≤ n coincide, where |e(θ)|(i) represents the i-th ordered value

among |e1(θ)|, |e2(θ)|, · · · , |en(θ)|.

We define for i ≤ n and θ ∈ Θ the quantities

µn(θ) =

∫ i/n

(i−1)/n

ϕ(t/(n+ 1))F̃−1
θ (ξ(t))dt

and

µ(θ) =

∫ 1

0

ϕ(u)F̃−1
θ (u)du

Consistency of the signed-rank estimator is given by the following results.

Theorem 3.1. Given the model (3.1), suppose equation (3.2) holds, and that assumptions

B1–B5 hold, then θ̂n is a strongly consistent estimator of θ0. That is,

θ̂n → θ0, a.s. as n→∞.

To establish the proof of this theorem, we need the following definitions and results:

Definition 2. Let d ≥ 1 be a positive integer. A family of mollifiers
{
ψε : Rd → R+, ε ∈ R+

}
is family of functions satisfying

1.

∫
Rd
ψε(z)dz = 1.

2. suppψε := {z ∈ Rd : ψε(z) > 0} ⊂ Bρε(0), where ρε → 0 as ε→ 0, and Bρε(0) is the

ball of Rd centered at 0 with radius ρε.
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Definition 3. For a locally integrable function f : Rd → R, we define the family {fε : ε ∈

R+} of averaged (or convolution) functions by

fε(x) :=

∫
Rd
f(x− z)ψε(z)dz =

∫
Rd
f(z)ψε(x− z)dz.

Definition 4. A sequence fn : Rd → R of functions is said to epi-converge to a function f

at x if the following are satisfied:

1. lim inf
n→∞

fn(xn) ≥ f(x) for all xn → x as n→∞.

2. lim inf
n→∞

fn(xn) = f(x) for some sequence xn → x as n→∞.

Remark 13. It is well known that, if f is lower semi-continuous at x, then there is sequence

fn of average functions that epi-converge to f .(see Theorem 3.7 in Ermoliev et al. (1995))

Proof of Theorem 3.1 .

We note that kθ(X) as a function of r is not continuous at r because of the identifiability

condition (3.2). But without loss of generality, we will assume that kθ(X) is lower semi-

continuous at r.

Thus we can conclude from Remark 10 that, Dn(θ) = Dn(θ?, s) is lower semicontinuous at

the true break point r, Hence from Remark 13, there is a sequence Dn,k := Dn,ψk of average

functions that epi-converges to Dn (as k → ∞) obtained by convolution with a sequence

of smooth mollifiers {ψk := ψεk : R → R}, where εk → 0 as k → ∞. That is, there is

a sequence sk → s such that lim inf
k→∞

D̃n,k(θ
?, sk) ≥ D̃n(θ?, s). Let θ0 be a point in Θ and

consider a compact neighborhood Nδ(θ0) of θ0 in Θ. Given θ ∈ Nδ(θ0). For n ≥ 1 we write

Dn(θ)−Dn(θ0) = [Dn(θ)−Dn,k(θ)]︸ ︷︷ ︸
An,k(θ)

+ [Dn,k(θ)−Dn,k(θ0)]︸ ︷︷ ︸
Bn,k(,θ,θ0)

+ [Dn,k(θ0)−Dn(θ0)]︸ ︷︷ ︸
−An,k(θ0)

, (3.5)

By definition of epi-convergence, we have

lim inf
k→0

An,k(θ) = 0, lim inf
k→∞

[−An,k(θ0)] ≥ 0.
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Since by mollifying Dn(θ) by Dn,k(θ) at r, we obtain a smooth function of r, we conclude

using Theorem 11 in Nguelifack et al. (2015) that, for each k ≥ 1,

lim inf
n→∞

lim inf
θ∈Nδ(θ0)

[Dn,k(θ)−Dn,k(θ0)] > 0.

Taking the lim inf three times on the right hand side of Equation (3.5) respectively as k →∞,

as θ ∈ Nδ(θ0), and as n→∞, we have

lim inf
n→∞

lim inf
θ∈Nδ(θ0)

[Dn(θ)−Dn(θ0)] > 0.

The next result gives the n− and n1/2−consistency of the estimators r̂n and θ̂∗n respec-

tively.

Theorem 3.2. Given the model (3.1), suppose equation (1.1) holds, and that assumptions

B1–B5 hold, then

(i) ‖
√
n(θ̂∗n − θ∗0)‖ = Op(1),

(ii) |n(r̂n − r)| = Op(1).

The prove of Theorem 3.2 (i), is just a consequence of the following preliminaries and

follows along with some results in Hettmansperger and McKean (2011) and Koul et al.

(2003). We start with the following notation that we will use throughout the rest of the

paper. It is convenient to write kθ(x) = ks(x, θ
∗), for θ = (θ∗, s) with θ∗ ∈ R4, s ∈ R, and

refer to θ∗ and s as the coefficient and change point parameter, respectively. We remark that

for a fix jump point, s ∈ R, we have that

k̇s(x) ≡ (∂/∂θ∗)(ks(x, θ
∗)) = (I(x ≤ s), xI(x ≤ s), I(x > s), xI(x > s))T ,
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with s ∈ R and x ∈ R, denote the vector of partial derivatives of ks(x, θ
∗) with respect to

θ∗. It is clear that

kθ(x) = θ∗T k̇s(x), and ‖k̇s(x)‖ =
√

1 + x2 ≤ 1 + |x|. (3.6)

Thus (3.3) can be written as: For a fix s,

Ds
n(θ∗) :=

1

n

n∑
i=1

ϕ
( Ri

n+ 1

)
|ei(θ∗)|, (3.7)

where ei = Yi − θ∗T k̇s(x), ϕ is the score generating function, and Ri is the rank of |ei(θ∗)|

among |e1(θ∗)|, . . . , |en(θ∗)|.

We define the gradient process Sn(θ∗) of Ds
n(θ∗), as Sn(θ∗) = −5θ∗ D

s
n(θ∗). Thus using

(3.7), we have that,

Sn(θ∗) =
1

n

n∑
i=1

ϕ
( Ri

n+ 1

)
k̇s(x)sgn(ei(θ

∗)). (3.8)

Hence

Sn(θ∗)− Sn(θ∗0) =
1

n

n∑
i=1

k̇s(Xi)

{
ϕ
( Ri

n+ 1

)
sgn(ei(θ

∗))− ϕ
( R∗i
n+ 1

)
sgn(ei(θ

∗
0))

}
(3.9)

But since ϕ is continuous with continuous derivatives, assuming without loss of generality

that R∗i > Ri, using the mean value theorem, there is αi ∈ (Ri, R
∗
i ) such that,

ϕ
( Ri

n+ 1

)
− ϕ

( R∗i
n+ 1

)
= ϕ̇(αi)

(Ri −R∗i
n+ 1

)
. (3.10)

41



Using (3.9) and (3.10) we obtain:

n−1/2
(
Sn(θ∗)− Sn(θ∗0)

)
=

1

n
√
n

n∑
i=1

k̇s(Xi)ϕ
( Ri

n+ 1

)
{sgn(ei(θ

∗))− sgn(ei(θ
∗
0))}

+
1

n(n+ 1)
√
n

n∑
i=1

k̇s(Xi)ϕ̇(αi)
(
Ri −R∗i

)
sgn(ei(θ

∗
0))

= T1n + T2n, (3.11)

where

T1n ≡
1

n
√
n

n∑
i=1

k̇s(Xi)ϕ
( Ri

n+ 1

)
{sgn(ei(θ

∗))− sgn(ei(θ
∗
0))}

T2n ≡
1

n(n+ 1)
√
n

n∑
i=1

k̇s(Xi)ϕ̇(αi)
(
Ri −R∗i

)
sgn(ei(θ

∗
0))

Using the triangle inequality on (3.11), we obtain that:

sup
θ∗∈Nδ(γ)

|n−1/2
(
Sn(θ∗)− Sn(θ∗0)

)
| ≤ sup

θ∗∈Nδ(γ)

|T1n|+ sup
θ∗∈Nδ(γ)

|T2n|. (3.12)

For the first term on the right hand side of (3.11), Using the Strong Law of Large Numbers

for functions of order statistics (see Hajek and Sidak, 1967), we have that as n→∞,

T1n →


0, if sgn(ei(θ

∗)) = sgn(ei(θ
∗
0))

±2E[Sn(θ∗0)] = 0, if sgn(ei(θ
∗)) = −sgn(ei(θ

∗
0))

Hence

sup
θ∗∈Nδ(γ)

|T1n| = Op(1). (3.13)
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On the other hand, using (3.6), we have that,

sup
θ∗∈Nδ(γ)

|T2n| ≤
1

n(n+ 1)
√
n

n∑
i=1

‖k̇s(Xi)ϕ̇(αi)
(
Ri −R∗i

)
‖

≤ M

n(n+ 1)
√
n

n∑
i=1

‖k̇s(Xi)‖ × |
(
Ri −R∗i

)
|

≤ M

n(n+ 1)
√
n

n∑
i=1

Vi(1 + |Xi|) (3.14)

where |ϕ̇(αi)| ≤M and |
(
Ri−R∗i

)
| = Vi for all i = 1, 2, . . . , n. The right hand side of (3.14)

can be decomposed as

M

n(n+ 1)
√
n

n∑
i=1

Vi(1 + |Xi|) =
M

n
√
n

n∑
i=1

Vi
n+ 1

+
M

n(n+ 1)
√
n

n∑
i=1

|Xi|

≤ M

n
√
n

+
M

(n+ 1)
√
n
×

{
1

n

n∑
i=1

|Xi|

}

By the Strong Law of Large Number and assumption B3, we have that

1

n

n∑
i=1

|Xi| → E[|X|] <∞ as n→∞ a.s.

Therefore

M

n(n+ 1)
√
n

n∑
i=1

Vi(1 + |Xi|)→ 0 as n→∞ a.s.

Which implies that

sup
θ∗∈Nδ(γ)

|T2n| = Op(1). (3.15)

Using (3.13) and (3.15), we can conclude that

sup
θ∗∈Nδ(γ)

|n−1/2
(
Sn(θ∗)− Sn(θ∗0)

)
| = Op(1). (3.16)
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Now let’s construct a prove for Theorem 3.2 (ii). Let for δ > 0, 0 < b <∞,

Ωb = {θ∗ ∈ Nδ(γ) : |s− r| > b/n}.

So it suffices to show that for every ξ > 0, 0 < c < ∞, there exist a 0 < b < ∞, and an

N ∈ N such that

P
(

inf
θ∗∈Ωb

Mn(θ∗, s) > c
)
> 1− ξ ∀n > N,

where Mn(θ∗, s) = Dn(θ∗, s) − Dn(θ∗1, r), with θ∗ ∈ R4, and r ∈ R. The prove uses the

consistency of the parameter θ∗ and for a fix parameter θ∗, the rest of the prove follows the

same line as the prove of Theorem 3.2 (i), with the gradient process is this case defined as

the derivative of the dispersion function Ds
n(θ∗) as s for a fix θ∗.

3.4 Asymptotic Normality

This section gives the limiting distribution of the signed-rank estimator. So to prove

the asymptotic normality of the signed-rank estimator, we impose some additional regularity

conditions that, together with assumptions made in section 3, will be used throughout this

section. We start with the following notation that we will use throughout this section. It is

convenient to write kθ(x) = ks(x, θ
∗), for θ = (θ∗, s) with θ∗ ∈ R4, s ∈ R, and refer to θ∗ and

s as the coefficient and change point parameter, respectively. Let

k̇s(x) ≡ (∂/∂θ∗)(ks(x, θ
∗)) = (I(x ≤ s), xI(x ≤ s), I(x > s), xI(x > s))T ,

with s ∈ R and x ∈ R, denote the vector of partial derivatives of ks(x, θ
∗) with respect to

θ∗. Observe that,

kθ(x) = θ∗T k̇s(x),

where XT denote the transpose of a given vector X. Consider the following assumptions:
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B6 : The function ϕ is absolutely continuous on (0, 1) with ‖ϕ‖∞ <∞. Moreover, ϕ′ has

at most a finite number of discontinuities, outside which ϕ′′ exists, is continuous, and

is bounded.

B7 : The pdf of the error distribution f is absolutely continuous with finite Fisher infor-

mation 0 < I(f) =
∫∞
−∞ f

′(x)2/f(x)dx <∞, and its derivative f ′ is bounded.

B8 : limn→∞max1≤i≤n h
n
ii = 0

B9 : X is a centered matrix and limn→∞ n
−1XXT → Σ, where Σ is a p×p positive definite

matrix.

B10 : EG[|X|4] <∞.

Comments on the assumptions

Assumption B6 is formulated so as to balance the non-smoothness of of the dispersion

function and its gradient process with the smoothness of the error distribution or vice versa.

Assumption B7 is a major assumption on the error density function f for much of the rank-

based analysis. Finally, assumption B8 and B9 are common assumption known classically

as Noether’s condition which means that the contribution of the maximum value of the

design matrix to the variance becomes arbitrarily small as the sample size increases. This

will ensure the asymptotic normality of the derivative of the dispersion function Dn(θ) with

respect to θ.

Lemma 2. Suppose B1–B6 hold and E[X2] <∞. Then, ∀B, 0 < B <∞,

sup
|s−r|≤B/n

|θ̂∗n(s)− θ∗| = oP (1).
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The proof of this lemma is facilitated by the fact that under the assumed conditions,

∀θ∗ ∈ K,

E
{

sup
s∈R̄,θ∗1∈Uθ∗ (η)

|Dn(Yi − θ∗1k̇s(Xi))−Dn(Yi − θ∗k̇s(Xi))|
}
→ 0, as η → 0,

where Uθ∗(η) = {θ∗1 ∈ K : |θ∗1 − θ∗| < η}, η > 0.

We define the scale parameter

τ−1
ϕ =

∫
ϕ(u)ϕf (u)du,

where

ϕf (u) = −f
′(F−1(u))

f(f−1(u))
.

Under Assumptions B4 and B6 the scale parameter τϕ is well defined.

The main result of this section is given by the below theorem. To facilitate its statement

we need the following notation.

wn := n1/2(θ̂∗n − θ∗), tn = n(r̂n − r), Zn := n−1/2

n∑
i=1

k̇r(Xi)Sn(εi),

Γr := E[k̇r(X)k̇r(X)T ].

Under B6–B9, and assuming the model in (3.1), we obtain the following linearity result for

the gradient process Sn(θn) of Dn(θn):

1√
n
Sn(θ∗n) =

1√
n
Sn(θ∗)− τ−1

ϕ Γr
√
n(θ∗n − θ∗) + oP (1).

We also need the following asymptotic uniform quadraticity result in the coefficient param-

eter. But before we go ahead a present the asymptotic uniform quadraticity result, we need
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to draw our attention to the following procedure on the jump point given by the following

remark.

Remark 14. Since r is fixed, the below quadratic function involves only the coefficient pa-

rameters. From the above result we obtain a locally smooth approximation of the dispersion

function Dn(θ∗n) which is given by the following quadratic function:

Qn(Y − θ∗Tn k̇s(X)) = (2τϕ)−1(θ∗n − θ∗)TE[k̇s(X)T k̇s(X)](θ∗n − θ∗)

−(θ∗n − θ∗)TSn(Y − θ∗T k̇s(X)) +Dn(Y − θ∗T k̇s(X)) (3.17)

The following theorem shows that Qn provides a local approximation to the dispersion

function Dn

Theorem 3.3. Under the model in (3.1), B6, B7, B8, and B9, for any ε > 0 and c > 0,

P
[

max
‖θ∗n−θ∗‖<c/

√
n
|Dn(Y − θ∗Tn k̇s(X))−Qn(Y − θ∗Tn k̇s(X))| ≥ ε

]
→ 0, as n→∞.

The above Theorem 3.3 is used to obtain the asymptotic distribution of the signed-rank

estimator.

Remark 15. If we assume without loss of generality that the true parameter θ∗ = 0, then

we can write

Qn(Y − θ∗Tn k̇s(X)) = (2τϕ)−1θ∗nE[k̇s(X)T k̇s(X)]θ∗n − θ∗Tn Sn(Y ) +Dn(Y ).

Because Qn is a quadratic function it follows from differentiation that it is minimized by

θ̃∗n = τϕE[k̇s(X)T k̇s(X)]−1Sn(Y ).

We therefore have the following theorem
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Theorem 3.4. Under the model in (3.1) and B6, B7, B8, and B9, we have that

√
n(θ̃∗n − θ∗)→D N4(0, τ 2

ϕΓ−1
r )

where Γr := E[k̇r(X)k̇r(X)T ].

Since Qn is a local approximation to Dn the next result shows that it would seem like

their minimizing values are close also.

Theorem 3.5. Under the model in (3.1) and B6, B7, B8, and B9, we have that

√
n(θ̂∗n − θ̃∗n)→P 0.

The proof of the above Theorem 3.3 and Theorem 3.4 uses the same approach as the

proof of Theorem A.3.9 in Hettmansperger and McKean (2011).

Proof. Choose ε > 0 and δ > 0. Since
√
nθ̃∗n converges in distribution to a constant we have

therefore the convergence in probability. That is, there exists a c0 such that

P
[
‖θ̃∗n‖ ≥ c0/

√
n
]
< δ/2, for a sufficiently large n. (3.18)

Let

m = min{Qn1(Y − θ∗Tn k̇s(X)) : ‖θ∗ − θ̃∗n‖ = ε/
√
n}

−Qn1(Y − θ̃∗nk̇s(X)). (3.19)

Since θ̃∗n is the unique minimizer of Qn, m > 0; hence, by asymptotic quadraticity we have

that

P
[

max
‖θ∗n‖<(c0+ε)/

√
n
|Dn(Y − θ∗Tn k̇s(X))−Qn(Y − θ∗nk̇s(X))| ≥ m/2

]
≤ δ/2,

(3.20)
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for sufficiently large n. By (3.18) and (3.20) we can assert with probability greater than 1−δ

that for sufficiently large n,

|Qn(Y − θ̃∗nk̇s(X))−Dn(Y − θ̃∗nk̇s(X))| < (m/2),

and ‖θ̃∗n‖ < c0/
√
n. (3.21)

This implies with probability greater than 1− δ that for sufficiently large n,

Dn(Y − θ̃∗nk̇s(X)) < Qn(Y − θ̃∗nk̇s(X)) +m/2

and ‖θ̃∗n‖ < c0/
√
n. (3.22)

Using the fact that ‖θ̃∗n‖ < c0/
√
n and ‖θ∗− θ̃∗n‖ = ε/

√
n it follows that ‖θ∗n‖ ≤ (c0 + ε)/

√
n.

Now arguing as above, we have with probability greater than 1−δ that Dn(Y −θ∗Tn k̇s(X)) >

Qn(Y − θ∗Tn k̇s(X)) +m/2, for sufficiently large n. From this, (3.19), and (3.21) we therefore

get the following inequalities:

Dn(Y − θ∗Tn k̇s(X)) > Qn(Y − θ∗Tn k̇s(X)) +m/2

≥ min{Qn(Y − θ∗Tn k̇s(X)) : ‖θ∗ − θ̃∗n‖ = ε/
√
n}

= m+Qn(Y − θ̃∗nk̇s(X))−m/2

= m/2 +Qn(Y − θ̃∗nk̇s(X))

> Dn(Y − θ̃∗nk̇s(X)). (3.23)

Thus, Dn(Y − θ∗Tn k̇s(X)) > Dn(Y − θ̃∗nk̇s(X)), for ‖θ∗ − θ̃∗n‖ = ε/
√
n. Since Dn is convex,

we must also have Dn(Y − θ∗nk̇s(X)) > Dn(Y − θ̃∗nk̇s(X)), for ‖θ∗ − θ̃∗n‖ ≥ ε/
√
n. But

Dn(Y − θ̃∗nk̇s(X)) ≥ minDn(Y − θ∗Tn k̇s(X)) = Dn(Y − θ̂∗nk̇s(X)).
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hence θ̂∗n must lies inside the disk ‖θ∗− θ̃∗n‖ = ε/
√
n with probability of at least 1− 2δ; that

is,

P
[
‖θ̂∗n − θ̃∗n‖ < ε/

√
n
]
> 1− 2δ.

This yields the result.

Combining Theorem 3.4 and Theorem 3.5, we get the next corollary which gives the

asymptotic distribution of the wn.

Corollary 1. Under the model in (3.1) and B6, B7, B8, and B9, we have that

√
n(θ̂∗n − θ∗)→D N4(0, τ 2

ϕΓ−1
r )

where Γr := E[k̇r(X)k̇r(X)T ].

The next Theorem Gives us the limiting distribution of tn = n(r̂n − r), together with

the joint limiting distribution of the signed-rank estimator.

Theorem 3.6. Under the model (3.1), and the fact that (3.2) and using B6, B7, B8, and

B9, we have that

wn = τϕΓ−1
r Zn + oP (1).

Moreover, (wn, tn)→D (Z, π−), where Z is a N4(0, τ 2
ϕΓ−1

r ) random variable, independent of

π−, the smallest minimizer of the process Π. Here,

Π(t) = P1(t)I(t ≥ 0) + P2(−t)I(t ≤ 0),

P1,P2 are two compound Poisson processes on [0,∞), with P1(0) = 0 = P2(0), both having

the common rate g(r), and their jumps having the same distribution as that of Dn(ε+ d)−

Dn(ε), Dn(ε+d)−Dn(ε), respectively. Moreover, the processes P1(t), t > 0 and P2(−t), t < 0

are independent.
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Recall that θ = (θ∗T , r)T , now, write D1
n(θ∗, s) for D1

n(θ∗1 + n−1/2θ∗, r + n−1/2s), for

convenience. Theorem 3.3 gives an approximation of Dn(θ∗) by quadratic form in θ∗.

We shall next obtain an approximation for D1
n. The details below are given for s ≥ 0,

they being similar for s ≤ 0. The analysis here is relatively intricate because it involves the

discontinuity point.

We obtain the following asymptotic uniform quadraticity result in the jump point.

Theorem 3.7. Suppose (3.1), (3.2), B1–B5 hold. Then, for every 0 < b <∞,

Qn(θ∗) = Dn(θ∗1, r)− n−1/2θ∗T
n∑
i=1

k̇r(Xi)Sn(εi)− (2τϕ)−1θ∗TΓrθ
∗ +D1

n(0, s) + up(1)(3.24)

Where up(1) is a sequence of stochastic processes converging to zero uniformly over the set

‖θ∗‖ ≤ b, |t| ≤ b, in probability.

In view of Theorem 3.2 and (3.24) we obtain that

Dn(θ̂∗n, r̂n) = Qn(θn) +D1
n(0, s) + op(1),

Qn := Dn(θ∗n, r)− n−1/2θ∗T
n∑
i=1

k̇r(Xi)Sn(εi)− (2τϕ)−1θ∗TΓrθ
∗ (3.25)

Consequently, asymptotically the standardized minimizers wn and tn behave in a singular

fashion in the sense that a minimizer of Dn(θ + n−1/2θ∗n, r + n−1tn) with respect to θ∗ is

asymptotically equivalent to a minimizer of Qn(θ∗n) with respect to θ∗ and does not depend

on tn which exactly what we have shown using (3.17). Similarly, a minimizer tn of Dn(θ +

n−1/2θ∗n, r + n−1tn) with respect to s is asymptotically equivalent to a minimizer of D1
n(0, s)

with respect to s and does not depend on θ∗n.

In order to obtain the joint weak limit of (wn, tn), we need to obtain the joint weak limit

of (Zn, D1
n).

51



But before we state the below corollary we need the following: Consider the class

D(−∞,∞) = D0 of functions γ(u) without discontinuities of the second kind defined on

R+ and such that lim|u|→∞ γ(u) = 0. We shall assume that at discontinuity points γ(u) =

γ(u+ 0). Define the mapping dist : D0 ×D0 → R+ by

dist(γ, ψ) = inf
α

[
sup
R+

|γ(u)− ψ(α(u))|+ sup
R+

|u− α(u)|
]
,

where the lower bound is taken over all the monotonic continuous one-to-one mappings

α : R+ → R+. One verifies that dist is a metric on D0, which transforms D0 into a complete

metric separable space.

Corollary 2. Under (3.1), (3.2), B1 and B3, (Zn, {D1
n(t), t ≥ 0}) converges weakly to

(Z,P1) in R4 × D[0,∞), where Z ∼ N4(0, τ 2
ϕΓr), P1 is a compound Poisson process on

[0,∞), independent of Z, with the rate g(r), P1(0) = 0, and the distribution whose jumps

is the same as that of h(r, ε) = Dn(ε+ d)−Dn(ε).

Corollary 3. Under assumption of Corollary 2, we have that (Zn, D1
n) converges weakly to

(Z,Π) in R4 ×D(−∞,∞), where Z is as in Corollary 2, and independent of Π.

The next Lemma complete the proof of Theorem 3.6. the proof and details of the below

lemma can be found in Koul et al. (2003).

Lemma 3. Under the assumptions of Theorem 3.6, n(r̂n−r) converges weakly to the smallest

minimizer π− of the process Π.

Moreover, n(r̂ − r) is asymptotically independent of n1/2(θ̂∗n − θ∗).

3.5 Simulation Study

In this section, we shall report results of a simulation study and an application to an

automobile gas mileage-weight data. In both, we are going to compare our method to the

LAD and the LS estimators.
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The result reported in this section focus on the performance of the SR, LAD and LS esti-

mators for various error densities. We replicated the procedure 1000 times and calculated the

average the mean squared error (MSE) of the least squares (LS), signed-rank (SR), and least

absolute deviations (LAD) estimators of the unknown parameters over these replications.

The sample were generated from the following simple model:

Yi = (0.5−Xi)I(Xi ≤ 0) + (−0.7 +Xi)I(Xi > 0) + εi, i = 1, 2, . . . , n,

where {Xi} is a random sample from the standard normal distribution and the error {εi}

densities considered are the double exponential, standard normal, and the student t with

degrees of freedom 4. In other words, we took a0 = 0.5, a1 = −1, b0 = −0.7, b1 = 1, r = 0.0

in (3.1). The error densities considered are the double exponential, standard normal, and

the student t with degree of freedom 4. The sample sizes used are 100 and 200.

Estimators are computed using the method described in Section 2 above. Table 3.4

gives the Monte Carlo means (Mean), the mean squares error (MSE) of the LS, LAD, and

SR estimators, based on 1000 repetitions. One observes that under the normal errors, SR

(Signed-Rank Estimates) and LAD (Least Absolute Deviation Estimates) has larger bias

than the LS, while at the double exponential errors, the LS has much larger variability and

relatively larger bias than the SR and LAD. For example, for n = 200, the Monte Carlo

MSE of the LS of r are, respectively, about 2.57 and 4.5 times larger than the SR and LAD

of r at the double exponential errors. Figure 3.2 gives a comparison of the accompanying

mean squared error (MSE) for the simulation setting which shows that the MSE goes to

zero as the sample size increases for both LAD (Least Absolute Deviation) and SR (Signed-

Rank). This illustrates our theoretical result that the proposed estimator converges to the

true parameter. It is also observed that, in the presence of heavy-tail distributions errors (a

gross outlier), the LS (Least Squares) loses both its accuracy and its precision whereas the

proposed SR (Signed-Rank) estimator remains almost unaffected.
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We also notice that for other heavy-tail distributions, the efficiency gain by SR and

LAD is considerable. The estimated relative efficiencies versus LS of SR and LAD estimators.

These are calculated by taking the ratio of the LS (Least Squares) MSE to SR (Signed-Rank)

and LAD (Least Absolute Deviation) MSEs, respectively, obtained from our simulation

experiment. The results are reported in Table 3.3. For brevity, we only report the results

for the normal, double exponential, and student t distributions with degree of freedom 10

only. However, we note that LS performs very poorly in the case of the heavy-tailed double

exponential and student t distributions with degree of freedom 10 as expected while the LAD

and the SR are performing quite well.

3.5.1 An Application: gasoline mileage data

The data, from Koul et al. (2003), originally reported by Henderson and Velleman

(1981), consists of gas mileage and weight of 38 automobiles. The original data set with

several other variables were collected by Consumer Reports and by 1974 Motor Trend mag-

azine. As mentioned in Koul et al. (2003), it was used by Henderson and Velleman (1981)

to investigate the various aspects of automobiles design and performance.

As in Koul et al. (2003), in this section, we only model the relationship between MPG

and weights of automobiles. These 38 cars were from the model year 1978-1979. Their

weights (in units of 1000 pounds) and fuel efficiencies MPG (miles per gallon) were recorded.

illustrates the scatter plot of MPG against weight which appears a pattern of two-phase linear

rather than a simple linear regression. As Henderson and Velleman (1981) pointed out, the

linear regression is not an appropriate model. They suggested possible other models such as

quadratic regression. our case, we suggest the two-phase linear regression model since the

scatter plot shows the two-phase pattern.

Thus, we use the two-phase linear regression model (3.1) to fit the data (Weight, MPG).

The three estimators used in the two-phase linear regression modeling are LS, LAD and SR.

For the sake of a comparison, we also fit the data by simple linear regression models using

54



100 200

LS
LAD
SR

MSE Vs n − Normal: a0=0.5

sample size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0
.0

0
0

.0
4

0
.0

8
0

.1
2

100 200

MSE Vs n − Normal: a1=−1

sample size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0
.0

0
0

.0
4

0
.0

8

100 200

MSE Vs n − Normal: b0=−0.7

sample size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0
5

0
0

1
0

0
0

100 200

MSE Vs n − Normal: b1=1 

sample size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0
1

0
0

2
0

0
3

0
0

100 200

MSE Vs n − Normal: r=0.0

sample size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0
.0

0
0

.0
4

0
.0

8
0

.1
2

100 200

LS
LAD
SR

MSE Vs n − Dexp: a0=0.5

sample size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0
4

0
8

0
1

2
0

100 200

MSE Vs n − Dexp: a1=−1

sample size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0
5

1
5

2
5

100 200

MSE Vs n − Dexp: b0=−0.7

sample size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0
1

2
3

4
5

100 200

MSE Vs n − Dexp: b1=1 

sample size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0
.0

0
.4

0
.8

100 200

MSE Vs n − Dexp: r=0.0

sample size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0
.0

0
0

.0
4

0
.0

8

100 200

LS
LAD
SR

MSE Vs n − t5: a0=0.5

sample size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0
5

1
0

1
5

100 200

MSE Vs n − t5: a1=−1

sample size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0
.0

1
.0

2
.0

3
.0

100 200

MSE Vs n − t5: b0=−0.7

sample size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0
4

8
1

2

100 200

MSE Vs n − t5: b1=1 

sample size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0
.0

1
.0

2
.0

3
.0

100 200

MSE Vs n − t5: r=0.0

sample size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0
.0

0
0

.1
0

0
.2

0

100 200

LS
LAD
SR

MSE Vs n − t10: a0=0.5

sample size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0
.0

0
.4

0
.8

1
.2

100 200

MSE Vs n − t10: a1=−1

sample size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0
.0

0
0

.1
0

0
.2

0
0

.3
0

100 200

MSE Vs n − t10: b0=−0.7

sample size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0
.0

0
.5

1
.0

1
.5

100 200

MSE Vs n − t10: b1=1 

sample size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0
.0

0
.2

0
.4

0
.6

100 200

MSE Vs n − t10: r=0.0

sample size

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

0
.0

0
0

.0
6

0
.1

2

Figure 3.2: MSE Plots
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Figure 3.3: Scatter plot with the four fitted curves.

LS. Figure 3.3 shows the fits for all four estimators for the three types of regression models.

As in Koul et al. (2003) both methods yield the same value for r̂ = 2.7. since values of

the parameters in the case of LAD and LS has been reported in Koul et al. (2003), for the

sake of brevity we will only report the estimated parameters and the the estimated standard

deviation in the case of the signed-rank. Table 3.1 below report the estimated parameters

and the the estimated standard deviation in the case of the signed-rank where both s1 and

s2 are smaller using two-phase regression than the single square-root mean square error 2.85

using simple linear regression. Here as in Koul et al. (2003),

s1 =

√
1

20

∑
(Yi − â0 − â1Xi)2I(Xi ≤ 2.7)
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Table 3.1: Signed-Rank estimates and estimated standard deviation for each piece

Parameter â0 â1 b̂0 b̂1 r̂ s1 s2

SR 48.474 -8.108 32.947 -4.005 2.7 2.678 2.555

and

s2 =

√
1

18

∑
(Yi − b̂0 − b̂1Xi)2I(Xi > 2.7)

3.5.2 Application: Grade Inflation at a Large Southeastern University from

1981-2011

Since the scatter plot shows the two-phase pattern, we use the two-phase linear regres-

sion model (3.1) to fit the data (Year, Avg. Fall GPA) where Avg stands here for Average.

The three estimators used in the two-phase linear regression modeling are LS, LAD and SR.

For the sake of a comparison, we also fit the data by simple linear regression models using

LS. Figure 3.4 shows the fits for all four estimators for the three types of regression models.

Table 3.2 lists the parameter estimators for the two-phase linear regression models for

LS , LAD, and SR methods. Both methods yield the same value for r̂ while the estimates

of the other parameters are different. It appears there is a change at year r̂ = 2000. Out of

the 30 years, there are 19 years below year 2000 and 11 years above year 2000.

It is also useful to look at the estimated standard deviation for each piece given by

s1 =

√
1

19

∑
(Yi − â0 − â1Xi)2I(Xi ≤ 2000)

and

s2 =

√
1

11

∑
(Yi − b̂0 − b̂1Xi)2I(Xi > 2000)
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Figure 3.4: Scatter plot with the four fitted curves.

3.6 Conclusion

A rank based estimator for two phase linear model has been developed, with its per-

formance evaluated in comparison with the LS and LAD for both simulated and real data.

Our estimation procedure produces through minimization of a rank based objective function,

yielding estimators that are robust in the response space. Which means estimator that are

robust in the y direction. As such, the method developed in this section is ideal for data

from designed experiments where the x’s are controlled. There is no guarantee that our

procedure results in robust estimates for uncontrolled studies. It will also be interesting to

extend our procedure to the case of multiphase nonlinear regression.
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Table 3.2: Parameter estimates and estimated standard deviation for each piece

Parameter â0 â1 b̂0 b̂1 r̂ s1 s2

SR -27.12 0.0150 -41.74 0.0222 2000 0.0285 0.0359
LAD -24.26 0.0135 -43.97 0.0233 2000 0.0281 0.0362
LS -27.42 0.0151 -41.91 0.0223 2000 0.0266 0.0359

Table 3.3: Estimated relative efficiencies versus LS
Method Distribution a0 a1 b0 b1 r
LAD Normal 0.625 0.603 0.636 0.619 0.540

D exp 1.813 1.665 2.646 1.811 4.093
t10 0.751 0.718 0.808 0.770 0.758

SR Normal 0.942 0.948 0.951 0.935 0.843
D exp 1.559 1.515 1.935 1.592 2.483
t10 1.049 1.002 1.191 1.110 1.099
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Table 3.4: Mean, and MSE, of LAD, LS and SR for (0.5,−1,−0.7, 1, 0.0)
Error distribution

Method Est. N(0,1) Dexp(0,1) t(5)
Mean MSE Mean MSE Mean MSE

n = 200

â0 0.510 0.056 0.506 0.0195 0.521 0.066
â1 -0.995 0.052 -0.991 0.019 -0.980 0.062

LAD b̂0 -0.716 0.080 -0.710 0.019 -0.704 0.118

b̂1 1.025 0.060 1.006 0.021 1.013 0.083
r̂ 0.036 0.033 -0.002 0.004 0.048 0.044

â0 0.523 0.035 0.515 0.035 0.527 0.065
â1 -0.984 0.031 -0.986 0.033 -0.979 0.061

LS b̂0 -0.720 0.051 -0.708 0.052 -0.670 0.299

b̂1 1.024 0.037 1.005 0.039 1.002 0.135
r̂ 0.014 0.017 0.008 0.018 0.064 0.062

â0 0.523 0.037 0.513 0.022 0.527 0.054
â1 -0.984 0.033 -0.985 0.021 -0.979 0.050

SR b̂0 -0.717 0.054 -0.711 0.026 -0.719 0.075

b̂1 1.023 0.040 1.006 0.024 1.026 0.059
r̂ 0.017 0.021 0.001 0.007 0.039 0.036

n = 100

â0 0.519 0.123 0.505 0.048 0.512 0.175
â1 -0.987 0.115 -0.994 0.050 -0.995 0.133

LAD b̂0 -0.586 0.484 -0.690 0.106 -0.554 1.360

b̂1 0.936 0.247 0.998 0.077 0.929 0.558
r̂ 0.118 0.131 0.030 0.041 0.146 0.164

â0 0.528 0.078 0.902 140.08 0.655 16.03
â1 -0.975 0.073 -0.789 34.49 -0.922 3.257

LS b̂0 -1.954 0.001 -0.677 5.374 -0.275 14.83

b̂1 1.611 0.039 0.988 1.021 0.784 3.510
r̂ 0.090 0.099 0.085 0.108 0.172 0.258

â0 0.531 0.086 0.515 0.054 0.541 0.158
â1 -0.974 0.079 -0.987 0.055 -0.972 0.111

SR b̂0 -0.618 0.447 -0.656 0.436 -0.393 6.557

b̂1 0.964 0.217 0.978 0.222 0.849 1.544
r̂ 0.087 0.099 0.049 0.058 0.138 0.167
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