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Abstract 

 

Managing water resources is one of the main challenges for water resource managers. 

This thesis uses geospatial technologies to assist in monitoring water resources through two case 

studies that are of concern to both state and national agencies. The first case study attempts to 

improve the isolated wetland classification by introducing LiDAR data. Jones (2013) applied 

GeOBIA methods to classify and catalog the isolated wetlands of Northern Alabama using high 

resolution aerial imagery where errors in rooftops, asphalt and shadows were observed. This 

research attempted to improve the classification methods for wetlands and tested methods to 

remove rooftops and asphalt mistakenly classified as wetlands using the LiDAR data and 

GeOBIA. The accuracy percentage achieved for the isolated wetlands classification was 90.4%, 

an improvement of 10% from the initial classification analysis where LiDAR data were not used. 

The second case study focuses on consumption of water by agricultural land and golf 

courses. Calculating evapotranspiration (ET) with Landsat Thematic Mapper satellite imagery 

through the use of the Mapping EvapoTranspiration at high Resolution with Internalized 

Calibration (METRIC) model, it is shown to be an effective tool for estimating water 

consumption on irrigated lands. The case study developed methods to estimate ET in the 

irrigated agricultural lands and golf courses in twenty HUC 12 watersheds in the Wiregrass 

region of Alabama using remote sensing methods and METRIC model. The model was able to 

estimate seasonal ET for year 2005 and 2010 in the study showing there was an increase in water 

consumption for both agricultural land and golf courses with the latter being more substantial. 
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Chapter 1: Introduction 

Remote sensing (RS) is the art and science of acquiring information about an object or 

phenomenon without being in direct physical contact with the body.  Using RS, researchers can 

quantify and observe important biological and physical characteristics of earth’s surface in 

addition to human activities that impact the environment (Jensen, 2006). RS can also be 

described as a science of acquiring, processing and interpreting imagery traditionally based on 

the principle of electromagnetic radiation and how incident energy from the sun interacts with 

the surface of earth. Radiation detected by sensors are reflected and emitted energy from the 

earth with the reflected energy being in the form of reflected solar while the emitted energy 

being the thermal infrared (TIR) and microwave portion of the electromagnetic spectrum 

(Schmugge et al., 2002). The technology associated with RS has been used widely in many 

applications related with hydrology, forestry, agriculture, cartography, geology and meteorology 

among others.  

 Remote sensing has been used quite extensively in research and applications related to 

hydrology. Many studies have been conducted to develop different remote sensing techniques 

and methods to obtain quantitative and spatial measurements of important hydrologic parameters 

(Gregg and Casey, 2004; Karaska et al., 2004). For example, it has been used to catalog and 

monitor the spatial extent, organic and inorganic constituents, depths and temperature of water 

bodies (Jensen, 2006). Schultz (1988) suggested that a problem in hydrological studies is that 

there are not enough observations to accurately describe hydrological processes. Remote sensing 

has been more promising than the traditional way in collecting extensive field data. Importantly,



2 

 he also notes that remote sensing offers the following advantages over traditional field based 

methods  (1) it gives area measurements instead of point measurements;  (2)  it can collect and 

store vast information about a place;  (3)   it provides high  resolution  in  space with a time 

stamp;  (4)  it creates and stores data in  digital form; (5)  there is no interference between data  

acquisition and  the process  being  observed;  (6)  it generates information about  remote areas 

of the  earth  where taking measurements in situ is difficult;  and  (7) it is cost effective  

compared to traditional observation of  hydrological  quantities  (Schultz, 1988). Extracting 

information from a remotely sensed dataset can be achieved by trained image analysts by 

implementing the knowledge about the fundamental elements of image interpretation which are 

shape, size, tone, shadow, pattern, texture, site, association, and resolution in the land cover 

mapping (Olson, 1960). 

 This research thesis focused on two case studies using remote sensing in water related 

applications in the state of Alabama. The case studies will employ Geographic Object Based 

Image Analysis (GeOBIA) in classification of water features and golf courses and remote 

sensing models will be developed to help estimate water usage. The first case study will focus on 

the classification of isolated wetlands in Lee County using National Agriculture Imagery 

Program (NAIP) imagery and Light Detection and Ranging (LiDAR) data. The second case 

study will focus on estimating evapotranspiration in the irrigated areas for agricultural lands and 

Golf Courses of twenty Hydrological Unit Code (HUC) 12 watersheds in the Wiregrass region of 

Alabama using Landsat images and employing METRIC model.  
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Case Study 1: Eliminating the errors of rooftops from isolated wetlands classification of 

Lee County using LiDAR data 

1.1 Study background of case study 1 

  Wetlands are areas of land that satisfy one or more of the following conditions: 1) land 

that supports the growth of hydrophytes (aquatic vegetation); 2) most portion of the substrate 

have an un-drained hydric soil; and 3) areas without soil and without hydrophytes that are 

saturated with water (Cowardin et al., 1979). The United States Department of the Interior 

(USDI) Fish and Wildlife Service initiated the National Wetland Inventory (NWI) project in 

1975 to catalog the nation-wide wetlands of the United States so that it can provide information 

to biologists and other people concerned with conservation of wetlands (USFWS, 2013).  

Geographically isolated wetlands can be defined as wetlands that are surrounded by dry 

lands and have no direct surface-water connection with rivers, ponds, streams, estuaries or 

oceans (Tiner, 2003). However, they can still be connected to underground water (Winter and 

LaBaugh, 2003) and have as equal importance as non-isolated wetlands. NWI data for Alabama 

reveals that there are several areas with gaps in digital wetland data. A substantial part of 

Alabama’s analog maps have still not been digitized, and majority of what has been done are 

coastal and large water bodies rather than isolated and transient waters (Jones, 2013). The need 

for an inventory of information on isolated wetlands is important to monitor and assess the 

changes in wetlands and guide the policy makers in making good decisions for conservation. 

Jones (2013) applied GeOBIA to classify the isolated wetlands of Northern Alabama from NAIP 

imagery yielding an accuracies of 83.7% and 87.7% for aerial imagery inspection and field 

verification respectively. The errors in classification were mostly of rooftops, asphalt and 

shadows (Jones, 2013). This research will test whether the errors in wetland classification can be 
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eliminated by classifying building rooftops from LiDAR point clouds and eliminating those 

misclassified wetlands from the classification.  

1.1.1 Study area 

The study area for the case study covers Lee County in Alabama, United States. 

According the United States Census Bureau of 2010, the population of the county is 140,247. 

The total area of the county is approximately 615 sq. miles, with 608 sq. miles of land and 76 sq. 

miles of water (U.S. Census Bureau, 2015). There are total of seven urban areas in the county 

with Auburn-Opelika being the largest. Figure 1 below shows the border of Lee County which is 

the study area for this case study. Lee County is chosen for the study area because LiDAR data 

are readily available from a partnership between Auburn University, Lee County, and the Cities 

of Auburn and Opelika.   

 

Figure 1.1: Lee County, AL 

LEE COUNTY 
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1.1.2 Objectives 

The overall objective of this case study is to develop methods to classify the isolated 

wetlands of the Lee County using GeOBIA methods by integrating multispectral images and 

LiDAR data. The method developed can be further applied to classify wetlands in other parts of 

Alabama. This project will be accomplished with the following objectives: 

 Identify and delineate isolated wetlands in the study area using high-resolution NAIP images. 

 Removal of identified rooftop errors in initial wetland mapping classification. 

 Comparison between building rooftops classification results from GeOBIA and 

Point Cloud Task method in LP360 software to see which method can be used for 

the classification of building rooftops in Lee County. 

 Eliminate the errors of building rooftops in wetland classification by erasing those 

errors by introducing the building rooftops classified from LiDAR point cloud in 

GIS environment. 

 Accuracy Assessment of the classified isolated wetlands by visual inspection with NAIP 

imagery. 

1.1.3 Research questions 

 What is the spatial extent of isolated wetlands in Lee County? 

 Which method was better to classify building rooftops: GeOBIA or Point Cloud Task method 

in LP360 software? 

 How has the introduction of the LiDAR improve the wetlands classification? 
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Case Study 2: Estimating evapotranspiration as a proxy for water usage in the irrigated 

areas and golf courses in the Wiregrass region of Alabama. 

1.2 Study background of case study 2 

Water is one of the most important elements for the existence of living organisms on 

Earth. Managing water resources wisely and sustainably is one of the main challenges for water 

resource managers. Although abundantly available, water is certainly not free. It is important to 

understand the natural systems and physical laws that control the hydrological cycle and how 

each process relates to water usage. According to a World Health Organization (WHO) (2003) 

report, 1.2 billion people lacked access to safe and affordable water (Rijsberman, 2006). The 

WHO/UNICEF Joint Monitoring Program (JMP) (2013) report found that estimated 768 million 

people still did not have access to improved drinking water, which included 185 million people 

who relied on surface water. With the increasing water scarcity in the world, it is very important 

that people consume water efficiently and preserve the natural sources of water. To accomplish 

this, it is very important to have knowledge about how much water is being consumed. 

 Irrigation of cropland is one of the major consumers of water throughout the world. In 

part, because of excessive irrigation, freshwater has become scarce in most part of Asia and 

Africa which might escalate in coming decades (Rijsberman, 2005). Different irrigation systems 

have been used to irrigate agricultural lands in this world. One of the commonly used irrigation 

systems is sprinklers such as Central Pivot Irrigation Systems (CPIS) that have been used in 

many areas to increase crop production. There are different types of CPIS but commonly used 

CPIS normally “consists of one single sprayer or sprinkler pipeline of relatively large diameter, 

composed of high tensile galvanized light steel or aluminum pipes supported above ground by 

towers that move on wheels, long spans, steel trusses and/or cables.” The pivot is at the center to 
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which one end of the pipeline is connected. The pipeline moves in circular pattern about the 

pivot irrigating the plants with frequently spaced sprayers (Phocaides, 2007, p. 10.1).  

According to United States Geological Survey (USGS) data for 2005, total irrigation 

withdrawals for the United States were about 128,000 million gallons per day (Mgal/d) which 

comprised of 37 percent of total freshwater withdrawals and 62 percent of total freshwater 

withdrawals for all categories, when thermoelectric power was not taken into consideration. 

Irrigation from surface water was accountable for 58 percent of the total irrigation withdrawals. 

The data also revealed that a total of 61.1 million acres were irrigated of which 30.5 million 

acres used sprinkler system such as CPIS. 

Large volumes of water are also consumed for the irrigation of recreational golf courses. 

Golf is a sport that has experienced a huge growth and success in recent decades. The total 

number of golfers since 2003 exceeds more than 61 million around the world with United States 

comprising over half of that figure. According to the National Golf Foundation (2014) data, there 

has been remarkable increase in the number of golfers in United States from 11.2 million in 1970 

to nearly 38 million in 2004: among which 13 million are regular participants. In 2003, there 

were a total 25,000 golf courses worldwide with United States alone having 15,827 golf courses 

which covered more than 1.7 million acres (Wheeler and Nauright, 2006). According to the 

NGF’s (2012) report, there were a total of 15,619 golf courses in United States of which 25 

percent are privately owned. To maintain the turf of the golf courses, a huge volume of water is 

required. It was estimated that an 18-hole golf course requires 3,000 to 5,000 cubic meters per 

day, which is equivalent to the daily consumption requirement for 2,000 families or 15,000 

individual Americans (Wheeler and Nauright, 2006). According to the Worldwatch Institute data 

from 2001, 9.5 million cubic meters of water is used per day to irrigate all the world’s golf 
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courses which is tantamount to the amount of water used per day to support 4.7 billion people at 

United Nations daily minimum requirement (Brown et al., 2001). 

Since both agricultural land and golf courses consume very large amounts of water, it is 

important for regional water resource managers to have an accurate inventory of irrigated lands 

and golf course areas and to also have ways to estimate the water consumption in these areas. 

Part of this study is funded by the Alabama Office of Water Resources whose resource managers 

are seeking methods to help the monitor the water consumed by these two land uses.  It is posited 

that golf courses and irrigated agricultural land can be accurately classified from NAIP images 

using GeOBIA methods. But due to the lack of NAIP images on monthly basis which is 

important for the classification of agricultural land, the case study will only focus on developing 

classification methods in GeOBIA for the golf courses. While secondary data from National 

Land Cover Dataset (NLCD) and National Agricultural Statistics Service (NASS) will be used to 

categorize agricultural areas. In addition, by estimating evapotranspiration (ET) with Landsat 

Thematic Mapper satellite imagery using the Mapping EvapoTranspiration at high Resolution 

with Internalized Calibration (METRIC) model, it is thought that water usage can be estimated 

(Bastiaanssen et al., 2005). The thermal bands of Landsat can be used to derive the Land-Surface 

Temperature (LST) to give estimates of evaporative flux patterns which serves as a proxy of the 

surface moisture over a range of different spatial scales (Marzen et al., 2003; Hain et al., 2009; 

Hain et al., 2011). 

1.2.1 Study area 

The study area for the identification of golf courses and agricultural lands, and estimating 

evapotranspiration is twenty HUC 12 watersheds in the Wiregrass region of Alabama. It is an 

area that encompasses the southeastern part of Alabama. The region’s name is based on the 
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native Aristida stricta, known as “wiregrass” due to its texture and also because it is amply found 

in the regions longleaf pine forest (Byrd, 2009). This name was originated during the earliest 

days of European inhabitation in this region. Dothan is the region’s most developed city and 

claims the agricultural title of “Peanut capital of the world.” The Wiregrass region has many golf 

courses and recreation centers. The regions boundary can vary depending on who defines it. For 

the purpose of this thesis, the focus will be on Houston County, Alabama. 

 

Figure 1.2: Study area delineating Twenty HUC Watersheds in SE Alabama 

1.2.2 Objectives 

  The goal of this case study is to develop methods to estimate evapotranspiration in the 

irrigated agricultural areas and golf courses of the study area using remote sensing methods and 
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the METRIC model. The study will also focus on the classification of the golf courses using 

GeOBIA methods.  This project will be accomplished with the following objectives: 

 To classify golf courses in twenty HUC 12 watersheds in the Wiregrass region of Alabama 

using NAIP imagery by implementing GeOBIA methods and develop a ruleset that best 

classifies golf courses. 

 Assess the validity of (METRIC) model for estimating evapotranspiration (ET) by comparing 

it with the ET data from USGS ET stations in Florida. 

 Estimate evapotranspiration of irrigated agricultural lands and golf courses in twenty HUC 

12 watersheds in the Wiregrass region of Alabama implementing METRIC model and using 

Landsat 5 –Thematic Mapper imageries for the year 2005 and 2010.  

1.2.3. Research questions 

 What is the spatial extent of Golf courses in the study area? 

 Can the ruleset developed for the classification of golf courses be applied to other places 

in Alabama to identify golf courses? 

 Can METRIC model be used with remotely sensed data to provide a reliable estimate of 

evapotranspiration?  

 How has the trend in water consumption changed from 2005 to 2010 in both agricultural 

land and golf courses? 
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Chapter 2: Literature Review 

The literature review reveals background information required for this thesis research and 

analysis. It commences with the background of geographically isolated wetlands and their 

functionality to the environment. It explains how isolated wetlands are different from other 

wetlands but serve the same purpose to the environment as other types of wetlands. The next 

section describes traditional pixel based classification and Geographic Object Based Image 

Analysis (GeOBIA). This section also covers different processes involved in GeOBIA. Next, a 

section describes LiDAR technology and how it has been applied to improve the classification of 

land cover mapping.  The next section describes how remote sensing has been used to classify 

wetlands. It focuses on how others have used different methods to classify the wetlands and what 

results they achieved from the classification. The next section describes how remote sensing has 

been used to classify building rooftops using LiDAR and is related to this study to help remove 

rooftop errors in wetlands mapping.  An emphasis is placed on the different methods and 

software that have been used to map buildings or rooftops. The next section describes LP360 

software and its use to classify LiDAR point clouds using the Point Cloud Tasks (PCT) methods. 

This is followed by a description of irrigation systems and how they have been used in 

United States for irrigation of agricultural lands and golf courses. It also focuses on how 

irrigation has impacted surface water and ground water and how the trend of water use has 

changed since 1950. The next section describes how much water golf courses consume on daily 

basis to maintain the turf. A section is also included on evapotranspiration (ET), why it is
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an important indicator of water usage, and describes different methods that have been used to 

measure ET. Finally, there is a section introducing the METRIC and SEBAL models used to 

estimate ET. 

2.1 Geographically isolated wetlands: 

Geographically isolated wetlands are disconnected with other water bodies and do not 

have a downstream surface outlet. Formed in a depression, these wetlands are isolated from 

water bodies because of the higher elevation of surrounding lands (Leibowitz, 2003; Tiner, 2003; 

Snodgrass et al., 1996). These types of wetlands are connected to the surface water occasionally 

during flood stages. Twenty-eight percent of wetlands in North Dakota, for example, were 

connected to intermittent surface water during the flood stages (Leibowitz, 2003).  Although 

isolated wetlands are often not connected to other water bodies, they can still be connected 

through ground water depending on the geological structure of a place (Winter and LaBaugh, 

2003; Sutter and Kral, 1994). 

 In terms of functionality to the local environment, both isolated wetlands and non-

isolated wetlands serve similar benefit to the environment. The role of wetlands cannot be 

underestimated as they play an important role by providing vital services such as recharging 

ground water supplies, providing habitat for wildlife, reducing floods, transforming nutrients, 

maintaining water quality, protecting shorelines, surface-water storage, flood water protection, 

aquatic productivity and shoreline stabilization (Tiner, 2003). Neely and Baker (1989) mentioned 

that wetland depressions act as storage and prevent run off from being connected to regional 

riverine systems which helps prevent flooding. Wetlands also provide habitat for many living 

creatures such as waterfowl and native fishes and serve as a water source for domestic livestock, 

and humans (Tiner, 2003). 
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2.2 Geographic Object Based Image Analysis. (GeOBIA) 

Extracting of information from remotely sensed datasets has been achieved in different 

methods such as manual interpretation, automated pixel based classification and GeOBIA. While 

manual interpretation are very accurate and are mostly done by trained human image analysts, it 

is very time-consuming to produce land-cover mapping over large areas (O’Neil-Dunne et al., 

2009).Before the advent of GeOBIA, the classification of remotely sensed imagery was done 

mostly using pixel based methods. The pixel-based classification is an automated method where 

each pixel is classified to a land-cover class on the basis of its spectral properties. This technique 

does not take into consideration other elements of image interpretation such as shape, size, tone, 

shadow, pattern, texture, site, association, and resolution (O’Neil-Dunne et al., 2009). Supervised 

and unsupervised classification methods are the two most commonly used methods in the pixel 

based classification which produce thematic layers most commonly related to land cover.  Pixel-

based classification gives satisfactory results for moderate-resolution datasets with spectral 

information. However this technique does not perform as well for high-resolution datasets that 

contains a combination of spatial, spectral and contextual information (Cleave et al., 2008). 

With advancement of technology in the acquisition of aerial and satellite imagery, the 

spatial resolution of images increased producing higher resolution images. The traditional pixel 

classifier usage is limited however due to the increasing number of pixels which can often be too 

complex for classification (Baatz and Schape, 2000). The increasing availability of high 

resolution imagery and realization of the limitation of pixel based classifications, in part, led to 

the development of GeOBIA, which overcomes the limitation of pixel based analysis by 

grouping the pixels into primitive image objects (Blaschke, 2010). GeOBIA uses attributes such 

as the object’s color  (spectral  information),  size,  meaningful statistic and texture calculation,  
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an increased uncorrelated feature space using shape, topological features (neighbor, super-object, 

etc.), close relation between real-world objects and image objects  and  occurrence  to other  

image  objects  to  interpret  and  analyze images in a manner that closely resembles what human 

analysts can see with their eyes (Lillesand et al.,  2004; Benz et al., 2004). In other words, this 

method groups pixels into meaningful objects which can be analyzed and interpreted in a way 

that very closely resembles human visual experience (Blaschke, 2008; Lillesand et al., 2004) and 

is arguably more suitable for medium to high resolution imagery compared to the traditional 

pixel based methods (Benz et  al.,  2004) . Many studies have shown that GeOBIA methods are 

superior to pixel-based methods for land cover classification from high-resolution imagery 

(Blaschke, 2010) and can perform powerful automatic and semiautomatic analysis in many 

remote sensing applications often in a more efficient and repeatable process (Benz et al. , 2004).  

The first step in GeOBIA involves segmentation. The image segmentation algorithm 

groups pixels into objects which are generally based on one of the two basic properties of the 

pixel’s gray-level values: discontinuity and similarity (Gonzalez, 1987, Haralick and Shapiro, 

1985). While in the first approach, segmentation of the image is based on the abrupt changes in 

the pixel level; the second approach adopts methods like threshholding, region growing and 

splitting, and merging to segment the image (Addink et al., 2012). The initial segmentation is 

dependent on the information of pixel values and features of the intermediate image objects and 

provides image objects with certain values for spectral behavior, shape and context (Benz et al., 

2004). Image objects are clusters of pixels that have similar spectral and spatial (i.e., texture) 

information. The key distinction that can be made on objects are from topology since each image 

object will have contextual relationship with its neighboring objects and this information can 

help improve the classification process (Blaschke et al., 2008). 
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 The objects that are segmented can be related to a classification scheme including classes 

such as water bodies, buildings, individual tree crowns or canopy, agricultural fields and 

impervious surfaces. After the segmentation of the image, the image objects formed will have 

properties like spectral reflectance, shape, size and neighbor relations that can be further 

processed and classified. Different properties have been used for different classifications, such as 

shape and size of water bodies, to classify streams, lakes, reservoirs and seas (Navulur, 2007).  

Similarly, shape properties like compactness, roundness and convexity have been used to classify 

rivers and lakes (Van der Werff and Van der Meer, 2008).  The image analyst must employ an 

“iterative approach that mimics the human analytical process” which involves repetition of 

segmentation, classification and refine until the desired output is achieved (O’Neil-Dunne et al., 

2009, p.2). In addition, the image analyst should also have a very good knowledge of the place 

that is being classified which is imperative in image interpretation. Moreover the analyst should 

try to integrate the ancillary dataset such as LiDAR data, vector GIS datasets with multispectral 

imagery so as to gather more information about the study area which will help improve the 

efficiency of the classification process. 

 GeOBIA is used here to create meaningful objects that relate to geographically isolated 

wetlands including a contextual rule. Trimble’s (initially produced by Definiens, Inc.) 

eCognition is the first object oriented image analysis software and also the most commonly used 

for GeOBIA software (User-Guide eCognition, 2014).  
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2.3 LiDAR and its importance for land use/land cover mapping 

Light Detection and Ranging (LiDAR) is an optical remote sensing technology that 

produces highly accurate x, y and z coordinates by measuring difference in time between the 

emission of laser pulses and reception of reflected signal from the ground to the aircraft (Porwal 

and Udeechya, 2013). It is an active remote sensing technology which “operates in the visible or 

near-infrared region of the electromagnetic spectrum” (Zhou, 2013, p.928) and gives information 

about elevation at the xyz locations. The sensor in the LiDAR measure the time it takes for the 

emitted laser pulse of the electromagnetic spectrum to be reflected back after hitting the surface 

it strikes from which distance can be calculated and subsequently the height of the feature. The 

sensor and a Global Positioning System (GPS) receiver are mounted together in the aircraft 

which records the location of the pulses. Moreover,  the  aircraft  is  also equipped  with  an  

inertial  measurement  unit  (IMU)  which records  the  orientation  of  the  aircraft  during the 

flight. The LiDAR sensor can give very accurate geographic position of the objects the laser 

pulse is striking (Hippenstiel and Brownson, 2012). The advantage of LiDAR data is that it can 

be captured at both day and night. However it is usually flown in combination with optical 

imagery so the missions are mostly flown during the daylight hours during periods when there 

are minimal shadows. 

With the introduction of airborne LiDAR technology in remote sensing, there has 

increasing interest in implementing LiDAR data in the land-use/land cover mapping. LiDAR 

point clouds have been used to extract features in the urban settings (Zhang et al., 2006). The 

point clouds have been used to identify buildings, tree canopy, water bodies and ground surfaces. 

Most of the times the LiDAR point clouds are interpolated into raster layers such as Digital 

Elevation Model (DEM) and Digital Surface Model (DSM) and are fused with the high 



17 

resolution satellite images for detailed land use/land cover classification (Zhou, 2013).  DEM 

and DSM raster images are produced from the last return and first return of LiDAR point clouds. 

It is often used either as primary data (MacFaden et al., 2012; O’Neil-Dunne et al., 2012) or as 

ancillary data (Zhou and Troy, 2008) to aid land use/land cover classification. LiDAR data are 

also used to provide the intensity information of the land cover features which can help 

differentiate different features on the ground (O’Neil-Dunne et al., 2012; Im et al., 2008). The 

intensity maps are produced by triangulating intensity from the LiDAR point’s first return 

(Berger et al., 2013) and have been used in forest- type classifications (Antonarakis, 2008) and 

also in urban-land cover mapping data (MacFaden et al., 2012; O’Neil-Dunne et al., 2012). 

There have been many studies where both height and intensity data from LiDAR have been used 

for land cover classification especially in developed urban settings (Shaker and El-Ashmawy, 

2012; Im et al., 2008). The surface model such as nDSM is not affected by shadows, which can 

introduce many errors during the classification in urban areas (Zhou et al., 2009). To summarize, 

LiDAR point clouds can be used to generate raster surfaces such as a DEM and a DSM, and 

from these surfaces, trees and building features can be extracted.  

In addition, LiDAR data also been used in different hydrology related applications such 

as mapping of wetlands and shallow water (Irish and Lillycrop, 1999) and determining depths of 

water (Lillesand and Kiefer, 2000; Lee, 2003). The accuracy of LiDAR generated DEMs can be 

high enough to detect subtle topographic patterns in relatively flat wetland regions with a Root 

Mean Square Error (RMSE) of 0.24m (Töyrä and Pietroniro, 2005). The DEM and DSM data 

obtained from LiDAR data can be used in image based wetland mapping as it can outline local 

depressions and hydrological patterns. LiDAR points can give elevation data with high 

resolution and accuracy (Toyra and Pietroniro, 2005). The problem of separating similarities 
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between upland and lowland vegetation while classifying wetlands from satellite imagery can be 

overcome by introducing elevation data from LiDAR (Ozesmi and Bauer,2002; McCauley and 

Jenkins, 2005; Li and Chen, 2005; Baker et al., 2006). With the use of airborne LiDAR, the 

classification of land cover improved to greater extent as it was observed in Lee and Shan (2003) 

classification of six land classes over coastal area, using airborne LiDAR elevation data and 

multispectral IKONOS images, where the overall classification error were reduced by up to 50 

percent (Lee and Shan, 2003).  

Although LiDAR incorporated with multispectral image gives good classification, it does 

bring errors in the classification. While processing the LiDAR point clouds in raster layer such as 

nDSM through interpolation, it introduces some inherent errors and uncertainty which does 

affect the land cover classification (Jawak et al., 2014). It is highly likely that a feature may be 

wrongly classified into another class. For example buildings being classified as trees since both 

are above ground.   

2.4 Use of remote sensing in classification and mapping of wetlands  

As wetlands play an important role in nature, it was necessary to conserve and wisely use 

them, which led to the signing of the Ramsar Convention on Wetlands in 1971 (Matthews, 

1993). It is an intergovernmental treaty which aims to conserve and use wetlands sustainably by 

providing foundations for national actions and international cooperation (The Ramsar 

Convention on Wetlands, 2014). It is necessary to know the locations of wetlands to protect and 

sustain it which is why the mapping of wetlands plays an important role. Wetland mapping over 

a large area can be very costly and time consuming.  
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The use of remote sensing and a Geographic Information Systems (GIS) in wetland 

mapping dates back to the 1970’s, since the launch of first Landsat satellite series ERST-1 

(Wickware, 1978). Aerial photographs and manual visual inspection were commonly used for 

decades to map wetlands (Blaschke et.al, 2008; Lyon, 1993; Tiner, 1999). Raster images that are 

taken from satellites and airplanes are analyzed and classified based on the pixel’s digital number 

(DN) value in multiple bands of electromagnetic spectrum. The introduction of Geographic 

Object Based Image Analysis (GeOBIA) in remote sensing methods has made identification and 

classification of wetlands more efficient compared to the traditional pixel based methods. 

GeOBIA being a relatively new method has not been used widely for the mapping of isolated 

wetlands but has produced good results when employed.  Isolated wetlands were mapped using 

Landsat 7 imagery in the study of St. Johns River Water Management District of Alachua 

County, Florida which produced and accuracy of 88 percent (Frohn et al., 2009).  

Classification of wetlands using remote sensing introduces errors of commission and 

errors of omission. Errors of commission are those errors that are erroneously included for 

consideration as wetlands when it should have been excluded. For instance, the image might 

have classified rooftops and shadows as wetlands, which are errors of commission. Similarly, 

errors of omission are those errors where the classification method fails to include the wetlands 

that exist in reality. Tiner (1999) suggest that errors of omission are common in wetland 

mapping. The IKONOS/LiDAR based classification of wetlands at Chequamegon National 

Forest in northern Wisconsin had an overall accuracy of 75% when using the Wisconsin Wetland 

Inventory (WWI) types, with omission error of 10% and commission error of 30% (Maxa and 

Bolstad, 2009).  
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Jones (2013) applied GeOBIA to classify the isolated wetlands of the Northern Alabama 

from NAIP imagery which yielded an accuracy of 83.7% and 87.7% for aerial imagery 

inspection and field verification with errors mostly of rooftops, asphalt and shadows. This 

research study will attempt to eliminate the errors of rooftop in isolated wetland classification by 

classifying building rooftops of Lee County using LiDAR data and try to mask out the classified 

rooftops from the wrongly classified wetlands which are shown as rooftops in aerial imagery. 

2.5 Use of remote sensing in classification of building rooftops 

The importance for accurate and detailed information about land-use/land cover has been 

felt more than ever with the growing demand of knowledge about our surrounding environment 

in urban land management, city planning, disaster management, environmental planning and 

landscape pattern analysis (Zhou, 2013), urban tree canopy goals (Maryland Department of 

Natural Resources, 2015) and to establish a storm water utility based on impervious surface area 

(City of Durham Public Works Department, 2015). Since information on land use/land cover 

plays a vital role in many aspects of environmental planning and policy-making, it is important 

to have accurate maps which give the best realistic representation of the landscape. GeOBIA 

methods have been commonly used for producing accurate and meaningful land-cover datasets 

in an effective manner. Land use/land cover mapping has been done extensively for decades to 

locate different heterogeneous areas in different environmental settings. To classify the urban 

environment, which are highly complex and heterogeneous, requires remotely sensed images 

with high resolution and the process can be aided by the addition of LiDAR data to adequately 

distinguish the different heterogeneous features of the landscape. The manual digitization for 

building rooftops using raw imagery is labor-intensive, time consuming and expensive and is not 

preferred if the study area is considerably large (Jawak et al., 2014). 
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With the advent of LiDAR technology and powerful computers which aids in performing 

analysis, different surface models (DSMs) derived from LiDAR have been increasingly 

incorporated with high-resolution multispectral satellite/aerial imagery for land-use/land cover 

classifications in urban settings. Zhou (2013) performed object-based image classification to 

examine if a combination of the LiDAR height and intensity data with multispectral imagery can 

accurately map urban land cover. The point cloud data were processed to produce three separate 

raster layers of normalized digital surface model (nDSM), and two intensity image layers. Zhou 

(2013) used two methods to do land cover classification which both used GeOBIA methods in 

eCognition software. A normalized digital surface model (nDSM), also known in vegetated areas 

as a canopy height model (CHM), is calculated from the LiDAR data by subtracting the Digital 

Elevation Model (DEM) from the Digital Surface Model (DSM).It represents the absolute height 

of all above ground features relative to the ground and can be used to extract trees and buildings 

(Jawak et al., 2014. In the first method Zhou (2013) used only LiDAR data, without the 

multispectral imagery, to classify the land cover such as buildings, pavement, trees and shrubs, 

and grass. A ruleset was made in the eCognition software which segmented the image and 

classified them into land cover classes. The second method integrated an nDSM generated from 

LiDAR with aerial imagery. Comparing both the methods, Zhou (2013) found that the overall 

accuracy of the classification based on Method two was slightly higher than that from the first 

method. However, both methods that used LiDAR produced much better results than of those 

using multispectral imagery alone. 

Jawak et al. (2014) used a LiDAR point cloud for 3D feature extraction trees and 

buildings. LiDAR Analyst 4.2 for ArcGIS workflow for building extraction was employed to 

identify buildings from non-buildings (mainly vegetation). Jawak et al. (2014) was able to 
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extract 6,370 buildings where 6,117 buildings were correctly classified. Overestimation of trees 

and buildings were observed in the research and was identified as a limiting factor in the 3D 

feature extraction process. 

Similarly many studies have been done by different approaches in GeOBIA in the 

classification of the buildings, however, there were no papers found comparing methods. 

Hofmann et al. (2002) implemented OBIA in eCognition by segmenting Airborne Laser 

Scanning (ALS), another term used for LiDAR, height data instead of multispectral imagery 

which were later exported into GIS for further analysis towards the creation of objects and to 

obtain the final building classification. The ALS data were also implemented by Tòvàri and 

Vögtle (2004) in eCognition for classification of bare earth, vegetation and buildings. Automated 

buildings detection in recent research has been divided into three groups depending on the input 

data type which are 1) gridded ALS data and derivatives, 2) point cloud segmentation and 3) 

combined dataset of GIS layers and aerial imagery (Rutzinger et al., 2006). Similarly by 

analyzing invariant moments in the ALS raw data point clouds, Maas and Vosselman (1999) 

used two methods to detect buildings and derive planar faces by triangulation. Moreover, 

Rottensteiner et al. (2005) classified buildings by implementing “probabilistic classification 

approach  of Dempster-Shafer depending on various combinations of first pulse and last pulse 

DSM (Digital Surface Model), DTM (Digital Terrain Model) derived from raw ALS points and 

NDVI (Normalised Difference Vegetation Index) derived from ortho-photos”. Vozikis (2004) 

used nDSM derived from ALS points and higher resolution ortho-photos to classify buildings. 

Since LiDAR is a relatively new technology, there are only few software that are tailored 

to meet only specific purposes and can handle millions of point clouds (Hippenstiel and 

Brownson, 2012). The past three decades have witnessed many studies in photogrammetry, 
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remote sensing and computer science focusing on the study and development of automatic and 

semi-automatic approaches for the extraction and reconstruction of building (Mayer, 1999).  

Software packages such as Overwatch system’s LIDAR Analyst  for  ArcGIS, LAStools© 

software, and Qcoherent software  LP360 for ArcGIS have been in the market which are used to 

resample LiDAR point clouds into 2-D  grids  and advanced processing of the point clouds 

(Jawak et al., 2014). There are many products that function within ESRI’s ArcGIS or are built as 

Extensions for the software such as LP360 by QCoherent, LiDAR Analyst, Feature Analyst and 

LiDAR Explorer which can be used for LiDAR visualization and classification (Hippenstiel and 

Brownson, 2012; Kovač and Žalik, 2010 ; Mumtaz and Mooney, 2008). 

2.6 QCoherent LP360 software for LiDAR 

LP360 is an extension plug-in for the ArcGIS software from which the users can 

manipulate LiDAR data like any other layers in GIS format. It is specifically designed for 

ArcMap data layers and has the functionality to visualize points directly from LAS files in 

ArcMap. The LiDAR layer generated has “a one-to-many relationship with LAS files and the 

relationship is very similar to that of an image or raster catalog” (QCoherent, 2012, p.3). The 

LiDAR layers generated from the extension can be displayed on the basis of the attributes such 

as elevation, classification, intensity and return. The LiDAR layer properties provide the 

functionality to control the color display of the points for each attribute. The vendor who 

produces LP360 argues that the extension makes the ArcMap Basic edition “the world’s most 

powerful GIS environment for LIDAR point cloud processing” (QCoherent, 2012). 

The LAS files of the LiDAR data are imported into the ArcGIS using the LP360 toolbar 

and displays the point clouds much faster and efficiently than the tools in 3D Analyst toolbar 

extension. The advantage of the LP360 toolbar is that the LAS files do not have to be converted 
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into multi-points before working with the point clouds as is the case for 3D Analyst. It is noted 

that the most recent version of ArcGIS 10.x has LAS tools that can work directly with LAS 

datasets.  There are different options in LP360 toolbar from which viewing of point clouds can 

be done according to the elevation, classification, number of returns, point density and color 

bands. Moreover, the points clouds could be viewed in TIN and profile view with just a click of a 

button. These functionalities and others make the LP360 extension more flexible and dynamic in 

terms of analyzing and deriving new information from the LiDAR point clouds (QCoherent, 

2012). 

2.7 Irrigation systems 

Irrigation of agricultural crops follows drinking water, as the second most important use 

of water (USGS, 2005). It is estimated that irrigation uses nearly 60 percent of all worlds’ fresh 

water, and in United States, irrigation use accounts for more than 70 percent of freshwater 

(Weibe and Gollehon, 2006). About 90 percent of the water consumed by households and 

industry is returned to environments that replenishes the water sources. However, the reusable 

water rate for agriculture is only half of what is consumed, since it is lost by evapotranspiration 

(USGS, 2005).   

A central pivot irrigation system (CPIS) is the most common irrigation system in United 

States first introduced in the late 1950’s in Nebraska (T.L. Irrigation, 2015). Although it was not 

commercially feasible until 1960’s, this system is now very widely used with more than 20 

million acres of land worldwide of which 75 percent of that land lies in United States. Half of all 

sprinkle irrigation and one fourth of all irrigation in United States employ central pivot systems. 

This irrigation system gained popularity, as it required less labor and fixed cost, in addition to its 

simplicity, flexibility and reliability (Bleisner and Spare, 2001). The crops that are watered with 
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CPIS often can be distinguished in aerial imagery due to its circular patterns when viewed from 

above.  

 CPIS has been instrumental in helping achieve substantial yield in crop production. 

According to the Ground Water Foundation (2014), the center pivot fitted with low pressure, 

dropped nozzles and pressure regulator is around 85-95 percent efficient and have been used to 

irrigate corn, sorghum, cotton, onions, wheat, coffee, fruits, flowers, and many more. In order to 

achieve cost advantage of CPIS, relatively large acreage must be irrigated. However, this system 

has some disadvantage as it can irrigate only the circular area inside which is about 80 percent of 

the square area and it depends on irrigation coverage beyond the end of the machine (Bleisner 

and Spare, 2001).  

Humans dominantly use surface water for the irrigation but there has been increasing 

trend in the use of groundwater. In 1950, the surface water withdrawals accounted for 77 percent 

of all irrigation and this has decreased to 59 percent in 2005. The trend in groundwater use is 

increasing and is three times more than what it was in 1950’s (USGS, 2005).  Groundwater 

provides more than 50 billion gallons of water per day for agricultural needs in United States 

(USGS, 2014a). Excessive pumping before the ground water is replenished has led to decrease in 

the volume of groundwater in most parts of the United States. Pumping groundwater at a faster 

rate before it is recharged can lead to environmental problems such as 1) lowering of water table, 

2) reduction of water in streams and lakes, 3) land subsidence, and 4) deterioration of water 

quality. 

2.8 Irrigation for agriculture in Alabama 

The state of Alabama is water rich with plenty of precipitation averaging 55 inches 

(1,400 mm) of rainfall per year (Marcus and Kiebzak, 2008; Srivastava et al., 2010). The average 
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annual precipitation can vary from a minimum 50 inches in the southeast Alabama to a 

maximum 68 inches in the southwest (Dougherty et al., 2007). In addition, the state also consists 

of 77,000 miles (124,000 km) of perennial and intermittent streams and rivers, and has more than 

560,000 acres(226,600 ha) of ponds, lakes, and reservoirs (Marcus and Kiebzak, 2008). The state 

is also blessed with 13 major river basins such as Coosa, Mobile, Chattahoochee, Tallapoosa, 

Tombigbee and Tennessee. Although the state is blessed with copious amount of water resources 

and precipitation, the U.S. Geological Survey (USGS) reported that in year 2000 the 

consumption of water for irrigation was only 28.7million gallons (0.11 mcm) of surface water 

per day (mgd). This amount equivalents roughly 2% of the 1,530 million gallons (5.79 mcm) of 

surface water withdrawn per day in the state which ignores the 8,020 mgd (30.36 mcm) used in 

once-through cooling for thermoelectric power generation, most of which is returned (Hutson, 

2004). The data reveals that Alabama has been using smaller percentage of its surface 

withdrawals, ignoring thermoelectric power, in contrast to California where agriculture uses 

approximately 82% of their surface waters (Marcus and Kiebzak, 2008). The rainfall in this state 

is very vital as it serves irrigation for ninety-six percent of farms which uses rain-fed systems 

(Marcus and Kiebzak, 2008; Srivastava et al., 2010). The water withdrawn for agricultural use is 

less than 2 percent. The southeastern part of Alabama has been more affected in terms of 

agricultural production due to inter-annual and intra-annual variability in rainfall.  However, the 

situation is very contrasting in comparison to the western part of United States where 70% of 

farms are irrigated even if only 30% of their agricultural lands are rain-fed. For example, 

California uses 97% of its water withdrawal for agriculture (Marcus and Kiebzak, 2008). 

Although being considered one of the wettest states in the country, Alabama is suffering 

from inefficiencies in the agricultural practices. Wounded by lack of irrigation infrastructure, 
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investment, governance, constraints on water access, and lack of knowledge of irrigation 

techniques, the farmers of Alabama are not able to compete well with Western United States 

where irrigated farms are often subsidized. This limitation has resulted in the decline of 

approximately three million acres to approximately ten million acres of row crops in the past 

fifty years which has cost the state a loss of minimum US$2 billion per year which occurs mostly 

within the poorest parts of Alabama (Marcus and Kiebzak, 2008). For example feed corn yields 

are only 119 bushels per acre (7.47 mt⁄ha, in comparison with a national average of 148 bushels 

per acre and an average in California of 172 bushels per acre (9.29 mt⁄ha). Similarly, Cotton 

yields are 1.56 bales per acre (137.63 kg⁄ha) compared with 1.73 nationally (152.63 kg⁄ha) and 

2.48(218.80 kg⁄ha) in California (Marcus and Kiebzak, 2008). Over the past few decades, there 

has also been significant decrease in row crop production because most of it are rain-fed 

(Srivastava et al., 2010).  

Another reason for low productivity in agriculture is because most of the precipitation 

happens during the winter months, which is off season for growing crops. Dougherty et al. 

(2007) cites an example of Belle Mina in Northern Alabama that received only 560 mm (22 in) 

of rain during the growing season (May–October) of the annual 1,350 mm (53 inch) of rain. In 

addition, Alabama is also plagued by drought resulting in significant crop production loss. 

Although being very rich in water resources, the annual farm crop receipts in Alabama is only 

US$484 million which is very similar to that of New Mexico’s US$468 million annually but has 

western dry land agriculture. However, McNider et al. (2005) states that the productivity in 

cotton can be increased from 60-80 to 200-250 bushels per acre (616.76-822.35 kg⁄ha to 2055-

2569.84 kg⁄ha) through irrigation: moreover productions in pecans and fulfillment of vegetable 

contracts can also be assured. 
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According to the law in Alabama, the right to use surface waters flowing in the property 

are afforded only to the riparian owners (Marcus and Kiebzak, 2008). This ruling has led to the 

increase in consumption of groundwater by the non-riparian farmers predominantly in the 

southern part of Alabama which is tantamount to approximately 14.5 mgd (0.06 mcm) (Hutson, 

2004). However, most of the farmers were not able to obtain the ground water because of the 

exceeding cost for the drilling wells and pumping water and low interest loans. Only wealthy 

farmers and those who received lower interest loans were able to afford and enjoy the benefits of 

ground water. In total, only 3.8% of Alabama croplands were irrigated and the reason behind the 

low percentage being irrigated were due to riparian legal restrictions, cost restrictions, lack of 

ground-water development and geographic limitations (Marcus and Kiebzak, 2008). ACES 

(1994) points that most of the groundwater sources in Alabama are either insufficient or 

unfeasible for irrigation. In contrast, California has 94% of its cropland irrigated and the whole 

of United States has 17% of its agricultural crops irrigated (Marcus and Kiebzak, 2008). 

Moreover, irrigation determines the size of the farm in this state. Although there are some small 

farms that are irrigated, if the farm is larger than the probability of it being irrigated is higher. 

This situation is illustrated by recognizing that large farms over 1,000 acres (405 ha) constitute 

only 3% of farms in Alabama, but they account for 58% of irrigation (Marcus and Kiebzak, 

2008).  

Most of the farm sizes in Alabama are small with an average area of 197 acres (80 ha) 

(Marcus and Kiebzak, 2008). However, the cause for agricultural inefficiency in Alabama is not 

attributed to the farm size but rather due to mitigation of rainfall variability. There are two ways 

to mitigate rainfall deficit. The first approach can be by utilizing and having information about 

the climate, seasonal weather forecasts and climate products. This information can help farmers 
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plant favorable crops, alter planting schedules or tiling practices to that they can evade crop 

losses during unfavorable years. While the second approach is confronting environmental, 

economic, and political challenges that can hinder the irrigation practices in the state (Marcus 

and Kiebzak, 2008). The riparian model in Alabama states that in order to have a sustainable 

increases in investment of agricultural water, the water management must by trumped by 

individual rights: however Marcus and Kiebzak (2008) concluded that the state of Alabama 

would benefit if it had a regulated riparianism which is consistent with American Society of 

Civil Engineers (ASCE) Regulated Riparian Water Code (2004) in a variable water supply 

condition.  Srivastava et al. (2010) asserts that a practical way of dealing with water supply is 

“water harvesting.” During the winter months when the precipitation and stream flows are high, 

withdrawal and storage of surface water can be done in off-stream reservoirs and that water can 

be utilized during the crop growing season when that water is scarce. The average amount of 

water required for irrigation of the crops, even though water consumption for different crops 

varies, is around 457 mm (about18 in.) for 0.4 ha (1 ac) irrigated area. This amount of water 

would be sufficient for most crop irrigation except during droughts suggesting that water 

harvesting might be a good alternative to irrigate plants during crop growing season (Srivastava 

et al., 2010). 

2.9 Golf courses 

A golf course constitutes of series of holes that normally consists of five different areas 

namely teeing ground, fairways, green (with a flagstick and hole) and rough. A typical golf 

course consists of 18 holes but can also be any multiple of nine (Diaz et al., 2007). It is very 

important to irrigate the golf course to control the growth and quality of turf in order to 

maximize playability and to increase the aesthetic condition that is suitable for golf players 

http://en.wikipedia.org/wiki/Teeing_ground
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(Weatherhead et al., 2006). The rising demand of irrigation for golf courses can be a problem to 

a place where there is limited water resources. 

The turf grasses of the golf courses are different from the normal vegetation. Kenna 

(1995) describes that the management practice, surface mats, plant canopy and dense root system 

of turf of the golf courses are different from the agricultural crops which makes it inappropriate 

to extrapolate agricultural monitoring studies to golf courses. Compared to the row crop 

agriculture, golf courses have low volume of run-off water and reduced eroded sediments in the 

turf (Welterlen et al., 1989). Moreover, golf courses have high evapotranspiration and good 

drainage compared to other crops (Ward and Elliot, 1995). As it is different from the native 

vegetation and needs to be maintained properly for playability, golf courses are irrigated often 

which consumes lot of water. Because of potential environmental impacts since the late 1980’s, 

most of the golf courses in United States are required to monitor groundwater and surface water 

in order to fulfill the permit condition.  

During the 1990’s and 2000’s people became aware of the environmental impact of golf 

courses due to excess use of chemicals on turfs, deforestation, health risk to humans and wildlife, 

and high water consumption (Wheeler and Nauright, 2006). For example, there are more than 

100 golf courses in the Greater Palm Springs, California which consumes more than 3780 

m
3
/day: most of the golf courses draw water from Colorado River basin (Wheeler and Nauright, 

2006). Platt (1994) stated that there were three municipal golf courses in Tampa in the 1990s that 

consumed approximately 2120 m
3
/day, which is tantamount to the daily water needs of 5,000 

citizens. There have not been much research and studies done for the golf courses in Alabama. 

However, it is very important for the concerned authority to estimate how much water is being 

consumed by both agricultural land and golf courses. By estimating evapotranspiration (ET) 
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from remotely sensed images, a rough estimate of how much water is being consumed by 

agricultural land and golf courses can produced. 

2.10 Evapotranspiration as an indicator of water usage 

ET is a combined process of evaporation and transpiration. Evaporation is the process of 

liquid converting into water vapor resulting in water vapor being removed from a surface on 

rivers, lakes, healthy vegetation and moist soils. Transpiration is the process where moisture is 

transported to the plant leaf stomata from the roots where it evaporates into vapor and is released 

in the atmosphere. Therefore, evapotranspiration is the combined process where water is lost by 

evaporation from soil surface and transpiration from the plants (Allen et al., 1998). It is the 

consumption of water by agricultural plants that consists of water that is transpired and 

evaporated from plant and soil surfaces, plus water retained within plant tissues, which amounts 

to less than 1% of the total evaporated during a normal growing season (Jensen, 1969). In the 

process of evapotranspiration, large quantities of water are transferred to the atmosphere as a 

result of soil evaporation and vegetation transpiration.  

It is very important to have a good understanding in the spatial and temporal distribution 

of evaporative depletion because it can be used to help manage river basins and water supply 

systems where evapotranspiration takes place. Policymaker’s decisions concerning inefficient 

consumption of water are often made based upon limited available information related to the 

evaporative depletion of water resources and the land use/land cover digital maps (Bastiaanssen 

et al., 2005). People involved with agriculture, water resources, and national security are 

interested in the difference between actual and potential ET at high spatial resolution as it serves 

as an indicator of crop water deficits (Allen et al., 2005). In addition, spatial estimates of ET 

have been used in a hydrology-vegetation models implemented to represent important “processes 
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in hydrology-vegetation systems in a physically realistic manner, consistent with the types of  

data  likely  to  be  available  for  model  input  and testing” (Wigmosta et al., 1994, p.1666).  

Allen et al. (2005) also used ET estimation to calculate soil moisture as an important parameter 

for weather and flood forecast models.  

2.11 Remote sensing methods for estimating ET 

Remote sensing methods using satellite and airborne images is becoming more common 

to estimate spatial-temporal distribution of evapotranspiration (Courault, 2005; Bastiaanssen et 

al., 2005; Bhattarai, 2010). The data measured from satellites in association with surface energy 

balance models can provide information about spatial distribution of ET and help better 

comprehend evaporative depletion. It also describes how to establish a link between land use, 

water allocation and water use. It is an indirect method of estimating ET that is composed of “set 

of equations in a strict hierarchical sequence to convert the spectral radiances measured by 

satellites or airplanes into estimates of actual ET” which does not require “prior knowledge on 

soil, crop, and management conditions” (Bastiaanssen et al., 2005,p. 86). Satellite-based ET 

maps can be used to derive spatial information about daily or seasonal ET at pixel scale that can 

aid in many water resource management applications. This indirect method of measuring ET has 

given us more possibilities to do studies in the area of water resources management 

(Bastiaanssen and Bos, 1999; Bastiaanssen et al., 2000; Menenti, 2000). Currently there are 

different satellite-based approaches of different spatial coverage and temporal resolution for 

routine monitoring of ET. 

 Thermal infrared (TIR) bands from the satellites have been used to derive Land-Surface 

Temperature (LST or Ts) to give estimates of evaporative flux patterns and serves as a proxy  of 

the surface moisture over a range of different spatial scales (Hain et al., 2009; Hain et al., 2011). 
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TIR data can be obtained from different satellite sensors. However at present, the only satellite 

that gives routine, global thermal imagery at scales to analyze water usage patterns over 

heterogeneous agricultural areas are the Landsat satellites (Anderson et al., 2012a). These 

moderate resolution Landsat sensors with thermal bands are useful to map the ET at local scales 

and can identify and quantify individual agricultural crops (Kramber et al., 2008). The temporal 

resolution of recent Landsat satellites is 16-18 days.  This is not optimal for ET estimation; 

because moisture conditions on the ground can be dynamic depending on the rainfall, irrigation 

and heterogeneous drying varying with soil, vegetation, topography, and local climate. To 

overcome this limited temporal resolution robust methods have been developed to interpolate 

between infrequent satellite overpasses to give us daily or seasonal information on the ET 

(Anderson et al., 2012b). Therefore, remote sensing can be an effective tool to estimate ET to 

assist in monitoring water usage from agricultural land and golf courses. 

2.12 SEBAL and METRIC model to calculate ET 

The Surface Energy Balance Algorithm for Land (SEBAL) is an energy balance model 

that was developed by Bastiaanssen and his associates (Bastiaanssen et al., 1998a; Bastiaanssen 

et al., 1998b; Bastiaanssen 2000; Bastiaanssen et al., 2002, 2005) and modified by Allen et al. 

(2002). It is an operational tool that can be used to target, monitor, and evaluate irrigation and 

drainage systems. Spatial variation of ET at local and regional scales across different land 

use/land cover can be mapped using the SEBAL model which uses red, green, blue, near infra-

red and thermal data of Landsat images (Bhattarai, 2010). The SEBAL model is advantageous 

compared to other methods because it can accurately quantify seasonal or annual ET with 

minimal ground data. The accuracies obtained from previous studies were found to be 85% on a 

daily basis and 95% on a seasonal basis (Bastiaanssen, et al., 2005). Because of the good 
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accuracy results associated with SEBAL, this model has been commonly used to estimate ET in 

many countries such as China, Niger, Sri Lanka, Spain, US, Kenya, Morocco, the Netherlands 

and Turkey (Bhattarai, 2010). The SEBAL model also eliminates the need to correct complex 

and time consuming atmospheric errors.  

 Mapping EvapoTranspiration at high Resolution and with Internalized Calibration 

(METRIC) is the modified version of SEBAL and both have similar foundation, techniques and 

principles (Allen et al., 2007). METRIC is an “image-processing model which is used for 

measuring evapotranspiration as a residual of the surface energy balance” (Allen et al., 2005, p 

251).  Both METRIC and SEBAL models use data from thermal infrared radiation in addition to 

near infrared and visible bands of the remotely sensed image of Landsat images or other remote 

sensing satellites like MODIS. Allen et al. (2005) suggests that ET is measured based on pixel-

by pixel for the instantaneous time of the satellite image and it depends on complete energy 

balance for each pixel. ET can be described as: 

ET = net radiation − heat to the soil − heat to the air 

Being an energy balance model, SEBAL and METRIC use near surface temperature 

gradient (dT) that is indexed to radiometric surface temperature. Use of dT has excluded the need 

to use absolute surface temperature calibration which was a major hurdle in operation satellite 

ET. METRIC also uses the same technique applied by SEBAL to estimate ET eliminating the 

need to measure accurate aerodynamic surface temperature and air temperature which are 

required to compute sensible heat flux at the surface (Allen et al., 2007). 

The implementation of weather-based reference ET to formulate energy balance ET 

separates METRIC from SEBAL model. This is achieved by establishing energy balance at 

“cold” pixels which makes maximum utilization of the existing technology (details of the 
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workflow are provided in Appendix). It also creates ground reference for satellite based actual 

ET estimates and effectively serves the purpose of “reality check” on actual estimates of ET. The 

METRIC model has satellite-based energy balance model internally calibrated at dry and wet 

conditions which are two extreme points. The calibration is done using local weather data. 

Similarly by using an alfalfa based reference ET (ETref) which is computed from hourly weather 

data, each image can be auto-calibrated (Allen et al., 2007). The reason alfalfa (ETref) is favored 

over the clipped grass (ETref) is that it gives good representation of the “upper limit of ET from 

well-watered vegetation” (Waters et al., 2002, p.13). The accuracy and reliability of the ETref are 

established on the basis of lysimetric measurements and other studies having high confidence 

(ASCE-EWRI, 2005). The need for refined atmospheric correction of the surface temperature 

(Ts) and reflectance albedo measurements using radiative transfer models are eliminated with the 

use of internal calibration of the sensible heat computation in SEBAL and METRIC, and the 

indexed temperature gradient (Tasumi et al., 2005). Similarly, the impacts of biases in the 

estimation of aerodynamics stability correction and surface roughness are reduced with the use 

of internal calibration (Allen et al., 2007).  

High quality accurate maps of ET can be obtained from METRIC with emphasis on 

regions that have high resolution and are less than few a hundred kilometers in scale. METRIC 

focuses only on narrow regions at relatively high resolution of 30m to provide detailed and 

accurate estimates of ET. The model also takes into consideration the impacts of regional 

advection. However, trained experts who have experience in energy balance, radiation physics 

and acceptable familiarity with vegetation characteristics and short period weather data are 

required to deal with this narrowed focus (Allen et al., 2007). Compared to other traditional 

applications of satellite based energy balance, METRIC has substantial advantages over them as 
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reference ET is used for calibration instead of evaporative fraction (Bastiaanssen et al., 1998a; 

Bastiaanssen, 2000). By using reference ET to extrapolate the instantaneous ET for periods of 24 

hours and longer, regional advection effects can be compensated by not tying the evaporative 

fraction to the net radiation as ET can exceed daily net radiation in many arid or semi-arid areas 

(Allen et al., 2007). The model is also advantageous in the sense that it is not necessary to know 

information about the development stage and specific type of crop while computing ET from 

crop coefficient curves. Moreover, reduced ET caused by shortage of water can also be detected 

from energy balance (Allen et al., 2007). 

2.13 Theoretical basis of METRIC 

Bastiaanssen et al. (1998a, 2005) and Bastiaanssen (2000) have explained the theoretical 

and computational basis of SEBAL and METRIC. While satellites regularly collect data of 

surface reflectance and surface temperature, the sensors don’t measure the near surface vapor 

content. Satellite imagery is used to determine ET by employing energy balance at the surface 

(Allen et al., 2007). SEBAL and METRIC systems are “operational energy-balance based remote 

sensing models” that have been commonly used to estimate ET from remotely sensed data from 

satellite. The energy consumption of ET from energy balance at the surface is “calculated as 

residual of the surface energy equation” (Allen et al., 2005, p. 254). 

LE = Rn− G − H                                                                           (1) 

where LE = latent energy consumed by ET; Rn = net radiation which is the sum of all incoming 

and outgoing short-wave and long-wave radiation at the surface; G = sensible heat flux 

conducted into the ground; and H = sensible heat flux convected to the air. The parameters in 

equation (1) are generally expressed in Wm
−2

. Potential ET is the measure of the ability of the 

atmosphere to remove water from the surfaces by evapotranspiration assuming that there is no 
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control on water supply whereas actual ET is water removal from surface due to the ET process 

(Pidwirny and Jones, 2009).Using the energy balance model is effective as actual ET is estimated 

instead of potential ET (based on amount of vegetation) so as to capture the reduction of ET 

caused by a lack of soil moisture (Allen et al., 2005).  A limitation in the energy balance 

approach is that the computation of LE is dependent on the accuracy of summed estimates of Rn, 

G and H. However, METRIC overcomes this drawback by emphasizing internal calibration of H 

instead of LE, to absorb all the intermediary errors and biases.  In the METRIC model, Rn is 

calculated from narrow-band reflectance measured from the satellite and surface temperature; G 

is calculated from Rn, Normalized Difference Vegetation Index (NDVI) and surface temperature; 

and H is computed from surface temperature ranges, surface roughness, and wind speed using 

buoyancy corrections (Allen et al., 2007).  The algorithms applied in METRIC to determine 

parameters Rn and G has its roots from algorithms used in early SEBAL applications by 

Bastiaanssen et al. (1998a). To improve the accuracy in a large area of surface of surface 

condition, albedo in METRIC was updated (Allen et al., 2007). 

The algorithm used for both METRIC and SEBAL are similar however they differ in 

terms of how the “H function” is calibrated for each specific satellite image. H is calculated from 

an aerodynamic function for both METRIC and SEBAL, 

H=ρ Cp * DT/rah                                                                                     (2) 

where ρ is density of air, Cp is specific heat of air at constant pressure, and rah is “aerodynamic 

resistance between two near surface heights (generally 0.1 and 2 m) which is computed as a 

function of estimated aerodynamic roughness of the particular pixel and using wind speed 

extrapolated to some blending height above the ground surface (typically 100 to 200 m), with an 

iterative stability correction scheme based on the Monin-Obhukov functions” (Allen et al., 2005, 
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p.255). The near surface temperature difference between the two near surface heights are 

represented by dT parameter. As it is challenging to estimate surface temperature (Ts) precisely 

from a satellite because of uncertainties in atmospheric attenuation and contamination and 

radiometric calibration of the sensor, dT is estimated as a relatively simple linear function of Ts 

(Allen et al., 2007). 

            dT = a + bTs                                         (3) 

The validation and empirical substantiation for using the linear relation between dT and 

Ts have been provided by Bastiaanssen (1995) and Bastiaanssen et al. (2005). By assuming 

theoretically that constant temperature at height well above the surface to be independent of H 

and with the incorporation of all instability effects in rah, Ts is proportional to H for fixed 

aerodynamic condition in equation (2). A segment of temperature profile, which is represented 

by dT, is proportional to both H and Ts. The equation (3) depends on the range of surface 

roughness. With the increase in roughness and reduction in rah, with the same given H, dT 

reduces as a result of more efficient transfer of H and Ts also reduces because of the same reason 

(Allen et al., 2005). 

In the SEBAL model of Bastiaanssen (1998), the parameters a and b in equation (3) are 

calculated by setting dT = 0 when Ts is at the surface temperature of a local water body and 

where H is expected to be zero. Similarly, dT= (Hrah) / (ρCp) at Ts   for a “hot” pixel that is dry 

where an LE=0 assumption is made. From (1), dT= ((Rn−G) rah)/ (ρCp) is computed at the “hot” 

calibration pixel. METRIC model employs the same method and assumptions made in SEBAL 

for the hot pixel. However, for the lower calibration point of dT, a well-vegetated pixel having 

relatively cool temperature is selected (Allen et al., 2005).Here dT is calculated as: 
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dT=((Rn−G−k ETr) rah) / ρCp                   (4) 

For equation (3), a and b coefficients are calculated using two values of dT matched with 

related values of Ts. The Landsat images can be implemented to identify the fields of alfalfa or 

other high leaf area. The value of ET from these fields is estimated to be very similar to the value 

of “reference ET (ETref)” computed for an alfalfa reference (Allen et al., 2005).  The METRIC 

model implements standardized ASCE Penman–Monteith equation for alfalfa reference (ASCE-

EWRI, 2004). This value is normally greater than grass reference ET (ETo) by 20 to 30 percent. 

The k factor in equation (4) is set to 1.05 with the assumption that “viewed field having high 

vegetation and colder than average temperature, as compared to other high vegetation fields, will 

have ET that is about 5% greater than ETref due to higher surface wetness or merely due to its 

rank within the population of alfalfa fields (or other highly vegetated areas).” The k factor is 

reduced in proportion to a vegetation index during the winter and early season periods. Similarly, 

LE is assigned to hot pixel on the basis of daily soil evaporation model (Allen et al., 2005, p. 

256).  

The stability corrected rah is used to compute new dT values for “hot” and “cold” pixels, 

and new values for correlation coefficients, ”a” and “b”. These values are used to compute a new 

corrected H at each pixel level. A new stability correction is done using the corrected H image. 

Until successive values for dThot and rah at “hot” pixel (rah_hot) are stabilized, these processes are 

repeated. When the change in rah at the “hot” pixel is less than 5%, the process is stopped and the 

corrected value of H is determined (Allen et al., 2002a). The corrected value of H at each pixel is 

derived by using the corrected final dT and stability corrected rah image. Latent heat flux (λET) 

can be defined as “the rate of latent heat loss from the surface due to evapotranspiration” (Waters 
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et al., 2002, p.34). Latent heat flux for the instantaneous time of the satellite overpass is 

computed at each pixel using equation 5 below:  

λET = Rn– G – H                                                            (5) 

where; λET is an instantaneous value of ET for the time when satellite passes (W/m2) (Waters et 

al., 2002). 

The instantaneous ET (ETinst) is defined as the ET at the “time of the satellite overpass 

time” (Waters et al., 2002, p.34) and is computed as:  

ETinst= 3600 × λET/λ                                                       (6) 

where;  “ETinst is the instantaneous ET (mm/hr) ,λ is the latent heat of vaporization or the heat 

absorbed when a kilogram of water evaporates (J/kg)” (Waters et al., 2002, p.35).. It is calculated 

from the surface temperature image by  

λ= [[2.501 – (0.002361 × To)] × 10
6
]                              (7) 

where; To is surface temperature in degree Celsius (Waters et al., 2002).  

Reference ET Fraction (ETrF) or Evaporative fraction is defined as “the ratio of the 

computed instantaneous ET (ETinst) for each pixel to the reference ET (ETr) computed from 

weather data” (Waters et al., 2002, p.35). ETrF at each pixel level is computed using reference 

ET at the image time as:  

ETrF= ETinst / ETref                                                          (8) 

where; ETref is the ASCE Penman-Monteith standardized form of reference ET (mm hr
-1

) at the 

image time derived from REF-ET software (Allen et al., 2000b; Waters et al., 2002). 

A Daily ET (ET24) map is derived using the evaporative fraction (ETrF) and cumulative 

24-hour ET for the day of the image. It is more important and useful than the instantaneous ET. 
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It is calculated assuming that the ETrF computed in equation (8) is constant for 24 hour average. 

It can be expressed as: 

ET24= ETrF × ETref_24                                                                                 (9) 

ET for a period (monthly or two-month) is calculated by computing cumulative reference ET for 

the period represented by the image processed as:  

ETperiod = ETrF × ∑
n

i=1 ETref_24i                                                           (10) 

where; ETref_24i is the cumulative reference ET for the time period from REF-ET software, and n 

is the number of days used for ET extrapolation (Waters et al., 2002).  

2.14 Validation of the METRIC model 

Bhattarai (2010) did the validation for the METRIC model by comparing ET values from 

model with ET values from the USGS ET stations in in Florida. The daily, monthly and two- 

month ET validation was done using regression analysis by plotting estimated model ET versus 

observed ET values at USGS stations. It performed well in terms of estimating daily, monthly 

and two-month ET at USGS. The study reflected that the error in daily METRIC ET differed 

from -1.64 mm to 0.72 mm and had a mean bias error (MBE) of 0.05 mm. It had a root mean 

square error (RMSE) of 0.48 mm/day (% RMSE =10%). The study found that there was a strong 

linear relationship between estimated and measured daily ET with R
2
 =0.83 and Nash-Sutcliffe 

Coefficient (ENS) of 0.82. Similarly in terms of monthly ET, it varied from -39 mm to 28 mm 

with MBE of -2 mm and RMSE of 16 mm (% RMSE = 16%). Furthermore, the study was also 

conducted to estimate two month ET and varied from -68 mm to 43 mm with a MBE of -5 mm, 

RMSE of 30 mm (% RMSE = 16%). The study found good linear relationship between estimated 

and measured monthly and two-month ET. The R
2
 and ENS for monthly ET was 0.77 and 
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0.7745 respectively and for two months it was 0.73 and 0.71 respectively (Bhattarai, 2010). The 

study supported that model performed well in estimating the daily, monthly, and two-month ET.  
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Chapter 3: Improving isolated wetlands classification using LiDAR data in Lee County, 

Alabama 

3.1 Introduction 

Isolated wetlands are wetlands that are surrounded by dry lands and have no direct 

surface-water connection with rivers, ponds, streams, estuaries or oceans (Tiner, 2003). Formed 

in depressions, isolated wetlands are cut off from traditional waters due to higher elevation of the 

surrounding land (Leibowitz, 2003; Tiner, 2003). As illustrated by the existing National Wetland 

Inventory (NWI), there are many areas in Alabama that do not have the digital inventory for the 

wetland data. A substantial part of Alabama’s analog wetlands maps have still not been digitized, 

and majority of what has been done are coastal and large water bodies rather than isolated and 

transient waters (Jones, 2013). The need for an inventory of information on isolated wetlands is 

important to monitor and assess the changes in wetlands and guide the policy makers in making 

good decisions for its conservation. Jones (2013) applied GeOBIA to classify the isolated 

wetlands of Northern Alabama from NAIP imagery which yielded an accuracy of 83.7% for 

aerial imagery inspection with classification errors mostly comprising of building rooftops, 

asphalt and shadows (Jones, 2013). This research attempts to improve the classification methods 

for wetlands and will test methods to remove rooftops mistakenly classified as wetlands.  

3.1.1 Study area 

The study area for the case study covers Lee County in Alabama, United States. 

According the United States Census Bureau of 2010, the population of the county is 140,247.



44 

 The total area of the county is approximately 615 sq. miles, with 608 sq. miles of land and 76 sq. 

miles of water (U.S. Census Bureau, 2015). There are total of seven urban areas in the county 

with Auburn-Opelika being the largest. Figure 3.1 below shows the boundary of Lee County, 

which is the study area for this case study. Lee County is chosen for the study area because 

LiDAR data are readily available from a partnership between Auburn University, Lee County, 

and the Cities of Auburn and Opelika.   

 

Figure 3.1: Lee County, AL 

3.1.2 Objectives 

The goal of this study is to improve classification methods to identify isolated wetlands 

by integrating multispectral images and LiDAR data. The method developed can be further 

LEE COUNTY 
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applied to classify wetlands in other parts of Alabama. This project will be accomplished with 

the following objectives: 

 Identify and delineate isolated wetlands in the study area using high-resolution NAIP images. 

 Removal of identified rooftop errors in initial wetland mapping classification. 

 Comparison between building rooftop classification results from GeOBIA and 

Point Cloud Task method in LP360 software to see which method performs 

better. 

 Eliminate the errors of building rooftops in wetland classification by erasing those 

errors by introducing the rooftops classified from LiDAR point cloud in GIS 

environment. 

 Accuracy Assessment of the classified isolated wetlands by visual inspection with NAIP 

imagery. 

3.1.3 Research questions 

 What is the spatial extent of isolated wetlands in Lee County? 

 Which method was better to classify building rooftops: GeOBIA or Point Cloud Task method 

in LP360 software? 

 How has the introduction of the LiDAR improve the wetlands classification? 

3.2 Data used  

The data used for the classification of wetlands are as follows: 

3.2.1 NAIP imagery 

The National Agriculture Imagery program (NAIP) acquires digital aerial imagery of the 

United States during the agricultural growing season (USDA, 2013). It is funded by the United 

States Department of Agriculture’s (USDA) Farm Service Agency (FSA) through the Aerial 
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Photography Field Office (APFO) in Salt Lake City. The program was initiated in 2003 and 

initially had a goal to acquire imagery on a 5 year cycle but now attempts to collect imagery on a 

3 year cycle beginning from 2009 (USDA, 2013). The spatial resolution of the imagery is one 

meter and has three to four bands including red, green, blue and more recently many states have 

begun to collect near-infrared as the fourth band. The distribution and organization of the NAIP 

imagery is in accordance to the existing United States Geological Survey (USGS) 7.5 minute 

topographic quadrangles grid system with each NAIP image conforming to one quarter 

quadrangle or 3.75x3.75 minute having a buffer of 300m on all four sides. The standard 

projection of the tiled images is in the Universal Transverse Mercator (UTM) coordinate system 

using the North American Datum (NAD) of 1983 (USDA, 2013; Jones, 2013). 

3.2.2 Airborne LiDAR  

Airborne Light Detection and Ranging (LiDAR) is an optical remote sensing technology 

that produces highly accurate x, y and z coordinates by measuring the difference in time between 

the emission of laser pulses and reception of reflected signal from the ground from the aircraft 

(Porwal and Udeechya, 2013). The LiDAR dataset used in the study was a part of the Lee 

County LiDAR survey acquired during winter 2011. The data consists of mass point cloud 

datasets in LASer (LAS) format that can be managed, visualized, and analyzed in a Geographic 

Information System (GIS). The average point spacing of the LiDAR for Lee County is 3.54 feet. 

The projection of the LiDAR data is in the State Plane Coordinate System (SPCS) Alabama east 

zone with horizontal datum of North American Datum of 1983 (NAD83(HARN)) and vertical 

datum - North American Vertical Datum of 1988 (NAVD88(GOEOID03) for converting 

ellipsoidal heights to ortho-metric heights. 
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3.2.3 National Hydrography Dataset (NHD) 

The National Hydrography Dataset which is provided by USGS consists of digital vector 

datasets of the surface water components such as streams, lakes, ponds, rivers, canals, dams and 

stream gages which are used for general purpose mapping and in the analysis of surface-water 

systems. The NHD along with Watershed Boundary Dataset (WBD) employs an “addressing 

system based on reach codes and linear referencing” that gives information such as water quality, 

water discharge rate and fish population about the water (USGS, 2013). The NHD data are used 

to help determine which classified wetlands are considered to be isolated. 

3.2.4 FEMA DFIRM  

To determine the isolation of the wetland from floodwater, a floodplain dataset from 

Federal Emergency Management Agency’s (FEMA) Digital Flood Insurance Rate Map 

(DFIRM) was used. The DFIRM dataset provides the spatial extent of Special Flood Hazard 

Areas (SFHA), which are areas that have a one percent chance of flooding on any given year. 

The SFHA gives the national standard for floodplain data and are used in this project to define 

geographic isolation by having 40 meter buffers on these floodplains (Jones, 2013). 

3.3 Classification of isolated wetlands using NAIP imagery 

3.3.1 Methods used 

3.3.1.1 Data preparation of NAIP imagery 

The NAIP imageries for the Lee County are organized and distributed with the existing 

USGS 7.5 minute topographic quadrangles grid system. Each NAIP image corresponds to one 

quarter quadrangle or 3.75x3.75 minute with an overlap of 300 meter buffer on all sides (Jones, 

2013). The study area of Lee County consists of 54 Digital ortho-photo quarter quadrangles 

(DOQQ), which is a very large dataset. Although there are many studies in the literature about 
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GeOBIA processes, most of these deal only with small datasets (Chan et al., 2009). Since image 

segmentation is a complex and resource intensive operation, it is advisable to have powerful 

personal computers with higher capabilities in terms of speed and storage performances (O’Neil-

Dunne et al., 2009). Since the study area might contain billions of pixels even in an area of 1000 

km
2
, the best approach to deal with this limitation is to tile the images. While doing this, the 

input datasets are partitioned into separate tiles and are individually analyzed. After analyzing 

each tile the resulting products are recombined in the final dataset (O’Neil-Dunne et al., 2009).  

3.3.1.2 GeOBIA methods  

3.3.1.2.1 Segmentation 

Image segmentation is the most essential step in object-based image analysis where 

digital images are subdivided into less complex partitioned regions known as image object 

primitives. This process of GeOBIA is defined by the shift from spectral information of 

individual pixel to more meaningful objects that enables the user to implement rule-oriented 

image analysis based on spatial and spectral attributes, and image object relationships (Hay and 

Castilla, 2006). The image object primitives gives us meaningful information on spectral values, 

shape, extent, statistics, texture calculation, topological features (neighbor, super-object etc.) and 

helps better understand the relationship between real world objects and image objects (Benz et 

al., 2004). Based on this meaningful information, image objects can be classified into land 

use/land cover classification. Figure 3.2 shows a NAIP image before and after multiresolution 

segmentation is executed. 
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                                 (i)                                                                           (ii)  

Figure 3.2: Images before (i) and after (ii) Multi-Resolution Segmentation. 

Segmentation of pixels into objects make it possible for decision-tree based image 

analysis where ruleset can be developed based on the information about object relationships as 

well as spatial and spectral attributes. There are different segmentation methods but the most 

commonly used algorithm is multi-resolution segmentation (MRS) (Benz et al., 2004). MRS is a 

bottom up region-merging technique which starts with a small one-pixel object and merges into a 

bigger one in several subsequent steps, MRS segments the image pixels based on the scale, 

weight of the spectral reflectance, shape and compactness. Pixels having similar spectral 

reflectance are grouped into a single object while also considering shape and compactness of the 

polygon. The scale parameter determines the scale or size of the image object primitive and the 

value for it depends on what the analyst is trying to classify which is mostly based on trial and 

error approach. This parameter plays an important role in the occurrence or absence of certain 

object classes and the same object in different scales can appear differently (Benz et al., 2004). 

There can be hierarchical dependency between different scales. As scale is very important for 
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reshaping objects into meaningful features such as wetlands or building rooftops, the analyst can 

perform segmentation at different scales. 

The parameters for MRS were chosen based on trial and error process. The scale 

parameter for this project was 35 with shape and compactness value as 0.2 and 0.7 respectively. 

The weights values for the red, green, and blue (RGB) bands were set to one while NIR is given 

the value of 2. The NIR band was given the value of 2, which is a double weight to account for 

water having a relatively low reflectance in the NIR portion of the electromagnetic radiation 

spectrum. Figure 3.3 shows the parameters for multi-resolution segmentation. 

 

Figure 3.3: Parameters for Multi-Resolution Segmentation. 

3.3.1.2.2 Classification 

The classification method is the process of assigning a class category to object primitives 

(polygon formed from a group of pixels) based on spectral attributes and hierarchical 

relationships. Different features have different spectral responses and this information can be 
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used classify the image into different land use/land cover classes. A ruleset, consisting of a 

sequence of processing algorithms, was developed to classify water bodies and exported into GIS 

layers in eCognition software. It is mostly based on using the trial and error approach, which has 

become common in this sort of analysis (Myint et al., 2011). The ruleset for this project used 

information such as mean spectral reflectance of near infra-red (NIR), open water spectral 

signature, homogeneity, ratio green, standard deviation of NIR, ZABUD, and texture to classify 

the water bodies. 

 

Figure 3.4: Ruleset used for the classification of wetlands 

Open water spectral signature is analyzed by  

([Mean Green]-[Mean NIR])/ ([Mean Green] + [Mean NIR]) 

which defined open water bodies while excluding vegetation. Ratio Greene is the defined by 

[Mean Green]/ ([Mean Blue] + [Mean Green] + [Mean Red] + [Mean NIR])  
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Ratio green helps to eliminate some of the shadows that are wrongly classified as wetlands. 

However it does not completely eliminate all the errors of shadow.  ZABUD is the rule 

developed to identify discontinuous built up area (Lewinsky, 2007) and it helped to eliminate the 

impervious surfaces that were wrongly classified as wetlands. The formula for ZABUD can be 

defined as  

((([Mean Blue]-[Mean Green]) ^2) + (([Mean Green]-[Mean Red]) ^2) + (([Mean Red]-[Mean 

NIR]) ^2))^0.5 

 It is an index used to identify built up area from the LandSAT-ETM+ in the original 

ZABUD derived by Lewinsky (2007) but has been modified for four band spectral images such 

as the NAIP images in this study. This index is efficient in extracting asphalt features such as 

roads (Kokje and Gao, 2013). Figure 3.5 shows the classification of water bodies in blue color 

from the ruleset developed in Figure 3.4. 

 

Figure 3.5: Classification of water bodies delineated in blue color 
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3.3.1.2.3 Export to vector layer 

After the classifying the water bodies, they were exported into a geo-referenced vector 

polygon layer using appropriate naming schemes. The eCognition software allows the user to 

add attributes to the exported water body GIS layers based on their object attributes. After the 

ruleset was developed, it was applied to individual project tiles as a batch process using the 

Analyze tool in eCognition resulting in the output layers with appropriate naming schemes. The 

GIS layers of all the individual project tiles were merged in the GIS producing a single water 

body layer.  

3.3.2 Results and discussion 

Classification of wetlands using GeOBIA methods resulted in 2,195 water bodies being 

initially classified that included rivers, lakes, wetlands, streams etc. The water bodies classified 

are shown in the Figure 3.6 in light blue color. 
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Figure 3.6:  Classified water bodies from the ruleset developed in GeOBIA 

 

To validate the geographic isolation, the resulting water body layer was buffered with 

NHD dataset and existing 100-year floodplain data in accordance with the Tiner Methodology 

(Tiner, 2003). Although, hydric soils were used as a data source for mapping wetland in Jones 

(2013), these data for Lee County do not exist and were not used. Isolation was defined by 

selecting only those water bodies that did not overlap with the 40 meter buffer with NHD dataset 

and FEMA DFIRM floodplain data. A buffer of 40 meter NHD dataset was done in GIS 

producing the output as shown in the Figure 3.7 and Figure 3.8. 
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Figure 3.7:  40 meter buffer of NHD dataset represented in blue color  

 

Figure 3.8:  FEMA DFIRM 100 year floodplain data represented in light blue color 
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A “Select by Location” query function was performed in GIS, where only water bodies 

that did not intersect the 40m buffer NHD layer and floodplain were selected and exported into a 

new layer for isolated wetlands. A total of 976 isolated wetlands were classified in Lee County 

as shown in the Figure 3.9. 

 

Figure 3.9:  Wetlands classified after defining isolation before eliminating rooftops errors 

3.3.3 Accuracy assessment 

The classification of isolated wetlands using GeOBIA resulted in total of 976 polygons. 

The accuracy assessment was done for the isolated wetlands for the whole Lee County to see if 

there were errors of building rooftops, asphalts and shadows as it was detected in Jones (2013) 

results. The Alaska Pak v3.0 for ArcGIS 10.x was used to randomly select 250 polygons from 

the isolated wetland classification and exported into new layer as shown in Figure 3.10. The 

https://irma.nps.gov/App/Reference/Profile/2176910
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accuracy was assessed on these 250 points by visually inspecting the polygon with the NAIP 

imagery. 

 

Figure 3.10:  250 randomly selected isolated wetlands for accuracy assessment in Lee County 

The errors considered for this project were of commission rather than omission which 

means it was assessed for only those isolated wetlands that were classified.  The accuracy 

assessment of isolated wetlands from the GeOBIA method is shown in the Table 3.1. 
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S.N 
 

   Number of polygon 

1 Correctly classified isolated wetlands 201 

2 Errors of building rooftops 19 

3 Errors of shadows, asphalt 30 

4 Total 250 

Table 3.1: Accuracy assessment results of isolated wetlands classification 

 Accuracy percent was measured as the percentage ratio of correctly classified isolated 

wetlands by total wetland polygons selected. The accuracy percent for the initial GeOBIA 

approach is 80.4% which is shown in the Table 3.2. 

Method          Accuracy Percent 

Correctly classified isolated wetlands (201/250)*100% = 80.4% 

Table 3.2: Accuracy percent of isolated wetland classification 

  

         

Figure 3.11: Classification errors where building rooftops were classified as wetlands 
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The accuracy assessment of the 250 isolated wetlands showed that there were errors of 

building rooftops, asphalts and shadows. Out of the 250 selected for the accuracy assessment, 

there were 19 errors of building rooftops as shown in Figure 3.11 and 30 errors of asphalt and 

shadows. Similarly, some of the correctly classified wetland polygons were incomplete in shape 

and did not cover the whole area of wetland as in NAIP images. 

3.4 Improving the isolated wetlands classification through the removal of rooftops 

3.4.1 Comparison of two methods for classification of building rooftops in pilot study 

Jones (2013) applied GeOBIA to classify the isolated wetlands of Northern Alabama 

from NAIP imagery resulting in an accuracy of 83.7% for aerial imagery inspection. The 

classification of the wetlands in the previous study had errors most commonly where wetlands 

were wrongly classified as building rooftops. Similarly, the classification of isolated wetlands 

done above in Section 3.3 had errors of rooftops, shadows and asphalt. This research study 

attempts to classify the building rooftops in Lee County and use that rooftop layer to eliminate 

the rooftop errors in initial isolated wetland classification. This research study first determines 

the best methods to classify building rooftops by testing on a small section of Lee County in 

Figure 3.12 using LiDAR data with two different methods described in the literature. For the first 

case, building rooftops were classified using GeOBIA methods in eCognition software through a 

combination of imagery and LiDAR. For the second method building rooftops were classified 

using the Point Cloud Tasks (PCT) method in LP360 software, which is an extension for ArcGIS 

and relies only on the LiDAR data. The results of the rooftop classification from both methods 

were compared to see which gives better classification results by visually comparing the results 

with the high resolution NAIP imagery. The method that produces better results in terms of 

accuracy in presence and shape was used to classify the rooftops for the whole of Lee County. 
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After delineating the rooftop polygons for the whole Lee County, the data was used to mask out 

the wetlands that were wrongly classified.  

3.4.1.1 Study area 

The study area for the project covers the southeastern part of Lee County in Alabama, 

United States. The total area of the study area is 37.4 sq. miles, which consists of both urban and 

rural areas. Figure 3.12 below shows the border of the study area inside the border of Lee 

County. The southeastern part of Auburn was chosen because this area has both buildings and 

vegetation to compare the results for the two methods.  

 

Figure 3.12: Study area which is within the blue boundary of Lee County, AL 

LEE COUNTY 
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3.4.2 Methods used 

3.4.2.1 Data preparation of National Agriculture Imagery Program (NAIP) imagery for 

rooftop removal 

The NAIP imagery for the Lee County are organized and distributed with the existing 

USGS 7.5 minute topographic quadrangles grid system incorporated. Each NAIP image 

corresponds to one quarter quadrangle or 3.75x3.75 minute with an overlap of 300 meter buffer 

on all sides (Jones, 2013).The study area for this project consists of 2 Digital Ortho-photo 

Quarter Quadrangle (DOQQ) NAIP images which were mosaicked into a single image. The 

mosaicked image was then tiled into 5000 feet x 5000 feet with an overlap of 500 feet (10 

percent) between those tiles using the dice image command in ERDAS Imagine 2013.  

3.4.2.2 Data preparation of LiDAR  

The LiDAR data of the study area, which are in LAS format, were prepared differently 

for the two methods tested. For classifying rooftops with eCognition and GeOBIA methods the 

LAS data were converted into multipoint feature classes for both bare earth and non-ground 

features in ESRI’s ArcMap. Bare earth multipoint was created from the last return of LiDAR 

data while non-ground multipoint was created from first return. The multipoint features produced 

from the LAS files were used to create a terrain dataset using the New Terrain wizard tool in the 

Arc Catalog window. The terrain dataset can be used to produce raster-based digital elevation 

models for modeling and analysis. A Digital Elevation Model (DEM) and a Digital Surface 

Model (DSM) raster images were produced from the bare earth and non-ground terrain dataset 

respectively using 3D Analyst tools in ArcGIS. Figure 3.13 shows the images of DEM and DSM 

of one section of the study area. Figure 3.13 (i.) only shows ground whereas (ii.) shows where 

there are non-ground discrete features. 
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            (i)                                                                   (ii) 

Figure 3.13:  (i) DEM (ii) DSM of study area 

  A new raster image, called the Normalized Digital Surface Model (nDSM), represents the 

height of the features above ground level and was derived by subtracting the DEM from the 

DSM using the raster calculator. Similarly, an intensity map was created from the LiDAR point 

cloud using the intensity attribute of the point clouds. The nDSM and intensity raster were then 

tiled into 5000 feet x 5000 feet with an overlap of 500 feet (10 percent) between those tiles using 

the dice image command in ERDAS Imagine 2013. Figure 3.14 below shows the images of 

nDSM and intensity.  
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              (i)                                                                   (ii) 

Figure 3.14: (i) nDSM (ii) Intensity Raster of study area 

After the project based tiling of NAIP imagery, intensity and nDSM raster, the 

customized import routine was executed within eCognition environment which creates a series of 

individual project files. The four band layers of NAIP images were integrated with the intensity 

and nDSM layer resulting in a six band layer with the same spatial extent.  

3.4.2.3 GeOBIA methods 

3.4.2.3.1 Segmentation 

Multi-Resolution Segmentation (MRS), as explained in section (3.3.1.2.1) was used in 

this task which is a bottom up region-merging technique which starts with small one-pixel 

objects and merge into a bigger one in several subsequent steps (Benz et al., 2004). Through a 

trial and error process, the scale parameter value MRS for this project was set to 20 with shape 

and compactness value set to 0.5 and 0.7 respectively. The weight of all spectral bands was set to 

0 except for NIR which was set to 2 since building rooftops have low reflectance in the NIR 
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portion of the electromagnetic radiation.  Figure 3.15 shows an example of multi-resolution 

segmentation of an area that shows building rooftops as multiple object primitives. 

 

Figure 3.15: Images after Multi-Resolution Segmentation. 

3.4.2.3.2 Classification 

A ruleset was developed to classify rooftops and to export them as GIS layers in 

eCognition software. The ruleset for this project used information such as mean spectral 

reflectance of NIR, Normalized Difference Vegetation Index (NDVI), Normalized Digital 

Surface Model (nDSM), standard deviation of nDSM, relative boarder to building rooftops, and 

ratio of Length to Width and texture to classify the building areas. Figure 3.16 shows the ruleset 

developed for the classification of rooftops. 
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Figure 3.16: Ruleset developed for classification of rooftops 

Figure 3.17 below shows the classification of rooftops in green color of two separate 

areas using the ruleset.        

     

Figure 3.17: Classification of building rooftops in the study area 
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3.4.2.3.3 Export to vector layer 

After the classification of the rooftops, they were exported into geo-referenced vector 

polygon layer using appropriate naming schemes. The eCognition software allows the user to 

add attributes to the exported building rooftops layer based on the object attributes. As with the 

wetlands classification, the ruleset was applied to individual project tiles as a batch process using 

the Analyze tool in eCognition resulting in the building rooftops output layer with appropriate 

naming schemes.  

3.4.2.4 LP360 methods 

A second method was used to test an approach that relied only on the LiDAR data to 

classify rooftops. One advantage of using LP360 is that the software extension works directly 

with the LAS datasets and has the capability to work very rapidly with very large datasets at a 

regional or county-wide scale (QCoherent, 2012). Advanced point cloud tasks (PCT) in the 

LP360 extension were used to filter and extract rooftops of the study area. The filter was used to 

classify or change the classification values for LiDAR point clouds. After the classification was 

implemented, the extractor was used to pull information from the point cloud data into GIS 

layers.  The LiDAR data provided by vendor was only classified for the ground and non-ground 

features. Therefore to refine the classification, the non-ground features such as vegetation, 

buildings and water bodies were classified using PCT.  

3.4.2.4.1 Height Filter 

First, a height filter was made which classified all the features above the ground (non-

ground points) into Low, Medium and High Vegetation. The height filter uses the terms Low, 

Medium and High Vegetation but this is misleading as all features are classified including man-

made features such as buildings. Implementing the height filter uses the minimum and maximum 
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object height parameters to classify and eliminate points above a ground surface according to the 

classification requirement. Different ranges of height were used to classify point clouds into the 

features as shown in the Figure 3.18. 

 

Figure 3.18: Height filter defining classes for different height range including both vegetated and 

non-vegetated features. 

The ranges of height values were followed according to the tutorial exercise of LP360 

software from QCoherent (QCoherent, 2014).  Figure 3.19 shows the points clouds being 

classified as ground in a brown color and Low, Medium, High features in different shades of 

green colors. There are strips of tile overlap where more points were collected. 
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Figure 3.19: Point clouds being classified after running height filter 

3.4.2.4.2 Planar Point Filter 

After the implementation of the height filter, a new task was created called Planar Point 

Filter that differentiates points into user-defined planes and classifies those points to classes as 

specified by the user. This filter is commonly used for the classification of building footprints 

and in this case rooftops as the surfaces are planar. Minimum and maximum heights of the 

buildings must be defined so that features are correctly classified by satisfying local conditions. 

Minimum and maximum height changes from place to place. Since Lee County does not have 

very tall buildings, a maximum height of 600 feet above ground was used. In addition to this, the 
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parameters for the Minimum Plane Edges, Maximum Grow Window Area, N-Threshold, Plane 

Fit, Minimum Slope and Maximum Slope as followed in the LP360 tutorial were entered based 

on trial and error method to see which values gave better results. 

Minimum Plane Edge is an important setting in which the algorithm moves the window 

around the data and extracts a “planar patch that has minimum square area of Min. Plane Edge X 

Min. Plane Edge” (QCoherent, 2012). The parameters must be chosen in such a way that it 

should be large enough that at least 8 points are included in the planar patches. Moreover, it 

should also be small enough to find multiple patches in the planes that are being extracted from 

the point cloud. The best approach to the Planar Point Filter is to experiment with different 

values in the parameters mentioned above and see which values gives a better result of the 

building rooftops classification. The values set for the parameters to classify building rooftops 

are shown in the Figure 3.20. 

 

Figure 3.20: Parameter used for Planar Point Filter 
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After running the Planar Point Filter algorithm, the point clouds were classified into 

building rooftop class. Figure 3.21 below shows the classification of the point clouds into 

building class in point and Triangular Irregular Network (TIN). TIN is an efficient way to 

represent the terrain by forming dense raster grids and is made up of set of non-overlapping 

contiguous triangular facets, of irregular size and shape. TIN structure has been used in many 

applications such as shading, cataloging and visibility as it overcomes the problems caused by 

non-stationary property of the terrain surface (Chen and Guevara, 1987).  

   

(i)                                                  (ii) 

Figure 3.21: (i) Point clouds classified as point (ii) Classified rooftops displayed in TIN in red 

color 

3.4.2.4.3 Point Group Tracing and Squaring  

The Point Group Tracing and Squaring Point Cloud Task tool was used to extract traced 

outlines around points of a particular classification category such as buildings. In addition, the 

traced outlines can be squared producing an approximation of objects such as the roof outlines of 

buildings and exported into GIS. If squaring is performed, two layers will be generated; one for 



71 

the traced outlines, and other containing a "_sqr" suffix representing the squared outlines. The 

value for Boundary Trace Class to building was set in order to define outlines for the building 

rooftops. 

 In addition, the values for other parameters such as Grow Window, Trace Window, 

Minimum Area and Squaring Angle were also entered which were all based on trial and error 

method. The values should be experimented with to see which gives better results of building 

outlines. The Perform Squaring option should be checked if the building outlines polygons are to 

have corners in 90 degrees, as is the case with many buildings. Figure 3.22 below shows the 

parameters entered for the Point Group Tracing and Squaring algorithm. 

 

Figure 3.22: Parameter used for Point Group Tracing and Squaring Point Cloud Task 
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After implementing the algorithm, polygon outlines were traced on the classified building 

rooftops point clouds automatically as shown in the Figure 3.23 below. 

  

(i)                                                                  (ii) 

Figure 3.23: (i) Classified rooftops in TIN   (ii) traced polygons showing the rooftops outlines 

3.4.2.4 Accuracy assessment 

The classification of building rooftops using both GeOBIA and PCT method resulted in 

total of 3,125 and 5,540 polygons in the pilot study area. The PCT method was able to extract 

more rooftops compared to the GeOBIA method. However, there were also some errors where 

building rooftops polygons appeared in the forest and grassland. This might be one of the reasons 

for very high difference in building rooftop classification between two methods. The errors were 

mostly in forest and in open space where there were rooftop polygons as shown in Figure 3.24.  
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Figure 3.24:  Errors of wrongly classified building rooftops in forest 

The AlaskaPak v3.0 for ArcGIS 10.x was used to randomly select 250 polygons from the 

5,540 and 3,125 classified polygons and the accuracy was assessed on those 250 points by 

visually inspecting the polygon with the NAIP image. The errors considered for this project were 

of commission rather than omission meaning it was assessed for only those building rooftops that 

were classified.  The accuracy assessment for both methods is shown in the Table 3.3. 

S.N Type       PCT           GeOBIA 

1 Correctly classified building rooftops polygons 223 154 

2 Correctly classified but incomplete polygon 4 49 

3 Incorrectly classified polygons 23 47 

4 Total polygon 250 250 

Table 3.3: Accuracy sssessment result for PCT and GeOBIA 

 Accuracy percentage for both the methods was measured as the percentage ratio of 

correctly classified polygons (which includes incomplete polygons) by total polygon. The 

accuracy percentage for both methods is shown in the Table 3.4. 

https://irma.nps.gov/App/Reference/Profile/2176910
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Methods       Accuracy Percent 

PCT (227/250 * 100 )% = 90.8% 

GeOBIA (203/250 * 100 )% = 81.2% 

Table 3.4:  Accuracy percent for PCT and GeOBIA 

 While comparing the shape of the building rooftops polygons classified from both 

methods, the shapes of polygons from GeOBIA were less accurate than the rooftops generated in 

LP360. The Figure 3.25 shows an example of the building rooftop classification results from 

both methods for the same area. In addition to the less accurate shape, it also shows that 

GeOBIA method missed classifying many of the building rooftop that PCT was able to map.   

     

(i)                                                                  (ii) 

Figure 3.25:  Classified rooftops from (i) PCT method   (ii) GeOBIA method 

Overall PCT was better at classifying building rooftops in both number and shape than 

GeOBIA.  However, PCT also had a problem with classifying parts of the forest and grasslands 
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as building rooftops so in general the number of building rooftops classified by PCT is an 

overestimate while GeOBIA underestimates the number of building rooftops.   

3.4.3 Applying PCT method to classify building rooftops of the Lee County 

Assessing both the PCT method and the GeOBIA method for rooftop classification in a 

small section of Lee County, it was found that the PCT method performed better for the 

application of removing building rooftops wrongly classified as wetlands. Therefore, the PCT 

method was implemented to extract building rooftops of the Lee County. In total, there were 

49,341 building rooftops extracted for the whole of Lee County as shown in Figure 3.26 in red 

color.  

 

Figure 3.26:  Classified rooftops from PCT method  
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There were a minimal amount of errors encountered during the extraction of building 

rooftops. The errors were mostly in forest and in open space where there were polygons of 

rooftops classified, however these errors were ignored because they did not overlap with any of 

the wetland errors. Overall, this method was able to classify most of the building rooftops of Lee 

County to help improve the overall isolated wetlands classification.  

3.4.4 Removal of rooftops from isolated wetland classification 

  The classified isolated wetlands had errors of rooftops and shadows in the classification.  

Therefore to correct the error of rooftops, the isolated wetlands layer and building rooftops layer 

extracted from LP360 software were overlaid on top of each other and “Select by Location” 

query function was performed . Only those isolated wetlands were selected which did not 

intersect with the building layer and were exported into a new layer which is the corrected 

isolated wetlands of Lee County. There were a total of 871 isolated wetlands shown in the Figure 

3.27 in yellow color. 
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Figure 3.27:  Isolated Wetlands classified after eliminating building rooftop errors 

3.4.5 Accuracy Assessment of classified isolated wetlands 

The classification of isolated wetlands after removing the rooftop errors in GIS 

environment resulted in total of 871 polygons. The Alaska Pak v3.0 for ArcGIS 10.x was used to 

randomly select 250 polygons from the 871 classified polygons and the accuracy was assessed 

on those 250 points by visually inspecting the polygon with the NAIP image. The errors 

considered for this project were of commission rather than omission which means it was assessed 

for only those isolated wetlands that were classified. The accuracy assessment of isolated 

wetlands from the GeOBIA method after removing the errors of rooftop is shown in the Table 

3.5. 

 

https://irma.nps.gov/App/Reference/Profile/2176910
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S.N Type    Number of polygon 

1 Correctly classified isolated wetlands 226 

2 Errors of building rooftops 0 

3 Errors of shadows, asphalt 24 

4 Total 250 

Table 3.5: Classification results for isolated wetlands 

 There were no errors in the isolated wetlands dataset due to building rooftops because of 

the LiDAR removal process.  The errors were due to asphalt and shadows that were not 

detectable with the LiDAR analysis. Accuracy percent was measured as the percentage ratio of 

correctly classified isolated wetlands by total wetland polygons selected. The accuracy percent 

for the classified wetlands is 90.4% as shown in the Table 3.6. 

Method          Accuracy Percent 

Correctly classified isolated wetlands (226/250)*100% = 90.4% 

Table 3.6: Accuracy percent for isolated wetlands 

3.5 Results and discussion 

The isolated wetlands of Lee County were first classified using the GeOBIA methods. 

Multi-resolution segmentation was performed and classification of the images was based on the 

ruleset developed to classify water bodies. The ruleset developed used information such as mean 

spectral reflectance of NIR, open water spectral signature, homogeneity, ratio green, standard 

deviation of NIR, ZABUD, and texture to classify the water bodies. After classification, the 

water body polygons were exported into GIS layers and isolation for the wetlands was defined 

using the 40 m buffer of NHD dataset and FEMA DFIRM floodplain data in accordance with the 

Tiner Methodology (Tiner, 2003). In total 976 isolated wetlands were classified in the Lee 
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County. The accuracy of the classification was assessed to see the errors of building rooftops. 

Accuracy assessment for the wetlands was done by randomly selecting 250 polygons of isolated 

wetlands in Lee County using the Alaska Pak v3.0 for ArcGIS 10.x and was assessed by 

inspecting the selected polygons with NAIP images. The accuracy percent of the classification 

was 80.4 % in which there were 19 errors of rooftops.  

To deal with the errors of building rooftops in wetland classification, two methods were 

adopted to classify the building rooftops in a small section of Lee County as a pilot project. The 

two methods were compared to see which one performed better. The Point Cloud Tasks (PCT) 

method was determined to perform better and was used to classify all the building rooftops of 

Lee County. In total, 49,341 building rooftops were extracted for the Lee County and although 

that is an overestimation, the errors were not due to any water bodies. The dataset was used to 

mask the errors in the isolated wetlands product.  

 After producing the rooftops GIS layer, it was overlaid with the isolated wetlands layer 

and “Select by Location” query function was performed. Only those isolated wetlands were 

selected which did not intersect with the building rooftops layer and were exported into a new 

layer representing the corrected isolated wetlands in Lee County. In total there were 871 isolated 

wetlands. The accuracy of the isolated wetland classification was assessed in the study area. 

Accuracy assessment for the isolated wetlands was done by randomly selecting 250 polygons in 

the study area using the Alaska Pak v3.0 for ArcGIS 10.x and was assessed by inspecting the 

selected polygons with NAIP images. The accuracy percent of the classification was 90.4% in 

which there were no errors of rooftops. However, there were still some errors mostly associated 

with shadow and asphalt. The percentage accuracy for the isolated wetlands classification 

improved to 90.4% from 80.4% after using LiDAR to remove rooftop errors. This study shows 

https://irma.nps.gov/App/Reference/Profile/2176910
https://irma.nps.gov/App/Reference/Profile/2176910
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that integrating LiDAR data into wetlands classification can improve the overall accuracy of the 

classification using an efficient automated process. 

 

 

. 
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Chapter 4: Estimating evapotranspiration as a proxy for water usage in the irrigated areas 

and golf courses in twenty (HUC) 12 watersheds in the Wiregrass region of Alabama. 

4.1 Introduction 

Managing water resources wisely and sustainably is one of the main challenges for water 

resource managers. Although abundantly available, water is certainly not free. It is important to 

understand the natural systems and physical laws that control the hydrological cycle and how 

each process relates to water usage.  Information about water usage supplements the study of 

surface water and ground water availability, which can be vital in understanding water usage 

demand and in managing water consumption for the future. Moreover, it can also be important in 

maintaining an adequate water quality and quantity that is desired by humans and needed to 

sustain ecosystems. There are different factors that affect the water supply and its usage such as 

“demographics, economic trends, legal decisions, and climatic fluctuations” (Kenny et al., 2009, 

p. 2). In many cases, agricultural lands should be irrigated to strengthen plant growth and water 

is applied for “pre-irrigation, frost protection, application of chemicals, weed control, field 

preparation, crop cooling, harvesting, dust suppression, leaching salts from the root zone, and 

water lost in conveyance” (Kenny et al., 2009, p. 2).  

The common irrigation methods are sprinklers, micro-irrigation and surface flood 

systems which all withdraw fresh water. One of the commonly used sprinkler systems is a 

Central Pivot Irrigation Systems (CPIS). CPIS have been used in many areas to increase crop 

production. According to United States Geological Survey (USGS) data for 2005, total irrigation 
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withdrawals for the United States were about 128,000 million gallons per day (Mgal/d) which 

comprised of 37 percent of total freshwater withdrawals and 62 percent of total freshwater 

withdrawals for all categories, when thermoelectric power was not taken into consideration. 

Irrigation from surface water was accountable for 58 percent of the total irrigation withdrawals. 

The data also revealed that a total of 61.1 million acres were irrigated of which 30.5 million 

acres used sprinkler system such as CPIS. There was an increase in irrigated acreage from 25 

million acres in 1950 to 58 million acres in 1980. After that it was static for a while and again 

increased in 2000 to 2005 to more than 60 million acres. Similarly, there has been increase in the 

acreage that uses sprinkler and micro-irrigation systems accounting for 56 percent of total 

irrigated acreage in 2005 (Kenny et al., 2009). 

Large volumes of water are also consumed for the irrigation of recreational golf courses. 

Golf is a sport that has experienced a huge growth and success in recent decades. The total 

number of golfers since 2003 exceeds more than 61 million around the world with United States 

comprising over half of that figure. In 2003, there were a total 25,000 golf courses worldwide 

with United States alone having 15,827 golf courses covering more than 1.7 million acres 

(Wheeler and Nauright, 2006). According to the NGF’s (2012) report, there were a total of 

15,619 golf courses in United States with 25 percent being privately owned. To maintain the turf 

of the golf courses, a huge volume of water is required. It was estimated that an 18-hole golf 

course requires 3,000 to 5,000 cubic meters per day, nearly equivalent to the daily consumption 

requirement for 2,000 families or 15,000 individual Americans (Wheeler and Nauright, 2006). 

According to the Worldwatch Institute data from 2001, 9.5 million cubic meters of water is used 

per day to irrigate all the world’s golf courses which is tantamount to the amount of water used 
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per day to support 4.7 billion people at United Nations daily minimum requirement (Brown et 

al., 2001). 

Since both agricultural land and golf courses consume very large amounts of water, it is 

important for regional water resource managers to have an accurate inventory of irrigated lands 

and golf course areas and to also have ways to estimate the water consumption in these areas. 

Part of this study was funded by the Alabama Office of Water Resources whose resource 

managers are seeking methods to help the monitor the water consumed by these two land uses. 

Estimating evapotranspiration (ET) with satellite imagery using the Mapping 

EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) model can be an 

effective tool for water resource managers to gain knowledge about the water consumption in 

irrigation practices and make better policies to sustain and manage water distribution.  

4.2 Study area 

The study area for the identification of golf courses and agricultural lands, and estimation 

of ET includes the twenty HUC 12 watersheds in the Wiregrass region of Alabama shown in 

Figure 4.1. It is an area that encompasses the southeastern part of Alabama. The region’s name is 

based on the native Aristida stricta, also known as “wiregrass” due to its texture and because it is 

amply found in the regions longleaf pine forest (Byrd, 2009). This name was originated during 

the earliest days of European inhabitation in this region. Dothan is the region’s most developed 

city and claims the agricultural title of “Peanut capital of the world.” The Wiregrass region has 

many golf courses and recreation centers. The region’s boundary can vary depending on who 

defines it. For the purpose of this thesis, the focus will be mostly on Houston County, Alabama. 
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Figure 4.1: Study area delineating Twenty HUC Watersheds in SE Alabama 

4.3 Objectives 

One goal of this study is to develop methods to estimate evapotranspiration in the irrigated 

agricultural areas and golf courses of the study area using remote sensing methods and METRIC 

model. The study also focuses on the classification of the golf courses using GeOBIA methods 

since golf courses are not a separate class in any of the secondary land use/land cover datasets 

used to identify agricultural areas.  This project was accomplished with the following objectives: 

 To classify golf courses in twenty HUC 12 watersheds in the Wiregrass region of Alabama 

using NAIP imagery by implementing GeOBIA methods and develop a ruleset that best 

classifies golf courses. 

 Assess the validity of (METRIC) model for estimating evapotranspiration (ET) by comparing 

it with the ET data from USGS ET stations in Florida. 
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 Estimate evapotranspiration of irrigated agricultural lands and golf courses in twenty HUC 

12 watersheds in the Wiregrass region of Alabama implementing METRIC model and using 

Landsat 5 –Thematic Mapper imageries for the year 2005 and 2010.  

4.4 Research questions 

 What is the spatial extent of golf courses in the study area? 

 Can the ruleset developed for the classification of golf courses be applied to other places 

in Alabama to identify golf courses? 

 Can METRIC model be used with remotely sensed data to provide a reliable estimate of 

evapotranspiration?  

 How has the trend in water consumption changed from 2005 to 2010 in both agricultural 

land and golf courses? 

4.5 Data used  

The data required for the estimation of evapotranspiration (ET) and classification of golf 

courses are as follows: 

4.5.1 Imagery 

Landsat 5 Thematic mapper (TM) satellite images were used to determine the 

evapotranspiration of the agricultural land and golf courses in the study area. Landsat 5 Thematic 

mapper (TM) was launched in 1984 by NASA and collected data nearly twice per month 

consistently until November of 2011 (USGS, 2015). The Landsat TM satellite has seven bands 

consisting of three visible bands (RGB), two near infra-red bands, a thermal band and mid infra-

red band. The repeat cycle for the satellite is 16 days. The temporal resolution of recent Landsat 

satellites is 16-18 days which is not optimal for ET estimation; because moisture conditions on 

the ground can be dynamic depending on the rainfall, irrigation and heterogeneous drying varies 
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with soil, vegetation, topography, and local climate. To overcome this temporal limitation, robust 

methods have been implemented to interpolate between infrequent satellite overpasses to give us 

daily or seasonal information on the ET (Anderson et al., 2012b). The Landsat images for 

Houston County covering the study area for the year 2005 and 2010 were downloaded from the 

USGS Glovis website. The year 2005 and 2010 was chosen at the request by the lead 

investigators of the Office of Water Resources funded project. The downloaded images were 

cloud free or had less than 10 percent of cloud cover. Table 4.1 and 4.2 provide information 

about the downloaded Landsat images, cloud cover percent and ET mapping period for year 

2005 and 2010. 

S.N Landsat image date Cloud cover percent ET mapping period 

1 04/27/2005 0 percent April 2005 

2 05/13/2005 4 percent May –June 2005 

3 08/17/2005 0 percent  July-August 2005 

4 09/02/2005 0 percent September 2005 

Table 4.1: Landsat 5 images used for METRIC analysis for the year 2005 (Source: USGS) 

S.N Landsat image date Cloud cover percent ET mapping period 

1 04/09/2010 0 percent April 2010 

2 05/27/2010 0 percent May 2010 

3 06/12/2010 1 percent  June 2010 

4 07/30/2010 8 percent July-August 2010 

5  09/16/2010 2 percent September 2010 

Table 4.2: Landsat 5 images used for METRIC analysis for the year 2010 (Source: USGS) 
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National Agriculture Imagery Program (NAIP) images from 2011 were used to classify 

the golf courses using Geographic Object Based Image Analysis (GeOBIA) methods.  The NAIP 

captures digital aerial imagery of the United States during the agricultural growing season 

(USDA, 2013). The program is funded by the United States Department of Agriculture’s 

(USDA) Farm Service Agency (FSA) through the Aerial Photography Field Office (APFO) in 

Salt Lake City. The program was initiated in 2003 and initially attempted to collect imagery on a 

5 year cycle but now aims for a 3 year cycle beginning from 2009(USDA, 2013). The spatial 

resolution of the imagery is one meter and has three to four bands including red, green, blue and 

more recently many states have begun to collect near-infrared (NIR) as the
 
fourth band. The 

distribution and organization of the NAIP imagery is in accordance to the existing United States 

Geological Survey (USGS) 7.5 minute topographic quadrangles grid system with each NAIP 

image conforming to one quarter quadrangle or 3.75x3.75 minute having a buffer of 300m on all 

four sides. The projection of the tiled images is in the Universal Transverse Mercator (UTM) 

coordinate system using the North American Datum (NAD) of 1983 (USDA, 2013; Jones, 2013). 

4.5.2 Secondary data for land use/land cover 

Secondary data for land use/land cover and crop data layer were used to identify irrigated 

areas so that ET can be estimated only for the irrigated agricultural areas only. The source of 

secondary data of agricultural areas were provided by a combination of the National Land Cover 

Dataset (NLCD) for 2006 and National Agricultural Statistics Service (NASS) data for 2010. 

NLCD consists of 16- class land cover classification scheme that encompasses the whole of 

United States. It is produced under a cooperative project directed by the Multi-Resolution Land 

Characteristics (MRLC) Consortium. It is made on the basis of a decision tree classification of 

circa 2006 Landsat satellite data and is produced from analyzing the spectral characteristics of 
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Landsat images from 2001 to 2006. The main purpose NLCD project is to produce a consistent 

land use/land cover data layer of the country from the 30m resolution Landsat Thematic Mapper 

satellite data. The NLCD map has a 30m spatial resolution.  

The NASS data collected by the United States Department of Agriculture is from a 

program which prepares reports covering almost every aspect of US agriculture by conducting 

surveys every year (USDA, 2014). The NASS Crop Data Layer (CDL) is the classification of 

different crops and land use/land cover which has a spatial resolution of 30 m. It is produced 

from Landsat 5TM sensor and the Indian Remote Sensing RESOURCESAT-1 (IRS-P6) 

Advanced Wide Field Sensor (AWiFS) which is collected during the current crop growing 

season (USDA, 2014). The NASS provides timely, accurate, and useful statistics in service to 

U.S. agriculture and National CDL provides classification maps based on different crops. Crops 

that are grown from April to the end of September were taken into consideration for calculation 

of seasonal ET in this thesis. 

4.5.3 Weather data from weather stations 

Weather data from reference weather stations were required for the processing of the 

METRIC model. The weather parameters for the Houston County are available in the weather 

and climate websites such as Agricultural Weather Information Service (AWIS) Weather 

Services and the Center for Hurricane Intensity and Landfall Investigation (CHILI) where 

weather data can be obtained for the present and past years. Hourly and daily data for solar 

radiation, precipitation, temperature, relative humidity and wind speed were required to compute 

reference ET (ETref) in the Ref-ET software.  
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4.6 Methods  

4.6.1 Extraction of golf courses and agricultural land in Wiregrass Region  

4.6.1.1 Segmentation of NAIP image for golf courses 

The Multispectral Resolution Segmentation (MRS) algorithm was used to segment NAIP 

images. The setting of rule parameters was done in a repetitive trial and error process. The scale 

parameter value was set to 40 with shape and compactness value set to 0.2 and 0.7 respectively. 

The weight of spectral band for near infra-red (NIR) was set to 2 while all other bands (red, 

green, blue) was set to 1 because the NIR band plays a significant role in separating vegetated 

areas from non-vegetated areas. The segmented image objects obtained were subjected to the 

spectral difference segmentation algorithm, which combines smaller image objects into bigger 

image objects that have similar spectral values. This segmentation helped create large objects 

and separate golf courses from other land use/land cover classes. The value of spectral difference 

segmentation was set to 8. The weights of the bands were set similar to that of multispectral 

resolution algorithm.  Figure 4.2 shows an example where the NAIP imagery was used to 

classify a golf course before and after segmentation.  
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(i)                                                              (ii) 

Figure 4.2(i) NAIP image of golf course before segmentation   (ii) after segmentation 

4.6.1.2 Classification of golf courses 

A ruleset was developed to classify golf courses based on different attributes such as the 

Normalized Difference Vegetation Index (NDVI), spectral value of NIR, texture homogeneity, 

shape and size, contextual information and compactness. First, the sand traps of the golf courses 

were classified based on the spectral value of the NIR band, shape, size, brightness value and 

texture of the objects. Similarly the ponds in the golf courses were classified using spectral value 

of NIR, area, texture and contextual information such as distance from and traps. Finally the 

greens of the golf courses were classified using NDVI, texture, area and distance to sand trap and 

ponds. Figure 4.3 shows the ruleset developed and a classified image of golf course from the 

ruleset. 

       

(i)                                                              (ii) 
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Figure 4.3: (i) Ruleset for golf course     (ii) Classification of golf course 

4.6.1.3 Export to vector layer 

After the classification of golf courses, they were exported into a geo-referenced vector 

polygon layer using appropriate naming schemes. The eCognition software allows the user to 

add attributes to the classified polygons of golf course layer based on their object attributes. The 

Figure 4.4 shows the exported GIS layer of a golf course in Dothan Country Club.  

 

Figure 4.4: Exported GIS layers of a golf course 

4.6.1.4 Extraction of agricultural lands from NLCD and NASS data 

  NLCD maps are classified into different land cover such as forests, wetlands, water, 

developed and agriculture. Since ET is estimated only for agricultural lands, a selection of 

agricultural land was done and exported into a separate layer in GIS. Similarly, a Cropland Data 

Layer (CDL) map of NASS consists of classification of different crops grown in an area. Only 
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the crops grown during summer (April to September) were chosen for the study area and 

exported into a separate layer. Therefore, two separate layers were extracted for the agricultural 

lands from NLCD and NASS data. 

4.6.2 Estimation of evapotranspiration in Wiregrass Region  

4.6.2.1 Reference evapotranspiration (ETref) estimation  

The weather parameters such as solar radiation, temperature, precipitation, relative 

humidity and wind speed are required to calculate the reference ET (ETref) for alfalfa. The reason 

alfalfa (ETref) is preferred over the clipped grass (ETref) is that it gives good representation of the 

upper limit of ET from well-watered vegetation (Waters et al., 2002). The weather data were 

input in the Ref- ET software along with the coordinates and height of the weather station which 

gives ETref values that are required for the calculation of ET in the METRIC model.  REF-ET 

software developed by Allen et al. (2000a) was used to compute the ASCE Penman-Monteith 

standardized (Allen et al., 2000b) form of reference ET (ETref) for alfalfa using actual weather 

data. The software was also used to calculate ASCE Penman-Monteith standardized daily form 

of reference ET (ETref24) and monthly reference ET (ETref_month).  

4.6.2.2 Estimating and validating ET from METRIC model with ET from USGS ET station 

data of Florida 

Landsat 5 Thematic mapper images were used to measure ET from a set of equations that 

are in strict hierarchical sequence and use the spectral radiance measures from the satellite 

(Bastiaanssen et al., 2005). The input data required to measure ET in the METRIC model are 

visible, NIR and thermal bands of Landsat images and hourly ETref values calculated from the 

Ref-ET Software. The METRIC model consists of total of fifteen models which is built step by 

step in Erdas Imagine Model Maker to produce different image outputs such as radiance, 
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reflectance, surface albedo, vegetation indices, emissivity, land surface temperature (Ts), surface 

roughness, aerodynamic resistance, sensible heat flux and ET from the Landsat images. Figure 

4.5 below shows the workflow of METRIC model and is explained in detail in Appendix. 

 

Input                                           Output 

Model 1 

 

Model 2 

 

Model 3 

 

Model 4 

 

Model 5 

 

Model 6 

 

Model 7 

 

Model 8 

 

Layer stacked Landsat image, Lmin, 

Lmax 

Radiance 

Radiance, ESUN, Cosθ, dr Reflectance 

Reflectivity for each band, weighting 

coefficient for each band 

Albedo for the top of 

Atmosphere (TOA) 

Albedo for TOA, Path radiance, 

atmospheric transmissivity  

Surface Albedo 

Band 3(Red) and Band 4(NIR) of 

Landsat image 

Normalized Difference 

Vegetation Index (NDVI) 

NDVI, Surface Albedo Surface Emissivity  

Radiance, constant K1 and K2 Effective at Satellite 

Temperature 

Effective at Satellite Temperature, 

Surface emissivity 

 

Surface Temperature 



94 

Model 9 

 

Model 10 

 

Model 11 

 

Model 12 

 

Model 13 

 

Model 14 

 

 

Model 15 

 

 

Figure 4.5: Workflow of METRIC model 

Since the State of Alabama does not have any USGS evapotranspiration (ET) stations 

that measure ET data, validation of the ET from the METRIC model with field data in the study 

area was not possible. To validate the accuracy and reliability of the model, the model was tested 

in the areas that cover USGS ET stations in Florida (as in Bhattarai, 2010). The model was 

compared with ET data from the three USGS ET stations of Florida.  
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Landsat 5 TM images from path/row 15/41, 16/41, and 17/40 covering the three USGS 

sites were used in this study. The images were downloaded for the areas having USGS ET 

stations in Florida. Similarly Florida Automated Weather Network (FAWN) weather station data 

were used as inputs to the Ref ET software to derive ETref for the METRIC model. The ET 

derived from the Landsat 5 TM images were compared with ET data from the USGS station for 

the same day the images were captured. The measured ET data from the USGS stations are 

available online in the USGS Florida Evapotranspiration Station website. Table 4.3 shows the 

date, path/row, cloud cover and USGS ET locations of the downloaded Landsat images. 

S.N Date Path/Row Cloud cover 

USGS ET station 

location 

1 4/1/2003 16/41 0% Kenansville, FL 

2 4/3/2004 16/41 0% Kenansville, FL 

3 7/8/2004 16/41 2% Kenansville, FL 

4 4/28/2004 15/41 6% Fort Pierce, FL 

5 4/18/2001 17/40 0% Brooksville, FL 

Table 4.3: Date, Path/Row, cloud cover and USGS ET locations of the downloaded Landsat TM 

images 

Validation of the METRIC model was done by comparing the ET from model with 

measured ET from USGS ET Stations by conducting Two Sample Paired T-Test to check if there 

was significant difference between METRIC ET versus ET at USGS stations. Two Sample 

Paired t-test can be used with extremely small sample sizes as small as n=2 (de Winter, 2013). In 

addition to this Root Mean Square Error (RMSE) was used to determine performance indicators 

of the model. Figure 4.6 below shows the study area locations of the Florida Automated Weather 



96 

Network (FAWN) weather stations and USGS ET weather stations that were used for the 

validation of the model.  

 

Figure 4.6: Landsat 5 TM Images and USGS and Florida Automated Weather Network (FAWN) 

weather stations in Florida 
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4.6.2.3 Estimation of ET in twenty (HUC) 12 watersheds in the Wiregrass region  

The Landsat images for the study area of twenty HUC12 watersheds in the Wiregrass 

region of Houston County were downloaded from the USGS Glovis website 

(http://glovis.usgs.gov) for the path/row of 19/38. The Landsat images for the year 2005 and 

2010 were processed to estimate ET and compared to analyze the trends in water usage. Since 

the images should have minimum cloud cover, it was only possible to download a total of four 

images for the year 2005 and five for the year 2010. As most of the irrigation is done during the 

growing season, the Landsat images were acquired only for the crop growing months from April 

to September. The location of the weather stations in all Landsat images should be cloud free in 

order to get surface observations. Only those Landsat images having cloud cover less than 10 

percent were used. The pixels that have clouds in the study area does not give accurate ET values 

therefore these areas were be neglected in the ET maps. 

The weather data for the Houston County was downloaded from the AWIS Weather 

Services and CHILI websites for the year 2005 and 2010. Weather conditions might not be 

uniform within the satellite images if the study area is very large or has variety of terrain and 

land uses. For the study area, weather data from Headland AWIS weather station and Ashford 

CHILI weather station (Figure 4.7) were used to compute the ETref. While choosing hot and cold 

pixels in the METRIC model, only those pixels that are within the 20 km buffer zone from the 

weather data are chosen (Allen et al., 2002a). Hourly weather data were used to compute daily 

ET while daily weather data were summed up to calculate seasonal ET. The details of the ET 

workflow are provided in Appendix section. 
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Figure 4.7: Location of weather stations used for the study 

The daily ET for each pixel of the image was calculated from the model for the day the 

image was captured. After estimating the daily ET for each satellite image during the growing 

season, seasonal ET was calculated for the crop growing months. Seasonal ET was calculated by 

multiplying interpolated Reference ET Fraction (ETrF) maps with daily ETref values. This gives 

daily ET for each day for the whole crop growing season. Once the daily ET for each day of the 

whole crop season was calculated, seasonal ET can be computed by summing the daily ET for 
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the whole season. Since this process takes a considerably long time to run in the model, a python 

script was coded to perform this step.  

The project is primarily concerned with ET on agricultural lands and golf courses, 

seasonal ET was also evaluated for other land use/land cover types (section 4.7.2) to assess 

overall performance as an indicator of water usage. Secondary data from NLCD and crop layer 

data from NASS were used to mask out only agricultural lands in the GIS environment so that 

seasonal ET for only agricultural land and golf courses were estimated for year 2005 and 2010 in 

sections 4.7.4 and 4.7.5. 

4.7 Results and discussion 

4.7.1 Estimating and validating ET from METRIC model with ET from USGS ET station 

data of Florida 

ET was calculated using red, NIR and thermal bands of Landsat images, and weather 

parameters in the METRIC model. The pixel values for ET in the Landsat images where there 

were USGS weather station data were compared with the USGS weather station data. Table 4.4 

shows the comparison between the METRIC daily ET and USGS daily ET at the USGS ET 

weather station that was done for this study which added April and August to what had 

previously been done by Bhattarai (2010). The satellite images used were mostly during the 

spring season (April) so as to get images that were free of clouds. During this period, the ET 

values are relatively low compared to the summer season when the temperatures are very high. 

Much of the validation of ET from model with ET from USGS weather station in Florida was 

already conducted by Bhattarai (2010) for both spring and summer periods.  
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S.N Date Path/Row 

METRIC daily ET 

(mm/day) 

USGS daily ET 

(mm/day) 

1 4/1/2003 16/41 2.89 2.5 

2 4/3/2004 16/41 2.75 2.6 

3 7/8/2004 16/41 5.20 5.70 

4 4/28/2004 15/41 6.01 5.3 

5 4/18/2001 17/40 1.22 2.00 

Table 4.4: ET Data from METRIC model and USGS Evapotranspiration stations 

METRIC model performed very well in estimating daily ET at USGS stations. The error 

in daily METRIC ET varied from -0.78 mm to 0.71 mm with root mean square error (RMSE) of 

0.55 mm/day. Two Sample Paired t-test was performed in Microsoft Excel to see if there was a 

significant difference between the ET from model and USGS evapotranspiration station. The null 

hypothesis for this statistical analysis is that there is no significant difference between ET from 

METRIC model and ET from USGS evapotranspiration Station Data at a confidence level of 

95%.  

Null Hypothesis H0: There is no significant difference between METRIC model ET and ET 

from USGS evapotranspiration Station Data  

Alternative Hypothesis H1:  There is significant difference between METRIC model ET and 

ET from USGS evapotranspiration Station Data  

Significance Level (a) = 0.05 
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METRIC daily 

estimates(mm/day) 

USGS daily 

estimates(mm/day) 

Mean 3.614 3.62 

Variance 3.81453 3.017 

Observations 5 5 

Pearson correlation 0.950254 

 Hypothesized mean difference 0 

 Df 4  

t Stat -0.02164  

P(T<=t) one-tail 0.491884  

t Critical one-tail 2.131847  

P(T<=t) two-tail 0.983768  

t Critical two-tail 2.776445  

Table 4.5: Two Sample T Test results 

Table 4.5 shows the value of t stat = -0.02164 and t Critical two-tail = 2.776445. The t- 

stat value is within the critical two tail range and lies in acceptance zone of the normal 

distribution curve, which accepts the null hypothesis. Similarly, p-value for two-tailed data, P 

(T<=t) is 0.983768 which is greater than a= 0.05. Therefore, there is no significant difference 

between the means of the two datasets. Similarly, Bhattarai (2010) analyzed the daily, monthly 

and two- month ET validation using regression analysis by plotting estimated model ET versus 
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observed ET values at USGS stations. The validation performed well in terms of estimating 

daily, monthly and two-month ET at USGS.    

4.7.2 Estimation of ET at twenty HUC 12 watersheds in the wiregrass region compared by 

land use/land cover type 

A comparison of ET by land use/land cover type was done to evaluate how well the ET 

dataset estimated water consumption. For instance, developed/built-up lands should experience 

less ET than irrigated agricultural lands.  Daily ET was estimated for each Landsat images using 

the red, green, blue, NIR, and thermal bands and weather parameters in METRIC model. 

Similarly monthly or two-month ET was also calculated by multiplying interpolated Reference 

ET Fraction (ETrF) maps with daily ETref   values. Total seasonal ET was estimated by summing 

up daily ET during the growing season. ETrF for each day of the month was calculated by 

linearly interpolating the ETrF values from the two dates of images captured consecutively.  The 

interpolated ETrF of each day was multiplied with daily ETref   for that same day and daily ET for 

that day was computed. The daily ET for the whole crop growing season was added and a new 

seasonal ET map was generated using a python script. Seasonal ET maps were prepared for year 

2005 and 2010. Because of the presence of cloud cover in some of the Landsat TM images, the 

estimation of seasonal ET for those locations were excluded as it would affect the results. The 

clouds in each image were digitized into a GIS layer in order to exclude those areas while 

computing the seasonal ET. 



103 

 

(i)                                                        (ii) 

 

Figure 4.8:   (i) Seasonal ET map for the year 2005    (ii) NLCD land-use land-cover map 2006 

 Figure 4.8 shows the seasonal ET map for the year of 2005 during the crop growing 

season from April to end of September. The area having clouds in the Landsat images were not 

taken into consideration for estimating ET. While comparing the ET map with the NLCD land 

use/land cover map for 2006, it can be seen that pixels in wetland and forests had the highest ET 

values. Forest areas had higher ET than agricultural lands and shrub lands. While urban areas 

with high density had the least values of ET. 

The seasonal ET for 2005 map was distributed with 130 random points using the 

AlaskaPak v3.0 for ArcGIS 10.x. After randomly distributing the points, the pixel values for ET 

were extracted for each NLCD land cover type. Pixels that are covered by the clouds in the 

Landsat images were omitted for the study. The random points were divided according to their 

https://irma.nps.gov/App/Reference/Profile/2176910
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class and average values for the ET was calculated for each class. Table 4.6 below shows the 

class, number of points in the class and the average ET for that class for year 2005. 

S.N Class  Number of points Average seasonal ET(mm) 

1 Agricultural crops 40 511.58 

2 Developed/High Intensity 5 43.59 

3 Developed/Low Intensity 5 396.36 

4 Forest 26 717.50 

5 Hay/Pasture 24 542.91 

6 Open Water 4 889.65 

7 Shrub land 19 702.69 

8 Woody Wetlands 7 1000.15 

Table 4.6:   Seasonal ET values for different class from 130 randomly selected points for 2005 

From the Table 4.6, it was observed that wetlands and water bodies had the highest ET 

values. Forest areas and shrub lands had higher ET than agricultural lands and hay/pastures. 

Highly developed areas had the least ET because of lack of vegetation at core urban area. 

However, developed areas with low intensity (suburban areas) had higher ET than main urban 

city areas likely because sub-urban areas have more areas covered with vegetation and lawns that 

are often irrigated. 
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(i)                                                        (ii) 

 

Figure 4.9: (i) Seasonal ET map for the year 2010    (ii) NASS land-use land-cover map 2010 

Figure 4.9 shows the seasonal ET map for the year of 2010 during the crop growing 

season from April to end of September. While comparing ET map with the NASS land use/land 

cover map for 2010, pixels in wetland and forests had higher ET values. Forest areas had higher 

ET than agricultural lands and shrub lands. While urban areas with high density had the least 

value of ET. 

Similarly, the seasonal ET map for 2010 was distributed with 130 random points using 

the AlaskaPak v3.0 for ArcGIS 10.x. Extraction of pixels values for seasonal ET and NASS land 

use/land cover maps to the random points was done in GIS while omitting the pixels covered 

with clouds. The random points were divided according to their class and average values for the 

https://irma.nps.gov/App/Reference/Profile/2176910
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ET was calculated for each class. Table 4.7 shows the class, number of points in that class and 

the average ET for that class for year 2010. 

S.N Class  Number of points Average seasonal ET (mm) 

1 Agricultural crops 50 588.50 

2 Developed/High Intensity 4 88.28 

3 Developed/Low Intensity 3 474.38 

4 Forest 36 957.24 

5 Grassland/Pasture 20 723.64 

6 Open Water 2 1097.43 

7 Shrub land 7 867.13 

8 Woody Wetlands 8 1046.11 

Table 4.7:  Seasonal ET values for different class from 130 randomly selected points for 2005 

From the Table 4.7, it was observed that values of ET for different land use/land cover 

classes for 2010 were very similar to that of ET values 2005 in Table 4.6. The ET map for 2010 

had wetlands with higher ET followed by water bodies. Forest areas and shrub lands had higher 

ET than agricultural lands and grassland/pastures. Highly developed areas had the least ET while 

developed areas with low intensity (sub urban areas) had higher ET than main urban city areas. 

4.7.3 Comparing land surface temperature (Ts) and daily evapotranspiration (ET)  

The plot for daily evapotranspiration (ET) versus land surface temperature (Ts) was done 

to see the trend line between the daily ET and Ts. If a strong relationship exists between Ts and 

ET then it could be argued that Ts can provide a quick estimate of relative water usage. The 

Landsat image for July 30 of 2010 was considered for this test and the study area in the image 
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was distributed with 130 random points using the AlaskaPak v3.0 for ArcGIS 10.x. After 

randomly distributing the points, extraction of pixels values from Ts, ET and NASS land use/land 

cover to those random points was done in GIS. Pixels that were covered by the clouds in the 

Landsat images were omitted for the study. The points having the Ts and ET values were plotted 

in MS-Excel. From the Figure 4.10 it can be seen that there is negative correlation between ET 

and Ts. Higher ET values are associated with lower Ts and vice versa. Developed and urban areas 

with high intensity had minimum ET and very high Ts. ET value of zero was observed for some 

urban areas with high density. While highest ET and low Ts was obtained for most points in open 

water body, wetlands and forest area. Ahmed et al. (2005) and Bhattarai (2010) also observed 

strong negative correlation between Ts and ET. Therefore Ts data might also be used as a quick 

predictor to see the relative consumption of water in the irrigated areas. 

 

Figure 4.10: Ts vs daily ET for Landsat image of July 30, 2010. 

https://irma.nps.gov/App/Reference/Profile/2176910
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4.7.4 Estimation of ET in irrigated agricultural areas 

 The main focus of this study was in agricultural land and golf courses. Secondary data 

from National Agricultural Statistics Service (NASS) crop data layer (CDL) maps and National 

Land Cover Data (NLCD) maps were used to identify agricultural lands in the study area. The 

NASS provides timely, accurate, and useful statistics in service to U.S. agriculture and National 

CDL provides classification maps based on different crops. The NASS data for 2005 was not 

available therefore NLCD LULC map for 2006 was used to compare with seasonal ET for 2005. 

The NLCD data does not have classification based on individual crops but agricultural lands as a 

whole. NASS data for agricultural land for the year 2010 were available and used to compare 

and clip seasonal ET for 2010. Crops that are grown from April to end of September were taken 

into consideration as seasonal ET was calculated only for that time. Therefore, only croplands 

having planting dates from April and harvesting dates until the end of September were 

considered. According to the USDA field crops data, crops that are commonly grown in the state 

of Alabama are corn, cotton, hay, oats, peanuts, soybeans and winter wheat (USDA 

NASS,2010). However, oats and winter wheat were not taken into consideration as they are 

winter crops and are highlighted in red. The Table 4.8 shows the crops planting and harvesting 

dates in Alabama.   
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Usual Planting and Harvesting dates by crops – Alabama 

 

Crops 

2009 

Harvested 

Acres(1000 

acres) 

Usual planting dates   Usual harvesting dates 

Begin Most Active End Begin Most Active End 

Corn for 

grain 250 

15-

Mar 

Mar 25 - Apr 

25 

18-

May 2-Aug 

Aug 11 - Sep 

20 

15-

Oct 

Cotton, all 248 5-Apr 

Apr 24 - May 

24 6-Jun 5-Sep 

Sep 20 - Oct 

20 1-Dec 

Hay, other 800 (NA) (NA) (NA) 

10-

May 

Jun 20 - Sep 

1 

15-

Oct 

Oats, fall 11 1-Sep 

Sep 15 - Oct 

15 1-Dec 1-May 

May 25 - Jun 

25 1-Jul 

Peanuts 152 

16-

Apr 

Apr 25 - May 

25 15-Jun 15-Sep 

Sep 22 - Oct 

22 

20-

Nov 

Soybeans 430 

15-

Apr 

May 25 - Jun 

25 3-Jul 3-Sep 

Oct 28 - Nov 

28 

15-

Dec 

Wheat, 

winter 180 2-Oct 

Oct 21 - Nov 

21 

12-

Dec 1-May 

May 25 - Jun 

25 1-Jul 

Table 4.8: Field Crops Usual Planting and Harvesting Dates for Alabama (Source USDA, 

NASS) 
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Figure 4.11: Seasonal ET Map for agricultural land for year 2005 

As the crop layer data were not available for 2005, NLCD data for year 2006 were used 

where classification was based on all agricultural land. Therefore, both summer crops and winter 

crops were considered even though ET was calculated for only crop growing season from April 

to September. The ET maps shows that most of the agricultural lands had ET ranging from 400 

to 800 mm. The total irrigated agricultural area excluding covered by clouds was 593.51 sq.km.  
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Figure 4.12: Seasonal ET Map for agricultural land for year 2010 

 From the map, it can be deduced that most of the agricultural area for summer crops had 

seasonal ET values from 400- 800 mm and provide an estimate of how much water was 

consumed by the plants. There were very few areas that had ET greater than 800 mm. The areas 

that had clouds in the Landsat images were neglected as it introduces errors in ET estimation. 

The total irrigated agricultural areas for summer crops excluding covered by clouds was 343.26 

sq. km. In analyzing the water usage for agriculture areas, land use/land cover change had to be 

considered since there were approximately 250 fewer sq. km (out of a total of 1,729 square 

kilometers of the study area) of agricultural land in 2010 than in 2005 as indicated by the land 

use/land cover datasets. Overall, based on the analysis in section 4.7.2 the average ET per pixel 

on agricultural land increased from approximately 511mm in 2005 to 588mm in 2010.  
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4.7.5 Classification of golf courses using GEOBIA and estimating ET 

 The attributes of golf courses in the study area varied from place to place. Therefore 

different classification ruleset had to be built for each golf course. For example, the grasses used 

at different golf courses varied therefore different spectral value for NIR had to be used for 

different golf courses. Similarly other attribute parameters also varied for different golf courses. 

These different rulesets were combined into one common ruleset which was applied to all the 

NAIP images of study area.  

There are total of four golf courses in the study area and all four were classified using 

GEOBIA as shown in Figure 4.13, 4.14, 4.15 and 4.16. The classified golf courses were exported 

into vector layers. The layers were used to clip the ET raster for both 2005 and 2010 to analyze 

the seasonal ET for the golf courses. Table 4.9 shows the classified golf courses and their total 

area for the greens that are irrigated. The areas of trees and buildings at the golf courses have 

been neglected since these areas are not irrigated. Figure 4.13, 4.14, 4.15 and 4.16 shows the 

seasonal ET at the four golf courses for 2005 and 2010 and by comparing, it can be deduced that 

water usages has increased in 2010.  

S.N Date Area (m
2
) 

1 Highland oaks golf courses 723,678 

2 Kilgores Roundabout Plantation 797,001.5 

3 Dothan National golf club hotel 362,484.5 

4 Dothan Country Club 313,913.5 

Table 4.9: Field Crops Usual Planting and Harvesting Dates for Alabama (Source USDA, 

NASS) 
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(i)                                                                                     (ii)                  

 

                                           (iii)                                                                                      (iv) 

Figure 4.13 (i) NAIP image at Highland Oaks golf course    (ii) Classified images from GEOBIA     

 (iii) Seasonal ET for 2005 at the golf course     (iv) Seasonal ET for 2010 at the golf course 
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(i)                                                                                     (ii)                

  

                                           (iii)                                                                                      (iv) 

Figure 4.14 (i) NAIP image at Kilgore Roundabout Plantation    (ii) Classified images from 

GEOBIA 

(iii) Seasonal ET for 2005 at the golf course     (iv) Seasonal ET for 2010 at the golf course 
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(i)                                                                                     (ii)                

  

                                           (iii)                                                                                      (iv) 

Figure 4.15 (i) NAIP image at Dothan National Golf Club Hotel    (ii) Classified images from 

GEOBIA 

 (iii) Seasonal ET for 2005 at the golf course     (iv) Seasonal ET for 2010 at the golf course 
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(i)                                                                                     (ii)                

 

(iii)                                                                                     (iv)              

Figure 4.16: (i) NAIP image at Dothan Country Club   (ii) Classified images from GEOBIA 

 (iii) Seasonal ET for 2005 at the golf course     (iv) Seasonal ET for 2010 at the golf course 
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While comparing the Seasonal ET maps for golf courses from 2005 and 2010, it can be 

stated that the water consumption has increased by considerable amount in 2010 for all the golf 

courses. Analyzing the ET maps for golf courses from Figures 4.13, 4.14, 4.15 and 4.16, the map 

color grading has changed in most areas into darker colors indicating that there is more ET in 

that area and more water has been consumed from 2005 to 2010. The average value of seasonal 

ET for all pixels for golf courses was 679 mm in 2005 and 791 mm in 2010. Therefore, there was 

a substantial increase in the amount of water usage in the golf courses. 

Since there was increase in the water consumption for both agricultural lands and golf 

courses, it was important to see if the increment had to do anything with the weather during the 

crop growing season for both years. The weather data from the Headland AWIS weather station 

was compared for the year 2005 and 2010 to find out which was a dry year during the crop 

growing season. Table 4.10 and 4.11 show the average minimum temperature, average maximum 

temperature and total precipitation from April to September for 2005 and 2010 respectively. 

Month 

( 2005) 

Average maximum 

temperature (F) 

Average minimum 

temperature(F) 

Total precipitation 

(inches) 

April 

74.5 52.7 8.01 

May 83 61.8 2.36 

June 87.4 70.5 9.74 

July 90 73.7 5.35 

August 88.4 73 7.93 

September 88.8 69.3 1.72 

Table 4.10 : Temperature and precipitation data during the crop growing season for 2005 

(Source: AWIS, 2015) 
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Month 

( 2010) 

Average maximum 

temperature (F) 

Average minimum 

temperature(F) 

Total precipitation 

(inches) 

April 
82.1 

55.3 2.39 

May 88.5 67.9 4.7 

June 94.1 74 4.57 

July 95.4 75.3 1.72 

August 94.5 75.9 2.55 

September 94.7 69.1 3.04 

Table 4.11: Temperature and precipitation data during the crop growing season for 2010 (Source: 

AWIS, 2015) 

 Comparing the two tables showed that 2010 was drier year than 2005. The average 

maximum and minimum temperature from April to September for 2010 was higher than 2005. 

Similarly the total rainfall from April to September for 2005 and 2010 was 35.11 inches and 

18.97 inches respectively. The comparison above provides evidence that 2010 was a drier year 

compared to 2005 which may have led to increase in seasonal ET values for 2010. 

 Similarly, comparison of the weather data of 2005 and 2010 was also done with historic 

average weather data for 65 years during the crop growing season. Table 4.12 below shows the 

historic average weather data for 65 years in Headland, Alabama. 
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Month April May June July August September 

Historic monthly total 

rainfall (inches) for 65 years 
4 

3.7 4.7 5.8 4.7 4 

Average Maximum 

Temperature for 65 years (F) 
78.3 85.4 90.3 91.5 91.1 87.3 

Average Maximum 

Temperature for 65 years (F) 
53.1 61.4 67.7 69.7 69 64.8 

Table 4.12 : historic averages weather data of 65 years of Headland, Al (Source: NOAA 

Cooperative Observer Program (COOP) network of the National Weather Service) 

 The historic average weather data of 65 years were compared with weather data of 2005 

and 2010 to see the difference in temperature and monthly rainfall. The difference between the 

average maximum temperature, average minimum temperature and total rainfall was calculated 

in their respective months and the values are shown in the Table 4.13 and 4.14 below. 

Month 

( 2005) 

Difference in Average 

maximum temperature (F) 

Difference in Average 

minimum temperature(F) 

Difference in Total 

precipitation (inches) 

April 
-3.8 

-0.4 +4.01 

May -2.4 +0.4 -1.34 

June -2.9 +2.8 +5 

July -1.5 +4 -0.45 

August -2.7 +4 +3.23 

September +1.5 +4.5 -2.28 

Table 4.13: Difference between the historic average data of 65 years and weather data of 2005 

 Analyzing Table 4.13 gives information that the average maximum temperature for 2005 

was less than the historic average weather data. There was slight increase in the average 

minimum temperature. Similarly, there was more rainfall in 2005 than the historic average data 
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suggesting that 2005 was not a dry year and had plenty of rainfall compared to the historic 

average of 65 years. 

Month 

( 2010) 

Difference in Average 

maximum temperature (F) 

Difference in Average 

minimum temperature(F) 

Difference in Total 

precipitation (inches) 

April 
+3.8 

+2.2 -1.61 

May +3.1 +6.5 +1 

June +3.8 +6.3 -0.13 

July +3.9 +5.6 -4.08 

August +3.4 +6.9 -2.15 

September +7.4 +4.3 -0.96 

Table 4.14 : Difference between the historic average data of 65 years and weather data of 2010 

Analyzing Table 4.14 gives information that the average maximum temperature and 

minimum temperature for 2010 was greater than the historic average weather data for 65 years. 

Similarly, there was less rainfall in 2010 than the historic average data suggesting that 2010 was 

hot and dry year with less rainfall compared to the historic average of 65 years. 

Therefore by looking and analyzing the Table 4.10, 4.11, 4.12, 4.13 and 4.14, it can be 

summarized that 2010 was a hot and dry year compared to 2005 and was possibly part of the 

reason behind the increase of seasonal ET in golf courses and agricultural lands. 

4.8 Discussion and summary 

Remotely sensing has been used to assess the plant water consumption at a local (golf 

course) and regional (county-wide agriculture) scale. The METRIC model was used to estimate 

the plant water use in the 20 HUC 12 watersheds in the Wiregrass region of Southern Alabama. 
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The visible bands, NIR band and thermal bands of Landsat 5 TM were used as inputs to the 

model. Similarly weather parameters such as solar radiation, temperature, relative humidity, 

wind speed, and precipitation were also required as inputs to Ref-ET software to compute the 

ASCE Penman-Monteith standardized (Allen et al.,2000b) form of reference ET (ETref) for 

alfalfa. 

A total of 15 models were built in the ERDAS model maker to get the final daily ET map 

from the Landsat images. Since the State of Alabama does not have any USGS 

evapotranspiration (ET) stations, validation of the ET from the METRIC model with the field 

data in Wiregrass Region was not possible. To validate the accuracy and reliability of the model, 

the model was tested in the areas that cover USGS ET stations in Florida. The validation study 

supported that the model performed well in estimating the daily, monthly, and two-month ET. 

After estimating the daily ET on the acquisition day for each satellite image for the 20 

HUC 12 watersheds in the wiregrass region during the growing season, daily ET for the all the 

days in the growing season (April to September) was calculated by multiplying interpolated 

Reference ET Fraction (ETrF) maps with daily ETref values. The daily ET for the whole growing 

season was summed providing seasonal ET at each pixel of the study area. The study was 

primarily concerned with estimating ET of agricultural lands and golf courses. Agricultural lands 

were identified using secondary data from NASS 2010 and NLCD 2006 while golf courses were 

identified using classification methods in GEOBIA using NAIP images. The seasonal ET map 

was clipped with agricultural lands and golf courses in GIS to give ET information only on those 

areas.  
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Comparing the seasonal ET maps for year 2005 and 2010 showed that water consumption 

has increased by considerable amount in 2010 for golf courses as the average ET increased from 

679 mm in 2005 to 791 mm in 2010. The analysis showed that water consumption increased 

minimally for agricultural lands, with analysis indicating an increase in average ET from 

approximately 511mm in 2005 to 588mm in 2010.  Since 2010 was drier year than 2005, it might 

have led to the increase in water consumption.  

 

. 
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Chapter 5: Summary and Conclusion 

5.1 Remote sensing of water resources. 

Remote sensing (RS) is the art and science of obtaining information about an object or 

phenomenon without being in direct physical contact with the body. RS has been frequently used 

in many applications related with hydrology, forestry, agriculture, cartography, geology and 

meteorology among others. Different remote sensing techniques and methods have been studied 

and used to obtain quantitative and spatial measurements of important hydrologic parameters 

(Gregg and Casey, 2004; Karaska et al., 2004) resulting in more favorable results than the 

traditional way in collecting extensive field data. Extracting information from a remotely sensed 

dataset can be achieved by trained image analysts by implementing the knowledge about the 

fundamental elements of image interpretation including shape, size, tone (reflectance or 

emittance), shadow, pattern, texture, site, and association (Olson, 1960). This research thesis 

focused on two case studies using remote sensing in water related applications in the state of 

Alabama.  

5.2 Eliminating the errors of rooftops from isolated wetlands classification of Lee County 

using LiDAR data 

This case study was funded by an EPA project titled “Inventory, classification, and 

assessment of Alabama’s geographically isolated wetlands” to improve the methods for mapping 

isolated wetlands using a highly automated process.  The National Wetland Inventory data 

revealed that there were many gaps in the wetland inventory of Alabama with much of the state’s 
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wetlands not being digitized. GIS and RS technology have played an immense role in 

classification and mapping of wetlands. There are many automated classification methods in 

remote sensing but one of the new methods for the classification of high resolution images is 

Geographic Object Based Image Analysis (GeOBIA) which is used to group image pixels into 

meaningful objects and is growing rapidly in use. Jones (2013) conducted a study using GeOBIA 

method to classify the wetlands of Northern Alabama as a part of his Master thesis at Auburn 

University. Most of the errors in his classification were due to rooftops, asphalt and shadows 

being mistakenly classified as wetlands all of which can have low reflectance in the visible and 

especially near-infrared bands of satellite or aerial imagery. This part of the thesis sought to 

improve wetlands mapping by testing whether the rooftop errors in wetland classification could 

be eliminated by classifying building rooftops from LiDAR point clouds and eliminating those 

rooftop errors from the initial classification. The study also attempted to improve the 

classification by minimizing the errors of asphalt and shadows, although LiDAR did not play a 

role in this aspect of correcting for errors. 

Wetlands were initially classified using the GeOBIA methods solely with NAIP imagery. 

Multi-resolution segmentation was performed and classification of the images was done for the 

whole of Lee County. A ruleset for the classification was developed using information such as 

mean spectral reflectance of NIR, open water spectral signature, homogeneity, ratio green, 

standard deviation of NIR, ZABUD, and texture to classify the water bodies. The classified 

wetlands were exported into GIS layers and isolation for the wetlands were defined using the 40 

m buffer of the National Hydrography Dataset and the Federal Emergency Management Agency 

DFIRM floodplain data in accordance with the Tiner Methodology (Tiner, 2003). In total 976 
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isolated wetlands were initially classified in Lee County with the accuracy percentage of 80.4 

percent.  

To deal with the errors of building rooftops mistakenly classified as wetlands, two 

methods were adopted to classify the rooftops in a small section of Lee County and were 

compared to see which one performed better. The one with better performance was used to 

classify all the building rooftops of Lee County and used as a mask to eliminate these errors in 

the initial isolated wetlands classification. The first method that was tested involved GeOBIA 

and was done with eCognition software. This method required National Agricultural Imagery 

Program (NAIP) imagery, a normalized Digital Surface Model (nDSM, representing height of 

features) and an intensity raster to help classify building rooftops. LiDAR data were used to 

generate a Digital Elevation Model (DEM) and a Digital Surface Model (DSM) raster from 

which nDSM (DSM - DEM) was determined which was then used to separate rooftops from the 

ground and forest vegetation. The second method involved the Point Cloud Tasks (PCT) tools in 

LP360 software, which is an extension of ArcGIS. From the comparison study, it was found that 

PCT method was more advantageous as it required only LiDAR point clouds to classify the 

building rooftops whereas GeOBIA required imagery as well as LiDAR. Moreover, the PCT 

method of LP360 was more accurate with 90.8 percent accuracy compared to that of GeOBIA 

method, which was only 81.2 percent accurate, and it also performed better in mapping the 

accurate shapes of the rooftops.  

Therefore, the Point Cloud Tasks (PCT) tool in LP360 software was chosen to classify 

the rooftops in Lee County, AL. In total, 49,341 building rooftops were extracted for the Lee 

County with acknowledgement that this is an overestimate due to errors mostly in forest and in 

open space, but since these errors did not intersect any of the wetlands in the original 
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classification they were ignored. After producing the building rooftop GIS layer, it was used to 

remove rooftop errors from the initial isolated wetlands layer. Only those isolated wetlands were 

selected which did not intersect with the building rooftop layer and were exported into a new 

layer of corrected isolated wetlands in Lee County. In total there were 871 isolated wetlands after 

the LiDAR correction process was applied. Accuracy assessment for the wetlands was done by 

randomly selecting 250 polygons of isolated wetlands using the Alaska Pak v3.0 for ArcGIS 10.x 

and was assessed by inspecting the selected polygons with NAIP images. The errors considered 

for this project were of commission rather than omission, meaning it was assessed for only those 

isolated wetlands that were classified. The percentage accuracy for the isolated wetlands 

classification was 90.4% for visual inspection compared to the initial accuracy of 80.4% and 

Jones (2013) 83.7% accuracy from aerial image inspection which both did not use LiDAR data. 

Similarly by introducing the ZABUD parameter, it was able to reduce the number of errors 

associated with asphalt. The results of this study provide evidence that integrating LiDAR data 

into classification methods for isolated wetlands can help improve the accuracy of the 

classification process. 

5.2.1Research questions 

 What is the spatial extent of the isolated wetlands in Lee County? 

Analyzing the map of isolated wetlands showed that the wetlands were distributed 

throughout Lee County with a total of 871 isolated wetlands resulting in a total area of 

3,458,443.15 sq. meters. The largest area of the wetland was 67,786.5 sq. meters and the 

smallest was 449.5 sq. meter.  

 

https://irma.nps.gov/App/Reference/Profile/2176910
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 Which method was better to classify the building rooftops, GeOBIA or Point Cloud 

Task method in LP360 software? 

The Point Cloud Task method of LP360 software was better to extract building rooftops 

than GeOBIA methods as the accuracy assessment percentage of the PCT method was higher 

than that of GeOBIA. The accuracy percent for PCT was 90.8% whereas for GeOBIA it is 

just 81.2%. Moreover, GeOBIA extracted fewer building rooftops in comparison to PCT and 

PCT performed better at mapping the true shapes of the building rooftops  

 How has the introduction of the LiDAR improved the wetland classification? 

The introduction of LiDAR data has improved the classification of isolated wetlands 

through the removal of those classified wetlands that were actually building rooftops. The 

accuracy percentage of the isolated wetlands classification was 90.4%, an improvement of 

10% from the initial classification analysis where LiDAR data were not used. The initial 

accuracy for wetland classification without LiDAR was 80.4% and that achieved by Jones 

(2013) was 83.7% on visual inspection to aerial image.  

5.3 Estimating evapotranspiration as a proxy for water usage in the irrigated areas and 

golf courses in the Wiregrass region of Alabama. 

Remotely sensed imagery has been used to assess the plant water usage at a local and 

regional scale. The estimation of water use can be done with minimum ground data. As it is very 

difficult to get accurate ground truth data, this method can be very useful to estimate water usage 

where the ground data are limited. The METRIC model was used to estimate the plant water use 

in the 20 HUC 12 watersheds in the Wiregrass region of southern Alabama. The model requires 

mostly cloud free satellite imagery and weather station data. The visible bands, NIR band and 

thermal bands of Landsat 5 TM were used as inputs to the model. The thermal bands of Landsat 
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can be used to derive Land-Surface Temperature (Ts) and provide estimates of an evaporative 

flux pattern that serves as a proxy of the surface moisture over a range of different spatial scales 

(Hain et al., 2009; Hain et al., 2011). Similarly weather parameters such as solar radiation, 

temperature, relative humidity, wind speed, and precipitation were required as inputs to Ref-ET 

software to compute the ASCE Penman-Monteith standardized (Allen et al. 2000b) form of 

reference ET (ETref) for alfalfa. 

 A limitation to the project was getting cloud free images at short intervals. Although 

Landsat images are captured twice every month, it was very difficult to get cloud free images 

especially in the humid subtropical climate of southern Alabama. METRIC model provides a 

good estimate of water consumption by agricultural lands and golf courses at a local and regional 

scale but it does not take into consideration water application efficiencies in the irrigation system 

(Bhattarai, 2010). A total of 15 models were built in the ERDAS model maker to produce the 

final daily ET map from the Landsat images. Since the state of Alabama does not have any 

USGS evapotranspiration (ET) stations that measure ET data on the ground, validation of the ET 

from the METRIC model with the field data in Wiregrass Region was not possible. To validate 

the accuracy and reliability of the model, the model was tested in the areas that cover USGS ET 

stations in Florida. The validation study supported that the model performed well in estimating 

the daily, monthly, and two-month ET. 

After estimating the daily ET during the crop growing season (April to September) from 

four satellite images for the year 2005 and five satellite images for year 2010 in the study area, 

seasonal ET (April to September) was calculated by multiplying interpolated Reference ET 

Fraction (ETrF) pixel values with daily ETref values. This gave the daily ET values for each day 

for the whole growing season. By summing the daily ET for the whole growing season, the 
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seasonal ET at each pixel of the study area was computed for 2005 and 2010. The study was 

primarily concerned with estimating ET for agricultural lands and golf courses although other 

land use/land cover types were observed to evaluate the overall performance of model estimation 

of ET. Agricultural lands were identified using secondary data from NASS 2010 and NLCD 

2006 while golf courses were identified using classification methods in GEOBIA through the 

classification of NAIP imagery. The seasonal ET map was clipped with agricultural lands and 

golf courses in GIS to estimate water usage for those areas. By comparing the seasonal ET maps 

for year 2005 and 2010, the analysis showed that water consumption increased minimally for 

agricultural lands and that there was a more substantial increase in water consumption for golf 

courses which, in part may have resulted because 2010 was a dry year compared to 2005.  

  To conclude, the METRIC model has been identified as a useful RS method to estimate 

plant water usage in the Wiregrass region of southern Alabama. The information about ET and 

digital land use/land cover maps can be vital for policymaker’s and resource manager’s decisions 

associated with the management of water resources.  

5.3.1 Research question 

 What is the spatial extent of golf courses in the study area? 

There were a total of 4 golf courses in the study area in Houston County covering a total 

area of 2,197,077.50 sq. meters. They are Highland Oaks Golf courses, Kilgores Roundabout 

Plantation, Dothan National Golf Club Hotel and Dothan Country Club. The largest golf 

course was Kilgores Roundabout Plantation with an area of 797,001 sq. meters while Dothan 

Country Club was the smallest with an area of 313,913 sq. meters. 
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 Can the ruleset developed for the classification of golf courses be applied to other 

places in Alabama to identify golf courses? 

The ruleset for the golf course classification was made in such a way that all the golf 

courses in the study area would get classified. The golf courses varied from place to place 

depending on the type of grasses used and how it was maintained. This ruleset could serve as 

a base ruleset to detect other golf courses if they are in similar environments, however, the 

rule parameters may need to be experimented with on a case-by-case basis.  

 Can the METRIC model be used with remotely sensed data to provide a reliable 

estimate of evapotranspiration?  

Based on the analysis in this thesis, the METRIC model can be used with remotely 

sensed data to provide a reliable estimate of evapotranspiration. The models work best with 

cloud free satellite imagery and weather stations in the study area to estimate the 

evapotranspiration of the area of interest. The visible bands, NIR band and thermal bands of 

Landsat 5 TM were used as inputs to the model. Weather parameters such as solar radiation, 

temperature, relative humidity, wind speed, and precipitation were also required as inputs to 

Ref-ET software to compute the ASCE Penman-Monteith standardized (Allen et al.2000b) 

form of reference ET (ETref) for alfalfa. Using all of these data, a raster image was created 

which showed estimated ET values for each pixel. First, the daily ET was calculated in 

Florida to validate the accuracy and reliability of the model. The model was tested in the 

areas that cover USGS ET stations in Florida. The validation study supported that the model 

performed well in estimating the daily, monthly, and two-month ET.  
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 How has the trend in water consumption changed from 2005 to 2010 in both 

agricultural land and golf courses? 

  When comparing the Seasonal ET maps for year 2005 and 2010, it was found that that 

water consumption increased by considerable amount in 2010 for golf courses. Comparing the 

average seasonal ET values of golf courses for year 2005 and 2010, it was seen the average 

seasonal ET increased from 679 mm in 2005 to 791 mm in 2010. Figure 5.1 for Dothan Country 

Club golf course also shows that the water usage has increased from 2005 to 2010. Similarly, the 

average seasonal ET on agricultural land increased from approximately 511mm in 2005 to 

588mm in 2010. Since 2010 was a dry year compared to 2005, it might have led in increase in 

water usage in both agricultural lands and golf courses. 

 

(i)                                                                                     (ii)                

Figure 5.1: (i) Seasonal ET for 2005    (ii) Seasonal ET for 2010 at the golf course 
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5.4 Significance of study and future work.  

Water being an indispensable element for the existence of living organisms on Earth 

needs to be managed wisely and sustainably (Lockaby, 2013). Managing water resources is one 

of the main challenges for water resource managers. This thesis looked at two remote sensing 

case studies that involved the monitoring of water resources.  This first case study was funded by 

the EPA on a project titled “Inventory, classification, and assessment of Alabama’s 

geographically isolated wetlands” with the goal to improve the methods for mapping isolated 

wetlands using a highly automated process.  The National Wetland Inventory data revealed that 

there were many gaps in the wetland inventory of Alabama with most of the area’s wetlands not 

being digitized. GIS and remote sensing technology have played an immense role in 

classification and mapping of wetlands. There are many classification methods in remote sensing 

but a newer method for the classification of high resolution images is called GeOBIA which 

groups pixels into meaningful objects. This research attempted to improve the classification of 

isolated wetland conducted by Jones (2013) using GeOBIA method and LiDAR data. Most of 

the errors in the initial classification were due to rooftops, asphalt and shadows. This case study 

emphasized improving the classification results by introducing LiDAR data. By introducing 

LiDAR data, the accuracy of the isolated wetland classification improved to 90.4% from the 

initial classification of 80.4% when Lidar was not used it. This research provides evidence that 

LiDAR can help in achieving higher accuracy in mapping isolated wetlands 

The EPA project was conducted by for the whole state using only GeOBIA. However, 

this part of the thesis focused only on Lee County because of the availability of LiDAR data. In 

the future, as LiDAR data become available for all counties in Alabama, the methods detailed in 

this thesis can be extended and the classification of isolated wetlands can be improved for all 
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counties. This will help achieve higher accuracy and making the isolated wetland inventory more 

reliable. Having a good inventory of the location of the isolated wetlands can help the concerned 

authorities document and help protect isolated wetlands. 

The second case study of the thesis was funded by the Alabama Office of Water 

Resources with a goal to provide state agency resource managers with a report detailing methods 

to estimate water usage for irrigated agricultural lands and golf courses through the RS of 

Evapotranspiration (ET). As both irrigated agricultural lands and golf courses consume large 

amounts of water, it is important that regional resource managers have an accurate inventory of 

agricultural lands and golf courses and also have estimates on the consumption of water in these 

areas. Methods for calculating ET using and the Mapping EvapoTranspiration at high Resolution 

with Internalized Calibration (METRIC) model can be helpful for the water resource managers 

to get rough estimates of water usage at local and regional scales with moderate resolution 

satellite imagery such as those provided by the Landsat program since 1972.  The overall 

findings showed that agricultural irrigation has increased marginally from 2005 to 2010 while 

irrigation on golf courses has increased more substantially.  

The state of Alabama is water rich with plenty of precipitation and it also consists of 

77,000 miles (124,000 km) of perennial and intermittent streams and rivers, and has more than 

560,000 acres (226,600 ha) of ponds, lakes, and reservoirs (Marcus and Kiebzak, 2008). 

Although the state is blessed with copious amount of water resources and precipitation, the U.S. 

Geological Survey (USGS) reported that in year 2000 the consumption of water for irrigation 

was only 28.7 million gallons (0.11 mcm) of surface water per day (mgd). The water withdrawn 

for agricultural use is less than 2 percent.  
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Estimation of evapotranspiration (ET) using remote sensing and Mapping 

EvapoTranspiration at high Resolution with Internalized Calibration (METRIC) model can be 

helpful for the water resource managers by providing a rough estimate of water usage. The 

thermal bands of Landsat can be used to derive the Land-Surface Temperature (Ts) and provide 

estimates of an evaporative flux pattern which serves as a proxy of the surface moisture over a 

range of different spatial scales. The use of satellite based measurements in association with 

energy balance models can provide information on spatial distribution of ET. Policymaker’s 

decisions can be based on the results of the ET derived from the model and can be used to 

address the irrigation problems that is happening in the state of Alabama. Therefore, this research 

is vital for policy makers and water resource managers to help make well-informed decisions 

based on the information about the area occupying the irrigated lands and golf courses. This 

research can be extended in future by investigating methods to convert ET estimates  into  total 

volume of water consumed in the agricultural land and golf courses based on the area of the land 

and ET calculated. The calculated amount of water consumed can be compared with the real data 

of how much water was irrigated to measure the accuracy of the model.  
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Appendix 

Mapping EvapoTranspiration at high Resolution and with Internalized Calibration 

(METRIC) 

Mapping EvapoTranspiration at high Resolution and with Internalized Calibration 

(METRIC) is the modified version of SEBAL and both have similar foundation, techniques and 

principles of surface energy budget equation (Allen et al., 2007). METRIC is an “image-

processing model which is used for measuring evapotranspiration as a residual of the surface 

energy balance” (Allen et al., 2005, p. 251) and is based on the theory that incoming net solar 

radiation drives all energy exchanges on the earth’s surface including ET. The energy 

consumption of ET from energy balance at the surface is computed as “residual” of the surface 

energy equation (Allen et al., 2005) which is shown below in equation 1. 

                λET = Rn− G − H                        (1) 

where; λET =latent energy consumed by ET; Rn= net radiation which is the sum of all incoming 

and outgoing short-wave and long-wave radiation at the surface; G=sensible heat flux conducted 

into the ground; and H=sensible heat flux convected to the air. The parameters in equation (1) 

are generally expressed in Wm
−2

. 

The net surface radiation flux at the surface (Rn) is defined as the “actual radiant energy 

available at the surface which is computed by subtracting all outgoing radiant fluxes from all 

incoming radiant fluxes” (Waters et al., 2002, p.10). Rn can be expressed in surface radiation 

balance as shown in equation (2):   
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Rn= (1-α) RS↓+ RL↓- RL↑- (1-εo) RL↓                                              (2) 

where; RS↓ is the incoming shortwave radiation (W/m
2
), α is the surface albedo which is 

dimensionless, RL↓ is the incoming long wave radiation (W/m
2
), RL↑ is the outgoing longwave 

radiation (W/m
2
), and εo is the surface thermal emissivity which is dimensionless (Waters et al., 

2002). 

 

Figure A.1: Surface Radiation Balance [Source: (Waters et al., 2002)] 
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Figure A.2: Flow Chart of the Net Surface Radiation Computation [Source: (Waters et al., 2002)] 

A.1 Parameters required for the METRIC model 

A.1.1 Spectral radiance (Lλ) 

Spectral radiance (Lλ) is the “outgoing radiation energy of the band which is observed at 

the top of the atmosphere by the satellite” (Waters et al., 2002, p.16). Lλ for each band can be 

calculated from the Digital Number (DN) of each pixel. The equation (3) shows the computation 

of spectral radiance for Landsat 5 satellite images: 

                                         Lλ= [DN × (LMAX– LMIN) / 255] + LMIN                                (3) 
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where; DN is the digital number of each pixel, LMAX and LMIN are calibration constants. The 

units for Lλ are W/m
2
/sr/µm. 

The equation 4 shows the computation of spectral radiance for Landsat 7 satellite images: 

Lλ= (Gain × DN) + Bias                                                               (4) 

where; Gain and Bias values are given in the header-file of the downloaded satellite image. 

A.1.2 Spectral reflectance 

Waters et al. (2002) states that spectral reflectance or reflectivity (ρλ) of a surface is the 

“ratio of reflected radiation flux to the incident radiation flux” (Waters et al., 2002, p. 17). It is 

computed using the equation (5) for the Landsat images: 

ρλ = π× Lλ/ ( ESUNλ× cosθ× dr)                                                    (5) 

where; Lλ is the spectral radiance for each band , ESUNλ is the mean solar exo-atmospheric 

irradiance for each band (W/m
2
/µm), cosθ is the cosine of the solar incidence angle (from nadir), 

and dr is the inverse squared relative earth-sun distance (Waters et al., 2002). Cosine of θ is 

calculated using the header file data of the satellite image on sun elevation angle (β) where θ= 

(90
0
- β). The term dr is defined as the inverse squared relative earth-sun distance in astronomical 

units, from the equation by Duffie and Beckham (1980). The term dr can be expressed as shown 

in equation (6) below 

dr = 1 + 0.033 cos (DOY × 2π/ 365)                                              (6) 

where; DOY is the sequential day of the year and the angle (DOY ×2π/365) is in radians. The 

values for dr are dimensionless and can vary from 0.97 to 1.03(Waters et al., 2002).  
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A.1.3 Surface albedo (α) 

Surface albedo (α) is a “reflection coefficient defined as the ratio of the reflected radiant 

flux to the incident radiant flux over the solar spectrum” (Waters et al., 2002, p. 10). It can also 

be described as the “ratio of the reflected radiation to the incident shortwave radiation” (Waters 

et al., 2002, p.16). It is computed by the following equations given below;  

αtoa= ∑(ωλ× ρλ)                                                                  (7) 

ωλ= ESUNλ / ∑ ESUNλ                                                                                  (8) 

τsw= 0.75 + 2 × 10
-5

× z                                                      (9) 

α= (αtoa– αpath_radiance)/τsw
2 

                                                (10) 

where; αtoa is the albedo at the top of the atmosphere, ρλ is the reflectivity , ωλ is a weighting 

coefficient for each band, ESUNλ is the mean solar exo-atmospheric irradiance for each band 

(W/m
2
/µm), αpath_radiance is the average portion of the incoming solar radiation across all bands 

that is back-scattered to the satellite before it reaches the Earth’s surface which is assumed to be 

0.03 (Bastiaanssen, 2000), z is the elevation of the weather station in meters and τsw is the 

atmospheric transmissivity (Waters et al., 2002). 

A.1.4 Incoming shortwave radiation (RS↓)  

It is the “direct and diffuse solar radiation flux that actually reaches the earth’s surface 

(W/m
2
)” (Waters et al., 2002, p. 19). It is computed with an assumption of clear sky conditions, 

as a constant for the image time using: 

Rs↓= Gsc ×cos θ × dr × τsw                                                (11) 

where; Gsc is the solar constant (1367 Wm
-2

), cosθ is the cosine of the solar incidence angle as 

done above, dr is the inverse squared relative earth-sun distance, and τsw is the atmospheric 
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transmissivity. The values for Rs↓ can vary from 200 – 1000 W/m
2
 depending on the time and 

location of the image (Waters et al., 2002).  

A.1.5 Normalized Difference Vegetation Index (NDVI) 

The Normalized Difference Vegetation Index (NDVI) is derived from the red and near-

infrared reflectance which can be expressed as: 

NDVI = (ρ4 − ρ3) / (ρ4+ ρ3)                                             (12) 

where ρ4 and ρ3 are the amounts of near-infrared and red light, respectively, reflected by the 

vegetation that are  captured by the sensor of the satellite (Pettorelli et al., 2005) . The value of 

NDVI ranges from to +1. The values closer to +1 indicates rich and productive vegetation 

whereas closer to 0 or below indicates no vegetation, and anything less than 0 is most likely 

sediment laden water. 

A.1.6 Surface emissivity (εo) 

Surface emissivity (εo) is the “ratio of the thermal energy radiated by the surface to the 

thermal energy radiated by a blackbody at the same temperature” (Waters et al., 2002, p. 20). It 

is computed by the following equation:  

εo= 1.009 + 0.047 × ln(NDVI)                                        (13) 

where NDVI is  Normalized Difference Vegetation Index. 

A.1.7 Land surface temperature (Ts) 

Land surface temperature is the measure of the temperature of the Earth’s surface in a 

particular location from a satellite’s point of view (NASA, 2000).  Ts differs from the air 

temperature that is included in the daily weather report. The land surface temperature is 

calculated from the thermal band (band 6) of the Landsat TM image expressed in the following 

equations (Chander et al., 2009) 
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Tbb = K2/ ln (K1/L6+ 1)                                                    (14) 

Ts = Tbb / εo
0.25                                                                                                   

(15)   
        

where; L6 is the spectral radiance of the thermal band (band 6) of the Landsat 5 TM image; Tbb is 

effective at-satellite temperature; and K1(607.76 Wm
-2

sr
-1

μm
-1

) and K2(1260.56 Wm
-2

sr
-1

μm
-1

) 

are constants for Landsat 5 TM (Chander et al., 2009).   

 A.1.8 “Hot” and “Cold” Pixels  

The most important step in the METRIC model is the identification of “hot” and “cold” 

Pixels.  The model uses two “anchor” pixels to fix boundary settings for the energy balance in 

the study area (Waters et al., 2002). The “cold” pixel is a pixel in the image which is chosen as a 

very well-irrigated crop surface. The pixel must have total amount of ground surface covered by 

vegetation with an assumption that the surface temperature and near-surface air temperature are 

similar. A “hot” pixel is a pixel which is a dry, bare agricultural field where ET is assumed to be 

0 (Waters et al., 2002). Both “hot” and “cold” pixels should be located in large and 

homogeneous areas. They are identified manually using LST map, NDVI map, land use/land 

cover map and Landsat 5 TM images as described in detail by Waters et al. (2002). The 

temperature and x and y coordinates for both “hot” and “cold” pixels are identified and noted. 

This information is implemented for the calculation of sensible heat flux (H) described later in 

this appendix.  

A.1.9 Incoming longwave radiation (RL↓) 

The incoming long wave radiation can be described as “downward thermal radiation flux 

from the atmosphere (W/m2)” (Waters et al., 2002, p.23). It is computed using the Stefan-

Boltzmann equation as shown in equation (16):  

RL↓= εa × σ ×Ta
4                                                                                              

(16) 
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where; Ta is the near surface temperature from “cold” pixel temperature; εa is the atmospheric 

emissivity and is calculated from one-way atmospheric transmissivity (τsw) using the equation 17 

derived by Bastiaanssen (1995): 

εa= 1.08 × (-ln τsw)
-265

                                                      (17) 

A.1.10 Outgoing longwave radiation (RL↑) 

The outgoing long wave radiation is the “thermal radiation flux emitted from the earth’s 

surface to the atmosphere (W/m
2
)” (Waters et al., 2002, p. 19). The outgoing longwave radiation 

(RL↑) at each pixel is computed from surface emissivity (εo) and surface temperature (Ts) images 

using the Stefan-Boltzmann equation as shown in equation (18):  

RL↑= εo× σ× Ts
4                                                                                               

(18)
 

where; εo is surface emissivity (dimensionless), σ is the Stefan-Boltzmann constant (5.67 × 10
-8

 

Wm
-2

K
-4

); and Ts is the surface temperature in Kelvin. 

A.1.11 Soil heat flux (G) 

Soil heat flux is the “rate of heat storage into the soil and vegetation due to conduction” 

(Waters et al., 2002, p.24). The ratio G/Rn is first calculated by METRIC using the empirical 

equation 19 developed by Bastiaanssen (2000) representing values near midday: 

G/Rn= Ts/α (0.0038α + 0.0074α
2
) (1 - 0.98NDVI

4
)                    (19) 

where; Ts is the surface temperature (
o 
C), α is the surface albedo, and NDVI is the Normalized 

Difference Vegetation Index. 

Soil heat flux is calculated by multiplying the ratio G/Rn with net surface radiation flux. 

G = (G/Rn) × Rn                                                                                              (20) 

where Rn is net surface radiation flux. 
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 A.1.12 Sensible heat flux (H) 

Sensible heat flux can be defined as “the rate of heat loss to the air by convection and 

conduction, due to a temperature difference” (Waters et al., 2002, p.25). It is the function of 

temperature gradient, surface roughness and wind speed and is calculated by the following 

equation (21) for the heat transport: 

H = (ρ × cp ×dT) / rah                                                                                  (21) 

where; ρ is air density (kg/m
3
),cp is air specific heat (1004 J/kg/K), dT (K) is the temperature 

difference (T1– T2) between two heights (z1and z2), and rah is the aerodynamic resistance to heat 

transport (s/m). Since there are two unknown parameters rah and dT in the equation (21), analyst 

must utilize the two anchor pixels to predict the reliable value of H, dT and wind speed at the 

given height. 

 The aerodynamic resistance to heat transport (rah) is calculated by the following 

equations:  

u* = k × ux/ ln(Zx/Zom)                                                    (22) 

rah= ln (Z2/Z1)/(u* × k)                                                    (23) 

where; u* is friction velocity at each 30 m pixel computed using the logarithmic wind law for 

neutral atmospheric conditions. The term k is the Von Karman’s constant and its value is 0.41. 

Z1 which is 0.1 m is the height above zero-plane displacement height of crop canopy and Z2 

which is 2m is the below height of surface boundary layer. The term ux is the wind speed (m s-1) 

at the height Zx (height of the anemometer is10 m for FAWN stations and weather station in 

Houston County in the study area). The term Zom is the momentum roughness length for each 

pixel as is defined as the form drag and skin friction for the layer of air that interacts with the 

surface (Waters et al., 2002). 
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The term Zom for the vegetation around the weather station is empirically estimated from 

average vegetation height using the equation of Brutsaert (1982): 

Zom= 0.12h                                                                       (24) 

The height of canopy grass is assumed to be 0.1 m for the FAWN weather stations and 

weather stations of the Houston County for this study. The value of 0.1 has also been used as 

height of grasses in USGS station in other studies (Snyder et al., 2008; Druce et al., 1997; 

Douglas et al., 2009; Mengistu and MJ Savage, 2010). 

The term Zom for weather stations which is calculated from equation (24) is used to 

calculate friction velocity (u*) for each weather station by using average wind velocity at the 

anemometer height (10m) at the image capture time using equation (22). The assumption is made 

that computed u* at the weather station and wind speed at 200 m is constant for all pixels. 

Using the NDVI and surface albedo, Zom is computed for each pixel from the equation 

below by Bastiaanssen (Bastiaanssen et. al., 2000) and modified by Allen (Allen et al., 2002a; 

Allen, 2007; Teixeira et al., 2009) 

Zom= exp (a × NDVI/α+ b)                                              (25) 

From the plot of ln (Zom) against NDVI/ α, correlation constants “a” and “b” are derived 

for pixels representing vegetation with assigned Zom for each pixel (Zom= 0.12 h, where h is the 

known vegetation height). The tall and short vegetation can be distinguished from surface albedo 

(α) if they have similar NDVI (Bhattarai, 2010). Zom for typical forests is used as 0.5 m (Allen et 

al., 2002a; Waters et al., 2002). 

The blending height is height above the weather station where there is no effect from the 

surface roughness and the value of 200m is used for this. The wind speed at blending height is 

calculated and is expressed in the term (u200) which is calculated by: 
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U200 = u [ln(200/zom)] / k                                                 (26) 

where; u is the friction velocity at the weather station at the time of image captured.. 

The friction velocity (u*) for each pixel is calculated from Zom from the equation (27). 

The term u200 is assumed constant for all pixels. 

u* = k × u200/ ln(200 / Zom)                                             (27) 

Using the linear equation between dT and DEM corrected surface (Ts_dem), the near 

surface temperature difference (dT) for each pixel is derived 

dT = b + a × Ts_dem                                                                                        (28) 

The “hot” and “cold” pixels that were chosen earlier are used to derive correlation “a” 

and “b” coefficients. The soil heat flux (G), net surface radiation (Rn), surface temperature (Ts), 

and momentum roughness length (zom) for both anchor pixels are noted and inputted from the 

derived images. 

ET at the “hot” pixel is assumed to be zero; sensible heat flux at the “hot” pixel (Hhot) is 

calculated as  

Hhot= Rn– G.                                                                    (29) 

ET at the “cold” pixel is assumed to be 5% more than the reference ET (ETref) (Allan et. 

al, 2002a; Gowda et al., 2007; Gowda et al., 2008a; Trezza, 2006b; Conard et al., 2007) in 

METRIC model. Therefore, H for the “cold” pixel (Hcold) is calculated as:  

Hcold= Rn – G – 1.05 × λETref.                                         (30) 

Air densities (ρair) for “hot” and “cold” pixels are calculated using DEM corrected land 

surface temperature image (Ts_dem) as: 

ρair= P/(R × Ts_dem)                                                          (31) 
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where; R is the Gas constant = 287.05 J/kg
-1

K
-1

, T is temperature in K, P is standard pressure and 

P = 101325 × (1.0 −Z × 0.0000225577) × 5.2559; Z = elevation above sea level (m).  

Aerodynamic resistance to heat transport (rah) for both anchor pixels (rah_hot and rah_cold) is 

obtained from equation (23) and are used to derive dT for the “hot” and “cold” pixels (dThot and 

dTcold) as: 

dThot= Hhot× rah_hot/(ρhot× cp)                                            (32) 

dTcold= Hhot× rah_cold/(ρcold × cp)                 (33) 

The correlation coefficients “a” and “b”, in the Equation (28) were computed by plotting 

dThot versus TS_hot and dTcold versus Ts_cold. 

Air temperature (Ta) for each pixel is calculated from 

Ta= Ts – dT                                                                      (34) 

with air density for each pixel derived from the Ta image. H for each pixel is computed using the 

derived dT, air density, and rah images. 

Monin-Obukhov theory is applied iteratively to correct for buoyancy effects generated by 

surface heating processes. The Monin-Obukhov length (L) is computed to define atmospheric 

stability conditions using the equation below: 

L = – (ρ× cp× u*
3
 × Ts) / (k × g × H)                               (35) 

where; ρ is the density of air (kgm
-2

), cp is the air specific heat (1004 Jkg
-1

k
-1

), u* is the friction 

velocity (ms
-1

), Ts is the temperature (K), g is the gravitational constant (9.81 ms
-2

), k is the Von  

Karman’s constant (0.41), and H is the sensible heat flux (Wm
-2

) (Waters et al., 2002).The 

Monin-Obukhov theory states that the atmosphere is considered neutral if L= 0. If L< 0, the 

atmosphere is considered unstable (heat flow is away from the surface); and if L>0, the 

atmosphere is considered stable for buoyancy effects. Stability corrections for momentum and 
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heat transport (Ψm and Ψh) are computed using the formulas designed by Paulson (1970) and 

Webb (1970). 

Stability corrected value of the friction velocity (u*) and aerodynamic resistance (rah) are 

calculated for each successive repetition using equations below:  

u* = [(u200 × k)/{ln(200/zom) – Ψm(200m)}]                       (36) 

rah= {ln (Z2/Z1) – Ψh(2m) + Ψh(0.1m)}/(u* × k)                    (37) 

where; Ψm(200m)is the stability correction for momentum transport at 200 m (for L<0 or L>0  

conditions, Ψh(2m)and Ψh(0.1m)are the stability corrections for heat transport at 2 m and 1 m, Z1= 

0.1m and Z2 = 2m, and k is the Von Karman’s constant (Waters et al., 2002). 

 

The stability corrected rah is used to compute new dT values for “hot” and “cold” pixels, 

and new values for correlation coefficients, ”a” and “b”. These values were then used to compute 

a new corrected H at each pixel level. A new stability correction is done using the corrected H 

image. Until successive values for dThot and rah at “hot” pixel (rah_hot) are stabilized, these 

processes are repeated. When the change in rah at the “hot” pixel is less than 5%, the process is 

stopped and the corrected value of H is determined (Allen et al., 2002a). The corrected value of 

H at each pixel is derived by using the corrected final dT and stability corrected rah image in 

equation 21. 

A.1.13 Latent heat flux (λET)  

Latent heat flux (λET) can be defined as “the rate of latent heat loss from the surface due 

to evapotranspiration” (Waters et al., 2002, p.34). Latent heat flux for the instantaneous time of 

the satellite overpass is computed at each pixel using equation (38) below:  

λET = Rn– G – H                                                            (38) 
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where; λET is an instantaneous value for the time of the satellite overpass (W/m2) (Waters et al., 

2002). 

A.1.14 Instantaneous ET 

The instantaneous ET (ETinst) is defined as the ET at the time of the satellite overpass 

time and is computed as:  

ETinst= 3600 × λET/λ                                                       (39) 

where;  ETinst is the instantaneous ET (mm/hr) ,λ is the latent heat of vaporization or the heat 

absorbed when a kilogram of water evaporates (J/kg) . It is calculated from the surface 

temperature image by  

λ= [[2.501 – (0.002361 × To)] × 10
6
]                              (40) 

where; To is surface temperature in degree Celsius (Waters et al., 2002).  

A.1.15 Reference ET Fraction (ETrF) 

Reference ET Fraction (ETrF) or Evaporative fraction is defined as “the ratio of the 

computed instantaneous ET (ETinst) for each pixel to the reference ET (ETr) computed from 

weather data” (Waters et al., 2002, p.35). ETrF at each pixel level is computed using reference 

ET at the image time as:  

ETrF= ETinst / ETref                                                          (41) 

where; ETref is the ASCE Penman-Monteith standardized form of reference ET (mm hr
-1

) at the 

image time derived from REF-ET software (Allen et al., 2000b; Waters et al., 2002). 

A.1.16 Daily ET  

A Daily ET (ET24) map is derived using the evaporative fraction (ETrF) and cumulative 

24-hour ET for the day of the image. It is more important and useful than the instantaneous ET. 
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It is calculated assuming that the ETrF computed in equation (41) is constant for 24 hour 

average. It can be expressed as: 

ET24= ETrF × ETref_24                                                                                 (42) 

ET for a period (monthly or two-month) is calculated by computing cumulative reference ET for 

the period represented by the image processed as:  

ETperiod = ETrF × ∑
n

i=1 ETref_24i                                                           (43) 

where; ETref_24i is the cumulative reference ET for the time period from REF-ET software, and n 

is the number of days used for ET extrapolation (Waters et al., 2002).  

A.1.17 Seasonal ET 

While computing the seasonal ET, an assumption is made that ETrF computed for the 

time of image is constant for the entire period represented by the image, and ET for the entire 

area of interest changes in proportion to the change in ETref at the weather station. The ET 

calculated for the Houston County was during the crop growing season from April to September. 

An image is used to extrapolate either one month or two months ET depending on availability of 

image. 
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