
Fair Factorizations of the Complete Multipartite Graph and Related
Edge-Colorings

by

Aras Erzurumluoğlu
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Approved by

Chris Rodger, Chair, Professor of Mathematics
Andras Bezdek, Professor of Mathematics
Dean Hoffman, Professor of Mathematics

Jessica McDonald, Assistant Professor of Mathematics



Abstract

In this dissertation, first the technique of vertex amalgamations is used to extend known

results on graph decompositions, and in particular on decompositions of the complete mul-

tipartite graph K(n, p) with p parts, each of which has n vertices. The decompositions

focus on hamilton cycles and 1-factors that satisfy certain fairness notions, as well as frame

versions of these results where each color class (as defined by the decompositions) spans all

vertices except for those in one part. Second, some edge-coloring results are proved, extend-

ing theorems in the literature on edge-colorings with different fairness properties. Finally, a

related new topic is introduced, focusing on equalizing the number of vertices in each color

class of an edge-coloring.
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Chapter 1

Introduction

A hamiltonian decomposition of a graph G is a partition of the edges of G into sets, each

of which induces a spanning cycle, called a hamiltonian cycle. An early result on hamilto-

nian decompositions appeared in 1892 when Walecki [28] proved the famous result that the

complete graph Kn on n vertices has a hamiltonian decomposition if and only if n is odd.

The corresponding result for the existence of hamiltonian decompositions of the complete

p-partite graph K(n, p) with n vertices in each of p parts was settled in 1976 by Laskar and

Auerbach [23], showing that such a decomposition exists if and only if n(p−1) is even. A new

technique called vertex amalgamations, which proved to be very useful in finding hamiltonian

decompositions, was introduced 30 years ago by Hilton and Rodger [17, 20]. They used this

technique to find alternative proofs of the aforementioned two results, and demonstrated the

power of the technique by obtaining embeddings of edge-colorings into hamiltonian decompo-

sitions. In this context, a hamiltonian decomposition of G is represented as an edge-coloring

of G in which each color class induces a hamiltonian cycle. Buchanan [4] in 1997 used

amalgamations to prove that for any odd n, and any 2-regular spanning subgraph U of Kn,

Kn − E(U) has a hamiltonian decomposition. By generalizing amalgamation results, Leach

and Rodger [24, 26] solved the corresponding problem for complete bipartite graphs, for

complete tripartite graphs, and for complete multipartite graphs with any number of parts

in the case when U has no cycles of small length. More recently, a neat observation using

difference methods solved this and natural generalizations [3, 29]. In Chapter 4 and 5, these

results are extended in various ways with further motivation and background being provided

in Chapter 3.
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In Chapter 7 and Chapter 8, some coloring results are proved with detailed background

being provided in Chapter 6, thereby extending theorems in the literature described below.

First we introduce some terminology. A graph G is called even if all vertices of G have even

degree. Given a k-edge-coloring of a graph G, for each color i ∈ Zk = {0, 1, ..., k−1} let G[i]

denote the spanning subgraph of G in which the edge-set contains precisely the edges colored

i, and let G(i) be the (not necessarily spanning) subgraph induced by the edges colored i.

Then a k-edge-coloring of G is called an even k-edge-coloring if for each color i ∈ Zk, G[i] is

an even graph. A k-edge-coloring of G is said to be equitable if for each vertex v ∈ V (G) and

for each pair of colors i, j ∈ Zk, |degG[i](v)−degG[j](v)| ∈ {0, 1}. Moreover, a k-edge-coloring

of G is said to be evenly-equitable if

(i) for each color i ∈ Zk, G[i] is an even graph, and

(ii) for each vertex v ∈ V (G) and for any pair of colors i, j ∈ Zk, |degG[i](v)− degG[j](v)| ∈

{0, 2}.

For any pair of vertices {v, w}, let mG({v, w}) be the number of edges between v and

w in G (we allow v = w, so mG({v, v}) is the number of loops incident with v). A k-edge-

coloring of G is said to be balanced if for all pairs of colors i and j and all pairs of vertices v

and w (possibly v = w), |mG[i]({v, w})−mG[j]({v, w})| ≤ 1. A k-edge-coloring of G is said

to be equalized if ||E(G[i])| − |E(G[j])|| ≤ 1 for each pair of colors i, j ∈ Zk.

In 1970’s de Werra studied these special types of edge-colorings for bipartite graphs.

Due to his work in [9, 10, 11, 12] it is known that for each k ∈ N every bipartite graph has

a k-edge-coloring that is balanced, equitable and equalized at the same time. Several other

results exist for more general graphs. In particular, Hilton proved in [16] that each even

graph has an evenly-equitable k-edge-coloring for each k ∈ N, thereby completely settling

this problem. The existence of equitable k-edge-colorings is much more problematic, and

very unlikely to be completely solved. For example, settling the existence of equitable ∆-

edge-colorings is equivalent to classifying the Class 1 graphs (see [21, 22] for example). One
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general result on this topic was found by Hilton and de Werra [19] who proved that if k ≥ 2

and G is a simple graph such that no vertex in G has degree equal to a multiple of k, then G

has an equitable k-edge-coloring. More recently, Zhang and Liu [33] extended this result by

proving that for each k ≥ 2, if the subgraph of G induced by the vertices with degree divisible

by k is a forest, then G has an equitable k-edge-coloring, thereby verifying a conjecture made

by Hilton in [18].

A related, new topic is introduced in Chapter 8, focusing on the vertices in each color

class of an edge-coloring. As with edge-colorings, notions of fairly distributing vertices among

color classes have been considered. For example it is known that if k ≥ ∆(G) then there

exists an equalized vertex-coloring of G with k colors [15], and that if ∆(G) ≥ |V (G)|/2 then

G has an equalized vertex-coloring with ∆(G) colors [6]. In these results, vertex-colorings

are determining subgraphs with similar number of vertices. In Chapter 8 the number of

vertices of subgraphs induced by color classes of an edge-coloring are considered.
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Chapter 2

Amalgamations

2.1 Amalgamations

A graph H is said to be an amalgamation of a graph G if there exists a function ψ from

V (G) onto V (H) and a bijection ψ
′

: E(G) → E(H) such that e = {u, v} ∈ E(G) if and

only if ψ
′
(e) = {ψ(u), ψ(v)} ∈ E(H). The function ψ is called an amalgamation function.

We say that G is a detachment of H, where each vertex v of H splits into the vertices of

ψ−1({v}). An η-detachment of H is a detachment in which each vertex v of H splits into

η(v) vertices. Amalgamating a finite graph G to form the corresponding amalgamated graph

H can be thought of as partitioning the vertices of G and forming one supervertex for each

part by squashing together the original vertices in the same part. An edge incident with a

vertex in G is then incident with the corresponding new vertex in H; in particular an edge

joining two vertices from the same part becomes a loop on the corresponding new vertex in

H.

In what follows, G(j) denotes the subgraph of G induced by the edges colored j, dG(u)

denotes the degree of vertex u in G, and mG(u, v) denotes the number of edges between u

and v in G, ω(G) denotes the number of components of G, and lG(u) denotes the number of

loops at u in G. The following theorem was proved in more generality by Bahmanian and

Rodger in [1], but this is sufficient for our purposes.

Theorem 2.1.1. Let H be a k-edge-colored graph and let η be a function from V (H) into

N such that for each w ∈ V (H), η(w) = 1 implies lH(w) = 0. Then there exists a loopless

η-detachment G of H with amalgamation function ψ : V (G) → V (H), η being the number

function associated with ψ, such that G satisfies the following property:
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(i) dG(u) ∈ {bdH(w)/η(w)c, ddH(w)/η(w)e} for each w ∈ V (H) and each u ∈ ψ−1(w),

(ii) dG(j)(u) ∈ {bdH(j)(w)/η(w)c, ddH(j)(w)/η(w)e} for each w ∈ V (H) and each u ∈

ψ−1(w) and each j ∈ Zk,

(iii) mG(u, v) ∈ {bmH(w, z)/η(w)η(z)c, dmH(w, z)/η(w)η(z)e} for every pair of distinct

vertices w, z ∈ V (H), each u ∈ ψ−1(w) and each v ∈ ψ−1(z),

(iv) mG(u, u′) ∈ {blH(w)/(η(w)(η(w)− 1)/2)c, dlH(w)/(η(w)(η(w)− 1)/2)e} for each w ∈

V (H) with η(w) ≥ 2 and every pair of distinct vertices u, u′ ∈ ψ−1(w), and

(v) if for some j ∈ Zk, dH(j)(w)/η(w) is an even integer for each w ∈ V (H), then

ω(G(j)) = ω(H(j)).

Three corollaries of Theorem 2.1.1 will be introduced in Chapter 3, and these corollaries

will be used in Chapter 4 and Chapter 5.
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Chapter 3

Introduction to Fair Factorizations of Complete Multipartite Graphs

3.1 Introduction to Fair Factorizations of Complete Multipartite Graphs

In 2002 Leach and Rodger [25] completely settled the existence problem for fair hamil-

tonian decompositions of K(n, p) (the notion of fairness being defined below), showing that

they exist if and only if n(p−1) is even. The aim of the next two chapters is to extend these

results on fair hamiltonian cycle decompositions to other natural decompositions of K(n, p),

also described below.

A k-factor of a graph G is a k-regular spanning subgraph of G. A k-factorization is a

partition of E(G) into k-factors. For each v ∈ V (G), a k-factor of G−v is said to be an almost

parallel class (or near k-factor) of G with deficiency v. An almost resolvable k-factorization

of G is a partition of E(G) into almost parallel classes each of which is a k-factor of G−v for

some v ∈ V (G). If V1, ..., Vp are the p parts of V (K(n, p)), then a holey k-factor of deficiency

Vi of K(n, p) is a k-factor of K(n, p) − Vi for some i satisfying 1 ≤ i ≤ p. Hence a holey

k-factorization is a set of holey k-factors whose edges partition E(K(n, p)). When k = 2

and each holey k-factor is connected, then this is called a holey hamiltonian decomposition.

It is useful to represent a holey k-factorization of K(n, p) as an edge-coloring of K(n, p): an

edge-coloring of K(n, p) is said to be a holey edge-coloring if each color class induces a holey

k-factor of K(n, p). In holey edge-colorings of K(n, p), a color c is said to be permitted on

an edge joining two vertices from parts Vi and Vj respectively if c is the color of a holey

k-factor of deficiency Vx where x /∈ {i, j}. (Similarly, a part Vi is said to be permitted for a

color c if the holey k-factor induced by the edges colored c has deficiency Vx where x 6= i.)

In edge-colorings of K(n, p) induced by k-factors (unlike in holey edge-colorings of K(n, p))

all colors appearing on any k-factor are permitted on any edge. For any simple graph G,
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let λG denote the multigraph in which if two vertices are joined by ε ∈ {0, 1} edges in G

then they are joined by λε edges in λG. Then, an edge-coloring of λK(n, p) is said to be

fair if for each pair of parts Vx and Vy and for each pair of permitted colors i and j on

edges joining two vertices from Vx and Vy respectively, ||ci(Vx, Vy)| − |cj(Vx, Vy)|| ≤ 1, where

ci(Vx, Vy) denotes the set of edges colored i between Vx and Vy. In Chapter 4 the existence of

fair 1-factorizations of K(n, p) is completely settled (see Theorem 4.2.1), as is the existence

of fair holey 1-factorizations of K(n, p) (see Theorem 4.2.2).

It is not hard to see that, from a design theoretic perspective, a holey 1-factorization of

K(n, p) is the same as a (2, 1, 1)-frame of type np. [A (k, α;λ)-frame of Type np is an ordered

triple (V,G, B) where: B is a collection of subsets of V , each of size k; G is a partition of

V into p sets, each of size n; and each 2-element subset S of V is in zero elements of B

if S ⊆ G for some G ⊆ G and is in λ elements of B otherwise, such that there exists a

partition P of the subsets of B with the property that for each P ∈ P : there exists a G ∈ G

such that p ∩ G = ∅ for all p ∈ P , and each element of V \ G occurs in exactly α elements

of P . For other information on these structures, see page 261 of [8].] Indeed, there is a

clear one-to-one correspondence between holey 1-factorizations of K(n, p) and symmetric

quasigroups of order np with holes of size n: cells (i, j) and (j, i) are filled with symbol k

if and only if the edge {i, j} is colored k. Such quasigroups can often be constructed using

direct products, but in so doing the edge coloring corresponding to the resulting quasigroup

is as far as possible from being fair. The following two quasigroups of order 20 with holes of

size 4 are constructed using the well-known direct product construction and the fair holey

1-factorization of K(4, 5) obtained from the construction described in the proof of Theorem

4.2.2, respectively. Comparing these two quasigroups, the effect of the fair property is clearly

seen in the 4× 4 “boxes” of the latter quasigroup, in which each permitted symbol appears

once or twice in each such “box”, as opposed to the direct product construction, which

produces a quasigroup in which each permitted symbol appears 0 or 4 times in each 4 × 4

“box”.
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8 9 a b c d e f g h i j 4 5 6 7

9 8 b a d c f e h g j i 5 4 7 6

a b 8 9 e f c d i j g h 6 7 4 5

b a 9 8 f e d c j i h g 7 6 5 4

8 9 a b g h i j 0 1 2 3 c d e f

9 8 b a h g j i 1 0 3 2 d c f e

a b 8 9 i j g h 2 3 0 1 e f c d

b a 9 8 j i h g 3 2 1 0 f e d c

c d e f g h i j 4 5 6 7 0 1 2 3

d c f e h g j i 5 4 7 6 1 0 3 2

e f c d i j g h 6 7 4 5 2 3 0 1

f e d c j i h g 7 6 5 4 3 2 1 0

g h i j 0 1 2 3 4 5 6 7 8 9 a b

h g j i 1 0 3 2 5 4 7 6 9 8 b a

i j g h 2 3 0 1 6 7 4 5 a b 8 9

j i h g 3 2 1 0 7 6 5 4 b a 9 8

4 5 6 7 c d e f 0 1 2 3 8 9 a b

5 4 7 6 d c f e 1 0 3 2 9 8 b a

6 7 4 5 e f c d 2 3 0 1 a b 8 9

7 6 5 4 f e d c 3 2 1 0 b a 9 8
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8 9 a b g h i j 4 5 6 7 e d f c

9 8 b a c d e f g h i j 5 6 7 4

c d e f h g j i 5 4 7 6 b 8 a 9

g h i j 4 5 6 7 8 9 a b f e c d

8 9 c g j 0 d 3 h a b i 2 f e 1

9 8 d h e i f c j g 0 3 1 b 2 a

a b e i 2 f c g 1 8 j h 0 9 d 3

b a f j 1 e h d 9 i g 2 8 c 3 0

g c h 4 j e 2 1 i 7 3 0 d 5 6 f

h d g 5 0 i f e 6 j 2 1 c 3 4 7

i e j 6 d f c h 3 0 5 g 7 4 1 2

j f i 7 3 c g d 2 1 h 4 6 0 5 e

4 g 5 8 h j 1 9 i 6 3 2 a 7 0 b

5 h 4 9 a g 8 i 7 j 0 1 3 2 b 6

6 i 7 a b 0 j g 3 2 5 h 4 1 9 8

7 j 6 b i 3 h 2 0 1 g 4 9 a 8 5

e 5 b f 2 1 0 8 d c 7 6 a 3 4 9

d 6 8 e f b 9 c 5 3 4 0 7 2 1 a

f 7 a c e 2 d 3 6 4 1 5 0 b 9 8

c 4 9 d 1 a 3 0 f 7 2 e b 6 8 5

In design theory context, a holey hamiltonian decomposition of K(n, p) is the same as

an (l, 1;λ)-cycle frame of type np where l = n(p − 1) is the length of each cycle and λ = 1

is the number of cycles containing each pair of vertices. Several results have recently been

established on cycle frames of K(n, p) with small cycle length, all being of fixed cycle length

as the number of vertices grows. Cao, Niu and Tang [5] established the result for cycles of

length l for each l ∈ {4, 5, 6}, Tiemeyer [32] independently proved the case where l = 4.

Another paper, published by Niu and Cao [30], settled the case where cycles of both length

3 and length 5 are allowed in the frame. The only result in the literature addressing cycles

of larger (yet still fixed) lengths appears to be that of Chitra, Vadivu and Muthusamy [7],

who solved the problem for l = 4t where t is a prime. In Chapter 5 we settle the existence

of cycle frames of type np for the longest possible cycle length (see Theorem 5.2.1). In fact,
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our result settles the existence of fair holey hamiltonian decompositions of K(n, p), thereby

extending results in the literature on fair graph decompositions, while simultaneously settling

the existence of the largest cycle frames.

We present some notation that will be used throughout the next two chapters. Usually

the vertex set of λKp will be {∞}∪Zp−1. Since difference methods will be usefully employed,

define ∞+ t =∞ and (c0, c1, ..., cn−2)z + t = (c0 + t, c1 + t, ..., cn−2 + t), with sums reduced

modulo z. Also, define f((c0, c1, ..., cn−2)) = (f(c0), ..., f(cn−2)) where f : V (G) → V (G).

The edge {a, b} ⊆ Zn with a < b is said to have difference Dn(a, b) = min{b−a, n− (b−a)},

and the edge {a,∞} is said to have difference ∞. It will be convenient for each a ∈ Zn \ {0}

to define Dn(a) = min{a, n−a}. For each d ∈ Zn \ {0}, let Sd be the 2-factor of 2Kn on the

vertex set Zn induced by the edges in the multiset {{i, i + d} | i ∈ Zn}, reducing the sums

modulo n (so Sd = Sn−d).

The following is well-known and easy to prove (see page 220ff. of [27], for example).

Lemma 3.1.1. Sd1 ∪ Sd2 is connected if and only if gcd(d1, d2, n) = 1.

In the following three corollaries the technique of amalgamations (which is described

in Chapter 2) will be used to get certain factorizations of K(n, p) from some special edge-

colorings of n2Kp. The required special edge-colorings of n2Kp will be constructed in Chapter

4 and Chapter 5.

Corollary 3.1.2. If there exists a fair n(p − 1)-edge-coloring of n2Kp in which each color

class is n-regular, then there exists a fair 1-factorization of K(n, p).

Proof. Using the notation in Theorem 2.1.1, let H = n2Kp. Then by Theorem 2.1.1 there

exists an n-detachment G of H such that

(i) the degree of each vertex in G is n(p− 1) (by (i) of Theorem 2.1.1),

(ii) each color class induces a spanning 1-regular subgraph (since we are given that dH(j)(w) =

n for each w ∈ V (H) and j ∈ Zn(p−1)) (by (ii) of Theorem 2.1.1), and

10



(iii) there is exactly one edge between each pair of vertices u and v of G for which ψ(u) 6=

ψ(v), and no edges otherwise (by (iii) of Theorem 2.1.1).

So, by (i) and (iii) it is clear that G = K(n, p) with partition {ψ−1(w) | w ∈ V (H)} of

the vertex set, and by (ii) each color class induces a 1-factor of K(n, p). This yields a 1-

factorization of K(n, p). There is a one-to-one correspondence between the edges joining

any pair of vertices w and z in H and the edges between the two corresponding parts of

G = K(n, p), one of which contains the vertices in ψ−1(w) and the other one contains the

vertices in ψ−1(z). Hence a fair edge-coloring of n2Kp (in which the parts all have size 1)

results in a fair edge-coloring of K(n, p).

Corollary 3.1.3. If there exists a fair holey n-factorization of n2Kp (np-edge-coloring of

n2Kp in which each color class is an n-regular subgraph of n2Kp− v for some v ∈ V (n2Kp))

then there exists a fair holey 1-factorization of K(n, p).

Proof. Using the notation in Theorem 2.1.1, let H = n2Kp. Then by Theorem 2.1.1 there

exists an n-detachment G of H such that

(i) the degree of each vertex in G is n(p− 1) (by (i) of Theorem 2.1.1),

(ii) each color class induces a spanning 1-regular subgraph of G−ψ−1(v) for some v ∈ V (H)

(since we are given that dH(j)(w) = n for each w ∈ V (H) \ {v} for some vertex

v ∈ V (H)) (by (ii) of Theorem 2.1.1), and

(iii) there is exactly one edge between each pair of vertices u and w of G for which ψ(u) 6=

ψ(w), and no edges otherwise (by (iii) of Theorem 2.1.1).

So, by (i) and (iii) it is clear that G = K(n, p) with partition {ψ−1(w) | w ∈ V (H)} of

the vertex set, and by (ii) each color class induces a holey 1-factor of K(n, p). This yields

a holey 1-factorization of K(n, p). There is a one-to-one correspondence between the edges

colored c joining any pair of vertices u and w in H and the edges colored c between the two

11



corresponding parts ψ−1(u) and ψ−1(w) of G = K(n, p), so this fair edge-coloring of n2Kp

results in a fair holey edge-coloring of K(n, p) as required.

The following corollary of Theorem 2.1.1 will be useful in Chapter 5.

Corollary 3.1.4. If there exists a fair holey connected 2n-factorization of n2Kp (that is, an

np/2-edge-coloring of n2Kp in which each color class is a connected 2n-regular subgraph of

n2Kp − v for some v ∈ V (n2Kp)), then there exists a fair holey hamiltonian decomposition

of K(n, p).

Proof. Using the notation in Theorem 2.1.1, let H = n2Kp. Then by Theorem 2.1.1 there

exists an n-detachment G of H such that

(i) the degree of each vertex in G is n(p− 1) (by (i) of Theorem 2.1.1),

(ii) each color class induces a 2-regular subgraph of G− ψ−1(v) for some v ∈ V (H) (since

we are given that dH(j)(w) = 2n for each w ∈ V (H) \ {v}, each j ∈ Zk, and some

vertex v ∈ V (H)) (by (ii) of Theorem 2.1.1),

(iii) there is exactly one edge between each pair of vertices u and w of G for which ψ(u) 6=

ψ(w), and no edges otherwise (by (iii) of Theorem 2.1.1), and

(iv) each color class has one component (by (v) of Theorem 2.1.1).

So, by (i) and (iii) it is clear that G = K(n, p) with partition {ψ−1(w) | w ∈ V (H)}

of the vertex set, by (ii) each color class induces a holey 2-factor of K(n, p), and by (iv)

each color class is connected. This yields a holey hamiltonian decomposition of K(n, p).

There is a one-to-one correspondence between the edges colored c joining any pair of vertices

u and w in H and the edges colored c between the two corresponding parts ψ−1(u) and

ψ−1(w) of G = K(n, p), so this fair edge-coloring of n2Kp results in a fair holey hamiltonian

decomposition of K(n, p) as required.
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Chapter 4

Fair 1-Factorizations and Fair Holey 1-Factorizations of Complete Multipartite Graphs

4.1 Coloring Results

In this section the coloring results are obtained that allow Theorem 4.2.1 and Theorem

4.2.2 to be deduced from Corollary 3.1.2 and Corollary 3.1.3, respectively.

Proposition 4.1.1. Suppose np is even. There exists an edge-coloring of n2Kp with n(p−1)

colors such that

(i) the edge-coloring is fair, and

(ii) each color class induces an n-regular subgraph.

Proof. First note that condition (i) is equivalent to requiring that between each pair of

vertices each color appears on bn2/(n(p− 1))c or dn2/(n(p− 1))e edges.

Now suppose that p is even. Then clearly, Kp has a 1-factorization consisting of p−1 1-

factors F0, F1, ..., Fp−2. Let F = (F0, F1, ..., Fn2(p−1)−1) be a sequence of n2(p−1) 1-factors of

Kp where Fi = Fj if i ≡ j modulo p−1. For each i ∈ Zn(p−1), letG(i) be the subgraph induced

by the edges in
⋃(i+1)n−1

j=in Fj, and color all edges in G(i) with i. Then {E(G(i)) | i ∈ Zn(p−1)}

is a partition of the edge set of n2Kp. Clearly this coloring of n2Kp satisfies condition (ii). To

see that it also satisfies condition (i), note that for each i ∈ Zn(p−1)−(p−1), {Fi+j | j ∈ Zp−1}

is a 1-factorization of Kp. So for each i ∈ Zn(p−1), the n(p/2) edges colored i are shared as

evenly as possible among the p(p − 1)/2 pairs of vertices, so the number of edges colored

i between each pair of vertices is b(np/2)/(p(p − 1)/2)c = bn/(p − 1)c or dn/(p − 1)e as

required.

Finally, suppose that p is odd. Then n is even since we are given that np is even. Kp has

a 2-factorization consisting of (p− 1)/2 2-factors F0, F1, ..., F(p−3)/2 (by Petersen’s Theorem
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[31]). Let F = (F0, F1, ..., Fn2(p−1)/2−1) be a sequence of n2(p − 1)/2 2-factors of Kp where

Fi = Fj if i ≡ j modulo (p− 1)/2. For each i ∈ Zn(p−1), let G(i) be the subgraph induced by

the edges in
⋃(i+1)n/2−1

j=in/2 Fj, and color all edges in G(i) with i. Then {E(G(i)) | i ∈ Zn(p−1)}

is a partition of the edge set of n2Kp. Clearly this coloring of n2Kp satisfies condition (ii). To

see that it also satisfies condition (i), note that for each i ∈ Zn(p−1)−(p−1), {Fi+j | j ∈ Zp−1}

is a 2-factorization of Kp, so for each i ∈ Zn(p−1), the (n/2)p edges colored i are shared as

evenly as possible among the p(p− 1)/2 pairs of vertices.

Proposition 4.1.2. Suppose p > 2 is even. There exists a set F = {Fd | d ∈ Z(p−2)/2} of

(p− 2)/2 almost resolvable 2-factorizations of 2Kp such that for each vertex v ∈ V (2Kp),

(i) the almost parallel classes in
⋃

F∈F F with deficiency v form a 2-factor-

ization of Kp−1.

Proof. Let V (2Kp) = Zp−1 ∪ {∞}. Define the (p− 1)-cycle C = (c0, c1, ..., cp−2) by

ci =



1 if i = 0

(i+ 3)/2 if i is odd

(p− 1)− (i/2) if i is even and i /∈ {0, p− 2}

∞ if i = p− 2.

Then C has deficiency 0 and contains two edges of each difference in (Z(p−2)/2 \ {0})∪ {∞},

except for just one edge of difference 2. Therefore F0 = {C + t | t ∈ Zp−1} ∪ {S2} is an

almost resolvable 2−factorization of 2Kp, where C + t has deficiency t and S2 has deficiency

∞.
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To construct the remaining almost resolvable 2-factorizations of 2Kp, for 1 ≤ d ≤

(p− 4)/2 define the (p− 1)-cycle gd(C) = (gd(c0), gd(c1), ..., gd(cp−2)) where

gd(ci) =


ci + d+ 1 if i ∈ {2j | 1 ≤ j ≤ d}

ci + d otherwise

with additions defined modulo p − 1. Clearly, since C is a cycle, gd(C) is also a cycle on

the same vertex set as C, namely V (C) = (Zp−1 \ {0}) ∪ {∞}. Also define g0(C) = C.

Then for each d ∈ Z(p−2)/2, gd(C) has deficiency 0 and contains two edges of each difference

in Z(p−2)/2 ∪ {∞}, except for just one edge of difference Dp−1(2d + 2). Therefore, for each

d ∈ Z(p−2)/2, Fd = {gd(C) + t | t ∈ Zp−1} ∪ {S2d+2} is an almost resolvable 2-factorization of

2Kp.

Now we show that for each v ∈ V (2Kp), the almost parallel classes in
⋃

d∈Z(p−2)/2
Fd with

deficiency v form a 2-factorization of Kp−1.

First suppose v = ∞. Since p − 1 is odd and since Sd = Sp−1−d, {S2d+2 | d ∈

Z(p−2)/2} = {S1, S2, ..., S(p−2)/2}. Hence these almost parallel classes with deficiency ∞ form

a 2-factorization of Kp \ {∞}.

Next suppose v = 0. For each w ∈ Zp−1\{0}, let N(w) = (1, 2, ..., w−1,∞, w+1, ..., p−

2) = (N0, N1, ..., Np−3). For each w ∈ Zp−1 \ {0} and each d ∈ Z(p−2)/2, for some i ∈ Zp−1

the neighbors of w in g0(C) are Ni and Ni+1, and so then with this value i in mind it is easy

to check that the neighbors of w in gd(C) are Ni+2d and Ni+2d+1, reducing the sums in the

subscript modulo p− 2. So,

(†) {gd(C) | d ∈ Z(p−2)/2} is a 2-factorization of Kp−1 on the vertex set (Zp−1 \{0})∪{∞}.

Finally, for each v ∈ Zp−1, the almost parallel classes with deficiency v are {gd(C) + v |

d ∈ Z(p−2)/2}, which by (†) is clearly a 2-factorization of Kp−1 on the vertex set (Zp−1\{v})∪

{∞}.
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In the following lemma, condition (iii) will be of use in the case where n is even and

condition (iv) will be needed when n is odd when proving Theorem 4.2.2.

Proposition 4.1.3. Suppose p > 1 is odd. There exists a set F = {Fd | d ∈ Zp−2} of p− 2

almost resolvable 2-factorizations of 2Kp such that for each vertex v ∈ V (2Kp)

(i) the almost parallel classes in
⋃

F∈F F with deficiency v form a 2-factor-

ization of 2Kp−1,

(ii) there exists F ′ ⊂ F such that |F ′| = (p − 3)/2 and the almost parallel classes with

deficiency v in F ′ are edge-disjoint,

(iii) there exists F ∈ F \ F ′ such that for each v ∈ V each edge in Kp−1 on the vertex set

V \ {v} occurs in a 2-factor in F ′ ∪ {F}, and

(iv) there exists an almost resolvable 1-factorization F 1 of Kp such that for each v ∈ V (2Kp)

the almost parallel class with deficiency v in F 1 together with the almost parallel classes

in F ′ with deficiency v partition the edges of Kp−1 on the vertex set V \ {v}.

Proof. We begin by defining F on the vertex set V = Zp−1 ∪ {∞}. Define the (p− 1)-cycle

C = (c0, c1, ..., cp−2) by

ci =



1 if i = 0

(i+ 3)/2 if i is odd and i 6= p− 2

(p− 1)− (i/2) if i is even and i 6= 0

∞ if i = p− 2,

with all arithmetic reduced to modulo p−1. Then C has deficiency 0 and contains two edges

of each difference in Z(p−1)/2 ∪ {∞}, except for just one edge of each of the differences 2 and

(p−1)/2. Therefore F0 = {C+v | v ∈ Zp−1}∪{S2} is an almost resolvable 2−factorization of

2Kp, where C+v has deficiency v and S2 has deficiency∞ (each edge of difference (p−1)/2
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appears twice in the cycles in F0 since the edge e = {x, x + (p − 1)/2} is the same as the

edge e+ v when v = (p− 1)/2).

To construct the remaining almost resolvable 2-factorizations of 2Kp, for 1 ≤ d ≤

(p− 3)/2 define the (p− 1)-cycle gd(C) where

gd(ci) =


ci + d+ 1 if i ∈ {2j | 1 ≤ j ≤ d}

ci + d otherwise,

and for (p− 1)/2 ≤ d ≤ p− 3 define gd(C) as

gd(ci) =


ci + d+ 1 if i 6= 0 is even or i ∈ {p− 2j | 2 ≤ j ≤ d− (p− 5)/2}

ci + d otherwise,

with additions defined modulo p− 1. Also define g0(C) = C. Then for each d ∈ Zp−2, gd(C)

has deficiency 0. For each d ∈ Zp−2, define mp(d) as follows.

Suppose p = 4k+1 for some integer k. If 0 ≤ d ≤ 2k−2 and d 6= k−1 then gd(C) contains

two edges of each difference in (Z(p+1)/2\{0})∪{∞}, except for just one edge of each of the two

differences mp(d) = Dp−1(2d+2) and (p−1)/2. If d = k−1 then gd(C) contains two edges of

each difference in (Z(p+1)/2\{0})∪{∞}, except for no edge of difference mp(d) = (p−1)/2. If

2k−1 ≤ d ≤ 3k−2 then gd(C) contains two edges of each difference in (Z(p+1)/2\{0})∪{∞},

except for just one edge of each of the two differences mp(d) = 2d− 4k+ 3 and (p− 1)/2. If

3k−1 ≤ d ≤ 4k−2 then gd(C) contains two edges of each difference in (Z(p+1)/2\{0})∪{∞},

except for just one edge of each of the two differences mp(d) = 8k − 2d − 3 and (p − 1)/2.

Notice that: {mp(d) | 0 ≤ d ≤ 2k − 2, d 6= k − 1} is the multiset consisting of two copies of

each even difference except for the difference (p− 1)/2; mp(k − 1) = (p− 1)/2; and each of

{mp(d) | 2k − 1 ≤ d ≤ 3k − 2} and {mp(d) | 3k − 1 ≤ d ≤ 4k − 2} is the set consisting of

one copy of each odd difference. Hence {Sm | m = mp(d), d ∈ Zp−2} is a 2-factorization of

2Kp−1 on the vertex set V \ {0}.
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Suppose p = 4k + 3 for some integer k. If 0 ≤ d ≤ 2k − 1 then gd(C) contains two

edges of each difference in (Z(p+1)/2 \ {0}) ∪ {∞}, except for just one edge of each of the

two differences mp(d) = Dp−1(2d + 2) and (p − 1)/2. If 2k ≤ d ≤ 4k and d 6= 3k then

gd(C) contains two edges of each difference in (Z(p+1)/2 \ {0}) ∪ {∞}, except for just one

edge of each of the two differences mp(d) = 2k + 1− 2|d− 3k| and (p− 1)/2. If d = 3k then

gd(C) contains two edges of each difference in (Z(p+1)/2 \ {0}) ∪ {∞}, except for no edge of

difference mp(d) = (p − 1)/2. Again notice that: {mp(d) | 0 ≤ d ≤ 2k − 1} is the multiset

consisting of two copies of each even difference; each of {mp(d) | 2k ≤ d ≤ 3k − 1} and

{mp(d) | 3k+ 1 ≤ d ≤ 4k} is the set consisting of one copy of each odd difference except for

the difference (p − 1)/2; and mp(3k) = (p − 1)/2. Hence {Sm | m = mp(d), d ∈ Zp−2} is a

2-factorization of 2Kp−1 on the vertex set V \ {0}.

Therefore, for each d ∈ Zp−2, Fd = {gd(C) + v | v ∈ Zp−1} ∪ {Smp(d)} is an almost

resolvable 2-factorization of 2Kp. (Recall that S(p−1)/2 is the 2-factor of 2Kp−1 in which each

edge of difference (p− 1)/2 appears twice.)

For each d ∈ Zp−2, gd(C) is a cycle on the vertex set V = Zp−1 ∪{∞} with deficiency 0.

Let Hd be formed from gd(C) by removing the vertex 0 and renaming vertex i with i− 1 for

1 ≤ i ≤ p− 2. There is a clear one-to-one correspondence between E(gd(C)) and E(Hd), so

showing that {Hd | d ∈ Zp−2} is a 2-factorization of 2Kp−1 proves condition (i) for the case

v = 0. Under this bijection, for each d ∈ Zp−2, the near 2-factor gd(C) corresponds to the

2-factor hd = (hd(0), ..., hd(p− 2)) where

hd(i) =


(−1)i+1di/2e+ d if i ∈ Zp−2

∞ if i = p− 2,

with all arithmetic reduced to modulo p − 2. So Hd is a hamiltonian cycle formed in a

way similar to Walecki’s construction, and so clearly {Hd | d ∈ Zp−2} is a hamiltonian

decomposition of 2Kp−1. For each v ∈ Zp−1, since gd(C) + v ≡ gd(C), the same argument
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used when v = 0 shows that {gd(C) + v | d ∈ Zp−2} provides the 2-factorization required

by condition (i) for the case where the deficiency is v ∈ Zp−1. Finally, note that the near

2-factors with deficiency v = ∞, namely those in {Sm | m = mp(d), d ∈ Zp−2}, form a

2-factorization of 2Kp−1. So, condition (i) is satisfied for all v ∈ Zp−1 ∪ {∞}.

We now consider condition (ii). Clearly, the cycles gd(C) with deficiency 0 are edge-

disjoint for any set of (p− 3)/2 consecutive values of d. Similarly, the cycles gd(C) + v with

deficiency v where v ∈ Zp−1 are edge-disjoint for any set of (p − 3)/2 consecutive values of

d. In order to guarantee that the near 2-factors with deficiency v =∞ are also edge-disjoint

we must avoid S(p−1)/2 (since it contains two copies of each edge). Therefore, recalling that

p ∈ {4k+1, 4k+3}, we can define F ′ = {Fk, Fk+1, ..., Fk+(p−5)/2}, which provides (ii). Notice

that

(‡) the near 2-factors in Fk, Fk+1, ..., Fk+(p−5)/2 with deficiency v 6= ∞ each contain two

edges of each difference, except for one edge of difference 2(k−1), 2(k−2), ..., 2, 1, 3, ...,

2k − 1 respectively if p = 4k + 1, and except for one edge of difference 2k, 2(k −

1), ..., 2, 1, 3, ..., 2k − 1 respectively if p = 4k + 3.

To see that condition (iii) is satisfied, first note that if v ∈ Zp−1 then each edge in Kp−1

on the vertex set V \ {v} occurs in one of the cycles gd(C) + v for any (p− 1)/2 consecutive

values of d. So, defining F = Fk−1 and F = F3k = Fk+(p−3)/2 if p = 4k + 1 and if p = 4k + 3

respectively provides condition (iii), since in both cases the near 2-factor in F with deficiency

∞ is S(p−1)/2.

Finally to show that condition (iv) is satisfied, for each v ∈ Zp−1 ∪ {∞} let F (v) be

the near 2-factor in F with deficiency v, and let F 1(v) be the subgraph of Kp − v formed

by the edges occurring in no near 2-factors with deficiency v in F ′ ; so by (ii) and (iii)

F 1(v) is a subgraph of F (v). By (ii) and (iii), each vertex in (Zp−1 ∪ {∞}) \ {v} must

have degree 1 in F 1(v), so F 1(v) is a near 1-factor of Kp with deficiency v. We now show

that F 1 = {F 1(v) | v ∈ Zp−1 ∪ {∞}} is the required near 1-factorization of Kp. Since

F 1(∞) = {{i, i+(p−1)/2} | i ∈ Z(p−1)/2} uses all the edges of difference (p−1)/2 once, and
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since clearly for each v ∈ Zp−1 F
1(v + 1) = F 1(v) + 1 (reducing the sums modulo v − 1), it

remains to show that the set of differences of the edges in F 1(0) is {1, 2, ..., (p−3)/2}∪{∞}.

To see this, note that by (‡) there are (p− 3)/2 near 2-factors in F ′ with deficiency 0 which

together contain exactly p−4 edges of each of the differences in D = {1, 2, ..., (p−3)/2} and

exactly p− 3 edges of difference ∞. Since in the subgraph Kp−1 − v of Kp there are exactly

p− 3 edges of difference d ∈ D (two of the p− 1 edges of difference d in Kp are incident with

v) and exactly p − 2 edges of difference ∞ (one of the p − 1 edges of difference ∞ in Kp is

incident with v), one edge of each difference in D ∪ {∞} must appear in F 1(0).

4.2 Main Results

Theorem 4.2.1. There exists a fair 1-factorization of K(n, p) if and only if np is even.

Proof. If np is odd then K(n, p) has no 1-factors, so clearly no 1-factorization exists. If np

is even then the result follows immediately by Proposition 4.1.1 and Corollary 3.1.2.

Theorem 4.2.2. There exists a fair holey 1-factorization of K(n, p) if and only if n(p− 1)

is even and p 6= 2.

Proof. It is clear that K(n, p) has no holey 1-factors when n(p − 1) is odd. Also, no holey

1-factors exist in K(n, p) when p = 2. So the necessity is clear.

The result is trivial if p = 1, so to prove the sufficiency we can assume that p ≥ 3.

First suppose that p and n are both even. By Proposition 4.1.2, there exist (p − 2)/2

almost resolvable 2-factorizations of 2Kp, say F0, ..., F(p−4)/2, on the vertex set Zp such that

for each v ∈ Zp the almost parallel classes with deficiency v form a 2-factorization of Kp−1

on the vertex set Zp \ {v}. Extend this list by defining Fi = Fj if and only if i ≡ j (mod

(p − 2)/2). From this extended list, form a sequence T = (T0, ..., T(np/2)−1) of np/2 almost

parallel classes of nKp where for 0 ≤ i ≤ p − 1 and 0 ≤ k ≤ (n/2) − 1, Ti+kp is the almost

parallel class in Fk with deficiency i. For each i ∈ Zp letG(i) be the subgraph of n2Kp induced
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by the edges in
⋃(n/2)−1

k=0 Ti+kp, and color all edges in G(i) with i. To complete this coloring to

an np-edge-coloring of n2Kp, for each i ∈ Zp and j ∈ Znp, let G(j) = G(i) if i ≡ j (mod p).

Then color class i consists of the n(p−1)/2 edges of n/2 almost parallel classes which all have

the same deficiency i for some i ∈ V (Kp), and hence each color class is an n-regular subgraph

of n2Kp− i. Furthermore, by condition (i) of Proposition 4.1.2, the n(p− 1)/2 edges in each

color class are shared out evenly among the (p− 1)(p− 2)/2 pairs of vertices in Zp \ {i}, so

between any such pair of vertices there are d(n(p− 1)/2)/((p− 1)(p− 2)/2)e = dn/(p− 2)e

or b(n(p− 1)/2)/((p− 1)(p− 2)/2)c = bn/(p− 2)c edges colored i. Therefore this np-edge-

coloring is fair. By Corollary 3.1.3 we conclude that there exists a fair holey 1-factorization

of K(n, p).

Next suppose p is odd and n is even. By Proposition 4.1.3, there exist p − 2 almost

resolvable 2-factorizations of 2Kp on the vertex set Zp such that

(1) the almost parallel classes with deficiency v form a 2-factorization of 2Kp−1,

and in which there exists a subset Σ of (p−1)/2 almost resolvable 2-factorizations satisfying

the two additional properties

(2) for each v ∈ Zp, each edge of Kp occurs in one of the (p− 1)/2 almost parallel classes

with deficiency v in Σ, and

(3) Σ contains (p − 3)/2 almost resolvable 2-factorizations in which for each v ∈ Zp the

almost parallel classes with deficiency v are edge-disjoint.

Label the almost resolvable 2-factorizations of 2Kp with F0, ..., Fp−3 such that for each v ∈ Zp

the almost parallel classes with deficiency v in F0, ..., F(p−5)/2 are edge-disjoint, and each

edge of Kp−1 on the vertex set V \ {v} is contained in at least one almost parallel class

in {F0, ..., F(p−3)/2}. Extend this list by defining Fi = Fj if i ≡ j (mod p − 2). From this

extended list form a sequence T = (T0, ..., T(np/2)−1) of np/2 almost parallel classes of nKp

where for 0 ≤ i ≤ p − 1 and 0 ≤ k ≤ (n/2) − 1, Ti+kp is the almost parallel class in Fk

with deficiency i. For each i ∈ Zp let G(i) be the subgraph of n2Kp induced by the edges
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in
⋃(n/2)−1

k=0 Ti+kp, and color all edges in G(i) with i. To complete this coloring to an np-

edge-coloring of n2Kp, for each i ∈ Zp and j ∈ Znp, let G(j) = G(i) if i ≡ j (mod p).

Then color class i consists of the n(p − 1)/2 edges of n/2 almost parallel classes which all

have the same deficiency i for some i ∈ V (Kp), and hence each color class is an n-regular

subgraph of n2Kp − i. Furthermore, by Proposition 4.1.3, the n(p − 1)/2 edges in each

color class are shared out evenly among the (p− 1)(p− 2)/2 pairs of vertices in Zp \ {i}, so

between any such pair of vertices there are d(n(p− 1)/2)/((p− 1)(p− 2)/2)e = dn/(p− 2)e

or b(n(p− 1)/2)/((p− 1)(p− 2)/2)c = bn/(p− 2)c edges colored i. Therefore this np-edge-

coloring is fair. By Corollary 3.1.3 we conclude that there exists a fair holey 1-factorization

of K(n, p).

Finally suppose that p and n are both odd. By condition (iv) of Proposition 4.1.3

there exists an almost resolvable 1-factorization F 1 such that for each v ∈ V (2Kp) the

almost parallel class with deficiency v in F 1, together with the almost parallel classes in

F ′ with deficiency v partition the edges of Kp−1 on the vertex set V \ {v}. Relabel the

(p − 1)/2 almost resolvable factorizations in F ′ ∪ {F 1} with F0, F1, ..., F(p−3)/2 such that

F0 = F 1. Extend this renaming so that Fi+(p−1)/2 = F(p−3)/2−i for each i ∈ Z(p−1)/2

and so that Fi+j(p−1) = Fi for each i ∈ Zp−1 and each positive integer j. The plan is

to choose the factorizations in this order. So for example the ordering of the first p − 1

near factorizations is F0, F1, ..., F(p−3)/2, F(p−3)/2, F(p−5)/2, ..., F0. This appears to be an un-

usual ordering, but is essential for the reason that is explained below. Form a sequence

T = (T0, ..., Tp(n+2bn/(2p−4)c+1)/2−1) of almost parallel classes of Kp, where for 0 ≤ i ≤ p − 1

and 0 ≤ k ≤ (n+ dn/(p− 2)e)/2− 1, Ti+kp is the almost parallel class (a near 1-factor or a

near 2-factor) in Fk with deficiency i (it may help to note that exactly p(2bn/(2p− 4)c+ 1)

of the almost parallel classes in T are near 1-factors, the rest being near 2-factors). In this

case, it is important to note that the ordering in which the factorizations are used is chosen

to ensure that each color class is regular of odd degree and balanced (a multigraph G is

said to be balanced if the multiplicity between any two pairs of vertices differs by at most
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1). The role of F0 is critical in this regard. Since the factorizations are chosen in the order

F0, F1, ..., F(p−3)/2, F(p−3)/2, F(p−5)/2, ..., F0, the critical observations are

(∗) if (X0, ..., Xp−2) = (F0, F1, ..., F(p−3)/2, F(p−3)/2, F(p−5)/2, ..., F0), then for all v ∈ Zp,⋃
j∈Zp−1

Xj(v) = 2Kp, and

(∗∗) for any i < p − 1 and all v ∈ Zp,
⋃

j∈Zi
Xj(v) is balanced (since⋃

j∈Z(p−1)/2
Xj(v) = Kp) and regular of odd degree (since F0 is the only graph where

vertices have odd degree).

For each i ∈ Zp let G(i) be the subgraph of n2Kp induced by the edges in⋃(n+2bn/(2p−4)c+1)/2−1
k=0 Ti+kp. Color all edges in G(i) with i. To complete this coloring to

an np-coloring of n2Kp, for each i ∈ Zp and j ∈ Znp, let G(j) = G(i) if i ≡ j (mod p). Then

color class i consists of edges in 2bn/(2p−4)c+1 near 1-factors and (n−2bn/(2p−4)c−1)/2

near 2-factors which all have the same deficiency i for some i ∈ V (Kp), and hence each color

class is an n-regular subgraph of n2Kp − i. By (∗) and (∗∗) this np-coloring is fair. By

Corollary 3.1.3 we conclude that there exists a fair holey 1-factorization of K(n, p).

4.3 Final Remark

It is worth noting that there is another notion of fairness one could define from the

perspective of each color class of K(n, p), requiring that its edges are shared out as evenly

as possible among the permitted pairs of parts of K(n, p) (if the edges colored c induce a

holey 1-factor with deficiency Vi, then the permitted pairs of parts are those which do not

include Vi since vertices in Vi are incident with no edges colored i). Theorems 4.2.1 and

4.2.2 each guarantee that each color class does satisfy this additional fairness property. To

see this, note that in each theorem the n2 edges between each pair of parts are colored with

k colors, where k = n(p − 1) in Theorem 4.2.1 and k = n(p − 2) in Theorem 4.2.2. So for

each color c, the number of edges between vertices in a permitted pair of parts is bn2/kc or

23



dn2/ke as required. In fact it is easy to observe that for any partition of the vertices of a

graph G and for any edge-coloring (or holey edge-coloring) of G, the first notion of fairness

together with the extra condition that the number of edges between a pair of parts differs by

at most 1 from the number of edges between each other pair of parts implies the new fairness

condition. Note that the extra condition is necessary in order to establish this implication.

For example, consider the graph G with a partition {P1, P2, P3} of the vertex set of G, where

P1 = {v1}, P2 = {v2, v3}, and P3 = {v4, v5}. Let E(G) = {v1v2, v2v4, v2v5, v3v5}. Color the

edges v1v2 and v2v4 with 0 and the edges v2v5 and v3v5 with 1. This edge-coloring of G

clearly satisfies the first notion of fairness, but not the new one. Notice that there are three

edges between the parts P2 and P3, and there is only one edge between the parts P1 and P2.

Conversely, it turns out that for any partition P of the vertices of a graph G into p parts and

for any edge-coloring (or holey edge-coloring) of G with the color set Zk, the new fairness

notion together with the condition ||E(G(i))| − |E(G(j))|| ≤ 1 (where i, j ∈ Zk) implies

that the first notion of fairness is satisfied. Note that the implication is not necessarily true

without assuming the extra condition. For example, consider the graph G with a partition

{P1, P2, P3} of the vertex set of G, where P1 = {v1}, P2 = {v2, v3}, and P3 = {v4, v5}. Let

E(G) = {v1v2, v1v3, v1v4, v1v5, v2v4, v3v5}. Color the edges v1v2, v1v4, v2v4, v3v5 with 0 and

the edges v1v3, v1v5 with 1. This edge-coloring of G clearly satisfies the new notion of fairness,

but not the original notion of fairness. Notice that |E(G(0))| = 4 and |E(G(1))| = 2.
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Chapter 5

Fair Holey Hamiltonian Decompositions of Complete Multipartite Graphs and Long Cycle

Frames

5.1 Coloring Results

In this section some special edge-colorings of 2Kp are found which are used in conjunction

with Corollary 3.1.4 in the proof of the main theorem, Theorem 5.2.1 in the next section.

Proposition 5.1.1. Suppose p > 2 is even. There exists a set F = {Fd | d ∈ Z(p−2)/2} of

(p− 2)/2 almost resolvable 2-factorizations of 2Kp such that

(i) for each vertex v ∈ V (2Kp) the (p − 2)/2 almost parallel classes in
⋃

F∈F F with

deficiency v form a 2-factorization of Kp−1, and

(ii) there exists an ordering of the elements in F such that for each v ∈ V (2Kp) and for

each pair of consecutive almost resolvable 2-factorizations in F , the union of the two

almost parallel classes with deficiency v is connected.

Proof. The constructive proof of (i) is described in Proposition 4.1.2. With the notation of

Proposition 4.1.2, Fd = {gd(C) + t | t ∈ Zp−1}∪{Sx(d)} where x(d) = min{2d+ 2, p−2d−3}

is an almost resolvable 2-factorization of 2Kp, where gd(C) + t has deficiency t and Sx(d)

has deficiency ∞. Define Fd(v) to be the near 2-factor with deficiency v in Fd, where

d ∈ Z(p−2)/2 and v ∈ V (2Kp). For each v ∈ V \ {∞} and for each d ∈ Z(p−2)/2, Fd(v) is a

near hamiltonian cycle and hence the edges in Fd(v) form a connected subgraph of 2Kp−1.

So (ii) holds for each v 6= ∞ for any ordering of the almost resolvable 2-factorizations.

Now suppose v = ∞. If p = 4k for some positive integer k, then (F0(∞), ..., F2k−2(∞)) =

(S2, S4, ..., S2k−2, S2k−1, S2k−3, ..., S1), and if p = 4k + 2 for some positive integer k, then
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(F0(∞), ..., F2k−1(∞)) = (S2, S4, ..., S2k, S2k−1, S2k−3, ..., S1). So, the union of any two con-

secutive almost parallel classes in this list is either of the form Sd ∪ Sd+2 or Sd ∪ Sd+1, both

of which are clearly connected by Lemma 3.1.1 since p− 1 is odd. So (ii) holds for all v with

the ordering F0, F1, ..., F(p−4)/2 of the elements of F .

We illustrate the construction defined in the proof of Proposition 5.1.1 with the following

example.

Example 5.1.2. Proposition 5.1.1 yields the 4 almost resolvable 2-factorizations of 2K10

below.

F0 = {g0(C) + t | t ∈ Z9} ∪ {F0(∞)} = {(1, 2, 8, 3, 7, 4, 6, 5,∞) + t | t ∈ Z9} ∪ {S2},

F1 = {g1(C) + t | t ∈ Z9} ∪ {F1(∞)} = {(2, 3, 1, 4, 8, 5, 7, 6,∞) + t | t ∈ Z9} ∪ {S4},

F2 = {g2(C) + t | t ∈ Z9} ∪ {F2(∞)} = {(3, 4, 2, 5, 1, 6, 8, 7,∞) + t | t ∈ Z9} ∪ {S3},

F3 = {g3(C) + t | t ∈ Z9} ∪ {F3(∞)} = {(4, 5, 3, 6, 2, 7, 1, 8,∞) + t | t ∈ Z9} ∪ {S1}.

Notice that for each t ∈ Z9, g0(C) + t, g1(C) + t, g2(C) + t and g3(C) + t form a

2-factorization of K9 on the vertex set (Z9 \ {t}) ∪ {∞}; and F0(∞) = S2, F1(∞) = S4,

F2(∞) = S3 and F3(∞) = S1 form a 2-factorization of K9 on the vertex set Z9. Hence

condition (i) is satisfied. Also note that taking the ordering (F ′0, F
′
1, F

′
2, F

′
3) = (F0, F1, F2, F3)

of F satisfies condition (ii).

A companion result to Proposition 5.1.1 holds for the case when p is odd.

Proposition 5.1.3. Suppose p > 1 is odd. There exists a set F = {Fd | d ∈ Zp−2} of p− 2

almost resolvable 2-factorizations of 2Kp such that

(i) for each vertex v ∈ V (2Kp) the p− 2 almost parallel classes in
⋃

F∈F F with deficiency

v form a 2-factorization of 2Kp−1,

(ii) there exists F ′ ⊂ F such that |F ′| = (p − 3)/2 and for each vertex v ∈ V (2Kp) the

almost parallel classes with deficiency v in F ′ are edge-disjoint,
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(iii) there exists F ∈ F \ F ′ such that for each v ∈ V each edge in Kp−1 on the vertex set

V \ {v} occurs in a 2-factor in F ′ ∪ {F}, and

(iv) there exists an ordering (F
′
0, F

′
1, ..., F

′
p−3) of the elements of F such that F

′
i ∈ F ′ if 0 ≤

i ≤ (p− 5)/2 and F
′

(p−3)/2 = F , with the additional property that for each v ∈ V (2Kp)

and for each pair of consecutive almost resolvable 2-factorizations in F , the union of

the two almost parallel classes with deficiency v is connected.

Proof. A constructive proof of (i), (ii) and (iii) is described in Proposition 4.1.3. With the

notation of Proposition 4.1.3, we see that Fd = {gd(C) + t | t ∈ Zp−1} ∪ {Sx(d)} where

x(d) =


min{2d+ 2, p− 3− 2d} if 0 ≤ d ≤ (p− 5)/2

min{2d− p+ 4, 2(p− d)− 5} if (p− 3)/2 ≤ d ≤ p− 3

is an almost resolvable 2-factorization of 2Kp, where gd(C) + t has deficiency t and Sx(d) has

deficiency∞. Note that for each v ∈ V \{∞} and for each d ∈ Zp−2, Fd(v) is a near hamilto-

nian cycle. So clearly the additional property described in (iv) holds for all v ∈ V \ {∞} re-

gardless of the ordering of the elements of F . To see that conditions (ii-iv) hold, consider the

ordering (F
′
0, ..., F

′
p−3) of the almost resolvable 2-factorizations, where F

′
i = F(−1)idi/2e+(p−3)/2

for 0 ≤ i ≤ p − 3. Let F ′ = {F ′i | i ∈ Z(p−3)/2} and F = F
′

(p−3)/2. Then since

(F0(∞), ..., F4k−2(∞)) = (S2, S4, ..., S2k, S2k−2, S2k−4, ..., S2, S1, S3, ..., S2k−1, S2k−1, S2k−3, ...,

S1) when p = 4k + 1 for some k, and since (F0(∞), ..., F4k(∞)) = (S2, S4, ..., S2k, S2k, S2k−2,

S2k−4, ..., S2, S1, S3, ..., S2k+1, S2k−1, ..., S1) when p = 4k + 3, it follows that in all cases

(F
′
0(∞), F

′
1(∞), ..., F

′
p−3(∞)) = (S1, S2, ..., S(p−3)/2, S(p−1)/2, S(p−3)/2, ..., S1). So using this

ordering, clearly properties (ii) and (iii) are satisfied, and since the union of any two con-

secutive almost parallel classes with deficiency ∞ is of the form Sd ∪ Sd+1, which is clearly

connected by Lemma 3.1.1, property (iv) is also satisfied.
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We illustrate the construction defined in the proof of Proposition 4.1.2 with the following

example.

Example 5.1.4. Proposition 4.1.2 yields the 5 almost resolvable 2-factorizations of 2K7

below.

F0 = {g0(C) + t | t ∈ Z6} ∪ {F0(∞)} = {(1, 2, 5, 3, 4,∞) + t | t ∈ Z6} ∪ {S2},

F1 = {g1(C) + t | t ∈ Z6} ∪ {F1(∞)} = {(2, 3, 1, 4, 5,∞) + t | t ∈ Z6} ∪ {S2},

F2 = {g2(C) + t | t ∈ Z6} ∪ {F2(∞)} = {(3, 4, 2, 5, 1,∞) + t | t ∈ Z6} ∪ {S1},

F3 = {g3(C) + t | t ∈ Z6} ∪ {F3(∞)} = {(4, 5, 3, 1, 2,∞) + t | t ∈ Z6} ∪ {S3},

F4 = {g4(C) + t | t ∈ Z6} ∪ {F4(∞)} = {(5, 1, 4, 2, 3,∞) + t | t ∈ Z6} ∪ {S1}.

Notice that for each t ∈ Z6, g0(C) + t, g1(C) + t, g2(C) + t, g3(C) + t and g4(C) + t form

a 2-factorization of 2K6 on the vertex set (Z6 \ {t}) ∪ {∞}; and F0(∞) = S2, F1(∞) = S2,

F2(∞) = S1, F3(∞) = S3 and F4(∞) = S1 form a 2-factorization of 2K6 on the vertex set

Z6. Hence condition (i) is satisfied. Also note that taking the ordering (F ′0, F
′
1, F

′
2, F

′
3, F

′
4) =

(F2, F1, F3, F0, F4) of F satisfies conditions (ii)-(iv) where F ′ = {F2, F1} and F = F3.

5.2 Main Result

Theorem 5.2.1. There exists a fair holey hamiltonian decomposition of K(n, p) if and only

if n is even and p 6= 2.

Proof. Each vertex of K(n, p) has degree n(p − 1) and such a decomposition requires np/2

almost parallel classes. Together, these two conditions imply that n must be even. Also, no

holey 2-factors exist in K(n, p) when p = 2. So the necessity is clear.

The result is trivial if p = 1, so to prove the sufficiency we can assume that p ≥ 3.

Suppose that n and p are both even. Let F0, ..., F(p−4)/2 be the almost resolvable 2-

factorizations of 2Kp as given in Proposition 5.1.1. Define T = {T (i, k) | i ∈ Zp, k ∈

Zn}, where T (i, k) is the almost parallel class in Fk′ with deficiency i and k′ ≡ k (modulo

(p− 2)/2). Define G(i) =
⋃n−1

k=0 T (i′, k) where i′ ≡ i (modulo p), and color all edges in G(i)
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with i. To complete this coloring to an np/2-edge-coloring of n2Kp, for each i ∈ Zp and

j ∈ Znp/2, let G(j) = G(i) if i ≡ j (modulo p). Then for each i ∈ Zp color class i consists

of the n(p− 1) edges of n almost parallel classes which all have the same deficiency, namely

i ∈ V (Kp), and hence color class i is a 2n-regular subgraph of n2Kp − i. By condition (i) of

Proposition 5.1.1, between each pair of vertices in Zp \ {i}, the number of edges colored i is

dn/((p− 2)/2)e = d2n/(p− 2)e or bn/((p− 2)/2)c = b2n/(p− 2)c (since each color class is

formed by n almost parallel classes). Therefore this np/2-edge-coloring is fair. Furthermore,

by condition (ii) of Proposition 5.1.1, each color class is connected. By Corollary 3.1.4 we

conclude that there exists a fair holey hamiltonian decomposition of K(n, p).

Next suppose that p is odd and n is even. Let F0, ..., Fp−3 be the almost resolvable

2-factorizations of 2Kp as given in Proposition 5.1.3. Define T = {T (i, k) | i ∈ Zp, k ∈ Zn},

where T (i, k) is the almost parallel class in Fk′ with deficiency i and k′ ≡ k (modulo p− 2).

Define G(i) =
⋃n−1

k=0 T (i′, k) where i′ ≡ i (modulo p), and color all edges in G(i) with i. To

complete this coloring to an np/2-edge-coloring of n2Kp, for each i ∈ Zp and j ∈ Znp/2, let

G(j) = G(i) if i ≡ j (modulo p). Then for each i ∈ Zp color class i consists of the n(p− 1)

edges of n almost parallel classes which all have the same deficiency, namely i ∈ V (Kp), and

hence color class i is a 2n-regular subgraph of n2Kp − i. By condition (i) of Proposition

5.1.3 for each i, each set of p− 2 consecutive almost parallel classes with deficiency i forms a

2-factorization of 2Kp−1. Therefore the union of the first bn/(p− 2)c almost parallel classes

accounts for exactly 2bn/(p − 2)c edges colored i between each pair of vertices. Let x be

the number of the remaining almost parallel classes. Consider the union of these x almost

parallel classes. By (ii) and (iii) of Proposition 5.1.3, in this union the number of edges

colored i between each pair of vertices is in {0, 1} if 0 ≤ x ≤ (p − 3)/2, and is in {1, 2} if

(p− 1)/2 ≤ x < p− 2. Therefore this np/2-edge-coloring is fair. Furthermore, by condition

(iv) of Proposition 5.1.3, each color class is connected. By Corollary 3.1.4 we conclude that

there exists a fair holey hamiltonian decomposition of K(n, p).
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Chapter 6

Introduction to Edge-Colorings with Special Fairness Properties

6.1 Introduction to Edge-Colorings with Special Fairness Properties

When considering edge-colorings of graphs it is usually desired to have some fairness

properties imposed on the number of edges colored by each color. Due to de Werra’s work

in [9, 10, 11, 12] it has been known since the 1970’s that for each k ∈ N every bipartite

graph has a k-edge-coloring that is balanced, equitable and equalized at the same time. One

important result for more general graphs is by Hilton, who proved in [16] that each even

graph has an evenly-equitable k-edge-coloring for each k ∈ N, thereby completely settling

this problem (see Theorem 7.3.2).

In Chapter 7, first we extend Hilton’s result [16] by finding a characterization for graphs

that have an evenly-equitable, balanced k-edge-coloring for each k ∈ N (see Theorem 7.1.1).

We then use this result to find a different kind of characterization for even graphs to have

an evenly-equitable, balanced 2-edge-coloring (see Theorem 7.1.2). Then we prove Theorem

7.2.1 and Theorem 7.2.2, the latter of which uses the aforementioned characterization. The

proof of Theorem 7.2.2 provides an instance of how evenly-equitable, balanced edge-colorings

can be used to ensure that a certain fairness property of factorizations of some regular graphs

is satisfied. This particular notion of fairness is defined as follows. A k-factorization of a

graph in which the vertices have been partitioned into parts is said to be fair if for each two

parts (possibly they are the same), the number of edges between these two parts in each

factor differs from the number in each other factor by at most one. Finally we address the

existence of all other combinations of the three edge-coloring properties (namely: evenly-

equitable, balanced and equalized), finding weakest subsets of conditions that will guarantee

(if possible) that a graph G has a k-edge-coloring which has the following properties in
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turn: (P1) evenly-equitable, balanced and equalized, (P2) evenly-equitable and equalized,

(P3) balanced and equalized, (P4) evenly-equitable, (P5) balanced, and (P6) equalized.

We give some further terminology that will be useful in Chapter 7. For each proper

subset S of the vertex set of a graph G, define the edge-cut E(S, S) = {e = {x, y} | e ∈

E(G), x ∈ S, y ∈ V (G) \ S}. Let rG,k({v, w}) ∈ Zk be such that rG,k({v, w}) ≡ mG({v, w})

(modulo k). Let G(k) be the spanning subgraph of G in which for each pair of vertices v and

w the number of edges between v and w is rG,k({v, w}). Then clearly degG(v) ≡ degG(k)(v)

(modulo k) for all v ∈ V (G). For the purposes of Chapter 7, a vertex v ∈ V (G(k)) is said to

be odd (even) if (degG(v)− degG(k)(v))/k is an odd (even) integer.

In Chapter 8 we consider a new fairness notion, requiring that the number of vertices

in the subgraphs induced by the edges of each color are within one of each other. Given

a k-edge-coloring of a graph G, for each color i ∈ Zk let G(i) denote the (not necessarily

spanning) subgraph of G induced by the edges colored i. Let νi(G) = |V (G(i))|. Formally, a

k-edge-coloring of a graph G is said to be vertex-equalized if for each pair of colors i, j ∈ Zk,

|νi(G) − νj(G)| ≤ 1. In Chapter 8, a characterization is found for connected graphs that

have vertex-equalized k-edge-colorings for each k ∈ {2, 3} (see Theorem 8.1.2 and Theorem

8.2.1).
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Chapter 7

On Evenly-Equitable, Balanced Edge-Colorings and Related Notions

7.1 Coloring Results

The following characterization can be used to find evenly-equitable, balanced k-edge-

colorings. The proof has the flavor of Hilton’s proof in [16] of the case where the additional

property of being balanced was not required, but is modified to deal with extra complications

that arise in this new setting.

Theorem 7.1.1. For each positive integer k, a graph G (possibly with loops) has an evenly-

equitable, balanced k-edge-coloring if and only if it has an even, balanced k-edge-coloring.

Proof. Proving the “only if” result is trivial. To show the “if” result, we first prove the

assertion for the case when G is connected and loopless. Let f be an even, balanced k-edge-

coloring of G. Among all pairs of colors i, j ∈ Zk and all vertices v ∈ V (G) suppose that

|degG[i](v) − degG[j](v)| = 2x is as large as possible (where x ∈ N). If x ∈ {0, 1}, then this

edge-coloring is evenly-equitable, so assume x ≥ 2. Let G′ be the spanning subgraph of G

induced by the edges colored i and j. From G′ form a new graph G′′ by adding an uncolored

loop at each vertex v satisfying degG′(v) ≡ 2 (mod 4). Then

degG′′(v) ≡ 0 (mod 4) for each vertex v ∈ V (G′′). (1)

For each pair of vertices {v, w} with v, w ∈ Zn and for any color h ∈ Zk, let mG[i,j]({v, w}) =

min{mG[i]({v, w}),mG[j]({v, w})}, and let Si,j({v, w}) be a set of size 2mG[i,j]({v, w}) con-

taining precisely mG[i,j]({v, w}) edges of each color i and j joining vertices v and w. So

|Si,j({v, w})| is even. Let Si,j(v) =
⋃

w∈V (G)\{v} Si,j({v, w}) and Si,j =
⋃

0≤v<w<n Si,j({v, w}).
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Define G′′′ = G′′−Si,j. Since |Si,j(v)| is even for each v ∈ V (G), and since the original edge-

coloring is even, each component of G′′′ is an eulerian graph, and has no multiple edges since

f is balanced (possibly it has an uncolored loop at some of the vertices). The following

argument establishes property (3) below, namely that each component of G′′′ has an even

number of edges. First note that by the assumption of this theorem, for all h ∈ Zk each

component of G[h] is eulerian, so

the size of each edge-cut in G[h] is even (so is also even in G′′[h] ). (2)

Let C be any component of G′′′ and let H = G[Si,j]. Let E1 = E(H[V (C)]); so |E1| is even

(since there is an even number of edges in Si,j between each pair of vertices). Let E2 be

the edge-cut H[V (C), V (H)\V (C)], which by the definition of Si,j satisfies H[V (C), V (G)\

V (C)] = G′′[V (C), V (G)\V (C)]. So |E2∩E(H[i])| = |E2∩E(H[j])|. Furthermore, since for

each color h ∈ {i, j} E2∩E(H[i]) and E2∩E(H[j]) are edge-cuts inH[i] andH[j] respectively,

by (2) |E2 ∩ E(H[i])| and |E2 ∩ E(H[j])| are even. Hence |E2| = |E2 ∩ E(H[i])| + |E2 ∩

E(H[j])| = 2|E2 ∩ E(H(i))| ≡ 0 (mod 4). Then,∑
v∈V (C)

degG′′′(v) =
∑

v∈V (C)

degG′′(v)− 2|E1| − |E2|

≡
∑

v∈V (C)

degG′′(v) (mod 4)

≡ 0 (mod 4) by (1).

So,

|E(C)| = (
∑

v∈V (C)

degG′′′(v))/2 ≡ 0 (mod 2). (3)

Let f ′ be a new 2-edge-coloring of G′ formed as follows. For each component C of G′′′,

alternately color the edges of an eulerian circuit of C with i and j. This yields a balanced

2-edge-coloring of G′′′ (G′′′ is simple) where by (3) for each vertex v ∈ V (G),

degG′′′[i](v) = degG′′′[j](v). (4)
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Now add the edges in Si,j with their original colors to G′′′ and remove the uncolored

loops that were added when forming G′′. Then clearly the resulting graph is G′ and this new

2-edge-coloring f ′ satisfies |degG′[i](v) − degG′[j](v)| ∈ {0, 2} for each v ∈ V (G′). To show

that f ′ is also even, consider the following cases (in which degG′′′[i](v) refers to edge-coloring

G′′′ with f ′).

Case 1: degG′(v) ≡ 0 (mod 4). Note that in this case we are not adding a loop at v

when forming G′′. Now look at the following subcases.

Subcase 1.1:
∑

w∈V (G′)\{v}
mG[i,j]({v, w}) is odd. So, an odd number of edges incident

with v of each color i and j were removed when forming G′′′ from G′′. So, degG′′′(v) ≡ 2 (mod

4) and hence by (4) degG′′′[i](v) ≡ degG′′′[j](v) ≡ 1 (mod 2). Putting back the removed edges

shows that v is incident with an even number of edges of each color in the edge-coloring f ′

of G
′
.

Subcase 1.2:
∑

w∈V (G′)\{v}
mG[i,j]({v, w}) is even. So, an even number of edges incident

with v of each color i and j were removed when forming G′′′. So, degG′′′(v) ≡ 0 (mod 4) and

hence degG′′′[i](v) ≡ degG′′′[j](v) ≡ 0 (mod 2). Putting back the removed edges shows that v

is incident with an even number of edges of each color in the edge-coloring f ′ of G′.

Case 2: degG′(v) ≡ 2 (mod 4). Note that in this case an uncolored loop is added to v

when forming G′′. Now look at the following subcases.

Subcase 2.1:
∑

w∈V (G′)\{v}
mG[i,j]({v, w}) is odd. So, after adding an uncolored loop

at v, an odd number of edges incident with v of each color i and j were removed when

forming G′′′. Then degG′′′(v) ≡ 2 (mod 4), so by (4) in the new edge-coloring degG′′′(v) =

degG′′′(w) ≡ 1 (mod 2). So, for each u ∈ {v, w} and each l ∈ {i, j} degG′[l](u) = degG′′′[l](u)+

mG[i,j]({v, w}) ≡ 0 (mod 2).

Subcase 2.2:
∑

w∈V (G′)\{v}
mG[i,j]({v, w}) is even. So, after adding an uncolored loop

at v, an even number of edges incident with v of each color i and j were removed when

forming G′′′. Then degG′′′(v) ≡ 0 (mod 4), so by (4) in the new edge-coloring degG′′′(v) =
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degG′′′(w) ≡ 0 (mod 2). So, for each u ∈ {v, w} and each l ∈ {i, j} degG′[l](u) = degG′′′[l](u)+

mG[i,j]({v, w}) ≡ 0 (mod 2).

Repetition of this procedure yields an evenly-equitably, balanced k-edge-coloring of G.

For the case when G has loops and is possibly disconnected, simply remove all the loops

from G and apply this procedure to each component of the resulting loopless graph to get

an evenly-equitable, balanced k-edge-coloring of each component. Then put back the loops;

it is easy to color them in a balanced way without destroying the evenly-equitable property

at each vertex.

Note that in the statement of Theorem 7.1.1 we cannot replace the condition on the

existence of an even, balanced k-edge-coloring by a weaker set of conditions, as is illustrated

by the next two examples. A cycle of length 3 with a cycle of length 2 intersecting in one of

its vertices is an even graph and clearly has a balanced (and equalized) 2-edge-coloring, but

no 2-edge-coloring that is evenly-equitable and balanced. The graph 2K2 (the graph with

two vertices and two edges joining these two vertices) has an even (actually evenly-equitable)

2-edge-coloring, but no 2-edge-coloring that is evenly-equitable and balanced. While these

two graphs are trivial, they can be generalized to more complicated examples.

Theorem 7.1.1 leads to the problem of finding conditions guaranteeing that a graph has

an even, balanced k-edge-coloring. The following result addresses that problem. Recall that

our unusual definition of even and odd vertices, and of G(2) are given at the end of Section

1.

Theorem 7.1.2. G has an even, balanced 2-edge-coloring if and only if G is even and G(2)

has no components with an odd number of odd vertices.

Proof. To prove the necessity, suppose that an even, balanced 2-edge-coloring of G is given.

Since the given 2-edge-coloring is balanced, for each pair of vertices v and w, themG({v, w})−

rG,2({v, w}) edges between v and w that are to be deleted when forming G(2) from G can be

chosen so that they are shared evenly among the two color classes. Let C be a component in
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G(2). Now since the given 2-edge-coloring of G is even, for each color i ∈ Z2, an odd vertex

in C contributes an odd number to the degree sum of the graph G(2)[i], and an even vertex

in C contributes an even number to the degree sum of the graph G(2)[i]. Hence the number

of odd vertices in C must be even.

To show the sufficiency, color the edges in G as follows. To satisfy the balanced property,

for each pair of vertices {v, w} ⊆ V (G) color (mG({v, w}) − rG,2({v, w}))/2 (note that by

definition of rG,2 this is an integer) of the edges between v and w with each color i ∈ Z2.

Let G∗ be the graph induced by the edges that have been colored so far, and note that the

graph induced by the uncolored edges is G(2). Also note that by the definition of odd and

even vertices, for each i ∈ Z2,

degG∗[i](v) is odd (even) if and only if v is an odd (even) vertex. (*)

Since G is an even graph and since mG({v, w})−rG,2({v, w}) is even for each {v, w} ⊆ V (G),

G(2) is also an even graph. For each component C in G(2) color the edges of an eulerian tour

of C as follows. Start by coloring the first edge in the eulerian tour with i ∈ Z2 and then

switch to i + 1 (modulo 2) whenever the eulerian tour reaches an odd vertex for the first

time. Note that if the first vertex in the eulerian tour is even, then the first and last edges

in the eulerian tour will have the same color because an even number of color switches will

occur (by assumption there is an even number of odd vertices). Similarly, if the first vertex,

say v, is odd then the first and the last edges will have different colors if degG(2)(v) = 2 (since

no color switch is made at v) and they will have the same color if degG(2)(v) > 2 (since then

the eulerian tour will pass through v, so a color switch will occur at v). This coloring of the

edges in G(2) has the property that for each v ∈ V (G) and for each i ∈ Z2

(i) if v is odd, then degG(2)[i](v) is odd, and

(ii) if v is even, then degG(2)[i](v) is even.
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So, for each i ∈ Z2 and each v ∈ V (G), since degG[i](v) = degG(2)[i](v) + degG∗[i](v), by (*),

(i) and (ii) each vertex in G(i) has even degree and hence the given 2-edge-coloring has the

desired properties.

It appears to us that a generalization of Theorem 7.1.2 for three or more colors may be

difficult to obtain.

The following result characterizes graphs which have an evenly-equitable, balanced 2-

edge-coloring.

Corollary 7.1.3. Suppose that G is an even graph. Then G has an evenly-equitable, balanced

2-edge-coloring if and only if G(2) has no components with an odd number of odd vertices.

Proof. This follows immediately by Theorem 7.1.1 and Theorem 7.1.2.

7.2 An Application Using Amalgamations

In this section edge-colorings that satisfy another notion of equally distributing edges

across color classes is considered, namely that of fairness. Not only are the edge-colorings

equitable, but also for any given partition P of the vertices, for each two parts in P (pos-

sibly they are the same) the edges between vertices in the two parts are equally divided

among the color classes. While the results here (Theorem 7.2.1 and Theorem 7.2.2) address

general partitions, these types of questions naturally arise when edge-coloring the complete

multipartite graph Ka1,...,ap , in which the partition is chosen to be the parts of the graph.

For example, it has been shown when there exist fair equitable edge-colorings of Ka1,...,ap in

which each color class induces a hamilton cycle [25] or a 1-factor [14] (see also Chapter 4 of

this dissertation).

The following theorem provides a necessary condition for the existence of fair 2-factor-

izations of 4k-regular graphs (k ≥ 1). For any graph G and any partition P of V (G), let

P (G) be the ψ-amalgamation of G where ψ maps two vertices in G to the same vertex in

P (G) if and only if they are in the same element of P .
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Theorem 7.2.1. Let G be a 4k-regular graph (k ≥ 1). Let P be any partition of V (G). Let

H = P (G). Suppose that G has a fair 2k-factorization. Then

(1) H(2) has no components with an odd number of odd vertices.

Proof. Suppose that G has a fair 2k-factorization. Let F1 and F2 be the subgraphs of H

induced by the edges corresponding to the 2k-factors of G. Since at each vertex in H the

number of edge-ends incident with a vertex is a multiple of 4 and since these edge-ends are

shared evenly among F1 and F2, the number of edge-ends incident with each vertex in H in

each of F1 and F2 is even. So, by the definition of odd and even vertices, in H(2) an odd

vertex is incident with an odd number of edge-ends in each of F1 and F2, and an even vertex

is incident with an even number of edge-ends in each of F1 and F2. Let C be a component

of H(2). Clearly
∑

v∈V (C)

degC(v) is an even number and

∑
v∈V (C)

degC(v) =
∑

v∈V (C) is odd

degC(v) +
∑

v∈V (C) is even

degC(v)

where
∑

v∈V (C) is even

degC(v) is an even number and each term in
∑

v∈V (C) is odd

degC(v) is an odd

number by the above observation. Hence the number of odd vertices in V (C) must be even.

To investigate whether the necessary condition given in Theorem 7.2.1 is also sufficient

for a graph to have a fair 2k-factorization, we introduce the notion of P -equivalence.

Let G1 and G2 be two graphs with V (G1) = V (G2) = V , and let P be a partition of V .

Then G1 is said to be P -equivalent to G2 if for all Vi, Vj ∈ P (possibly i = j) e(G1(Vi, Vj)) =

e(G2(Vi, Vj)), where e(Gk(Vi, Vj)) denotes the number of edges in Gk (for k = 1, 2) between

the parts Vi and Vj. So if G1 and G2 are P -equivalent, then H = P (G1) = P (G2). If either

G1 or G2 has a fair 2k-factorization, then Theorem 7.2.1 shows that (1) must be satisfied. To

investigate the strength of (1), in the following Theorem 7.2.2 shows that if G is a 4-regular

graph for which H(2) = P (G)(2) satisfies (1), then G is P -equivalent to some graph (which
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is simple if a certain necessary condition is met) with a fair 2-factorization. Conjecture 1

goes on to make a much stronger claim that if G1 is P -equivalent to G2, then G1 has a fair

2k-factorization if and only if G2 does.

Theorem 7.2.2. Let G1 be a 4-regular graph. Let P be any partition of V (G1). Let H =

P (G1). Suppose H(2) has no components with an odd number of odd vertices. Then there

exists a graph G2 such that

(i) V (G1) = V (G2),

(ii) G2 is P -equivalent to G1,

(iii) G2 has a fair 2-factorization (with respect to the given partition P ), and

(iv) G2 can be chosen to be simple if and only if for all Vi, Vj ∈ P , e(Vi, Vj) ≤ |Vi||Vj| if

i 6= j, and e(Vi, Vj) ≤ |Vi|(|Vi| − 1)/2 if i = j.

Note that it is long known by Petersen’s 2-factor Theorem (see [2] for example) that

every 2k-regular graph has a 2-factorization. The importance of Theorem 7.2.2 is that if the

condition of the theorem is satisfied, then regardless of the partition P that is chosen, the

resulting factorization of G2 (formed with P in mind) is fair.

Proof. By the supposition H(2) has no components with an odd number of odd vertices.

Clearly H is even since G1 is even. So H satisfies the conditions of Corollary 7.1.3 and hence

it has an evenly-equitable, balanced 2-edge-coloring. By the evenly-equitable property of

this 2-edge-coloring, each color appears on exactly half of the edge-ends incident with each

vertex of H (a loop contributes two edge-ends to the incident vertex). Notice that H is the

ψ-amalgamation of G1 where ψ(v1) = ψ(v2) if and only if v1 and v2 are in the same element

of P . For each v ∈ V (H) define η(v) = degH(v)/4 = |ψ−1(v)|. By (ii) of Theorem 2.1.1,

there exists an η-detachment G2 of H such that

(1) G2 is P -equivalent to G1, and
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(2) for each vertex v of H the edges of each color incident with v are shared as evenly as

possible among the vertices in ψ−1(v) (that is, the vertices in the corresponding part

of G2).

Note that by (iv) and (iii) of Theorem 2.1.1, G2 will be simple if for all Vi, Vj ∈ P , e(Vi, Vj) ≤

|Vi||Vj| if i 6= j, and e(Vi, Vj) ≤ |Vi|(|Vi|−1)/2 if i = j. Clearly these are necessary conditions

if the η-detachment of H is to be simple.

By (2), in G2 each color is on two edges incident with each vertex. So, in G2 the

subgraph induced by the edges of each color is a 2-factor, and hence this 2-edge-coloring

is a 2-factorization of G2. The fairness of this 2-factorization follows from the following

observation: There is a one-to-one correspondence between the edges colored c joining any

pair of vertices u and w in H and the edges colored c between the two corresponding parts

ψ−1(u) and ψ−1(w) of G2. So, the balanced property of this 2-edge-coloring implies the

required fairness property of the 2-factorization.

In the light of Theorem 7.2.1 and Theorem 7.2.2 we make the following conjecture.

Conjecture 1. Let G be a 4k-regular graph (k ≥ 1). Let P be any partition of V (G). Let

H = P (G). Suppose H(2) has no components with an odd number of odd vertices. Then G

has a fair 2k-factorization.

7.3 Edge-Colorings with other Combinations of Fairness Requirements

As described in the introduction of this chapter we now consider other combinations of

edge-coloring properties in turn. The results in this section are straight-forward to obtain,

but are reported here for completeness.

(P1) Evenly-equitable, balanced and equalized. As is discussed below, the examples in

Figure 1 show that there are graphs which have an even, balanced, equalized 2-edge-coloring,

but no 2-edge-coloring that is evenly-equitable and equalized. So, for each positive integer k,

no matter which combination of the conditions on the existence of an even k-edge-coloring,

40



balanced k-edge-coloring and equalized k-edge-coloring of a graph G is used, it is not possible

to guarantee that G has a k-edge-coloring which is evenly-equitable, balanced and equalized.

(a) G1: A vertex-
minimum example (b) G2: An edge-minimum example

Figure 7.1: Examples of graphs that are not of color-type 1

A graph is said to be of color-type 1 if it is connected, simple and has an even, equalized

2-edge-coloring, but has no evenly-equitable, equalized 2-edge-coloring. Note that any edge-

coloring of a color-type 1 graph is balanced because it is simple. In G1 there are two 3-cycles

that intersect in just the top vertex; color the six edges in these 3-cycles with color 0 and color

the remaining edges with color 1 to produce an even, balanced, equalized 2-edge-coloring. G1

does not have an evenly-equitable, equalized 2-edge-coloring, since in every evenly-equitable

2-edge-coloring one color class must be 2-regular and spanning, so has 7 edges. So, G1 is of

color-type 1. In fact, a basic search shows that there is no color-type 1 graph with fewer

vertices nor one on 7 vertices with less than 12 edges.

In G2 the six edges of the two 3-cycles can be colored with color 0 and the edges of

the 5-cycle with color 1, thereby producing an even, balanced, equalized 2-edge-coloring. G2

does not have an evenly-equitable, equalized 2-edge-coloring, since the only evenly-equitable

2-edge-coloring has one color class consisting of the three edges in the middle 3-cycle. So,

G2 is of color-type 1. In fact, another basic search shows that there is no color-type 1 graph

with fewer edges nor one with 11 edges on less than 9 vertices.

Note that G2 suggests a way to construct infinitely many color-type 1 graphs: Take any

cycle of length a as the middle cycle, attach to it a cycle of length b on the left, and a cycle

of length c on the right where c ∈ {a+ b− 1, a+ b, a+ b+ 1}, and a, b, c ≥ 3.
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Since we cannot guarantee the existence of an evenly-equitable, balanced and equalized

k-edge-coloring of a graph G, even with the strong assumption that G has a k-edge-coloring

which is even, balanced and equalized, we focus our attention on conditions implying the

existence of k-edge-colorings that are (P2) evenly-equitable and equalized, (P3) balanced

and equalized, (P4) evenly-equitable, (P5) balanced, and (P6) equalized; evenly-equitable,

balanced edge-colorings are the focus of Section 2.

(P2) Evenly-equitable and equalized. The examples in Figure 1 show that even with

the strong assumption that a graph G has an even, balanced, equalized k-edge-coloring, G

does not necessarily have an evenly-equitable, equalized k-edge-coloring; characterizations

of graphs with such edge-colorings would seem to be difficult to find.

(P3) Balanced and equalized. Such edge-colorings are always easy to find as is stated in

the following theorem.

Theorem 7.3.1. For each positive integer k, each graph has a balanced, equalized k-edge-

coloring.

Proof. Let G be a graph with m edges (loops, being special types of edges, are also included

in this count). Form an ordering (e1, e2, ..., em) of the edges of G where loops incident with

the same vertex appear consecutively in the list, as do the edges joining the same pair of

vertices. For 1 ≤ i ≤ m color ei with i (modulo k). This k-edge-coloring is clearly balanced

and equalized.

(P4) Evenly-equitable. Hilton proved the following theorem in [16]:

Theorem 7.3.2. For each k ≥ 1, each even graph G has an evenly-equitable k-edge-coloring.

Note that the condition that G is even is clearly necessary.

(P5) Balanced. By Theorem 7.3.1 for each positive integer k, any graph G has a balanced

k-edge-coloring.
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(P6) Equalized. By Theorem 7.3.1 for each positive integer k, any graph G has an

equalized k-edge-coloring.

The discussion above leads to the following chart.

G has an even, balanced, ; G has an evenly-equitable,

equalized k-edge-coloring by (P1) equalized k-edge-coloring

for each positive integer k for each positive integer k

G has an even, ⇔ G has an evenly-equitable,

balanced k-edge-coloring by Theorem 7.1.1 balanced k-edge-coloring

for each positive integer k for each positive integer k

⇒ G has a balanced,

G is any graph by Theorem 7.3.1 equalized k-edge-coloring

for each positive integer k

⇒ G has an evenly-equitable

G is even by Theorem 7.3.2 k-edge-coloring

for each positive integer k
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Chapter 8

Vertex-Equalized Edge-Colorings

8.1 Vertex-Equalized 2-Edge-Colorings

In this chapter characterizations are provided for graphs to have vertex-equalized k-

edge-colorings in the cases where k = 2 and k = 3.

If H is edge-colored with colors in Zk then define m(H) to be a color c ∈ Zk for which

νc(H) ≤ νc′(H) for all c′ ∈ Zk. Throughout Chapter 8, Si denotes a star with i edges.

The following lemma will be very useful in proving the main results of this chapter.

Lemma 8.1.1. Each non-empty connected graph has a spanning subgraph that is a union of

vertex-disjoint non-empty stars.

Proof. Let G be a non-empty connected graph, and T be a spanning tree of G. Let H be

formed from T by greedily removing the middle edge in any path of length 3 until no 3-path

remains. Then clearly each component is a star and δ(H) ≥ 1 since removing a middle edge

never creates a vertex of degree 0.

Theorem 8.1.2. Suppose G is a connected simple graph. Then G has a vertex-equalized

2-edge-coloring if and only if G 6= K2.

Proof. It is clear that K2 has no vertex-equalized 2-edge-colorings. To prove sufficiency,

assume that G 6= K2. If G is empty, then the result is trivial; otherwise by Lemma 8.1.1,

G has a spanning subgraph H consisting of vertex-disjoint non-empty stars. Form a non-

decreasing ordering (G1, G2, ..., Gs) of the components in H with respect to the number of

edges in each component. Then form an ordering (e′1, e
′
2, ..., e

′
t) of the edges of H where if

e′i ∈ Gk, e′j ∈ Gl and i < j, then k ≤ l. Alternately color these edges with 0 and 1. Suppose
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that in H the number of stars with exactly one edge is even. This procedure clearly yields

a vertex-equalized 2-edge-coloring of H. If in H the number of stars with a single edge is

odd, then G1
∼= K2, its edge e′ is colored 0, and ν0(H) ∈ {ν1(H) + 1, ν1(H) + 2}. Also, since

G 6= K2, s ≥ 2 (that is, G2 exists). G is connected, so there must be an edge e 6= e′ incident

with a vertex in G1. Color e with 1. This gives a vertex-equalized 2-edge-coloring of H + e.

Let H0 =


H if the number of stars in H with a single edge is even

H + e if the number of stars in H with a single edge is odd.

Now the vertex-equalized 2-edge-coloring of H0 can be completed to a vertex-equalized

2-edge-coloring of G as follows. Let E(G) \E(H0) =
⋃p

i=1 ei where ei = {xi, yi}. For each k

where 1 ≤ k ≤ p, let Hk = Hk−1 + ek. Then for 1 ≤ i ≤ p, if for some c ∈ {0, 1} both xi and

yi in Hi−1 are incident with c then color ei with c; otherwise color ei with m(Hi−1). This

gives a vertex-equalized 2-edge-coloring of G.

8.2 Vertex-Equalized 3-Edge-Colorings

Theorem 8.2.1. Suppose G is a connected simple graph. Then G has a vertex-equalized

3-edge-coloring if and only if G 6= K2, S2.

Proof. It is clear that K2 and S2 have no vertex-equalized 3-edge-colorings. To prove suffi-

ciency, assume that G 6= K2, S2. If G is empty, then the result is trivial; otherwise by Lemma

8.1.1, G has a spanning subgraph H consisting of vertex-disjoint non-empty stars. We begin

by coloring the edges in H together with at most two edges in G − E(H), considering five

cases in turn. In H let a ∈ N be the number of S1’s, and b ∈ N be the number of S2’s.

Let m = min{a, b}. Properly edge-color the 3m edges in m of the S1’s and m of the S2’s

with m edges of each color. For each i ∈ Z3, color with i all edges in b(a − m)/3c of the

uncolored S1’s and all edges in b(b−m)/3c of the uncolored S2’s. The components that are

left uncolored in H are all Si’s with i ≥ 3, along with exactly one of the following

(i) one K2 and no S2’s,
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(ii) two K2’s and no S2’s,

(iii) one S2 and no K2’s

(iv) two S2’s and no K2’s, or

(v) no other components.

Let L be the subgraph of H consisting of the uncolored components. Form a non-

decreasing ordering (L1, L2, ..., Ls) of the components in L with respect to the number of

edges in each component. Then form an ordering (e′1, e
′
2, ..., e

′
t) of the edges of L where if

e′i ∈ Lk and e′j ∈ Ll with i < j then k ≤ l.

Suppose we are in case (i); so L1
∼= K2, its edge being e′1. If s ≥ 2 then L2

∼= Si where

i ≥ 3, in which case a vertex-equalized 3-edge-coloring of L can be produced by coloring

e′1 with 0, e′2 with 1, e′3 with 1, e′4 with 2, and for 5 ≤ k ≤ t coloring e′k with k (modulo

3). So now we can assume s = 1; so in H there is no component isomorphic to Si where

i ≥ 3. If in H there is a component isomorphic to S2, then m ≥ 1 and so H contains 3

components L1, H
′ ∼= S2 and H ′′ ∼= K2, such that currently in H ′ one edge is colored 1 and

the other edge is colored 2, and in H ′′ the only edge is colored 0. Produce a vertex-equalized

3-edge-coloring of L by coloring e′1 with 0, recoloring the edge in H ′′ with 1, and recoloring

both edges in H ′ with 2. Finally suppose that in H there is no component isomorphic to Si

where i ≥ 2; so s = 1 and m = 0. Then since G 6= K2, in H there exist four components

L1, H
′, H ′′, H ′′′, each isomorphic to K2, such that currently the edge in H ′ is colored 0, the

edge in H ′′ is colored 1, and the edge in H ′′′ is colored 2. Since G is connected, there are at

least two edges e, e′ 6= e′1 in G incident with a vertex in V (L1 ∪H ′). Color e′1 with 0, e with

1, and e′ with 2. This 3-edge-coloring of L+ {e, e′} is vertex-equalized.

In case (ii) L1, L2
∼= K2, and E(L1) = {e′1}, E(L2) = {e′2}. Color e′1 with 0, and e′2 with

1. Since G is connected, there must be an edge e /∈ E(L1 ∪ L2) incident with at least one

vertex in L1 ∪ L2. Color e with 2. For 3 ≤ k ≤ t, color e′k with k − 1 (modulo 3). (In fact,
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thinking recursively, as e′3, ..., e
′
t are colored in turn, the resulting partial edge-coloring of G

is vertex-equalized.)

In case (iii) L1
∼= S2, and E(L1) = {e′1, e′2}. Color e′1 with 0, and e′2 with 1. Since

G is connected and G 6= S2, there must be an edge e /∈ E(L1) incident with at least one

vertex in L1. Color e with 2. For 3 ≤ k ≤ t, color e′k with k − 1 (modulo 3) to produce a

vertex-equalized 3-edge-coloring of L+ e.

In case (iv) L1, L2
∼= S2, and E(L1) = {e′1, e′2}, E(L2) = {e′3, e′4}. Color e′1 and e′2 with

0, e′3 with 1, and e′4 with 2. For 5 ≤ k ≤ t, color e′k with k − 1 (modulo 3).

In case (v) for 1 ≤ k ≤ t, color e′k with k − 1 (modulo 3).

It is important to note that in each of the above cases a vertex-equalized 3-edge-coloring

of a spanning subgraph H0 of G has been found. Now the vertex-equalized 3-edge-coloring

of H0 can be completed to a vertex-equalized 3-edge-coloring of G. Let E(G) \ E(H0) =

{ei | 1 ≤ i ≤ p} where ei = {xi, yi}. For each i where 1 ≤ i ≤ p, let Hi = Hi−1 + ei and

recursively (inductively) color the remaining uncolored edges to produce a vertex-equalized

3-edge-coloring of G as follows. For 1 ≤ i ≤ p, assuming that Hi−1 has a vertex-equalized

3-edge-coloring in which ν0(Hi−1) ≥ ν1(Hi−1) ≥ ν2(Hi−1) (rename colors if necessary), one

of the following statements holds:

(i) ν0(Hi−1) = ν1(Hi−1) = ν2(Hi−1),

(ii) ν0(Hi−1) = ν1(Hi−1) = ν2(Hi−1) + 1,

(iii) ν0(Hi−1) = ν1(Hi−1) + 1 = ν2(Hi−1) + 1.

In case (i) color ei with c where c is any color occurring on an edge in Hi−1 incident

with xi. In case (ii) color ei with 2. In case (iii): color ei with 1 if there is an edge colored 1

in Hi−1 incident with xi or yi; otherwise color ei with 2 if there is an edge colored 2 in Hi−1

incident with xi or yi; and if ei is still uncolored then color it with 0 (note that in this case

each of xi and yi must be incident with edges colored 0 in Hi−1).
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8.3 Further Remarks

Companion results for Theorem 8.1.2 and Theorem 8.2.1 follow easily for the case when

G is connected, but not necessarily simple. In this section, it is assumed that edges join two

distinct vertices; so loops are not described as edges.

Theorem 8.3.1. Suppose G is a connected graph (possibly with loops and multiple edges)

such that the underlying simple graph Gu has a vertex-equalized k-edge-coloring. Then G has

a vertex-equalized k-edge-coloring.

Proof. For each multiple edge e = {u, v} in G, color e with c ∈ Zk if {u, v} in Gu is colored

c. For each loop l at a vertex w, color l with c ∈ Zk if c is the color of an edge in Gu that is

incident with w.

Corollary 8.3.2. Suppose G is a connected graph (possibly with loops and multiple edges).

Then G has a vertex-equalized 2-edge-coloring if and only if G 6= K2.

Proof. Clearly K2 has no vertex-equalized 2-edge-coloring. To prove sufficiency let G be

connected and G 6= K2. Then in view of Theorems 8.1.2 and 8.3.1 we can assume that

Gu = K2. If G has any loops then color all loops with 0, and all edges with 1. If G has no

loops, then color one edge with 0, and the remaining edges with 1.

Corollary 8.3.3. Suppose G is a connected graph (possibly with loops and multiple edges).

Then G has a vertex-equalized 3-edge-coloring if and only if G /∈ {S2, K2, 2K2}.

Proof. Clearly S2, K2 and 2K2 have no vertex-equalized 3-edge-coloring. To prove sufficiency

let G be connected and G 6= S2, K2, 2K2. Then in view of Theorems 8.2.1 and 8.3.1 we can

assume that Gu = K2 or Gu = S2. Suppose Gu = K2. Then there are at least 3 edges in G.

Color one such edge with 0, one with 1, and color all the other edges and loops in G with

2. Suppose Gu = S2. Let {x, y} and {y, z} be the edges in Gu. If G has a loop, then color

all loops in G with 0, all edges that join x to y with 1, and all edges that join y to z with 2.
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If G has no loops, then G has at least three edges. Color one edge with 0, one edge with 1,

and the remaining edges with 2.

Note that a generalization of Corollary 8.3.2 and Corollary 8.3.3 for disconnected graphs

does not seem to be easy to obtain. For example, to settle the case with two colors (see

Corollary 8.3.2) such a result would require the classification of all graphs G for which all

vertex-equalized 2-edge-colorings satisfy ν0(G) = ν1(G), since the graph consisting of two

components G and K2 would have no vertex-equalized 2-edge-coloring.

Also note that extending Theorem 8.1.2 and Theorem 8.2.1 to edge-colorings with four

or more colors would require a different approach. This is because the idea of taking a

spanning subgraph of a graph G, finding a vertex-equalized k-edge-coloring of this subgraph

and then completing this coloring to a vertex-equalized k-edge-coloring of G by coloring a

single edge at a time rarely works if k ≥ 4. On the other hand, for a graph G that has many

edges it is not difficult to see that one can take a vertex-equalized 3-edge-coloring of G and

then recolor some of the edges in G with a new color to get a vertex-equalized 4-edge-coloring

of G. Another approach for dense simple graphs would be to somehow find k edge-disjoint

spanning subgraphs (for example, use Dirac’s Theorem [13] k times to find k hamiltonian

cycles in a graph on n vertices with δ ≥ 2(k − 1) + n/2, coloring the edges in the ith such

subgraph with color i and all the other edges with any color to obtain a vertex-equalized

k-edge-coloring in which νi = n for 1 ≤ i ≤ k). Nevertheless, new ideas will be needed to

settle the problem in general.

Finally the authors would like to note that an interesting related problem is to find the

spectrum of νc(G) among all vertex-equalized k-edge-colorings of a graph G; that is, find

N(G) = {νc(G) | c ∈ Zk, G has a vertex-equalized k-edge-coloring with colors in Zk}.
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