
USER-BASED RECOMMENDATION ALGORITHM ON HADOOP
CLUSTER

by

Sudha Varanasi

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
May 10, 2015

Keywords: Hadoop, HDFS, MapReduce, Recommendation Systems, Collaborative
Filtering, User-based Similarity, Distributed Computing, Cloud Computing, Cluster

Copyright 2015 by Sudha Varanasi

Approved by

Xiao Qin, Chair, Associate Professor of Computer Science and Software Engineering
James Cross, Professor of Computer Science and Software Engineering

Sanjeev Baskiyar, Associate Professor of Computer Science and Software Engineering

Abstract

Recommender systems apply knowledge discovery techniques to the problem of making

personalized product recommendations using customers usage pattern. Systems like the k-

nearest neighbors and neighborhood-based collaborative filtering are achieving widespread

success in E-commerce nowadays. The tremendous growth of customers and products in

recent years poses some key challenges for recommender systems. They are producing high

quality recommendations and performing many recommendations per second, for millions of

customers and products. New recommender systems technologies are needed to quickly pro-

duce high quality recommendations, even for very large-scale problems. A sequential imple-

mentation of deriving recommendations for a large user base has severe performance issues.

We address performance issues by implementing the algorithm using Hadoop Map-Reduce

framework combined with similarity based collaborative filtering techniques. Map-Reduce is

a programming model and an associated implementation for processing and generating large

data sets. Users specify a map function that processes a key/value pair to generate a set

of intermediate key/value pairs, and a reduce function that merges all intermediate values

associated with the same intermediate key. Similarity among user pairs is computed for all

the users using map/reduce programming approach. Using the similarity ranking of each

item is computed. The ratings of the users with highest degree of similarity produce higher

ranking and are given more priority for recommendation. Map jobs will gather the compute

recommendation ratings for all products on multiple nodes and reduce jobs combine the re-

sults from all the nodes to form the effective recommendation list. In this study, we will focus

on user-based collaborative filtering methods, which are well known techniques used in rec-

ommender systems using Hadoop Map-Reduce. Neighbourhood-based collaborative filtering

methods are user-based and item based, meaning user preferences are inferred solely from

ii

what items they and other users in the dataset have interacted with. Experiments prove

that the implementation of algorithm on Hadoop has higher performance with the increase

in number of data nodes when compared to the results of implementation in a single node.

iii

Acknowledgments

This thesis would not have been completed without invaluable guidance, experience

sharing, constant support and encouragement from my advisor, people in our research group

and family members during my study at Auburn University.

First and foremost I offer my sincerest gratitude to my advisor Dr. Xiao Qin, who

has supported me throughout my thesis with his patience and knowledge whilst allowing

me the room to work in my own way. I attribute the level of my Masters degree to his

encouragement and effort and without him this thesis would not have been completed or

written. One simply could not wish for a better or friendlier advisor.

I am also grateful to Dr. James Cross and Dr. Sanjeev Baskiyar for serving as members

of my advisory committee. I would like to thank the Department of Computer Science and

Software Engineering and Auburn University for providing such great resources and facilities.

A very special thanks goes out to my research group members without their support

and help I would not have been able to finish my research. I doubt that I will ever be able

to convey my appreciation fully, but I owe everyone of the group my eternal gratitude.

Finally, I would like to thank my family for the love, encouragement and support they

provided me through my entire life to achieve my goals.

iv

Table of Contents

Abstract . ii

Acknowledgments . iv

List of Figures . viii

List of Tables . xi

1 Introduction . 1

1.1 Recommender Systems . 1

1.2 Approaches to solve recommendation problem 2

1.2.1 Data Mining . 2

1.2.2 Machine Learning . 3

1.3 Collaborative Filtering . 3

1.3.1 Model based . 4

1.3.2 Memory based . 4

1.3.3 Why memory based approach? . 5

1.4 Hadoop Map-Reduce Framework . 5

1.5 Contribution . 6

1.6 Organization . 7

2 Background . 8

2.1 Recommendation system algorithms . 8

2.1.1 Content-based filtering . 9

2.1.2 Collaborative filtering . 9

2.2 Collaborative filtering algorithm . 10

2.3 Apache Hadoop Framework . 11

2.3.1 Hadoop Top Architecture . 11

v

2.4 Hadoop Distributed File System . 13

2.4.1 Architecture . 13

2.4.2 NameNode . 14

2.4.3 DataNode . 15

2.4.4 Secondary NameNode . 16

2.4.5 Replica Management Block . 16

2.5 Map-Reduce Model . 17

3 Motivation . 20

3.1 Motivations for new approach . 20

3.2 Problem Statement . 21

3.3 Contributions . 22

4 Design . 23

4.1 Approach to solve problem . 23

4.2 Sequential Approach . 24

4.3 Algorithm design using Map reduce . 26

4.3.1 Data Preprocessing . 27

4.3.2 Similarity Computation . 30

4.3.3 Deriving Recommendations . 30

5 Implementation . 33

5.1 Map Reduce Jobs . 33

5.1.1 Input data for map reduce jobs . 33

5.2 Compute Similarity between user pairs . 34

5.2.1 Map-reduce Job2 . 35

5.3 Derive batch recommendation . 39

5.3.1 Map-reduce Job3 . 39

5.3.2 Map-reduce Job4 . 40

5.3.3 Map-reduce Job5 . 42

vi

5.3.4 Map-reduce Job6 . 45

5.3.5 Map-reduce Job7 . 45

6 Experiments . 49

6.1 Single Node Cluster . 49

6.1.1 Test Data:Item-wise partition . 50

6.1.2 Test Data:Item-wise and User-wise partition 51

6.2 Multi Node Cluster . 51

6.2.1 2Node Cluster . 52

6.2.2 3Node Cluster . 52

6.2.3 Comparison of results . 53

6.3 Limitations . 54

7 Future Work . 55

8 Conclusion . 56

Bibliography . 57

vii

List of Figures

2.1 High-level Hadoop Architecture . 12

2.2 Hadoop Architecture . 14

2.3 Map Reduce Model . 19

4.1 Computes items rated by the user . 25

4.2 Compute similarity between user-pair . 25

4.3 Input Data Set . 28

4.4 Reorganized Data Set . 28

4.5 Partitioned Data Set Part1 . 28

4.6 Partitioned Data Set Part2 . 29

4.7 Item and User-Based partition . 29

4.8 Algorithm to Compute Similarity in parallel . 30

4.9 Parallel Processing of data by multiple nodes 31

4.10 Derive Recommendation from raw data and similarity computation results . . . 32

5.1 Input data format after pre-processing of data 34

5.2 MRJob1-Compute the components for similarity calculation 35

viii

5.3 Output of MR1 with sample data set . 36

5.4 MRJob2 - compute similarity using the components 37

5.5 Output of MR2 with sample data set . 38

5.6 MRJob3- combine similarity of users to generate a common key user-item . . . 40

5.7 Output of MR Job3 with sample data set . 41

5.8 MRJob4 - generate a common key user-item with user ratings as value 41

5.9 Output of MR4 with sample data set . 42

5.10 MRJob5- combine user ratings and similarities to compute ranking 43

5.11 Output of MR5 with sample data set . 44

5.12 MRJob6- sum up the item rankings by item . 45

5.13 Output of MR6 with sample data set . 46

5.14 MRJob7- combine the rankings of same user and sort them 47

5.15 Output of MR7 with sample data set . 48

6.1 Command to copy data to HDFS . 49

6.2 Command to run hadoop job on hadoop cluster 50

6.3 Single Node Cluster Test Data1 . 50

6.4 Single Node Cluster Test Data 2 . 51

6.5 2 Node Cluster Map reduce job processing times 52

ix

6.6 3 Node Cluster Map reduce job processing times 53

6.7 Map reduce job processing times for input data set 2 53

6.8 Map reduce job processing times for input data set 2 54

x

List of Tables

2.1 Map reduce key value pairs . 18

xi

Chapter 1

Introduction

Recommendations have become extremely common in recent years, and are applied in

a variety of applications. The most popular ones are probably movies, music, news, books,

research articles, search queries, social tags, and products in general. Most recommenda-

tion algorithms start by finding a set of customers who purchased and rated items overlap

with the users purchased and rated items. The algorithm aggregates items from these sim-

ilar customers, eliminates items the user has already purchased or rated, and recommends

the remaining items to the user. To generate accurate and appropriate recommendations,

the systems have to process large data sets. Data-intensive applications like these need to

access ever-expanding data sets ranging from a few gigabytes to several terabytes or even

petabytes. Google, for example, leverages the Map-Reduce model to process approximately

twenty petabytes of data per day in a parallel fashion. The Map-Reduce programming

framework can simplify the complexity of running parallel data processing functions across

multiple computing nodes in a cluster, because scalable Map-Reduce helps programmers to

distribute programs and have them executed in parallel. Map-reduce automatically handles

the gathering of results across multiple machines and returns a single result or set. More

importantly, the Map-Reduce platform can offer fault tolerance that is entirely transparent

to programmers. Right now, Map-Reduce is a practical and attractive programming model

for parallel data processing in high-performance cluster computing environments.

1.1 Recommender Systems

Recommender systems or recommendation systems (sometimes replacing ”system” with

a synonym such as platform or engine) are a subclass of information filtering system that

1

seek to predict the ’rating’ or ’preference’ that user would give to an item. Recommendation

systems changed the way inanimate websites communicate with their users. Rather than

providing a static experience in which users search for and potentially buy products, recom-

mender systems increase interaction to provide a richer experience. Recommender systems

identify recommendations autonomously for individual users based on past purchases and

searches, and on other users’ behaviour. Instead of providing a generic experience to every

user, recommender systems personalize the experience of each user by surfacing content that

is particularly relevant to their observed interests. If implemented correctly, recommender

systems can be extremely effective at increasing engagement and purchasing. Today, many of

the worlds most heavily trafficked websites, such as Netflix, LinkedIn, Amazon, and Twitter

employ recommender systems to engage their users with relevant and personalized content.

1.2 Approaches to solve recommendation problem

Recommender systems apply the knowledge discovery techniques to the problem of

making personalized recommendations. Recommender systems aim to solve this problem by

taking in a users past actions, such as articles theyve read or products theyve purchased and

rated, to identify potential user preferences. Recommender algorithms are software tools

and techniques providing suggestions for items to be of use to a user. The suggestions relate

to various decision-making processes, such as what items to buy, what music to listen to,

or what online news to read. Many different algorithmic approaches have been applied to

the basic problem of making accurate and efficient recommender systems. Few of them are

described below.

1.2.1 Data Mining

Data Mining is an analytic process designed to explore data (usually large amounts of

data - typically business or market related in search of consistent patterns and/or systematic

relationships between variables, and then to validate the findings by applying the detected

2

patterns. The overall goal of the data mining process is to extract information from a data set

and transform it into an understandable structure for further use. Data mining algorithms

can also be used to solve recommendation system problems.

1.2.2 Machine Learning

Machine learning is a scientific discipline that explores the construction and study of

algorithms that can learn from data. Such algorithms operate by building a model from

example inputs and using that to make predictions or decisions, rather than following strictly

static program instructions. Many of the algorithms used to solve recommendation systems

problems come from the field of machine learning, a sub-field of artificial intelligence that

produces algorithms for learning, prediction, and decision-making. Collaborative Filtering

algorithms are one category of machine learning algorithms.

1.3 Collaborative Filtering

Collaborative filtering is the most successful recommender system technology to date,

and is used in many of the most successful recommender systems on the Web. Collaborative

filtering systems recommend products to a target customer based on the opinions of other

customers. These systems employ statistical techniques to find a set of customers known as

neighbours, that have a history of agreeing with the target user (i.e., they either rate different

products similarly or they tend to buy similar set of products). Once a neighbourhood

of users is formed, these systems use several algorithms to produce recommendations. To

understand the algorithm and the recommendation process better, it is beneficial to introduce

basic terms and become familiar with approaches, methods, goals, tasks, challenges and

evaluation of recommender systems.

Items and users are the two principal entities employed in every recommender sys-

tem. The term item refers to any product such as a song, a movie, a software package or an

3

activity that recommendation system is to recommend. Users are people willing to utilize

recommendations when providing opinions about various items. The goal of collaborative

filtering algorithms is to suggest new items or to predict the utility of certain item for a

particular user based on users previous behaviour and similarity with others users’. Pre-

diction is a numeric value expressing the predicted likeliness of an item for the active user.

Recommendation is a list of items that the active users will like most. This is also known as

top N recommendations. The collaborative filtering algorithms can further be classified into

two main categories Model based (item-based) and Memory based (user-based). Collabo-

rative filtering methods means user preferences are inferred solely from the items they and

other users in the dataset have interacted with. Model-based approaches predict the rating

of the items by analysing part of the data set, where as the Memory-based approach uses

the complete data set to derive recommendations and hence it is more accurate.

1.3.1 Model based

Model based collaborative filtering provide item based recommendation by first devel-

oping a model of user ratings. Algorithms in this category take a probabilistic approach and

compute the expected value of a user prediction given his/her ratings on the other items.

The model building process is performed by different machine learning algorithms such as

Bayesian network, clustering and rule based approaches.

1.3.2 Memory based

Memory based algorithms use the entire user-item database to generate raking or top n

recommendations. These systems employ statistical techniques to find a set of users known

as neighbours having similarities with the target user (they either rate the items similarly or

tend to buy similar items). Once the similar users are identified ranking of items by these

users is determined. After calculating ranking, the items with top ranks are computed. Since

this type of collaborative filtering needs to process huge amounts of data, the algorithm is

4

designed to be implemented using Hadoop map-reduce framework to utilizing its ability of

processing large volumes of data.

1.3.3 Why memory based approach?

User-similarity based recommender has an advantage over other approach like model

based in providing recommendations. If the recommendations are solely based the active

user’s history, they might not be able to recommend new items or new areas that the user

did not visit so far. On the other hand, if the recommendations are based on similarities

among users, the user will receive a combined list of recommendations that will cover the

areas that the user might have never accessed but still might be interested in them as the

users similar to his behaviour rated them. As the memory based approach uses the entire

interaction history, the accuracy of rankings of items is more likely to be high when compared

with model-based approach as they predict the ratings based on part of data set.

1.4 Hadoop Map-Reduce Framework

Map-reduce is a programming model designed for processing large volumes of data in

parallel by dividing the work into a set of independent tasks. The model does not work by

sharing the data arbitrarily between the nodes. Instead, the data elements in the Map-reduce

are immutable. The data is written only once and read many times. The data read from

the input files in HDFS (Hadoop Distributed File System) are processed and converted to

intermediate values and further processed to generate outputs. Any changes on the input

files during this process are not reflected on the actual files.

As the name suggests Map-Reduce programs process the input data into two stages-

Map stage and Reduce stage. In the mapping stage, the mapper takes one item at a time

from the input list of data elements that are fetched from the HDFS and transforms to an

intermediate output data element. The Map operations are paralleled when input file set

5

is first split into several pieces called File Splits or Input Splits. Every mapper would have

exactly one input split; the number of mappers created is dependent on the number of input

splits. Splitting the input file set helps in parallelizing the processing as the mappers do

not have to synchronize and contend to read the file. Moreover, mappers do not have any

identities of their own. Every mapper that receives the input split processes into a specified

format.

The input split parser (or Record Reader) in the mapper parses the split and generates

the key-value pairs. The key-value pairs are processed in parallel by the mappers, one at

a time to generate exactly one intermediate key-value pair for every (key,value) pair. The

output (key,value) pair of the mapper serves as input to the reducer. When the mapping

phase is complete, the intermediate (key, value) pairs must be exchanged between machines to

send all values with the same key to a single reducer. The reducer receives the intermediate

data generated by the mapper as input, combines the values of all mapper outputs and

generates a single output data corresponding to the input data fetched by the mapper. The

reducers reduce a key value that is unique to each other, so reducers are same as mappers in

the sense that they do not have to communicate with each other and also remain anonymous

to each other.

1.5 Contribution

In this research, a specific type of machine learning algorithm called collaborative fil-

tering algorithms, is researched and a new parallel approach for user-based collaborative

recommendation algorithm is proposed based on user similarity. The user-based collabora-

tive filtering algorithm is implemented using Hadoop Map-Reduce framework by writing a

sequence of map-reduce jobs to derive the raking of items. The proposed algorithm uses

the Jaccard similarity to find the most accurate recommendations for any type of data with

increased performance and also increased load.

6

The entire data set is first processed to identify the similarities among users. This

algorithm initially computes similarities between users from the data set and recommends

predictions based on similarities. Map reduce jobs are written to process the data in parallel

on the cluster. Map jobs run on each cluster simultaneously and pass on the results to

the reduce jobs. The reduce jobs combine the results from map jobs and form the final

result. The map reduce approach enables the algorithm to compute the recommendations

in less amount of time as there will be many mappers running in parallel and finish the

computation.

Experiments are conducted by varying number of nodes and amount of data used on

the clusters and metrics are recorded. The results are compared with a single node variant

which shows significant improvement in performance with the use of Map-Reduce jobs on a

cluster of nodes.

1.6 Organization

Before going into the implementation details of the algorithm , we give a general intro-

duction to Map-Reduce and HDFS in Chapter 2. In Chapter 3, we discuss the motivation for

the Hadoop map-reduce version of user-based collaborative filtering algorithm. In Chapter

4, we present the design of the algorithm and in Chapter 5 we discuss the implementation

details of map-reduce jobs to derive the recommendation for users. In addition to that we

also describe the input and output formats at each map-reduce phase of execution. In Chap-

ter 6, we provide the experiments along with the results of this algorithmic approach. We

discuss the future work that can be done in this research in Chapter 7. Finally, Chapter 8

summarizes the main contributions and findings of this research.

7

Chapter 2

Background

2.1 Recommendation system algorithms

Most large-scale commercial and social websites recommend options, such as products

or people to connect with, to users. Recommendation engines sort through massive amounts

of data to identify potential user preferences. Most recommender systems take either of

two basic approaches: collaborative filtering or content-based filtering. Many algorithmic

approaches are available for recommendation engines.Most of the algorithms come from the

field of machine learning, a sub-field of artificial intelligence that produces algorithms for

learning, prediction, and decision-making.

Recommendation algorithms are a form of unsupervised learning that can find struc-

ture in a set of seemingly random (or unlabeled) data. In general, they work by identifying

similarities among items or users by calculating their distance from other users or items in

a feature space. Feature space indicates the user and item data. Broadly speaking, any

software system which actively suggests an item to purchase, to subscribe, or to invest can

be regarded as a recommender system. In this broad sense, an advertisement can also be

a recommendation. We mainly consider, however, a narrower definition of personalized rec-

ommendation system that base recommendations on user specific information. There are

two main approaches to personalized recommendation systems: content-based filtering and

collaborative filtering.

8

2.1.1 Content-based filtering

Content-based filtering, also referred to as cognitive filtering, recommends items based

on a comparison between the content of the items and a user profile. It makes explicit use

of domain knowledge concerning users or items. The domain knowledge may correspond to

user information such as age, gender, occupation, or location, or to item information such as

genre, producer, or length in the case of move recommendation. The content of each item is

represented as a set of descriptors or terms, typically the words that occur in a document.

The user profile is represented with the same terms and built up by analysing the content of

items that have been seen by the user. The ability of a learning method to adapt to changes

in the users preferences also plays an important role. The learning method has to be able

to evaluate the training data, as instances do not last forever but become obsolete as the

users interests change. The data that these algorithms analyse will have to be updated very

frequently as the training data becomes obsolete.

2.1.2 Collaborative filtering

Collaborative filtering arrives at a recommendation that’s based on a model of prior

user behaviour. The model can be constructed solely from a single user’s behaviour or

more effectively also from the behaviour of other users who have similar traits. When

it takes other users’ behaviour into account, collaborative filtering uses group knowledge

to form a recommendation based on like users. In essence, recommendations are based

on an automatic collaboration of multiple users and filtered on those who exhibit similar

preferences or behaviours. Memory-based collaborative filtering techniques rely heavily on

simple similarity measures (Cosine similarity, Pearson correlation, Jaccard coefficient) to

match similar people or items together. If we have a huge matrix with users in one dimension

and items in another, with the cells containing votes or likes, then memory-based techniques

use similarity measures on two vectors (rows or columns) of such a matrix to generate a

number representing similarity.

9

2.2 Collaborative filtering algorithm

Collaborative Filtering algorithm is a classic personalized recommendation algorithm;

its widely used in many commercial recommender systems [1]. Collaborative Filtering algo-

rithm is an algorithm based on the following three assumptions idea: People have similar

preferences and interests; their preferences and interests are stable; we can predict their

choice according to their past preferences. Because of the above assumptions, the collab-

orative filtering algorithm is based on the comparison of one users behaviour with other

users behaviour, to find his nearest neighbours, and according to his neighbours interests or

preferences to predict his interests or preferences.

Collaborative filtering systems are usually categorized into two subgroups: memory-

based and model-based methods. Memory-based methods simply memorize the rating matrix

and issue recommendations based on the relationship between the queried user and item and

the rest of the rating matrix. Model-based methods fit a parameterized model to the given

rating matrix and then issue recommendations based on the fitted model. The most popular

memory-based Collaborative Filtering methods are neighbourhood-based methods, which

predict ratings by referring to users whose ratings are similar to the queried user, or to items

that are similar to the queried item. This is motivated by the assumption that if two users

have similar ratings on some items they will have similar ratings on the remaining items. Or

alternatively if two items have similar ratings by a portion of the users, the two items will

have similar ratings by the remaining users. Specifically, user-based Collaborative Filtering

methods identify users that are similar to the queried user, and compute the desired rating

to be the average ratings of these similar users. Similarly, item-based Collaborative Filtering

identify items that are similar to the queried item and estimate the desired rating to be the

average of the ratings of these similar items. Neighbourhood methods vary considerably in

how they compute the weighted average of ratings.

10

The first step of collaborative filtering algorithm is to obtain the users history profile,

which can be represented as a ratings matrix with each entry the rate of a user given to

an item [8]. A ratings matrix consists of a table where each row represents a user, each

column represents a specific item, and the number at the intersection of a row and a column

represents the users rating value. The absence of a rating score at this intersection indicates

that user has not yet rated the item. Owing to the existence problem of sparse scoring, we use

the list to replace the matrix. The next step is to calculate the similarity between the users

and identify the similar users. There are many similarity measure methods. The calculation

process of Collaborative Filtering algorithm would consume intensive computing time and

computer resources. When the data set is very large, the calculation process would continue

for several hours or even longer. Therefore, we propose new method that is to implement

the Collaborative Filtering algorithm on Hadoop platform to reduce the computation time

of the similarity.

2.3 Apache Hadoop Framework

Apache Hadoop is an open source software project that enables the distributed process-

ing of large data sets across clusters of commodity servers. It is designed to scale up from

a single server to thousands of machines, with a very high degree of fault tolerance. Rather

than relying on high-end hardware, the resiliency of these clusters comes from the softwares

ability to detect and handle failures at the application layer. Hadoop enables a computing

solution that is scalable, cost effective, and flexible and fault tolerant.

2.3.1 Hadoop Top Architecture

Hadoop is implemented using relatively simple model of Master Slave design pattern.

There are two masters in the architecture, which are responsible for the controlling the

slaves across the cluster. The first master is the NameNode, which is dedicated to manage

the HDFS and control the slaves that store the data. Second master is JobTracker, which

11

manages parallel processing of HDFS data in slave nodes using the MapReduce programming

model. The rest of the cluster is made up of slave nodes, which runs both DataNode and

TaskTracker daemons. DataNodes obey the commands from its master NameNode and store

parts of HDFS data decoupled from the meta-data in the NameNode. TaskTrackers on the

other hand obeys the commands from the JobTracker and does all the computing work

assigned by the JobTracker. Finally, Client machines are neither Master nor a Slave. The

role of the Client machine is to give jobs to the masters to load data into HDFS, submit

Map Reduce jobs describing how that data should be processed, and then retrieve or view

the results of the job when it is finished.

Figure 2.1: High-level Hadoop Architecture

Figure 2.1 shows the basic organization of the Hadoop cluster. The client machines

communicate with the NameNode to add, move, manipulate, or delete files in HDFS. The

NameNode in turn calls the DataNodes to store, delete or make replicas of data being

added to HDFS. When the client machines want to process the data in the HDFS, they

communicate to the JobTracker to submit a job that uses MapReduce. JobTracker divides

12

the jobs to map/reduce tasks and assigns it to the TaskTracker to process it. Typically, all

nodes in Hadoop cluster are arranged in the air-cooled racks in a data center. The racks are

linked with each other with the help of rack switches, which runs on TCP/IP.

2.4 Hadoop Distributed File System

The Hadoop Distributed File System or HDFS is a distributed file system designed to

run on commodity hardware. HDFS is the primary distributed storage used by Hadoop

applications on clusters. Although HDFS has many similarities with existing distributed

file systems, the differences between HDFS and other systems are significant. For example,

HDFS is highly fault-tolerant and is designed to deploy on cost-effective clusters. HDFS -

offering high throughput access to application data - is suitable for applications that have

large data sets. HDFS relaxes several POSIX requirements to enable streaming access to file

system data. HDFS is not fully POSIX compliant, because the requirements for a POSIX

file system differ from the design goals of Hadoop applications. HDFS trades fully POSIX

compliance for increased data throughput, since HDFS was designed to handle very large

files.

2.4.1 Architecture

HDFS uses master-slave architecture, in which a master is called NameNode and slaves

are referred to as DataNodes. Figure 2.2 shows a diagram representing the architecture of

HDFS. Basically, an HDFS cluster consists of a single NameNode, which manages the file

system namespace and regulates access of clients to files. In addition, there are a number

of DataNodes. Usually, each node in a cluster has one DataNode that manages storage of

the node on which tasks are running. HDFS exposes file system namespace and allows user

data to be stored in files. Internally, a file is split into one or more blocks stored in a set of

DataNodes.

13

Figure 2.2: Hadoop Architecture

2.4.2 NameNode

The Namenode is the master of HDFS that maintains and manages the blocks present

on the DataNodes(slave nodes). It keeps the directory tree of all files in the file system, and

tracks where across the cluster the file data is kept. It does not store the data of these files

itself. There is just one Namenode in Gen1 Hadoop, which is the single point of failure in

the entire Hadoop HDFS cluster. The HDFS architecture is built in such a way that the

user data is never stored in the Namenode.

These are the following functions of a NameNode: The NameNode maintains and exe-

cutes the file system namespace. If there are any modifications in the file system namespace

or in its properties, this is tracked by the NameNode

• It directs the Datanodes (Slave nodes) to execute the low-level I/O operations.

• It keeps a record of how the files in HDFS are divided into blocks, in which nodes these

blocks are stored and by and large the NameNode manages cluster configuration.

• It maps a file name to a set of blocks and maps a block to the DataNodes where it is

located.

14

• It records the metadata of all the files stored in the cluster, e.g. the location, the size

of the files, permissions, hierarchy, etc.

• With the help of a transactional log, that is, the EditLog, the NameNode records each

and every change that takes place to the file system metadata. For example, if a file is

deleted in HDFS, the NameNode will immediately record this in the EditLog.

• The NameNode is also responsible to take care of the replication factor of all the blocks.

If there is a change in the replication factor of any of the blocks, the NameNode will

record this in the EditLog.

• NameNode regularly receives a Heartbeat and a Blockreport from all the DataNodes

in the cluster to make sure that the datanodes are working properly. A Block Report

contains a list of all blocks on a DataNode.

• In case of a datanode failure, the Namenode chooses new datanodes for new replicas,

and balances disk usage and also manage the communication trafic to the datanodes.

2.4.3 DataNode

A DataNode stores data in the HDFS. A functional filesystem has more than one DataN-

ode, with data replicated across them. On startup, a DataNode connects to the NameNode;

spinning until that service comes up. It then responds to requests from the NameNode for

filesystem operations. These are the following functions of a DataNode:

• Datanodes perform the low-level read and write requests from the file systems clients.

• They are also responsible for creating blocks, deleting blocks and replicating the same

based on the decisions taken by the NameNode.

• They regularly send a report on all the blocks present in the cluster to the NameNode.

• Datanodes also enables pipelining of data.

15

• They forward data to other specified DataNodes.

• Datanodes send heartbeats to the NameNode once every 3 seconds, to report the overall

health of HDFS.

• The DataNode stores each block of HDFS data in separate files in its local file system.

• When the Datanodes gets started, they scan through its local file system, creates a list

of all HDFS data blocks that relate to each of these local files and send a Blockreport

to the NameNode.

2.4.4 Secondary NameNode

The NameNode is the single point of failure for the Hadoop cluster, so the HDFS copies

the Namespace in NameNode periodically to a persistent storage for reliability and this

process is called checkpointing. Along with the NameSpace it also maintains a log of the

actions that change the NameSpace, this log is called journal. The checkpoint node copies

the NameSpace and journal from NameNode to applies the transactions in journal on the

Namespace to create most up to date information of the namespace in NameNode. The

backup node however copies the Namespace and accepts journal stream of Namespace and

applies transactions on the namespace stored in its storage directory. It also stores the up-to-

date information of the Namespace in memory and synchronizes itself with the NameSpace.

When the NameNode fails, the HDFS picks up the Namespace from either BackupNode or

CheckPointNode.

2.4.5 Replica Management Block

HDFS makes replicas of a block with a strategy to enhance both the performance and

reliability. By default the replica count is 3, and it places the first block in the node of the

writer, the second is placed in the same rack but difierent node and the third replica is placed

in difierent rack. In the end, no DataNode contains more than one replica of a block and

16

no rack contains more than two replicas of same block. The nodes are chosen on the basis

of proximity to the writer, to place the blocks. There are situations when the blocks might

be over-replicated or under-replicated. In case of over-replication the NameNode deletes the

replicas within the same rack first and from the DataNode, which has least available space.

In case of under-replication, the NameNode maintains a priority queue for the blocks to

replicate and the priority is high for the least replicated blocks. There are tools in HDFS

to maintain the balance and integrity of the data. Balancer is a tool that balances the data

placement based on the node disk utilization in the cluster. The Block Scanner is a tool

used to check integrity using checksums. Distcp is a tool that is used for inter/intra cluster

copying.

2.5 Map-Reduce Model

The Map-reduce model was designed for unstructured data processed by large clusters

of commodity hardware; the functional style of Map-reduce automatically parallelizes and

executes large jobs over a computing cluster. The Map-reduce model is capable of processing

many terabytes of data on thousands of computing nodes in a cluster. Map-reduce auto-

matically handles the messy details such as handling failures, application deployment, task

duplications, and aggregation of results, thereby allowing programmers to focus on the core

logic of applications. Each Map-reduce application has two major types of operations - a

map operation and a reduce operation. Map-reduce allows parallel processing of the map

and reduction operations in each application. Each mapping operation is independent of the

others so all mappers can be performed in parallel on multiple machines. Similarly, a set

of reduce operations can be performed in parallel during the reduction phase. All outputs

of map operations that share the same key are presented to the same reduce operation.

Map-reduce can be applied to process significantly larger datasets than commodity servers.

For example, a large computing cluster can use Map-reduce to sort a petabyte of data in

only a few hours. Parallelism also offers some possibility of recovering from partial failure

17

of computing nodes or storage units during the operation. In other words, if one mapper or

reducer fails, the work can be rescheduled, assuming the input data is still available. Input

data sets are, in most cases, available even in presence of storage unit failures, because each

data set normally has three replicas stored in three individual storage units. A Map-Reduce

program has two major phases - a map phase and a reduce phase. The map phase applies

user specified logic to input data. The results, called as intermediate results, are then fed into

the reducer phase so the intermediate results can be aggregated and written as a final result.

The input data, intermediate result, and final result are all represented in the key/value pair

format [39]. Figure 2.3 shows an executional example of the Map-Reduce model. As shown

by the diagram during their respective phases multiple map and reduce jobs are executed in

parallel on multiple computing nodes. Map-Reduce is also usually described in the form of

the following functions summarized in Table 2.1

Input Output
map (k1,v1) list(k2,v2)

reduce (k2,list(v2)) list(k3,v3)

Table 2.1: Map reduce key value pairs

18

Figure 2.3: Map Reduce Model

19

Chapter 3

Motivation

3.1 Motivations for new approach

An increasing number of popular applications have become data-intensive in nature. In

the past, the World Wide Web has been adopted as an ideal platform for developing data-

intensive applications, since the communication paradigm of the Web is sufficiently open and

powerful. Representative data-intensive Web applications include, but not limited to, search

engines, online auctions, webmails, and online retail sales. Data-intensive applications like

data mining and web indexing need to access ever-expanding data sets ranging from a few

gigabytes to several terabytes or even petabytes. Google, for example, leverages the Map-

Reduce model to process approximately twenty petabytes of data per day in a parallel fashion

[14]. Map-Reduce is an attractive model for parallel data processing in high-performance

cluster computing environments. The scalability of Map-Reduce is proven to be high, because

a Map-Reduce job is partitioned into numerous small tasks running on multiple machines in

a large-scale cluster.

Collaborative Filtering (CF) algorithm is a widely used personalized recommendation

technique in commercial recommendation systems [7], [8], and many works have been down

in this field to improve the performance. However, a big problem of CF is its scalability,

i.e., when the volume of the dataset is very large, the computation cost of CF would be

very high. Recently, cloud computing has been the focus to overcome the problem of large-

scale computation task. Cloud computing is the provision of dynamically scalable and often

virtualized resources as a service over the Internet [5]. Users need not have knowledge of,

expertise in, or control over the technology infrastructure in the cloud that supports them.

20

Cloud computing services often provide common business applications online that are ac-

cessed from a web browser, while the software and data are stored on the servers. In order to

solve scalability problem of recommender system, we implement the Collaborative Filtering

algorithm on the cloud-computing platform. There are several cloud computing platforms

available, for example, the Dryad [21] of Microsoft, the Dynamo [22] of amazon.com and

Nettune [23] of Ask.com etc. In this paper, we choose the Hadoop platform as the base

of our implementation. Because the Hadoop platform [24], [25] is an open source cloud-

computing platform, it implements the Map-Reduce framework that has been successfully

evaluated by Google.com. The Hadoop platform uses a distributed file system, Hadoop Dis-

tributed File System (HDFS)[26], to provide high throughput access to application data.

Using the Hadoop platform, we can easily make the program execute in parallel, and the

Map-Reduce framework allows the user to break a big problem into many small problems,

then the small problems could be handled by the Hadoop platform, thus improving the speed

of computing. The Hadoop Map-Reduce framework solves the scalability issue for systems

dealing with large data sets. The ability of Hadoop framework to process huge data very

fast, motivated us to utilize its capability to generate recommendations by converting the

sequential approach to parallel that processes the huge data. The algorithm is divided into

multiple parts to identify the components that can take the advantage of parallelization.

Motivation to select the user-based collaborative filtering approach to solve the recommen-

dation system problem is that the user-based similarities especially neighborhood algorithm

derive the most accurate predictions to the user based on the tastes of similar users.

3.2 Problem Statement

Let A be U x I matrix holding all known interactions between a set of users U and a

set of items I. A user u is represented by his item interaction history a-ui the u-th row of

A. The top-N recommendations for this user correspond to the first N items selected from a

21

ranking r u of all items according to how strongly they would be preferred by the user. This

ranking is inferred from patterns found in A.

3.3 Contributions

In this research, we study the implementation details of collaborative filtering algorithm

on cloud computing platform. The work we have done is summarized as follows. Firstly,

we designed a user based collaborative filtering algorithm for the Map-Reduce program

framework, and implement the algorithm on the Hadoop platform. Secondly, we tested

our implementation under several configurations. Multiple Map-Reduce jobs are written

to compute similarities and derive recommendations and these jobs are run on Hadoop

cluster. The user-based Collaborative Filtering algorithm that is based on users preferences

is implemented using parallel programming environment of Hadoop map-reduce framework.

The algorithm processes the user and item data to compute similarities and then generate

recommendations for each user based on similarities computed. The idea for map reduce

algorithm is based on basic map reduce paradigm i.e, to split the problem into smaller parts

and compute in parallel. The data is partitioned in a way to support the parallel similarity

computation. Thus taking the advantage of map-reduce the similarity computation which is

the key for resource consumption is parallelized.

22

Chapter 4

Design

In this chapter, we discuss about user-based collaborative filtering algorithm and its

map-reduce version. This section discusses the step-by-step development of our algorithmic

framework. We start with showing how to conduct distributed user similarities calculation

for our simple model that uses binary data. After that we generalize the approach to non-

binary data to compute the rankings. Finally, we discuss how to merge the similarity matrix

with user-item interaction history and generate batch recommendation. Then we can select

the top ranked items to recommend. To achieve linear scalability with a growing number of

users we can add more nodes to process the data.

4.1 Approach to solve problem

In order to get a clearer picture of the neighbourhood approach, it is useful to express

the algorithm in terms of linear algebraic operations. Neighbourhood-based methods find

and rank items that have been preferred by other users who share parts of the interaction

history au. Let A be a binary matrix with Aui = 1 if a user u has interacted with an item i

and Aui = 0 otherwise. In the generalization, the Aui value is the rating given by the user

instead of 1.

For pairwise comparison between users, a dot product of rows of A gives the number

of items that the corresponding users have in common. Similarly, a dot product of columns

of A gives the number of users who have interacted with both items corresponding to the

columns. When computing recommendations for a particular user with User-Based Col-

laborative Filtering [1], first a search for other users with similar taste is conducted. This

23

translates to computing the dot product of the matrix A by the users interaction history au,

which results in a similarity ranking of all users with u. Secondly, the active users preference

for an item is estimated by computing the weighted sum of all other users preferences for this

item and the corresponding ranking. In our simple approach this translates to multiplying

the rating of all users with similarity matrix computed in previous step to generate ranking.

ru gives the ranking of all items for user u and top N items with highest ranking can be

selected and recommended to the user.

Notation hints: au denotes the u-th row of the interaction matrix A, ai denotes the i-th

column of A, U denotes the number of users which is equal to the number of rows in A.

for-each i v denotes iteration over the indexes of non-zero entries of a vector v, for-each (i,

k) v denotes iteration over the indexes and the corresponding non-zero values of a vector v.

4.2 Sequential Approach

The standard sequential approach [19] for computing the similarity of users S. S (u, v)

is defined as

Simu,v = dot(u, v)/ItemsRatedu + ItemsRatedv − dot(u, v) (4.1)

dot(u, v) = vector(u).vector(v) (4.2)

ItemsRated(u) = computes the count of items rated by users u

To get the similarity of users we need to compute the dot product of each row (user

vector) of A with each column (another user vector) of A. The algorithm below shows the

computation of the similarity among the users by first computing the ItemsRated by each

user and then computing the dot product of users.

24

Figure 4.1: Computes items rated by the user

The algorithm shown in 4.1 computes the count of items rated by the user. This is a

component used to compute similarity of a user-pair.

Figure 4.2: Compute similarity between user-pair

The sequential algorithm takes more time with the increasing number of users and items.

The components calculated in the previous algorithm are used here to compute the similarity.

If we wish to distribute the computation across several machines on a shared-nothing cluster,

this approach becomes infeasible, as it requires random access to both users and items in its

inner loops. Its random access pattern cannot be realized efficiently when we have to work

on partitioned data. In order to improve the runtime speed-up proportional to the number

of machines in the cluster the algorithm to should be modified to a parallel version.

The standard sequential algorithm cannot be used for parallel version as the compu-

tation of the dot product of the users requires random access to the rows and columns of the

user-item matrix A. The algorithm to compute the dot product is the most resource con-

suming part of similarity computation and has to be addressed to improve the performance.

One solution to this problem is to pre-process the data in a way that the computation

can take place either by using only row or column data of the matrix. Then the data is

25

processed by row-wise across multiple machines and can achieve parallelism of the similarity

computation. After applying the pre-processing technique we design a use map reduce

version to compute the similarity and derive recommendations using the similarity matrix

of the users.

4.3 Algorithm design using Map reduce

In order to scale out the similarity computation from sequential algorithm, it needs to

be phrased as a parallel algorithm, to make its runtime speed-up proportional to the number

of machines in the cluster. This is not possible with the standard sequential approach, as

it requires random access to the rows and columns of A in the inner loops of algorithm,

which cannot be efficiently realized in a distributed, shared- nothing environment where

the algorithm has to work on partitioned data. We need to find a way of executing this

multiplication that is better suited to the Map-Reduce paradigm and has an access pattern

that is compatible to partitioned data. The solution is to split the computation into different

parts.

Multiple map-reduce jobs can run mappers in parallel to compute different compo-

nents of the equation and reduce jobs finally compute the similarity and ratings. Each row

of the matrix represents each users information. When we transpose the matrix, each row of

the user contains all the user ratings for a specific item. Because the u-th column of AT is

identical to the u-th row of A, we can compute the common ratings of one user with another

user by just processing each row of matrix for each item. The data is pre-processed such

that all users ratings of one item is available on one node so that the computation happens

with all users. Data is partitioned by hadoop row wise, each row creates a mapper, the

computation for each item is parallelized and all the results are combined in reducer to get

the overall rating summary of all items for each user pair. We discuss more details of the

26

algorithm like data pre-processing, data partitioning, map reduce jobs, input and output

formats of the jobs in the further sections.

4.3.1 Data Preprocessing

To parallelize the similarity calculation, the computation needs to be carried out in

small parts on multiple machines. The key is to pre-process data such that all the data

needed to complete on small task need to be present in one node. In our problem, we need

to compute the user-similarity for each pair of users. So all the user data should be available

on one node. All the item ratings on the same node are not need to compute the similarity.

Hence, the data partition can be item based. Each node can just have the data of some

items. The results of these small tasks can be clubbed together to compute similarity for a

pair of users.

Item-based data partition The dataset we have is a user-item matrix, which has

ratings for each item given by all the users. We need to reorganize the data having each

item ratings as one of row data so that the data can be partitioned in the way that benefits

the algorithm.

The data shown in figure 4.3 is reorganized to be available for processing by hadoop.

The data is simply the transpose of the previous matrix. It is very easy to generate the data

in this format from the available format as shown in figure 4.3.

The data set above is item based and each row represents all the data for all users. Now

this data can be partitioned so that the parallel computation of similarity can take place.

The data set is divided into two partitions partion1 shown in figure 4.5 and partion2 as

shown in figure 4.8, each of which contains a set of items and their ratings.

User-Based Partition For deriving the recommendations from the similarity com-

putation done in the previous stage. The results have to be merged with input data. Further

partitioning and preprocessing of the input data at this stage is useful to run the jobs faster.

27

Figure 4.3: Input Data Set

Figure 4.4: Reorganized Data Set

Figure 4.5: Partitioned Data Set Part1

28

Figure 4.6: Partitioned Data Set Part2

Earlier we partitioned the data item-based, now we can further partition the data user-based

so that each row of the data contains ratings of a set of users. Now map-reduce jobs will

merge the similarity results with the raw data partitioned using both user-based and item-

based strategy. This enables to leverage the map-reduce programming advantage at more

higher level.

Figure 4.7: Item and User-Based partition

29

4.3.2 Similarity Computation

After the data is partitioned, the similarity computation should be modified such that

it can be divided into sub problems, which can compute part of the result on each node.

The similarity computation is divided in to two parts, the first part is to compute the dot

product of each user pair per item and store the results. Next, compute the sum of all items

dot product from all nodes to get the complete similarity of each pair of users.

Algorithm: to compute similarity

Figure 4.8: Algorithm to Compute Similarity in parallel

All the nodes that have item data should call this algorithm and results for each item

are saved. Then the results are passed on to be summed up, to compute the final similarity

of the user pair. The same algorithm can be used to compute the ItemsRated of each user

vector by summing up the value for each item. If the user rates the item, the ItemsRated

value for that user is incremented by 1.

Thus, the same algorithm can be used to compute items rated count and dot product

for pair of users. Then these results are used to compute the similarity for each pair of users.

This task is also handled in parallel as the data for each pair can reside on any data node

and each data node will compute the similarities of the user-pair whose dot product and

items rated values are present on the node.

4.3.3 Deriving Recommendations

The next part of the problem is to derive recommendations by using the similarity

matrix computed in the previous phase. We can generate batch recommendations to all the

30

Figure 4.9: Parallel Processing of data by multiple nodes

users or a set of active users. To generate recommendations, the items ranking should be

computed. To generate the item ranking for a user ’u’. The item ranking for each user pair

can be computed as follows. For user pair (u, v) is ranking is computed by multiplying the

similarity value and item rating given by user ’v’. This gives the ranking for user ’u’ for all

items that are rated by ’v’ w.r.t the similarity behavior of user ’v’. This process should be

repeated for all user pairs and all the individual user-item ratings are computed. Then all

the user-item ratings are summed up to get the overall ranking of the item. From all the

items, items with top N ranking are selected and provided as the recommendation to the

user.

The figure 4.10 demonstrates how the recommendations can be derived using the simi-

larity computation.

31

Figure 4.10: Derive Recommendation from raw data and similarity computation results

32

Chapter 5

Implementation

5.1 Map Reduce Jobs

As discussed earlier, map reduce jobs are tasks the run in parallel on Hadoop cluster. A

main task is sub-divided into multiple smaller map-reduce jobs, where in each job executes

the same task but on a different data. The huge data which is processed by Hadoop is

partitioned onto several data nodes and the job tracker uses the data on the data node and

executes the program. Each map task generates a (key, value) pair as intermediate output.

The reduce tasks will collect all the results with same key and process them to generate

the final output. Map-reduce jobs use text files as input and output instead of traditional

RDBMS systems.

5.1.1 Input data for map reduce jobs

For the hadoop map reduce jobs to process the data, the data should be in the form of

key value pairs. The input data is created as a text file by querying the database system.

We can pre-process the data so that it can processed by hadoop map reduce jobs. The text

file contains the data item-wise, each row contains ratings of all users for one item. Map-

reduce jobs works based on key value pairs. In this thesis, we assume that the input data

pre-processes in the required format.

The item-id is used as key and rest of the line (containing the user id and rating) as

value. When a map reduce job executes, each row data is processed by an individual mapper.

Input format: input format used for the map-reduce job is text file which contains key value

pair delimited by a common character in each line. When Hadoop runs the map reduce job,

33

it processes each line as a different mapper and uses the data to create intermediate results

as key value pairs.

Figure 5.1: Input data format after pre-processing of data

Figure 5.1 shows the input data format.

Before proceeding with the solution, as the recommendation problem is divided into two

parts, and a set of map reduce jobs are written to finish each part of the problem solution.

5.2 Compute Similarity between user pairs

The similarity computation phase of the recommendation problem is again sub-divided

into two map reduce jobs. The first map-reduce job computes the dot product, ItemsRated

values of each pair of users. The second job computes similarity for each pair using the

values computed by the previous map-reduce job.

Map-reduce Job1

Compute dot product, ItemsRated sum of a pair of user vectors. Map task: As men-

tioned earlier, each row of data is processed by a mapper, the map job creates user-user keys

and values for product, sum of ratings of the user pair for each item. The map job creates

two key value pairs for each mapper. One key represents, the product and other represents

sum of ItemsRated of both the users. These results are for one item (the record processed

by that mapper). The map task produces some intermediate results which are processes by

the reduce job and the over-all results are generated.

34

Reduce task: The reduce job now collects all the user-user-product keys and user-user-

sum keys and sum up the results to get the overall all dot product and ItemsRated for all

pairs of users.

Figure 5.2: MRJob1-Compute the components for similarity calculation

The figure 5.2 shows the inputs and outputs for each mapper and reducer.

The figure 5.3 shows the final output for first map reduce job.

5.2.1 Map-reduce Job2

The next map reduce job will take the output of the previous map reduce job as input

and computes the similarity of each pair of users. The map task gets user pair, product/sum

as key and product/sum value respectively. The map task then splits the key as user pair

35

Figure 5.3: Output of MR1 with sample data set

36

and includes the product/sum part of the key to value. Map task outputs the user pairs as

key and product or ItemsRated sum values as value. Each user pair has 2 records, one with

product and other sum. This makes it possible for the reduce job to collect the same user-

pair and then compute the similarity of the user by using the product and sum components

of the user pair.

Figure 5.4: MRJob2 - compute similarity using the components

The figure 5.4 shows the inputs and outputs for each mapper and reducer for second

map reduce job.

Reduce task: Combines the dot product and ItemsRated sum components of the user-

pair and computes the similarity. The reduce job generates user pair and key and similarity

as value output.

The figure 5.15 shows the final output for second map reduce job.

The first two map reduce jobs complete the first part of the problem, to compute

similarity of each user pair. By using map-reduce job, we reduced the processing time of

37

Figure 5.5: Output of MR2 with sample data set

38

the computation by a significant amount of time as the computation is mostly parallelized

at item level in the first map-reduce job and user-pair level next in the second map-reduce

job. This ensures that the computation is quick when compared to the sequential method

of similarity computation.

5.3 Derive batch recommendation

The next major part of the problem is to derive recommendations for each user in

the system based on the items already rated/ not-rated and also choose the item based on

user-similarity. The item which is rated by the most similar user is given a higher ranking

and this it gets highest priority in the list of non-rated items. To compute this we need to

combine the user-item data with the user-similarity and then compute rankings based on the

similarity. Then sort the items based on their ranks and select the top N items and provide

the user with these item details.

5.3.1 Map-reduce Job3

The third map-reduce job is to combine the user-pairs and the user-item data to generate

records that can be processed in parallel. The map job reads two input files, each file

processes its data and generates the same key but a different value. This enables the reducer

to combine the records from map-reduce and then produce the required output format. To

process files multiple locations we use MultipleInputs class provided by Hadoop.

The map job takes the user item data and output of previous reduce job as inputs and

process these records to gets user as key and values will be all items with ratings from first

file and the other file produces user as key and value as other user-similarity value.

The outputs from these two files will have same key but different values. The reduce job

then combines all the items with same key and produces a combined values as output. The

reduce job creates key for each user item pair and has the other users similarity as value.

39

Here the user-item are formed for only the items we are interested to recommend to the user,

so the key contains only the items that are not rated by the user.

Figure 5.6: MRJob3- combine similarity of users to generate a common key user-item

The output of the reduce job will contain user-item as key for each user with all items

and value as similarity values of all other users with the user present in key.

The figure 5.7 shows the final output for second map reduce job.

5.3.2 Map-reduce Job4

The next task it to build the user-item keys and values where the value contains the

item-ratings of each user other than the user in key. Even in this map-reduce task we need

to form the user-item keys from the existing item-user data for all the items that the user

has not rated/purchased.

This job does not need a reduce task as there are no common keys generated by the

mappers to be combined.

40

Figure 5.7: Output of MR Job3 with sample data set

Figure 5.8: MRJob4 - generate a common key user-item with user ratings as value

41

This map jobs just generates new set of keys with same values. These new keys match

with the keys generated by third map reduce job.

Figure 5.9: Output of MR4 with sample data set

The figure 5.9 shows the final output for second map reduce job.

5.3.3 Map-reduce Job5

This job combines the results of previous two map-reduce jobs and combines the results

to contain both item-raking and similarity of the all the other users with respect to user in

key.

The map tasks processes the user-item keys and values from each file individually from

two different locations and generates new user-item-user key and values. The value is the

same previous value. The value can be either rating user-item or similarity of the user-pair.

The reduce task processes the keys from mapper. Each mapper has two same keys, one

has the item rating and other has the user similarity. The mapper computes a product of

these two values and saves the key as user-item and the product value as value.

42

Figure 5.10: MRJob5- combine user ratings and similarities to compute ranking

This map reduce jobs computes the ranking of a particular item given by a particular

user. The user with higher similarity value give higher rank to an item. The ranking

computation here can happen in two ways based on the input. If the input for the map-

reduce jobs is a user-item matrix which has binary values 0’s representing non-rated item

and ’1’ represents rating. Then the ranking given by a user is just the similarity index of

the user with the active user(the user for whom the recommendation is being generated for).

If the input for map reduce contains ratings instead of binary notation, then the similarity

value and the rating of that item both of them will impact the ranking. A user with most

similar taste will have highest ranked item as the item for which he has rated the highest

rating.

The figure 5.11 shows the final output for second map reduce job.

43

Figure 5.11: Output of MR5 with sample data set

44

5.3.4 Map-reduce Job6

This task process the output generated by previous mapper and creates key such that

the key contains only user and the value is combination of item and its ranking. So this

mapper creates all the key,value pairs for the items that the user needs ranking for.

The reduce jobs combines all the values for same key and forms value by combining all

the items and corresponding rankings for the user.

Figure 5.12: MRJob6- sum up the item rankings by item

The figure ?? shows the final output for second map reduce job.

5.3.5 Map-reduce Job7

The next map job creates a sort list of keys from the previous output. The output of

the previous reduce job contains user as key and all items and their rankings. The current

45

Figure 5.13: Output of MR6 with sample data set

46

mapper processes each user record at a time by creating a sorted list of item-raking, so that

the item with highest rank is the item the user is most likely interested in. Thus by end of

all map-reduce tasks, the result contains all the users and item-raking for all the non-rated

items.

Figure 5.14: MRJob7- combine the rankings of same user and sort them

The figure ?? shows the final output for second map reduce job.

47

Figure 5.15: Output of MR7 with sample data set

48

Chapter 6

Experiments

The algorithm is designed to derive recommendations to the users based on their sim-

ilarity with the other users. To derive recommendations two different types of input data

is used for testing. The experiments will use both the binary notation data and also the

rating data to derive the recommendations. The similarity computation does not change as

the computation counts a non-zero rating as 1.

Experiments are done on both single node and multi-node clusters with varying data

sizes and performance metrics are recorded. All the map-reduce jobs are run in sequence as

the output of the previous jobs are given as input for the next job.

6.1 Single Node Cluster

Single Node Cluster has one of each HDFS components: JobTracker, TaskTracker, Na-

meNode, Secondary NameNode, DataNode.

A series of steps need to be executed to completely test the algorithm. We can write a

shell script to execute them in a row.

Command to copy the test data from local system to Hadoop File System.

Figure 6.1: Command to copy data to HDFS

49

Sample command to run a job on Hadoop cluster:

Figure 6.2: Command to run hadoop job on hadoop cluster

On a single node-cluster, experiments are conducted using different input data sets. The

results of experiments on the single node cluster can be considered as sequential experiment

results as the same processor is handling all the map reduce jobs.

6.1.1 Test Data:Item-wise partition

Figure 6.3: Single Node Cluster Test Data1

The chart 6.3 show the processing time of each map-reduce job on a single node cluster.

50

6.1.2 Test Data:Item-wise and User-wise partition

The second round of experiments are conducted using the test data with is partitioned

using both item-wise and user-wise strategies. This improves the performance of map-reduce

jobs in the second part of the algorithm. Especially we can see huge difference in the

processing time of MapReduceJob5.

Figure 6.4: Single Node Cluster Test Data 2

The figure 6.4 shows the processing time taken by each map-reduce job.

6.2 Multi Node Cluster

A multi-node cluster is a collection of single node clusters, in which one of the nodes

acts as a master and rest of them are slaves.

There exists a DataNode and TaskTracker on each slave node and a master node has

NameNode and JobTracker. Master node can also have other components DataNode and

TaskTracker in case it needs to handle some processing itself. A master can also act as

Secondary NameNode or we can have a different node to serve as secondary NameNode.

The following experiments were conducted on a Hadoop cluster with a MapReduce

implementation of our approach.

51

Experiments with different datasets are conducted on clusters with 2 nodes and 3 nodes.

6.2.1 2Node Cluster

A multi-node cluster is set up to test the algorithm performance with large data sets.

The cluster has one master and 1 slave nodes. The master node triggers the job and as-

sign tasks to the slaves. The master is runs the JobTracker and Namenode and Secondary

Namenode. Slaves and master all server as Datanodes,TaskTrackers.

Figure 6.5: 2 Node Cluster Map reduce job processing times

The chart 6.5 show the processing times of the Map reduce jobs on 2 node clusters.

6.2.2 3Node Cluster

A multi-node cluster is set up to test the algorithm performance with large data sets.

The cluster has one master and 2 slave nodes.

The chart 6.6 show the processing times of the Map reduce jobs on 3 node clusters.

52

Figure 6.6: 3 Node Cluster Map reduce job processing times

6.2.3 Comparison of results

Comparison of results of two different data sets on all the three cluster setups.

Two different data sets of different sizes (number of users and number of items) are

tested on the cluster setup. The ratings count is about 1M and 1.5M. The data sets are

ranging from 0.8 GB to 3GB in size. The processing time for all the map reduce jobs is

recorded and shown below.

Figure 6.7: Map reduce job processing times for input data set 2

53

The chart shown in figure 6.7 shows the results for input data set for 1M ratings. The

processing times for all map reduce jobs are recorded.

Figure 6.8: Map reduce job processing times for input data set 2

The chart shown in 6.8 shows the results for input data set for 1.5M ratings. The

processing times for all map reduce jobs are recorded.

6.3 Limitations

The input data must be preprocessed in the required format. The experiments does

not include the effort for preprocessing as the performance measurement metric. Only the

running time and data size are considered.

54

Chapter 7

Future Work

The current implementation of the algorithms uses Jaccard similarity measure. There

can be other similarity computations which can be parallelized to identify similar users. As

the recommendation is mainly based on similarity any improvements in similarity computa-

tion might improve the algorithm accuracy.

The algorithm uses only rating of the item given by the user to compute the similarity,

but there can be other parameters which are worth considering to improve the accuracy of

the recommendations. But we need to identify a way to compute similarity using a multi-

dimensional vector in parallel using Hadoop.

55

Chapter 8

Conclusion

In this thesis we discussed about recommendation system algorithms and map reduce

programming model by hadoop. A sequential algorithm to compute user-based similarity

is explained. We also discussed how to convert the sequential algorithm into a parallel

algorithm using hadoop map-reduce framework. The idea to parallelize the computation

is inspired by wordcount example of mapreduce. The computation is split into multiple

smallwe tasks and each of the small task is handled by a mep-reduce job. In the thesis we

showed details of the approach including the inputs and outputs produced at each phase of

execution.

Different experiments are conducted to show the performance improvement of using a

multi-node cluster. Test data for experiments is taken from group lens and movie lens data

bases. Experiments are done using both the partition strategies. The results show that when

the second partition strategy (user-based) is also implemented, the performance is far better

than with the single partition based on items. The Hadoop map-reduce approach saves a lot

of resources in computing similarities and generates recommendations in short time.

56

Bibliography

[1] Konstan, J., Miller, B., Maltz, D., Herlocker, J., Gordon, L., and Riedl, J. (2012).
GroupLens: Applying Collaborative Filtering to Usenet News. Communications of the
ACM, 40(3), pp. 77-87.. [Online; accessed June 2014].

[2] Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. (1994). GroupLens:
An Open Architecture for Collaborative Filtering of Netnews.. [Online; accessed August
2014].

[3] Shardanand, U., and Maes, P. (1995). Social Information Filtering: Algorithms for
Automating Word of Mouth.. [Online; accessed September 2014].

[4] GroupLens Research Group. Recommender Systems for Large-scale E-Commerce: Scal-
able Neighborhood Formation Using Clustering.. [Online; accessed October 2014].

[5] A. Metwally and C. Faloutsos. (2012). V-smart-join: A scalable MapReduce framework
for all-pair similarity joins of multisets and vectors.. [Online; accessed October 2014].

[6] Jeffrey Dean and Sanjay Ghemawat, Google, Inc. MapReduce: Simplified Data Pro-
cessing on Large Clusters.. [Online; accessed November 2014].

[7] J. Herlocker, J. Konstan, L. Terveen, and J. Riedl. Evaluating collaborative filtering
recommender systems. ACM Transactions on Information Systems.. [Online; accessed
November 2014].

[8] Adomavicius G., Tuzhilin A. (2005). Toward the next generation of recommender sys-
tems: A survey of the state-of-the-art and possible extensions.. [Online; accessed De-
cember 2014].

[9] J. Dean and S. Ghemawat. (2008). Mapreduce: Simplified data processing on large
clusters.. [Online; accessed December 2014].

[10] Apache Software Foundation. Hadoop.. http://hadoop.apache.org/hadoop. [Online;
accessed May 2014].

[11] Douglas Thain, Todd Tannenbaum, and Miron Livny. (2005). Distributed computing in
practice: the condor experience: Research articles. [Online; accessed December 2014].

[12] Apache Hadoop. Hadoop Distributed File Systems (HDFS). http://hadoop.apache.

org/docs/r0.17.1/hdfs_design.html, (1997). [Online; accessed December 2014].

57

[13] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip
Bohannon, Hans arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni. (2008).
Pnuts: Yahoo!s hosted data serving platform.. [Online; accessed May 2014].

[14] Dean and S. Ghemawat. (2008). Mapreduce: Simplified data processing on large clus-
ters.. [Online; accessed January 2014].

[15] Yahoo. Yahoo! launches worldis largest hadoop production application.. http://

tinyurl.com/2hgzv7. [Online; accessed January 2014].

[16] Apache Software Foundation. The hive project.. http://hadoop.apache.org/hive.
[Online; accessed July 2014].

[17] Apache Software Foundation. The pig project.. http://hadoop.apache.org/pig. [On-
line; accessed July 2014].

[18] Apache Software Foundation. Apache Hadoop.. http://hadoop.apache.org/

zookeeper. [Online; accessed July 2014].

[19] Shang Ming-Sheng, Zhang Zi-ke. (2009). Diffusion-Based Recommendation in Collabo-
rative Tagging Systems.Chin.. [Online; accessed June 2014].

[20] Shang Ming-Sheng, Jin Ci-Hang, Zhou Tao, Zhang Yi- Cheng. (2009). Collaborative
filtering based on multi-channel diffusion. Physics A: Statistical Mechanics and its Ap-
plications.. [Online; accessed July 2014].

[21] Isard M, Budiu M, Yu Y, Birrell A, Fetterly D. Dryad. (2007). Distributed data-parallel
programs from sequential building blocks.. [Online; accessed May 2014].

[22] DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin A, Sivasub-
ramanian S, Vosshall P, Vogels W. (2007). Dynamo: Amazons highly available key-value
store.. [Online; accessed February 2014].

[23] Chu LK, Tang H, Yang T, Shen K. (2003). Optimizing data aggregation for cluster-
based Internet services.. [Online; accessed February 2014].

[24] Dean J, Ghemawat S. (2007). Distributed programming with Mapreduce.. [Online;
accessed February 2014].

[25] Dean J, Ghemawat S. (2007). MapReduce: Simplified data processing on large clusters..
[Online; accessed January 2014].

[26] Ghemawat S, Gobioff H, Leung ST. The Google file system.. [Online; accessed January
2014].

[27] Brad Hedlund. Understanding Hadoop Clusters and the Network. www-01.ibm.com/

software/data/infosphere/hadoop/. [Online; created December 2014].

[28] IBM. IBM Hadoop. http://www.ibm.com/cloud-computing/us/en/

what-is-cloud-computing.html, 2012. [Online; accessed December 2014].

58

[29] Yahoo! Hadoop Introduction. http://developer.yahoo.com/hadoop/tutorial/

module1.html, 2012. [Online; accessed December 2014].

[30] Yahoo! Hadoop MapReduce. http://developer.yahoo.com/hadoop/tutorial/

module4.html#dataflow, 2012. [Online; accessed December 2014].

[31] Yahoo! Hadoop MapReduce Basics. http://developer.yahoo.com/hadoop/

tutorial/module4.html#basics, 2012. [Online; accessed December 2014].

59

