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Abstract 

Spacecraft relative motion dynamics, guidance, navigation, and control have been 

studied extensively in the last decade or more owing to the growing interest in proximity 

operations and formation flying. This dissertation focuses on the control and navigation 

aspects of spacecraft relative motion by exploring two problems.  

The first problem addresses the control of spacecraft relative motion from a 

pursuit-evasion game perspective. This problem is formulated as a two-player zero-sum 

differential game. The Euler-Hill reference frame is used to describe the dynamics of the 

game. The goal is to derive control laws which form a saddle point solution to the game. 

Both spacecraft use continuous-thrust engines. The linear quadratic differential game 

theory is applied to derive control laws for a linear pursuit-evasion game. The state- 

dependent Riccati equation method is applied to extend the linear quadratic differential 

game theory to derive control laws for a nonlinear pursuit-evasion game. Contributions of 

this work are development of a state-dependent coefficient model for the game dynamics 

using the nonlinear spacecraft relative motion equations and derivation of nonlinear 

pursuit-evasion control laws using this model, the efficacy of which is found to be 

superior to that of the linear control laws. 

The second problem addresses improving the observability of the spacecraft 

relative-motion state when nonlinear angles-only measurements are used and one of the 

spacecraft is maneuvering for rendezvous. Results in the literature have shown that the 

linear homogeneous spacecraft relative motion is unobservable when angles-only 
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measurements are used. Results have also shown that the linear spacecraft relative motion 

can be observable when one of the spacecraft undergoes either impulsive or continuous-

thrust maneuvers. This dissertation further explores the continuous-thrust feedback 

control of spacecraft relative motion when an angles-only navigation model is used for 

state estimation. A typical approach to state feedback control problems when full state 

knowledge is not available is to separate control and estimation: estimate the state using 

noisy measurements and implement the control law using the state estimate. Whereas for 

linear systems, control and estimation are separable, this may not be the case for systems 

involving nonlinearities. In such systems, control input in addition to affecting the system 

state also affects the observability of the state and hence affecting the accuracy of its 

estimate. This is called the dual effect of control.  

The dual effect is found in the control of spacecraft relative motion when angles-

only measurement model is used for state estimation. Two approaches to address the dual 

effect are explored. The first approach is the linear quadratic dual control method 

described in the literature and the second approach is the information-weighted LQG 

control method presented here as a novel contribution. Both approaches have been found 

to address the dual effect successfully and provide observability. The contribution of this 

work is the successful application of a dual control method and a new LQG control 

approach to gain observability of the spacecraft relative motion when angles-only 

measurements are used and one of the spacecraft undergoes continuous-thrust maneuvers 

for rendezvous.    
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CHAPTER 1 

INTRODUCTION 

 The study of spacecraft relative motion has provoked great interest for many 

years. Spacecraft relative motion refers to the study of motion of one spacecraft (or 

multiple spacecraft) with respect to another spacecraft that is designated as the 

chief/target. The spacecraft whose relative motion is of interest is designated as the 

deputy/chaser. An understanding of spacecraft relative motion is critical for applications 

such as spacecraft rendezvous and formation flying. Rendezvous operations have played 

a key role in many space programs such as Gemini, Apollo, and Space Shuttle. Today 

there is a growing interest in formation flying missions and associated dynamics, 

guidance, navigation, and control challenges. These missions are driven by commercial 

and military applications as well as scientific objectives such as Earth surveillance, 

remote sensing, stellar imaging, astrometry, space interferometry etc. Some of the 

formation flying missions include ESA’s CLUSTER, PRISMA, and PROBA-3 and joint 

ESA/NASA missions such as GRACE and LISA.
1
  

 In this dissertation two problems related to spacecraft relative motion are 

explored. The first problem studies the control of spacecraft pursuit-evasion games from 

a differential-game-theory perspective. This problem is motivated by a number of 

potential applications of differential game theory to orbital problems. Examples are 

modeling the interaction between hostile space assets such as spy satellites, space 

situational awareness such as collision avoidance, modeling uncertainty in the motion of 
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tumbling objects and so on. Linear and nonlinear control laws are derived using the linear 

and nonlinear equations of spacecraft relative motion, respectively. The linear quadratic 

differential game theory is applied to derive linear control laws. The state-dependent 

Riccati equation method is applied to extend the linear quadratic differential game theory 

to derive nonlinear control laws. These laws are tested and compared in various scenarios 

to demonstrate the superior efficacy of the nonlinear control laws.        

 The second problem is to study the range observability issue of spacecraft relative 

motion when angles-only navigation is used. This problem is motivated by the 

autonomous spacecraft rendezvous missions possibly involving uncooperative spacecraft. 

Traditional spacecraft proximity operations use large and expensive on-board sensors in 

addition to ground support to generate range as well as angles information. Autonomous 

proximity operations involve smaller spacecraft and require small, inexpensive on-board 

sensors such as optical cameras, which may be used to generate angles information but 

have difficulty generating range information. Previous research in the literature has 

shown that range information can be generated provided one of the spacecraft is 

thrusting. This dissertation further studies the continuous-thrust control of spacecraft 

relative motion to improve range observability when angles-only navigation is used.  

 The linear quadratic Gaussian control method is implemented for control of 

spacecraft relative motion when both linear as well as nonlinear measurement models are 

used. It is demonstrated that the control and estimation processes are decoupled when a 

linear measurement model is used, whereas they are coupled when the nonlinear angles-

only measurement model is used. This coupling results in the failure of the linear 
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quadratic Gaussian control method when the state weighting in the performance criterion 

is high.     

 Two approaches are explored and successfully applied to address this failure. The 

first approach, an existing one in the dual control theory literature, implements a linear 

quadratic dual control strategy such that the control action consists of two parts. One 

control action attempts to regulate the state while the other attempts to reduce the 

uncertainty in the state estimate. The second approach, a new one explored in this 

dissertation, implements an information-weighted linear quadratic Gaussian control in 

which the state weighting is not constant but is dependent on the accuracy of the state 

estimate. 

           Chapter 2 presents a review of basic orbital mechanics and spacecraft relative 

motion dynamics. Chapter 3 presents a review of optimal control problems, differential 

game theory, the state-dependent Riccati equation method for control of nonlinear 

systems, and sequential state estimation algorithms. Chapter 4 discusses the problem of 

spacecraft pursuit-evasion games. In Chapter 4, first relevant literature is reviewed 

followed by the description of the problem and then results are presented. Chapters 5 and 

6 discuss the problem of range observability in spacecraft relative motion when angles-

only navigation is used. In Chapter 5, first relevant literature is reviewed. The 

implementation of the linear quadratic Gaussian control method for control of spacecraft 

relative motion is discussed for both linear as well as nonlinear measurement models. In 

Chapter 6, the linear quadratic dual control approach and the information-weighted linear 

quadratic Gaussian control approach are discussed. Finally, Chapter 7 presents 

contributions and concluding remarks.  
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CHAPTER 2 

ORBITAL MECHANICS 

Celestial mechanics is the study of motion of celestial objects. Orbital mechanics 

applies the principles of celestial mechanics to describe the motion of spacecraft. This 

chapter first focuses on the basic principles of orbital mechanics which describe the 

motion of a spacecraft relative to the Earth. Later, these principles are used to describe 

the relative motion of two spacecraft in neighboring orbits around the Earth. 

BASIC PRINCIPLES OF ORBITAL MECHANICS  

Kepler’s Laws of Planetary Motion   

Danish astronomer Tycho Brahe observed the motion of planets and stars. Kepler, 

a mathematician, studied Brahe’s observational data and formulated his laws of planetary 

motion. In 1609, Kepler published his first two laws. In 1619, Kepler published his third 

law. Kepler’s three laws are stated below.
2
    

1. The orbit of each planet is an ellipse with the Sun at one focus. 

2. The line from the Sun to a planet sweeps out equal areas inside the ellipse in equal 

lengths of time. 

3. The square of the period of a planet is proportional to the cube of its mean 

distance from the Sun.                                                                                                       

Kepler’s first two laws are depicted in Figure 2.1. The planet’s orbit around the Sun is an 

ellipse with the Sun at one focus while the other focus remains empty. The shaded 

regions are traced in equal amounts of time, demonstrating Kepler’s second law. Kepler’s  
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Figure 2.1: Kepler’s Laws
3 

laws provide only an empirical description of planetary motion. Their mathematical 

explanation was provided by Newton’s laws. 

Newton’s Laws  

In 1687, Newton introduced his three laws of motion which form the foundation 

of classical mechanics. These laws are stated below.
2
  

1. Every body continues its state of rest or of uniform motion in a straight line unless 

it is compelled to change that state by forces impressed upon it.  

2. The rate of change of momentum is proportional to the force impressed and is in 

the same direction as that force.  

3. To every action there is always opposed an equal reaction.  

In addition to the laws of motion, Newton also formulated the law of universal 

gravitation.
2
 According to this law, any two bodies attract one another with a force 

proportional to the product of their masses and inversely proportional to the square of the 
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distance between them. Newton’s second law of motion along with the law of universal 

gravitation forms the basis of mathematics of spacecraft orbits.  

Two-Body Problem 

The two-body problem describes the motion of a spacecraft around a planet. 

Figure 2.2 depicts the two-body problem. 

                                  Y 

                                                  m1                         

                                                            r  

            r1                                                  m2                  

                                                                       r2 

                                                                                                                       X                                                                                                                       

                                                                                                    

               Z  

Figure 2.2: Two-Body Problem 

Newton’s second law can be described mathematically as follows. 

        
 

(2.1) 

Here, F, m, and a represent the forces acting on a body, the mass of the body, and the 

acceleration of the body respectively. Consider the motion of two point masses in an 

inertial coordinate system XYZ. According to Newton’s law of universal gravitation, 

these masses attract each other with a force given by   
     

  
. Here, G is the universal 

gravitational constant,   and    are the masses of two bodies, and r is the distance 

between their center of masses. The equation of motion for each mass can be written in 

vector form as follows.  
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   ̈  
     

  
   

 

 

(2.2) 

   ̈   
     

  
  

 

 

(2.3) 

Here, r represents the relative motion of the bodies given by         . The relative 

acceleration of the bodies is given by:   

 ̈   ̈   ̈   
        

  
   

 

 

(2.4) 

Define the gravitational parameter   such that           . Often when calculating 

the gravitational parameter, the mass of one of the bodies will be negligible compared to 

the other such as the mass of a spacecraft compared to that of the Earth. If    is the mass 

of the Earth and    is the mass of a spacecraft then      . The two-body equation of 

motion then can be written in the familiar form as follows. 

 ̈   
 

  
   

 

 

(2.5) 

Classical Orbital Elements 

 In order to describe the position of a spacecraft in an orbit, a coordinate system 

must be chosen. One choice is a Cartesian system known as the Earth centered inertial 

(ECI) coordinate system shown in Figure 2.3. In this system, the fundamental plane is the 

equatorial plane and the origin is located at the center of the Earth. The X axis is directed 

along the vernal equinox, the Z axis is normal to the equatorial plane directed along the 

geographic North Pole, and the Y axis lies in the equatorial plane completing the right- 

handed orthogonal triad. Using the ECI system, a spacecraft’s state can be completely 

described by six independent parameters: position         and velocity   ̇  ̇  ̇ .     

 Visualizing a spacecraft’s orbit described in the ECI system can be difficult 

sometimes. Therefore, it is often advantageous to choose another set of coordinates called 
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Figure 2.3: Earth Centered Inertial System and Orbital Elements
4 

the classical orbital elements. When using the orbital elements, five of the six parameters 

needed to describe a spacecraft’s Keplerian orbit state are constant and represent the size, 

shape, and orientation of the orbit. The sixth parameter represents the motion along the 

orbit. The orbital elements are depicted in Figure 2.3 and are briefly described below.  

1. Semi-major axis (a) describes the size of the ellipse. 

2. Eccentricity (e) describes the shape of the ellipse. 

3. Inclination (i) is the angle between the orbital plane and the equatorial plane. 

4. Right ascension of the ascending node (Ω) is the angle from the vernal equinox to 

the point on the equator where the spacecraft makes its south to north crossing. 

5. Argument of Perigee (ω) is the angle from the ascending node to perigee which is 

the closest point on the ellipse from the focus. 

6. True anomaly (ν) is the angle between spacecraft’s current position in the orbit 

and perigee.      
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The orbital elements contain the same information as the position and velocity vectors at 

a particular time. It is therefore possible to transform from one set of coordinates to the 

other.
5
  

Orbit Equation 

In a polar coordinate system   ̂   ̂   ̂   centered at   , the position of the 

spacecraft is given by     ̂ , and the velocity is given by    ̇   ̇ ̂    ̇ ̂ . The 

angular momentum is given by the following.  

         ̇ ̂  

 

(2.6) 

The orbital motion lies in a plane perpendicular to h which is constant. Taking the cross 

product of both sides of Equation (2.5) by h gives the following.
10

  

 ̈    
  

  
    

 

  
     

 

 

 

      

  
  

 

  
(
 

 
) 

 

 

(2.7) 

Integrating both sides of Equation (2.7) gives the following.
2 

    
 

 
     

 

(2.8) 

Here,    is the constant of integration and e is the eccentricity vector. The eccentricity 

vector points towards perigee. The magnitude of the eccentricity vector is given by the 

following. 

       
 

  
            

 

  
          

 

 

(2.9) 

Using the properties of cross product,        and                , Equation 

(2.9) can be written as shown below. 
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(2.10) 

Define   
  

 
 and    

 

 
 

  

 
    where p is called the parameter. From Equation (2.10), 

the parameter is related to a and e by the following. 

  
  

 
         

 

 

(2.11) 

The total energy of the system is related to a by the following. 

  

 
 

 

 
  

 

  
 

 

 

(2.12) 

The kinetic energy is given by 
  

 
, the potential energy is given by  

 

 
, and  

 

  
 is the 

energy constant. Equation (2.12) can be written as the energy integral or the vis-viva 

equation. 

    (
 

 
 

 

 
) 

 

 

(2.13) 

Solving Equation (2.8) for e and taking the dot product with the position vector gives the 

following. 

    
 

 
(     

 

 
)    

 

 

 

       
 

 
           

 

 

       
  

 
   

 

 

(2.14) 

Solving Equation (2.14) for r and substituting for p gives the orbit equation. 

   
 

       
 

 

(2.15) 
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Orbital Position as a Function of Time  

The orbit equation expresses the position as a function of true anomaly. To 

express position as a function of time, true anomaly needs to be expressed as a function 

of time. For this purpose, two new terms of mean anomaly and eccentric anomaly are 

introduced.
5
 The mean anomaly,  , is defined as a function of time as given below. 

          

 

(2.16) 

Here,   is the mean motion of the orbit given by   
  

 
, T is the period of the orbit given 

by     √
  

 
, and    is a constant of integration known as the time at perigee passage. 

The eccentric anomaly,  , is depicted in Figure 2.4. 

 

                                            Figure 2.4: Eccentric Anomaly
6
 

The mean anomaly is related to the eccentric anomaly by the Kepler’s equation given 

below.  

          

 

(2.17) 

In order to solve for E, the Kepler’s equation needs to be solved using one of the iterative 

methods such as the Newton-Raphson method. Finally, the eccentric anomaly is related 

to the true anomaly as follows. 
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 √

   

   
   

 

 
 

 

 

(2.18) 

Equations (2.16), (2.17), and (2.18) can be used for the transformation between time and 

true anomaly.       

SPACECRAFT RELATIVE MOTION 

 While the two-body equation of motion describes the motion of a spacecraft 

relative to the Earth, it cannot be used directly to describe the relative motion between 

two spacecraft in neighboring orbits around the Earth. These equations of motion will 

now be derived using the two-body equation of motion. The spacecraft are assumed to be 

in Keplerian orbits. The equations of motion are derived in the homogeneous form but 

can be written in control-affine form if control accelerations are present.      

Nonlinear Equations of Spacecraft Relative Motion 

Recall that the spacecraft relative motion refers to the study of motion of one 

spacecraft (or multiple spacecraft) with respect to another spacecraft which is designated 

as the chief/target. The spacecraft whose relative motion is of interest is designated as the 

deputy/chaser. The orbit of the chief around the Earth is the reference orbit for describing 

the relative motion of a deputy with respect to the chief. Thus, the chief may not have to     

be a physical object in an orbit around the Earth. The reference orbit could be any orbit 

around the Earth. The equations of spacecraft relative motion are described in a Cartesian 

coordinate system known as the Euler-Hill (EH) frame depicted in Figure 2.5. 

The EH reference frame is a local-vertical local-horizontal (LVLH) rotating 

reference frame centered at the chief in a reference orbit around the Earth. The x axis is 

directed along the instantaneous radius vector (with respect to the Earth) of the chief.  
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                                                                                  z            y 

                                                                                                     Deputy                                               

                                             rd                                ρ                                                               

                                                                                                           x                                                                                        

                                Earth                      rc               Chief                                                                                                                                                                                   

 

    Reference Orbit 
Figure 2.5: Euler-Hill Reference Frame 

The z axis is normal to the reference orbital plane and is positive in the direction of the 

angular momentum vector. The y axis completes the right-handed orthogonal triad. The x 

and y directions correspond to the in-plane motion and the z direction corresponds to the 

out-of-plane motion. The transformation matrix for converting a vector from the ECI 

frame to one in the LVLH frame can be found in Reference 1.   

The inertial chief position is expressed through the vector   , while the deputy 

position is given by   . The relative orbit position vector is given by   and can be 

expressed in the LVLH reference frame as   [     ] . The relative orbit is described in 

terms of   and the vector components are taken in the chief LVLH frame. To derive the 

relative equations of motion in the chief LVLH frame, the position of the deputy 

spacecraft is given by the following. 

               ̂    ̂    ̂   
 

(2.19) 

The angular velocity and acceleration of the LVLH frame with respect to the ECI frame 

are given by    ̇ ̂  
 

   
 ̂ and    ̈ ̂   

  ̇  ̇

  
 ̂. Here, h is the angular momentum of 

the chief orbit. Taking two derivatives of Equation (2.19) with respect to the ECI frame, 

the deputy acceleration vector is given by the following.      

 ̈   ̈                  ̇   ̈   

 

(2.20) 
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The chief’s position in the LVLH frame can be written as       ̂. The chief’s 

acceleration vector can be written as the following.  

 ̈   
 

   
    

 

   
   ̂   

 

   
 ̂ 

 

 

Substituting for  ̈ ,  ,  , and    in Equation (2.20) gives the following. 

 ̈   
 

   
 ̂   ̈ ̂  (  ̂    ̂    ̂)   ̇ ̂  ( ̇ ̂  (  ̂    ̂    ̂))                     

 

 

                          ̇ ̂    ̇ ̂   ̇ ̂   ̇ ̂    ̈ ̂   ̈ ̂   ̈ ̂  
 

 

       
 

   
 ̂   ̈  ̂   ̈  ̂   ̇   ̂   ̇   ̂    ̇ ̇ ̂    ̇ ̇ ̂   ̈ ̂   ̈ ̂   ̈ ̂                    

 

 

    ( 
 

   
  ̇    ̈    ̇ ̇   ̈)  ̂    ̈   ̇     ̇ ̇   ̈  ̂   ̈ ̂                  

 

(2.21) 

The acceleration of the deputy is given by  ̈   
 

  
    where    [          ] . 

Equating coefficients in Equation (2.21) gives the following nonlinear equations of 

relative motion (NERM). 

 ̈   ̇    ̈    ̇ ̇  
 

   
 

 

   
       

 

 ̈    ̈   ̇     ̇ ̇  
 

   
  

(2.22) 

 ̈   
 

   
  

 

If [       ̇  ̇  ̇]  is the state vector, then the NERM can be written in the state space form 

as follows. 

 ̇       
 

(2.23) 

A sufficient condition for periodic solutions to the NERM can be derived by satisfying 

the energy matching criterion on the chief’s and deputy’s orbit around the Earth.           
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The derivation of the constraint on the initial condition to satisfy the energy matching 

criterion can be found in Reference 1.                  

Linear Equations of Spacecraft Relative Motion 

The NERM are valid for arbitrarily large separations and eccentric chief orbits. If 

the relative orbit coordinates (x, y, z) are small compared to the chief orbit radius   , then 

Equation (2.22) can further be simplified by linearization about small separations 

between the chief and the deputy. The deputy’s radius can be approximated by neglecting 

the higher order terms.       

   √                √  
  

  
 

        

   
   √  

  

  
 

 

 

(2.24) 

Using the binomial theorem, the term 
 

  
  can be expanded in terms of   . Retaining only 

the first order terms gives the following.  

 

   
 

 

(  √  
  
  

)

  
 

   
(√  

  

  
)

 
 
 

 
 

   
(  

  

  
) 

 

 

 

(2.25) 

Equation (2.25) is used to approximate the deputy’s acceleration. 

 
 

   
    

 

   
[
    

 
 

]   
 

   
(  

  

  
) [

    
 
 

]   
 

   
[
     

 
 

] 

 

 

(2.26) 

Using Equation (2.26), Equation (2.22) can be linearized for small separations between 

the chief and the deputy. The resulting equations are the linearized equations of relative 

motion (LERM) given as follows.  
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 ̈  ( ̇   
 

   
)    ̈    ̇ ̇ 

 

 ̈    ̈  ( ̇  
 

   
)     ̇ ̇ 

(2.27) 

 ̈   
 

   
  

 

The in-plane and out-of-plane motion described by the LERM is decoupled. The LERM 

can be written in the state space form as follows. 

[
 
 
 
 
 

 

 ̇
 ̇
 ̇
 ̈
 ̈
 ̈

 

]
 
 
 
 
 

 

[
 
 
 
 
 
 
 
 

 

      
      
      

 ̇   
 

   
 ̈     ̇  

  ̈  ̇  
 

   
    ̇   

   
 

   
   

 

]
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 

 

 
 
 
 ̇
 ̇
 ̇

 

]
 
 
 
 
 

 

 

 

 

 

 

 ̇               
 

(2.28) 

The LERM are time varying as   ,  ̇, and  ̈ vary with time. For elliptic orbits, all these 

quantities are time-periodic with the orbital period T.  

Initial conditions corresponding to periodic solutions to the LERM can be derived 

by following the similar procedure as used for the NERM. Solutions to the LERM are 

available; however, they require a coordinate scaling and a change in independent 

variable from time to true anomaly. After the coordinate scaling and the change in the 

independent variable, the LERM are transformed into the well-known Tschauner-Hempel 

(TH) equations.
7
 In this dissertation, the LERM are used to represent the linearized 

relative dynamics when the chief orbit is elliptic. Therefore, the TH equations are not 

discussed here. A detailed discussion of the TH equations and their solutions can be 

found in Reference 1.        



17 

 

Hill-Clohessy-Wiltshire Equations 

While studying spacecraft rendezvous, Clohessy and Wiltshire
8
 published one of 

the most frequently used equations of spacecraft relative motion. These equations are 

frequently called Hill-Clohessy-Wiltshire (HCW) equations, as Hill
9
 in 1878 was the first 

to linearize a set of equations to describe the motion of the Moon relative to the Earth. 

Assuming the chief orbit to be circular (e = 0), the LERM reduce to the HCW equations 

given below. 

 ̈          ̇    
 

 

 ̈     ̇    
 

(2.29) 

 ̈        
 

 

Recall that n represents the mean motion of the chief orbit. The HCW equations are time-

invariant and can be written in the state space form as follows. 

[
 
 
 
 
 

 

 ̇
 ̇
 ̇
 ̈
 ̈
 ̈

 

]
 
 
 
 
 

 

[
 
 
 
 
 

 

      
      
      

         
        
        

 

]
 
 
 
 
 

 

[
 
 
 
 
 

 

 
 
 
 ̇
 ̇
 ̇

 

]
 
 
 
 
 

 

 

 

 

 

 

 ̇           
 

(2.30) 

The homogeneous HCW equations have a closed form solution given in Equation (2.31), 

where,       and       represent         and         respectively. 

     

[
 
 
 
 
 
 
 
 
 

 

           
      

 

 

 
 

       

 
 

               
 

 
 

       

 

       

 
    

         
     

 
                        

                                 
                 

 

]
 
 
 
 
 
 
 
 
 

      

 

 

 

 

 

(2.31) 
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The in-plane and out-of-plane motion described by the HCW equations is 

decoupled. The out-of-plane solution is periodic and takes the form of a harmonic 

oscillator with the amplitude of its terms dependent on its initial position and velocity. 

The state matrix corresponding to the in-plane equations has eigenvalues 0, 0, and ±in, 

resulting in periodic terms and secular terms. The secular terms cause a drift along y 

direction which grows linearly with time. For a periodic solution, the secular drift term 

can be eliminated by enforcing the following constraint. 

 ̇             
 

(2.32) 

The accuracy of the HCW equations is limited by a number of simplifying 

assumptions made during their derivation, such as small separation, Keplerian two-body 

motion, and circular chief orbit around the Earth. Despite their limitations, however, the 

HCW equations are useful for controller design and their periodic solutions offer basic 

reference trajectories for a controller to track during formation flying in a near-circular 

orbit. 

Orbital Element Difference Description  

Instead of describing the relative orbit in terms of the Cartesian state vector x 

defined in the EH frame, an alternative way to describe it is in terms of the orbital 

element difference vector. An orbital element vector is defined as follows. 

  [           ]  

 

 

The orbital element difference vector is given as follows.  

         [                 ]  

 

 

(2.33) 
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Here,    and    are the orbital element vectors for the deputy and the chief. There exists 

a linear mapping between x and   .
10

 For this mapping, in order to avoid numerical 

difficulties, the orbital element vector   is defined as follows.        

  [              ]  

 

 

Here,        is the argument of latitude and    and    are defined as follows.   

        ,              
 

 

The orbital element difference vector is given as follows. 

         [                   ]  

 

(2.34) 

The linear mapping between   and    is     

          

 

(2.35) 

The mapping matrix   is a function of the chief’s orbital element vector    and can be 

found in Reference 10.    
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CHAPTER 3 

OPTIMAL CONTROL, DIFFERENTIAL GAMES, AND ESTIMATION 

 This chapter reviews basic principles of optimal control theory, differential game 

theory, and estimation algorithms. These principles are later applied to the research 

problems explored in Chapters 4 and 5. First, based on the basic principles of optimal 

control theory, the linear quadratic regulator (LQR) control law is derived. Differential 

game theory is an extension of optimal control theory. Thus, the linear quadratic 

differential game control laws are derived next by following the same procedure used for 

deriving the LQR control law. The state-dependent Riccati equation method which 

extends the LQR method to control of nonlinear systems is discussed next. Finally, state 

estimation algorithms are discussed.             

OPTIMAL CONTROL PROBLEM 

Optimal control problems arise in many branches of engineering including 

aerospace, chemical, and electrical engineering. In aerospace engineering, optimal 

control theory has applications in areas such as trajectory optimization, attitude control, 

and vehicle guidance. As defined by Kirk
11

, the objective of an optimal control problem 

is to determine the control signals that will minimize (or maximize) some performance 

index and at the same time cause a process to satisfy the physical constraints. Possible 

performance indices include time, fuel consumption, or any other parameter of interest in 

a given application. 
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 There are three common approaches to solve optimal control problems. The first 

approach is that of deriving the first-order necessary conditions for optimality using the 

calculus of variations and Pontryagin’s minimum principle. This approach leads to a two-

point boundary value problem (TPBVP). The second approach is dynamic programming, 

which requires solving the Hamilton-Jacobi-Bellman (HJB) equation which is a partial 

differential equation (PDE). The third approach is direct numerical methods in which the 

continuous-time optimal control problem is transcribed directly into a nonlinear 

programming problem (NLP) without formulating an alternate set of optimality 

conditions. The resulting NLP can be solved numerically by various algorithms. 

Except for special cases, the TPBVP and the HJB equation cannot be solved 

analytically and numerical methods must be employed. Commonly used approaches for 

solving the TPBVP are shooting, multiple shooting, finite difference, and collocation. 

Numerically solving the HJB equation is a challenging task and approaches like series 

solution methods have been explored for this purpose. However, in this dissertation, only 

the optimal control problems of linear quadratic (LQ) nature, where the dynamics are 

linear and the performance index is quadratic, are considered. An advantage of LQ 

problems is that they can be solved analytically. In case of LQ problems, both the 

TPBVP and the HJB equation reduce to solving a differential Riccati equation which can 

be solved numerically without much difficulty.            

First-Order Necessary Conditions for Optimality 

The optimal control problem is to find an optimal control input    for a set of 

generally nonlinear, coupled differential equations of the form 

  ̇                   [     ] 
 

(3.1) 



22 

 

subject to the boundary conditions 

                       
 

(3.2) 

and the inequality path constraints  

                 
 

(3.3) 

such that the associated cost function 

               ∫                 

  

  

 

 

 

(3.4) 

is minimized. Here,         is the state and         is the control. The first-order 

necessary conditions for the solution of the problem given in Equations (3.1)-(3.4) are 

derived by using the calculus of variations. Here, these conditions are directly given but 

their derivation can be found, for example, in Reference 11. Define the Hamiltonian with 

  as Lagrange multipliers or co-states as follows.      

                                                    
 

(3.5) 

The co-states represent the sensitivity of the cost to the states. The first-order necessary 

conditions are given as follows. 

 ̇  
  

  
 

 

 

 ̇   
  

  
 

 

 

(3.6) 

  

  
   

 

 

Generally, the boundary conditions for states and co-states are split leading to the 

TPBVP. The optimal control law    can be written as follows.   

         
    

                

 

(3.7) 
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Hamilton-Jacobi-Bellman Equation 

The HJB equation which is an alternative to the first-order optimality conditions   

is stated here. Its derivation can be found in Reference 11. For the problem given in 

Equations (3.1)-(3.4), let            be the optimal cost function. Define the Hamiltonian 

as follows. 

 (          
   

  
  )                 [

   

  
]
 

               

 

 

 

(3.8) 

 (       (     
   

  
  )  

   

  
  )     

    
 (          

   

  
  ) 

 

 

The HJB equation is given as follows. 

   

  
  (       (     

   

  
  )  

   

  
  )    

 

 

(3.9) 

The boundary condition is as follows. 

                         
 

(3.10) 

LINEAR QUADRATIC REGULATOR CONTROL LAW 

Derivation Using the First-Order Necessary Conditions 

For the LQ optimal control problem, the state equation and the cost function are 

given as follows. 

 ̇                 
 

(3.11) 

  
 

 
              

 

 
∫                         

  

  

 

 

 

(3.12) 

Here,    and   are symmetric positive semi-definite matrices, and   is a symmetric 

positive definite matrix. Matrix    represents the weighting on the final state,   
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represents weighting on the state, and   represents weighting on the control. The 

Hamiltonian for this system is as follows.      

                    
 

 
                      

 

 

(3.13) 

The first-order necessary conditions are as follows.  

 ̇  
  

  
       

 

 

 ̇   
  

  
         

 

 

(3.14) 

  

  
          

 

 

From above conditions the control function and the closed-loop dynamics can be written 

as follows.  

          
 

(3.15) 

 ̇             

 

(3.16) 

The system including state and co-state dynamics can be written as follows. 

*
 ̇
 ̇
+  [

        

     ] *
 
 
+ 

 

 

(3.17) 

The above system is linear and a transformation               is proposed. Matrix 

     which is symmetric and positive definite is to be determined. Taking derivative of 

this transformation and using the expression for  ̇ we get the following equation. 

 ̇   ̇    ̇          
 

 

 ̇                          

 

 

( ̇                   )     
 

(3.17) 
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Since       , Equation (3.17) gives the differential Riccati equation (DRE). 

 ̇                                
 

(3.18) 

For a time-periodic A matrix such as         , as     , solution of the DRE is a time-

periodic matrix     . For a constant A matrix such as     , as     , solution of the 

DRE is a constant matrix P. Constant matrix P can be obtained by solving the algebraic 

Riccati equation (ARE) given below.   

                     
 

(3.19) 

Defining           and using     , the optimal control law and the closed-loop 

dynamics can be written as follows.   

       
 

(3.20) 

 ̇          

 

(3.21) 

Derivation Using the HJB Equation  

To use the HJB equation, the Hamiltonian is written as follows.  

 (          
   

  
  )  

 

 
     

 

 
     [

   

  
]
 

        

 

 

(3.22) 

The necessary condition 
  

  
   gives the following. 

  

  
      [

   

  
]    

 

 

(3.23) 

Solving above equation gives the following expression for control. 

        [
   

  
] 

 

 

(3.24) 

Substituting above expression in Equation (3.22) gives the following. 
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 (          
   

  
  )  

 

 
     

 

 
[
   

  
]
 

      
   

  
 

 

 

 

 

                                                  [
   

  
]
 

   [
   

  
]
 

      
   

  
 

 

 

                                                                
 

 
     

 

 
[
   

  
]
 

      
   

  
 [

   

  
]
 

   

 

 

(3.25) 

 

The HJB equation can be written as follows. 

   

  
 

 

 
     

 

 
[
   

  
]
 

      
   

  
 [

   

  
]
 

     

 

 

(3.26) 

From Equation (3.12), the boundary condition is as follows.   

             
 

 
              

 

 

 

Let us guess the following solution for the cost function. 

           
 

 
              

 

 

 

Matrix      which is symmetric and positive definite is to be determined. The partial 

derivatives of above cost function with respect to time and state are as follows. 

   

  
 

 

 
   ̇  

 

 

 

   

  
    

 

 

Substituting above expressions in Equation (3.26) gives the following. 

 

 
   ̇        

 

 
            

 

 
       

 

 

 

 
   ̇  

 

 
      

 

 
       

 

 
            

 

 
       

 

(3.27) 

Since       , Equation (3.27) gives the DRE which is the same as Equation (3.18).  

 ̇                                
 

(3.28) 
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DIFFERNTIAL GAME THEORY 

The two-player spacecraft pursuit-evasion game problem to be explored in this 

dissertation involves two competing players with opposite objectives. This problem can 

be modeled as a two-player zero-sum differential game. Zero-sum differential games 

were first introduced by Isaacs.
12 

The two-player zero-sum differential game problem can 

be considered as an extension of the optimal control problem. Thus, the principles of 

calculus of variations and dynamic programming can also be applied to the differential 

game problem. Particularly, the dynamic programming approach requires solving the 

Hamilton-Jacobi-Isaacs (HJI) PDE.
13

 For LQ problems, the HJI equation also reduces to 

a DRE or an ARE for infinite-horizon problem.
14

   

Hamilton-Jacobi-Isaacs Equation 

The two-player zero-sum differential game problem is to find optimal control 

inputs   
  and   

  for a set of generally nonlinear, coupled differential equations of the 

form 

 ̇   (                  )   [     ] 

 

(3.29) 

such that    minimizes and    maximizes the associated cost function. 

               ∫  (                  )  

  

  

 

 

 

(3.30) 

Here,         is the game state and          and          are the controls of 

the two players. The optimal control laws correspond to a saddle point solution of the 

zero-sum differential game. The saddle point solution is such that if a player deviates 

unilaterally from this solution then this would worsen that particular player’s situation as 

a result of a change contrary to that player’s objective.  
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(3.31) 

Define the Hamiltonian as follows. 

 (                 
   

  
  )   (                  )  [

   

  
]

 

 (                  ) 

 

 

 

 

 (       
       

     
   

  
  )     

     
   
     

 (                 
   

  
  ) 

 

 

(3.32) 

                                                          
     

   
     

 (                 
   

  
  ) 

 

 

The HJI equation is given as follows. 

   

  
  (       

       
     

   

  
  )    

 

 

(3.33) 

The boundary condition is as follows. 

                         
 

(3.34) 

Linear Quadratic Zero-Sum Differential Game 

For the LQ zero-sum differential game problem, the dynamics equation and the 

cost function are given as follows. 

 ̇                           

 

(3.35) 

  
 

 
              

 

 
∫(             

               
          )  

  

  

 

 

 

(3.36) 

The control weighting for two players differs by the scaling factor  . The Hamiltonian for 

this system is as follows.      

 (                 
   

  
  )  

 

 
     

 

 
  

     
 

 
    

     

 

 

 

(3.37) 

                                                        [
   

  
]
 

(            ) 
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The necessary condition 
  

  
   gives the following. 

  

   
       

 [
   

  
]    

 

 

 

(3.38) 

  

   
          

 [
   

  
]    

 

 

Solving above equations gives the following expressions for the controls. 

         
 [

   

  
] 

 

 

 

   
 

  
     

 [
   

  
] 

 

(3.39) 

 

Substituting above expressions in Equation (3.37) gives the following. 

    (                 
   

  
  )  

 

 
     

 

 
[
   

  
]
 

   
    

    

  
   

 

 

 

 

                                             
 

   
[
   

  
]
 

   
    

    

  
 [

   

  
]
 

   

 

 

                                                  [
   

  
]
 

   
    

    

  
 

 

  
[
   

  
]
 

   
    

    

  
 

 

 

 (                 
   

  
  )  

 

 
     [

   

  
]
 

    
 

 
[
   

  
]
 

   
    

    

  
  

 

 

                  
 

   
[
   

  
]
 

   
    

    

  
 

 

 

(3.40) 

The HJI equation can be written as follows. 

   

  
 

 

 
     

 

 
[
   

  
]
 

   
    

    

  
 

 

   [
   

  
]
 

   
    

    

  
 [

   

  
]
 

     

 

 

(3.41) 

From the Equation (3.30) the boundary condition is as follows.   
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Let us guess the following solution for the cost function. 

           
 

 
              

 

 

 

Matrix      which is symmetric and positive definite is to be determined. The partial 

derivatives of above function with respect to time and state are as follows. 

   

  
 

 

 
   ̇  

 

 

 

   

  
    

 

 

Substituting above expressions in Equation (3.41) gives the following. 

 

 
   ̇        

 

 
      

    
    

 

   
     

    
   

 

 
       

 

 

 

 
   ̇  

 

 
      

 

 
       

 

 
      

    
    

 

   
     

    
  

 
 

 
       

 

 

 

(3.42) 

Since       , Equation (3.42) gives the game DRE.  

 ̇             
    

   
 

  
    

    
                 

 

(3.43) 

The game ARE is given below.  

           
    

   
 

  
    

    
       

 

(3.44) 

Equation (3.44) can be written as follows. 

        (   
    

  
 

  
   

    
 )       

 

 

        [    ] [
  
     

]
  

[
  

  
]
 

      

 

 

            
    

        

 

(3.45) 
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Equation (3.45) can be solved using the “care” function in MATLAB
TM

. From Equation 

(3.39), the optimal control laws are given as follows. 

  
        

     

 

  
  

 

  
     

    

 

(3.46) 

 

STATE-DEPENDENT RICCATI EQUATION METHOD 

The solution of a nonlinear optimal control problem or a nonlinear differential 

game problem involves the challenging task of numerically solving the TPBVP or the 

HJB/HJI equation. This has lead researchers to develop methods to obtain near-optimal 

solutions without directly solving the TPBVP or the HJB/HJI equation. One such method 

is the well-known and popular state-dependent Riccati Equation (SDRE) method for 

control of nonlinear systems.
15-21

 The SDRE method employs factorization of the 

nonlinear dynamics into a state vector and state-dependent matrix-valued function. This 

factorization transforms the nonlinear system into a linear-like system that is dependent 

on the current state and is capable of capturing the nonlinear system dynamics. The 

optimal control problem of this linear-like system with a quadratic performance index 

leads to an ARE in terms of the state-dependent matrices. This ARE needs to be solved at 

each point in state space.  

Nonlinear Control Using SDRE Method  

Consider a nonlinear control-affine dynamic system given below.  

 ̇             
 

(3.47) 

In the SDRE method, state-dependent coefficient (SDC) parameterization (also known as 

extended linearization or apparent linearization) is the process of factorizing a nonlinear 

system into a linear-like structure which contains SDC matrices. For a nonlinear system 
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    , under the assumption       , a continuous matrix-valued function      always 

exists such that           . The matrix      is found by mathematical factorization 

and is non-unique for multivariable systems. The control law obtained may be slightly 

sub-optimal. Equation (3.47) can now be written as follows. 

 ̇              
 

(3.48) 

Consider the following cost function for an infinite-horizon problem.  

  
 

 
∫                               

 

  

 

 

(3.49) 

The nonlinear control law is given as follows. 

                    

 

(3.50) 

Matrix      is obtained by solving the following SDRE at each point in state space.  

                                            (3.51) 

Nonlinear Zero-Sum Differential Game Using SDRE Method 

Consider a nonlinear control-affine dynamic system given below.  

 ̇                       

 

(3.52) 

Using SDC parameterization, above system can be written as follows. 

 ̇                           

 

(3.53) 

Consider the following cost function. 

  
 

 
∫(                

                  
             )  

 

  

 

 

(3.54) 

The nonlinear control laws can be given as follows. 

               
       

 

 

      
 

  
        

       
(3.55) 
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Matrix      is obtained by solving the following SDRE at each point in state space.  

                          
       

      
 

  
       

       
     

        

 

 

(3.56) 

Similar to Equation (3.45), above equation can be written as follows. 

                           
       

             

 

(3.57) 

SEQUENTIAL STATE ESTIMATION ALGORITHMS  

State estimation techniques estimate the orbit of a celestial body or a spacecraft 

from measurement sensor data. The simplest state estimation algorithm is the least-

squares method which processes a batch of measurement data and minimizes the sum of 

squares of the residuals. A sequential state estimation algorithm processes measurements 

as they are received.  

Kalman Filter               

The Kalman filter (KF) is a sequential estimation algorithm for linear systems.
22

 

The KF is a minimum mean square error (MMSE) estimator that minimizes mean square 

of the estimation error. The KF is used to estimate the system state vector   consisting of 

state variables such as position, velocity, and any other system parameters. The KF needs 

a system dynamics model and a measurement model. The system dynamics model may 

be inadequate to capture all the dynamics present in a real world case. The KF attempts to 

account for this by adding zero-mean Gaussian white noise w to the model. The strength 

of this noise is captured in the process noise covariance matrix  . Zero-mean Gaussian 

white noise v is also added to the measurement model to account for sensor noise. The 

strength of this noise is captured in the measurement noise covariance matrix  . The KF 

requires that w and v are not correlated. The KF stores the current estimate of the state 
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vector  ̂ and also maintains a state covariance matrix   that represents the uncertainty in 

the estimate and how errors in one state variable co-vary with other state variables. The 

KF needs to be initialized with an estimate of the initial state vector  ̂  and an associated 

state covariance matrix   .  

The KF updates and maintains the state estimate and the state covariance matrix 

with a two-step process. The first step is to propagate the state estimate and the state 

covariance matrix forward in time using the system dynamics model. As the state 

estimate is propagated, it will tend to drift away from the true state. This is due to the 

imperfections in both the initial state estimate and the system dynamics model. The 

propagated state covariance matrix also reflects this reduced accuracy of the state 

estimate. The second step processes any available measurement and updates the state 

estimate and the state covariance matrix. The KF combines the state estimate obtained by 

propagation with the information gained from the measurement to generate a better state 

estimate. When generating the new state estimate, the KF uses the state covariance and 

the measurement noise covariance to weight the estimate towards the more accurate 

source. 

The KF can be derived in a discrete-time form, a continuous-time form, and a 

continuous-discrete form. The KF is not derived here. The derivation can be found in 

Reference 23. The steps to implement the continuous-time KF are as follows.  

Initialize:         ,  ̂      ̂ ,           

  

Model:  ̇            
 
       
 

Gain:          
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Covariance:  ̇                    

 

Estimate:  ̇̂    ̂      [    ̂] 
 

The steps to implement the continuous-discrete KF are as follows.                            

Initialize:         ,  ̂      ̂ ,           

 

Model:  ̇          

 

         

 

Gain:      
   [   

     ]   

 

Update:  ̂ 
   ̂ 

    [     ̂ 
 ] 

 

  
  [     ]  

 
 

 

Propagate:  ̇̂    ̂     

 

 ̇                     

 

Extended Kalman Filter 

The extended Kalman filter (EKF) is a sequential estimation algorithm for 

nonlinear systems. Although not considered optimal, the EKF has been successfully 

applied to many nonlinear problems. The steps to implement the continuous-time EKF 

are as follows.  

Initialize:         ,  ̂      ̂ ,            

  

Model:  ̇             

 
         

 

Gain:         ,   
  

  
|
 ̂
 

 

Covariance:  ̇                   ,   
  

  
|
 ̂
 

 

Estimate:  ̇̂     ̂       [     ̂ ] 
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The steps to implement the continuous-discrete EKF are as follows.                            

Initialize:         ,  ̂      ̂ ,             
 

Model:  ̇             

 

           

 

Gain:      
   [   

     ]  ,   
  

  
|
 ̂ 

 
 

 

Update:  ̂ 
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    [      ̂ 
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  [     ]  

 
 

 

Propagate:  ̇̂     ̂      
 

 ̇          ,   
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CHAPTER 4 

SPACECRAFT PURSUIT-EVASION GAMES 

In a two-player spacecraft pursuit-evasion (PE) game, one spacecraft is the 

pursuer and the other is the evader. Typically, the objective of the pursuer is to 

intercept/rendezvous with the evader and the objective of the evader is to avoid or delay 

the interception/rendezvous. This problem of two competing players with opposite 

objectives can be formulated as a two-player zero-sum differential game. In this chapter, 

the LQ zero-sum differential game results from the previous Chapter are applied to derive 

control laws for an infinite-horizon LQ PE game. The results obtained from the 

application of the SDRE method to the nonlinear zero-sum differential game are used to 

derive control laws for an infinite-horizon nonlinear PE game.   

In almost all of the previous research in spacecraft PE games, spacecraft 

dynamics are described in an Earth-centered reference frame. Using the calculus of 

variations approach, Woodward
24

 and Bohn
25

 derived near-optimal feedback control laws 

while Pontani and Conway
26

 applied a direct numerical method for a saddle point 

solution. Menon and Calise used the feedback linearization method to obtain the solution 

of the spacecraft PE game defined by nonlinear dynamics and quadratic objective 

function.
27  

Kelly et al. used the EH reference frame and used the linear HCW equations to 

describe the dynamics of the spacecraft PE problem.
28

 In Reference 28, however, the 

problem is not set up as a differential game and impulsive thrusts are used for control. 
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Recently, the EH reference frame has been used to describe the dynamics of the 

spacecraft PE game.
29

 In Reference 29, the linear HCW equations are used to describe the 

dynamics and the objective function of both the players is the time to intercept. The 

pursuer tries to minimize the time to intercept while the evader tries to maximize it. The 

game terminates at the interception. Both spacecraft use constant-thrust engines and the 

control is provided by varying the thrust direction. The calculus of variations approach is 

used.  

The novel contribution of this chapter is using the nonlinear spacecraft relative 

motion dynamics to derive the nonlinear PE control laws, the efficacy of which is found 

to be superior to that of the linear PE control laws. In this chapter, the EH reference 

frame is used to describe the game dynamics. Both the pursuer and the evader are 

deputies of the chief. The schematic of a PE game in the EH frame is depicted in Figure 

4.1. Both spacecraft use continuous-thrust engines and the control is provided by varying 

the thrust magnitude and direction. However, the masses of both spacecraft are assumed 

to remain constant throughout the game time interval which is fixed a priori. A perfect 

information structure is assumed.                  

                                                                                  z           y           Pursuer 

                                                                                           ρp                     Evader                                               

                                                                                            ρe                                                               

                                                                                                           x                                                                                        

                                Earth                      rc               Chief                                                                                                                                                                                   

 

    Reference Orbit 
Figure 4.1: PE Game in the EH Frame 
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LINEAR QUADRATIC PURSUIT-EVASION GAME 

An infinite-horizon LQ PE game is considered. The linear dynamics of the 

pursuer and the evader relative to the chief can be described by the LERM. The linear 

game dynamics is the difference between the pursuer dynamics and the evader dynamics.      

The LERM of a deputy with respect to the chief along with control accelerations 

can be written as follows.  
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If [        ]
 
 is the control vector, then above equations can be written in the state space 

form as follows. 
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Thus, the pursuer and the evader dynamics can be written as follows. 

 ̇                       

 

(4.1) 

 ̇                       
 

(4.2) 

Let the game state be        . The game dynamics can then be written as follows. 
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 ̇   ̇   ̇                                            

 

 

 ̇                                 

 

(4.3) 

           

 

 

Each player tries to minimize a cost function which is a quadratic function of the game 

state and the controls of both players. The cost function of the pursuer is given as follows. 

   
 

 
∫(             

               
          )  

 

  

 

 

 

(4.4) 

The cost function for the evader is opposite of that of the pursuer. 

       

 

(4.5) 

The optimal control laws are given as follows. 

  
        

     

 

  
  

 

  
     

    

 

(4.6) 

 

Instead of solving for the periodic solution of  , the symmetric matrix   is obtained by 

solving the following game ARE at each time step. 

            
       

    
   

 

  
    

    
        

 

(4.7) 

This approach solves for a sub-optimal control in elliptic reference orbits. The ARE can 

have a conjugate point on the game time interval, where its solution does not exist (tends 

to infinity). The necessary condition for not having a conjugate point is that the matrix P 

be positive semi-definite throughout the game time interval.
30

 Generally, a sufficiently 

large value of     ensures that the ARE does not have a conjugate point.
31

      In this 

chapter, the value of   is √ . Appropriate values of   depend on the game time interval 

and one may have to decide on a certain value by trial and error.  
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NONLINEAR PURSUIT-EVASION GAME 

An infinite-horizon nonlinear PE game is considered. The nonlinear dynamics of 

the pursuer and the evader relative to the chief can be described by the NERM. The 

NERM of a deputy with respect to the chief along with control accelerations in a control-

affine form can be written as follows.  

 ̈   ̇    ̈    ̇ ̇  
 

   
 

 

   
          

 

 ̈    ̈   ̇     ̇ ̇  
 

   
     

 

 ̈   
 

   
     

 

 ̇             (4.8) 

The pursuer and the evader dynamics can be written as follows. 

 ̇               

 

(4.9) 

 ̇               
 

(4.10) 

The nonlinear game dynamics is the difference between the pursuer dynamics and the 

evader dynamics. 
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(4.11) 

 ̈  ( 
   

   
 

   
   

)          
 

The terms in parenthesis on the RHS of Equation (4.11), unlike the rest of the terms, are 

functions of the states of the pursuer and the evader individually and not the game state. 
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These terms prevent a direct factorization of the nonlinear game dynamics into      .                    

To enable this factorization the terms in parenthesis are multiplied and divided by the 

magnitude squared of the difference between the position vector of the pursuer and the 

evader which is   [                ] . Denoting the terms in parenthesis 

Equations (4.11) by   ,   , and    respectively the game dynamics can be written as 

follows. 
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(4.12) 
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Above equations can be expanded as follows. 
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(4.13) 
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Finally the nonlinear game dynamics can be written in the state space form as follows. 
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(4.14) 
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 ̇                      

Thus, the SDRE method entails factorization or parameterization of the nonlinear 

dynamics into the product of the state vector and a matrix-valued function which depends 

on the state. In so doing, the nonlinearities of the system are fully captured and the 

nonlinear system has a non-unique linear-like structure consisting of SDC matrices. The 

pursuer and the evader minimize the following cost functions respectively. 

   
 

 
∫(             
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(4.15) 

       

 

 

The nonlinear sub-optimal control laws are given as follows. 

            
        

 

      
 

  
     

       

 

(4.16) 

 

The symmetric matrix      is obtained by solving the following ARE at each point in 

state space. 

                
             (   

    
  

 

  
   

    
 )      

   

 

(4.17) 

 

The coefficients of this ARE vary with the given point in state space. The SDRE method 

thus involves solving, at a given point in state space, an algebraic SDRE whose point 

wise stabilizing solution during state evolution yields nonlinear control laws. 

NUMERICAL EXAMPLES 

 MATLAB
TM

 simulations are performed to test and compare the performance of 

the linear and nonlinear control laws. Parameters used in the simulations are given in 

Table 4.1.                                         
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Parameter Value 

   (km)       

       

       

     

      [                          ]  

      [           ]  
Test Case 1 

   (sec)      
            

Test Case 2 
   (sec)       (two periods of the chief orbit) 
             

Table 4.1: Game Simulation Parameters 

Dynamics are propagated forward in time using the fourth-order Runge-Kutta (RK4) 

numerical integration method. A time step of 20 seconds is used. Two test cases are 

considered. In test case 1, the duration of the game is short and high control usage is 

permitted by placing low weighting on the controls. In test case 2, the duration of the 

game is long and high control usage is prohibited by placing high weighting on control. 

Linear Quadratic Pursuit-Evasion Game 

The LERM system matrix          is calculated at every RK4 step (every 5 

seconds), and then the ARE given by Equation (4.7) is solved. The linear control laws are 

given by Equation (4.6). Thus, in the LQ PE game, the control laws are derived using 

linear game dynamics and are implemented using the LERM of the pursuer and the 

evader. 

Test Case 1 

For test case 1, plots of the position vector components of the pursuer and the 

evader state are shown in Figure 4.2. It can be seen that as the game goes on, the pursuer 

converges on the position of the evader. Plots comparing the control vector components 
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of the pursuer and the evader are shown in Figure 4.3. It can be seen that the pursuer 

applies a greater control effort than the evader. A 3-D plot of the position vector 

components of the pursuer and the evader state is shown in Figure 4.4. A 3-D plot of the 

position vector components of the game state is shown in Figure 4.5. 
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Figure 4.2: Test Case 1: LQ PE Game Position Vector Components 
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Figure 4.3: Test Case 1: LQ PE Game Control Vector Components 
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Figure 4.4: Test Case 1: LQ PE Game Pursuer and Evader State in 3-D 

 

Figure 4.5: Test Case 1: LQ PE Game State in 3-D 

Test Case 2 

Similar plots for test case 2 are shown in Figures 4.6, 4.7, 4.8, and 4.9. It can be 

seen that as the game goes on, the pursuer converges on the position of the evader. Also, 

the pursuer needs a greater control effort than the evader. In this case, because of low 

control usage, the orbital dynamics plays a greater role and it can be seen from Figure 4.9 

that the game state trajectory follows a more curved path.     
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Figure 4.6: Test Case 2: LQ PE Game Position Vector Components 
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Figure 4.7: Test Case 2: LQ PE Game Control Vector Components 
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Figure 4.8: Test Case 2: LQ PE Game Pursuer and Evader State in 3-D 

 

Figure 4.9: Test Case 2: LQ PE Game State in 3-D 
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Nonlinear Pursuit-Evasion Game 

The nonlinear game dynamics is propagated forward in time using the fourth RK4 

method. A time step of 20 seconds is used. The SDC matrix         is calculated at 

every RK4 step, and then the SDRE given by Equation (4.17) is solved. The nonlinear 

control laws are given by Equation (4.16). Thus, in the nonlinear PE game, the control 

laws are derived using SDC matrix and are implemented using the NERM of the pursuer 

and the evader. 

Test Case 1 

For test case 1, plots of the position vector components of the pursuer and the 

evader state are shown in Figure 4.10. It can be seen that as the game goes on, the pursuer 

converges on the position of the evader. Plots comparing the control vector components 

of the pursuer and the evader are shown in Figure 4.11. It can be seen that the pursuer 

applies a greater control effort than the evader. A 3-D plot of the position vector 

components of the pursuer and the evader state is shown in Figure 4.12. A 3-D plot of the 

position vector components of the game state is shown in Figure 4.13. 
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Figure 4.10: Test Case 1: Nonlinear PE Game Position Vector Components 
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Figure 4.11: Test Case 1: Nonlinear PE Game Control Vector Components 
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Figure 4.12: Test Case 1: Nonlinear PE Game Pursuer and Evader State in 3-D 

 

Figure 4.13: Test Case 1: Nonlinear PE Game State in 3-D 

Test Case 2 

Similar plots for test case 2 are shown in Figures 4.14, 4.15, 4.16, and 4.17. It can 

be seen that as the game goes on, the pursuer converges on the position of the evader. 

Also, the pursuer needs a greater control effort than the evader. Since the orbital 

dynamics plays a greater role, it can be seen from Figure 4.17 that the game state 

trajectory follows a spiral path. 
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Figure 4.14: Test Case 2: Nonlinear PE Game Position Vector Components 
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Figure 4.15: Test Case 2: Nonlinear PE Game Control Vector Components 
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Figure 4.16: Test Case 2: Nonlinear PE Game Pursuer and Evader State in 3-D 

 

Figure 4.17: Test Case 2: Nonlinear PE Game State in 3-D 

Comparison of the Linear and Nonlinear Control Laws 

It has been demonstrated that the linear control laws perform well when the 

dynamics are linear and the nonlinear control laws perform well when the dynamics are 

nonlinear. A test for the efficacy of the linear control laws could be to see how they 

perform when the dynamics are nonlinear. Three scenarios are considered for 

comparison. In all the three scenarios, the dynamics are nonlinear. Therefore, each player 
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implements the control law using its NERM. In scenario 1, both the pursuer and the 

evader implement the linear control laws. In scenario 2, the pursuer implements the 

nonlinear control law whereas the evader implements the linear control law. In scenario 

3, the pursuer implements the linear control law whereas the evader implements the 

nonlinear control law.        

Test Case 1 

Performances in scenario 1 and scenario 2 are compared first. The performance of 

the pursuer should be better in scenario 2 as the pursuer is using the better controller. 

Plots of the position vector components of the game state are shown below in Figure 

4.18. The nonlinear controller distinguishes itself from the linear one in the beginning of 

the game when the separation is larger. It can be seen that in the beginning of the game, 

the separations in scenario 2 are smaller than those in scenario 1 indicating the fact that 

the pursuer is being more effective in achieving its objective. Figure 4.19 shows the cost 

accumulated by the pursuer over time. It is interesting to note that in the beginning of the 

game the cost accumulated in scenario 2 is higher than that accumulated in scenario 1 and 

as the game goes on the cost accumulated in scenario 2 becomes lower than that 

accumulated in scenario 1. Therefore, to achieve superior efficacy as compared to the 

linear controller, the nonlinear controller initially accepts a higher cumulative cost. 
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Figure 4.18: Test Case 1: Game State Comparison for Scenario 1 and 2 
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Figure 4.19: Test Case 1: Pursuer Cost Comparison for Scenario 1 and 2 

Next, performances in scenario 1 and scenario 3 are compared. The performance 

of the evader should be better in scenario 3 as the evader is using the better controller. 

Plots of the position vector components of the game state are shown below in Figure 

4.20. The same phenomenon of the nonlinear controller distinguishing itself from the 

linear one in the beginning of the game when the separation is larger is observed here. It 

can be seen that in the beginning of the game the separations in scenario 3 are greater 

than those in scenario 1 indicating the fact that the evader is being more effective in 

achieving its objective. Figure 4.21 shows the cost accumulated by the evader over time. 

As in the earlier case, in the beginning of the game the cost accumulated in scenario 3 is 

higher than that accumulated in scenario 1 and as the game goes on the cost accumulated 

in scenario 3 becomes lower than that accumulated in scenario 1. Therefore, to achieve 

superior efficacy as compared to the linear controller, the nonlinear controller initially 

accepts a higher cumulative cost. 
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Figure 4.20: Test Case 1: Game State Comparison for Scenario 1 and 3 
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Figure 4.21: Test Case 1: Evader Cost Comparison for Scenario 1 and 3 

Test Case 2 

Performances in scenario 1 and scenario 2 are compared first. The performance of the 

pursuer should be better in scenario 2 as the pursuer is using the better controller. Plots of the 

position vector components of the game state are shown below in Figure 4.22. In this case, 

the nonlinear controller distinguishes itself from the linear one. Almost throughout the game, 

the separations in scenario 2 are smaller than those in scenario 1 indicating the fact that the 

pursuer is being more effective in achieving its objective. Although at the end of the game 

the game state trajectory in scenario 1 goes to the origin indicating that the pursuer has been 

able to converge on the position of the evader, the game state trajectory in scenario 2 has 

settled quicker than in scenario 1. Figure 4.23 shows the cost accumulated by the pursuer 

over time. In the earlier part of the game, the cost accumulated in scenario 2 is higher than 

that accumulated in scenario 1 and as the game goes on the cost accumulated in scenario 2 

becomes lower than that accumulated in scenario 1. Therefore, to achieve superior efficacy as 

compared to the linear controller, the nonlinear controller initially accepts a higher 

cumulative cost. 
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Figure 4.22: Test Case 2: Game State Comparison for Scenario 1 and 2 
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Figure 4.23: Test Case 2: Pursuer Cost Comparison for Scenario 1 and 2 

Next, performances in scenario 1 and scenario 3 are compared. The performance 

of the evader should be better in scenario 3 as the evader is using the better controller. 

Plots of the position vector components of the game state are shown below in Figure 

4.24. The same phenomenon of the nonlinear controller distinguishing itself from the 

linear one almost throughout the game is observed here. Almost throughout the game, the 

separations in scenario 3 are greater than those in scenario 1 indicating the fact that the 

evader is being more effective in achieving its objective. Although at the end of the game 

the game state trajectory in scenario 3 goes to the origin indicating that the pursuer has 

been able to converge on the position of the evader, the game state trajectory in scenario 

3 takes longer to settle than in scenario 1. Figure 4.25 shows the cost accumulated by the 

evader over time. In the earlier part of the game the cost accumulated in scenario 3 is 

higher than that accumulated in scenario 1 and as the game goes on the cost accumulated 

in scenario 3 becomes lower than that accumulated in scenario 1. Therefore, to achieve 

superior efficacy as compared to the linear controller, the nonlinear controller initially 

accepts a higher cumulative cost. 
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Figure 4.24: Test Case 2: Game State Comparison for Scenario 1 and 3 
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Figure 4.25: Test Case 2: Evader Cost Comparison for Scenario 1 and 3 

Orbital Element Difference Comparison 

Another way to compare the performances is to compare how the orbital elements 

of the pursuer and the evader change. The orbital element difference description of the 

relative orbit given in Chapter 2 can be used for this purpose. The orbital element 

difference vectors of the pursuer and the evader are given as follows. 
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          [                
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The orbital element difference vector can be obtained from the Cartesian state vector by 

using the linear mapping.     

              

 

 

              

 

 

The difference between the orbital elements of the pursuer and the evader can be obtained 

as follows.        
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For the test case 2, the difference between the semi-major axis of the pursuer and 

the evader orbit is compared in Figure 4.26 for scenarios 1 and 2. By virtue of the pursuer 

using the better controller in scenario 2, the spike in the difference found in scenario 1 is 

avoided. Figure 4.27 shows the comparison for scenarios 1 and 3. By virtue of the evader 

using the better controller in scenario 3, there is a broader spike in the difference almost 

at the same time as that of scenario 1.      

 

Figure 4.26: Test Case 2: Difference in Semi-Major Axis for Scenario 1 and 2 

 

Figure 4.27: Test Case 2: Difference in Semi-Major Axis for Scenario 1 and 3 
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Comparison of Control Gain Matrices 

 Control gain matrices,    and   , for the pursuer and the evader are   

         
    

 

   
 

  
     

   

 

 

Matrix   is obtained by solving Equation (4.7) for linear control laws and Equation 

(4.17) for nonlinear control laws. Control gain matrices at the initial time are compared 

for the test case two. Explicitly, these matrices for the pursuer in scenarios 1 and 2 are  
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The corresponding gain matrices for the evader in scenarios 1 and 3 are 
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    [
                                   

                                    

                                   

 

 

                                  

                                    

                                   

] 

 

It can be seen that the gains, in particular, for the y and z position components 

(represented by the second and the third columns of the gain matrices) for the nonlinear 

control laws are higher than those for the linear control laws.  

Using the linear mapping, the control laws can be written in terms of the orbital 

element difference vector as follows. 
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Gain matrices given by matrix products     and     at the initial time are compared for 

the test case two. These matrices for the pursuer in scenarios 1 and 2 are given below. 
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Gain matrices for the evader in scenarios 1 and 3 are given below. 

     [
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     [
                                   

                                   

                                  

 

 

                                 

                                    

                                   

] 

 

It can be seen that the gains for    and    (represented by the first and the third columns 

of the gain matrices) for the nonlinear control laws are higher than those for the linear 

control laws. 

 It should be noted that the in-plane and the out-of-plane motions are coupled in 

the nonlinear dynamics case, whereas they are decoupled in case of linear dynamics. 

Thus, initially, the nonlinear control laws attempt to influence the in-plane as well as out-

of-plane motion aggressively. This observation is consistent with the earlier observation 

that, initially, the nonlinear control laws accept higher cost.        

Effect of Frequency of Solving the SDRE on the Nonlinear Controller Performance 

 In earlier simulations, the SDRE was being solved every 5 seconds. From a real-

time application perspective, considering the availability of computing power on-board, it 

is important to look at the performance of the nonlinear controller if the SDRE is solved 

less frequently. Results are presented only for test case 2, as the effect of frequency of 

solving the SDRE is greater when the game duration is longer and the control usage is 

lower.  
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Results are presented for the nonlinear PE game. Each player implements 

nonlinear control law using its NERM. Three scenarios are considered for comparison. In 

scenario 1, both players solve the SDRE every 5 seconds. In scenario 2, the pursuer 

solves the SDRE every 5 seconds whereas the evader computes solutions every 10 

minutes. In scenario 3, the pursuer solves the SDRE for every 10 minutes whereas the 

evader computes solutions every 5 seconds. 

Performances in scenario 1 and scenario 2 are compared first. The performance of 

the pursuer should be better in scenario 2 as the pursuer is using the better controller by 

virtue of solving the SDRE more frequently. Plots of the position vector components of 

the game state are shown in Figure 4.28. The frequency of the SDRE solving clearly 

affects the performance of the controller. Almost throughout the game, the separations in 

scenario 2 are smaller than those in scenario 1 indicating the fact that the pursuer is being 

more effective in achieving its objective.             

Performances in scenario 1 and scenario 3 are compared next. The performance of 

the evader should be better in scenario 3 as the evader is using the better controller by 

virtue of solving the SDRE more frequently. Plots of the position vector components of 

the game state are shown in Figure 4.29. Again, the frequency of the SDRE solving 

affects the performance of the controller. Almost throughout the game, the separations in 

scenario 3 are greater than those in scenario 1 indicating the fact that the evader is being 

more effective in achieving its objective. 
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Figure 4.28: Game State Comparison for Scenario 1 and 2 
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Figure 4.29: Game State Comparison for Scenario 1 and 3 
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CHAPTER 5 

SPACECRAFT RELATIVE MOTION CONTROL                                                      

USING ANGLES-ONLY NAVIGATION: 

SEPARATION PRICIPLE 

 Autonomous spacecraft rendezvous is a critical aspect of many current and future 

space missions. Autonomous rendezvous does not need cooperation between two 

spacecraft and is of particular importance to missions involving targets that are 

malfunctioning, uncooperative, or hostile. Relative navigation is an important aspect of 

autonomous rendezvous as the precision in the knowledge of the system state directly 

impacts mission success. The common measurement types for relative navigation are 

range and line-of-sight (LOS) angles. Range is the distance from the target to the chaser, 

and the angles are the azimuth and the elevation. The precision of navigation systems 

using both range and angle measurements is good but they require additional mass, 

power, and volume resources. For autonomous rendezvous, however, light weight, low 

power, compact navigation systems are desirable. For this purpose angles-only navigation 

has been explored. Angles-only navigation does not require range sensors, making it an 

attractive option from a logistics point-of-view but it is limited by its inability to extract 

range information. 

The concept of angles-only navigation has played an important role in naval 

applications, target tracking, orbit determination, interplanetary navigation, formation 

flying of unmanned aerial vehicles, etc.
32

 LOS measurements had a role in the earliest   
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orbital rendezvous and proximity operations as well. Both Gemini and Apollo missions 

used angle measurements in addition to other instruments for range measurement. In 

these missions the angle measurements were acquired by the human eye. Recently there 

have been many studies investigating autonomous orbital rendezvous missions using 

small, compact unmanned spacecraft. These missions are typically intended for 

uncooperative space objects and angles-only measurements acquired by an optical 

camera are considered for navigation purposes.  

Angles-only navigation, due to lack of direct range measurements, can be ill-

conditioned for orbital rendezvous and proximity operations from a system observability 

perspective. Observability means that the system state can be uniquely determined from 

observations of the system output over some time interval. As mentioned in Chapter 2, 

the linear HCW equations are the most frequently used equations of spacecraft relative 

motion. Reference 32 formulated an analytical criterion for observability using angles-

only navigation and demonstrated that the system is unobservable when the HCW 

equations are used. This is because there is a family of linear relative trajectories 

described by the homogeneous HCW equations that are proportional to each other. These 

trajectories possess identical LOS histories and thus the range of the trajectory cannot be 

uniquely determined, making the system unobservable. There have been several attempts 

to overcome this limitation. The NERM have been used to describe the relative 

dynamics, and it is shown that; under certain geometric conditions on the relative 

configuration between the chief and the deputy, the system is observable from angles-

only measurements.
33

 It has also been shown that the range can be determined if angle 

measurements are taken from two cooperating spacecraft.
34

 There have been attempts to 
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improve angles-only navigation by changing the coordinate system
35

 and by combining 

angle measurements with other measurements.
36

 In Reference 37 the authors discuss the 

observability conditions of angles-only relative navigation based on the observability 

matrix.  

In Reference 38 the observability of the angles-only navigation system in various 

orbital rendezvous trajectories is studied both analytically and through linear covariance 

modeling. There it is shown that the range information can be generated from the angle 

measurements alone if assisted by appropriate maneuvers. It was concluded that 

maneuvers generating motion normal to the LOS achieve system observability. The 

analytical criterion formulated in Reference 32 also revealed that the relative position and 

velocity can be uniquely determined with angle measurements if a calibrated thrust 

maneuver is executed. It was shown that the maneuvers which alter the homogeneous 

LOS history guarantee observability. This is because the trajectory resulting from the 

maneuver has a different LOS history from the identical LOS histories of homogeneous 

HCW trajectories. This facilitates the unique determination of range. Reference 32 

demonstrated system observability using impulsive maneuvers. Reference 39 

demonstrated observability using continuous low-thrust maneuvers. In Reference 39, a 6 

degree-of-freedom simulation was performed. An EKF was implemented such that the 

dynamics model was an inertial two-body model, whereas the guidance law and the LQR 

control law were derived based on the HCW relative dynamics. Observability, or the 

level of range knowledge, was indicated by 3-σ bounds of range components. 

 

 



78 

 

 

APPLICATION OF SEPARATION PRINCIPLE  

This dissertation also investigates the observability of angles-only navigation 

using continuous-thrust maneuvers, but from a different perspective than previous 

studies. In this dissertation, a 3 degree-of-freedom simulation is performed and there is 

no guidance law or pre-selected trajectory. The filter is implemented such that both the 

dynamics model and the LQR control law are based on the HCW relative dynamics. 

Control strategy for such problems can be derived on the basis of the separation principle 

or the certainty equivalence principle.
23

 According to this principle, the solution of a state 

feedback control problem with incomplete state knowledge is given by the solution of 

two separate sub-problems: 1) the estimation problem of obtaining a state estimate from 

noisy measurements and 2) the problem of deriving the feedback control law. The 

separation of the overall control design involves the eigenvalue separation property 

which states that the eigenvalues of the overall closed-loop system are given by the 

eigenvalues of the LQR system together with those of the state estimator system. The 

feedback control law then can be implemented using the state estimate.  

The separation principle is based on the assumption that the control and 

estimation processes are decoupled. This assumption is in fact an optimal approach for 

linear systems with quadratic performance criterion and Gaussian noise. For linear 

systems, LQR control and the KF are combined leading to a linear quadratic Gaussian 

(LQG) control strategy. The separation principle, however, may not hold for systems 

involving nonlinearities such as the nonlinear angles-only measurement model 

considered here. In such systems, the control and estimation processes may be coupled. 
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Thus, the control action in addition to affecting the state of the system may also affect its 

observability and hence the accuracy of its estimation. This is called the dual effect of 

control. 

In this chapter, LQG control implementing both a linear measurement model (for 

comparison purposes) and the nonlinear angles-only measurement model is investigated. 

It is found, as expected, that the control and estimation processes are decoupled in the 

LQG control implementing the linear measurement model. The magnitude of state 

weighting in the performance criterion and hence the magnitude of control input has no 

effect on the performance of the LQG control. The control and estimation processes are 

found to be coupled in the LQG control implementing the angles-only measurement 

model. When the magnitude of the state weighting is low, the magnitude of control input 

is also low and the LQG control performs well. When the magnitude of the state 

weighting is high, the magnitude of control input is also high and the LQG control fails. 

Simulations for LQG control implementing both the linear measurement model and the 

angles-only measurement model are performed later in this Chapter.         

HCW SYSTEM DYNAMICS MODEL  

 The HCW equations are used as the system dynamics model. The HCW equations 

along with control accelerations can be written as follows. 

 ̈          ̇     
 

 

 ̈     ̇     

 

 

 ̈         
 

 

 ̇                 (5.1) 
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LINEAR MEASUREMENT MODEL 

Assuming that the y and z position components can be measured directly using 

sensors, the linear measurement model is given as follows. 

  *
 
 
+  *

      
      

+       

 

(5.2) 

The observability matrix given by   [           
       

   ]  is full 

rank. 

ANGLES-ONLY MEASUREMENT MODEL  

Figure 5.1 shows the schematic of angles-only measurements depicting the LOS 

angles of azimuth (AZ) and elevation (El).      

                                                                              z                        Deputy 

                                                                                     y     El             

                                                                                                 

                                                                                                                                                                                                                                    

                                 Earth                                                                    x 

                                                               rc                 Chief     Az  
                                                                                                                                                                                                                                                                                                                                                                                                                     
      Reference Orbit 

                                              Figure 5.1: Line-of-Sight Measurements 

According to the above schematic the nonlinear measurement model is given as follows. 

       *
  
  

+  *
    (

 

 
)

    (
 

   
)
+         √       

 

 

(5.3) 

The measurement sensitivity matrix H in the EKF is given as follows. 
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(5.4) 

 ̂  √ ̂   ̂   ̂  

 

 

LQR CONTROL 

 An optimal feedback control law is obtained by solving the LQR control problem 

as follows. 

 

Minimize:      
 

 
∫                           

 

  

 

 

 

 Subject to:  ̇                 
 

 

The control is given as follows. 

           
                   

 

(5.5) 

The symmetric matrix    is obtained by solving the ARE. 

    
                   

           

MATLAB function “lqr” is used to solve for   . 

LQG CONTROL                                                                                                            

The LQR control law is derived assuming full-state availability. However, it is not 

practical to assume full-state availability. Thus, the system state needs to be estimated 

using a filter. The state estimate given by the filter can then be used in implementation of 

the LQR control law leading to the LQG control law. The cost function for the LQG 

control problem is the expected value of the cost function for the LQR control problem. 
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      ,
 

 
∫(                       )  

 

  

- 

 

 

(5.6) 

It should be noted that the HCW dynamics is used as the dynamics model of the filter. 

Thus, for the linear measurement model the filter is simply the KF. For the angles-only 

measurement model, the filter is only a partial EKF as only the measurement sensitivity 

matrix H is evaluated at the current state estimate whereas the HCW dynamics is 

obtained by linearizing the NERM about the origin instead of the current state estimate. 

Most physical systems involve continuous-time dynamic models and discrete-time 

measurements taken from a digital signal processor. The steps for the LQG control which 

uses a continuous-discrete KF for implementing the linear measurement model are given 

below.     

Initialize:         ,  ̂      ̂ ,              

 

Control:          ̂ 

 

Model:  ̇                

 

         

 

Gain:        
   [     

      ]
  

 

 

Update:  ̂ 
   ̂ 

    [     ̂ 
 ] 

 

    
  [     ]    

 
 

 

Propagate:  ̇̂       ̂        

 

 ̇        
                      

 

The steps for the LQG control which uses a continuous-discrete EKF for implementing 

the angles-only measurement model are given below. 
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Initialize:         ,  ̂      ̂ ,                

 

Control:          ̂ 

 

Model:  ̇                

 

           

 

Gain:        
   [     

      ]
  

,   
  

  
|
 ̂ 

 
 

 

Update:  ̂ 
   ̂ 

    [      ̂ 
  ] 

 

    
  [     ]    

 
 

 

Propagate:  ̇̂       ̂        

 

 ̇        
             

 

NUMERICAL EXAMPLES 

MATLAB simulations for the LQG control implementing both linear 

measurement model and angles-only measurement model are performed. Various 

parameters used in the numerical simulations are given in Table 5.1. The RK4 numerical 

integration method is used to propagate the dynamics. A time step of 1 second is used. 

The duration of simulations is 5828 seconds which is the period of the chief orbit.    

Linear LQG 

Simulations are performed for the LQG control implementing the linear 

measurement model for both low state weighting as well as high state weighting cases. 

For the low-weight case, plots comparing the time history of true and estimated position 

vector components of the chaser are shown in Figure 5.2. It can be seen that, by the end 

of the simulation time, the state has been regulated very close to the origin and that the 

state estimate has converged on the true state. Plots of the control vector components of     
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Parameter Value 

   (km)      

Low Weight         

High Weight             

             
Process Noise Standard Deviation    (m/s

2
)      

   
[
        

        
]    

  

Linear Model Standard Deviation    (m)   

Linear Model            
  

Nonlinear Model Standard Deviation    (rad)      

Nonlinear Model            
  

   [                       ] 
 ̂      
     [ ̂    ]

 [ ̂    ] 

Table 5.1: LQG Simulation Parameters 

the chaser are shown in Figure 5.3. Plots comparing the filter errors with the     

standard deviation bounds are shown in Figure 5.4. It can be seen that, at all times, the 

filter errors are within the     standard-deviation bounds indicating range observability. 

The uncertainty in the y and z components reduces very quickly as measurements for 

these components are available. Hence, a magnified view of the     plots of these 

components is also given.  

For the high-weight case, plots comparing the time history of true and estimated 

position vector components of the chaser are shown in Figure 5.5. It can be seen that the 

state has been regulated to the origin much earlier than the low-weight case and that the 

state estimate has converged on the true state. Plots of the control vector components of 

the chaser are shown in Figure 5.6. Plots comparing the filter errors with the     

standard deviation bounds are shown in Figure 5.7. It can be seen that, at all times, the 

filter errors are within the     standard-deviation bounds indicating range observability. 
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Thus, the control and estimation processes are decoupled in the LQG control 

implementing the linear measurement model. The magnitude of state weighting in the 

performance criterion and hence the magnitude of control input has no effect on the 

performance of the KF estimation. This may be attributed to the observability property of 

linear systems. According to this property, an n-dimensional linear system is observable 

if the observability matrix given by   [           
       

   ]  is 

full rank.
23

 Thus, the system observability depends only on the system dynamics matrix 

(    ) and the measurement model matrix (C) and not on the control input. 
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Figure 5.2: Linear LQG Low-Weight Case: Position Vector Components  
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Figure 5.3: Linear LQG Low-Weight Case: Control Vector Components 
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Figure 5.4: Linear LQG Low-Weight Case: Filter Error and 3-σ Bounds 
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Figure 5.5: Linear LQG High-Weight Case: Position Vector Components 
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Figure 5.6: Linear LQG High-Weight Case: Control Vector Components 



91 

 

 

 

 

Figure 5.7: Linear LQG High-Weight Case: Filter Error and 3-σ Bounds 
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Nonlinear LQG 

 Simulations are performed for the LQG control implementing the angles-only 

measurement model for both low state weighting as well as high state weighting cases. 

As mentioned earlier, the LQG control performs well in the low-weight case and fails in 

the high-weight case.  

For the low-weight case, plots comparing the time history of true and estimated 

position vector components of the chaser are shown in Figure 5.8. It can be seen that, by 

the end of the simulation time, the state has been regulated very close to the origin and 

that the state estimate has converged on the true state. Plots of the control vector 

components of the chaser are shown in Figure 5.9. Plots comparing the filter errors with 

the     standard deviation bounds are shown in Figure 5.10. It can be seen that, at all 

times, the filter errors are within the     standard-deviation bounds indicating range 

observability.  

For the high-weight case, by virtue of the stochastic nature of the LQG control, 

two different behaviors have been observed. In some simulation runs, initially, the state 

estimate seems to converge on the true state and the true state seems to go to the origin 

but later the true state diverges whereas the state estimate is regulated to the origin. In 

other simulation runs, the state estimate never converges on the true state. The true state 

diverges whereas the state estimate is regulated to the origin.                

For the first type of LQG failure, plots comparing the time history of true and 

estimated position vector components of the chaser are shown in Figure 5.11. It can be 

seen that, initially, the state estimate has converged on the true state but later the true 

state has diverged and the state estimate has been regulated to the origin. Plots of the 
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control vector components of the chaser are shown in Figure 5.12. It can be seen that the 

control history is not well-behaved. Plots comparing the filter errors with the     

standard deviation bounds are shown in Figure 5.13. It can be seen that the filter errors 

are large as a result of the true state diverging and are not within the     standard-

deviation bounds. 

For the second type of LQG failure, plots comparing the time history of true and 

estimated position vector components of the chaser are shown in Figure 5.14. It can be 

seen that the state estimate never converges on the true state. The state estimate has been 

regulated to the origin but the true state has diverged. Plots of the control vector 

components of the chaser are shown in Figure 5.15. Plots comparing the filter errors with 

the     standard deviation bounds are shown in Figure 5.16. It can be seen that the filter 

errors are large as a result of the true state diverging and are not within the     standard-

deviation bounds.  

An attempt was made to understand why the LQG control fails for the high-

weight case. When the simulation run time is extended to multiple periods of the chief 

orbit, it is seen that while the state estimate has been regulated to the origin, the true state 

is following a trajectory resembling an orbit described by homogeneous HCW equations 

with secular drift along y direction. For both types of LQG failure, this is demonstrated in 

Figures 5.17 and 5.18 respectively where plots comparing the time history of true and 

estimated position vector components of the chaser for simulation time equal to three 

periods of the chief orbit are shown.  An insight into why the true state is following a 

trajectory resembling a homogeneous HCW trajectory may be gained by looking at the 
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homogeneous HCW dynamics and the LQG state estimator and true state dynamics. The 

homogeneous HCW dynamics is written as follows.  

 ̇        

 

 

The LQG state estimator dynamics is written as follows. 

 ̇̂       ̂             ̂      ̂       ̂ 

 

(5.7) 

Thus, the estimator dynamics is closed-loop and hence the state estimate is regulated to 

the origin. The LQG true state dynamics is written as follows.   

 ̇                          ̂    

 

(5.8) 

The high magnitude of state weighting leads to high control input. This causes the state 

estimate to be regulated quickly to the origin making the term     ̂ vanish quickly. This 

makes the true state dynamics follow a trajectory resembling an orbit described by 

homogeneous HCW equations.                                               

For the LQG control implementing the nonlinear angles-only measurement 

model, the magnitude of state weighting in the performance criterion and hence the 

magnitude of control input has an effect on the performance of the EKF estimation. 

Whereas in the low-weight case the LQG control performs well and provides range 

observability, in the high-weight the LQG control fails. This failure can be attributed to 

the high control usage initially. Thus, in the case of nonlinear LQG control, the processes 

of efficient control and reliable estimation are coupled. There is a need for a control 

strategy which attempts to address this coupling between the control and estimation 

processes such that, initially, the control usage is reasonable and the two processes work 

in sync. Two such strategies are explored in the next chapter.          
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Figure 5.8: Nonlinear LQG Low-Weight Case: Position Vector Components 
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Figure 5.9: Nonlinear LQG Low-Weight Case: Control Vector Components 
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Figure 5.10: Nonlinear LQG Low-Weight Case: Filter Error and 3-σ Bounds  



98 

 

 

 

 

Figure 5.11: Nonlinear LQG High-Weight Case Type 1: Position Vector Components 
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Figure 5.12: Nonlinear LQG High-Weight Case Type 1: Control Vector Components 
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Figure 5.13: Nonlinear LQG High-Weight Case Type 1: Filter Error and 3-σ Bounds 



101 

 

 

 

 

Figure 5.14: Nonlinear LQG High-Weight Case Type 2: Position Vector Components 
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Figure 5.15: Nonlinear LQG High-Weight Case Type 2: Control Vector Components 
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Figure 5.16: Nonlinear LQG High-Weight Case Type 2: Filter Error and 3-σ Bounds 
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Figure 5.17: Nonlinear LQG High-Weight Case Type 1: Position Vector Components for 3 Orbits of Chief 
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Figure 5.18: Nonlinear LQG High-Weight Case Type 2: Position Vector Components for 3 Orbits of Chief 
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CHAPTER 6 

SPACECRAFT RELATIVE MOTION CONTROL                                                      

USING ANGLES-ONLY NAVIGATION: 

DUAL CONTROL AND INFORMATION-WEIGHTD LQG 

This chapter explores two approaches to address the coupling between the 

processes of efficient control and reliable estimation in the LQG control implementing 

the nonlinear angles-only measurement model. The first approach, an existing one in the 

dual control theory literature, is the linear quadratic dual control method. Problems 

involving coupling between the control and estimation processes are often addressed 

using the dual control theory. There are two common dual control methods found in the 

literature.
40

 The first method is to add a perturbation signal or a probing input to improve 

the observability of the system. 

               

 

(6.1) 

The second method is to form a cost function that is a sum of the standard LQR cost and 

a term that penalizes the uncertainty in the system. 

               

 

(6.2) 

The first method is heuristic-based and the second one requires computationally 

expensive methods for solution such as dynamic programming or search-based 

techniques. Thus, these methods are often not feasible for on-board applications. An 

alternative dual control method was explored in Reference 41 and was applied to the 

automatic docking problem for an unmanned wheeled rover with a monocular vision 
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sensor. This method augments the state of the system to include uncertainty states. The 

LQR cost function is also augmented to include a quadratic function of the uncertainty 

states which penalizes the uncertainty in the system state. The control input then consists 

of two parts. One control input regulates the system state while the other attempts to 

reduce the uncertainty in the system state estimate. This method is known as the linear 

quadratic dual control approach. An attractive feature of this approach, as the name 

suggests, is that the new augmented problem has linear-quadratic-like structure and hence 

this approach is chosen in this dissertation.   

The second approach is the information-weighted LQG control method which is a 

new approach explored in this dissertation. The information-weighted LQG control 

approach differs from the LQG control of previous chapter in the manner in which the 

state weighting matrices are chosen. In the LQG control of previous chapter, both the low 

state weighting and the high state weighting matrices were constant. The state weighting 

matrix in the information-weighted LQG control approach is not constant and is 

dependent on the accuracy of the state estimate. The Fisher information matrix is used for 

this purpose such that as the accuracy of the state estimate increases the state weighting 

becomes higher.   

LINEAR QUADRATIC DUAL CONTROL 

 The linear quadratic dual (LQD) control approach uses the continuous-time form 

of the EKF. The equation for the state estimate covariance matrix can be given as 

follows.  

 ̇     
 
                 

   
      

 

(6.3) 
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Matrix    can be written as       . The matrix S is set to be in lower triangular form. 

  

[
 
 
 
 
       
         
           
     

             ]
 
 
 
 

 

 

 

 

(6.4) 

The nonlinear matrix differential equation for S can be obtained from the differential 

equation for    and after some simple algebra is given as follows. 

 ̇   (     
 

 
       

   )  
 

 
   

   

 

(6.5) 

A couple of issues with Equation (6.5) deserve mention. The first, as stated in 

Reference 41, is the need for careful treatment when propagating S in time because  ̇ 

may not be lower triangular even though S is. In this dissertation, the same method given 

in Reference 41 is implemented for computing  ̇ in a lower triangular form.  

The second is of inconsistent matrix dimensions which may arise due to choice of 

matrices    and   . Since the  ̇ equation is derived from the  ̇  equation, matrices    

and    should technically be the noise covariance matrices    and   . However, in 

Reference 37 matrices    and    are chosen to be the state and control weighting 

matrices    and   . This choice seems curious because of the inconsistency in matrix 

dimensions that may arise. In order for Equation (6.5) to be dimensionally consistent, 

matrix    must have the same dimensions as that of matrix   . So in order to choose 

     , matrix    must have the same dimensions as that of matrix    which is not 

true for every problem. For the problem addressed in Reference 37, matrix    has the 

same dimensions as that of matrix   , so the issue of inconsistent matrix dimensions 

does not arise. However, for the problem addressed in this dissertation, measurement 

model is 2-dimensional and control vector is 3-dimesional which leads to the issue of 
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inconsistent matrix dimensions. However,    and    may also be treated as tuning 

parameters
42

, and in this dissertation matrices are chosen after trial and error. 

              The nonzero elements of S can be written as a vector. For an n-dimensional 

system this vector has 
      

 
 elements. 

   [          ]   ̇   [ ̇   ̇    ̇  ]
   ̇     ̇      

 

 

The augmented state vector can be written as follows. 

    *
 
 + 

 

 

The augmented LQR cost function can be written as follows. 

     
 

 
∫(                                   )  

 

  

 

 

 

The augmented cost function can be written in terms of the augmented state as follows. 

     
 

 
∫(  

                       )  

 

  

    [
   
   

]  

 

 

(6.6) 

The augmented control problem is as follows. 

 

Minimize:      
 

 
∫(  

                       )  

 

  

 

 

 

  

Subject to:  ̇  [
 ̇
 ̇
]                *

 
       

 
  

+ 

 

 

Even though the dynamics for x were linear, y obeys nonlinear dynamics. The sub-

optimal full-state feedback control law is given as follows. 

           
    

                              [     ] 

 

(6.7) 
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MATLAB function “lqr” is used to solve for   . The full-state feedback control law can 

then be implemented using the state estimate. 

            ̂      

 

(6.8) 

The symmetric matrix    is obtained by solving the ARE at each time step.  

  
                  

    
          

   
   

|
  

 

 

(6.9) 

Thus, the LQD control approach is quasi-LQG as it requires numerically solving the 

nonlinear differential equation for S. The augmented control problem is solved as an 

LQR control problem where the system matrix is obtained by taking the partial derivative 

of the nonlinear dynamics.    

INFORMATION-WEIGHTED LQG CONTROL 

The LQG control implementing the nonlinear angles-only measurement model in 

the previous chapter worked for the constant low state weighting case and failed for the 

constant high state weighting case. Thus, a scheme where the state weighting is not 

constant but increases gradually from low to high is sought. The information-weighted 

LQG (IWLQG) control approach is such that the state weighting is dependent on the 

accuracy of the state estimate. The Fisher information matrix (FIM), which is the inverse 

of the state estimation covariance matrix (  
  ), is used for this purpose. Thus, initially 

when the accuracy of the state estimate is low, the state weighting is also low. This leads 

to small control input. As the state estimate gets better as a result of the filtering process, 

the state weighting increases which leads to higher control input causing faster state 

regulation. At each time step of propagation the state weighting matrix     is chosen to 
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be a function of the instantaneous FIM. The matrix     at each time step is defined as 

follows. 

     
 

 

[
 
 
 
 
 
 
            

            

            

            

            

            ]
 
 
 
 
 
 

   

 

 

 

 

(6.10) 

Here, V matrix contains the eigenvectors of the FIM and         are the eigenvalues of 

the FIM. Parameter q is varied for varying state weighting. The inverse tangent function 

facilitates smooth transition from low state weighting to high state weighting.   

NUMERICAL EXAMPLES 

Linear Quadratic Dual Control 

MATLAB simulations are performed for LQD control approach with low as well 

as high state weighting. As mentioned earlier, the LQD control approach uses 

continuous-time form of the EKF. A time step 0.1 seconds is used for propagation. 

Various parameters used in the simulations are given in Table 6.1. 

For the low state weighting LQD control, plots comparing the time history of true 

and estimated position vector components of the chaser are shown in Figure 6.1. It can be 

seen that, by the end of the simulation time, the state has been regulated very close to the 

origin and that the state estimate has converged on the true state. Plots of the control 

vector components of the chaser are shown in Figure 6.2. Spikes in the control history 

should be noted. Plots comparing the filter errors with the     standard deviation bounds 

are shown in Figure 6.3. It can be seen that, at all times, the filter errors are within the 

    standard-deviation bounds indicating range observability. 
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Parameter Value 

   (km)      

Low Weight           

High Weight               

             
Process Noise    (m/s

2
)      

Process Noise    
[
        

        
]    

  

Nonlinear Measurement Model    (rad)      

Nonlinear Measurement Model            
  

        

        

   [                       ] 
 ̂      
     [ ̂    ]

 [ ̂    ] 

Table 6.1: LQD Control Simulation Parameters 

 For the high state weighting LQD control, plots comparing the time history of true 

and estimated position vector components of the chaser are shown in Figure 6.4. It can be 

seen that the state has been regulated to the origin quicker compared to the low state 

weighting case and that the state estimate has converged on the true state. Plots of the 

control vector components of the chaser are shown in Figure 6.5. Spikes in the control 

history should be noted. Plots comparing the filter errors with the     standard deviation 

bounds are shown in Figure 6.6. It can be seen that, at all times, the filter errors are within 

the     standard-deviation bounds indicating range observability. Thus, the LQD control 

has addressed the coupling between the control and estimation processes. 

It should be noted that the simulation time for high state weighting case is not one 

complete orbit of the chief. This is due to the failure of the MATLAB “lqr” function at 

that time. Although, by this time the state has been regulated to the origin, the MATLAB 

solver fails to further solve the augmented control problem. The error given by MATLAB 

indicates that, at that time, the solver failed to stabilize the system.   



113 

 

Although the LQD control has made the control and estimation processes work in 

sync, it may be limited in terms of direct application to angles-only orbital navigation 

problem. The dynamics associated with orbital motion makes the problem more complex 

than the problem studied in Reference 41. Solving the dual control problem is 

computationally intensive. The control history is not particularly well behaved and the 

spikes in control history could not be pinpointed. All these issues may make potential use 

of the LQD control method in a real-time feedback system questionable.           
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Figure 6.1: LQD Low Weight Case: Position Vector Components 
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Figure 6.2: LQD Low Weight Case: Control Vector Components 
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Figure 6.3: LQD Low Weight Case: Filter Error and 3-σ Bounds 
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Figure 6.4: LQD High Weight Case: Position Vector Components 
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Figure 6.5: LQD High Weight Case: Control Vector Components 
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Figure 6.6: LQD High Weight Case: Filter Error and 3-σ Bounds 
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Information-Weighted LQG Control 

MATLAB simulations are performed for IWLQG control approach for two values 

of q. The IWLQG control approach uses continuous-discrete form of the EKF. A time 

step of 1 second is used for propagation. Various parameters used in the simulations are 

given in Table 6.2. 

Parameter Value 

   (km)      

       

       

             
Process Noise    (m/s

2
)      

Process Noise    
[
        

        
]    

  

Nonlinear Measurement Model    (rad)      

Nonlinear Measurement Model            
  

   [                       ] 
 ̂      
     [ ̂    ]

 [ ̂    ] 

Table 6.2: IWLQG Control Simulation Parameters 

For      , plots comparing the time history of true and estimated position 

vector components of the chaser are shown in Figure 6.7. It can be seen that the state has 

been regulated to the origin fairly quickly and that the state estimate has converged on the 

true state. Plots of the control vector components of the chaser are shown in Figure 6.8. 

Plots comparing the filter errors with the     standard deviation bounds are shown in 

Figure 6.9. It can be seen that, at all times, the filter errors are within the     standard-

deviation bounds indicating range observability.  

For      , plots comparing the time history of true and estimated position 

vector components of the chaser are shown in Figure 6.10. It can be seen that the state 

has been regulated to the origin very quickly and that the state estimate has converged on 
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the true state. Plots of the control vector components of the chaser are shown in Figure 

6.11. Plots comparing the filter errors with the     standard deviation bounds are shown 

in Figure 6.12. It can be seen that, at all times, the filter errors are within the     

standard-deviation bounds indicating range observability.  

In both cases, the state of the system is regulated quickly to the origin and the 

state estimate has converged on the true state. Thus, the IWLQG control has addressed 

the coupling between the processes of efficient control and reliable estimation. The 

IWLQG control scheme does not have the limitations of the LQD control scheme. It does 

not introduce any nonlinearity or increase the dimension of the problem. Thus, the 

IWLQG control scheme can be feasible for real-time applications.          
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Figure 6.7: IWLQG      : Position Vector Components 
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Figure 6.8: IWLQG      : Control Vector Components 
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Figure 6.9: IWLQG      : Filter Error and 3-σ Bounds  
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Figure 6.10: IWLQG      : Position Vector Components 
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Figure 6.11: IWLQG      : Control Vector Components 
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Figure 6.12: IWLQG      : Filter Error and 3-σ Bounds  
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CHAPTER 7 

CONCLUSION  

 In the first part of the dissertation, feedback control laws forming a saddle point 

solution to the spacecraft PE game are derived. The dynamics of the game are described 

in the space-based EH reference frame rather than the Earth-centered reference frame. 

Linear feedback control laws are derived for the LQ PE game using the LQ differential 

game theory. The SDRE method is used to write nonlinear game dynamics in linear-like 

non-unique SDC form. The application of the LQ differential game theory is then 

extended to LQ-like nonlinear PE game. The nonlinear feedback control laws derived 

may be near-optimal.  

The near-optimal nonlinear feedback control laws, however, are obtained by 

solving an algebraic SDRE rather than solving an HJI PDE or a TPBVP which give 

optimal solutions, but are difficult to solve. Moreover, for larger separations, the efficacy 

of the near-optimal nonlinear control laws is superior to that of the linear control laws. 

Thus, the near-optimal nonlinear feedback control laws are a good substitute for 

computationally expensive optimal solution of an HJI PDE or a TPBVP as well as for the 

linear control laws.  

In future, this work can be extended in a few avenues. The nonlinear control laws 

can be implemented using the game dynamics which include perturbations. Putting a 

constraint on the control usage, instead of a cost, so that each player has limited amount 
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of fuel to spend could be explored. Finally, PE games using impulsive thrusts could be 

explored.            

In the second part of the dissertation, when the nonlinear angles-only 

measurement model is used to estimate the relative state of a spacecraft for control 

purposes, a coupling between the control and estimation processes is found to exist. In 

the LQG control implementing the angles-only measurement model, when constant high 

state weighting leads to a higher control effort, true state diverges from the state estimate 

which leads to the failure of the LQG control.  

To address this issue two approaches are explored. The first approach is the LQD 

control approach. In this approach, the state and the performance criterion of the 

LQR/LQG problem are augmented to include uncertainty terms. The resulting control 

law has two parts. One part performs the system state regulation and the other attempts to 

reduce the uncertainty in the system state. This two-part control law is found to have 

addressed the coupling between the processes of efficient control and reliable estimation.  

The second approach is the IWLQG control approach where the state weighting is 

not constant but is a function of the Fisher information matrix making the state weighting 

dependent on the accuracy of the state estimate. This variation in the state weighting is 

found to have addressed the coupling between the processes of efficient control and 

reliable estimation.  

Thus, both approaches facilitate observability of linear spacecraft relative-motion 

state when angles-only navigation model is used and one of the spacecraft undergoes 

continuous-thrust maneuvers. The LQD control approach has some limitations.            

The augmented system is nonlinear and increases the dimension of the problem.          
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The solution is computationally intensive. The IWLQG approach avoids these issues. It is 

simpler and is viable for real-time applications. 
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