

“FOR YOUTH FOR LIFE” AN ONLINE EDUCATION SYSTEM USABILITY AND

SECURITY IMPROVEMENT

by

Nayana Teja Talluri

A thesis submitted to the Graduate Faculty of

Auburn University

in partial fulfillment of the

requirements for the Degree of

Masters of Science

Auburn, Alabama

May 10, 2015

Keywords: HP Fortify, Secure Code Review, Online Learning, Security Risks, SQL Injection,

Privacy Violation

Copyright 2015 by Nayana Teja Talluri

Approved by

Cheryl D. Seals, Chair, Associate Professor of Computer Science and Software Engineering

Dean Hendrix, Associate Professor of Computer Science and Software Engineering

James Cross, Professor of Computer Science and Software Engineering

 ii

Abstract

The FYFL (For Youth For Life) application is used to perform website functions which

helps learning among communities across many content areas, supports the 4-H badge

management system and creates users of different levels. The 4-H Digital Badging System is a

web-based learning environment providing 4-H staff and instructors with an on-line platform to

create courses, activities to approve and to issue proposed badges with more convenience and

efficiency and to create a fun learning experience. 4-H in the United States is a youth

organization administered by the National Institute of Food and Agriculture of the United States

Department of Agriculture (USDA). This online learning application’s functions include forms

that collect personal, classified and confidential information from different populations of

different levels. A need arises to protect the privacy and security of personally identifiable

information from hackers by assessing and improving the security of the FYFL application

periodically.

 With the growing availability of the Internet, a number of diverse user devices facilitate

the demands of online learning. Online learning brings with it all the security risks inherent to

using the Internet. The consequences of a security breach are loss of revenues, damage to

credibility, and loss of customer trust. Security is essential as a means to retain users’ trust in the

online learning environment as any risk can affect students’ perceptions of a systems’ reliability

and trustworthiness.

 iii

Table of Contents

Abstract ... ii

List of Figures ... vi

1. Introduction .. 1

1.1 Motivation ... 1

1.2 General Area of Research ... 1

1.3 Purpose of Research ... 2

1.4 Approaches to the Research ... 3

2. Statement of the Problem .. 4

2.1 Research Problem ... 4

2.2 Research Approach ... 4

2.3 Research Questions .. 5

2.4 Hypothesis ... 5

Hypothesis I ... 5

Hypothesis II .. 6

Hypothesis III ... 6

Hypothesis IV .. 6

2.5 Experiment .. 6

2.5.1 Setup of Experiment .. 7

2.5.2 Experimental Procedure .. 7

3. Literature Review .. 9

3.1 Usability .. 9

3.1.1 What is Usability? .. 9

3.1.2 Usability Evaluation .. 9

3.2 User Interface Design .. 11

3.2.1 What is User Interface Design? .. 11

3.2.2 User Interface Designers fundamentals or best practices ... 12

3.2.3 The current trends and future of user interface .. 14

 iv

3.3 Security ... 19

3.3.1 What is Security? ... 19

3.3.2 Parts of Security and How Application Security fits in it .. 20

3.3.3 Security Testing .. 22

3.3.4 Techniques for Security Testing ... 22

3.3.5 Security Risks and Protection Measures in online learning ... 27

3.3.6 Qualifying and Quantifying the System Security Improvement .. 28

4. System Framework ... 31

4.1 FYFL System Architecture ... 31

4.1.1 2-Tier Architecture ... 31

4.1.2 Web Application Architecture.. 32

4.1.3 Web Application Security Architecture .. 32

4.2 FYFL System Use Case Diagram ... 33

4.3 FYFL System Activity diagrams .. 34

4.4 Database Architecture .. 36

5. Security Testing Tools ... 40

5.1 HP Fortify .. 40

5.2 Fortify on Demand .. 44

5.3 IBM Security AppScan Source ... 45

5.4 FindBugs .. 48

5.5 Differences between commercial tools HP Fortify and IBM AppScan .. 50

6. Research Plan .. 51

6.1 Proposed Hypothesis .. 51

6.2 Preliminary Design .. 51

6.2.1 Technologies used to build “For Youth For Life” System ... 52

6.3 Preliminary Experiment .. 53

6.3.1 Fortify Scan of the initial code ... 53

6.3.2 Suggestions or Recommendations ... 57

6.3 Work Plan .. 59

 v

7. Experiment Design .. 61

7.1 Participants ... 61

7.2 Process .. 61

7.3 Verification and Validation ... 62

7.4 Data Collection & Analysis .. 64

7.5 Expected Outcomes .. 68

7.6 Experiment Results ... 69

8. Summary and Conclusion.. 71

Bibliography .. 72

 vi

List of Figures

Figure 1: Evolution of the User Interface ... 14

Figure 2: Timeline of enabling technologies .. 16

Figure 3: Parts of Computer Security ... 21

Figure 4: Software Development Lifecycle .. 24

Figure 5: Secure Code Review Methodology ... 25

Figure 6: Software Security Metrics and Improvement .. 29

Figure 7: 2-Tier Architecture .. 31

Figure 8: Web Application Architecture ... 32

Figure 9: Web Application Security Architecture .. 33

Figure 10: Use Case diagram .. 34

Figure 11: Admin functionality - Approve a badge and create a badge ... 35

Figure 12: User Functionality - Earn a badge ... 35

Figure 13: User Functionality – Registration .. 36

Figure 14: Entire FYFL system database architecture .. 37

Figure 15: Continuation of Database Architecture ... 38

Figure 16: Protected tables .. 39

Figure 17: Components of HP Fortify .. 40

Figure 18: Process flow .. 41

Figure 19: HP Fortify Source Code Analyzer ... 42

Figure 20: Software Security Center Dashboard .. 42

Figure 21: HP Fortify Audit Workbench .. 43

Figure 22: Audit Workbench - Making a Recommendation ... 44

Figure 23: HP Fortify On Demand ... 44

Figure 24: AppScan Standard glass-box testing ... 46

Figure 25: AppScan Enterprise Software .. 47

Figure 26: Path of Software Security Assurance maturity .. 52

Figure 27: Executive Summary... 55

Figure 28: Category of issues reported after preliminary scan ... 56

Figure 29: Code Tracing and Code Evaluation ... 63

Figure 30: SQL Injection fix 1 .. 65

Figure 31: SQL Injection fix 2 .. 66

Figure 32: SQL Injection fix 3 .. 67

Figure 33: SQL Injection fix 4 .. 67

Figure 34: Privacy Violation- Auto completion fix .. 68

Figure 35: Category of issues after 2nd scan .. 69

Figure 36: Results of Initial scan and Figure 37: Results of third scan .. 70

 1

1. Introduction

1.1 Motivation

An application can have great features such as a firewall, passwords systems etc., but if

the rest of the system is not secured, attackers will drive right around the application’s security. It

used to be that a website would just display data “Here’s where our store is, here’s what we sell”,

but today, websites also take data from users: usernames, date of birth, email id etc. To retrieve

this data, there needs to be a hole in the firewall. In other words, that hole is there intentionally,

because we want to get data from our users. Developers tried to secure that hole in several ways.

SSL (Secure Socket Layer) creates a secure pipe to the user, but if that user is malicious, SSL

gives zero security. There is also a focus on automated systems such as intrusion detection,

intrusion prevention, and app firewalls. To that end, this research will focus on the way to secure

an application by programming the application to securely handle malicious data.

1.2 General Area of Research

Computer security has experienced important fundamental changes, over the past decade.

Traditional approaches to computer security focused almost exclusively on the network. The idea

was to keep malicious hackers away from vulnerable machines by placing a barrier around a

local area network and the Internet. Researchers say, although firewalls certainly have their place

in computer security and have since become ubiquitous, serious security problems persist.

Researchers consider code review and architectural risk analysis to be the security best

practices. Among these two best practices, code review with a static analysis tool is the easiest

 2

and most straightforward to adopt. The code review has been partially automated with

sophisticated tools. Static analysis identifies many common coding problems automatically

before a program is released.

The Secure Source Code review is an activity of the development phase in the Secure

Development Lifecycle (SDL) and is the process of reviewing the source code of an application

to verify that security controls are present, that they work as intended, and that they have been

invoked in all the right places. It helps to identify any deviations from security requirements or

security best practices as well as to identify security vulnerabilities in the source code. Also, the

study includes an analysis of the major security risks in code such as Cross-Site Request Forgery

(CSRF), Cross Site Scripting (XSS), Password Management, Privacy Violation, SQL Injection

etc.

1.3 Purpose of Research

The project aims to provide security for the online learning environment. Security is

essential as a means to retain users’ trust in the online learning environment as any risk can

affect students’ perceptions of a systems’ reliability and trustworthiness. The growing

availability of the Internet and the number of diverse and user devices facilitate the demands of

online learning. Online learning brings with it all the security risks inherent to using the Internet.

Online learning is built on trust, information exchange and discussion.

The consequences of a security breach are loss of revenues, damage to credibility, and

loss of customer trust. As a result, it is crucial to identify the underlying factors that can cause

security issues in online learning.

 3

1.4 Approaches to the Research

This study will focus on application security, security testing and techniques for security

testing. It also focuses on choosing one among the various commercial and non-commercial tools

to perform a secure code review. The main criterion to choose a tool is to identify the security

vulnerabilities existing in the FYFL system.

The focus of this study is to improve the security of the FYFL system. In the first phase,

we fix the vulnerabilities that were identified during the initial code scan by implementing

whitelist data validation techniques. The study will create an environment to leverage existing

technology of automated tools and utilize this in identifying the risks. In the second phase, we re-

scan the modified code to see if the issues are eliminated. The results of this study will be used to

support the methodology implemented to mitigate the risks involved. Our aim is to gain the

customer’s trust by securing their credentials.

 4

2. Statement of the Problem

2.1 Research Problem

Due to development of the Internet, more and more people are taking online courses. The

FYFL system provides numerous online courses to allow 4-H members to increase their

competency and to upgrade their skills. Online learning depends on the Internet for its execution.

However, there are many illegal activities and security threats taking place on the Internet.

Consequently, the environment is inevitably exposed to constant security threats, risks and

attacks. In online learning, security is basically when the learning resources are available and

unimpaired to all authorized users when they are needed. Every element in the FYFL system can

be a potential target of hacking or attacks, which may lead to unauthorized modifications or

destruction of educational assets.

2.2 Research Approach

The main goal of this study is to protect the FYFL system from identity theft,

impersonation, and inadequate authentication. The risk is great as the functionalities and features

of the FYFL system become more complex and is increasingly exposed to security threats.

The study’s main target is to give a detailed description of the existing FYFL system

from a security standpoint. It elaborates on technologies used to build the system. The study will

focus on the usability of the security tools and by doing a comparative study of its usefulness. A

complete analysis of a comprehensive study on web application security risks will be discussed.

 5

Furthermore, it describes the methodology to find the security issues and fix them to

improve the security of the “For Youth For Life” system in order to resist possible attacks like

SQL Injection, Cross Site Scripting (XSS), Cross Site Request Forgery (CSRF), Privacy

violation etc.

2.3 Research Questions

In the first phase of the study, we plan to investigate the security aspect of the FYFL

system using a secure code review automated tool “HP Fortify on Demand”. In the next chapter,

findings will lead to a comprehensive focus on the security issues detected in the code and

improving the security of the application.

Research questions were generated to confirm and justify the theory above:

1. What are the key techniques to be implemented while programming an application to prevent

the security vulnerabilities?

2. Is whitelist validation better than blacklist validation?

3. Is the secure code review method more efficient than other security testing methods?

4. What are the major vulnerabilities currently existing in the FYFL system?

5. Will the mitigation techniques implemented eliminate the vulnerabilities and securely handle

the malicious data?

2.4 Hypothesis

Hypothesis I

H01: The system is not secure against possible attacks like SQL injection, Cross Site Scripting,

Cross Site Request Forgery etc.

 6

HA1: The system is secure against possible attacks like SQL injection, Cross Site Scripting,

Cross Site Request Forgery etc.

Hypothesis II

H02: There is no difference in users’ preference when using a securely improved site compared

to the original site.

HA2: There is difference in users’ preference when using a securely improved site compared to

the original site.

Hypothesis III

H03: There is no difference in the magnitude of learners’ trust when using the securely improved

site compared to the original site.

HA3: There is a difference in the magnitude of learners’ trust when using the securely improved

site compared to the original site.

Hypothesis IV

H04: Whitelist validation is not the best way to validate the input compared to blacklist

validation

HA4: Whitelist validation is the best way to validate the input compared to blacklist validation

2.5 Experiment

With the emergence of online environments, many organizations have resorted to

automated security testing tools. However, every organization has expertise in different

technological skills and varied access to technology based upon the location and focus. Due to

 7

the variety of automated testing tools available, there is a debate on which tool will be more

suitable for the organization to easily improve the security of the applications.

Though there are many ways to perform security testing, many of them have not fully

ascribed to the available best practices. We choose “Fortify on Demand”, a managed application

security testing service provided by the HP fortify which enables organizations to quickly test the

application security of a few applications or launch a comprehensive security program without

additional investment in software and personnel.

In this experiment, we performed a static analysis of the FYFL system code through the

tool Fortify on Demand. Our methodology involves fixing certain issues in the code and re-

scanning the code to see if the methods used to improve the security eliminated the issues. The

benchmark will be the current system code; the version that we will be comparing for

improvement will the next version of this system with added functionality.

2.5.1 Setup of Experiment

 To perform the experimental tasks, participants must have access to the Internet through a

web browser. The specifications of the machines will not be considered, but the latest browsers

are recommended. The system can also be accessed through hand held devices, iPad, iPod, web

accessible cell phones etc. The experiment criteria includes Science, Engineering and

Technology (SET) abilities, Application Security and Security Testing knowledge, Performance

on key learning activities, and Programming skills.

2.5.2 Experimental Procedure

 This chapter deals with the details of implementation for modifying the code of the FYFL

system after the analysis done in the initial phase. Phase I of the research basically includes

 8

gathering the core and functional requirements. Furthermore, Phase II describes the system

framework and methodology to eliminate the security vulnerabilities like cross site scripting,

SQL injection. Also, the research outlines the use case diagrams and the activity diagrams which

depicts the system requirements. Afterwards, the results of the automated tool before and after

adding whitelist input validations to mitigate the risks form the outcome of the study.

 9

3. Literature Review

3.1 Usability

3.1.1 What is Usability?

Usability is considered to be one of the most important quality factors for Web

applications along with other factors such as reliability and security. Web application usability is

not just about a good interface design. As the visual appeal of a web application is important, the

fundamental structure and programming can also contribute to "good usability" [10].

Usability can be defined as “the extent to which a product can be used by certain users in

a specific context of use to achieve the specified objectives effectively, efficiently and

satisfactorily”. This definition offered by the international standard ISO/ IEC 9241-41 describes

the most important issues to be taken into consideration when designing an application: Who are

the users of the application? What are the objectives of the application? In which context is the

application used? Can the objectives be achieved effectively, efficiently, satisfactorily?

Satisfactory means that the application can be used without any problems and has resulted in a

positive user attitude towards the application [1].

3.1.2 Usability Evaluation

The ease or difficulty that users experience with these Web applications determines their

success or failure. Usability Evaluation Methods (UEMs) which are specifically crafted for the

Web, and technologies that support the usability design process, have therefore become critical

[1].

 10

The most frequently used type of UEM is user testing [1]. This indicates that most evaluations

are performed during the later stages of the web development life cycle. The following are some

of the sub-types of user testing methods:

1. Think-Aloud Protocol: User thinks aloud while performing a set of specified tasks

2. Question-Asking Protocol: Testers ask users direct questions

3. Performance Measurement: Testers or software tools record usage data and obtain statistics

during the test.

4. Log Analysis: Testers or Software tools analyze the usage data. For example, when usage

data is particularly related to gaze points obtained from the analysis of eye movement, the

method is called eye tracking.

5. Remote Testing: Testers and users are not co-located during the test. This method can be

applied in conjunction with log analysis methods.

Inspection methods are intended to be performed by expert evaluators. Most of them are web

designers [1]. The following are some of the sub-types of inspection methods:

1. Heuristic Evaluation: Expert evaluators identify heuristic violations in web artifacts

2. Cognitive Walkthrough: Experts simulate a user’s goal achievement by going through a set of

tasks.

3. Perspective Based Inspection: Experts conduct an oriented and narrow evaluation that can be

based on design perspective, inspectors’ tasks, and metric calculation.

4. Guideline Review: Experts verify the consistency of web artifacts by using a set of usability

guidelines.

 11

Inquiry methods focus on gathering subjective data from users. Most of these methods are used

in combination with other methods such as testing and inspection methods to perform a complete

evaluation [1]. The following are some of the sub-types of inquiry methods:

1. Questionnaire: Users provide answers to specific questions.

2. Interviews: One user and one expert participate in a discussion session concerning the user’s

attitude towards the artifact to be evaluated.

3. Focus Group: Multiple users participate in a discussion session concerning their attitudes

towards the artifact to be evaluated.

Analytical Modeling focuses on modeling certain aspects such as user interfaces, task

environments or user performance in order to predict usability [1]. The following are some of the

sub-types of Analytical modeling methods:

1. Cognitive Task Analysis: User tasks are modeled in order to predict usability problems.

2. Task Environment Analysis: Evaluation of the mapping between users’ goals and user

interface tasks.

3. GOMS Analysis: Human task performance is modeled in terms of Goals, Operators,

Methods, and Selection rules (GOMS) in order to predict execution and learning time.

3.2 User Interface Design

3.2.1 What is User Interface Design?

User interface design constructs the medium of communication between humans and

applications. If the user has to think too much, that designer is not doing a good job. Good user

interfaces let users complete their goals. There is a lot of up-front learning that the designer

needs to do before he starts the real development. User interface design concentrates on

 12

anticipating what actions users might perform and also making sure that the interface has

elements that are easily understood and accessed. Designers have to choose the interface

elements (i.e. Input controls, Navigational Components, Information Components, and

Containers) that are consistent and predictable in layout which helps in-task completion with

more efficiency and satisfaction [13].

3.2.2 User Interface Designers fundamentals or best practices

User interface designers must consider the following design fundamentals when starting on an

interface [11][12].

1. Know the user

“Obsess over customers: when given the choice between obsessing over competitors or

customers, always obsess over customers. Start with customers and work backward.” – Jeff

Bezos.

The user’s goals should be the designer’s goals. Hence a designer must learn them, restate

them and repeat them. Also, a designer must know about the user’s skills and experience.

Focusing on the user’s needs will let them achieve their goals.

2. Keep the interface simple

“A modern paradox is that it’s simpler to create complex interfaces because it’s so complex

to simplify them.” – Pär Almqvist

The best interface designs are almost invisible to the user. They do not contain unnecessary

elements and are clear in the language used on labels and in messaging.

3. Create consistency and use common UI elements

“The more users’ expectations prove right, the more they will feel in control of the system

and the more they will like it.” – Jakob Nielson

 13

Using common elements in UI makes users feel more comfortable and will cause them to get

things done more quickly and efficiently. It is also important to create patterns in language,

layout and design to help facilitate efficiency and consistency which helps users learn how to

do something and transfer that skill to other parts of the application.

4. Purposeful page layout

Considering the spatial relationships between items on the page, structure the page based on

their importance. It helps draw attention to the most important pieces of information,

increasing the readability.

5. Strategically use of color and texture

“Designers can create normalcy out of chaos; they can clearly communicate ideas through

the organizing and manipulating of words and pictures.” – Jeffery Veen (The Art and Science

of Web Design)

Directing attention toward or redirecting attention away from items using color, light,

contrast, and texture to your advantage.

6. Typography to create hierarchy and clarity

Use of typeface to create different sizes, fonts, and arrangement of the text to increase scan

ability, legibility and readability.

7. Provide feedback

The interface should communicate what is happening i.e. inform users of location, actions,

changes in state, or errors. The use of various UI elements to communicate status can help

users know whether his or her actions have led to the expected result.

8. Think about the defaults

 14

Thinking and anticipating the goals users bring to the site, create defaults that reduce the

burden on the user. It is important when it comes to form design where there is an

opportunity to have some fields pre-chosen or filled out.

3.2.3 The current trends and future of user interface

User interfaces are everywhere on websites, mobile phones, television, wrist watches,

airplanes, washing machines etc. If there is a user, there is a user interface. Similarly, if there is a

frustrated user, there is usually a case of bad user interface. The following picture depicts the

evolution of user interface [13].

Figure 1: Evolution of the User Interface

3.2.3.1 The current trends of User interface

Minimalism: Going back to basics in user interface design, the glossy icons of websites windows

8 and Pinterest are replaced by simpler single color versions or text based buttons. It is a simple

way to design web applications which mostly focuses on user generated content, so users usually

might not complain about it. This might be a simpler technique which few users might not prefer,

so check user preferences before using it [14].

Skeuomorphism: This user interface design was first popularized by Apple. This design approach

relies on imitating the look and functionality of traditional and familiar real world objects to

 15

make the interface more intuitive. For example, a wooden bookshelf with book covers to

represent a digital library i.e. iBooks, this is generally used in designing mobile applications but

not usually a best path to take for web applications [14].

Laser Focus: User interface has visual focus on a single, obvious task to do when a user opens

the web application, instead of providing several equally important options. The key benefit of

this approach is simplicity – users instantly know what the application is about and what the

suggested action is. A good example of this is the Google homepage. This approach is useful in

designing applications that have only a single, main function [14].

Context Sensitive Navigation: This approach came with the rise of dynamic user interface.

Designers have to decide on which navigation elements should be on screen all the time and

what can be shown only during certain actions. For example, Pinterest or Gmail usually shows

the message action buttons only when the message is selected [14].

Collapsed Content: This approach is to hide non-essential options under one link which will

expand and collapse on a user’s request. For example, instead of showing a large number of links

in the header, introducing a “More” button which will display a drop-down menu with links to

pages that are not more important to the user [14].

Content Chunking: This approach makes reading and digesting large amounts of data easier, by

presenting large amounts of data in smaller chunks. For example, splitting the article in smaller

headings and adding images would make it easier and interesting to read [14].

Long Pages: Long pages require a lot of vertical scrolling assisted by a mouse wheel. Users are

so accustomed to vertical scrolling that it’s actually worse to split the content on separate pages

which requires extra effort to find it and reach it [14].

 16

3.2.3.2 Future of User interface:

Looking into future of user interface is worth the time, as it will change the way we work

and the products we deliver. At this moment there is a large shift going on i.e. shift from desktop

to mobile devices, and so this forces designers to refocus. One cannot know the future but can

speculate [13].

The graphical user interface is not the future of the user interface, it is rather a current

approach used to design an interface. It just completes the visual tasks to receive results such as

clicking on a button to get a result etc.

The future enabling technologies are described as follows: [13]

Figure 2: Timeline of enabling technologies

Electronic (e-) paper: Electronic or e-paper refers to reflective display technologies that do not

require a backlight, which can be viewed in conditions of moderate to good ambient

illumination. It can be made thin and produce a thin paper. The initial major applications for e-

paper are small information- centric screens in mobile devices and music players.

 17

Interactive Visualization: Displaying information/data using interactive images with colors,

brightness, size, shape and motion of visual objects represents aspects of the dataset being

analyzed. In security, visualization of cybersecurity data may uncover hidden patterns and

identify emerging vulnerabilities and attacks, enabling a quick response with countermeasures.

Gesture Recognition and Motion Sensing: Determining the movement of a user’s fingers, hands,

arms, head and body in three dimensions through the use of camera or a device embedded with

sensors that may be worn, held or bodily mounted.

Eye Tracking and Facial Recognition: Eye tracking technology facilitates determination of the

angle or position of the user’s visual attention using a camera. Generally non-intrusive eye

trackers include two components: a light source and a camera. The light source is directed

towards the eye while the camera tracks the reflection of the light source. The data obtained is

used to extrapolate the rotation of eye and derive the direction of the gaze.

Facial recognition analyzes facial features and expressions of a user to infer information like age,

gender and emotional state. For example, cameras placed on billboards and advertisements,

profile the type of user in order to dynamically change the advertisement to suit the profile of the

user.

 18

Natural Language Question and Answering: This technology provides users with a means of

asking questions in a plain language to computers/systems and receiving a response of high

reliability and confidence in a reasonable time frame. A good example of this is IBM’s Watson.

Virtual Laser Keyboards: Virtual laser projectors are small projector modules that display user

interface (i.e. a keyboard or mouse) onto any flat surface so that users interact more easily with

the mobile device or systems without the use of a physical keyboard or mouse.

Voice and Speech Analytics: Voice stress analytics is an elementary form of voice and speech

analytics, which recognizes a person’s stress level by analyzing the characteristics of a voice

signal, with words used as an additional input. For example, it is used in call centers to identify

an angry or abusive customer. Apple’s Siri is also an example of speech analytics.

Speech to Speech Translation: Involves translation of one spoken language into another. It

converges speech recognition, machine translation and text-to-speech capabilities.

Human-Robot Interfaces: The convergence of the technology’s natural language question and

answering system, speech to speech translation, gesture recognition, eye tracking and facial

recognition may lead to the emergence of a truly intelligent human-robot interface that is able to

navigate in various physical environments, perform complex tasks and communicate with

humans.

 19

3.3 Security

3.3.1 What is Security?

An application can have great features such as a firewall, passwords systems, etc. But if

the rest of the system is not secured, attackers will drive right around the application’s security.

The previous generation of websites simply display data “Here’s is where our store is, here’s

what we sell”. But today, websites also take data from users: usernames, date of birth, email id

etc. To retrieve this data, there needs to be a hole in the firewall. In other words, that hole is there

intentionally, because we want to get data from our users. Developers tried to secure that hole in

several ways. SSL (Secure Socket Layer) creates a secure pipe to the user, but if that user is

malicious, SSL gives zero security. Automated systems such as intrusion detection, intrusion

prevention, and app firewalls are great, and applications should absolutely use them. To that end,

the only way to secure an application is to program the application to securely handle malicious

data [9].

An example of insecure code being hacked with the malicious data [8]

String SQLquery = “Select * from TABLE where name = ‘” + userdata1 + “’ and pass = ‘”

 + userdata2 + “’”;

Expected Input: Bob, dogsname

Then query returns values of name “Bob” and password “dogsname”

Select * from TABLE where name = ‘Bob’ and pass = ‘dogsname’

Attacker’s input: Bob, foo’ OR ‘a’ = ‘a

 20

Then query returns all the rows of name “Bob” as password value is always true.

Select * from TABLE where name = ‘Bob’ and pass = ‘foo’ OR ‘a’ = ‘a’

This is SQL injection [8]: we expected a password but instead got some SQL logic, which allows

the attacker to log in without knowing Bob’s password. An easy fix to this without changing the

code and performance either is to use a SQL prepared statement it actually runs faster and is

more secure.

Fixed:

PreparedStatement stmt = connection.prepareStatement (”Select * from TABLE where name = ?

and pass = ?”);

stmt.setString(1, userdata1);

stmt.setString(2, userdata2);

A prepared statement takes the form of a template into which certain constant values are

substituted during each execution. Prepared statements are resilient against SQL injection,

because parameter values are transmitted later using a different protocol.

3.3.2 Parts of Security and How Application Security fits in it

Business Practices are the rules, goals and procedures of the business. For example, “New

employees get security training,” or “Only employees can access the internal network.” Business

practices usually live in documents and peoples’ heads, and guide the implementation of code.

Business practice security is mostly handled by managers and security professionals.

 21

Network security is about preventing unauthorized network access. It uses firewalls and similar

tools. Think of this as the implementation of the business practice, “Only employees can access

the internal network.” Network security is mostly handled by sys admins.

Figure 3: Parts of Computer Security

Application security (“app sec”) is about how applications behave and how applications handle

malicious data. Developers mostly handle application security.

There are several types of security within app sec. Two main ones are architecture security and

code security.

Architecture security deals with how applications are put together. Is there a separation of

presentation and data layers? How is session handled? Etc. Architecture security requires human

experts to understand the architecture.

Code security [8] deals with how the application is implemented. When you take data from the

user and send it to the database, did you validate that data? When you read in the user’s

 22

password, did you miss a null check that can cause the application to never properly authenticate

the user? And so on. Application security scanners are generally built for code security. They can

look through every line of code, hypothesize about millions of control flow paths, and generally

do a much more thorough job than a human could.

3.3.3 Security Testing

Developers cannot build a secure application without performing security testing on it. It

is a phase within the SDLC (Software Development Life Cycle). Security testing, by itself, is not

a particularly good measure of how secure an application is because there are an infinite number

of ways that an attacker can break into an application, and it is not possible to test of all them.

However, security testing has a unique power to convince someone that there is a problem in an

application. In order to make security testing effective, testers need to test early and test often,

understand the scope of security, develop the right mindset, understand the subject, use the right

tools, use source code when available, develop the metrics, and document the results [9].

3.3.4 Techniques for Security Testing

There are number of companies selling automated security analysis and testing tools.

Limitations of these tools are they can be used for what they are good at. Most of the tools are

generic i.e. they are not designed for application’s custom code but for applications in general.

“Tools do not make software secure! They help scale the process and help enforce policy.” –

Michael Howard at 2006 OWASP AppSec Conference in Seattle [9].

There are four basic techniques for analyzing the security of a software application: [9]

1. Manual Inspections and Review

2. Threat Modeling

 23

3. Code Review

4. Penetrating Testing

Manual Inspections and Review- Manual inspections are human-driven reviews that typically

test the security implications of the people, policies, and processes, but can include inspection of

technology decisions such as architecture designs. They are usually conducted by analyzing

documentation or performing interviews with the designers or system owners. Not everything

everyone tells you or shows you will be accurate.

Advantages:

 Requires no supporting technology

 Flexible

 Promotes Teamwork

 Early in SDLC

 Can be applied in variety of situations

Disadvantages:

 Can be time consuming

 Supporting material not always available

 Requires Significant human thought and skill to be effective

Threat Modeling- Threat modeling can be seen as a risk assessment for applications to help

designers think about the security threats that their applications might face. In fact, it enables

designers to develop mitigation strategies for potential vulnerabilities and helps focus their

inevitably limited resources and attention on the parts of the system that most require it. Threat

 24

models should be created as early as possible in the SDLC and should be revisited as the

application evolves and development progresses. It has the same advantages and disadvantages

as manual inspection and review.

Source Code Review- Secure Source Code review is the process of reviewing the source code of

an application to verify that security controls are present, that they work as intended, and that

they have been invoked in all the right places. It helps to identify any deviations from security

requirements or security best practices as well as to identify security vulnerabilities in the source

code. Secure code review is an activity of the development phase in the Secure Development

Lifecycle (SDL).

Figure 4: Software Development Lifecycle

Techniques:

Manual: It is a bottom up approach performed without using a tool by text matching (e.g. using

regular expressions), input/output path analysis, authorization logic validation, architecture

analysis, etc.

Automated: Tool based automated code review techniques can assist in improving the throughput

of the code review process. Static or dynamic source code analysis tools can analyze a program

for hundreds of different security flaws at once (e.g. SQL injection, Cross Site Scripting etc.), at

a rate far greater than any human can review code. Tools produce both false positive and false

 25

negative results (e.g. a hardcoded password identified by the tool might not really be a password,

such instances are called false positives).

Sample Tools: Fortify, Ounce, DevInspect, FxCop, PMD, Findbugs, Yasca, CodePro

Analyticx(Security rule set), IBM Security AppScan Source

Approach and Methodology:

Figure 5: Secure Code Review Methodology

Advantages:

 Secure code review enables the development team to identify and correct insecure coding

techniques that could lead to security vulnerabilities.

 Effort benefit: The effort to fix the vulnerabilities in the earlier stage of the SDLC process

is much less than the later stage of the process. Last minute fixing may affect the entire

functionality of the program and hamper deadlines set for product release.

 26

 Cost benefit: Cost is directly proportional to effort required. Not only development cost,

but also, a vulnerability identified in the production environment may involve more costs.

 Compliance: Some compliance, such as PCI, makes it necessary to do a secure code

review before launching the product.

 Reputation: Secure code review removes most of the security flaws in the earlier phase,

making it more secure than just doing black box assessments. So there is less chance of

the product being compromised, hence lesser chance of reputation damage.

Penetration Testing: It has been a primary security testing technique for testing network

security for many years. It is also commonly known as black box testing or ethical hacking. It is

essentially the “art” of testing a running application remotely, without knowing the inner

workings of the application itself, to find security vulnerabilities. Typically, the penetration

testing team would have access to applications as if they were users. The testers are given a valid

account on the system, act like attackers and try to find vulnerabilities. Penetration testing tools

have been developed that automate the process.

Advantages:

 Can be fast and cheap

 Requires a relatively lower skill-set than source code review

 Tests the code that is actually being exposed

Disadvantages:

 Too late in SDLC and front impact testing only

 27

3.3.5 Security Risks and Protection Measures in online learning

 Security is essential as a means to retain users’ trust in the online education environment

because any risk can dramatically affect students’ perception of a system’s reliability and

trustworthiness [5]. Online education faces various security risks, which mainly comes from

external intruders. Below mentioned are some of the security risks in online education [5].

 Brute Force Attack

 Cross-Site Request Forgery (CSRF)

 Cross Site Scripting (XSS)

 Denial of Service (DoS)

 IP Spoofing

 SQL Injection

 Session Hijacking

 Session prediction

 Rootkits

 Cache poisoning

As a result, it is crucial to identify the counter measures to mitigate these risks. Researchers

have offered quite a few protection proposals [5]. Some of them are mentioned below:

 Installing firewalls and anti-virus software

 Implement Information Security Management (ISM) to build an effective security

architecture that can fight existing and emerging information security threats.

 Improving authentication, authorization, confidentiality, and accountability

 Using digital right management

 Training security professionals

 28

Security policies and mechanisms in online education must support authentication,

authorization, confidentiality, and accountability. Authentication refers to the validation of a

person’s identity before the access is assigned. Authorization defines what rights and services a

person can access after the authentication process is passed. Confidentiality means that some

specific information or data cannot be disclosed to anyone who is not authorized. Accountability

refers to the methodology by which users’ resource consumption information is collected for

billing, auditing, and capacity-planning purposes [5].

3.3.6 Qualifying and Quantifying the System Security Improvement

 The focus of threat protection is moving from securing the infrastructure to securing the

software applications that businesses write and deploy. The shift has created a market for a new

generation of products and services known as Software Security Assurance (SSA) solutions that

help companies uncover vulnerabilities in their code, effectively fix these defects, and produce

software that is impervious to security threats [7].

In an effort to quantify the business value of SSA, Mainstay Partners studied 17

organizations that have implemented solutions from Fortify Software, a leading provider of SSA

solutions. The study combined executive interviews, industry research, and benchmark analysis

to identify, qualify, and quantify the full range of benefits that organizations are seeing from

their SSA investments. The study found that companies are realizing substantial benefits from

SSA right out of the box, saving as much as $2.4M per year from a range of efficiency and

productivity improvements, including faster, less-costly code scanning and vulnerability

remediation and streamlined compliance and penetration testing [7].

 29

Application security meant protecting the software that is running in all these

environments and devices, and the business improvements of SSA were seen as extending to

wherever applications were deployed. The study reported a number of significant operational and

financial improvements from the SSA implementations. A selection of key performance

improvements are shown in the table below:

Figure 6: Software Security Metrics and Improvement

By analyzing such improvements, identified are the following benefit areas for SSA-enabled

organizations: [7]

 More efficient and effective vulnerability assessment and remediation

 Streamlined regulatory compliance and penetration testing efforts

 Fewer security-related delays affecting the launch of new products

 More favorable pricing of outsourced code development

Key Findings

Faster Vulnerability Remediation: Companies adopting SSA solutions reported significant

efficiency improvements in finding and remediating software security flaws. Earlier in pre-SSA

environment, vulnerabilities took an average of 1 to 2 weeks to fix. By introducing automated

SSA technology and best practices, organizations reduced average remediation from 1 to 2

weeks to 1 to 2 hours [7].

 30

“After implementing Fortify, a financial company uncovered thousands of previously unknown security

flaws in its applications. By cleaning code early, the company is now avoiding remediation costs of

around $1M per year, eliminating 100 hours of compliance testing per application, and avoiding product

launch delay- a benefit worth $7M–$8M annually.”

Streamlined Compliance and Penetration Testing: Most of the companies surveyed are facing

tighter government and industry regulations for application security, particularly in new software

standards in the financial services and health-care industries. SSA solutions helps control costs

by streamlining regulatory compliance projects that require meeting strict application security

standards. For example, organizations quickly identified and ranked vulnerabilities according to

severity. The solution also generates a report that documents these activities, creating an audit

trail for regulatory.

Avoiding Software Compliance Penalties: Businesses that fail to comply with industry standards

for software security can face substantial penalties. In the payment card industry, for example,

penalties can range from $5K to $25K per month.

“Deploying Fortify initially as a proof-of-concept in a small department, a public-sector organization

saw adoption spread quickly when security scans of mission-critical software uncovered 100 times more

vulnerabilities than were known before.”

Avoiding Data Breaches: The threat of a major data breach can keep CISOs awake at night, and

most are aware of the history of high-profile security failures that have damaged company

reputations and resulted in millions of dollars in legal, remediation expenses, lost revenue, and

customer churn [9].

 31

4. System Framework

4.1 FYFL System Architecture

4.1.1 2-Tier Architecture

The FYFL system has 2-tier architecture. It consists of a web browser and a web server in

one tier and a Database server in the second tier. It has a web browser as front end that sends

requests to the web server and the webserver retrieves data from the database and sends requests

to the database server.

Figure 7: 2-Tier Architecture

 32

4.1.2 Web Application Architecture

The figure below depicts the flow of the web request through the browser, the Internet, the

web server, the application server, and the database server.

Figure 8: Web Application Architecture

4.1.3 Web Application Security Architecture

 The figure below represents methods to be implemented at different stages of architecture

to improve the security of the web application.

 33

Figure 9: Web Application Security Architecture

4.2 FYFL System Use Case Diagram

Use case diagram depicts the actors, the functionalities represented as a use case and

relationships among the use cases and actors. The figure below represents the use case diagrams

of the FYFL system with the user and the admin as actors and login, registration, create a badge,

search a badge, approve a badge, add a quiz, manage a user, create a group/club, earn a badge

etc. as functionalities.

 34

Figure 10: Use Case diagram

4.3 FYFL System Activity diagrams

An activity diagram is another important diagram in UML to describe a dynamic aspect

of the system. An activity diagram is basically a flow chart to represent the flow from one

activity to another activity. The flow can be branched or concurrent and describes the sequence

from one activity to another. Below are a few activity diagrams of the FYFL system.

 35

Figure 11: Admin functionality - Approve a badge and create a badge

Figure 12: User Functionality - Earn a badge

 36

Figure 13: User Functionality – Registration

4.4 Database Architecture

 The current database architecture of the entire FYFL system is depicted below. The

database consists of tables Hands_Response, Mechatronics_Response, new_Images, users,

back_packs, Competition_Response, badges, groups, states, admin1, counties etc. related as

shown below. For example, a table Mechatronics_Response containing badge name, badge id,

username, user id is related to a table images3 containing badge name and respective badge

image information i.e. image name, type, size, date etc.

 37

Figure 14: Entire FYFL system database architecture

 38

Figure 15: Continuation of Database Architecture

The figure below depicts database’s tables that can be accessed from the files identified

for having security vulnerabilities. Mitigating the SQL injections protects these tables from

unauthorized access.

 39

Figure 16: Protected tables

 40

5. Security Testing Tools

5.1 HP Fortify

HP Fortify is a commercial security tool that helps reduce development cost by

identifying vulnerabilities early in the SDLC. Also, it brings development and security teams

together to find and fix security issues. It has three major components: Fortify Static Code

Analyzer, Software Security Center, and Audit Workbench.

Figure 17: Components of HP Fortify

The middle box is the Fortify Server product, software security center. It’s a WAR (Web

Application Archive), and runs in Tomcat or other app servers. Everyone who works with Fortify

should have an account in Software Security Center (SSC). SSC will collect results from Source

Code Analyzer (SCA) scans, Security Scope and Fortify Runtime.

 41

Each developer machine gets Fortify SCA (to run local scans) and either Audit

Workbench or the IDE plugin (to view scans and fix issues). After auditing a scan, upload that

scan into SSC. The build server (where code is built) should also get Fortify SCA, so it can run

scans automatically. It will upload those scans to SSC, so they are available for the team. The

source code can be scanned either from the IDE plugin (such as Microsoft Visual Studio, eclipse)

or Audit Workbench.

Figure 18: Process flow

HP Fortify Static Code Analyzer (SCA): Provides automatic static code analysis to help

developers eliminate vulnerabilities and build secure software. It also helps verify that the

software is trustworthy, reduces costs, increases productivity and implements secure coding best

practice. The static code analyzer scans source code, identifies root causes of software security

vulnerabilities and correlates and prioritizes results, giving line of code (LOC) guidance for

closing gaps in the security. To verify that the most serious issues are addressed first, it correlates

and prioritizes results to deliver an accurate, risk ranked list of issues.

 42

Figure 19: HP Fortify Source Code Analyzer

HP Fortify Software Security Center: The scanners can put data into the Software Security

Center, which you can think of as version control and reporting for security scans. Users can

view data in the Software Security Center to fix code. Users or scanners can download the scan

and open it in either IDE (using the Fortify plugin) or Audit Workbench (Fortify’s IDE).

Figure 20: Software Security Center Dashboard

 43

HP Fortify Software Security Center provides the ability to eliminate risk in existing applications

and deliver new applications with security built in.

HP Fortify Audit Workbench: Audit workbench (AWB) can be used to scan the source code. In

the Audit workbench front screen, select “Advanced Scan” then select the directory to scan i.e.

the project’s root.

Figure 21: HP Fortify Audit Workbench

AWB has five panels. After running a scan, the upper middle panel displays the initial

project summary, the upper left panel lists the vulnerabilities sorted by severity (Critical, High,

Medium, Low), the upper right panel lists the packages involved in the project, the lowest left

panel is the analysis evidence, the lowest right panel has a summary of the issue, details about

the issue, and recommendations about how to fix an issue. When an issue is clicked on, it will

show the code related to that issue. Analysis evidence is a stack trace of the vulnerability,

showing each function and each step that occurs as the vulnerability is exploited. Clicking on a

line in this panel will jump to that line in the upper-middle code review. AWB helps in finding

issues of a certain category, Auditing and suppressing issues, grouping issues, making a

recommendation and fixing issues.

 44

Figure 22: Audit Workbench - Making a Recommendation

5.2 Fortify on Demand

A managed application security testing service that enables organizations to quickly test

the application security of a few applications or launch a comprehensive security program

without additional investment in software and personnel.

Figure 23: HP Fortify On Demand

 45

Key Benefits:

 Managed security services: Without the need to hire a security testing team or install

expensive hardware or software

 Quickest time to results: On an average 1 day for static and 3-5 days for dynamic

 Global Data Centers: Facility to host instances at global data centers

 Centralized Portal: Manage application security programs, coordinate testing schedule,

manage remediation projects and collaborate across teams through one centralized interface.

Also, generate reports and export results to upload into other reporting systems

 Comprehensive security testing: Across static, dynamic, mobile, vendor, and open source

applications

Services:

 Static Testing

 Dynamic Testing

 Mobile Application Security Testing

 Digital Discovery

 Vendor Security Management

5.3 IBM Security AppScan Source

IBM Security AppScan Source is a commercial tool similar to HP fortify that helps

organizations lower costs and reduce risk exposure by identifying and fixing web-based and

mobile application source code vulnerabilities early in the software development lifecycle, which

includes support for JavaScript, HTML5, Cordova, Java and Objective-C. AppScan components

comprise the following service offerings:

 46

IBM Security AppScan Standard is a desktop software for an automated application security

vulnerability testing environment for IT security auditors and penetration testers and helps

decrease the risk of web application attacks and data breaches. It includes glass-box testing with

runtime analysis to identify more vulnerabilities, simplify scan configurations and provide more

actionable results.

Figure 24: AppScan Standard glass-box testing

IBM Security AppScan Source is a software that prevents data breaches by locating security

flaws in the source code. It provides assessment summaries that map to application risk and

provide insight into vulnerabilities that affect your applications.

IBM Security AppScan Enterprise enables organizations to mitigate application security risks and

achieve regulatory compliance. It helps security and development teams collaborate, establish

policies, scale testing, and prioritize and remediate vulnerabilities throughout the application

lifecycle. It delivers more than 40 compliance reports that map specific regulatory requirements

to identified vulnerabilities, while tracking issue resolution.

 47

Figure 25: AppScan Enterprise Software

IBM Security AppScan Reporting Console can be used as an add-on for reporting.

Features:

IBM Security AppScan Source can enable:

 Stronger and cost-effective software security through source code analysis

 Improved intelligence through integration with existing tools and processes such as

application development, build integration and security monitoring

 Security best practices through centralized management and enforcement of security policies

 Reporting, governance and compliance capabilities that facilitate communication of security

status and issues

 48

5.4 FindBugs

FindBugs is an open source program to find quality and security bugs in Java programs.

It usually performs static analysis and looks for instances of “bug patterns” i.e. code instances

that are likely to be errors. The tool is platform independent and needs a runtime environment

compatible with Java 2 Standard Edition. Errors are classified into four ranks: Scariest, Scary,

Troubling, and of Concern.

Listed below are few standard quality and security bug patterns reported by FindBugs version

3.0.0

1. Method invokes System.exit() - Invoking System.exit shuts down the entire Java Virtual

machine. It should be invoked when it is appropriate. Such calls make it hard or impossible

for the code to be invoked by other code. Consider throwing Runtime Exception instead. It is

a bad practice.

2. Comparing of String parameter using “==” or “!=” - This code compares a java.lang.String

parameter for reference equality using the == or != operators. This code requires callers to

pass only String constants or interned strings to a method is unnecessarily fragile and may

also lead to measurable performance gains. Consider using the equals(object) method

instead. This is a bad practice.

3. Format string should use %n rather than \n - This format string includes a newline character

(\n). In format strings, it is generally better to use %n, which will produce the platform-

specific line separator. It is a bad practice.

4. Iterator next() method can't throw NoSuchElementException - This class implements the

java.util.Iterator interface and its next() method is not capable of throwing

java.util.NoSuchElementException. Therefore, the next() method should be changed so it

 49

throws NoSuchElementException if it is called when there are no more elements to return. It

is a bad practice.

5. Field should be both final and package protected - A mutable static field could be changed

by malicious code or by accident from another package. The field could be made package

protected and/or made final to avoid this vulnerability. This is a malicious code vulnerability.

6. Hardcoded constant database password - Code that creates a database connects using a

hardcoded, constant password. Anyone with access to either the source code or the compiled

code can easily learn the password. It is a security issue.

7. Empty database password – Code that creates a database connects using a blank or empty

password. This indicates that the database is not protected by a password. It is a security

issue.

8. HTTP cookie formed from untrusted input – Code that creates a HTTP cookie using an

untrusted HTTP parameter, and when this cookie is added to a HTTP response header sent to

a web user without being validated for malicious characters, leads to a HTTP response

splitting vulnerability. It is a security issue.

9. Non-constant string passed to execute method on an SQL statement - The method invokes the

execute method on an SQL statement with a String that seems to be dynamically generated.

Consider using a prepared statement instead. It is more efficient and less vulnerable to SQL

injection attacks. It is a security issue.

10. JSP reflected cross site scripting vulnerability - The code that directly writes HTTP

parameter to JSP output, without proper input validation for malicious content allows

reflected cross site scripting vulnerability. It is security issue.

 50

5.5 Differences between commercial tools HP Fortify and IBM AppScan

Fortify SCA is a static code analysis tool AppScan is a dynamic application testing tool

Performs white box testing to analyze

vulnerabilities in source code

Performs black box testing to identify

vulnerabilities in the application

Fortify SCA needs the entire source and

libraries to compile the code

AppScan needs the application URL for testing

as ready to test in a validation-testing

environment

 51

6. Research Plan

6.1 Proposed Hypothesis

 As stated in section 2.4, the system should be secured against possible attacks like SQL

injection, Cross Site Scripting, Cross Site Request Forgery, etc. Thereby increasing the learners’

trust when using the securely improved site compared to the original site.

6.2 Preliminary Design

The study identifies three stages that the system go through on the path of Software Security

Assurance maturity. There are Explore, Accelerate and Optimize.

Explore: We deploy a Software Security Assurance solution “HP Fortify” on the system and

developer team as a proof-of-concept initiative.

Accelerate: Actively incorporating threat detection and remediation techniques across key

development teams and the system.

Optimize: Embed Software security tools, processes, and training within a formal SDLC

program. Also, leverage SSA solutions in innovative ways to generate additional business value

and create competitive differentiation among the organization’s competitors.

 52

Figure 26: Path of Software Security Assurance maturity

6.2.1 Technologies used to build “For Youth For Life” System

HTML5 (Hyper Text Markup Language)

HTML5 is a core technology markup language of the Internet, which gives developers more

flexibility, enabling them to develop exciting, interactive, powerful and efficient web

applications that provide a vibrant user experience.

JavaScript

JavaScript is a dynamic computer programming language along with HTML5 that can provide a

rich front-end with the fastest experience to web application users.

CSS (Cascading Style Sheet)

Cascading Style sheet is a style sheet language that specifies style and design formatting for

websites such as color, font, size, and layout rather than content. It is most commonly used on

HTML pages.

PHP

 53

PHP is a server side scripting language for web application development and also used as a

programming language. It can be used with HTML or any other templating engines and web

frameworks. It is usually processed by a PHP interpreter.

6.3 Preliminary Experiment

6.3.1 Fortify Scan of the initial code

Considered the entire source code of the FYFL system, performed the static analysis using

Fortify on Demand. Fortify on Demand SCA Scanner has scanned all the files of the source code

and has identified the risks involved by categorizing them into severity levels. In total, there are

544 issues identified of which the severity of 106 issues is critical, 409 issues is high, and 20

issues low. The most prevalent issues identified are:

 SQL Injection: Invoking a SQL query built using input coming from an untrusted source.

This could allow an attacker to modify the statement’s meaning or to execute arbitrary SQL

commands. Constructing a dynamic SQL statement with input coming from an untrusted

source might allow an attacker to modify the statement’s meaning or to execute arbitrary

SQL commands.

 Privacy Violation – Autocomplete: With auto completion enabled, some browsers retain

user input across sessions, which could allow someone using the computer after the initial

user to see information previously submitted.

 Cross-Site Request Forgery: The HTTP request must contain a user specific secret in order

to prevent an attacker from making unauthorized requests. A Cross-Site Request Forgery

vulnerability occurs when a web application uses session cookies, the application acts on

HTTP requests without verifying that the request was made with the user’s consent.

 54

 Cross-Site Scripting-Reflected: Sending un-validated data to web browser, which can result

in the browser executing malicious code. In case of Reflected XSS, the untrusted source is

typically a web request.

 Cross-Site Scripting-DOM: Sending un-validated data to web browser, which can result in

the browser executing malicious code. In the case of DOM-based XSS, data is read from a

URL parameter or other value within the browser and written back into the page with client

side code.

 Password Management-Hardcoded Password and Empty Password: Hardcoded

passwords and empty passwords could compromise system security in a way that cannot be

easily remedied.

 Password Management-Insecure: Password as part of an HTTP GET request will cause the

password to be displayed, logged and stored in the browser cache. The parameters associated

with an HTTP GET request are not treated sensitive data.

 55

Figure 27: Executive Summary

Likelihood is the probability that a vulnerability will be accurately identified and successfully

exploited. Impact is the potential damage an attacker could do to assets by successfully

exploiting a vulnerability. This damage can be in the form of, but not limited to, financial loss,

compliance violation, loss of brand reputation, and negative publicity. Critical-priority issues

have high impact and high likelihood. As such should be remediated immediately. SQL injection

for an example is an example of a critical issue. High priority issues have high impact and low

likelihood. Medium- priority issues have low impact and high likelihood. Low-priority issue

have low impact and low likelihood.

 56

Figure 28: Category of issues reported after preliminary scan

The file instances that have issues and should be modified are mentioned below:

BadgeBrowser.php earner.php GetBadges.php BadgeMaker.php

badgeManager.php Badge_Issued.php Fg_membersite.php Change-pwd.php

login.php Badges.php User.php myBadge.php

register.php GetBadges.php Pwdwidget.js ProfilePage.php

Group.php GetCounties.php Jquery-1.10.1.min.js Upload.php

youthbadge.php GetUser.php Class.phpmailer.php Reset-pwd-req.php

The functionalities of these files are to log in with 4-H account, user registration, browse

a badge, badge management, earn a badge, reset password, display my badges, create a badge,

change password.

 57

6.3.2 Suggestions or Recommendations

Cross-Site Scripting Vulnerability

For XSS attacks, Web application must validate their input to prevent vulnerabilities. The

most secure approach to validation for XSS is to create a whitelist of safe characters that are

allowed to appear in HTTP content and accept input composed exclusively of characters in the

approved set. For example, a valid username might only include alpha-numeric characters or a

phone number might only include digits 0-9. A more flexible, but less approach is known as

blacklisting, which selectively rejects or escapes potentially dangerous characters before using

input.

Another approach to preventing XSS attacks is encoding. Server-side encoding is a

function in which scripting tags in all dynamic content can be replaced with codes in a chosen

character set. The J2EE, Struts and webworks frameworks support encoding.

Password Management Vulnerability

For Password Management attacks, passwords should never be hardcoded and should

generally be obfuscated and managed in an external source.

SQL Injection Flaws

SQL queries uses invalidated user input as vulnerable script. In an SQL injection attack,

an attacker sends malicious input through the application interface like login page and these

queries are executed in the backend database and attacker can gain control over a database or

perform DOS attacks like Database shutdown. The following example illustrates JSP login form

where the attacker can enter malicious commands like “XP_cmdshell” or “*; OR 1=1 —“etc.

 58

String Uname = request.getParameter (“User”);

String Pword =request.getParameter (Password”);

String s = “SELECT * FROM Table WHERE Username = ‘ “ + UName + “ “ AND Password =

‘ “ + Pword “ ‘ “;

Statement stmt = connection.createStatement ();

ResultSet rs = stmt.executeQuery (s);

If (rs.next ())

{

UID = rs.getInt (1)

User = rs.getString (2)

}

PrintWriter writer= response.getWriter ();

writer.println (“User Name: “+ User);

}

In the above example, the SQL query is created using the username and password

transferred to the server without validating the input which is vulnerable to a SQL injection

attack. To mitigate the risk of SQL injection is to use only stored procedures or parameterized

database calls. Using prepared statement, all the queries will be treated as a string but not

commands to be executed by the database. The following code can be used as remediation for

the above vulnerable code.

String s = “SELECT * FROM Table WHERE Username = ‘ “ + UName + “ “ AND Password =

‘ “ + Pword “ ‘ “;

PreparedStatement stmt = connnection.prepareStatement(s);

stmt.setString (1, UName);

stmt.setString (2, Pword);

ResultSet results = stmt.execute ();

 59

Privacy Violation

For Privacy violation: Autocomplete, Explicitly disable autocompletion on forms or

sensitive inputs. By disabling autocompletion, information previously entered will not be

presented back to the user as they type. It will also disable the “remember my password”

functionality of most major browsers.

Cross-Site Request Forgery vulnerability

For Cross-Site Request Forgery, applications that use session cookies must include some

piece of information in every form post that the back-end code can use to validate the

provenance of the request. One way to do that is to include a random request identifier. The back

end logic can validate the request identifier before processing the rest of the form data. The

request identifier can be unique to each server request or can be shared across every request for a

particular session. As the session identifiers, the harder it is for an attacker to guess the request

identifier, the harder it is to conduct a success CSRF attack.

6.3 Work Plan

“For Youth For Life” system should implement following techniques in order to prevent security

vulnerabilities:

1. Data Validation: Different types of input that can be modified by a malicious user such as

HTTP headers, input fields, hidden fields, drop down lists and other web components should

be properly validated. This can be performed with respect to a whitelist of allowed

characters. Proper length check should be performed on all input exists.

It could lead to Injection flaws such as SQL, OS and LDAP occur when untrusted data is

sent to interpreter as part of a command or query. Cross-Site-Scripting XSS occurs whenever

an application takes untrusted data and sends it to a web browser with our proper validation.

 60

2. Authentication and Authorization: FYFL system should clearly define the user types and the

rights of said users. All the internal and external connections (user and entity) should go

through an appropriate and adequate form of authentication. This control is should not be

bypassed. Whenever authentication credentials or any other sensitive information is passed,

only the information via the HTTP “POST” method should be accepted, no information is

accepted via the HTTP “GET” method.

A Cross-Site Request Forgery (CSRF) attack forces a logged on victim’s browser to send

a forged HTTP request, including the victim’s session cookie and any other automatically

included authentication information, to a vulnerable web application. This allows attackers to

force the victim’s browser to generate requests the vulnerable application thinks are

legitimate requests from the victim.

3. Session Management: The session ID should be examined and verified if it is complex

enough to fulfill requirements regarding strength. Examine how sessions are stored and how

the application tracks sessions. Also, examine the actions that the application takes if an

invalid session ID occurs is determined. Session HTTP inactivity timeout should be

determined.

4. Error Handling: All method/function calls that return a value should have proper error

handling and return value checking. Exceptions and error conditions should be properly

handled. No system errors should be returned to user and application should fail in a secure

manner. Resources should be released if an error occurs.

 61

7. Experiment Design

7.1 Participants

Participants were students from the FYFL system development team. They had a

background in using computer and knowledge in code security. At least two to three persons

were experts in the area of code security. This helped performing a heuristic review and

cognitive walkthrough. This ensured that study have been viewed from different angles and to

ensure the quality of our results. The study was performed at Auburn University.

Participants drive awareness of SSA solution by securing support from key stakeholder.

They communicate the business value of software security, set aggressive goals for applications

and developer coverage, and invest in software security education and training.

7.2 Process

 Driving the vulnerability-prevention processes like input validation deeper into the

development of the FYFL system and systematically prioritize vulnerabilities to focus

remediation plans. It requires code scans at strategic checkpoints in the development process

such as during nightly builds or before releasing applications to production. Also, requires

rapidly integrating software security resources with development teams, including software

security performance, adopting of SSA practices, and track their compliance. This is a white box

testing, as we run through the code to understand the functionalities of the system to identify the

security flaws.

 62

7.3 Verification and Validation

 Quality assurance especially for software is a complicated one. Our process of Quality

assurance includes:

1) Conformance with standards

2) Configuration Management - a controlled and documented change

3) Verification and Validation - a defense against error prone software development and

maintenance process

4) Test and Evaluation - software code exercise and assessment

The discipline of verifying that software products of each Software Development Life

Cycle phase comply with previous life-cycle phase requirements and establish the proper basis

for initiating the next life cycle phase, and of validating that the completed end product complies

with the established software and system requirements.

Verification: “Are we building the product right”

Validation: “Are we building the right product”

To make sure that we are building the product right, we performed code traceability

analysis and code evaluation as a group while implementing the input validation techniques to

detect the defects. During this phase, the source code, the executable code, the user

documentation and standards are taken as inputs. The detailed issue report and summary report

are the outputs. We implemented a verification and validation technique named “Inspection”,

which is a formal code evaluation in detailed by a person other than author to detect the security

vulnerabilities.

 63

The following describes our process for code traceability and evaluation of the file

“Badges.php”. The file gets badges from database and filter by search parameters (tag, state,

county) to return as an array. The tag value is passed as an input to method

getBadgesFromTags(), which returns the relevant badges. The post variable’s state, county and

tag do not have any data validation implemented which might cause serious security issues. We

have added a regular expression based whitelist input validation for variables tag, state and

county which do not affect the functionality of the file.

Figure 29: Code Tracing and Code Evaluation

Also, verified the software product after implementing the input validation techniques by

scanning the entire code base through “HP Fortify on Demand” to see if it was properly

implemented and has mitigated the security vulnerabilities. Considering an executable software

product code as benchmark and improving the security of the code without changing any

 64

functionality of the system during the development phase, validates that end product complies

with established software and system requirements in previous phases.

The benefits of performing verification and validation are reduction in number of

vulnerabilities identified after each scan. Also, increases the productivity of the system through

early detection and mitigation of security vulnerabilities.

7.4 Data Collection & Analysis

 After performing the preliminary scan of the code, results obtained are analyzed. In total,

there are 544 issues identified of which severity of 106 issues is critical, 409 issues is high, and

20 issues low.

SQL injections have a high impact. In order to mitigate the SQL injection issues, we have

implemented data validation techniques depending on the variable and input value in that

particular file. In the study, fixing SQL injections involved:

 Changing the SQL queries in the files “Badges_Issued.php”, “Badge_Issued_Comp.php”,

“Badge_Issued_Plat.php”, “Badge_Issued_mech.php”, “Badge_Issued_Mov.php” etc. to

prepared statements and parameterized queries as variables iname, fname, bname can be

tampered. These SQL statements are now sent to and parsed by the database server

separately from any parameters. By specifying the parameters either a “?” or a named

parameter like “:name”, you tell the database engine where you want to filter on. Any

parameters you send when using a prepared statement will be just be treated as strings. Then

when you call execute, the prepared statement is combined with the parameter values you

specify.

 65

Figure 30: SQL Injection fix 1

 Performing input validation for the $_post variables state, county, tag in files “Badges.php”,

“GetBadges.php”, “tags.php”, “GetCounties.php” etc. According to the definition, value of

the “state” variable always contains only two alphabets. So, we perform a check of value of

the state using a PHP Boolean method ctype_alpha(). According to the definition, value of

the “county” and “tag” variables contain only alphanumeric. So, we perform a check of

values of the variables using a regular expression by white listing the characters and the

regular expression looks like “(^[a-zA-Z0-9]*[.'-]?[a-zA-Z0-9]*[.'-]?[a-zA-Z0-9]*)”. The PHP

method used to perform the match of the value and regular expression is preg_match().

 66

Figure 31: SQL Injection fix 2

 Sanitizing the $_post variable “username” read from login() method in fg_membersite.php

before it is being passed to methods in files “GetUser.php”, “User.php”. White-listing the

characters using a regular expression and performing a check before the username is passed

to the SQL statement.

 Performing an input validation for the $_get variable “groupid” and the $_post variable

“groupID” in the methods usersfromgroup(), getgroupinfo(), pairusertogroup() in Group.php

are read from groupListing.php and test.php. According to the definition, value of groupid

consists of only numbers. Therefore, we perform validation of groupid using Boolean PHP

functions is_numeric() and ctype_digit().

 67

Figure 32: SQL Injection fix 3

Figure 33: SQL Injection fix 4

In the study, fixing Privacy Violation: Autocomplete involved:

 With Auto completion enabled, some browsers retain the sensitive information (user input) in

their history, which allows someone using the computer after the initial user to see

 68

information previously submitted. By default, forms set autocompletion “on”. So fixing

privacy violation involves setting forms in “fg_membersite.php” to autocompletion = “off”.

Figure 34: Privacy Violation- Auto completion fix

In the study, after analyzing the Password Management issues, we found that they were not

really the passwords and so the issues are marked as false positives. If they are real passwords,

then the study recommends using PHP methods mcrypt_encrypt and mcrypt_decrypt for

encryption and decryption of the plaintext passwords.

7.5 Expected Outcomes

 We conducted an exploratory analysis of the effectiveness in conducting the security

code review by implementing the data input validation techniques. We predicted the

effectiveness of the techniques implemented by observing, the reduction in number of issues in

comparison with the initial findings.

 Our initial findings provided us with the opportunity to find how many vulnerabilities

were found and what specific vulnerabilities were found most and least commonly. After fixing

the issues of SQL injection and Privacy violation, we observe that the issues are mitigated

completely. Therefore, it proves the effectiveness of the techniques implemented.

 69

7.6 Experiment Results

 After the initial scan of code, there were 71 Critical SQL injections and two Privacy

Violation: Auto completion vulnerabilities identified in 24 source code files. We implemented

the whitelist input validation technique to fix SQL injections and Privacy violation identified in

six files taken as a sample and rescanned the code. We observed that 15 SQL injections and two

privacy violation were mitigated. Below figure represents the re-scan results:

Figure 35: Category of issues after 2nd scan

 From the results, it is observed that whitelist input validation implemented mitigates the

SQL injections better than blacklist validation method “sanitize” being implemented earlier.

Blacklisting is the process of validating a desired input against a list of negatives inputs. It is

basically blocking all the unwanted characters. Whitelisting validates a desired input against a

list of possible correct inputs. An attacker may use any means possible to gain to access to the

web based application and we cannot eliminate all possible bad conditions. Whitelist is the best

way to validate the input as we know exactly what is desired as an input. As the best way to

implement the whitelist validation is using regular expressions, we have used regular expressions

to validate username, state name, county etc.

 70

 As the 2nd scan proved whitelist validation is a better way to validate the input, we

implemented this technique in 13 files identified having SQL injections. We performed a 3rd scan

of the entire source code and observed that 25% of the total issues i.e. 71 critical severity SQL

injections, two high severity Privacy violation were mitigated and 11 Password Management

were found to be false positives (i.e. not really passwords). Bar graphs below are used to depict

the change in count of vulnerabilities (106 to 35 critical and 409 to 407 high) from the initial

scan to 3rd scan by HP Fortify on Demand.

 Figure 36: Results of Initial scan Figure 37: Results of third scan

Below mentioned is a table of performance metrics:

Performance Metrics

Percentage of Vulnerabilities mitigated 25% of vulnerabilities identified (103 critical

issues of 544 total issues)

Average time to identify a vulnerability Manual testing took 1 to 2 weeks and

Automated testing took 1 to 2 hours

Average time to fix a vulnerability Takes from 1 to 2 days

Percentage of number of source files fixed 60% of the numbers of files identified having

vulnerabilities (i.e. 14 out of 24)

 71

8. Summary and Conclusion

 As the security threat moves from computer-network intrusions to attacks on software

applications running in multiple environments, the demand for software security assurance

solutions is on the rise. SSA Solution (HP Fortify) helps the FYFL system minimize the risk of a

successful cyber-attack. It also offers substantial efficiency and production benefits that help

speed software development cycles. Most current techniques for detecting web security

vulnerabilities are automated tools for static analysis. The study discussed various commercial

automated tools available and also comparison of different tools.

 The study illustrated the value of identifying the security risks existing in the FYFL using

an SSA solution (HP Fortify). The study also analyzed the severity of risks, implemented and

accelerated correction of the security vulnerabilities. Some of the fixes proposed like whitelist

input data validation etc. can be exponentially higher. More benefits can be generated by

extending the solutions, by embedding security controls and best practices throughout the

development lifecycle. Therefore, every developer should be required to do a threat analysis

before writing the first line of code.

 The significance of the study is to identify the key techniques to be implemented while

programming to prevent the security vulnerabilities, to identify the vulnerabilities currently

existing in the system, and to improve the security of the FYFL system to the gain customer trust

by implementing the whitelist data input validation techniques to mitigate the risks.

 72

Bibliography

[1] Adrian Fernandez, Emilio Insfran, and Silvia Abrahão. 2011. Usability evaluation methods

for the web: A systematic mapping study. Inf. Softw. Technol. 53, 8 (August 2011).

[2] Marc Hassenzahl. 2008. The interplay of beauty, goodness, and usability in interactive

products.Hum.-Comput. Interact. 19, 4 (December 2008).

[3] David Scott and Richard Sharp. 2002. Abstracting application-level web security.

In Proceedings of the 11th international conference on World Wide Web (WWW '02).

ACM, New York, NY, USA.

[4] Elfriede Dustin, Jeff Rashka, and Douglas McDiarmid. 2002. Quality Web Systems:

Performance, Security, and Usability. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA.

[5] Kiran Maraju. Security Code Review – Identifying Web Vulnerabilities

[6] HP CloudSystem Enterprise. Integrating security with HP Fortify

[7] Anne Edmundson, Brian Holtkamp, Emanuel Rivera, Matthew Finifter, Adrian Mettler, and

David Wagner. 2013. An empirical study on the effectiveness of security code review.

In Proceedings of the 5th international conference on Engineering Secure Software and

Systems (ESSoS'13), Jan Jürjens, Benjamin Livshits, and Riccardo Scandariato (Eds.).

Springer-Verlag, Berlin, Heidelberg.

[8] Yong Chen and Wu He. Security risks and protection in an online learning – A survey

 73

[9] Nikhilesh Barik, Argha Barik, Dr.Sunil Karfoma. 2012. On Security Management in E-

Learning System

[10] A white paper. Does Application Security Pay? Measuring the business impact of software

security assurance solutions.

[11] Andres Desa.2005. Document Security in Web applications (OWASP).

[12] Andrew van der Stock, Dinis Cruz, Jenelle Chapman, David Lowery, Eoin Keary, Marco

M.Morana, David Rook, Jeff Williams, Paulo Prego. OWASP (Open Web Application

Security Project) Code Review Guide and OWASP Secure Coding Practices.

[13] OWASP Foundation. (2002-2008). OWASP testing guide V3. Retrieved January 16th, 2015,

from https://www.owasp.org/images/5/56/OWASP_Testing_Guide_v3.pdf

[14] Napolean – Alexandru Sireteanu. December 20, 2008. Improving the Usability of Web

Applications.

[15] Kyle Sollenberger. (2012, August 7). 10 User Interface Design Fundamentals. Retrieved

from http://blog.teamtreehouse.com/10-user-interface-design-fundamentals

[16] User Interface Design Basics. Retrieved from http://www.usability.gov/what-and-

why/user-interface-design.html

[17] User Interface and Future Interaction Technologies. Retrieved from

https://www.ida.gov.sg/~/media/Files/Infocomm%20Landscape/Technology/TechnologyRo

admap/UserInterface.pdf

[18] Peter Vukovic. (2015, February 13). 7 user interface design trends you need to know about.

Retrieved from https://99designs.com/designer-blog/2012/06/20/7-user-interface-design-

trends-you-need-to-know-about/

 74

[19] IBM Software. (2014, January). Manage application security risks to help protect your

organization’s critical data.

[20] Gary McGraw, Cigital. (2008, December). Automated Code Review Tools for Security

[21] Natarajan Meghanathan. (2013, January). Source Code Analysis to Remove Security

Vulnerabilities in Java Socket Programs: A Case Study

