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Abstract  

 

 

 There are many applications of vehicle tag detection systems using image 

properties, which include image density, corner detection and blob analysis but using 

neural networks in real time for both detection and tracking is always challenging in 

terms of the computational load and the quality of the input images for training purposes. 

In this case, Hough transform is found to be useful to extract the square shaped vehicle 

tag from the scenario in order to improve the output of the neural network regardless of 

the different background scenarios. 

  

In this study, first real time detection and tracking of a specific tag is examined 

using Multilayer Back-Propagation Neural Networks, its high computational load and 

background noise dependency, the effect of the quality of the input samples on the 

accuracy of detection and tracking are proved. Then in chapter two, a new approach, 

using Hough Transform in parallel with Neural Networks is simulated both in MATLAB 

and RoboRealm.  
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1. INTRODUCTION AND MOTIVATIONS 

  

In New York City, there are over 1000 cameras mounted on the police cars in 

order to read the license plates of the cars that pass through on the streets every day. As 

the cameras read the license plates, each and every letter and number are read separately, 

the unique number of the tag is put into the system for an automatic alert, to see if the 

number is wanted or the tag is expired. This method stores the every unique license plate 

number that appears within the sight of the camera and brings moral issues with it. First 

and foremost, it is not clear that how long these numbers are kept in the system. In 

addition, there are some discussions about the morality of reading every license plate 

passing on the streets, in other words holding the records of the each person’s location. 

[23].The law regulations are insufficient to cover this issue and the law does not advance 

as fast as technology.  

At this point, detecting the tag as a whole without reading the numbers and letters 

on it solve the problem and moral issues that come with it. If a wanted license plate or an 

expired tag is taught to a system as a whole pattern, without reading the numbers on it, 

then there would be no need to read each and every license plate number that pass 

through the streets. A tag on a vehicle can be extracted as a whole, put into Neural 

Network to decide if it’s one of the desired or wanted tags. 

In this study, first the wanted tags are trained with purely Back-Propagation 

Neural Networks and the trained NN is tested with different scenarios for its reliability. 

Then, Hough Transform is used to extract the tag from the scene and the extracted tag 

pixels, which are purely the image of the license tag, are used as the input of a newly 

trained NN, where its aimed to identify the tag as a whole input. The new algorithm is 

tested on MATLAB environment and different scenarios with different angles and 

lighting conditions. The algorithm is also tested with different salt&pepper noise 

densities to test limits of the algorithm. 
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2. LITERATURE REVIEW 

 

2.1 GENERAL BACKGROUND ON NEURAL NETWORKS 

 

Neural Networks are widely used for pattern and object recognition since 1960s. 

The main two learning algorithms for training adaptive elements are “Perception Rule” 

and “LMS Algorithm”. While the feed-forward neural networks does not exploit any 

feedbacks from the output and there is no closed circle system between the input and 

output, back-propagation neural networks trains itself and adjusts the weights of the 

neurons according to the feedback coming from the output. The first implementation of 

back-propagation neural networks was indicated in doctoral dissertation of Werbos in 

1974 but the scientific community overlooked his work. In 1982 the back-propagation 

technique has been rediscovered by Parker and a report was published at MIT in 1985, by 

this way back-propagation Neural Networks became widely known. [2] 

 

2.2 BACK PROPOGATION NEURAL NETWORKS 

 

A multilayer back-propagation neural network works by adjusting the weights of 

the neurons each time during the training according to the result of the output. The 

weights of neurons are adjusted in such a way that, as the output of the network gets 

closer to the desired output, the calculated mean error decreases. As the mean error starts 

showing little to no improvement, the training stops. In other words, the weights in the 

back-propagation technique, the weights are adjusted in the direction opposite the 

instantaneous error gradient. [9] 

The architecture of a back-propagation neural network simply consists of K 

number of rows where each row consists of processing neurons for the coming inputs, 

which are the outputs of the previous row. Each processing neuron’s output on the mth 

row goes as an input to every unit on the m+1th row. Considering total K numbers of 

rows, rows starting from 2 until K-1 are called “hidden layers” since these rows are not 

connected to the outer world. The final row produces estimate outputs denoted by yI and 

the correct output vector y. [31] 
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Each and every neuron in the network receives ‘error correction’ according to the 

feedback coming from the row above it. [31] The outline of the BPNN, taken from 

Nielsen’s study is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                              Figure 1. Outline of Back-Propagation Neural Networks 

 

In Back-Propagation Neural Networks, if there are n predictions, then the Mean 

Squared Error can be defined in Equation 1; 

   

                                                                                Eq. 1    

 

Where Ÿ1 is defined as a vector of predictions and Y1 is defined as the vector of 

real values. 

Pattern recognition, self-adaptive control systems, pattern classification are the 

main fields that are used by BPNN. [8] It’s useful to utilize Neural Networks to read the 

license plates of vehicles in a still scenario, where it is necessary to print the tag number 

on a parking ticket. When it comes to detect and track the desired license plate in a 

dynamic real-time environment, the computational load and the dependency on the 
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quality of input images in the neural network play an important role in the detection and 

tracking performance. 

 

2.3 HOUGH TRANSFORM 

 

According to Nakashi, Hough Transform is the most convenient algorithm to for 

line extraction because its robustness. (1) Given an NxN binary edge image, straight lines 

are defined in Equation 2.  

 

 = x cos  + y sin       Eq 2. 

 

Where (x,y) is the measurement of position in X-Y coordinates,  (0    ) 

denotes the angle the normal line makes with x-axis and  (-N    2N) is the normal 

distance from the origin to the line. In the standard HT, (x,y) denotes the coordinates of 

the points on the straight line, in other words the pixel space, while  and  are defined 

as the parameter space. The highest value in the parameter space represents the most 

likely straight line in the image domain. (5). The standard HT consists of three parts 

where the first one is calculating the parameter values, and then finding the local maxima 

that represents the line segments, and finally extracting the line segments. Every pixel in 

the image is visited once so the total number of pixels determines the complexity of the 

HT algorithm. (2) There are many other methods used to extract lines like Split-and-

Merge algorithm, which that exploits the local structure instead of considering the global 

structure. One of the advantages of the Split-and-Merge algorithm is that, its 

computational load is less than HT but its resistance to noise is not as good as HT. (5) 

Since the noise resistance of HT delivers a great advantage over other algorithms, the line 

extraction for the desired license tag is succeeded via HT in this study.  

There are many applications and studies that hold NN and HT together for 

pattern, shape and hand writing recognition. One of them is “Oriented Texture 

Classification Based on Self-Organizing Neural Network and Hough Transform” by A.N. 

Marana. [33] The technique proposed in this study is based on the straight-line 

information extracted from the images by the help of Hough Transform and the image 
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classification is run by Kohonen’s model Neural Network. [33] Although this work used 

Kohonen’s model NN to classify the pattern, it was a milestone for texture classification 

pattern. The diagram of the texture classification technique is shown below in Figure 2.  

  

            Figure 2. Diagram of texture classification method using HT and NN. 

  

According to this technique, first HT is applied to detect the straight lines and 

then the feature vector is obtained by putting the columns of the sampled HT, which are 

arranged one after another. [33] Then the feature vector is put into Kohenen’s Neural 

Network for classification. Another study about using both Neural Networks and Hough 

Transform is “A complete Shape Recognition System Using the Hough Transform and 

Neural Network” by C.K. Chan. This method is based on determining peaks and also 

followed by determining envelope vectors, which are extracted with HT. Then the 

extracted vectors are used as inputs for NN for recognition. The novelty of this study is 

that, finding the complementary features from Hough Space makes it easier to recognize 

the shapes. Secondly, feature vectors, which are extracted from Hough Space, make the 

data compact enough to be the input of a NN. [32] 

 

2.4 CURRENT STATE OF ART IN LICENSE PLATE DETECTION 

 Current literature mostly offers the detection of license plates with feature 

extraction like Maximally Stable Extremal Region or symbol analysis. MSER technique 

has great advantages and it is an affine-invariant to scale transformation, rotation 

transformation and transformation of the viewpoint. Main advantages of this technique 
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are its robustness, repetition rate and discrimination. This method relies on length-width 

ratio of license plate and connected component determination. The left and right borders 

of license plate are determined by vertical projection. [38] This method only proposes the 

extraction of license plate on a car. 

 One of the most common way of reading license plates is using artificial neural 

networks by detecting number plate are and classification of the separated character 

regions. First and foremost, the region of interest has to be localized on order to apply 

this technique. After the extraction of region of interest, the areas, which contain the 

symbols, have to be extracted. After the extraction of the areas containing the symbols, 

separated symbols are classified by Neural Networks. [43] By this approach it’s aimed to 

read the each and every number and letter on a license tag, in order to have the exact 

number on it. Localization and region of interest mapping of this technique is shown in 

Figure 3. 

 

 

  

       Figure 3. Localization of area of interest 
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3. METHODS 

 

3.1 NEURAL NETWORK TRAINING CONFIGURATIONS 

  

In this thesis, first a multi-layer back propagation neural network has been trained 

with 130 different images of the desired tag, which has the “43D98L0” numbers and 

letter on it. It’s aimed to detect the desired license plate as a whole instead of reading all 

the numbers and letters on it separately. A multi-layer back propagation neural network 

with a single hidden layer with is chosen after many trials of experiments and it’s found 

that the best result is obtained with 100 Neurons in the hidden layer. The use of more 

neurons in the hidden layer causes overflow in the network and decreases the accuracy of 

the detection.  

 Different pictures have been taken with the internal camera of a laptop, which 

produces a default resolution of 800x600 and Nikon D5100, which captures the scene 

with a default resolution of 1080x720. All the input training images has been rescaled to 

128x128 pixels in MATLAB by the function imresize. Then the input training images are 

converted to grayscale by the function rgb2gray, where every pixel of the images is 

represented by the numbers 200s, by total of 16384 pixels with 419 training images. Each 

image is converted into a vector of 16384x1 by the MATLAB function reshape. Then all 

of the 419 vectors of input images are combined in a single matrix, which is 16384x419 

and where it represents 419 scenarios each with 16384 properties for the purpose of 

neural network training.  The first 251 scenarios include the desired license tag in it 

whereas the last 168 scenarios include different scenes of possible tag detection 

environments without tag in it. As the desired output of the neural network, it is aimed to 

get a result of 1 or a number closer to 1 when the tag is in the picture, otherwise it’s 

aimed to get a number closer to 0. A target vector of 1x419 is created, where the first 251 

rows are assigned as logical 1s and the last 168 rows are assigned as logical 0’s.  The 

MATLAB code for the reading the images from the source, converting them to grayscale 

and resizing to 128x128 is shown below. 

 

%Creating Target for Neural Network Training 
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Target1=ones(1,251); 

 

Target2=zeros(1,168); 

 

Target=[ Target1 Target2]; %Concatenating Matrices Horizontally(Yatay); 

 

Target_Input=logical(Target); 

 

 

for i=1:419 

 

 j=i+253;  

 

D=imread(['DSC_0' num2str(j) '.JPG']); 

 

D_re = imresize(D, [128 128]); 

 

BW=rgb2gray(D_re);  

 

BW=+BW; 

 

     

%Turning matrices into vectors 

 

[m,n]=size(BW); 

 

BW=reshape(BW',m*n,1); 

 

BW_Inputs(:,i)=BW; 
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end 

 

 

The code shown above creates two matrices that are Target_Input and BW_Inputs. 

In order to train the neural network, Neural Network Tool of MATLAB is used.  

After many trials and simulations, it is found that using 100 neurons in the hidden 

layer gives the best result and minimizes the error rate. It is useful to use some of the 

input images for validation and testing.  Random images, which contain the 10% of the 

images, are assigned for validation and another random 10% percent of the images are 

assigned for testing. The rest 80% of the images are used for training purposes. The 

simple MATLAB code used to train the neural network is shown below.  

 

inputs = BW_Inputs; 

             

targets = Target_Input; 

 

% Create a Pattern Recognition Network 

             

hiddenLayerSize = 100; 

             

net = patternnet(hiddenLayerSize); 

 

% Setup Division of Data for Training, Validation, Testing 

             

net.divideParam.trainRatio = 80/100; 

             

net.divideParam.valRatio = 10/100; 

             

net.divideParam.testRatio = 10/100; 

 

 % Train the Network 
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[net,tr] = train(net,inputs,targets); 

 

 % Test the Network 

          

outputs = net(inputs); 

             

errors = gsubtract(targets,outputs); 

             

performance = perform(net,targets,outputs) 

% View the Network 

             

view(net) 

 

% Plots 

             

figure, plotperform(tr) 

             

figure, plottrainstate(tr) 

figure, plotconfusion(targets,outputs) 

             

figure, ploterrhist(errors) 

 

 

Advanced MATLAB code used to train the neural network is shown below. 

 

inputs = BW_Inputs; 

 

targets = Target_Input; 

 

% Create a Pattern Recognition Network 
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hiddenLayerSize = 100; 

 

net = patternnet(hiddenLayerSize); 

 

 

% Choose Input and Output Pre/Post-Processing Functions 

 

% For a list of all processing functions type: help nnprocess 

 

net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'}; 

 

net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'}; 

 

 

% Setup Division of Data for Training, Validation, Testing 

 

% For a list of all data division functions type: help nndivide 

 

net.divideFcn = 'dividerand';  % Divide data randomly 

 

net.divideMode = 'sample';  % Divide up every sample 

 

net.divideParam.trainRatio = 80/100; 

 

net.divideParam.valRatio = 10/100; 

 

net.divideParam.testRatio = 10/100; 

 

 

net.trainFcn = 'trainlm';  % Levenberg-Marquardt 
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net.performFcn = 'mse';  % Mean squared error 

 

 

 

% Choose Plot Functions 

 

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', ...'plotregression', 'plotfit'}; 

 

 

% Train the Network 

 

[net,tr] = train(net,inputs,targets); 

 

 

 

% Test the Network 

 

outputs = net(inputs); 

 

errors = gsubtract(targets,outputs); 

 

performance = perform(net,targets,outputs) 

 

% Recalculate Training, Validation and Test Performance 

 

trainTargets = targets .* tr.trainMask{1}; 

 

valTargets = targets  .* tr.valMask{1}; 
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testTargets = targets  .* tr.testMask{1}; 

 

trainPerformance = perform(net,trainTargets,outputs) 

 

valPerformance = perform(net,valTargets,outputs) 

 

testPerformance = perform(net,testTargets,outputs) 

 

 

% View the Network 

 

view(net) 

 

 

% Plots 

 

figure, plotperform(tr) 

 

figure, plottrainstate(tr) 

 

figure, plotconfusion(targets,outputs) 

 

figure, ploterrhist(errors) 

 

     

Once the Neural Network is trained, MATLAB creates a 1x1 Network called net 

where we can put the real time images from the dynamic into the network as inputs. For 

testing the Neural Network, a new class of MATLAB is created called 

“NetworkCameraInput_Gray.m”  

Internal camera of a personal computer with 1.60 GHz Intel Core i7 CPU and 

8.00 GB of total memory is used for the best performance. In order to import the 
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information from internal camera to MATLAB, videoinput function is utilized. Frame 

grab interval is defined by the function vid.FrameGrabInterval where one frame is 

grabbed in every 5 frames. The data that is acquired from the video is resized to 128x128 

pixels with the function imresize. Then the resized image is converted into gray scale 

with the function rgb2gray. Then the rescaled and gray-scaled camera input image is 

converted into a vector of 16384x1 in order to have a proper input for neural network. It 

represents that it is only one input with 16384 different properties. If these 16384 

properties match with category one in the trained network, which has the desired tag in it, 

then the network is desired to give an output close to number 1. Finally, all the network 

calculations are taken in a loop of 100 iterations, which implies that there is going to be 

100 different snapshots and neural network calculations. The MATLAB code that is used 

to test the network and detect the desired tag is shown below. 

 

%a = imaqhwinfo; 

 

%%[camera_name, camera_id, format] = getCameraInfo(a); 

 

% Capture the video frames using the videoinput function 

 

% You have to replace the resolution & your installed adaptor name. 

 

vid = videoinput('winvideo', 1); 

 

% Set the properties of the video object 

 

set(vid, 'FramesPerTrigger', Inf); 

 

set(vid, 'ReturnedColorspace', 'rgb') 

 

vid.FrameGrabInterval = 5; 
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start(vid) 

 

for a=1:100    

 

% Get the snapshot of the current frame 

 

data = getsnapshot(vid); 

 

%Resizing the camera input image to 128x128 and turning the image into 

 

%binary - black & white 

 

data_re = imresize(data, [128 128]); 

 

%level_camera = graythresh(data_re); 

 

%BW_Camera = im2bw(data_re,level_camera); 

 

BW_Camera = rgb2gray(data_re); 

 

BW_Camera =+BW_Camera; %turning them into doubles. 

 

     

%Turning the camera input matrix into a vector 16384x1 

 

[f,g]=size(BW_Camera); 

 

BW_Camera=reshape(BW_Camera',f*g,1); 

 

%BW_Camera_Vector=BW_Camera';         %to turn from 16384x1 to 1x16384 
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%BW_Camera_Vector; 

 

BW_Camera_S=double(BW_Camera); 

 

NetResult(:,a)= net_gray(BW_Camera_S) ; 

 

NetResult; 

 

imshow(data) 

 

hold on 

DisplayResult=text(40,100,num2str(NetResult)); 

 

set(DisplayResult,'Color','b','FontWeight','Bold','FontSize',12) 

 

%{ 

 

if NetResult>0.8 

 

BW_Camera_Binary=im2bw(data);  

 

BW_filled = imfill(BW_Camera_Binary,'holes');   

 

boundries = bwboundaries(BW_filled); 

 

for z=1:numel(boundries) 

 

plot(boundries{z}(:,2),boundries{z}(:,1),'g','LineWidth',3); %Putting boundries 

end 

end 
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%} 

 

hold off 

 

%} 

 

end 

 

stop(vid); 

 

flushdata(vid); 

 

 

In order to put a rectangle around the desired license tag in the scene, it is 

sufficient to remove the comment line above “if NetResult>0.8” and below 

“plot(boundries)”.  If it is desired to put a bounding box around the license tag, the 

simulation will put a box around the rectangle shaped tag, when the returning result of the 

Neural Network is over 0.8.  

 

3.2 APPLYING HOUGH TRANSFORM IN PARALLEL WITH BACK-

PROPOGATION NEURAL NETWORK 

License tags are mostly in the shape of rectangle and it’s crucial to detect the lines 

in the scene in order to extract the tag.  

For line extraction simulation with HT, a new Matlab file called 

“HoughTransform.m” has been created. In the simulation, first an example image is read 

with the command line “imread” then the image is resized to 500x500 pixels with the 

command line “imresize”. Then the resized image is converted into grayscale with 

“rgb2gray”. In order to apply HT on an image and extract the line segments, it is crucial 

to get the binary mapping of the image. Edge detection algorithms usually achieve it and 

‘canny’ edge detection is chosen in this case. Finally to eliminate the background noise 

that is smaller than 50 pixels, the function “bwareaopen” is used. The original grayscale 
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image, edge detected image and the image that has reduced background noise properties 

are shown in Figure 5, Figure 6 and Figure 7 respectively in Chapter 5 

In order to apply the HT, first we need to assign the values of  and . After 

many trials, it is found that the optimum value for  is 0.5 and the optimum interval for 

 is (-90,89.5) degrees with 0.2 spacing. The next step to apply HT is finding the peak 

values in Hough transform matrix, which is obtained by using the “houghpeaks” 

function. The number of lines that is desired to be detected can be also implemented in 

the function. Since it is aimed to extract the four sides of a rectangle, the number of peaks 

that are desired to be extracted is 6. It is useful to assign 2 more extra Hough peaks in 

order to prevent error detections. Using the function “houghlines”, we can determine the 

straight lines on the image. The images that show the peak lines on the parameter space 

and the detected Hough Lines in order to extract the image are shown in Figure 8 and 

Figure 9 respectively in Chapter 5.  

 The MATLAB Code that is used to extract the rectangular shaped tag from the 

image is shown below. 

 

D=imread('DSC_0415.JPG'); 

 

D_im=imresize(D, [500 500]); 

 

D_gray=rgb2gray(D_im); 

 

mshow(D_gray); 

 

BW = edge(D_gray,'canny'); 

 

%BW = edge(D_inc,'roberts') 

 

BW2=bwareaopen(BW,50); %to eleminate the background noise  

 

figure,imshow(BW); 
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impixelinfo; 

 

figure,imshow(BW2); 

 

impixelinfo; 

%Adjusting Image Intensity both intensity and RGB images 

 

%J = imadjust(D_gray); 

 

%figure,imshow(J) 

 

%BW3=edge(J,'canny'); 

 

%figure, imshow(BW3); 

 

K = imadjust(D_gray,[],[],0.011); %Changing the contrast(Brightening image) for better 

edge detection. 

 

figure, imshow(K) 

 

BW4=edge(K,'canny');  

 

figure, imshow(BW4); 

 

BW5=bwareaopen(BW4,200); 

 

BW5(1,1:499)=zeros(1,499); %to eleminate the error on the top of screen 

 

BW5(2,1:499)=zeros(1,499); %to eleminate thhu error on the top of screen 

 



 28 

figure,imshow(BW5); 

 

impixelinfo; 

 

%RGB2 = imadjust(D,[.2 .3 0; .6 .7 1],[]); 

 

%figure, imshow(D), figure, imshow(RGB2) 

 

%Edge Tapering 

 

%{ 

 

PSF = fspecial('gaussian',60,10);  

 

edgesTapered  = edgetaper(D_gray,PSF); 

 

figure, imshow(edgesTapered,[]) 

 

BW3=edge(edgesTapered,'canny'); 

 

BW4=bwareaopen(BW3,50); 

 

figure, imshow(BW3); 

 

figure, imshow(BW4); 

 

%} 

 

%Laplacian Edge Detection 

 

%{ 
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horizontalKernel = [-1,-1,-1;2,2,2;-1,-1,-1]; 

 

verticalKernel = [-1,2,-1;-1,2,-1;-1,2,-1]; 

 

diagUpKernel = [-1,-1,2;-1,2,-1;2,-1,-1]; 

diagDownKernel = [2,-1,-1;-1,2,-1;-1,-1,2]; 

 

horizontalBuilding = imfilter(D_gray, horizontalKernel); 

 

figure,imshow(horizontalBuilding); 

 

verticalBuilding = imfilter(D_gray, verticalKernel); 

 

figure,imshow(verticalBuilding); 

 

diagDownBuilding = imfilter(D_gray, diagDownKernel); 

 

figure,imshow(diagDownBuilding) 

 

diagUpBuilding = imfilter(D_gray, diagUpKernel); 

 

figure,imshow(diagUpBuilding); 

 

%} 

%Smoothing with Gaussian 

%{ 

 

GaussFilter=fspecial('gaussian', [7,7],5); 

 

BW3=imfilter(D_im,GaussFilter,'symmetric','conv'); 
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BW4=rgb2gray(BW3); 

 

BW5=edge(BW4,'canny'); 

 

BW6=bwareaopen(BW5,50); 

figure,imshow(BW5); 

 

figure,imshow(BW6); 

%} 

 

%Corner Detection 

%{  

 

BW_Corner=corner(BW5); 

 

imshow(BW5) 

 

hold on 

 

plot(BW_Corner(:,1),BW_Corner(:,2),'r*'); 

 

hold off 

 

%} 

%Sharperning of grayscale image 

%{ 

 

sharpfilter=fspecial('unsharp'); 

 

sharp=imfilter(D_gray,sharpfilter,'replicate'); 
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sharp2=imfilter(D_gray,sharpfilter); 

 

figure, imshow(sharp); 

 

figure, imshow(sharp2); 

 

figure, imshow(D_gray); 

 

BW3=edge(sharp,'canny'); 

 

figure, imshow(BW3); 

 

BW4=edge(sharp2,'canny'); 

 

figure, imshow(BW4); 

%} 

 

%Hough Transform Calculations 

 

[H,theta,rho] = hough(BW2,'RhoResolution',0.5,'Theta',-90:0.2:89.5); 

 

%Display the transform using the imshow function. 

 

figure, imshow(imadjust(mat2gray(H)),[],'XData',theta,'YData',rho,... 

 

        'InitialMagnification','fit'); 

 

xlabel('\theta (degrees)'), ylabel('\rho'); 

 

axis on, axis normal, hold on; 
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colormap(hot) 

 

%Find the peaks in the Hough transform matrix, H, using the houghpeaks 

function. 

 

P = houghpeaks(H,10,'threshold',ceil(0.1*max(H(:)))); 

 

%Superimpose a plot on the image of the transform that identifies the peaks. 

 

x = theta(P(:,2)); 

 

y = rho(P(:,1)); 

 

plot(x,y,'s','color','black'); 

 

%Find lines in the image using the houghlines function. 

 

lines = houghlines(BW2,theta,rho,P,'FillGap',70,'MinLength',20); 

 

%Create a plot that superimposes the lines on the original image. 

 

figure, imshow(BW2), hold on 

 

impixelinfo; 

 

max_len = 0; 

 

for k = 1:length(lines) 

 

             xy = [lines(k).point1; lines(k).point2]; 
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plot(xy(:,1),xy(:,2),'LineWidth',2,'Color','green'); 

 

%Plot beginnings and ends of lines 

    

plot(xy(1,1),xy(1,2),'x','LineWidth',2,'Color','yellow'); 

            plot(xy(2,1),xy(2,2),'x','LineWidth',2,'Color','red'); 

 

% Determine the endpoints of the longest line segment 

    

len = norm(lines(k).point1 - lines(k).point2); 

    

if ( len > max_len) 

                

max_len = len; 

    

xy_long = xy; 

                    

end 

 

end 

 

% highlight the longest line segment 

 

plot(xy_long(:,1),xy_long(:,2),'LineWidth',2,'Color','red'); 

 

hold off; 

 

 

In order to extract the detected tag in the picture, simple math is employed. The 

pixel locations of the 4 lines intersecting with each other are detected and then the area 
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that is covered between these lines is extracted. The new created image, which is 

basically the tag itself, is used as the input of the neural network, which is solely trained 

to detect the desired tag itself. This method is highly effective because according to 

Nguyen, each of the pixels in the edge image is considered for the determination of 

evidence of a line. (7) While this property brings a great advantage over other techniques, 

it also has a major drawback like detecting the false lines. As we can see in Figure 9 in 

Chapter 5, there is a false detected line in red color, which implies it’s the longest line 

segment that has been detected. In order to test the effectiveness of the system, the 

algorithm is tested with the newly trained NN.  
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4. SIMULATION RESULTS OF BPNN 

  

4.1 RESULTS OF NEURAL NETWORK TRAINING 

 

 

                               Figure 4. The performance plot of the neural network 

  

As seen in Figure 4, the best validation performance is reached at epoch 41 and 

after 41 iterations; there is no significant improvement on the validation after that. Mean 

Square Error can be simply defined as the difference between the expected values and the 

true values.  

 

According to network training result, the training stops when the Mean Square 

Error reaches 0.0075492 and no more significant improvement is observed after 41 

iterations. The confusion matrices display a better insight about the training performance 

of the Neural Network. The confusion matrices of training, validation and test are shown 

below in Figure 5. 
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                           Figure 5. Confusion Matrices of Neural Network 

 

According to Training, Validation and Test Matrices, the trained Neural Network 

works with 100% accuracy. As mentioned before, there are two types of output class that 

we want to achieve, the ones where the desired license tag is in the scenario and the other 

output class where the desired tag is not in the scenario. As we can see in the Training 

Confusion Matrix, 215 inputs are classified accurately into category one, where the tag is 

in the scene and 141 inputs are categorized accurately into category two, where the 

desired tag is not in the scene. There are no miscategorized inputs since the second row 

of the first column and first row of the second column is 0.0%. Also for the Validation 

Confusion Matrix, we can read that 26 validation inputs are accurately validated into 

category 1, whereas 16 validation inputs are accurately validated into category two. 

Finally in the Test Confusion Matrix, a total number of 21 input samples are used to test 

the trained neural network. 10 test samples are accurately categorized in the first target 

class and 11 test samples are accurately categorized in the second target class. These 

results produce All Confusion Matrix with 100% accuracy.  
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4.2 BACK-PROPOGATION NEURAL NETWORK SIMULATION RESULTS 

 Running the simulation in an environment where the training pictures were taken 

gives us nearly perfect results. The simulation is supposed to print the Neural Network 

output on the screen for each of the frames. An example of the simulation is shown below 

in Figure 6. 

                                 Figure 6. Simulation Result of BPNN 

  

As we can see in Figure 6, NN gives the results around 0.98-.0.99, which 

indicates that the desired tag is within the limit of sights of the camera.  However, when 

the same simulation is run with a different environment and background condition, the 

network does not give the same desired result when the tag is within the limit of sights of 

the camera. The reason for unsuccessful detection is that when the NN is trained, it 

detects the whole environment with the desired tag in it. In other words, not only the 

pixel pattern of the license tag but every single pixel in the picture serves for the purpose 

of detection of the tag. The NN output of a scene with different camera angle and lighting 

causes failure in the detection of desired tag since it is also heavily dependent on the 

intensity map of the scene. Figure 7 shown below is an example of failure of the 

detection of the tag, since the NN output is below 0.8 and has values close to 0 mostly. 
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        Figure 7. Simulation Result of BPNN with different lighting conditions 

 

In order to have a proper detection of the desired tag regardless of the 

background, it’s crucial to extract the tag from the given scene, and then use it as the 

input of a properly trained neural network.  
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5. SIMULATION RESULTS OF HOUGH TRANSFORM 

 

5.1 SIMULATION OF HOUGH TRANSFORM IN PARALLEL WITH BACK-

PROPAGATION NEURAL NETWORK 

The original grayscale image, edge detected image and the image that has reduced 

background noise properties are shown in Figure 8, Figure 9 and Figure 10 respectively. 

                                     

                                       

                            Figure 8. Gray Scale Transformation of Desired Tag 

                                 

 

                                       

                             Figure 9. Canny Edge Detection of Gray Scale Image 
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                    Figure 10. Canny Edge detection with background noise eliminated 

 

In Figure 12 we see that there is a peak around -90 degrees and -400  value. The 

other three peaks are grouped between -15 and 10 degrees -400 – 0  values. The 

remaining two peaks are grouped around 89 degrees, between the  values of -400 and -

100. 

                                    

                                               

                                Figure 11. Hough Lines Covering 4 Sides of the Tag 
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                                  Figure 12. Hough Transformation of Figure 11 

 

Figure 13 shows the effectiveness of the algorithm in by producing NN outputs 

that are close to 1. The first 6 frames of the simulation show that the output values of the 

NN vary between 0.99915 and 0.99958. The all output results for each of the 100 frames 

is shown in Table 1 below. 

          

                               Figure 13. Simulation result of HT in Parallel with BPNN 
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In Table 1, the first row represents the first 10 outputs of the NN, where the 

second row represents the outputs from 11 to 20, with 10 rows in total; all 100 outputs 

can be read to prove the efficiency.  

 

                                   Table 1. Complete Neural Network Output of 100 frames 

 

Now we can test the new algorithm with different background and lighting 

conditions to figure out its efficiency. After moving the input camera and changing the 

background conditions, it is found that the algorithm still works perfectly and results in 

outputs that are bigger than 0.8. Figure 14 represents the output of the NN in a different 

environment.  

                                

                      Figure 14. Simulation of HT with BPNN in a different environment 

0.99958 0.99943 0.99915 0.99916 0.99939 0.99927 0.99920 0.99935 0.99973 0.99946 

0.99922 0.99916 0.99965 0.99934 0.99987 0.99993 0.99958 0.99945 0.99949 0.99939 

0.99984 0.99959 0.99933 0.99985 0.99994 0.99956 0.99912 0.99901 0.99952 0.99932 

0.99946 0.99974 0.99927 0.99999 0.99957 0.99984 0.99922 0.99971 0.99943 0.99968 

0.99955 0.99989 0.99931 0.99976 0.99922 0.99947 0.99973 0.99958 0.99944 0.99938 

0.99966 0.99963 0.99959 0.99937 0.99949 0.99931 0.99989 0.99943 0.99968 0.99969 

0.99911 0.99927 0.99914 0.99938 0.99919 0.99957 0.99944 0.99929 0.99912 0.99955 

0.99964 0.99982 0.99931 0.99969 0.99922 0.99983 0.99981 0.99914 0.99911 0.99991 

0.99978 0.99951 0.99982 0.99931 0.99990 0.99953 0.99921 0.99977 0.99915 0.99992 

0.99958 0.99932 0.99971 0.99958 0.99933 0.99919 0.99915 0.99943 0.99973 0.99929 
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After testing the algorithm in a different environment to figure out its dependency 

on the background objects, it is found that a background object with straight lines or any 

other straight-line disruption can lead to misdetection of the desired rectangle in the 

image since the algorithm focuses on finding 6 peaks in total. In order to analyze the role 

of other straight-line segments in the current frame, the simulation is run especially in a 

scenario with straight-line segments in the background. The picture frames in the 

background are also shaped in rectangle and offers a more challenging simulation. As we 

can see in Figure 15, although the desired license tag is within sight of angle of the 

camera, the NN gives us the results closer to 0, which implies that the tag is not detected.  

                  

 

                    

     Figure 15. Simulation of HT with BPNN with background straight lines 

 

In order to analyze the detected HT lines that might be the cause of the failure, the 

same simulation is run with the HT lines shown on the simulation itself. As it can be seen 

in Figure 16, the detected HT lines are not covering all the sides of tag itself thus leading 

the false area extraction as the input of NN.  
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                                  Figure 16. Hough Lines imposed on Figure 15 

 

A way to overcome the problem is increasing the number of peaks to be detected 

in the hopes of finding the four lines that are surrounding the sides of the license tag and 

extracting the correct are covering the entire tag. After setting the number of Hough 

Peaks to be detected as high as 10, the same simulation with the same background 

conditions is run. Although the number of Hough Lines detected is increased, In Figure 

17 we can see that there are still misdetections that might lead to false area extraction as 

the input of NN. In order to tackle this drawback of HT, there are many methods 

proposed in the literature for an improved detection.  In the Conclusion and Future work 

section; new ideas, works and literature reviews in order to improve the performance of 

Hough Transform will be studied excessively. 

                        

                             Figure 17. Hough Peaks with increased number of 10 
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In order to test the limits of the algorithm, salt&pepper noise is applied with 

increasing incremental. It is found that the detection method fails as the applied density 

has been increased to 0.2. The graphical representation of the salt&pepper density and the 

results are shown in Figure 18 below.  

 

                              

                    Figure 18. Salt&Pepper Density vs. BPNN Output 

 

5.2 USING ROBOREALM FOR HOUGH TRANSFORM  

MATLAB is a powerful computational tool to analyze and simulate the computer 

vision algorithms since it gives users the freedom to manipulate the codes and algorithm 

down to each pixel. On the other hand, RoboRealm is a user-friendly tool, which needs 

no coding and provides built-in controlling structure for many of Robotics structure. It is 

useful to make a comparison of the simulation results of MATLAB and RoboRealm to 

see if Hough Transform with the same parameters gives more improved results than 

MATLAB. The same captured scene with the faulty HT detection is simulated on 

RoboRealm. First, we need to apply edge detection in order to perform HT on the image. 

After loading the image on RoboRealm by using “Open” tab, under the “Contents” tab 

we can find “Edges” section for the Canny Edge detection.  

Canny Edge detection is one of the most efficient ways to detect true edges. 

According to Gupta, unlike other edge detection methods, Canny Edge detection method 
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is highly efficient in finding the true weak edges. Other classical edge detection methods 

like Sobel and Prewitt tend to detect thick and inaccurate edges and to be more sensitive 

towards noise. Another method, called Laplacian of Gaussian, usually malfunctions at the 

corners, curves and there the gray level intensity varies. It is also weak at finding the 

orientation of the edge because Laplacian filter is not suitable for this purpose. (DGW-

Canny) 

On the other hand, Canny Edge Detection is an edge detection method that has the 

minimal edge detection concerns but usually has the drawbacks of computational load 

and complexity. It can also have the confusion at the corners since it exploits the 

Gaussian smoothing of the image. (DGW-Canny) 

After choosing Canny Edge detection method in RoboRealm, Gaussian Theta is 

chosen as 0.8, Low Threshold and High Threshold are set as 0 and 34 respectively. 

Unlike MATLAB, where the threshold values are assigned automatically unless 

specified, we can adjust the values in RoboRealm to get the closest edge detection result 

with MATLAB. The values specified above are the ones that give the closest edge 

detection with the previous simulation. 

After applying Canny Edge detection on image, it is convenient to apply HT on 

the binary image. “Hough” function in RoboRealm is a user-friendly function that is 

used to perform HT on binary images. Choosing the same values with the ones in 

MATLAB, a more accurate but not sufficient detection of the tag is achieved. Figure 19 

below illustrates a more accurate detection of the tag as the input of NN. 

                                                   

                                     Figure 19. Hough Lines on RoboRealm 
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Figure 19 clearly shows that although RoboRealm provides a better encapsulation 

of the license tag, there is still some misdetection. The Hough Line, which covers the 

right side of the license tag, is placed right next to the number “0”, detecting it as a 

straight line. Standard HT method is so useful to detect straight lines in a binary image 

but also needs improvement. 

 Figure 20 below provides a better illustration of misdetection of HT lines on the 

original image. It is interesting that MATLAB simulation provided Hough lines on the 

sides of the picture frames whereas RoboRealm is more successful and accurate for 

detecting the desired sides of the license tag. The reason of difference underlies in the 

binary images produced by both MATLAB and RoboRealm.  

 

                               

                       Figure 20. Hough Lines on the Original Image on RoboRealm 
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6. CONCLUSION AND DISCUSSIONS 

 

In this study, the benefits of HT in object recognition, in our case a license tag, 

using BPNN is examined. First 251 different scenarios with the desired license tag in it 

used as a positive input to train the network, which are supposed to yield 1 in the output 

of NN. Then 168 different scenarios, without the desired license tag in it, are used to train 

the NN, which are supposed to yield 0 in the output. Providing the Confusion Matrix, 

which implies there is 0% error in testing and validation, proves the accuracy of the 

trained NN. After many simulations, it is observed that BPNN is only successful at 

recognizing the tag if the simulation is run in the same conditions with the trained 

pictures. A change in the background objects, or a change in the simulation environment, 

led to the misdetection of the desired object, the license tag. The importance of extracting 

the license tag without being dependent on the background objects and lighting 

conditions gains importance and HT is a useful tool to detect the straight lines in a binary 

image. With using HT, it is aimed to detect the four straight lines for each side the license 

tag. In the algorithm, if there are 4 Hough lines detected, intersecting each other with at 

least 80 and at most 100 degrees, then the area that has been bounded by these 4 lines are 

extracted and used as an input in a newly trained NN, where the solely the image of the 

license tag with different angles and lighting conditions are used. It has been proven that 

using HT in parallel with BPNN provides a great advantage over using BPNN in terms of 

detecting the license tag. Adapting HT minimizes different lighting conditions and 

background disruptions. 

 On the other hand, HT has downsides when there are other straight-line segments 

in the background. A simulation on MATLAB, where there were other picture frames in 

the background, has been run with the desired license tag in it. It has been observed that 

NN failed to produce outputs, which were supposed to be close to 1, since the desired tag 

was in the scene. In order to analyze the reason of the failure, Hough lines were printed 

on the image and it is found that other straight-line segments in the image led to the 

failure of extraction of the desired tag.  

RoboRealm is also a very useful and user-friendly interface mainly used for the 

robotics vision and image processing. Its built-in robot controllers and low memory 
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consumption provide advantage over MATLAB. The same captured frame with HT 

failure has been run on RoboRealm this time to make a comparison with the previous 

simulation that has been run on MATLAB. It has been observed that RoboRealm is more 

successful in detecting the sides of the license tag and being resistant to background 

noise, which are mainly straight lines.  
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7. FUTURE WORK 

 

Still the straight-line detection for the desired tag’s sides is not perfect with HT on 

RoboRealm. There are many other techniques in the literature for improved HT, which 

can be applied to this study as a future work. One of them is using a new and improved 

approach of HT. [Nguyen]. According to Nguyen, three extensions to SHT provide better 

detection of straight-line segments. First one is the accumulation technique, second one is 

applying the local maxima rule and finally third one is the detection of line segments. The 

technique of accumulation consists of accumulating the pixel of the image only in the 

parameter space. [Nguyen] .We put the coordinates (x,y) of a pixel into Equation 2 and 

then  value, which will be referred as exact , is calculated.  

If the location of a pixel is (xi, yi) , then the Equation 2 turns into  

       exact = xicos + yisin                      Eq. 3 

 

Then we can consider there are two consecutive values in the -axis, low and 

high, where low  exact  high. We can calculate the Hough transform for high and low 

as follows: [Nguyen2] 

   H(low,)=H(plow,) + (high-exact)                                            Eq. 4 

   H(high,) = H(high,) +(exact-low)                                          Eq. 5 

  

Next step to improve the HT is applying the local maxima rule. In Standard HT, 

the certain lines are selected only if their values are above a certain threshold. The 

problem with the SHT is that, the extracted lines might end up being too close to each 

other and other straight line-segments in the rest of the image might go unnoticed. 

Eliminating the unsatisfying lines by detecting the maximum value in the local area is the 

core of applying local maxima. Final step is the extraction of the accurate line segments. 

This method not only provides the detection of the straight lines but the line segments 

having accurate positions on the image. For future work, applying these extensions to 

extract the desired license tag from the scene to use it as the input of NN might provide a 

great advantage and lead to error free detection of the desired objects in parallel with 

BPNN. 
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