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Abstract

Smart grid (SG) is regarded as the next generation power griagvhich implements an
innovative idea for a highly automated and integrated powesystem. The two-way energy
and information ows in the SG, together with the smart devies, bring new perspectives
to energy management and demand response. Meanwhile, irstoxe grid components, such
as microgrid (MG) and electric vehicle, are emerging as newlications which bring many
bene ts as well as more chanllegens in SG. Therefore, we expl possible solutions to these
chanllegening but interesting problems.

In this dissertation, we rst present an introduction of the SG, and the research involved
in di erent areas of SG. We then investigate an online algahm for energy distribution in a
SG environment. The proposed online algorithm are quite geral, suitable for a wide range
of utility, cost and pricing functions. And it is asymptotically optimal without any future
information. Following this, we then propose a distributedonline algorithm. Comparing
to the previous one, it solves the online problem in a distriied manner and mitigates the
user privacy issue by not sharing user utility functions. Bih algorithms are evaluated with
trace-driven simulations and shown to outperform a benchmiascheme.

We then propose a hierarchical power scheduling approachdptimally manage power
trading, storage and distribution in a smart power grid witha Macrogrid and cooperative
MGs. We develop online algorithms both for cooperative MGand the Macrogrid. The pro-
posed hierarchical power scheduling algorithms are evaled with trace-driven simulations
and are shown to outperform several existing schemes withnsiderable gains.

Also, we also introduce the simultaneous inference for powggneration forecasting from
renewable energy resources. We then apply it for solar int&ty prediction using a real trace

of weather data, where the performance is demonstrated owexisting approaches.
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Chapter 1

Introduction

1.1 Smart Grid { The Future Power Grid

In 2003, when the Northeast Blackout happened in the United Stas, 50 million people
were left without power up to 2 days [1]. Again, in 2012, when #h\superstorm" Hurricane
Sandy swept the Atlantic Ocean, 6 million people in 15 statemnd the District of Columbia
were out of power for more than 2 days [2]. Even worse, in theseents, people had no
idea of what happened to the power grid, and had to wait in angty for many hours or
even days. Admittedly, the major power grid infrastructure m the United States has lasted
for more than 35 years, and is worse than that of many countse The U.S. government
now feels obliged to overhaul the old facility in power gridand to increase the reliability of
power delivery. However, aging facility is not the only prol@m for the current power grid.
It requires more e orts in many aspects to create a better posv grid. Meanwhile, we have
to face the challenges from depleting fossil fuels, globdintate change, increasing power
demand, etc. Fortunately, the advanced science and techogl in many elds may help us
to improve the existing power grid. Based on this, an innovate power grid is born { the
smart grid.

Smart grid (SG), also called smart power grid or intelligent grid, is garded as the
next generation power grid. It is supposed to replace the aent old, dirty, ine cient,
and vulnerable power grid. With modern technologies in powesystem, control theory,
communication system, and information theory, two-way owg of electricity and information
will be enabled in SG to provide an advanced power system wittigher energy e ciency
and power delivery stability. Automated metering and monitoing will be realized in SG,

based on a large number of smart meters and sensors instaltacbughout the grid, while

1



communication and networking technologies guarantee datallection and transmission in

real time. And thus, SG will be able to respond quickly to blaakuts or broken pieces inside
the entire power grid, and then protect working circuits fron being a ected in the grid so

that large area power outages can be avoided. Besides, SG aldo support more distributed

power generation of renewable energy, such as solar, winddayeothermal energy, through
which the power system capacity will be increased, and theli@nce on the fossil fuel will be
decreased. Consequentlgreenhouse gag§GHG) emissions can be controlled.

More speci cally, SG can be regarded as a large-scale and g@hicated power system
that utilizes the advanced technologies in many elds to acave a clean, e cient, reliable,
and sustainable system. The intelligence penetrates intovexry component of the system
from power generation to consumption by the customers. Theealization of the ultimate
SG requires incorporation of technologies in power systemformation technology, commu-
nication, control theory, and computer science. The constction of SG needs support from
government, society, utility companies, and end customerdt will be a large and compli-
cated engineering project lasting for a few decades. We shibbe con dent to accomplish
this challenging task, because we have made so many greatiagements, such as the space
shuttle, spacecraft, and man-made satellites, which werahelievable dreams several decades
ago.

In the future SG, many new facilities and infrastructure wil become common and in-
dispensable, such as the distributed generation of renev@lenergy resources, smart meters
and sensors, electric vehicles, and grid energy storage. iBigrating these new components,
the power grid becomes truly intelligent, e cient, and autanatic. New SG components are
deployed using the plug-and-play interfaces, which increes the exibility, scalability, and
security of SG. Smart meters and sensors can be embedded 86 directly through the
con gured interfaces as simple as connecting a laptop to tHaternet. In this way, a huge

and complex SG system can be decomposed into many small pasigh di erent features.



Figure 1.1: Traditional power grid.

For example, Distributed generation(DG) and grid energy storage(GES) are two new fea-
tures in SG. DG makes it possible to incorporate more renewalenergy generation, such as
solar, wind, and tidal. GES is essential for optimal energy amagement, because it can not
only store the extra energy, but also inject energy back to ¢hgrid when needed to avoid
blackouts and reduce the cost.

Another important feature of SG is the two-way ows of electrgity and information.
In traditional power grids shown in Fig. 1.1, both electridy and information ow in a
unidirectional fashion. Electric power is generated from eentralized generation plant, and
then travels through the transmission system and distribubn networks to power users.
Utility company collects the information of user consumptins and grid status, while power
users have no access to acquiring the grid or market inforniart. However, in SG as shown in
Fig. 1.2, two-way ows of electricity and information is suported, so that power customers
are able to acquire the market information and the grid stats, and sell energy back to
the grid. In this way, exchanges of information and power beme more exible, and higher
e cient power management is enabled for more reliable powslistribution. For example, the
utility company could lower the electricity price so that the load peak is reduced by power

injection from end customers. Also, by periodic informatiocommunications, the control



Figure 1.2: A vision of the future smart grid.

center monitors the grid in real time, and customers acquirepdated price information in
real time. In short, two-way ows of electricity and information are the foundation of the
real time power control and many other SG applications.

Currently, there is no explicit de nition of SG, because it $ such a complex system that
covers numerous subsystems, in which some research e orshast started. The research in
SG is still in the infant stage. Therefore, it is not clear ofhe nal shape of SG after several
decades of development. But a road map could provide a mairrelition. Many countries
or areas have proposed detailed SG road maps, such as the U3§. European Union [4],

Germany [5], China [6], and Japan [7]. According to these roaiaps, SGs are developed with



Figure 1.3: The structure of the smart grid.

di erent objectives, based on the conditions and policied @dli erent countries. For example,
in the United States, electric vehicles are supported by theogernment because the large
population of vehicles consume more than 10 million barret§ petroleum products per day
with enormous GHG emissions. In China, green energy geneceti nds its applications very
well, especially in some cities with heavy environmental potions.

Similarly, given the broad scope of SG-related research,atent researchers may focus
on dierent topics and aspects of SG. Here, we introduce SG ek on the hierarchical

structure [8] as shown in Fig. 1.3, from SG infrastructure t&G applications.



Smart grid infrastructure. SG infrastructure is the foundation of SG, including smart

power system, information technology, and communicatiorystem:

{ Smart power systenprovides a reliable and intelligent power system which con-
sists of power generation, power transmission, power digttion, and energy

storage.

{ Information technology supports the advanced information metering, smart mon-

itoring, and the corresponding information management.

{ Communication systembuilds on the advanced communication infrastructure and

technologies.

Smart grid applications. SG applications are further divided into fundamental app#

cations and emerging applications:

{ Fundamental applicationsfocus on the technologies of energy management, sys-
tem reliability, security and privacy, featuring demand-gle management for en-

ergy e ciency improvement, user utility maximization, and system protection.

{ Emerging applicationsintroduce two new patterns in SG:electric vehicle (EV)
and microgrid (MG), featuring energy management for large-scale suppat EVs

and DGs of renewable energy in MGs.

{ Derived applications two examples aresmart home and smart city, which are

derived from SG, providing the impact of SG on human sociese

Based on this structure, we introduce SG in the remainder ohis chapter. As an introduc-
tion, we focus on the fundamental concepts but avoid the corligated techniques. We also
emphasize the contents relating to the following chaptersuch as energy management in SG
and MGs, which is the major scope of this dissertation. For ber contents, we provide a

brief introduction and provide readers with references fdurther reading.



1.2 Smart Grid Infrastructure

1.2.1 Smart Power System

The basic function of a power system is to generate power aneliger to end users
through the transmission and distribution networks, in a rkable, e cient, and economic
way. The traditional electricity power system shown in Figl.1 mainly consists of three sub-
systems: generation system, transmission system, and distition system. Electric power
is produced in power plants from other forms of energy, sucts &ssil fuels, owing water,
and nuclear. Because of the economic and geographic factaraditional power plants are
located in places where large populations of people live. 8, the voltage of the generated
power is stepped up through a transformer to a high level, rading the power loss during
transmission. Before distribution, the voltage is steppedown via a substation from trans-
mission levels to distribution levels. Through another sgedown of the voltage when exiting
the distribution system, electric power arrives at each h@e at a service level of voltage.

In SG, the main structure of power delivery system largely neains the same for several
reasons. The current power system has been providing elédty services for more than 30
years in many developed countries. Our task is to make themtéfligent instead of creating
a new system from scratch. On the other hand, it will take seval decades for the evolution
from the current power system to a true SG. The major di erenes between the smart power
system and the traditional power system are summarized in ¢ri 1.4. Compared to the
traditional power system, SG features with DG of renewablenergy for power generation,
exible power transmission, DC-DC/AC-DC hybrid power distribution, and the new GES
system. These new features make power generation and deinie SG more exible, reliable,

secure, e cient, and sustainable.



Figure 1.4: A comparison between the traditional power sysin and the smart power system.

Smart Power Generation

Electricity generation is a process of transforming otherypes of energy into electricity
power, based on the theory of electromagnetic induction, stiovered by Michael Faraday
around the 1820s. From then, many sources of energy have beenverted successfully into
electricity generation including fossil fuels, hydro powesolar, wind, nuclear, etc. Currently,
our power is mostly from ve sources of energy: coal (40%), tumal gas (23%), hydro power
(17%), nuclear (11%) and oil (4%) [9]. Other sources of engrgpgether only contribute
5% of the total power generation. According to the statisticen [10], the U.S. has similar
generation percentages of coal (39%) and natural gas (27%Yleanwhile, the combustion
of coal and natural gas are two major sources of the GHG emisssp which contributes to
73% and 24% respectively, in the U.S. It is recognized that bgducing the consumption of
coal and natural gas, GHG emissions will be well controlled. §ood way to achieve this
goal is to incorporate more generation from clean and reneba energy resources. Also,
fossil fuels on earth is getting depleted so that we have to chbetter ways to survive. It is

even more urgent because of the fast increase in power demaadsed by the fast growth of



the population and development of economy. Therefore, lagamounts of power generation
from renewable energy resources is important in SG for sustable development.

In SG, power generation has changed in many aspects, becaokée support of two-
way ows of energy and information. Compared to traditionapower grids, power generation
in SG is more exible. In a traditional power grid, power is ugally generated in a centralized
way of a large amount; while in SG, power can be generated in stibuted way at a much
smaller amount, because the renewable energy resources r@wemally distributed energy
resources(DER), and power is often generated from small-scale poweerngerators such as
solar photovoltaic (PV) or small wind turbines (typically from 3 kW to 10 MW) [11]. To
take advantage of the scattered DER, DG is applied as a solati in SG. Although power
generation from each DG is very small, it is possible to gaththe power from many DGs and
manage them in a highly e cient way. The information and comnunication technologies
applied in SG make it possible to accomplish this complicateask.

DG is normally described as the generation of electricity dm small scale generators
rather than from central generating plants, which can be carected to a power system in
nearby places. The de nitions of DG are di erent from many oganizations such as Institute
of Electrical and Electronics Engineers (IEEE), Internatonal Energy Agency (IEA), and
International Council on Large Electricity Systems [12]. Heever, the main features of
DG are similar in terms of location and generation capacity.The benets of more DG

penetrations are commonly recognized as follows.

Diversifying energy sourcesAs DG is very exible in gathering energy from a variety
of sources, we can thus diversify our energy sources and reglthe reliance on the de-
pleting fossil fuels. On the other hand, DG from DER will leadis to a new sustainable

form of life.

Controlling GHG emissions. Currently, our major power source is burning fossil fuels,

which contributes to the largest part in GHG emission. More D&enetrations of



renewable energy will reduce the combustion of coals and nedl gases, and thus limit

GHG emission.

Improving power quality and reliability. Distributed generation provides a reliable
power support when some emergent events occur in the main gowrid. In DG-based
power grid, failures in di erent parts can be isolated e edvely and immediately. As

a result, the overall power quality in SG can be improved.

Increasing the exibility of electricity market. The electricity market can be more
exible with dynamic prices and demand response in SG of bidictional power ows

with participation of power customers.

On the other hand, DG penetrations, especially at a large dea also bring many technical
and economical issues. For example, power generation of D&Gm be intermittent and
uctuating subject to the weather conditions for many DERs,such as solar and wind. It is
also challenging to achieve the balance between power sypphd demand [13]. This will
no doubt increase the di culties of power management and deamd response, and it will be
even harder given the real time control requirement. Besidepower transmitted from DG
generators to the main grid requires new conversion circaibetween di erent voltage levels,
making power management much more complicated. Furtherm@reconomic cost needs to
be considered for both utility companies and power custon®i14]. More details of DG
integration issues can be found in [15].

The future SG with large-scale DGs will be developed in threstages [16]: enlarging the
scale of DG incorporation, building decentralized DG systes cooperating with the central-
ized generation, and generating most power from DG systemséile limiting the generation
from centralized generation. Nowadays, DG technologies lealready been proposed and
applied in many countries with a major installation of wind urbines and combined heat

and power (CHP) plants, a system generating both heat and etecity simultaneously to
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meet the basic demands temporarily for a small number of userespecially during the time
isolated from the main power grid under extreme weather [17]

As the development of large scale penetration of DGs, contrahd power management
in the highly distributed power system will be more di cult and complicated, with consider-
ation of not only more exible power ows, but customer demad and energy storage. These
challenges lead to the concept ofirtual power plants (VPP) [18], which aggregates power
generation from many distributed generators and managesdltpower to meet the demand
or save for future use. VPP provides a exible way to manage difouted power generation
of comparable capacity with conventional power plants [L3However, VPP also requires a
complex integration of optimization, management, and comuamication technologies. Most
research works on VPP cover the topics on its structure and ogaion [19,20]. VPP is also
applied as an important power control approach for grid intgration with EVs [21,22]. In
the future SG, VPP will play a more important role in power mangement.

As more DG units are deployed in the smart power system, poweergration is being
transformed from the centralized manner to the distributeananner.Although it brings about
many di cult problems in several aspects, we are con dent tlat with advanced scienti ¢
technologies and methodologies, large-scale DG penetat can be achieved in the near

future.

Power Transmission

In Thomas Edison's time, electric power was transmitted though a direct current (DC)
system. It was soon replaced by the alternating current (ACransmission system for power
loss reduction during long distance transmission via highoitage level. Since then, the AC
transmission system has been the major transmission mannamtil today. However, with
the development of modern technologies, the DC transmisgigystem has regained people's

interests, especially in tomorrow's SG with a large numberf ®Gs.
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AC transmission has been a major choice over DC mainly becausf its high voltage
transmission for a lower power loss in long distance transssions. However, the appearance
of high voltage direct current(HVDC) system has changed the situation. Currently, the
highest record of HVDC level in 2014 is 800 kV DC in the XiangjiabaShanghai HVDC
system in China [23]. And it is indicated in [24] that HVYDC has may advantages over
the high voltage AC system in exibility, safety, and secuty. In some cases, HVDC is
the best choice for economic consideration, such as longtalige hydro-power transmission
and o shore wind power transmission via submarine power l@s. HVDC also has smaller
footprints because of underground and submarine cables, ialh make HVDC a good so-
lution for large-scale deployment of DGs in the future SG. Taoneet the requirements of
SG in exibility, accessibility and reliability, exible AC transmission systems(FACTS) is
an important technigue to upgrade the current AC transmissin system. In FACTS, fast
DC/AC and AC/DC conversion is enabled to control power quaty. The main technologies
and prospects of HYDC and FACTS can be found in [24].

The transmission system in SG should also be incorporatedthvintelligence, in order
to overcome the challenges from increasing load demand, ketrneeds, environmental prob-
lems, and outdated low e cient components. As indicated in [2], the power transmission
system in SG can be further divided asmart control centers smart transmission networks
and smart substations The future smart control centers will be capable of realdthe moni-
toring, analysis, and control at a larger scale. In smart trasmission networks, new facilities
such as smart sensors will be installed and innovative teablngies will be applied to achieve
a high quality, reliable, and secure power transmission. &we smart substations will be
highly automatic and self-healing with the support of new tehnologies, such as HVDC and
FACTS. In sum, the entire power transmission grid in the futue SG will be a digitalized
system with the most advanced technologies from di erent aas to provide a reliable and

sustainable power delivery system.
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Power Distribution

The main function of the power distribution system is to delier power e ciently and
reliably to end users. In the future power distribution sysgm, power delivery will be more
exible because more DGs will be integrated into SG. Howevethis will increase the com-
plexity and di culty for power control. On the other hand, th e division of power transmission
and distribution will be blurred in SG. For example, power geerated from distributed re-
newable resources can be distributed directly to end userstlhwvDC/DC conversion. These
features bring about new challenges to the power distribwin system, and that is why we
need a smart power distribution system.

In a smart power distribution system, the concept of power ket has attracted consid-
erable interest recently [26,27]. The authors in [26] pragetwo systems for in-home power
distribution, one of which is based on AC system, and the othes a DC power dispatch-
ing system. Power packets are used for DC dispatching. Highefluency power switching
technologies are used for power packetization. The DC-bdspower distribution can be a
suitable paradigm for future power distribution systems, gpecially for in-home power dis-
tribution, because many in-home electric appliances areiden by DC power. Power control
will be more e cient. An application of in-home DC distributi on system is depicted in [28].
There is no doubt that DC system will be an important part of the smart power distribution

system in the future SG.

Power Storage

Another major di erence in the power system structure betwaetraditional power grids
and SG lies in power energy storage. Traditionally, limiteghrimarily by cost and e ciency,
energy storage cannot be widely deployed, although it has éeregarded as an e ective
solution to many problems in the power system. In recent yesr with development in
technologies, especially physics, chemistry, biology, danmaterial science, energy storage

e ciency has been greatly improved and the cost of storage nabe well controlled. More
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and more energy storage systenfESS) are proposed, demonstrated, and deployed, which
builds the foundation for the large-scalgrid energy storaggGES) in the future power grid.
As a new component, GES will not only change the structure of per grid, but also provide
important supports for many features and applications in SG

GES is a new feature and subsystem in SG, with power energyrstge at the grid scale.
It will be composed of a large number of ESS with di erent capaties of power storage. The
ESS will use di erent storage mediums according to the powsources and the environment
for energy storage. For example, in hot places, batteries gnaot be a good choice for
energy storage because in these places, it costs more to Keajperies working in a suitable
environment. Instead,thermal energy storage(TES) could be a good solution because it
can store the heat from the sunshine e ciently with the help 6 concentrating solar power
(CSP) [29].

Nowadays, many developed countries have invested on GES amgect for a prominent
growth in the GES capacity. It is indicated in [30] that the emrgy storage capacity in the
U.S. is expected to reach the level of 240 GW by 2030 from the cemt capacity of 24.6

GW [31]. Larger capacity of GES will bring about many bene tsn SG:

Promoting renewable energy penetrationThe ESS with di erent storage mediums in
GES increases the exibility of energy storage, which helgge increase DG penetration.
DGs of renewable energy will cover a large part of power geagon in SG, however, the
power supply from DGs cannot match the power demand very wdlhr many reasons
(see Section 1.2.1). With the support of GES, this problem nabe solved. The extra
power during o -peak times will be saved e ciently for usagein peak demand time.

This also will increase the reliability of DGs.

Alleviating peak demand pressure and smoothing the griddo@ue to low capacity of
energy storage in current power systems, a certain amountmdwer is wasted everyday.
On the other hand, the current power grid has to keep its gereion capacity at a

high level only to meet the peak power demand lasting only snal hours in a day.
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GES can alleviate the pressure of power demand in peak houmguce wasteful extra
capacity, smooth the grid load by shifting power demand ara, and also reduce GHG

emissions.

Improving the performance of existing power systenit is estimated by the U.S. De-
partment of Energy (DOE) that over 60% transmission lines, @ver transformers, and
circuit breakers are more than 35-years old. The energy sége provided by GES re-
duces the excess generation capacity and thus reduces oggestion and line-loss in
peak times, thus alleviating correspondingly the urgencyf @xpanding the capability

of the current power system facility.

Supporting the electri cation of transportation. EV is regarded as a good solution to
reducing GHG mission. However, a high level of EV penetrationilvbring about a

considerable charging load as well [32]. Although EV chargjncan be scheduled to
shift the charging demand [33], it relies upon the GES capé#gito achieve the demand

response for a large number of EV eets.

Increasing the overall grid resilience to extreme environental conditions and emer-
gencies. Our current power grid is vulnerable to extreme weather corittbns, such as
hurricanes and tornadoes. The basic power supply during asdister can be crucial.
GES can provide this kind of power supply in areas out of poweA well-known exam-
ple is the world's biggest battery of 40 MW power in Alaska, US, nch is supposed
to supply the power usage during blackouts in Fairbanks, Alaa, a so-called electrical

island because of the extremely low temperature [34].

For a large GES capacity, technologies from many aspects arecessary. Currently, ma-
jor technologies in GES include: battery energy storage $gm (BESS), ywheel, pumped
hydro, compressed air energy storage (CAES), TES, supercoieting magnetic energy stor-
age (SMES), electrochemical capacitors (EC), etc. Flywhieand pumped hydro are two

traditional deployments in U.S., in which pumped hydro prowles more than 90% energy
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storage capacity [31]. The research and development of kexty technologies has already
lasted for many years, and BESS has been developed and testedhany labs. Major bat-
teries used for power storage are lithium-ion (Li-ion), sadm sulfur (NaS), and lead acid
batteries, which have their advantages and disadvantagesspectively. Please refer to [31,35]

for details on batteries and other GES technologies.

1.2.2 Information Technology

In Section 1.2.1, we introduce the main structure of smart peer system. In this subsec-
tion, we focus on information technologies that improve SGuhctions on metering, monitor-
ing, and control throughout the entire SG. Information tecimology refers to the technologies
used to process SG data such as data acquisition, data anadyslata optimization, data com-
pression, data storage, etc. The improvement of informatiotechnology brings about many
new features to SG, mainly on real-time metering and monitorg, automatic control, and
self-healing. We rst introduce information metering withsmart meters, and smart monitor-
ing with sensors and phasor measurement units. We then dissuinformation management

in this section.

Information Metering

Information metering or smart metering is essential to infanation acquisition from end
power users. The original concept of SG is actually based advanced metering infrastructure
(AMI) [36], which automatically collects information from dl the metering equipments in
power grids.

As part of AMI, smart meters are electric meters that record the power consumption
information of end users and communicate with the control oger. Smart meters support
the two-way information ows with the control center. They not only record the power
usage statistics and send to control center, but receive armation from the control center

as well. Power users are able to obtain the power grid statusrough smart meters. Another
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role of the smart meter is the central controller at end userplaces. Equipped with both
capability of communication and computation, smart meterscan communicate with the
electrical appliances and the grid control center at the sagrtime. In this way, power energy
can be used more e ciently, and many customer-side servicean be enabled. For example,
smart meters can adjust the working schedules of electricappliances according to the
real-time price broadcast from the SG; while grid controltecan shift the peak demand by

adjusting power prices.

Smart Monitoring

Smart monitoring is another important function of SG that ams to provide real-time
monitoring and measurement of the grid conditions coveringverywhere in the grid. Two
widely deployed monitoring and measuring schemes asensorsand Phasor Measurement
Unit (PMU).

Sensors are devices that can transform other physical siggmanto electric signal. In
the power grid, sensors can be used to detect failures, cpe, and malfunctions of electric
components, and can be used to monitor the working environmis such as temperature and
humidity; alarms will be triggered under extreme conditios. A sensor network are com-
posed of a group of sensors that can cover a large area. Wisslsensor network (WSN) in
particular, is an organization of a large number of sensorbdt communicate with wireless
technology. Given the characteristics of low cost and powsaving, WSN has become a feasi-
ble deployment of real-time monitoring and precise sensimmg a large-scale grid system [37],
and a good solution to limited awareness in wide area poweridg as described in [3].

PMUs are specially designed devices to measure the magnitwade phase angle of the
electrical wave, which are represented by the phasor in maimatical form. The power waves
information from di erent PMUs are synchronized precisely vith the global positioning sys-

tem (GPS). PMUs can be set to read in a short interval, from seods to minutes depending
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on the requirement of SG. Grid system controllers decide trmubstations for PMU install-
ments so that each reading is expected to have a correct patte PMU readings from the
selected places in the grid are then used to evaluate and ayrd the health of the power grid.
Further research in [38] indicates that PMUs can be used bettdy a delicately designed
system. In short, large-scale deployment of PMUs will imprevthe reliability and avoid

catastrophic failures in SG.

Information Management

An e ective information management scheme takes time, e o, and resources to de-
velop and improve. However, a bad one will cost much more witbw grid performance. A
primary cause of the Northeast blackout of 2003 thath happedean the United States and
Canada was a software bug in the alarm system, which led to amawareness of a trans-
mission line failure [1]. This exposes a big issue of ine &gt information management and
outdated control software. Fortunately, in the era of infomation, we could arm our power
grid with advanced technologies in information managemenOn the other hand, large-scale
deployment of smart meters, wireless sensors, and PMUs wikrgrate a huge volume of
data every several minutes in SG. Suppose the data can be eoled successfully in SG, it is
meaningless and even wasteful if the data cannot be procekse purpose and on time. This
is one of the challenges of information management in SG. dnfmation management in SG
can be further divided into two aspectsinformation modeling and information processing

Information data modeling is the basic of information managment. It aims to provide
a regulated, compatible, displayable, and robust data detaiion for every application in
SG. It should take into account many factors in SG, such as tnsmission time, processing
complexity, and privacy protection. For example, a controtenter may receive many data
packets at the same time, some of which are metering data anthers sensing data. The
computer at the control center should be able to analyze imrdately the types of the data,

and the meaning of each packet. The combination of each datagket needs to be regulated
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for di erent uses, and the communication protocols need toebdesigned or modi ed for the
best usage in the SG environment. Meanwhile, the data shoubé compatible in case of the
need for more functions and applications in the future. And tb computational complexity

and privacy protection need to be well balanced for practit@onsiderations. A well-de ned

structure may be used to simplify the modeling. A typical gule has been provided by the
IEEE in [39].

After modeling, the information data need to be processed perly, and the corre-
sponding operations need to be taken in a timely and precigahanner. Although the cur-
rent microprocessors have amazing computational capabyjiit is still a challenge to process
the vast data. Therefore, information analysis and optimation techniques are necessary.
Information analysis extracts useful data from the raw dataand information optimization
compresses and stores the data in a most e ective way. For emple, the sensors may be
set to collect and transmit metering data every 5-min. Norma}, the power grid status may
remain the same in short periods. So data packets can be presed later based on the
results of real-time information analysis. However, when s failures happen in SG, ana-
lyzing results may request sensors to generate reports gvdb-s. Also, in SG, power lines
are interconnected. According to the power system dynamicthe states on some lines can
be inferred from the states of other lines, which saves thesmirces on monitoring devices,
but requires more computations. The techniques of inform@in compression and storage
are also signi cant for timely optimization and resources sage. Big data techniques are
a good solution to handling the large amount of data in SG. Thauthors in [40] list SG
data management as an application of big data technology amtiscuss how big data can be

applied in SG.
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1.2.3 Communication System

The communication system supports two-way ows of informabn in SG, based on
which information metering, monitoring, and management & applicable and energy man-
agement can be achieved. A variety of communication techwgjies can be applied in the
SG environment to provide a fast, reliable, secure, and sékéaling communication system
covering the entire power grid. Fig. 1.5 shows an example oftammunication network in
SG, where both wireless and wireline communications nd itapplications. Di erent com-
munication technologies are applied in di erent scenariodn this subsection, we provide a
brief introduction to the communication technologies useih SG, which includeswireless

communication and wireline communication

Wireless Communication

Wireless communication technologies have been developet avidely used for many
years. Technologies such as Wi-Fi, 3G, and 4G LTE are used alsh everyday in our life.
Because of its development, wireless communication techogies can be used in plenty of
applications in SG. Here, we introduce important wireless aamunication technologies that
are strong candidates for SG, including wireless mesh netk® (WMN), cellular commu-
nication systems, satellite communications, Wi-Fi, and gbee. For other communication
technologies such as cognitive radio, microwave, free spawptical communications, please

refer to [41{44].

Wireless mesh networkAs a wireless network composed of nodes with a mesh topology,
WMN has been regarded as the next-generation wireless netiwag paradigm [41].
WMN provides robust and reliable communications with selbrganizing networking
structure. Its feature of automatic connectivity is important for many applications in

SG [42].
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Figure 1.5: A typical communication network in SG.

Cellular communication system.The wide application of cellular communication sys-
tems has proved its e ectiveness and e ciency. As a mature stem with many base

stations deployed, it is convenient to be applied in SG covag a large area [43].

Zigbee and Wi-Fi. Although Zigbee and Wi-Fi are di erent technologies with di erent

standards and bandwidths, they share some common charaaséics, especially in home
networks. Featuring energy e ciency, long battery life, am high security, Zigbee is
suitable for smart meters and have been developed to meet theeds of AMI [45],

while Wi-Fi with higher rate and longer range, can be used focontrolling electric
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appliances in large apartments or buildings. And the ultraew power Wi-Fi chips [45]
of energy e cient features extend the lifetime toward convetional Wi-Fi. Zigbee is also
a standard widely used in WSN [43], which has been widely depéd in environment
monitoring and thus is a strong candidate for SG monitoring. For better services
and further applications in SG, special routing infrastruture, security protection and

quality-of-service are required [46].

Satellite communication. Satellite communication o ers a good option when other
wireless signals are unavailable. And it provides GPS sereg for a global range,
which are also important for PMUs. However, it is stated in [42{hat, satellite com-

munications can cause longer delays, and its channels angnsils are easily a ected
by weather conditions. Besides, the high initial investmens another disadvantage.

These drawbacks limit satellite communication applicatios in SG.

Wireline Communication

Two important wireline communication technologies are pential candidates for SG:

optical ber communications and power line communications(PLC).

Optical ber communication. Optical ber communications have many advantages
such as super high data rate, long-distance and electromagic interference immu-
nity [42]. The current optical ber infrastructure can be a good support for high speed

communications in the future SG.

Power line communications.PLC is a technology for transmission of data and electric-
ity simultaneously through the power line [47]. PLC covers &arge area where power
line reaches, and is thus cost-e ective because the powards are already installed in

most-part of the world. However, many drawbacks and technitaroblems have to be
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identi ed, such as low capacity, large noise involvementesurity, and lack of regula-
tion [42]. We have to solve these problems before PLC can bedely applied in the

future SG. The case of possible applications of PLC in SG cae liound in [48].

1.3 Smart Grid Applications

In this section, we introduce the diverse applications in SAf SG is viewed as an
advanced computer, SG infrastructure is the hardware and S&pplications are the software
programs. More speci cally, fundamental applications copose the operating system, based
on which other applications provide the users with a varietyof functions like advanced
software programs. In the following, we begin with fundameal applications, and then
discuss two important emerging applications, i.e., EV and itrogrids, which are then followed

by two interesting derived applications, i.e., smart homerad smatrt city.

1.3.1 Fundamental Applications

As the foundation of SG applications, fundamental applicabins perform like the operat-
ing system in a computer. A well-developed and maintained epating system will e ectively
support more upper level applications. Therefore, fundamtl applications are important
in SG. Here, we category fundamental applications into thremajor classesenergy manage-

ment, system reliability and security and privacy

Energy Management

The feature of bidirectional ows of information and energyprovides the basis for ad-
vanced energy management in SG. As stated in Section 1.2.2fonmation management is
important for data acquisition and processing, which can brirther used for energy manage-
ment. Di erent from information management, energy manageent produces the results on
many aspects that can be seen directly. For example, an e @ demand-side management

will smooth the grid load, which can be observed directly; nmagement on environment
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protection will result in a reduction of GHG emission. Theradre, smart energy management
will fully re ect the intelligence of SG infrastructure. In SG, energy management is mainly
focused on two aspectsenergy e ciency and environment protection

Energy E ciency  Even before the proposal of SG, energy e ciency had been redad
as an important issue. Power loss happens all the way from g@eation to consumption.
Super high voltage power transmission is a practical methagsed to reduce power loss and
thus increase energy e ciency. Considering the large amotunof daily power consumption,
even a 1% increase in energy e ciency will save considerabbn energy resources. With
optimized energy management, energy e ciency can be gregtimproved. The research in
energy e ciency improvement is mainly focused ordemand-side managemerdnd energy

loss minimization

Demand-side management.Demand-side management (DSM), also called demand
response (DR), refers to the activities aiming to match the emand to supply and
reduce the peak load or smooth the load pro le. DSM covers arge portion in energy
management and has attracted considerable research e art$ is indicated in a recent
survey on DR that the number of optimization models on DR pragms was over 500

in 2013 [49].

In so many di erent DR schemes, matching the demand to supplg the core idea. U.S.
DOE de nes DR as the activities to provide time-varying eneagy prices for end users
according to the changing production costs and to reduce tlpeak demand by o ering
some incentives [50]. It motivates various works on dynampricing schemes such as
real-time pricing (RTP), critical-peak pricing (CPP), tim e-of-use pricing (TOU), peak
load pricing (PLP), and peak day rebates (PDR), etc. Applyinghe pricing schemes,
smart meters at the power users can schedule the time for drent power appliances.
For example, based on the prediction of coming peak times,ckuas 7:00 a.m. in the

morning and 6:00 p.m. in the evening, the control center in S@ill update power
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prices based on the predicted peak level, and smart meterdlwidjust accordingly the

usage of the power appliances, such as to pause the washingmge for a few minutes.

By deploying the scheme in millions of houses, demand peakid¢ze reduced and backup
generations can be avoided, which will save the cost for batlkility company and power

customers, and increase the system reliability. User utijitand energy provisioning cost
are also considered in many existing works. We will providedetailed discussion and

present the models of user utility and energy provision cost Chapters 2 and 3.

Energy loss minimization. Energy loss minimization aims to reduce the power loss in
the entire SG. In a power system with large penetrations of D& it is necessary to
manage the power ows optimally [51]. For example, in somerlge power consum-
ing industry plants, electricity is provided by designatedsources, which is easier for
operation but may not be the optimal solution in terms of poweloss. More exible
power ows enabled in SG make it possible to distribute the dpnal energy sources for
energy consumers in terms of both cost and power loss, but vags more complicated

energy management.

Environment Protection Environment protection is another important topic, which

has been widely emphasized in SG. By employing specially ideed management schemes,

GHG emission can be limited and controlled. Incorporating mie DGs of renewable energy

is considered as a solution to reducing GHG emission. But theergy management targeting

generation cost reduction or user utility maximization canot directly guarantee the GHG

emission reduction. This is mainly because renewable geateon does not always have the

lowest cost. Therefore, environment protection should beonsidered as a factor in energy

management schemes [52,53]. Besides, in the future SG, géaamount of batteries may be

applied for energy storage and EVs. However, most of the curtdrattery technologies are

not fully environment friendly [35]. It can be a paradox if sanany batteries in the future
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EVs become hazardous to our environment. Therefore, new magds for battery are still in

great need, and energy management on EVs are also necessamgxtend the battery life.

System Reliability

System reliability has always been an important topic in poar grid and also a key part
in SG design. ltis the ability for power grids to operate staly and reliably in each subsystem
including generation, transmission, distribution, and sirage. And it is commonly regarded
as an important application in SG.

Traditionally, system reliability is interrupted by electric component failures, animals,
severe weather, falling trees, and human factors [54]. By ploying advanced technologies,
many of these causes can be well controlled. The sensorsréhsted almost everywhere in
SG can report severe conditions in a timely fashion [37]. Eeime weather conditions can be
forecast several days ahead for preparation and the curremtaterial technologies improve
the durability of power equipment under severe weather coitbns. Human factors should
be carefully considered in SG. The 2003 blackout failed to lseopped in time partly because
of the slow reactions of engineers who were responsible fggtem control in emergency [1].
And it should be noted that even in a highly intelligent power gstem, human interference
cannot be completely avoided.

Besides, some new interruption causes in SG need to be addeelscarefully as well,
such as the intermittence of DGs, fast conversions betweel€AC and DC/AC in a hybrid
distribution system, the connection and disconnection ofraMG (see Secttion 1.3.2). The
work in [55] shows that a specially designed architecture rtagyuarantee reliability in SG
with DG penetrations. Interested readers are referred to $$ for more discussions of system

reliability in SG.
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Security and Privacy

Security and privacy issues are inevitable in almost all infmation communication sys-
tems. Thanks to the vast areas of information communicatianin SG, possible security
and privacy attacks can be predicted in many aspects. Protians on security and privacy
are especially important during the beginning of SG constaion. User privacy, grid mar-
ket, and control information are all sensitive areas and vokrable to cyber attacks [3, 56].
The research of security and privacy is mainly focused amart metering and information
monitoring.

Security and Privacy in Smart Metering Smart meters, as a relative new type of
device in SG, are ideal and attractive targets for maliciouattackers [57]. By manipulat-
ing smart meters, the readings of power consumption can bentpaered to gain economical
bene ts. This can happen for both sides. Opportunistic poweconsumers can reduce their
power bills, while illegal companies may raise the power ilof their power customers.

On the other hand, the private information on power consumjdn of power users can
expose some further information on their personal lives. i a long peirod monitoring of
smart meters, hackers can thus analyze the habits ad dailyutines of the power users, which
may be used for illegal activities such as burglary. If not dended in advance, these cyber
attacks are very di cult to track. Furthermore, the concerns on privacy may prevent some
portions of people from installing smart meters, which willmpede the development of SG.
Fortunately, a great number of research works are focused security and privacy for smart
meters [58{60].

Security and Privacy in Information Monitoring It has been introduced in Sec-
tion 1.2.2 that wireless sensors and PMUs will be widely depted for real-time monitoring
of the SG. Similar to smart meters, sensors and PMUs are pot@ittargets of malicious at-

tacks. False data injection attacks against measuring andanitoring data are stated as the

27



major form of cyber attacks [61]. These attacks are designemattack SG information mon-
itoring, it is thus important to defend these attacks to keegdurther information management

working properly. Several approaches have been proposedhe literature [61{63].

1.3.2 Emerging Applications

Based on the basic infrastructure and fundamental applicains, functional applications
are made possible in SG. Recently, two emerging applicatimave attracted considerable
interest: electric vehiclesand microgrids. They are considered by many researchers as im-
portant components in the future SG, with their advantagesn renewable energy generation
incorporation and GHG emission control. Meanwhile, they areurrently under development
and thus have many technical and practical problems for laegscale applications. In this

subsection, we discuss the applications and related isswesEVs and MGs.

Electric Vehicle

Driven by the environmental incentives and development inectric battery technologies,
EVs are now available in the market and are gaining popularity In the vehicle market,
two types of EVs are now available:Plug-in Hybrid Electric Vehicles (PHEV) and Plug-in
Electric Vehicles (PEV). PHEV can be driven by both fuel and battery, while PEV canonly
use power from its electric battery. In this dissertation, w use EV to represent both of them
if not otherwise speci ed.

EVs are supported by the government in many countries [64] , pcially in the U.S.
It is projected by the U.S. DOE that the number of EVs will reach ae million by the
end of 2015. The Electric Power Research Institute (EPRI) mjects that by 2050 EVs will
comprise 62% of the entire U.S. vehicles under a moderate pagon scenario [33]. Large
deployment of EVs will reduce a large portion of the GHG emissidrom traditional vehicles.
However, it brings about many technical problems as well, su@s charging infrastructure,

extra charging load, and communication requirements. Mogif these problems are related
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to two basic conceptsgrid-to-vehicle (G2V) and vehicle-to-grid (V2G). The former includes
the impact and control of charging activities of EVs, while tle latter denotes the e ects and
management of power injections from EVs back to the grid.

Grid-to-Vehicle  EV batteries are designed to plug in for charging immediatglor
after a xed start up. This means that they are common loads inhe power grid. Although
being convenient, EVs can generate a considerable and dynarmharging load to the grid.
Especially when a large number of EVs are charging at the samene. For example, EVs
for commutation are usually charged when the owners arriva aome after work, which is
around 18:00 p.m. It is even worse if this is a peak load peridor other power users. It has
been estimated that under a 30% level of EV penetration in thg.S., the total charging load
of EVs can reach 18% of the U.S. summer peak [32]. This will be aybmpact and threat
to the power grid. Therefore, a large number of emerging EVsm@ot be deployed without
optimized power management and scheduling of charging.

Fortunately, within SG, the charging of EVs can be controlledvith specially designed
schemes. Smart meters at the power users will play an impontarole in EV charging at
home. Just like other electric appliances, EVs can communteawith smart meters. Also,
EVs can be classi ed into di erent levels of urgency accordmto the scheduled uses with a
basic power for occasional drivings. And thus the smart metean schedule the charging of
EVs according to the grid information from the grid control ceter. In this way, the peak load
can be reduced by shifting a portion of demand to o -peak timeOn the other hand, in public
charging stations, a speci c controller is required to codinate the charging of multiple EVs.
The controller needs to consider both customer satisfacticand grid stability. The optimal
charging and coordinated charging schemes can be found i,k&b,66]. Furthermore, EV can
be a good match of renewable energy, especially in DC-drivemart power system, because

many DGs produce DC power directly [33].
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Vehicle-to-Grid  In SG, a large number of EVs also consist of a new means of energy
storage and supply, when EVs are enabled to inject power back the grid. V2G endows

EVs with several new roles in SG.

Mobile energy storage systemEVs can store electric power in batteries, which can
serve as a small supply for the grid during peak periods. Intéeves can be o ered in
the V2G market to encourage EV owners to charge in o -peak hosirand discharge in
peak hours. However, new management schemes on DR for EVs aredeel to schedule
the charging/discharging of EVs, and the V2G market also reqrés strict regulations.
The mobility of EVs brings about new challenges to V2G managemie[67]. With
distributed energy storage, EVs can also be used to providediary services such as

spinning reserves and frequency regulation [33].

Renewable energy storage systeriVs driven directly by the renewable energy, such
as solar vehicles, also serve as renewable energy storagienfuture SG [68]. Also,
some EV charging stations can be designed to use power fromawable energy. In
this way, the intermittence of renewable energy generatiocan be mitigated with the

storage from EVs.

Backup energy supply systemWith energy storage in batteries, EVs can serve as a
backup and temporary supply for houses or communities dugremergencies caused by
natural disasters. Furthermore, the standards of battergefor EV uses are very strict.
Therefore, some retired batteries from EVs will be still in god working conditions,

which can be reused for ESS after some basic maintenance.

Microgrids

Microgrid is another emerging paradigm in SG, which is a smgower grid composed
of localized medium or low level power generation, energyostge, and loads. Because of

exible DGs, MG is considered as one of the most important féare application in SG. In
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Figure 1.6: An example of a microgrid.

the connectedmode, the MG is connected to the macrogrid, which is a main pewgrid with

a large amount of centralized generation and loads; the caution is through the point of
common coupling (PCC), which can also be disconnected for @&tanded operation, when
the MG operates as a small but independent power system, suppng the local load with

its own local power generation. A typical example of an MG idewn in Fig. 1.6. MG can be
viewed as an integral smart power system with more exibilit and higher intelligence, such
as multiple DERs, two-way power and information ows, energstorage, etc. New MGs are
expected to be integrated into SG through plug-and-play maa which requires dedicated

designs of the connection interfaces to match di erent lel® of voltages [8].
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When the concept was proposed initially in [69], the utilizgon of DER was emphasized
in MG. Much renewable energy is usually generated as low I&\2C power, and MG is
supposed to integrate them from multiple sources of DER. Inhe connected mode, the
macrogrid absorbs the integrated power from MGs when renella power generation is
abundant. The macrogrid injects the power to MG when the genation from DER is not
su cient. On the other hand, the islanded mode provides reébility and exibility to both
macrogrid and MG. When emergencies or blackouts happen inetmacrogrid, MG can be
disconnected autonomously for safety and reliability. A tgye of MGs with CHP system are
constructed mainly for natural disasters or extreme weathg After Hurricane Sandy in
2012, CHP-driven MG projects has been started in several islds in the northeastern parts
of the U.S. In this way, the organization of SG becomes much ngorexible and energy
e ciency can be further improved. Therefore, it is not surpising that MG is considered as
the most important application and cornerstone in SG. Manynteresting and featured MG
projects and demonstrations are introduced in [70].

Energy Management and Control of MGs In engineering, a beautiful idea often
incurs more di culties. This rule works for most parts in SG,while MG is not an exception.
But as stated, the core feature of two-way ows of energy andhfiormation in SG make it
possible for complex power control and management, whichdassential for MGs as well [71].
Because of the several features, power management in MGs &yvcomplicated, and is

di erent in the connected mode and islanded mode.

Power management for connected MGn the connected mode, the major role of MG
is an integrator of generations from multiple DERs. Thus, th power from distributed
energy sources need to be optimally managed through the MGntwl center (MGCC).
The intermittence of renewable energy generation needs te lzonsidered, and thus,
the scheduling of charging and discharging for energy stgeadevices is also required.
The interconnection with macrogrid requires the managemeffor both sides. When

the generation in MG is low, power ows from the macrogrid to M5, making MG

32



as a load in the macrogrid. Reversely, MG is an extra supply. hErefore, if the en-
ergy distribution is controlled wisely, the MG can help shap the peak load pro le in
the macrogrid. Other factors such as power customer's sdéistion and EV charging
will increase the di culty of power management for connectd MGs. Popular con-
trol schemes and algorithms for energy management in contet MGs are convex
optimization, nonlinear programming, stochastic optimiation, machine learning, and

game theory [72{85]. We also have a brief review of these tadjues in Chapter 2.

Power management for islanded MGThe power management for MG in the islanded
mode is very di erent from that of the connected mode. In theslanded operation
mode, MG operates as an independent/isolated power systesupplying its own loads
with its own generation. It is stated in [86] that frequency ontrol and real power in-
jections caused by distributed DER generators require dirent management schemes.
The energy storage, including the batteries in EVs, becomessential to balance the
intermittence of renewable energy generation. However, ihd islanded mode for emer-

gency, some constraints can be relaxed, such as customeissattion.

1.3.3 Derived Applications

Di erent from the fundamental and emerging applications tlat mainly focus on SG,

derived applications are those based on or driven by SG. Theying us to a new smart era.

We brie y introduce smart homeand smatrt city in the following.

Smart Home

Customer participation is an important feature in SG. The eabling component is smart

meter, which is also the bridge betweeamart home (SH) and SG. Smart meters no longer

perform only as data collector for utility companies. They [ay quite di erent roles for both

customers and the grid. The importance of smart meters for S@as been emphasized in

Section 1.2.2. On the customer side, smart meter serves asoatmller in SH. In the future

33



Figure 1.7: A vision of the future smart home.

SH, the appliances are equipped with communication capaligis, and are controlled by the
smart meter through the in-home networking system. New smadppliances are deployed
with plug-and-play scheme with speci c interfaces. All thenformation can be displayed
through a controller on a displayable control panel. The SHoatrol provides users many
optional functions according to users' preferences, suck e@nergy saving, money saving, and
low carbon.

A vision of future SH is depicted in Fig. 1.7. With small reneable generations and
energy storage equipment, future SH operates like a smallvpar system or a small connected
MG. Also, the hybrid DC/AC distribution system will be realized and enhanced in the
future SH to use both DC power and AC power [28]. In short, theuture SH will be a
highly integrated system featuring high automation, custmer preferences, low carbon and
energy e ciency, which will bring us much convenience, hetlll, relax, and sustainability. An

interesting SH solution proposed by ZTE featuring high secity can be found in [87].
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Figure 1.8: The coverage of smart city.

Smart City

With most advanced technologies and innovations, a city isoosidered as a representa-
tive of the civilization in all eras. Currently, we are expeencing the revolution of information
technology, andsmart city (SC) will be a product of that. Di erent from SH, SC includes

more elements and components, which can be categorized istmart government smart
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enterprises and smart living, as shown in Fig. 1.8. Similar to SG, information management
and security protection are highly important problems. Therealization of SC requires the
support and cooperation of many aspects, from the governnielo each home. Thus this
will be a long process and will be penetrated into the city gdually. Although the idea of
SC has just been proposed, we are con dent that our cities as@proaching the ultimate SC

in the future.

1.4 Overview of the Dissertation

In this dissertation, we focus on energy management in SG émmnment. As stated in
Section 1.3.1, energy management in SG is very important ih¢ SG. Therefore, we study
the new characteristics of SG environment, and investigatie optimal power distribution
schemes in Chapters 2 and 3. We also perform the research oargg management in MGs,
especially the cooperative MGs in Chapter 4. Besides, we éqe the forecasting on the
power generation from renewable energy in Chapter 5.

In Chapter 2, we investigate an online algorithm for electeity energy distribution in a
smart grid environment. We rst present a formulation that captures the key design factors
such as user's utility and cost, grid load smoothing, dynamipricing, and energy provisioning
cost. The problem is shown to be convex and can be solved with @ine algorithm if future
user and grid related information are known a priori. We therevelop an online algorithm
that only requires past and present information about userand the grid, and prove that
the online solution is asymptotically optimal. The propose energy distribution framework
and the online algorithm are quite general, suitable for a wé range of utility, cost and
pricing functions. It is evaluated with trace-driven simuétions and shown to outperform a
benchmark scheme.

We propose a distributed online algorithm for electricity dstribution in Chapter 3. We
rst present a formulation that captures the key design faatrs such as user's utility, grid load

smoothing, and energy provisioning cost. The problem is shin to be convex and can be
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solved with a centralized online algorithm that only requies present information about users
and the grid in our prior work. In this chapter, we develop a ditributed online algorithm
that decomposes and solves the online problem in a distritet manner, and prove that
the distributed online solution is asymptotically optimal The proposed algorithm is also
practical and mitigates the user privacy issue by not sharghuser utility functions. It is
evaluated with trace-driven simulations and shown to outp#orm a benchmark scheme.

In Chapter 4, we investigate a hierarchical power scheduginapproach to optimally
manage power trading, storage and distribution in a smart peer grid with a Macrogrid and
cooperative MGs. We rst formulate the problem as a convex ajnization problem and then
decompose it into a two-tier formulation: the rst-tier problem jointly considers user utility,
transmission cost, and grid load variance, while the secotigr problem minimizes the power
generation and transmission cost and exploits distributestorage in the MGs. We develop an
e ective online algorithm to solve the rst-tier problem and prove its asymptotic optimality,
as well as a distributed optimal algorithm for solving the ssnd-tier problem. The proposed
hierarchical power scheduling algorithms are evaluated thitrace-driven simulations and are
shown to outperform several existing schemes with considbfe gains.

Energy crisis and environmental problems are forcing us todorporate more renewable
energy in the new Smart Grid, which also provides better powenanagement. Forecast on
renewable power generation, from sources such as solar amadwis crucial for better energy
management. However, the current forecast methods lack a gorehensive understanding
of the natural processes, and are thus limited in precise plietion. In Chapter 5, we intro-
duce the simultaneous inference to analyze the solar gerteya and weather data. We rst
introduce a local linear model for nonlinear time series, drpresent the construction of the
simultaneous con dence bands of the time-varying coe ciets, which provide more informa-
tion on the dynamic properties of the model. We then apply theimultaneous inference for
solar generation analysis using a real trace of weather data

We conclude the dissertation and present the future work in l@&pter 6.
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Chapter 2

Centralized Online Algorithm for Optimal Energy Distribution in the Smart Grid

2.1 Introduction

A smart grid is an electrical grid that is enhanced with commuications and networking,
computing, and signal processing technologies [44]. Unlittee traditional power grid that
is strictly hierarchical, the smart grid is characterized ¥ the two-way ows of electricity
and real-time information, which o ers tremendous bene tsaand exibility to both users and
energy providers. With full-duplex information ows, con guration of the grid devices can
be customized for timely response to the grid status. For exgple, energy storage systems
can cooperate with distributed renewable energy resourcd3RERS) to balance the supply
and demand, and users can adapt their demand for energy aatiog to the market price
uctuations [81].

The two-way energy and information ows, along with the smardevices, also bring
new perspectives to energy management and demand respomsthé smart grid. Demand
side management is one of the most important problems in smarid research, which aims
to match electricity demand to supply for enhanced energy eciency and demand pro le
while considering user utility, cost and price [44]. Resegrers have been focusing on peak
shift or peak reduction for reducing the grid deployment andperational cost [88,89], as well
as on reducing user or energy provider's cost [90,91]. In pewlar, some prior works aim
to achieve a single objective, such as to improve the userility or reduce the cost of the
energy provider [92], while others jointly consider both th user and energy provider costs,
to increase the users' utility as much as possible while keeg the energy provider's cost at
a relatively lower level [93]. Given the wide range of smartrig models and the challenge

in characterizing the electricity demand and supply process and the utility, cost, pricing
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functions, a general model that can accommodate various dgation scenarios would be
highly desirable. Furthermore, it is important to jointly consider the utilities and costs of
the key components of the system to achieve optimized penfioance for the overall smart
grid system.

In this chapter, we consider real-time energy distributionn a smart grid system. As
shown in Fig. 2.1, the distribution control center (DCC) cdeects real-time information from
the three key components, i.e., the users, the grid, and theergy provider, makes decisions
on, e.g., electricity distribution, and then sends the desions back to the key components
to control their operations. The smart meters at the user s& will be responsible for the
information exchange with the DCC and for enforcing the eléucity schedule received from
the DCC. The information ows will be carried through a communications network infras-

tructure, such as a wireless network or a powerline commuat®n system [44].

7\

Figure 2.1: lllustration of the key elements and interactios in the smart grid.
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For optimizing the performance of such a complex network ggsn, the utilities and
costs of the three key components, i.e., the users, the grahd the energy provider, should
be jointly considered. In this chapter, we take a holistic gmroach, to incorporate the key
design factors including user's utility and cost, grid loadmoothing, dynamic pricing, and
energy provisioning cost in a problem formulation. To solvihe real-time energy distribution
problem, we rst present an o ine algorithm that can produce optimal solutions but assum-
ing that the future user and grid information are known in adence. Based on the oine
algorithm, we then develop an online algorithm that does natquire any future information.
As the name suggests, an online algorithm operates in an odigetting, where the complete
input is not known a priori [94]. It is very useful for solvingproblems with uncertainties [95].
We nd the online algorithm particularly suitable in addressing the lack of accurate mathe-
matical models and the lack of future information for electcity demand and supply in this
problem. We also prove that the online algorithm converge® the optimal o ine algorithm
almost surely.

The proposed framework is quite general. It does not requiany speci ¢ models for
the electricity demand and supply processes, and only havense mild assumptions on the
utility, cost, and price functions (e.g., convex and di eratiable). The proposed algorithm
can thus be applied to many di erent scenarios. The online gbrithm also does not require
any future information, making it easy to be implemented in aeal smart grid system. It is
also asymptotically optimal, a highly desirable propertySince there is no need for commu-
nications among the users, their privacy can be easily prated. The proposed algorithm
is evaluated with trace-driven simulation using energy caumption traces recorded in the
eld. It outperforms a benchmark scheme that assumes globaiformation.

The remainder of this chapter is organized as follows. We @ent the system model and
problem formulation in Section 2.2. The o ine algorithm is introduced in Section 2.3, and
the online algorithm is developed and analyzed in Sectiord2.The communications protocol

for supporting the online algorithm is discussed in Sectiah5. A practical online algorithm
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is given in Section 2.6. We present the simulation studies Bection 2.7 and review related

work in Section 2.8. Section 2.9 concludes this chapter withdiscussion future work.

2.2 Problem Statement

2.2.1 System Model
Network Structure

We consider a power distribution system in a smart grid envanment where one energy
provider supports the power usage dfl users. The users could be residential, commercial
and industrial energy consumers. Each user hasmart meterthat manages the schedule of
electrical devices [44]. We envisage that the smart metersutd be a controller of electrical
appliances in a house and are connected to the DCC of the enengrovider through a
communication network. At each time cycle, the smart meterapdate user information to,
and receive control information from the DCC, while the DCC dcides the power distribution
among the users based on the real-time system informationckuas grid load, user demand
and provider's cost. The DCC manages the entire system as aoWa to achieve an optimum
distribution scheme that balances the users' utility, suply cost of the energy provider, and
the variance of the grid.

Here, the time cycles or slots indexed by2 f 1;2; g could be, e.g., 1 hour, 0.5 hour,
15 minutes and even shorter, according to the updating pedmf the smart meters and the
size of the smart grid. Usually, the DCC takes a one-day operah cycle based on the daily
periodical nature of electricity usage. Note that this is noa requirement for the model but a
practical scenario in most cases, which will be applied inéhperformance evaluation section.
Let N = f1;2;, ;Ng be the set of users. We denote the power consumption of useat
time t asp;(t). At each time slot, useri's minimum demandp;min (t) should be guaranteed,
i.e.,

pi(t)  Pimin (1);81 2 Nt (2.1)
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Table 2.1: Notation Table for Chapter 2

Symbol Description
N set of electricity users in the system
P set of power demand or consumption for users in a time slot
C set of maximum cost for the energy provider at any timé
U set of user utility functions
N number of users in the system
T total number of time slots in o ine problem
P power usage by theN users from time 1 T, oine
P power usage by user from time 1:T, oine
P(t) power usage by theN users at timet, o ine
Pi(t) power usage by user at time t, o ine
P optimal solution of the o ine problem
P; optimal power distribution for useri from time 1 :T, oine
P (1) optimal power distribution for N users at timet, o ine
P, (t) optimal power distribution for useri at time t, o ine
(1) Lagrange multipliers associated with the o ine problem
i(t) Lagrange multipliers variable associated with the o ine poblem
At) power usage by theN users at timet, online
pi (t) power usage by user at time t, online
pi power usage by user at a xed time, online
ﬁt) asymptotically convergent vector in the online problem
pi (1) asymptotically convergent variable in the online problem
p optimal solution of the online problem
P (*’p\;c(t)) optimal power distribution for N users at timet, online
P (1) short term for p (1’5; qt))
o} ("p\;c(t)) optimal power distribution for user i at time t, online
B (t) short term for p, ("p\; qt))
Pi:min (t) minimum power demand for usei at time t
Fi(t) the exibility of user i at time t
L(t) grid load at time t
c(t) maximum cost for the energy provider at timet
U() user utility function
C() cost function of energy provider
f() price function
() optimal objective value of the o ine problem
() sum of online Lagrange dual function fot from 1: T

modi ed parameter of p
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Besides, we assume that the users are rational, which meahsattat each time slot, power
demand of each user has an upper bound, i.@(t)  Pimax (t). This will not become a
constraint in our problem, because we aim to satisfy the useliemand as much as possible
under other constraints. However, this assumption togethewith (2.1) guarantees a closed

set P which includes all the possible value of power demanded ansed, that is, p;(t) 2 P.

User Utility Function

We assume independent users with their own preferences ofveo usage. For example,
each user could have its own time schedule for using di ereefectrical appliances. Also,
the user demand may vary as weather changes. Usually the powensumption is larger in
a hot summer day than that in a mild day in the spring. Besides]i erent users may have
di erent reactions to di erent price schemes [91]. Theref, it is di cult to characterize
user preference with a precise mathematical model. In priarork, user preference is usually
represented by autility function [90]. Similarly, we use functionU(p;(t);! i(t)) to represent
useri's satisfaction on power consumption. We assumé( ; ) to be a strictly increasing,
concave function of the allocated powep (t); its form could be general. One example is the
widely used quadratic utility function [90,91,93]. For edt useri, the other parameter! ;(t)
of the utility function indicates the user's exibility at t ime t. A larger ! ;(t) means higher
exibility. !;(t) could be di erent for users or vary over time. Its values arsent to the DCC

at each updating cycle by the smart meter.

Energy Provisioning Cost

For energy providers, when demand is in the normal level, tlgeneration cost increases
only slowly as the demand grows. However, it will cost much memwhen the load peak is
approaching the grid capacity, because the provider has toansmit more power from the
outside or backup batteries to avoid a blackout. Thereforaye use an increasing and strictly

convex function to approximate thecost functionfor energy provisioning. Similar to [91,93],
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we choose a quadratic function to model the provider's cost.
C(L(t))= a L%(t)+ b L(t)+ c; (2.2)

P
wherea > O andb;c 0 are pre-selected for the power grid and(t) =, pi(t) denotes the
grid load, i.e., the total power consumption for time slot. From the provider's perspective,
we assume that it aims to meet the user demand under an accdpi&acost constraintc(t) at

time t, which shall not be exceeded.
C(L(t) «c(t);8t2f1,2, ;Tg: (2.3)

We call ¢c(t) budgetin the rest of this chapter. Without loss of generality, we asimec(t) to

be an ergodic process, which is taken from a €t i.e., ¢(t) 2 C.

Price Model

Dynamic pricing like real-time pricing (RTP), critical peak pricing (CPP) and time
of use pricing (TUP) [96] could be incorporated in the smart gil environment. However,
real electricity market is still dominated by simple pricirg schemes. In this chapter, we
use a simple price model that can characterize most real dlegty markets, especially for
residential usage. As shown in [89,97], without dynamic peademand, the price load curve
has the shape of &ockey stickit remains at over a long range of grid load and then grows
upward steeply as demand approaches the grid capacity. Liet ) be the price function and
f (L(t)) the price at time t. Therefore, we assumé( ) to be a twice-di erentiable increasing
convex function that maps the total load to a price. Similar o the utility function U(), the

price function f () could have a general form as well.
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2.2.2 Problem Formulation

As mentioned in Section 2.1, we aim to minimize the load variae in the grid while
maximizing user satisfaction. Large load variance is undezble for grid operation. It brings
about uncertainties that a ect not only user satisfaction lut also the stability of the power
system. Furthermore, the energy provisioning cost shouldetbounded and users' necessary
power needs should be guaranteed.

We rst consider an oine scenario where the DCC distributesthe power to users
during timet=1;2; ;T, and all the information on users' exibility ! j(t) and provider's
budget c(t) are assumed to be known in advance. L&®;(t) denote the power usage for
useri attime t, fort 2 f1;2; ;Tg. In this chapter, we use upper casl in the oine
problem (see Section 2.3), where all the necessary constraints areWn a priori. In the
correspondingonline problem which will be examined in Section 2.4, we use lower cgséor
the corresponding variables. A vector with subscript is used to denote a time sequence,
e.g., P; for the power usage by user fort 2 f1;2; ;Tg. The oine problem can be

formulated as follows.

" ! # !
X X X T X
max: U(P;i(t);!i(t)) f Pi(t) Pi(t) 7Var P (2.4)
t=1 i2N i2N i2N
subject to:
Pi(t) Pimin (1);812N;t2f12  [Tg (2.5)
X !
C Pi(t) c(t);8t2f11,2 ;Tg; (2.6)
i2N
where
! o
X 1 X X 1 X X
Var p, = = Pi (t) — P,(k)
. T . T .
i2N t=1 i2N k=1 i2N

The objective function (2.4) consists of two parts. The rstpart represents users'

satisfaction and preference as the di erence between usdility and cost. The second part
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represents the load variance of the grid. These two parts angegrated with a parameter
> 0, allowing a trade-o between the two. Constraint (2.5) indcates the minimum user
demand should be guaranteed, while constraint (2.6) repes#s the cost upper bound for
the energy provider. In section 2.3, we present an algorithitihat can solve this o ine
problem and explain how we can move from oine to online. In Sgion 2.4, we present
an algorithm to solve the corresponding online problem thadoes not require any a priori

user/grid information, and show that the online algorithm & asymptotically optimal.

2.3 0O ine Algorithm

In the o ine problem (2.4), the user power consumptionP;(t)'s are independent. Hence
P P
the variance term can be rewritten as Var( ,Pi) = ;,5 Var(P;) and the price function
P
f .y Pi(t) is same for each user, which means
! !
X X X X
f Pi(t) Pi(t)=f Pi(t) Pi(t)

i2N i2N i2N i2N

. Therefore, we could depart the rst term of (2.4) and rewrie the price term and variance

term respectively. Then the problem can be reformulated aslfows (termed Prob-OFF).
!
XX XX X T X
max: ( P)= U(P;(t);!i(t)) f Pi(t) Pi(t) - Var P; (2.7)
t=1 i2N t=1 i2N i2N i2N

subject to: (25) (2:6);

where P is an N T matrix that denotes the power allocated for each user at time
1Py 1 Pr 2
t2f1,2, ;TgandVar(P)= + ., Pi(t) $ .4Pi(k) .
In Prob-OFF, U( ) is concave andC( ) is convex. Since the price functiofi ( ) is convex,
P
f( ,yPi(t) ,yPi(t) is also convex. We only need to show the convexity of V() to
establish a convex optimization problem. The convexity of &(P;) can be easily proved by

its de nition.
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Lemma 2.1. Prob-OFF is a convex optimization problem and has a uniquelston.

The complete proof of Lemma 2.1 is presented in Appendix A.3. A®inma 2.1 holds,
we can carefully choos®;.n (t) to meet Slater's condition [98], and thus the KKT condi-
tions [98] are su cient and necessary for the optimality of Pob-OFF. Let P be an optimal
solution to Prob-OFF. Let (t) and (t) be the Lagrange multipliers and variables, respec-

tively, fori 2 Nandt2f1;2;, ;Tg. We have

P
UO(P (): 1) h L P () P (t) P
P
()CO WP (D) =dt)+ (=0

() C  yPi(t) =dt) 1 =0 (2.8)
|(t) (P (t) I:)i;min (t)) =0

t); i) O8i2N;t2f12 ;Tg;

where ! I !
X X X X
h P () =% P (1) P, (t)+ f P, (1)
i2N i2N i2N i2N
and
1 X
P, = T P; (k): (2.9)
k=1

From the above equations, we can solve fo(t) as

P
P Pi(t) +URR®:1i(1) hC ponP )+ ()
CYL in P (1))=d)

(t) = (2.10)

Therefore, to achieve optimality, there is an identical (t) for all users in a time slot
t. The optimal solution guarantees that the right-hand-sidg¢RHS) of (2.10) has the same
value for all users. Furthermore, we observe that only thié, term requires information from

other time slots. This implies that if P, could be accurately estimated, the optimal energy
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distribution P could be determined using only information in the current tne slot, such
asc(t) and Pimin (t). This is essential, because in the o ine scenario, our assiption that

future information are known a priori is not a possible casaithe real smart grid. Based
on this observation, we are able to present aonline algorithm for the energy distribution

problem in the next section which requires no future inforntan.

2.4 Online Algorithm

In this section, we present an online algorithm for energy stribution, and prove that the
online solution is asymptotically convergent to the o ine gtimal solution, i.e., asymptotically
optimal. The online energy distribution algorithm consists of thedilowing three steps,

denoted as Algorithm 2.1:

Algorithm 2.1:  Online Energy Distribution Algorithm

Step 1: For eachi 2 N, initialize §;(0) 2 P.
Step 2: In each time slott, the DCC solves the following convex optimization problem

(termed Prob-ON).

X X X X
max: U(pi(t);!i(t)) f pi (t) ORI GO ¢ 1))? (2.11)
i2N i2N i2N i2N
subject to: pi(t) Pirpin (1);812 N (2.12)
X
C pi(t) c(t);8t: (2.13)
i2N

Let p (t) denote the solution to Prob-ON, where each elemei (t) represents the optimal
power allocation to usern.

Step 3: Update pi(t) for all i 2 N as follows.

Bt =Pt 1)+ (e () Bt 1) (2.14)

T+
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P (1) is indeed the short term ofp (1’5\3;c(t)). For brevity, we use p (t) instead in the
chapter when it is clear in context. Comparing to (2.7), the ariance term is approximated
by P Hon(E() Pt 1))%in (2.11). In Prob-ON, (2.14) can be viewed as a stochastic
approximation updating equation, if the budget of the eneng provider, c(t), is viewed as a
stationary stochastic process. This interpretation can bgisti ed becausec(t) is assumed to
be ergodic, and thus is stationary.

Similar to Prob-OFF, problem Prob-ON is also a convex optinziation problem satisfying
Slater's condition. Its KKT conditions with KKT multiplier s (t) and KKT variables (t),

fori 2 N, are as follows.

8
P
Udp (0);1i(1) h o oupi(b) (p () B 1)
P
(HC° NP (D) =dt)+ () =0
() C P =dt) 1 =0 (2.15)
% ()P (1) Pimin (1)) =0

(t); i(t) 0O; 8i;t:

In the remainder of this section, we rstly prove that(t) approaches a limit fort goes
to in nity and then we show that f(t) converges to the mean of the power allocated to each
useri 2 N over time, as given in (2.9).

We begin with the de nition the function g(P; t)):

X

o(P; qt) = U(p; (B; qt)); (1))
i2N
X A ! X A
f P (; €t)) p; (B; €t))
i2N i2N
> (B (B ) P2 (2.16)
i2N
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Note that the optimized function g(%; qt)) share the same form with (2.11), but with a
di erent meaning. Here we regard the optimizerp ("é;c(t)) and the optimized objective
g(%; qt)) as stochastic processes. We need to show the proc’p\(ﬂ;&; converges almost surely,
for given stationary stochastic process(t). We have the following immediate properties of
P (B; b)) and g(B; qb)).
Property 2.1. Continuity of p (B; dt)) and g(f; t)).
For any c(t) 2 C, we have
i) P (1’5; qt)) and g(1’s\3; qt)) are continuous functions of"p\;
i) E[p (P;t))], E[g(B; dt))] are continuous functions off
Property 2.2. Di erentiability of g(%;o{t)) and E[g(fa;c(t))].
For any c(t) 2 C and eachi 2 N, we have
) rpg®d) = (p(Bidt) P
i) r pE[g®:d)] = (Elp (Bd)]  p).

With Properties 2.1 and 2.2, we are able to show the followirrgsult, which is an impor-
tant step to the proof of the convergence of proceé\’s We next show the convergence @f (1)
stated in the following Lemma 2.2 and Lemma 2.3. The complefgoofs of Properties 2.1

and 2.2, Lemmas 2.2 and 2.3 are shown in Appendix A.

Lemma 2.2. The solution of the following xed point equation is unique

Elp (B qt)] = P (2.17)

Lemma 2.3. pi(t) converges almost surely to the unique solutiq’e\mf the xed point equation
Efp (B;(t)] = B

Based on the convergence g (f), we are ready to prove the asymptotic optimality
of the online algorithm, which indicates that for a su ciently long time period, the time
averaged di erence between the online and o ine objective alues will become negligible.

The results are shown in the following lemma and theorem.
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Figure 2.2: Information ows in the power distribution network.

Lemma 2.4. The following limit exits and converges for 2 N:

1 X '
lim T p(t) B(T) =0:

TH
t=1

Theorem 2.1. The online optimal solution converges asymptotically andnabst surely to

the o ine optimal solution.

Lemma 2.4 and Theorem 2.1 guarantee the asymptotic convenge of the online solu-
tions to the oine solutions. See Appendix A.6 and A.7 for the prof of Lemma 2.4 and

Theorem 2.1 respectively.

2.5 Communication Network Protocol

Information exchange is an important element of the emerginsmart grid. Communi-
cations between smart meters and the DCC are essential fortbaontrol and distribution.
Algorithm 2.1 is also based on such information exchanges. A®ra advances are made in

smart grid, there is a compelling need for network architeates, standards, and protocols for
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communications in smart grid. We hereby introduces a basiaqocol for communications
network support in the smart grid, which is simple but su cient to support the real time
online power distribution algorithm.

In Algorithm 2.1, the users' basic demand for power and the marum acceptable cost
of the energy provider (EP) should be updated in every deamsi period at the DCC for
real time execution, because these are the constraints ane d&ometimes unpredictable. As
we try to smooth the total power consumption of all users in th system, grid stability is
another objective. We have four entities in the system: the ©C is the core and Users, EP
and Grid are also important participants. At the beginning @ each time slot, users send their
demands to the DCC through their smart meters, while EP infons the DCC its acceptable
cost limit. The DCC also collects other information from thegrid, such as the actual grid
load. Then the DCC executes the online power distribution gbrithm using the updated
information. It sends the allocated amounts to the users anthe total usage or demand
to the EP. Moreover, DCC is able to send other control informéon to the EP or users for
regulation, accounting, emergency response and alertsg.et

Fig. 2.2 illustrates the information ows in the network sysem. At each updating slot,
the DCC sends a grid information request to the grid, which tarns relevant real-time grid
parameters such as load condition and capacity. Meanwhilasers send their basic power
demands to the DCC to request power for the time period. Alsohe EP sends its cost limit
to the DCC to get their energy provisioning cost controlled whin an acceptable range. After
the DCC have gathered these necessary information, it apgdi Algorithm 2.1 and then sends
the results to the EP and users, so that the EP could supply theorresponding amount
of power to the users. Finally, the grid will update the actukhgrid load to the DCC for
grid inspection and control. Note that there will be no infornation exchange among the
users, so that their privacy (e.g., electricity usage habjitcould be protected. Note that the

update interval are at the order of hour or tens of minutes. ®en the data rate of existing
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wireless networks, such exchange of control information lgrtakes a negligible fraction of

the interval.

2.6 Practical Online Algorithm

In the smart grid communication network discussed in Sectoi2.5, we notice that the
DCC has to communicate with all the Users, the Grid and the EPLtlis a large burden when
the smart grid becomes larger. This only brings more usersytowill increase the time for
both calculation and communication. With modern network ifrastructure and protocol,
time for information exchange could be well controlled. Hower, in complicated practical
situations, the utility function, the cost function and the price function may have di erent
realizations, some of which are very complex. This will no dbt bring much di culty for
the DCC to solve the Prob-ON. In some cases, the KKT conditiong&ee (2.15)) are very
di cult to solve especially in short intervals. Thereforejn this section, we present a practical
online algorithm (termed Algorithm 2.2) for energy distribuion in smart grid, motivated by
Algorithm 1 stated in Section 2.4.

At each time slot t, pi(t) for all i 2 N is the distribution power to useri. In the
above practical algorithm, the derivative could be replactby the di erence equation, when

theanalytic functictp form of the function is dicult to be ac quired. For example, use
C( i3 pl(t)) C( i2N pi(t 1))

l i2N[pi (t) Pi (t 1)]
be formulated. From the practical algorithm, we see clearlihe allocation process in evalu-

P
instead of C{" ,,, pi(t)), when the cost function cannot

ating ; in Step 2, which is a natural expression from (2.10). In thisay, DCC distributes
the energy uniformly while not giving a user too much. So we wia expect a more smoothy

allocation.

Algorithm 2.2:  Practical Online Energy Distribution Algorithm

Step 1: For eachi 2 N, initialize §,(0) 2 P.

In each time slott, do the next two steps:
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Step 2: For eachi 2 N, initialize pi(t) = pimin (t). Let the setS= f1;2;::;;Ng. Then take

the following loop:

while S6 ;

For eachi 2 S I:gake
(Bt 1) p®) hC pup()+ UNpi(t); (1)) |
(1=q1))CA ,nRi(1)) ’

if maXjog | < O,then S=;;

elsej = argmax,s i;

P ()= p(t) + step
if pj(t) > maxfp:p2 Pgor C(X pi(t)) > c(t)
then p; (t) = p(t) step; -
deletej from S;
end

end

end

Step 3: In each time slott, update g(t) for all i 2 N as follows:

pi(t) =di(t 1)+

(E(t) A 1):

T+

The parameter step controls the incremental precision and the running numbeafd
time) of the loop in Step 2. When the updating interval is shdr it is safe to setstep very
small, which leads to a longer running time and vice versa. Bhcomplexity of the practical
algorithm is roughly proportional to N max(p)=step i.e., the number of users times the
maximum distributed energy over the increment.step also decides the error between the
practical solution and the theoretical solution to KKT condtions. Sostep is an important

parameter in the practical online algorithm. The DCC could koosestep according to the
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length of updating periods and the number of users. With cortlled step, the DCC could
support a large number of users. Although the good power digiution from the practical
algorithm is not the optimal one, it is more practical as it ca be used with complicated

functions and its running time and precision could be conttled.

2.7 Performance Evaluation

2.7.1 Simulation Con guration

In this section, we evaluate the proposed online algorithmith trace-driven simulations.
The simulation data and parameters are acquired from the tces of power consumption in the
Southern California Edison (SCE) area recorded in 2011 [99)/e rst study the performance
of the proposed algorithm on convergence, grid load variamand peak reduction. We then
compare the online algorithm with an existing scheme undei drent numbers of users.

Consider a power distribution system in a small area withN = 20 users and 15 minutes
updating periods. Note that a quarter is a practical set whickallows DCC to have su cient
time to coordinate all the users so that the system could suppt more users and that in
most cases, 15 minutes is short enough to show the users' damf demand. We will show
results within a 24-hour time pattern for an evaluation of tke daily operations. We choose
users' utility function from a function set U in which the functions are generated as widely
used quadratic expressions (see [90, 91, 93]), with(t) 2 (0;1) randomly selected.

8
2L % 0 pM 40

Ulpi(0); (1) = (2.18)
T4(t); if pi(t) 4li(t):

We also assume the basic user demapgh» (t) and the initial value p;(0) are selected from
the set of P = [0:5; 3], for all i. The parameters in the energy provisioning cost function (2)
are set asa = 0:05, b= ¢ =0, and c(t) is selected randomly from the seC = [1;20] for

each time slot. These parameters are carefully determineftex studying the characteristics
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Figure 2.3: Convergence gfi(t) for di erent users ( = 1).

of the SCE trace. In addition, we choose the price function as

f(L(t) =0:047 L(t)? 0:38 L(t)+27:67 (2.19)

It is a quadratic function and also a twice-di erentiable ircreasing convex function as dis-
cussed in Section 2.2.1. This model is formulated from theqaticted and actual prices from
the SCE trace [100]. We simulate two scenarios with set as 1 and 0.01, respectively, to

examine how it a ects the result.

2.7.2 Algorithm Performance

We rst study the convergence ofp/(t). Earlier discussions in Section 2.4 show that
pi(t) is convergent. Fig. 2.3 illustrates that for = 1, one day is su cient for p,(t) to
converge to steady state values. In Fig. 2.4, it takes moremre to converge. In the online
problem Prob-ON, is not only a parameter integrating di erent objectives, bu also an

important coe cient a ecting the convergence of the algorthm. In the online updating
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Figure 2.4: Convergence qgfi(t) for di erent users ( =0:01).

equation (2.14), it is clear that a large will cause relatively a large disturbance, especially
at the very beginning. However, a large will also lead to fast convergence, and vice versa, as
shown in Figs. 2.3 and 2.4. Besides,also a ects the impact of the variance (or, smoothness)
on the overall objective value (2.11). It shapes the grid ldacurve to some degree, as we will
see in Section 2.7.3.

Lemma 2.4 states thatp(t) will converge to the time averagedp, (t) if we run the
simulation su ciently long. For a larger , the convergence will be faster, shown in Fig. 2.5,
where we nd that p;(t) uctuates uniformly along the p, (t) curve for di erent users. For a
smaller , the convergence could be very slow. Fig. 2.6 demonstraté® tslow convergence
when = 0:01. However, the convergence @f(f) is proved to be true asT ! 1 (see the
proof of Lemma 2.4). In Fig. 2.6, it can be seen tha () is still approachingp, (t), although
slowly. Therefore, the value of should be carefully chosen to trade-o between convergence
and other objectives.

More importantly, our main objective is to develop an optimaonline algorithm to reduce

the variance of the grid load and to balance electricity denmal and supply. In Fig. 2.7, we
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Figure 2.6: Online power distributionp, (t) and g (t) for di erent users when =0:01.

plot the total power consumption achieved with the online gorithm and the actual load.

The real power usage is the summation of 20 independent us@snsumption generated by

the average real load in the SCE trace on a hot day (i.e., Seft, 2011) [99]. The constraints
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Figure 2.7: Real power usage and total power usage by the omlialgorithm when =1.

are derived from the real load in the 2011 SCE trace. For bett@resentation, we only plot
the result of the online algorithm with = 1. The results with = 0:01 will be shown in
Section 2.7.3.

In Fig. 2.7, we nd that the online algorithm achieves a well smoothed grid load. Inter-
estingly, although the power usage of each user varies ovane (as shown in Fig. 2.5), the
total power usage is e ectively smoothed out by the online gbrithm. This result demon-
strates the e ectiveness of variance detection and reduoti of the online algorithm. Although
the controlled curve lies slightly above the average levet the real load, it reduces the cost
of energy provisioning by achieving a considerable peak wation, which is about 35% in

this scenario with only 20 users.

2.7.3 Comparison with a Benchmark

We next compare the online algorithm with the Optimal Realdtme Pricing Algorithm
(ORPA) presented in [93] as a Benchmark. Comparing to prior wk, this one formulates

a similar but simpler problem to our problem. It adopts a reatime pricing strategy to
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Figure 2.8: Total power consumption for OORA(1), OORA(0.01)ORPA and RC.

maximize social welfare of the smart grid, as

X X
max U(pi(t);!i(t) C pi(t) (2.20)
i2N i2N
fort 2f1;2; ;Tgand for all independent useii. As we can see, (2.20) is similar to but

simpler than (2.11). With the same parameters as in the onlealgorithm, this is also a
convex optimization problem. We can solve (2.20) with a ceratlized interior-point method
as discussed in [93].

Firstly, we show the total power consumption of di erent algrithms in Fig. 2.8. From
the aspect of smoothness, we could see clearly that the oslioptimal real-time energy dis-
tribution algorithm with = 1 (termed OORA(1)) achieves the best performance. The
gure also shows that the online algorithm with = 0:01 (termed OORA(0.01)) also out-
performs the benchmark ORPA. All the three algorithms achievemoother total loads than

the real consumption (RC). The peak reductions over RC are 35 for OORA(1), 28% for
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OORA(0.01), and 12.5% for ORPA. Therefore, OORA(1) achieves ¢hlargest peak reduc-
tion, while OORA(0.01) still outperforms ORPA with consideable gains.

Next, we plot the variance of the total load in Fig. 2.9 for di @ent system settings.
These results are consistent with that in Fig. 2.8. We nd th&a OORA(1) achieves the
minimum variance for all the cases simulated, while OORA(01) still outperforms ORPA
with a much smaller variance. This is because variance is éxjfily incorporated into the
objective function in the online problem formulation, whie ORPA is designed mainly to
maximize the social welfare as in (2.20) and cannot guaraet@ smooth total grid load.

Finally, we provide a more detailed comparison of the threelsemes in Table 2.2, where
the simulation results of several individual performance easures are listed for networks of
200, 500, and 1000 users. Note that the price function is di ent for di erent network sizes,
which is a function of the total load. As de ned in (2.21),V, U, F, and PK denote the
averages across users of the total power variance, userdlityf users' cost, and the peak of

the total load, respectively, whilec is the total energy provisioning cost for the entire period.

8 _ P
V=& o Var(p (1)
_ /P P _
U=3& L anUm@:0i)
- _ ,P: P P

§F_N =1 FC e P )C 2n P (1) (2.22)

P
MmaXopT] o8 P (1)

T
- Z|=

P
c= t=1 C( i2n P (t)):

For V, the best performer is OORA(1), which is consistent with thealier results. Also,
the variance is increasing as the user number grows. Fer we observe a relatively stable
number of the averaged cost on daily electricity consumptiofor each user. In the rst three
algorithms, F is almost the same while RC always has the largest number basa in reality
where the RC curve was recorded, supply was always matchedthe user demand. This is

con rmed by the results of users' utility U: as users could use electricity freely, they should
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Table 2.2: Simulation Results of Individual Performance Masures for Di erent Algorithms
| Algorithm  |N |V |U |F |c( 10°) | PK |

OORA(1) 200 | 0:02 | 3.52| 3.41| 1.69 1:35

OORA(0.01) | 200 | 9.3 |3.59|3.27| 161 1.46

ORPA 200 | 21.5|3.56| 3.43| 154 1.79
RC 200 | 53.5|3.86| 3.65| 1.86 2.07

OORA(1) |500 | 0:05 | 3.53] 3.31] 10.5 1:37
OORA(0.01) | 500 | 23.2 | 3.63| 3.42| 10.1 1.51
ORPA 500 | 52.6 | 3.54| 3.28| 9.54 1.83
RC 500 | 113 | 3.88| 3.61| 14.0 2.27

OORA(1) 1000| 0:10 | 3.51| 3.25| 42.2 1:41
OORA(0.01) | 1000| 44.1 | 3.59| 3.30| 40.2 1.59
ORPA 1000| 105 | 3.54| 3.25| 38.1 1.93
RC 1000| 266 | 3.87| 4.23| 54.1 2.58

have the highest satisfaction level. Observing and F, we see that a higher satisfaction level
is achieved with a higher cost. Moreover, it is interestingot see that utility U of OORA(1),
OORA(0.01), ORPA are almost the same for di erent numbers of sers, with OORA(0.01)
being slightly better. This is because, as in ORPA, the utilit is incorporated in the objective

function of OORA. When is small, the rst two terms in (2.11) will have larger weighs.

62



For energy provisioning cost, ORPA exhibits its advantage by includingc in the ob-
jective function. Also, if we takeU ¢, ORPA is also the best performer, which could be
expected from its objective function (2.20). However, thisdvantage becomes insigni cant
when the varianceV and the peakPK are considered. OORA has unique advantages on
variance control and peak reduction. It is also worth notinghat OORA is an online algo-
rithm that requires minimal exchange of control/state infemation within the grid, while the

ORPA results are obtained with a centralized solver assungnaccurate global information.

2.8 Related Work

Smart grid is characterized by the two-way ows of electrity and information and is
envisioned to replace the existing power grid in the future83[101]. A comprehensive review
on smart grid technologies and research can be found in [4dhere the research on smart
grid is classi ed into three major areas: infrastructure, rmanagement and protection.

In the three areas, demand side management or demand respghas been attracting
considerable research e orts [81,84,88,90{93,102, 10Rksearchers work mainly on demand
pro le shaping, user utility maximization and cost reducton. For example, machine learning
is used in [90] to develop a learning algorithm for energy ¢eseduction and energy usage
smoothing, while [92] aims to achieve a balance between usepst and waiting time. In [93],
the authors propose an optimal real-time pricing algorithmo maximize the social welfare,
considering user utility maximization and energy providecost minimization. In [102], the
authors formulate a Stackelberg game between utility compas and end-users aiming to
maximize the revenue of each utility company and the payo o&ach user. In [103], the
authors discuss the architecture of home machine-to-maoki (M2M) networks for energy
management, which is an important component in the smart gti In these works, convex
programming, machine learning and game theory are mostly et

On the other hand, online algorithms [94] are widely used inimless communications

and networking, where precise channel and network informanh are hard to obtain. Recent
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research on solving wireless networking problems usingiaelalgorithms can be found in [95,
104{106]. In [104], two online algorithms are developed frothe optimal o ine algorithms to
maximize the amount of unit-length packets scheduled in a pket-switching mechanism. The
authors of [105] address the energy-e cient uplink schedulg problem in a multiuser wireless
system. With an online algorithm, an optimal scheduling is@hieved without prior knowledge
on arrival and channel statistics. In [106], online algoiitm is applied to overcome the
dynamic nature of the time-varying channels in wireless n@brks and then the throughput of
the single-transmitter is maximized by optimal power assignent. In [95], online algorithm
is used for multi-user video streaming in a wireless systern that user's perceived video
guality and its variations are jointly considered for a maxnization with almost no statistical
information about the congested channels.

Our work is inspired by the online algorithm works, which demnstrate the high poten-
tial of online algorithms for solving optimization problens with relatively limited informa-
tion. In power systems, it is possible to use online algoriths to detect and control the grid
load variance in real time. Motived by this observation, we qopose an energy distribution
online algorithm to achieve utility maximization and load snoothing. We consider the key
design factors from users, energy provider and load varianin the problem formulation.

The proposed online algorithm is quite e ective as shown ine8tion 2.7.

2.9 Conclusion

In this chapter, we present a study of optimal real-time engy distribution in smart
grid. With a formulation that captures the key design factos of the system, we rst present
an o ine algorithm that can solve the problem with optimal solutions. We then develop
an online algorithm that requires no future information abat users and the grid. We also
show that the online solution converges to the o ine optimalsolution asymptotically and
almost surely. The proposed online algorithm is evaluatedith trace-driven simulations and

is shown to outperform an existing benchmark scheme.
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Chapter 3
Distributed Online Algorithm for Optimal Energy Distributi on in Smart Grid

3.1 Introduction

According to the National Institute of Standard and Technolog (NIST) standard [107],
the Smart Grid model includes seven domains: Customer, Matg Service Provider, Oper-
ations, Bulk Generation, Transmission and Distribution. Bch domain functions di erently,
interactively and cooperatively. However, in some cases, etent domains may share some
actors and applications. For instance, the Distribution ad Customer domains probably
both contain smart meters. On the other hand, an integrated tiity may have actors in
many domains: a distribution system operator could have afipations in both Operation
and Market domains [107].

In this chapter, we consider real-time energy distributiorin a certain area with the
Smart Grid system. As shown in Fig. 3.1, the system consideratdthis chapter includes three
large domains: Customer, Power Grid Operator (PGO), and Emgy Distributor (ED). The
Customer domain here is similar to the one in the NIST model, vith represents power users
including resident, industrial and others. The PGO performa as Market, Service Provider and
Operations do in the seven-domain model. The ED includes tl&eneration, Transmission
and Distribution domains. It generates power to meet localamand and stores excessive
power. It also transmits power from outside when there is nanough local generation and
storage. This way, we simplify the seven domains to three g domains or utilities. The
smart meter (SM) in the Customer domain is responsible for farmation exchange with the
PGO and for scheduling the electrical appliances on the usside. The information ows
are carried through a communications network infrastructte, such as a wireless network

or a powerline communication system [39, 44,108]. With botbnergy and communication
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Figure 3.1: lllustration of the key domains in the smart gridof NIST standard.

connections among the domains, the PGO can exchange infotioa with the Customer and
ED and thus it controls the energy operation of the entire age

Demand side management is one of the most important problenmssmart grid research,
which aims to match electricity demand to supply for enhanckenergy e ciency and demand
pro le while considering user utility, cost and price [44].Researchers have been focusing on
peak shift or peak reduction for reducing grid deployment ahoperational cost [88,89], as
well as user or energy provider's cost [90, 91]. In particulasome prior works have jointly
considered both user and energy provider costs, to maximizsers' utility while keeping
energy provider's cost at a lower level [93]. Furthermore,ripacy is also emphasized in
demand side management in practice. Some researches ingas¢ the privacy problem in
the smart grid from many aspects and show that an individuad' daily life can even be
reconstructed with collection of data on power usage [109,d].

Given the wide range of smart grid models and the challenge ¢haracterizing the elec-

tricity demand and supply processes and the utility/cost/picing functions, a general model
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that can accommodate various application scenarios woulce bhighly desirable. Further-
more, it is important to jointly consider the utilities and costs of the key components of the
system to achieve optimized performance for the overall smarid system. For optimizing
the performance of such a complex power system, the utiliieand costs of the three key
components, i.e., Customer, PGO and ED, should be jointly osidered.

In this chapter, we take a holistic approach to incorporatette key design factors in-
cluding Customer's utility, grid load smoothing, and energ provisioning cost in a problem
formulation. To solve the real-time energy distribution poblem, we rst introduce a central-
ized o ine solution and then a centralized online algorithmfrom Chapter 2 and our prior
publication [74], which is variance sensitive without regting any future information of the
system. Furthermore, we propose a distributed online algttm, which rstly decomposes
the master problem into several subproblems and then solvéem locally at each user and
the PGO with the online approach. We also investigate a commications protocol to facil-
itate the information exchange for the iterative distribuied online algorithm, which can be
built on existing or emerging smart grid communication stagards [39, 108].

The proposed framework is quite general. It does not requisay speci ¢ models for
the electricity demand and supply processes, and only hasts® mild assumptions on the
utility and cost functions (e.g., convex and di erentiablg. The proposed algorithm can thus
be applied to many di erent scenarios. It inherits the advatages of online algorithms that
requires no future information for a convergent solution, ral the advantages of distributed
algorithms, which solves the problem in a distributed manmewith local information. Al-
though user power usages are still exchanged with the PGO gtidistributed online algorithm
mitigates the privacy problem since it does not require diasure of user's utility function
and its parameters. The proposed algorithm is easy to be ingohented in a real smart grid
system. The distributed computation allows scalability fo handling large systems. The
distributed online algorithm inherits the variance sensive nature from the online algorithm,

while converging to the o ine optimal solution almost surey, a highly desirable property.
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The proposed algorithm is evaluated with trace-driven simation using energy consumption
traces recorded in the eld. It outperforms a benchmark scinee that is also distributed
online but with no control for grid load smoothing.

The remainder of this chapter is organized as follows. We @ent the system model
in Section 3.2. The problem formulation with both centralied o ine and online solutions
are introduced in Section 3.3. The distributed online algghm is developed and analyzed
in Section 3.4. The communications protocol is discussed 8ection 3.5. We present the
simulation studies in Section 3.6 and review related work Bection 3.7. Section 3.8 concludes

this chapter.

3.2 System Model

3.2.1 Network Structure

We consider a power distribution system in the smart grid efmonment where the PGO
supports the power usage of all users in the Customer domaifhe users could be residential,
commercial and industrial energy consumers. Each user deyg an SM to monitor and
control the energy consumption of the electrical appliansd44]. All SMs are connected to the
PGO through the information infrastructure such as a wirelss or wireline local area network.
During each distribution time cycle, SMs and PGO exchangeaus and control information
to maximize users' utility, to minimize the PGO's generatig cost, and to smooth the total
power variance. The ED then transmits and distributes eledtity to the users accordingly.

The relevant time period for the operation is divided intoT time slots, indexed by
t2T=112  ;TgandT is the set of all the time slots. Usually, the operation time
period is a one-day cycle based on the daily periodic naturé electricity usage, while the
time slot duration could be 1 hour, 0.5 hour, or 15 minutes, et, according to users' power
demand pattern/timescale in consideration of varying demra in di erent time of the day,

as well as the amount of users in an area in consideration ohomunications cost.
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Table 3.1: Notation Table for Chapter 3

Symbol  Description
N set of electricity users in the system
P set of feasible powers for users in a time slot
U set of user utility functions
N number of users in the system
T total number of time slots in o ine problem
P power usage by theN users from time 1 T, oine
P power usage by user from time 1:T, oine
Pi(t) power usage by user at time t, o ine
P; (1) optimal power distribution for useri at time t, o ine
At) power usage by theN users at timet, online
pi (t) power usage by user at time t, online
P power usage by user at a xed time, online
p (t) short term for p, (B; t))
(1) Lagrange multipliers associated with the online problem
(1) Lagrange multipliers associated with the online optimal
solution
Pimin (t)  mMinimum power demand for usei at time t
Fi(t) exibility level of user i at time t
g(t) total power that need to be generated at time
Omin (t)  minimum total power that need to be generated at time
Omax (t)  maximum total power that need to be generated at time
c(t) maximum cost for the energy provider at timet
LT() Lagrange function for the o ine problem
ST() distributed subproblem for users, o ine
RT() distributed subproblem for the PGO, o ine
DT() dual problem for the o ine problem
T(t) Lagrange multipliers associated with the o ine problem
L() Lagrange function for the online problem
Si() distributed subproblem for users, online
R() distributed subproblem for the PGO, online
D() dual problem for the online problem
t(K) k-th update for (t)
o (k) k-th solution to the distributed subproblem of the PGO
P (K) k-th solution to the distributed subproblem of user i
step-size for updating (k)
u() user utility function
C() cost function of energy provider
Var() variance function

69



We denote the power consumption of userat time slot t asp;(t) and denote the set of
all users asN = f1;2; ;Ng. We also de ne a setP of energy consumption at each time

slot t for each user as

P = [Pimin (t); Pimax (1)]; forallt 2 T;i 2 N; (3.1)

wherep;min (t) is the minimum power demand and;max (t) the maximum power demand of
useri at time t, as the users are assumed to be rational. That iB,includes all the possible
value of power requested and consumed, that is,(t) 2 P, for all i andt. It is noted that P

is de ned to be a nonnegative set, because even today, fewrgsare able to generate enough

power for themselves in a short time.

3.2.2 User Utility Function

We assume that each user behaves independently in the poweidg They have their
own preferences and time schedules for using di erent elacal appliances. For instance,
users may set their air conditioner at di erent temperaturs and di erent users may use their
washer and dryer at di erent times of the day. Also, the user daand may vary as weather
condition changes. Usually the power consumption is largen & hot summer (or a cold
winter) day than that in a mild day in the spring (or autumn). Furthermore, di erent users
may have di erent reactions to di erent pricing schemes [91 Therefore, it is non-trivial to
characterize the diverse user preference with a precise metnatical model.

In prior work, user preference is usually represented byuility function [90]. Similarly,
we adopt a functionU(p;(t);!i(t)) to represent useri's satisfaction on power consumption
in this chapter. HereU( ) is a general, strictly increasing, concave function of thallocated
powerp;(t), although the quadratic utility function is also popular in the literature [90,91,93].
The other parameter! ;(t) of the utility function indicates useri's level of exibility at time

t. Itis a \sorting" parameter for users and thus, can be normaed to be within the interval
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[0; 1] [111]. A larger! (t) indicates a higher level of exibility or level of power cosumption.
For example, a user with! ;(t) close to 1 will probably consume more power than others.
Di erent users can have dierent! i(t), and ! ;(t) can vary over time.

In a centralized scheduling scheme, the PGO will require the (t)'s from all users in
every updating interval. The user utility function and prefrence are private information,
which can be used possibly to reconstruct many aspects of isselaily life and infringe their
privacy [109,110]. Information about a user's utility funton and its parameters should be
protected. To this end, a distributed algorithm that does nbrequire exchanging privacy

information would be appealing.

3.2.3 Energy Provisioning Cost Function

For ED, when demand is in the normal level, the generation dosicreases only slowly
as the demand grows. However, it will cost much more when theald peak is approaching
the grid capacity, because PGO has to ask ED to transmit moreogver from outside to avoid
a blackout, which incurs considerable power loss on the tremission line. Therefore, we
could use a general increasing and strictly convex functida approximate the cost function
for energy provisioning.

Similar to [91, 93], we choose a quadratic function to modeheé ED's cost, as

C(g(t) = a g*(t)+ b g(t) + ¢; (3.2)

wherea > 0 and b;c 0 are pre-selected for the power grid and(t) denotes the total
amount of electricity generated by the ED at time slot. ED has to provide su cient power

for users while reducing its cost.
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In addition, we assume a maximum generating capacitymax (t) for ED at time slot t.

Thus, we have the following constraint forg(t):

pi(t) g(t) gmax(t); forallt2 T: (3.3)
i2N
N P
The constraint indicates thatg(t) 2 G = [gmin (t); Gmax (t)], Where gmin (t) = 1, Pi(t) and
G is a closed positive set. Because the cost functi@y ) is strictly convex and increasing,
C( ) is reversible so that the energy provisioning co€k(g(t)) is also bounded in a closed set,
i.e., C(g(t)) 2 C for all t. In other words, by adjusting the amount of power generatigrthe

ED can control its provisioning cost.

3.3 Problem Formulation and Centralized Solutions

In this section, we summarize the problem formulation and # centralized o ine and
online algorithms presented in Chapter 2, for the sake of cqbeteness. The proposed dis-

tributed online algorithm will be presented in Section 3.4rd evaluated in Section 3.6.

3.3.1 Problem Formulation

We take into account three core parts in the smart grid envirament: Customer, ED
and PGO in the model. Under certain constraints, we aim to achve the triple goals of (i)
maximizing users' utility, (ii) minimizing ED's cost, and (iii) smoothing the total power load
of the grid.

We rst consider an o ine scenario where the PGO has global iformation on users'
exibility !;(t) and ED's total generated power(t) for the entire period (i.e., future infor-
mation is known). Let P;(t) denote the power usage for usdrat time t, fort 2 T. We
use upper casé in the oine problem . In the correspondingonline problem which will
be examined in Section 3.3.3, we use lower cags®or the corresponding variables. A vector

with subscript i is used to denote a time sequence, e.d?, for the power usage by user
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i fort 2 T. The oine problem (termed Prob-OFF) can be formulated as fdlows. For

Pi(t) 2 P;g(t) 2 G, foralli 2 N;t 2 T, we have the o ine problem Prob-OFF as

maximize: ( Py; PN) =
" # !
X X T X
URI(D:i()  C(at)  —Var P (3.4)
t2T i2N i2N
X
subject to: Pi(t) o(t);forallt2 T; (3.5)
i2N
where Var() is the variance function de ned as
! [
X 1 X X 1 X X
Var P] = ? Pi (t) ? P|(k)
i2N t2T i2N k2T i2N

The objective function (3.4) consists of three parts. The st part represents users'
satisfaction and preference. The second part represents 'BR@ost for energy provisioning.
The third part represents the load variance of the grid. It igntegrated with a parameter

> 0, to enable a trade-o between the grid and users' bene ts. Athe users' demand and
generating power should be included in the sétand G as we have discussed in Sections 3.2.1

and 3.2.3.

3.3.2 Centralized O ine Algorithm

In Problem Prob-OFF (3.4), the user power consumptioR;(t)'s are independent. Hence
the grid load variance term can be rewritten as VarP onPi= i oy Var P; :ltcan be
veri ed that Prob-OFF is a convex optimization problem becase functionU( ) is concave
and C( ) and Var( ) are both convex. Also due to convexity of the variance funain Var()
we can show that Prob-OFF has a unique solution. If we carefulde ne sets P and G,
the Slater's condition can be satis ed as well, which indid¢as that the KKT conditions are
su cient and necessary for the optimality of Prob-OFF [98]. By solving the KKT conditions,

we can derive the optimal energy allocation for each of the ers at each time slot.
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In Prob-OFF, all information are assumed to be known a priori Because of this, its
solution is optimal. However, since it requires future infenation for computing the grid
load variance (i.e., the third part in (3.4)), we cannot sole the KKT conditions at each time

slot in practice.

3.3.3 Centralized Online Algorithm

We now present the online algorithm for energy distributionand show the main result
that the online solution is asymptotically convergent to tle o ine optimal solution, i.e.,
asymptotically optimal The online energy distribution algorithm consists of thedilowing

three steps.

Algorithm 3.1:  Centralized Online Algorithm

Step 1: For eachi 2 N, initialize f(0) 2 P.
Step 2: In each time slott, the PGO solves the following convex optimization problem

(termed Prob-ON). For pi(t) 2 P;g(t) 2 G, forall i 2 N,

X
maximize: Upi(t);Li(t)  C(a(t))
i2N X
5 (@M A 1))? (3.6)
X i2N
subject to: pi(t) g(t);forallt2 T: (3.7)
i2N

Let p (t) denote the solution to Prob-ON, where each elemei (t) represents the optimal
power allocation to usern.

Step 3: Update pi(t) for all i 2 N as follows and go to Step 2.

pi(t)=pi(t 1)+

(e () A 1) (3.8)

t+
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P
Comparing to (3.4), the variance term is approximated by .,,(p Bt 1))?in (3.6).
Similar to problem Prob-OFF, Prob-ON is also a convex optinzation problem satisfying

Slater's condition. The KKT conditions can be derived as fadws.

g Ufpi (0);1i(1)  (p(®) pt 1)  (©)=0

Co(g(t)) + (=0

% P ROt 1 =0 (3.9)
(1)

0; 8t:

where (t) is the Lagrange multiplier. In (3.9), only information fortime slot t is needed to
solve the equations. This allows us to solve the problem inaketime slot without needing any
future information. The following theorem states that the dne solution converges to the

optimal Prob-OFF solution, which is obtained assuming alluture information is available.

Theorem 3.1. The centralized online optimal solution converges asympitatlly and almost

surely to the centralized o ine optimal solution.

Although the formulation in Chapter 2 is slightly di erent with our problem in this
chapter, the conditions of the theorem are still satis ed irour model. Therefore, the theorem
still holds true. It presents a strong result, based on whictve could solve Prob-ON instead
of Prob-OFF but with an equally good result.

However, Prob-ON is still solved in a centralized manner, wtth means that at each
time slot, PGO still requires the accurate utility functions of all users with their preference
parameters! ;(t), which are important user privacy information. It will be appealing to
develop a distributed algorithm that can preserve user pracy, but still achieve the optimal
performance. The distributed online algorithm will also povide scalability and have low

control and communication overhead.
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3.4 Distributed Online Algorithm

In this section, we rstly decompose problem Prob-OFF in a diributed manner so
that the PGO and every user can solve the subproblems indepmtly without requiring
global information. We then present a distributed o ine algorithm for the decomposed
problem. Finally, we show that the distributed o ine problem can also be solved with an
online approach, and the distributed online solution is asgptotically convergent to that of
the centralized o ine problem. Therefore we can eliminate e need to share users' utility

functions and their parameters.

3.4.1 Decomposition and Distributed O ine Algorithm

Firstly, the o ine objective function (3.4) can be rewritte n as

o "x X n #
UE@O:L®) 5 PO £ PR Ce®) 5 (310

t=1 i2N k=1

where the rst two terms are functions ofP;(t) and ! ;(t) (i.e., information available at useri)
and the third term is a function of the total load g(t) (i.e., information available at the PGO).
However, we cannot decompose the problem in this simple wayedause constraint (3.5)
involves both user informationP;(t) and PGO information g(t). Note that the superscript
(e.g.,LT()or T())indicates the functions and Lagrange multiplier of the ditributed o ine
problem. The superscript is removed for the correspondingrfctions and Lagrange multiplier

of the distributed online problem.
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To decompose the problem, we rst derive the Lagrangian forrBb-OFF as

LT(P(t);0(t); (1))
2 0

1 1
XX XT S 2
=7 4T @rmnm 5 PO T PR A
t=1 2N " k=1
y |
Ca(t)) (1) Pi(t) o(t)
2 0 i2N I ,
X X 1 X
= 4 @U(P(t);! (L)) 5 Pi(t) T Pi(k)
t=1 i2N k=1
XT
T(Pi(t) + (o) C(at) ; (3.11)
t=1

where T(t) is the Lagrange multiplier. In (3.11), functions ofP;(t) and g(t) are decoupled.

For eachP;(t) 2 P, de ne
(

XT
ST( T(1) = max [U(Pi(t); i (1)) (3.12)
t=1 | , 39
Pi(t 1XTP-k TtP-t5:'
E |() ?kzl |() ()I()’ .
For g(t) 2 G, de ne
(o )
RT( (1)) = max (Do)  C(gt) (3.13)
t=1

We can reformulate problem Prob-OFF to the Lagrange dual ptilem as follows [98].

minimize: DT( T(t)) (3.14)

subjectto: T(t) O
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where

n 0
DT( () =max LT(P(1);gt); "(1)
X
= ST+ RO (3.15)
i2N

This way, problem Prob-OFF is decomposed into two parts: (ithe rst one is an
optimization problem ST ( T(t)) de ned in (3.12) for each user to solve, and (ii) the other
one is also an optimization problenR™( T(t)) de ned in (3.14) for the PGO to solve. Since
they are both concave and have linear constraintstrong duality holds for careful selections

of P;(t) and g(t), which guarantees the zero gap between Prob-OFF and the dyaroblem
DT( T(1).

3.4.2 Distributed Online Subproblem

Although we can apply several methods from convex optimizatn to solve the problems
of (3.12) and (3.14) in a distributed way, such an approach #ill not practical because the
o0 ine problem and solution require future information to be known a prior. We next develop
an online distributed algorithm to further eliminate such reed for future information.

Observe that in (3.11), the only term that needs future infamation other than that at
time t is TlP Ll Pi(k), i.e., the average ofP;(t) over T, which is also a term in subprob-
lem (3.12) for users. Therefore, if the average &%(t) can be revealed with accumulated
historic information, we will be able to solve (3.14) in an dme manner. Similar to the
idea of transforming problem Prob-OFF into Prob-ON, we usgi(t 1) to approximate the
average in the distributed online algorithm and show that tk solution obtained this way is
still asymptotically optimal.

We rst present the distributed online subproblems by rewting the distributed o ine

optimization problems for users and PGO according to (3.12§3.13), (3.14) and (3.15). At
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each time slott, for each useii, de ne

n (0]
S @)=max UE®:LiM) S@E© Al 1) (P - (3.16)

R( (1) =max f (t)g(t) C(g(t))g: (3.17)
And the objective function for (t) is

minimize: D( (t)) (3.18)

subjectto: (t) O;
where

X
DC (@)= S( )+ R( (1): (3.19)
i2N
This way, we derive the distributed online subproblems forsers and the PGO to solve.
Note that the dual decomposition is only able to decompose tlmmline problem and we still
need to show that the distributed online problem is optimal ad convergent. The following

theorem shows that the distributed online subproblems canebsolved and the solutions are

asymptotically optimal.

Theorem 3.2. The optimal solution to the distributed online subproblent®nverges asymp-

totically and almost surely to the o ine optimal solution.

The proof of Theorem 3.2 is shown in Appendix B.1. It clari eshie relationship between
problems Prob-OFF, Prob-ON and the distributed online submblems. Actually, we can also
achieve the distributed online decomposition from Prob-OMy dual decomposition as we did
for Prob-OFF. Theorem 3.2 also presents an e ective meansswlving the online distribution

problem in a practical manner. We next present the distribugd online algorithm.
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3.4.3 Distributed Online Algorithm

Following Theorem 3.2, we can solve the dual problem (3.18) tacquire the optimal
online solution. Because of constraint (3.75;( (t)) and R( (t)) are coupled by the Lagrange
multiplier (t); (t) is associated with both the user utility maximization prollem (3.16) and
the ED cost minimization problem (3.17). As the dual variablgit is also a key parameter
for solving the dual problem.

In our case, the dual functionD( (t)) is di erentiable. So we can apply the following
gradient method to acquire the dual variable (t) at each time slott [112].

# .
X
ik+1) = (k) & (k) P (k) (3.20)

i2N
where is the step-size; |* is the projection onto the nonnegative orthant; (k) is the k-th
update of (t); g(k) and p,, (k) are the solutions to (3.16) and (3.17), respectively.

At each time slot t, this method requires that PGO and the users exchange(k) and
p,: (K) for a number of times to obtain the convergent (t), the power that will be generated
g(t), and the energyp(t) allocated to each user. We then present the distributed online
algorithm, Algorithm 2, to solve the dual problem (3.18) as wkas problem Prob-ON. The

algorithm consists of two parts:
a three-step Algorithm 2.a for all users;

a three-step Algorithm 2.b executed by the PGO.

Algorithm 3.2.a:  Distributed Online Algorithm for Users

Step 1: For each usei 2 N, initialize f(0) 2 P.
Step 2: In time slot t, the SM of each user does the following:
1) Receives the updated (k) from the PGO;

2) Solves problem (3.16) for user utility maximization;
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3) Transmits the solution p,, (k) to the PGO for energy demand;
4) Repeats 1) to 3) untilj {(k + 1) t(k)j < , where > 0.
Step 3: Update i (t) for all i 2 N as (3.8).

Algorithm 3.2.b:  Distributed Online Algorithm for the PGO

Step 1: For eachi 2 N, initialize p,;(0) 2 P. Choose an arbitrary {(0) 0.
Step 2: In each time slott, the PGO does the following:
1) Solves problem (3.17) to obtairg (k);
2) Receivesy, (k) from all the users;
3) Updates the value of (k) using (3.20) and broadcasts it to the users;
4) Repeats 1) to 3) untilj ((k +1) t(k)j < , where > 0.
Step 3: Sendsg(t) to ED for energy generation for time slot and distributes p, (t) to user

i, foralli2 N.

Note that for each timet, we have a terminating condition thatj (k + 1) t(K)j <
for the inner loop, where is a positive real number small enough to indicate the convgence
of (k). A smaller will produce a more precise (t). But the computation will also take
more time. The other factor a ecting the convergence of;(k) is the step-size in (3.20).
For the gradient method, a small guarantees the convergence of(k) but may require

more iterations. In fact, the terminating condition could ke rewritten as
!
X
(k) pie (k) <

i2N
Therefore, and should be carefully selected for Algorithm 2 to achieve fasbovergence
within one time slot. This is especially important for largescale systems with a large
population of users in the Customer domain, where the inforation exchanged increases fast

for more users. However, we conjecture that the communicati® will not be a big issue
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under today's advanced wired and wireless communicationfiastructure. We will evaluate
the e ect of on the convergence of(k) in Section 3.6.2.

In Algorithm 2, we see an interaction between users and the PGrealized by the dual
variable (t). It not only is the necessary parameter to solve both (3.1&nd (3.17), but also
connects users and the PGO decisions. The PGO has no informat about user utilities,
while (t) instead conveys information from users to the PGO. By updatg (t) as in (3.20),
the new value contains new information from both users and ¢hPGO. Thus, by using
Algorithm 2, the online problem can be solved in a distributedashion with comparable
optimality to the centralized online algorithm. Furthermore, from Theorems 3.1 and 3.2,
the distribution solution from Algorithm 2 will also converge asymptotically to the oine
optimal solution.

It is worth noting that no information on user utility and preference parameter is trans-
mitted between the users and the PGO. Consider practical dattommunication networks for
the smart grid, less transmitted data brings about higher s®irity, reliability and su ciency.
This also helps simplify the communication protocol designfor the grid. Furthermore, the
computational load is o oaded from the PGO to the SMs at each ger's site; the computa-
tion at the PGO is greatly simpli ed, leading to resource andime savings so that a larger
number of users can be supported. In conclusion, the distuted online Algorithm 2 could

be useful in practice.

3.5 Communication Network Protocol

Information exchange is an important element of the emergysmart grid. Communica-
tions between SMs and the PGO are essential for both contrahé distribution [39,108]. The
distributed online algorithm is also based on such informain exchanges. As more advances
are made in smart grid, there is a compelling need for netwodtchitectures, standards, and
protocols for communications in smart grid. We hereby intrduces a basic protocol for com-

munications network support in the smart grid for the proposd distributed online algorithm,
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Figure 3.2: Information ows in the smart grid of NIST standad.

which is simple but su cient to support the real time online power distribution algorithm
and can be built upon existing or future smart grid communid#on standards [39, 108].

In the distributed online energy distribution algorithm, the users and the PGO needs
to exchange (k) and p;, (k) several times at each time, to achieve a satisfactoryp, (t) for
users andy(t) for the ED. And the ED should update periodically the grid inbrmation to the
PGO and the emergency report should be timely. The PGO also ltxts other information
from the ED, such as the actual grid load. After the distributé online algorithm is executed,
the users obtains their own power consumption and the PGO s#sthe total energy usage
to the ED. Moreover, the PGO is able to send other control infonation to the EP or users
for, e.g., regulation, accounting, emergency response aaldrts, etc.

Fig. 3.2 illustrates the information ows in the network sysem, where we have three
large entities in the system: the PGO is the core controllernal Users and the ED are also
important participants. Fig. 3.2 illustrates the communi@tions at time t. For other time
slots, the communications protocols are almost the same. Wéke useri as example, because

other users have similar interactions with the PGO.



With Algorithm 2, at each updating slot, the PGO solves the suproblem, receives
p.: (K) from the users and updates (k) to the users; the users receive the updated(k +1),
use it to solve the distributed optimization problem for uses and update the new solution
to the PGO. The iteration process terminates when the termating condition is satis ed.
Then the PGO will inform the ED to transmit the power request ad distribute to the
users. Meanwhile, the ED updates the power grid informatioto the PGO and sends alarms
when emergency events happen. The PGO returns corresporglitcommands for the ED to

execute.

3.6 Performance Evaluation

3.6.1 Simulation Con guration

In this section, we evaluate the proposed distributed onlenalgorithm (denoted as DOA
in this section) with trace-driven simulations. The simuléion data and parameters are
acquired from the recorded power consumption in the SouthrerCalifornia Edison (SCE)
area in 2011 [99]. We rst study the performance of DOA on comvgence comparing to the
centralized online algorithm (termed COA in this section) éscribed in Section 3.3.2. We
then compare the distribution solutions between DOA and COAas well as with an existing
scheme as benchmark.

Consider a power distribution system in a small area withl = 20 users and 15-minute
updating periods. For COA, the 15-minute interval is su ciert to obtain the required user
information and execute the centralized optimization algithm. The 15-minute interval is
also short enough to show the users' change of demand, altgbuwith DOA, shorter time
slots are also practical. We will show results within a 24-huw time pattern for an evaluation
of the daily operations.

We choose users' utility function from a function setU in which the functions are

generated as widely used quadratic expression (see [90) ®lith !;(t) 2 (0;1) randomly
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Figure 3.3: Convergence ofg(k) when =0:2.
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U(p(1):!i(D) = 10 p() 4.0 (3.21)

8 1
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: ali(t);  ifp(t)  4():

We also assume user's energy demapdt) is selected from the set oP = [1:0; 3:0], for all i.
The maximum generating powelgmax (t) is set to the maximum total power demand of all
the users, that iSgmax (t) = P i>n Pimax (t), which implies that the generating power is equal
to the power demand. The initial value of (t) in Algorithm 2 is picked randomly from the
set (0;1) and the termination condition is chosen as 0.2. The parameters in the energy
provisioning cost function (3.2) are set aa = 0:05, andb= ¢ = 0. These parameters are
carefully determined after studying the characteristics fothe SCE trace. For parameter

in the updating function (3.8), we take = 1 in the following simulations. In 2, we have

shown that =1 is a proper value for fast convergence.
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Figure 3.4: Convergence g (t) for DOA and COA for users of di erent levels of exibility.

3.6.2 DOA Performance Evaluation

As shown in Section 3.4, DOA is based on the convergence gfk). We rst show the
convergence of {(k) in a time slot t. The gradient method applied in Algorithm 2 (see the
updating function (3.20) for (k)) requires that the positive step-size be su ciently small
to guarantee the convergence of;(k). However, small may slow down the convergence.
For a xed , which indicates the same tolerance for the convergent(k), Fig. 3.3 illustrates
the evolution of g(k) as a function ofk for the same user at the eighth time slot with
di erent step-sizes . It is observed that the series of g(k) with larger of 0.25 has large
perturbation than the other two series of smaller. Also, the the series of g(k) with the
smallest of 0.05 has the slowest speed of convergence. Although thé¢k) with  of 0.25
converges faster than the one of 0.05, it is slower than theef 0.15. This implies that
increasing cannot guarantee faster convergence of(k), because a larger may make (k)
not convergent. In practice, a proper is important for convergence and thus the e ciency

of DOA. It can be decided after several simple experiments. dmn Fig. 3.3, we also observe
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Figure 3.5: Evolution of (t) for a 24 hours period.

a fast convergence of(k) in about 10 times of information exchanges. We setto 0.15 in
all the following simulations.

We then show the convergence @f(t) from both COA and DOA. fi(t) is a key variable
in the online algorithm. Its convergence indicates that thegap between the online and
o0 ine solutions becomes zero (see the updating function (8)). In Fig. 3.4, B.coa (t) and
Piooa (t) for three users are both convergent. For COA, we see a fairlyst convergence with
a very short transient period. For DOA, it shows slower convgence with larger variance
before stable values are achieved. This is because compgrio COA, DOA has another
iteration function brought about by (3.20) for updating (k). The initial value (0) is set
randomly, so it requires extra time for the convergence @ gba (t). Also in Fig. 3.4, we
nd the coincidence of two curves for the several last time @is. This can be explained by
Theorem 3.2, which indicates that DOA and COA deliver idential solutions. It can be also
observed in Fig. 3.4 that both algorithms achieve convergea for users of di erent levels of

consumption, where user 13 has la(t) larger than that of users 7 and 12.
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Figure 3.6: The actual grid load (AGL) and total power consumtion by d-DOA and c-DOA
of three consecutive days.

It is common that the power usage of users may not have largerpgbations within
one time slot. As discussed,(t) is related to the users and the power grid. It is natural to
assume that the (t)'s of consecutive time slots are correlated. If such a colaéon could be
revealed, DOA can be further improved. Therefore, we plot thvariable (t) in Fig. 3.5. We
observe a convergent trend of (t) for the 24-hour period. However, it is not clear whether
it is convergent or not at this time. Because the initial vale of (k) is selected randomly,
we can con rm our assumption that (t) and (t+ 1) are highly correlated. Thus, set {(0)
as (t 1) would reduce the iteration steps and speed up convergenodime slot t.

Furthermore, the power consumption of users and the grid Idaare usually closely
related for consecutive days. Therefore, we can use the nadsults/parameters from the
previous day as a starting point for the present day, which &ls to a better performance.
We plot the grid load of three consecutive days by applying D® separately ondaily basis
(d-DOA) and by applying DOA consecutively(c-DOA), as discussed, in Fig. 3.6. For the

rst two days, the grid loads are almost the same. We ndc-DOA achieves an obviously
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Figure 3.7: The AGL and total power consumptions achieved bROA, COA and DPA for

a hot day.

better convergence performance ovekDOA in Day Two because the initial values of Day
Two are set to the nal values of Day One. Although the third dayhas a lower grid
load, c-DOA still achieves a better convergence and smoothness foemance overd-DOA
because the initial values ford-DOA are randomly chosen. This way, we can enhance the
proposed algorithm to achieve fast convergence and reducgnetnunication requirements. In

the remaining simulations, the enhanced DOA algorithm is &gl whenever possible.

3.6.3 Comparison with Other Algorithms

One important bene t of DOA is the variance control it o ers, which is inherited from
COA. In Figs. 3.8 and 3.7, we plot the AGL and total power consuption by DOA, COA and
a state-of-the-art algorithm proposed in [93], which is a dyamic pricing algorithm (DPA)
based on utility maximization. DPA considers both users andhe ED as we do in our
chapter, but it has no consideration on the load variance. Thactual grid load in Fig. 3.7

is the summation of 20 independent users' consumptions gested by the average real load
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Figure 3.8: The AGL and total power consumptions achieved bROA, COA and DPA for
an average day.

in the SCE trace on a hot day (i.e., Sep. 1, 2011) [99]; whiledAGL in Fig. 3.8 is based
on a typical day in the same SCE trace when the grid load is thev@rage case (i.e., Oct. 5,
2011) [99]. We show these two gures to have a direct compasisof our energy distribution
algorithms.

From both Figs. 3.7 and 3.8, we rst observe that DOA needs seral time slots to
converge to COA. This is caused by the e ect of, as discussed before. On the other hand,
we also observe a larger gap between the DOA and COA curves fioe hot day in Fig. 3.7
than that for a typical day in Fig. 3.8. This is because the tygal day has a much lower
peak demand. This con rms that under average condition, DOAas very good performance,
which is close to COA.

On the other hand, peak reduction is another objective of owlgorithm. Peak refers to
the highest point of the grid load curve and for di erent cures, the amount of peak reduction
is represented by the normalized percentage, which is cdkted as the ratio of the di erence

of the peak between the actual load curve and the controlleddd curve, and the peak of
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Table 3.2: Simulation Results of Several Performance Matd for DOA, COA, DPA and
AGL

System SizeN | Algorithm |V | U | ¢(T) | PK

DOA 3.3 (349|162 | 1.39
200 COA 0.02|3.52|1.69 | 1.35
DPA 245/ 3.66|1.74 | 1.61
AGL 53.5(3.86| 1.86 | 1.97
DOA 9.2 [ 351954 141
500 COA 0.05| 3.54| 10.1 | 1.37
DPA 62.6| 3.64| 10.5 | 1.73
AGL 113 | 3.88| 14.0 | 2.27
DOA 18.1| 3.47|38.1 | 1.55
1000 COA 0.10| 3.53| 40.2 | 1.41
DPA 125 | 3.69| 42.2 | 1.99
AGL 266 | 3.88| 54.1 | 2.63

actual curve. We have three controlled curves here: COA, DOAnd DPA. And the peak
reduction percentages for COA, DOA and DPA are 29.8%, 31.7% &ri0.9%, respectively,
for the hot day, and 23.9%, 23.9% and 12.9%, respectivelyr fbe typical day. We can see
that DOA achieves almost the same peak reduction as COA in dotases, which are superior
than DPA. Note that both DOA and COA have better performance on pak reduction of
the hot day over the typical day; while DPA has the opposite ult. This is because it does
not consider variance reduction.

Finally, we compare several performance metrics for the tbe schemes (i.e., DOA, COA
and DPA) together with the actual trace results (i.e., the AGLbased on the worse condition
in the hot day) in Table 3.2. These metrics are usually used agptimization objectives in
prior work (see Section 3.7). As de ned in (3.22)y, U and PK denote the averages (across
all users) of the grid load variance, users' utility, usergost, and the peak of the total grid

load, respectively, whilec(T) is the total energy provisioning cost for the entire periodThe
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simulation results are listed for systems with 200, 500 and®Q0 users.
- _ ,P
V=3 nVar(p)
P+ P
i o= enYE M)
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T 2

P
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For V, the best performer is COA, which is closely followed by DOA. Tik is consistent
with the curves in Fig. 3.7. ForU, we observe a slightly better performance for DPA without
the variance control. For energy provisioning cost(T), the three algorithms all yield similar
results, because they all include the functiol©( ) as a part of objective function. For the
peak PK we see the same result as in Fig. 3.7, with COA achieving the dbeand DOA
following COA tightly.

Overall, the distributed online algorithm proposed in thischapter achieves better results
than DPA. Although COA is slightly better than DOA, its centrali zed manner in energy
distribution limits its usage in practice for large scale stems. It also has the disadvantage
of requiring user's privacy information. DOA successfullynitigates these problems with the
distributed approach. In summary, DOA is a practical methodwith a highly competitive
performance comparing to the optimum, especially on variae control and peak reduction,

for online energy distribution in the smart grid.

3.7 Related Work

Smart grid, characterized with the two-way ows of electridy and information, is en-
visioned to replace the existing power grid in the future [801]. A comprehensive review on
smart grid technologies and research can be found in [44],eve major topics on smart grid

is discussed in three areas: infrastructure, managementdaprotection.
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Within the three areas, demand side management or demand pesse has been at-
tracting considerable research e orts [81{83, 88,90{9218, 114]. Researchers work mainly
on demand pro le shaping, user utility maximization and cosreduction. For example, ma-
chine learning is used in [90] to develop a learning algonthfor energy costs reduction and
energy usage smoothing, while [92] aims to balance the usewsst and waiting time. A
constrained multi-objective optimization problem is formalated in [113] to minimize energy
consumption cost and to maximize a certain utility among a gup of users. Lyapunov opti-
mization is adopted in [81{83] to stabilize the energy stoge and user utility while reducing
the operation cost of a microgrid. Lyapunov optimization isalso used in [114] to optimally
schedule the usage of all the energy resources in the systerd einimize the long-term time
averaged expected total cost of supporting all users loadrdand. In these works, convex
programming, machine learning and game theory are mostly et In some other works,
online algorithms [94], which are widely used in wireless mmounications and networking,
is also utilized [74,93]. In [93], the authors propose an dgmic pricing algorithm based
on utility maximization in a distributed way. Ref. [74] preents a centralized online algo-
rithm that achieves the optimal energy distribution and varance control without any future
information.

Furthermore, for practical considerations, user's privacis emphasized more and more by
many authors [109,110]. In [109], the authors examine prissain smart grid from de nition
to di erent concerns in detail. In[110], the author studiediow high resolution user electricity
information can be used to reconstruct a user's daily life anpreference.

Our work is inspired by considering the above two aspects ftine energy distribution
in smart grid. In power systems, it is possible to use onlindgorithms to detect and control
the grid load variance in real time. Also the online algorithncan be decomposed into sub-
problems for users to solve locally. Motived by this two obseations, we propose an energy

distribution distributed online algorithm to achieve utility maximization, load smoothing and
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privacy protection. The proposed distributed online algathm is quite e ective as shown in

Section 3.6.

3.8 Conclusion

In this chapter, we presented a study of optimal distributedbnline energy distribution
in the smart grid. With a formulation that captures the key design factors of the system,
we extend our prior work of a centralized online algorithm, yo decomposing the problem
into many subproblems that can be solved in a distributed marer, thus protecting users'
privacy and achieving scalability. We also show that the disbuted online solution converges
to the optimal o ine solution asymptotically. The proposed distributed online algorithm is

evaluated with trace-driven simulations and outperforms &@enchmark scheme.
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Chapter 4

Hierarchical Power Management for the Macrogrid and Coopdree Microgrids

4.1 Introduction

The decentralized generation at most renewable energy soes and the supporting tech-
nologies such as photovoltaics and micro-turbines, haveiwl#n the demand for a new dis-
tributed power grid system, theMicrogrid (MG) [69]. Unlike traditional centralized power
generation, the MG features distributed generation (DG) tosupport local users. DG is
the basis of distributed energy resource (DER) systems, whiis usually comprised of small
power units, such as micro-turbines (25100 KW) and small photovoltaic panels (1 10 KW).
An MG can operate either in theisland mode, where the local demand is supported with the
MG's own DG and power storage, or theyrid-connectedmode, where the MG can acquire
energy from, and/or contribute extra power to the Macrogrid[71]. MG is regarded as an
important paradigm for the next generation power grid, the Bart Grid (SG) [44,115,116].
SG technologies, such as smart metering, communicationgdagtistributed control, will speed
up the integration of MGs, and thus the penetration of DGs.

Over the past decade, MGs are built, experimented and testedound the world [70].
In a single MG, research works cover several main topics, lmding interface or coupling
between an MG and the Macrogrid, DER dispatching and power pport, and energy man-
agement [71,72,117{119].

Although more works are focused on the optimization and cordt of a single MG [120{
123], the problem ofcooperationamong MGs and the Macrogrid has attracted considerable
interest recently. With such cooperation, MGs and the Macgrid will each gain tremendous
bene ts, such as reduced power loss, lower operational coahd load peak reduction [124{

130]. The obvious advantages stem from exploiting themporal, spatial, and technological
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diversities in a multiple MG system. For instance, an MG supporting a busiess area will
have a very di erent temporal demand pro le from that of an MG supporting a residential
area; the DGs in geographically distributed MGs can also hawdi erent generation levels
at same time of the day; and dierent DGs are aected by weathedi erently: an MG

with a photovoltaic array may su er low generation during a orm, while a neighboring
micro-turbine based MG, caught in the same storm, may gendeaa large amount of power
exceeding its own demand. As in wireless communications ssis, exploiting such diversity
through MG cooperation could bring about more e cient powergeneration and distribution.

The power grid is currently under a transition from traditional centralized distribution
to decentralized distribution. In practice, the DG in MGs ae usually not able to gener-
ate power stably and constantly. On the other hand, MGs can pvide surplus power to
the Macrogrid. Therefore, it is important to incorporate al the key factors in a holistic
manner, i.e., the generation cost, power generation and tramission losses, load smooth-
ing, distributed storage, and the utility of power users. A antrol strategy would be highly
desired that considers all the key factors for both the Macgsid and MGs.

In this chapter, we consider a power grid consisting of the Meogrid and several coop-
erative MGs. The goal is to exploitMG diversity gainto optimize both the MG performance
and user satisfaction. With cooperation, an MG is able to slhe its excess power with other
MGs nearby or with the Macrogrid. Due to limited storage capeity, the MG can sell its
extra power to other MGs su ering power shortage. Alternatiely, the MG could buy power
from other MGs as well when its DG su ers low generation, sucthat the power loss and
cost can both be reduced compared to buying power directlyofn the Macrogrid. On the
other hand, the Macrogrid could provide more storage cap#gifor the MGs, while the extra
power from the MGs will in turn reduce the need of traditionalpower generation in the
Macrogrid. Grid load smoothness of the Macrogrid could be lsieved if the power ows

from/to the MGs are optimally managed and scheduled.
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In particular, under some mild assumptions, we rstly formlate the cooperative MG
problem as a convex optimization problem by capturing the kefactors in a grid system, i.e.,
operation cost, power generation and transmission lossesser utility, distributed storage,
and grid load smoothing. We then decompose the original prigmn into a two-tier power
control problem. The rst-tier control is for the Macrogrid, aiming to maximize user utility,
minimize power transmission cost from/to the Macrogrid, ad smooth the grid load of the
Macrogrid. The second-tier control is for each MG, aiming taninimize the cost of the
MGs for power generation and transmission, while guaranteg the power demand of MG
users. It balances the power level with the Macrogrid and mek energy trading and storage
decisions within the MG network.

The power ow between MGs and the Macrogrid is on one side theower injected
from outside of the MG network for MGs, and on the other side apgcial load for the
Macrogrid, which is positive as usual if the power is transited to the MGs out from the
Macrogrid, and is negative reversely. This way, the two-trecontrols are well integrated. For
the rst-tier problem, we develop an e ective online algoithm that does not require any
future information and is proven to be asymptotically optinal; for the second-tier problem,
we develop a distributed algorithm for optimal solutions. he performance of the proposed
hierarchical power scheduling scheme is validated with twa-driven simulations, where fast
convergence and superior performance over several comgami schemes are observed.

The remainder of this chapter is organized as follows. We @ent the system model
and problem formulation in Section 4.2. We develop the asyrtgiically optimal online
algorithm for the Macrogrid in Section 4.3, a distributed ajorithm for cooperative MGs in
Section 4.4, and present these algorithms in Section 4.5.rfé@mance evaluation is presented
in Section 4.6. Section 4.8 concludes this chapter. The ntta used in the rest of this

chapter is summarized in Table 4.1.
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Table 4.1: Notation Table for Chapter 4

Symbol Description

N set of electricity users in Macrogrid
M set of Microgrids
T set of time slots from 1 toT
N total number of users in Macrogrid
M total number of MGs
U() user utility function
Li(t) exibility level of user i at time t
coupling parameters in Prob-MAMG
Cn() transmission cost between Macrogrid and M@
Var() variance of Macrogrid load
G() generation cost in Macrogrid
d; (t) power usage by user at time t
Pm (1) power between Macrogrid and MGn
Pm:max (t)  maximum power allowed between Macrogrid and M@n
[(t) grid load in Macrogrid at time t

I ();R() indicator functions
Bnax (1) maximum generation cost in Macrogrid at timet

m transmission loss ratio between Macrogrid and M@&
Kkm transmission loss ratio between M& and MG m
Gk() generation cost in MGk
Cim () transmission cost between MGk and m
Pxm (1) power transmitted from MG k to m

Okmax (1)  maximum generation in MGk at time t
Cmmax (t)  maximum power received in MGm from other MGs
Cmmin (t)  minimum power received in MGm from other MGs

S (1) power to be stored in MGm at time t
Sm(t) the storage level in MGm at time t
storage loss coe cient in timet in MGs
m(t) Dual multiplier of the upper bound in Prob-MG1

step-size for updating . (k)
terminating condition for updating . (k)
m (1) Dual multiplier of the lower bound in Prob-MG1
step-size for updating m. (k)
" terminating condition for updating . (k)

@) the o ine optimal solution of ( )
() the online optimal solution of ()
@) the iterative replacement of ()
) the average of ()
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Figure 4.1: lllustration of the power grid network.

4.2 Problem Statement

4.2.1 System Model

We consider a power grid system with one Macrogrid and many MGas shown in
Fig. 4.1. The Macrogrid supports its own set of power users ity with the traditional
power generation sources. The Macrogrid controller (MC) Hects information from the
smart meters at the Macrogrid users to optimally distributepower to the users, and from
the MG control center (MGCC) to trade power with the MGs.

As shown in Fig. 4.1, each MG consists of one or more DGs, an aestorage system
(ESS), a smart infrastructure (such as smart meters and comumication links), a set of users,
and an MGCC. The energy users demand power from a designatedsMThe independent

DGs generate power to support the demand inside the MG. The BEStores the extra power
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and discharges to satisfy the excess demand exceeding the g#&eration. It usually consists
of many batteries as well as some PHEVs. Furthermore, for exse®& needs from its users,
each MG will request and buy energy from other MGs or from the B&trogrid. The MGCC
in each MG controls the power distribution of the entire MG. N¢e that in an MG of the
SG environment, information ow is essential for the contrband cooperation. Both energy
and information ows are enabled among the MGs and the Macrog. The MGCC acquires
user demand from the smart meters on the user side through ared or wireless communi-
cation network. The MGCC also decides to sell or store excasspower based on the grid
information. In this way, the energy generated among the MGsould be used e ciently, to
minimize the power from the Macrogrid and to support the Maargrid needs when possible.
While MC and MGCC are the core of power scheduling inside the adrogrid and MGs,
respectively, the MG network controller (MGNC) works both asa controller of the MG
network and a bridge between the Macrogrid and the MGs. It coadinates the information

exchange and power transmissions between the Macrogrid aih@ cooperative MGs.

4.2.2 Problem Formulation

We assume a time slotted system witih = f1;2; ;Tg time slots. We denote the
set of independent power users in the Macrogrid & = f1;2; ;Ng. Each useri 2 N
demands power;(t) at time t. Let U(di(t);!(t)) be the utility function for user i, which
indicates the users' overall satisfactory level, and is ameave and strictly increasing function
of di(t). The parameter! ;(t) 2 (0;1) denotes user's level of exibility, while a larger number
closer to 1 (0) indicating a higher (lower) level of exibilty. The function G() indicates the
generation cost in the Macrogrid, which is strictly convex i&d increasing. In practice, a
guadratic function is used; see our previous work [74] for meodetails on the utility function
and generation cost function.

We useM = f1;2; ;Mg to denote the set of all MGs. Each MGm has N, users

with total demand d, (t) at time t. Unlike the Macrogrid, the power supply in MGs may
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be unstable in many cases, and thus it provides more exibiji to consider users' demand
as a whole. Letpy(t) be the power load in the Macrogrid, transmitted to or receigd from
MG m 2 M at time t. It is positive when power is transmitted from the Macrogridto
MG m, and is negative for the reverse direction. We de neg, 2 (0;1) [127] as the ratio
of transmission loss from the Macrogrid to MGm, and 0 2 (0;1) as from the MG m
to the Macrogrid. And to simplify the expression, we dene ,, = om if pn(t) > 0, and
m = mo Otherwise. Thus, wherp,(t) is positive, the power received in MGn is pn(t) m;
when py, (t) is negative, the generation in MGm is p, (t)= . Let pxm(t) denote the power
received in MGm from MG k at time t, and pmm (t) be the power generated and used in
MG M by itself. Similarly, m 2 (0;1) denotes the ratio of transmission loss between MG
k and MG m. Note that although o, can be same asng, and , can be same as in
some cases, the reciprocity of transmission loss ratios ist@n essential requirement in our
model. Therefore,P mam Pkm (1)= km IS the total power generated in MGk for MGs, and
om Prm (1) is the total power in MG m received from all the MGs.

We use a general convex functio@,,( ) to represent the transmission cost between the
Macrogrid and MG m ,because it costs more for the same amount of loss of powerlass total
power loss increases to a higher level. Similarly, we use wex functions G¢( ) and Cym ()
to denote the power generation cost in M& and the power transmission cost between MG
k and MG m, respectively. Without loss of generality, we assume theility functions, the
transmission cost functions and the generation cost funotis all have the same unit (e.g.,
dollar).

Jointly considering user utility, power transmission costand the load variance in the

Macrogrid, and power generation cost, power transmissiorost in the MG network, we
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formulate the power scheduling problem Prob-MAMG as follows

X X

max: U(di(t);!i(t) T7Var(1})
t=1 i2N
X X X X
Co(pn@®)+ G P
t=1  m2M k2M ma2p KM
X X '
P (1 ( ) + Cim (Pxm (1)) (4.1)
m2M k2M
sit. di(t) dimin (1);8i2N;t2T (4.2)
G(I(t)) bmax(1);8t2T; (4.3)
iPm(t)]  Pmmax (1);8 M2 M;t2 T (4.4)
X
P (1) + Pm(R( m)  SH(t) = dm(t);
k2M
8m2M;t2T (4.5)
Pol) b @10 Gumec@:8k2 Mit2 T, (4.6)
m2Mm m

where is the weight to trade-o the dual objectives, and the variace function Var() is
de ned as

P

X 1 X '
= Ik (4.7)

1
Var(ft) = = [(t)
T
t=1 k=1
where each element of vectdr is the load of the Macrogrid at timet computed asl(t) =
P P
ondi(t)+ L om Pm(t). Theindicator function I ( ) isde nedasl ( ) = 1=  if pe(t) < O,
and | ( ) = 0 otherwise; the indicator functionR( ) isdened asR( )= n if pc(t) > O,
andR( ) =1= , otherwise. Moreoverd;mi, (t) in constraint (4.2) is the minimum demand
of useri, bnax (t) in constraint (4.3) is the generation cost limit for the enegy provider, and
Pm:max (t) N (4.4) is the maximum amount of transmission allowed in am time slot. In

constraint (4.6), Ocmax (t) is the maximum generation in MGk at time t, and s (t) is the
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power storage level of MGn at time t and s¢,(t) is the amount of power to be stored in the

time slot, computed as

sm(t) = sm(t)  sm(t 1) (4.8)

Sm;min Sm(t)  Smmax;8 M2 M;: (4.9)

where is the storage loss ratio in the ESS, andnmin (Sm:max ) IS the lower (upper) bound
on the storage capacity.

In Prob-MAMG, all the functions and the constraints are conve, which means it is a
convex optimization problem. But it cannot be solved unlesall the constraints from the
Macrogrid and MGs are known a priori for the entire time perid T. Even with all these
necessary information, it is very di cult to solve such a conplex problem in practice. Note
that in Prob-MAMG, the Macrogrid and MG m is coupled by the power owpn,(t). As
discussed, the Macrogrid usually generates much more powran the MGs, and thusp, (t)
can be seen as a special load in the Macrogrid. Therefore, v @lecompose the Prob-
MAMG into two tiers. The rst-tier related to the Macrogrid so lves for power distribution
for users, i.e.,d;(t) and power exchanged with the MGs, i.epn(t). The second-tier for the
MGs matchespy (t) in MG m and solves foipyn, (1), i.e., the power transmissions among the
cooperative MGs.

The rst-tier problem for the Macrogrid Prob-MA1 is formulated as follows.
|
X X X T
max: U(di(t); 1i(t)) Cm(pm(1))  —Var(fy) (4.10)

t=1 i2N m2M

s.t. (42) (4:4),
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The second-tier problem for the MGs Prob-MG1 is as follows.

X X t '
min: Gi Pan () 0 )1 ()
k2 M mem KMo
« !
+ Cim (Pkm (1)) (4.11)
m2M

s.t. (4:5);(4:6) and (49);

where p, (t) is part of the solution to Prob-MA1 (see Section 4.3). Now, itd clear that in
Prob-MA1, user utility, load variance and power transmissio cost to/from the Macrogrid
are optimized, and Prob-MG1 aims to minimize the power geraion cost and transmission
cost among the cooperative MGs. In Section 4.3, we reformtdaProb-MA1 and develop an
online algorithm that is asymptotically optimal. In Sectian 4.4, we solve problem Prob-MG1

with a distributed algorithm for optimal solutions.

4.3 Online Power Distribution in the Macrogrid

4.3.1 Reformulation and Optimal O ine Solution

In Prob-MAL1, all the power users and MGs are independent. Thuse can reformu-
P
late Prob-MA1L by replacing the grid load variance term with Va(ty) =, Var(dir) +
P
mam Var(fmr ). We thus obtain Prob-MA2 as follows.

X X X
max: F(d;p) = U(di(t); () Cin (Pm (1))
t=1 i2N m2M |
X X '
- Var(di.r) + Var(fn;t) (4.12)
i2N m2M

s.t. (42) (4:4)
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where I

1 X 1 X
Var(dit) = T di(t) T di(k) ;
t=1 k=1
Iy
1 X X
Var(ﬂn;T) = ? Pm (t) ? pm(k)
t=1 k=1

In Prob-MA2, the utility function U() is concave, and the transmission cost function
Cn () and the variance function Var() are both convex. Therefore, Prob-MA2 is a convex
optimization problem with a convex set of the constraints. &thermore, Prob-MA2 has a
unique solution sinceJ( ) is strictly increasing. Thus, we can select the constraigt;.yn (t)
and pm:max (t) so that Prob-MAZ2 is feasible and the Slater's condition is $i& ed, and obtain
the optimal solution by solving the KKT conditions [98], as

8
In UXG@);1i(t) (Gt dir)+~i(t) +

v CalEm(®)  (Bm(t)  Bm7) + ~m(1)

(1) ~(t)GAN))=hnax (1) = 0

~(t) G(Mt))=lnax(t) 1 =0

S(t) di(t)  dimin (t) =0 (4.13)

“m (t) (pm (t) + pm;max (t)) =0
“m (t) (pm (t) Pm;max (t)) =0

~(t); ~(t); m(t); m(t) 0;,8i2N; m2M;t2T,

where d;(t) and ps, (t) are the optimal points; the indicator Iy = 1 for the users inN, and
I v = 0 otherwise; the indicator |y, = 1 for the MGs in M, and |, = 0 otherwise; and

X 1 X

di(k); PmT = T Pm (K): (4.14)
k=1 k=1
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From the gradient condition of the above KKT conditions, we drive the Lagrange multiplier

(t) as

~t)= Iy UYGE@;Li0) (@) dr)+~iD) +
I'm ( Cr%(pm (t)) (pm (t) ﬁm;T) + "‘m(t) “m (t))) =
(GAM)) =hwax (1)): (4.15)

Thus, the optimal solution to Prob-MA2 can be found by solvingits KKT condi-
tions (4.13). However, it is indicated in (4.15) that solvingthe KKT conditions requires
the information on &t and pi,.t, which are the average of the user demantj(t) and the
exchanged power with MGm p, (t) for the entire time period T, respectively. To derive
the optimal solution to Prob-MA2, the constraints di.min (t), Pm:max (t), and bax (t) over the
entire time window T are also needed. This is aa ine optimal solution , which may not be

practical in some cases.

4.3.2 Online Power Distribution in the Macrogrid

We next present an online algorithm for Prob-MAZ2 in this sectin. It can be seen that
in (4.15), dir and pi,.t are the only two terms requiring future information, while hese time
averages can be approximated by properly de ned updating egtions. Motivated by this
observation, we rst present an approximation problem thatcan be solved without future
information, and then prove that its solution is convergento the optimal o ine solution to
the original problem Prob-MAZ2.

Speci cally, we replace the average terms P v, di(k) and %P +-1 Pm(K) in (4.12) by
two new termsc’i\i(t) and P (1), respectively, and remove the time sum notation so that the

problem can be solved at timg. We thus obtain a new problem Prob-MA3 at timet as
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follows.

X X X
max: U(di(t);!i(t)) Cin (Pm (1)) > (i (1)
i2N X m2M i2N
dt 1) 5 (e Pt D) (4.16)
m2M

s.t. (42) (4:4);
wheredi (t) and P (t) are updated at each time slot as

8
24m=4t D+ @® & 1)

N (4.17)
o Pm() =Pt D)+ 5 (Pa(t)  Pm(t 1))

where d, (t) and p,,(t) denote the solutions to Prob-MA3. This way, we decompose the
problem over a time windowT into many problems to be solved by the MC at each timeé
without requiring any future information. Because the updaing equations in (4.17) only use
the solutions to Prob-MA3 in the previous time slot, we usdi(t) and P (t) to approximate
the average termsd.; and p,,r, respectively. The following lemma and theorem state that
! (t) and B, (t) are convergent, and the online solutions are convergenttite o ine solutions.

The complete proofs of Lemma 4.1 and Theorem 4.1 are presehie Appendix C.

Lemma 4.1. The updating terms in Prob-MA3, i.e.,d (t) and pm(t), are convergent to the
time averages of its solutiord,+ and p,,;, respectively, whenT is su ciently large. That

is, fori 2 N andm 2 M, we have

. L 1 X

lim &(T)= lim d = lim — . d (t) (4.18)
i : X

A (D=0 Por =0 7 Pall): (4.19)

Theorem 4.1. The solution to Prob-MA3 converges asymptotically to the sion to Prob-
MA2.
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According to Theorem 1, we can solve Prob-MA3 in each timeusing the information

of the current time, while still achieving the optimal resuis in a certain amount of time slots.

4.4 Distributed Cooperative Power Scheduling for MGs

In Section 4.2.2, we formulate problem Prob-MG1, which carlso be shown to be con-
vex. We can solve Prob-MG1 with some convex optimization teniques [98], such as KKT
conditions as in solving Prob-MA2 and Prob-MA3. In practical senarios, a distributed
algorithm is more appealing for reducing the computationatomplexity, reducing delay in
realtime power scheduling, and enhancing scalability. Rise see Chapter 3 for more discus-
sions on the bene ts of using distributed algorithms in the mart grid. In this section, we
develop a distributed cooperative power scheduling algthrm for the MGs, by decomposing

Prob-MGL1 into multiple sub-problems to be solved by the MGCGn each MG.

4.4.1 Problem Reformulation

Recall the de nition of Prob-MG1 for minimizing the cost in the MG network in (4.11).

The constraints on the power storage levels, (1), i.e., (4.8) and (4.9), can be merged as

Smmi
UL Sm;max S?n (t) Sm;max Sm;min : (4-20)

@ )

P
Substituting (4.20) into (4.5), we have a new constraint for ,,, pxm(t). Then Prob-

MGL1 (4.11) can be rewritten with the new constraint as

X X e (t '
min: Gy Pan (1) P ) +
k2 M m2mM KM |
N !
Cum (Pxm (1)) (4.21)
m2M
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X

S.t. Comin (1) Pem () Crmax (1);8 M2 M;t2 T (4.22)
k2M
t
P (1) P ( k) Ocmax(t);8k2 M;t2 T; (4.23)
m2M km
where 8

2 Crmimin (t) = Sqﬂ Sm;max t dm(t) pm(t)R( m)

(4.24)
'> Cm;max (t) = Sm;max Sm;min + dm(t) pm(t)R( m)

In Prob-MG1, the variables arepm (t) for each MG pair k and m. We next decom-
pose Prob-MGL1 into sub-problems using only local informatn with the dual decomposition
technique [112].

4.4.2 Cooperative Distributed Power Scheduling for MGs

We rst derive the Lagrangian of Prob-MG1 as follows.

L(P(t);"m (t); "m (1))

X X '
=7 g 0 P pmicy
k2M m2m KM |
v !
Ckm (pkm (t)) +
m2M |
X X '
m (1) Pum (1) Crymax (1) +
m2Mm k2M |
X X '
m(t)  Crymin (1) Prm (1)
m2M k2M |
X X '
=" 6 0 PO pwicy
k2M m2m KM |
X !
(Ckm (pkm (t)) + ( m (t) m (t)) Pkm (t)) +
m2M
X
( m(t)Crmmin (1) m (1) Crm:max (1)) ; (4.25)
m2M
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where (1) 0 and (1) 0 are the Lagrange multipliers associated with the two
inequalities in constraint (4.22), respectively. We then ecompose Prob-MG1 intdV sub-

problemsS(~y (t); ~w (1)) for the MGs, termed as Prob-MG2.

min:  Sc(Twm (t); m (1)

« !
=a Pl pmicy -
« mam KM
(Cim(Pm () +( m(t)  m(t))Pum (1)) (4.26)
m2M
s.t. (4:23).

The dual problem of Prob-MGL1 is as follows [112].

max: D (T (t); “m (1)) (4.27)
st. m(t) 0 m(t) 0;8m2M; (4.28)
where
n 0
D("m (t); "M (1)) =min  L(P(t); 7m (t); "m (1))
X
= Sk( m(t); m(t)+
k)%M
( m()Cmmin () m(t)Crymax (1)) (4.29)
m2M

We thus decompose Prob-MGL1 intdM sub-problems each of which can be solved by
the MGCC in each MG. Furthermore, because the primal problen4.21) is convex and
has feasible solutions for proper selections 8f:min ; Smmax,» and Gemax (t); Strong duality

holds [112], so that the optimal solution can be obtained fno the dual problem (4.29).
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For given Ty (t) and Ty (t), the sub-problemS,(Tw (t); ~wm (1)) for MG k is convex be-
cause the generation cost functioi®,( ), the transmission cost functionCy,, (), and con-
straint (4.23) are all convex as discussed in Section 4.2. dsub-problems can be solved by
commonly used methods such as KKT conditions and the interigpoint method (IPM) [98].
After solving the sub-problems, the dual problem will be sobd by the MGNC by gathering
all the solutions to the sub-problems from the MGCCs. Furthenore, function Si() is dif-
ferentiable becausé&( ) and C( ) are both di erentiable. We can use the followinggradient
methodto obtain the dual variables ,(t) and (t).

8
. . P )
me(+1)= me()) Cr:max (1) k2M Pxm:t ()
. . P .
m;t (J +1) = m;t (J )+ Cm;min (t) k2 M pkm;t (J )

+

(4.30)

> +

where and are step-sizesp,,,(j) is the solution to Prob-MG2 (4.26) for given n:(j)
and (j); and []* is the projection onto the nonnegative orthant [112]. The dal variable
~wm (t) and Ty (t) will converge to the dual optimal™,, (t) and 7, (t), respectively, sincestrong
duality holds [112]. The optimal solutiorP (t) to Prob-MG1 can be acquired by solving each
Prob-MG2 for =, (t) and ~, (t).

4.5 Optimal Hierarchical Power Scheduling for the Entire Sy stem

In this section, we summarize the analysis in Sections 4.3d4.4, and present the
hierarchical power scheduling algorithms, termed HPS, fohé entire power grid system.
As discussed, HPS consists of two tiers: (i) online power digtution in the Macrogrid,
and (ii) cooperative distributed power scheduling in the MG. Furthermore, the lower tier
algorithm consists of two parts: one for the MGNC and the othefor each MGCC. The
proposed algorithms are presented in Algorithms 4.14.3, where ,, > 0 and ", > O are
small tolerance values for termination conditions, for ain 2 M.

Note that the MC in the Macrogrid requires information onpm.max (t) to solve Prob-

MA3. Each MG m can estimatepmn.max (t) according to (4.31), where the rst term refers
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Algorithm 4.1:  Online Power Distribution in the Macrogrid

© 00 N o g b~ W N

Initialize & (0) and P (0), foralli 2 Nandm 2 M ;

for i=1:T do
Receive constraintpm:max (t) from the MGNC ;
Solve Prob-MA3 (4.16) ;
Send solutionp,, (t) to the MGNC ;
Update & (t) and P (t) foralli 2 Nandm 2 M as in (4.17) ;
Exchange powemp,,(t) with MG m, for all m ;
Distribute power d, (t) to Macrogrid useri, for all i ;

end

Algorithm 4.2: Distributed Cooperative Power Scheduling Algorithm for theMGNC

1 for i=1:T do

Receivepm:max (t) from MG m and forward it to the MC, for all m2 M ;
Receivep,, (t) from the MC and forward it to MG m, forall m2 M ;
Initialize “y+(0) 0 and “u¢(0) O, and broadcast them to all the MGs ;
repeat

Receivep,,, (j ) from the MGs ;

Update “u; (j) and “wy (j ) using (4.30) ;

Broadcast them to all the MGs, for allk; m 2 M ;
until (j me( +1) me()i< mandj me(G+1) me()i<"m )
Broadcast™, (t) and —, (t) to all the MGs ;

end

Algorithm 4.3:  Distributed Cooperative Power Scheduling Algorithm for Edc
MGCC

1 for i=1:T do

2

o g0 b~ W

10

Estimate the maximum exchanged power with the Macrogrigm.max (t) and
report it to the MGNC ;
Receivep,, (t) and calculate constraintsCp.min (t) and Cn.max (t) using (4.24) ;
repeat

Receive ™y (j) and “u+ (j) and solve Prob-MG2 (4.26) ;

Send solutionp,, (j ) to the MGNC, for all k,m 2 M ;
until (T, (t) and 7, (t) are received,
Calculate s (t) using (4.5) and charge or discharge the ESS accordinglyr fl
m2M ;
Transmit power p,, (t) to MG m and exchangep,, (t) with the Macrogrid, for all
kim2M;

end
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X Sm:mi .
Minfj gnmax (1) + Pt 1)+ (1 )sm(t 1) 1’“’”‘ T dn(D)];
k2M

] Pkt 1) (Smmax (1 )sm(t 1))  dm(B)ig: (4.31)

k2M

to the maximum possible amount of power transmitted to the Merogrid from MG m, and
the second term is the maximum possible amount of power that®m can accept from the
Macrogrid. The estimate ofpyn.max (t) is based on the power dispatching information of the
last time slot. This works well for a short operation cycle,.g., 15 minutes, because between
two adjacent short time cycles, major grid related paramete such as generation and demand
are usually closely correlated, while 15-min cycles are scient for power scheduling in a
large Macrogrid with several MGs under current technologyfanformation processing and
communications.

The complexity of Algorithm 1 is related to the number of userand MGs, and the
number of calculations solving the KKT equations of Prob-MA34.16). According to [98],
the complexity of Algorithm 1 is roughly O((N + M)3). The complexity of Algorithm 2
and 3 is related to the product of the number of iterations oflte dual variables and the
number of calculations solving Prob-MG2 (4.26). And the conigxity of Algorithm 2 and 3
is about O((2M )3 M?3) = O(M ®). The complexity analysis is quite conservative and thus,
the complexity of the proposed algorithm is polynomial of ta number of Macrogrid users
and MGs, which can be processed easily within a 15-min cyclesed on the processing
ability of current micro-computers.

The proposed cooperative distributed algorithm is also wesuited for larger power
systems due to the scalability. It is also worth noting that bere is no information exchange
directly between the MC and MGCCs. The MGNC connects the MC an®GCCs in the
system so that there is only one information connection pdifetween the Macrogrid and

the MGNC, which increases the level of security and privacy ptection.
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4.6 Performance Evaluation

In this section, we present a trace-driven simulation studio evaluate the e cacy of the
proposed HPS scheme. The simulation data and parameters fbietMacrogrid are based on
the power usage traces in the Southern California Edison (&farea recorded in 2011 [99].
The data for MGs are based on some statistical distributionswvhich are averaged over a
large number of random runs.

We consider a power system as in Fig. 4.1 with a Macrogrid andur Microgrids. The
Macrogrid supports 400 power users, while each MG support8QLusers. The user demand
is based on the SCE trace and user utility function is de nedsa[74]

8

2L p) PO
U(pi(t)i!i(t)):E it0  p(t) 4t

TA L i) 4

As in [131], the power generated in each MG is independentlyagen from a uniform
distribution in [10 KW, 450 KW]. The generation cost functia in the Macrogrid is assumed
to be G(x) = 4x? and the MG generation cost function isGy(x) = 1:5x2. The transmission
cost between the Macrogrid and MGn is assumed to b&€,,,(X) = ,x?; the transmission cost
between MGk, and m is Cym (x) = -4-x2, for k 6 m and Cm (x) = 0, for all m [125,127].

m and y, are transmission cost coe cients, which are de ned as:,, = 1 m, if x> 0,

and , =1 . otherwise; km = 1 o,

In practice, the transmission loss ratios ,, and n usually di er from MG to MG
because di erent factors such as distances. For practicabmrsiderations, we assume that
f o1, 02 03 049= f0:2,0:6;0:5,0:39, f 10, 20; 30; 409 = f0:5 0:4;0:67 0:59, 12=0:56,

13=0:71, 14=0:67, 2, =0:56, ,3=0:56, 4, =0:63, 33 =0:71, 3,=0:56, 34 =0:56,
4 =0:67, 4,=0:63, 43=0:56,and ,n =1, for all m. The corresponding transmission

cost coe cients are 12 =0:8, 13 = 0:4, 4=0:5 ,,=0:8, 23 = 0:8, -4 =0:6, 31 = 0:4,
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Figure 4.2: Convergence gi,(t).

32=0:8, 32=0:8, 4,12=05, =06, ,3=0:8, and ,,n =1, for all m. We also assume
di erent storage capacities to the MGs as: S1:min ; St:max ) = (30;300) KW, (S2:min ; Sz:max ) =
(50; 100) KW, (Sz:min ; Sz:max) = (60;500) KW, and (Sa:min ; Samax) = (100;200) KW. The

algorithms are executed on 15-minute time slots.

46.1 HPS Performance

The HPS algorithms contain two iterative sequences: (¢ (t) and pn,(t) in the Macrogrid
control; (i) pkm:t(j), “m:t (j) and “u: (j) in the MG control. In the rst tier, the convergence
of di(t) and pn(t) is over multiple time slots; while in the second tier, the aavergence
is achieved within every time slot. Because the second tieordrol requires the solution
p, (t) from the rst tier control as a constraint, the convergenceof p, (t) is critical for HPS
performance. The parameter in the updating equations (4.17) should be carefully sele.
For the second tier, the MGNC needs to exchangg,. (j) and ~w. (j) for several iterations
until they converge. For given termination conditions, thestep-size parameters and  will

a ect the speed of convergence 6fy (t) and ~y (t). Intuitively, small and guarantee the
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Figure 4.3: Convergence ofz.13(j) and 3.13(j ) with dierent  and

convergence, but may require more iterations. We illustratthe e ect of the parameters on
convergence in Figs. 4.2 and 4.3.

Fig. 4.2 shows thatpy, (t) converges in every MG, ang,,(t) uctuates around Pn(t), as
speci ed in Lemma 4.1. From the two sequences pf(f) with- =1 and =0:1, it can be
seen that a smaller results in slower convergence. However, a largemay lead to larger
variance in the transient phase. From a larger number of sirfation runs, we set =1 in
our simulations. It is also worth noting that the MGs have di erent levels ofp,,(t). This is
because di erent MGs have di erent generation levels, stage limits, and transmission cost
coe cients. For example, p,(t) has a positive level of 13.5 KW, which means MG 1 requires
a 13.5 KW load from the Macrogrid. This may due to low generath, small storage, or
large transmission cost with the Macrogrid. On the other hath p;(t) has a negative level
of -70 KW, which means MG 3 transfers 70 KW to the Macrogrid. Fthermore, the sum
of p,(t)'s is negative, meaning that the Macrogrid acquires powerdm the MG network in

this time frame.

116



150

100r 7

Power (KW)

P, (D+0,(1)

\

50 . 4 50

1 3 5 7 9 11 13 15 17 19 21 23 25
Time (Hour)

Figure 4.4: Power scheduling in MG 1.

In Fig. 4.3, the evolutions of 3.13(j) and 3.13(j ) in a time slot are plotted with di erent
step sizes and . The curves with larger step sizes have larger variances astightly
slower convergence speed. Both.13(j) and 3.13(j ) have a very fast convergence in 6 to 8
iterations, which also indicates a fast convergencemy, (t) as stated in Section 4.4.2. The fast
convergence is due to the transformed constraints (4.24)Rfob-MG1, which further restricts
the set of feasiblep,,, (t)'s. As a result, ,(t) and (t) are forced to increase or decrease
in a reverse direction, which reduces the number of iteratis needed for convergence.

In addition to convergence performance, HPS can be further auated with respect
to power scheduling. In Figs. 4.4 and 4.5, we present the pawews in MGs 1 and 3,
respectively. We nd in Fig. 4.4 that MG 1 has a very low power gneration g;(t) from
about 20 KW to 40 KW, such that it cannot support the power demad in the range of
50 KW to 130 KW with its own generation alone. However, it only equests less than 20
KW from the Macrogrid, but accepts more than 40KW from MG 3 and20KW from MGs
2 and 4. Note that the transmission cost coe cient between théMlacrogrid and MG 1 is

=1 o1 = 0:8, which is larger than the coe cients between MG 1 and the otar MGs.
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Figure 4.5: Power scheduling in MG 3.

To nd a su cient power ow to support its users, while keeping the cost low, MG 1 chooses
to request more power from MG 3. MG 3 has a large generation astbrage capacity, so that
it can share much power with MG 1 and the Macrogrid. However, webserve a relatively
low power ow around 20 KW between MG 3 and MG 2 and 4. This can sb be explained
by the objective to minimize the transmission cost. Actually-2> and -3+ are both 04, which

is very close to 3 = 1 =0:5,

In real power systems, the transmission cost ratio and coe cient is usually a ected
simultaneously by many di erent factors, such as distancehe power gap, and the complexity
of the system. Thus, in a real system, MG 1 may have shorter theice and smaller gap
of power level with MG 3 compared to that with MG 2 and 4. The stage also plays an
important role as a power bu er to enhance system stability @d capacity. As a result,
with all the key factors considered, HPS is able to achieve alhace in the power system,
maximize the Macrogrid user utilities, smooth the load of ta Macrogrid, and minimize the

cost in the cooperative MGs.
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Figure 4.6: Macrogrid load under di erent power schedulingchemes.
4.6.2 Comparison with Existing Schemes

We next provide a comparison study of HPS versus several exigt schemes [74, 125].
In Fig. 4.6, we show the load of the Macrogrid under ve di erat power scheduling schemes.
The original load (OL) is based on the SCE trace of a one day ped in September, 2011. The
online power distribution algorithm (OPDA) proposed in [74]has considered many factors
including user utility and grid load variance in a Macrogrid but no MG is involved in the
model and algorithm. Thus, the OPDA curve in Fig. 4.6 is obtaied by running OPDA
in a Macrogrid with 800 users. A coalition game (CG) is used ifL25] to minimize the
power loss in an MG network, where power ows between MGs andaddrogrid are allowed.
However, it does not consider smoothing the Macrogrid load.oF comparison purpose, we
also develop another scheme (termed as no cooperation cohscheme (NCC)), which only
allows power ow between each MG and the Macrogrid, while p@wtrading among the MGs

is not allowed.
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In Fig. 4.6 , the OL curve has the largest peak. OPDA achieves &xpected smooth load
in the Macrogrid, because the variance term is explicitly mimized. OPDA also distributes
power well such that the user demands can be satis ed. Howeyaithout the cooperative
MGs, the Macrogrid generates 7.8% more power in total to aehve 31.7% of peak reduction.
With NCC, the Macrogrid can exchange power with the MGs, whiclusually have random
power generations. As a result, power generation in the Magmad under NCC is almost the
same as that under OL. NCC achieves 17.2% peak reduction whkeusing 21.4% increase in
the Macrogrid grid load variance. For CG, coalitions are foned among the MGs to minimize
power loss. We nd a 15.7% of generation reduction, 18.4% o#gk reduction, and 40.9% of
variance reduction. It achieves a fairly good result by expiting the distributed generation
from the cooperative MGs. However, it does not explicitly casider variance reduction; the
resulting variance is actually still large.

With HPS, we jointly consider all the above factors. As a resultunder HPS, the
Macrogrid has a 97.1% variance reduction, 43.1% of peak retlan, and 13.1% of generation
reduction. Compared to CG, HPS achieves considerably bettegsults on peak reduction
and variance reduction, and the Macrogrid generation redtion is only slightly lower (i.e.,

13.1% versus 15.7% with CG).

4.7 Related Work

In a single MG, research works cover several main topics, lmding interface or coupling
between an MG and the Macrogrid, DER dispatching and power pport, and energy man-
agement [71,72,117{119]. In [71], the MG control strategieand energy management are
examined from several aspects. In [117], a detailed repostpresented to test the building
and management of a hydrogen MG in Spain in a simple and religbway. In [72], the
authors present a control operation for a centralized cordler for MGs, which maximizes

its value by optimizing the production of local DGs and poweexchanges with the main
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distribution grid during interconnected operation. In [73, the authors introduce an eco-
nomic power dispatching scheme for stable operation of an M@&hile a multi-agent system
is presented in [118] for DER energy management in an MG. Thethors of [119] propose
a multivariable digital control design methodology for thevoltage regulation of an islanded
single distributed generation (DG) unit MG and its dedicate load.

The problem of cooperative MGs has been considered in seVeezent papers [126,127,
129,130]. In [126], the authors present a decentralized twh strategy modeling the MGs as
a team of cooperative agents to minimize the costs of enerdggrage and the power exchanged
among the MGs. The authors of [127] propose a game theoretoatition to optimally reduce
the total power losses in a MGs power system with power stomaglevices, and demonstrate
the overhead of communications. In [129], the authors forraie the optimal decision making
problem in cooperative MG networks as a linear quadratic Gasian problem. There have
been some recent works that consider the power ow betweenettMGs and the Macrogrid.
For instance in [130], the authors present an optimal energpanagement framework for
a cooperative network of heterogeneous MGs to achieve an eat tradeo between low

operation cost and good energy service for customers.

4.8 Conclusion

In this chapter, we developed a hierarchical power schecui scheme to optimally man-
age the power distribution in the smart grid with one Macrogd and cooperative MGs. We
rst presented a formulation considering both the Macrogd, which jointly considers user
utility, generation cost, transmission cost, and grid loadmoothing, and the MGs, which aims
to minimize the cost of power generation and transmission thin the MGs. We then decom-
pose the problem into a two tier formulation and developed # corresponding online and
distributed algorithms for solving both problems, which wee proven to be asymptotically

optimal. The proposed algorithms were validated with tracelriven simulations.
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Chapter 5
Analysis of Solar Generation in Smart Grid

with Simultaneous Inference of Nonlinear Time Series

5.1 Introduction

In recent years, as the development of the modern technolegiin informatics, commu-
nication, control and computing, our living environment isbecoming "smart." Smart Home
and Smart City have gradually become part of our lives, and arno longer merely future
concepts for the public. An important component of Smart Cityis the Smart Grid (SG),
which is regarded as the next generation power grid to createwidely distributed energy
generation and delivery network. The SG features the incoppation of power generation
from renewable energy sources, especially solar and windhjehh meanwhile requires a better
energy management system in the SG [44].

As stated in previous chapters, energy management in SG hashestudied in many pre-
vious works [44,76,132]. Itis indicated in [132] that high @ent power management cannot
be realized without a better forecast on the grid load and renvable power generation in SG.
The problem of grid load forecasting has been studied by mamgsearchers with di erent
techniques such as state space models [133], Arti cial nelir@etworks and support vector
machine [134], and nonparametric functional time series alysis [132]. And the prediction
on the renewable energy generation in SG has also attractezh®e interests. Predictions on
solar and wind generation can be found in [135] and [136] ugisupport vector machines
(SVM) regression and joint probability density function (JFDF) forecast respectively. Be-
cause of the weather dependence nature of the forecastinglgem, statistical methods can
be found in almost every related literature. On the other hath, the wide range of applica-

tions helps the improvement of the statistical theory on ngparametric analysis [137{139],
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and non-stationary time-series analysis [140,141]. Retignthe authors of [142] propose the
method of constructing a simultaneous con dence bands fointe-varying coe cients. These
researches improve the understanding of the time-seriesydaprovides better techniques in
renewable energy generation prediction.

The previous work on predicting solar power generation [1Bprovides acceptable re-
sults using SVM regression. However, by simply trying di eranSVM kernels after some
basic data processing statistically, it lacks a deep analgf the solar power generation and
weather data, and thus is limited in precise predictions oftber data set. For example, the
check of assumptions is missing on independence of variagbdend errors. Furthermore, the
renewable energy generation is a function of weather varlab, and is a stochastic process
on nonlinear time series. Therefore, the associations be®n the weather variables and the
power generation should be analyzed over a long time for a gor@hensive understanding of
their dynamic relations. For example, a coe cient varying ly time overall may stay constant
for short periods. These drawbacks will limit the applicatins for predictions in other cases.
Therefore, a method that can show the dynamic property of thprocess is highly demanded
for better predictions on solar power generation in di erencases.

Motivated by this observation, we introduce simultaneousniference of nonlinear time
series proposed in [142] for understanding comprehenspviile deep and dynamic relation-
ship between renewable power generation process and the tveavariable processes. The
simultaneous inference is based on the simultaneous comte bands (SCB) [143] of time-
varying coe cients in the local linear model, which we use fononlinear time series analysis.
It is based on the assumption of nonstationary processes foe error and weather variables,
which matches the case of our problem where many weather \eies are shown to have
an obvious seasonal pattern, meaning the observations aret stationary assumed by many
other forecast techniques. And the SCB shows the con dencerlms of the coe cients over
any length of time, which can be used to test if the coe cientsre truly time-varying or not.

This helps us to re ne the model by omitting variables which hat are not signi cant.
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The main contribution of this chapter is the introduction of the local linear model
and SCB for analyzing the solar power generation as a nonlaretime series. By checking
the dynamic properties of the coe cients from its SCB, we areable to achieve a more
comprehensive understanding of the model, and based on thige can further re ne the
model and use it for predicting the renewable energy genei@t. As an example, we apply it
in predictions on daily solar power generation. This metholdas a wide range of applications,
which is not limited to analyze and predict the solar energyemeration. It can also be used
for predictions in dierent time scales, from minutes to moths, depending on di erent
purposes, and in other cases, such as wind power generatioadiction.

The remainder of this chapter is organized as follows. We @ent the local linear model
for Nonlinear time-series analysis in Section 5.2. The consttion of SCB for time-varying
coe cients with simulated results is introduced in Section5.3.We use the simultaneous in-
ference for analyzing a trace of solar intensity and weathéata in Section 5.4, and review

related works in Section 5.5. Section 5.6 concludes this pier.

5.2 Local Linear Model for Nonlinear Time Series

We consider the power generation from a renewable source apatinuous-time stochas-
tic processY (t) and a function of the meteorological variableX (t), which is a continuous-

time covariate process. It follows that

Y(t) = f(X(t);t2 R:

To identify the function f (), it is straightforward to try a linear model rst, as

Y(t)= XT()~(t)+ (1);t2R; (5.1)

whereX (t) = (1; X1(t); 5 Xp 2(t))T and ~(t) = ( 1(t); 5 p(t))" are bothp 1 vectors, and

(t) is the error at time t. To use this model, we need to predict the regression coe ¢its
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~(t) at each timet, so that we can calculateY (t) given the forecast on weather variables
X (t). Itis not di cult to obtain  ~(t) using parametric smoothing methods such as multiple
linear regression. Although this model can indicate a certailevel of interactions between
the variables X (t) and the responseY (t), it cannot be used to represent the real under-
lying process, especially when the method treat continuotisne series simply as discrete
data points. As we will show in Section 5.4.4, the prediction ith the linear model is not
satisfactory, and cannot be used in practice.

From the linear model, we notice that the linearity is fairly strong betweenX (t) and
Y (t) within a short time period, i.e., several days or a week. If avtake advantage of this
property and consider the process as continuous-time, theoatel would be closer to the real
process. Foit; close tot, we can have™(t;))  ~(t)+(t; t)~qt), where ~qt) is the derivative

of ~(t), and thus for any timet; close tot, we have the local linear model as [144]

Y(t) XT)(CO+(t )~ + @)t2t b (5.2)

where the bandwidthh is the size of the local neighborhood. This model divides thiene
series into periods and creates linear models using locatalaThis way, we treat the data
as a continuous-time series, and exploit the strong corrélans between close time periods

in weather dependent systems.

5.2.1 Local Linear Estimation

To identify the time-varying coe cients ~(t), the least squares method for linear regres-
sion can be used. We also add some weights on the terms considethat contributions
from di erent neighbors are di erent, which means a closer eighbor would have a stronger
e ect, while a further neighbor weaker e ect. Usually a kernkefunction K () is assigned to

each point, which is a symmetric density function de ned on-1,1] [144]. Here, we use a

125



popular Epanechnikov kernel.

8
<@ 231 )= ifja 1

a) =
70 if jaj > 1.

which decays fast for remote data point. We then have the folving weighted least squares

problem to solve,

X .
argmin - (Y(E) XT®W)(CW G HHONK - 1 (53)
T(1):TAY2RP g2t h
At each time t, we solve for the coe cients Ah(t) and Qﬁ(t) under the bandwidth h.
Suppose the total number of observations 13, we can pickt; simply ast; = i=n;1 i n,
and denoteY (tj) asy; and X (t;) as %. From [138], we can solve (5.3) by calculating the
following matrices Sk(t) and R(t):
X . k .
S(t) = %% oty it =(nh) (5.4)

i=1

Re® = xy ' Kk 5 o (5.5)

i=1
wherek = 0;1; 2;:::.. We then have

“a(0) _Se(t) SI(t) ' Ro(t)

h=o) ~ Su(t) Saot)  Ru(t) &9

5.2.2 Selection of Bandwidth

To solve problem (5.3) for the complete model using (5.4) t&(6), we need to rst x
bandwidth h. As discussedh is the bandwidth determining the size of data used to estimat
for a local linear model at timet. If h is too small, many useful points are not included for

estimation, which may increases variance; if it is too largenore remote points are included,
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which increases the computational complexity and cause ¢g@ bias of the model. Therefore,
it is important to choose a properh.

Popular bandwidth selection techniques can be found in [14#5] for di erent applica-
tions. The techniques are di erent for constant bandwidth ad variable bandwidth. For con-
stant bandwidth selection considered in our model, we adofite generalized cross-validation
(GCV) technique [145], which is suitable for a wide range of gfications.

Similar to multiple linear regression, the coe cients™ are estimated from the observed
data Y and X. Thus, a square hat matrixH (h) exists for?’ = H(h)Y [146], depending on
the bandwidth h. Then we can choose the bandwidth by

(
iYoYP

f=argmin M

(5.7)

where, tr() is the trace of the matrix, andn is the number of total observations.

5.3 Simultaneous Con dence Band for Time-varying Coe cien ts

In this section, we introduce the basic conditions and cormsiction of SCB method
proposed in [142], and then discuss its implications to furér understand the modeling and
predicting for the power generation process from the renelbla energy sources based on the

weather data.

5.3.1 Model Assumptions and Asymptotic Normality

Di erent from most current models for time series, the apprach of SCB analysis assumes
locally stationary processes for botlX (t) and (t) [141]. The locally stationary process guar-
antees the stationary property for local time series, and isseful for local linear estimation.

It actually belongs to a special class of non-stationary timseries as

x = G(t:F): = Ht:F); i=1:2mn (5.8)
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where G(t;; Fi) and H(t;;F;) are measurable functions well dened ont; 2 [0;1] , F; =
(::;; i 15 i) with f gi»z are independent and identically distributed (i.i.d.) ranadm variables,
and E( ij»%) = 0. In our model for renewable power generation processeg further assume
that f jg»z are i.i.d. and dependent of gi,z.

Based on the above assumptions, the central limit theoremrfg(t) states that: suppos-

ingnh!1 andnh’! 0 [142], then

(M)=F () h*R=10g1 NFO; 2(t)git 2 (0;1) (5.9)
where
z
= szK(x)dx; (5.10)
(D=(M O (M ()" (5.11)
M (t) = E(G(t; Fo)G(t;Fo)T): (5.12)

The covariance matrix (t) can be further approximated using techniques proposed ire&

tion 5.3.2.

5.3.2 Simultaneous Con dence Band

Deriving from the central limit property and basic assumpns shown above, the 100(1
)% asymptotic simultaneous con dence tube of¢ (t) can be constructed using the following

formula:

en®+tm “c(t)Bs; (5.13)

where ~..;(t) is the bias corrected estimator de ned in (5.14)Bs = fz 2 R® : jZ 1g
is the unit ball, and s is the rank of a matrix C, s, which we use for choosing di erent
linear combinations of (t), and ~¢(t) = C' ~(t). To obtain the SCB, we simply takes = 1

in (5.13), and the SCB is constructed similarly to the con dace interval of the coe cients

128



of the multiple linear regression:"  t_,, p,s&(”), wherese(") is the standard error of ",
andt-,, ,isthe upper = 2 percentage point of thet, , distribution [146].
Similarly, the rst term is the estimator of the time-varying coe cients corrected for
bias by
~a®= CTHM = CT 250,00 () (5.14)

where the corrected estimator™(t) can also be acquired by solving (5.3) using an corre-
sponding kernel functionK (a) = 2IO 2K (IO 2a) K (a) and an updated bandwidthf = 2h
of the GCV selectorfi.

The second term in (5.13* is actually the upper = 2 percentage point of the normal
distribution Nf0; 2(t)g de ned in (5.9), while the third term "¢(t) is the estimated stand
error. The method of wild bootstrap is applied to obtaingf* . Firstly, generate a large
number i.i.d. vectors;w;::;; N(O;ls), wherev 2 RP and |5 denotes thes s identity
matrix, and then calculate q = supy ¢ 1 P oMK (4 t)=h=(nh)j; repeat the previous
step for a large number of times (say, 5000) to acquire the astaited 100(1 )% quantile
& ofq

The estimate of the stand error in (5.13)," c(t) is de ned similarly as (5.11):
“e®=(CTM T M (1)C) (5.15)
and we shall estimate (t) and { t) respectively. From the de nition of M (t) in (5.12), it can

be estimated byM (t) = Sy(t ), where Sy( ) is de ned in (5.4), andt = maxfh; min (t; 1

m

h)g. To obtain '( t), we rstdene two p 1 vectorsZ; = % and W; = i= m Zitj, @
P
matrix ; = W,W,"=(2m+1), and a function g(t;i) = K((ti t)=)= ., K((tc t), where
m and can be simply chosen as = bn®’cand = n 7. Then 7 t) can be calculated
by
X] .
Ty=" oti) : (5.16)

i=1
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Algorithm 5.1:  Construction of SCB for Time-varying Coe cients

1 Find a proper bandwidth i from the GCV selector (5.7);

2 Let i = 2fi and calculate “n(t) using (5.14) and (5.3);

3 Obtain the estimated (1  )th quantile ¢4 via the bootstrap method,;

4 Estimate M (t) = So(t ) and T t) by (5.16), and calculate” ¢ (t) according to (5.15);
5 Construct the 100(1 )% SCB of ~¢(t) using (5.13).

This way, we are able to calculate the SCB using all the estirtes. The above steps for

constructing the SCB are summarized in Algorithm 5.1.

5.3.3 Further Discussions

To make a better estimation and prediction using the local iear model, we need to
understand the coe cients ~(t) comprehensively. As our aim is to predict on a continuous-
time process, we must learn more about the dynamics of the nmaldand especially, the
time-varying coe cients ~(t). This way, the predicting results are meaningful at any tine
point. Considering this, we apply the SCB analysis into pradting the power generation
process based on the weather data.

Firstly, the SCB provides a dynamic and comprehensive viewno (t). In simple linear
regression, the con dence interval provides a measure oftloverall quality of the regression
line [146]. Similarly, the SCB illustrates the overall patérn of ~(t) and thus the accuracy
of the model. Con dence bands with smaller width implies a kter model with smaller
variability, while too wide con dence bands are limited in $e. Note that the SCB is con-
structed under an complete analysis on the continuous-timessumption, which is not merely
the connections of the pointwise con dence intervals on dérent time points.

The SCB can also be used to test whether the coe cient3(t) are truly time-varying or
not. If a horizontal line is covered by the SCB of ak(t), we accept the hypothesis that y(t)
is constant and not time-varying. Furthermore, in di erent cases, we can construct the SCB
for di erent linear combinations of (t)s by setting di erent matrix C, s. For example, if

we setC, 1 = [1;1;0;::0], we get the SCB of ¢(t) = CT7(t) = 4(t) + »(t); if we set
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Cp 2=1[1;0;0;::0;G 1;0; :::0], the SCB of 4(t) and (t) turn to a tube as at any time t,
because whes = 2, the unit ball B, turn to a unit circle from a unit interval. This provides

us a convenient way to further test the model.

5.3.4 Algorithm Performance for Simulated Processes

We now simulate a model withX (t) and (t) locally stationary processes discussed in
Section 5.3.1, and construct the 90% and 95% SCB respectwér a given model, to test
the correctness by comparing with the true results.

We use the following local linear model with time-varying a®cient:
yi = a(i=n)+ (i=n)x + ; (5.17)

where 1(t) =cos(2t)=4, and ,(t) =expf (t 1=2)’g=2.

Dene H(ti;Fi)=(1 =2)P jl:() a(t) i j, G(ti;Fi) = (1; i jl:O b(t) " j), where y and ",
are i.i.d. N(0;1). Then % and ; can be generated using (5.8), far= f1;2;:::; ng.

For the above setting, we generate 5000 samples of size 50@ for each sample SCB
is constructed with bandwidths setting from 0.1 to 0.3 of sf0.025. We use 3000 and 5000
bootstrap samples to estimatey® for =0:1and =0:05 to show the e ect of the sample
size on the results. The simulation results are shown in Tabb.1, where the coverage rate
and width of SCB for ,(t) with di erent bandwidths h at 90% and 95% levels are listed. It
shows that the coverage rate is close to the nominal level wimost bandwidths.

And the bandwidth selected by GCV is 0.22, which yield fairly god results. It also
shows that the 95% SCB is wider than the 90% and the width of SCiBecreases as increases,
which indicates a better estimation for largeth. Besides, we notice thaly® are a ected
by the bootstrap sample size, and its value a ects the widthfdSCB directly. Therefore, for
practical application, a large size of bootstrap samples \v&ry important. According to our

numerical studies, at least 5000 samples are suggested.
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Table 5.1: The Coverage Probabilities of SCB for,(t) and Quantiles ofd*at Nominal Level
of 90% and 95%

| 10 | 3000 Samples 5000 Samples

bandwidth | 90% 95% | (heo Gbos | Geo Goios

0.1 | 0.814 0.864 0.595 0.617 0.476 0.509
0.125 | 0.875 0.925 0.522 0.568 0.415 0.453
0.15 | 0.914 0.953 0.483 0.505 0.378 0.401
0.175 0.923 0.945 0.451 0.464 0.335 0.363
0.2 0.901 0.951 0.417 0.441 0.309 0.336
0.225 0.908 0.949 0.392 0.412 0.284 0.311
0.25 | 0.904 0.955 0.369 0.392 0.269 0.295
0.275 | 0.899 0.951 0.348 0.366/ 0.251 0.275
0.3 | 0.898 0.946 0.337 0.348 0.235 0.264

5.4 Application to Solar Energy Generation

In this section, we apply the SCB analysis to modeling the sol power generation
process and predicting the generation based on the weatheata, and compare results to

other methods.

5.4.1 Data Description

As an application, we consider the data from the UMASS Trace Repitory [147], which
records the solar power generation by solar intensity iwatts=m?, and the data of several
weather metrics from January, 2010 to February, 2013. It recded the weather data every
5 minutes. Many weather parameters were observed in detaildHere, we use ve main
variables of temperature, humidity, dew point, wind speedrad precipitation. The data has
been studied in [135], which studied the statistical connian between the weather variables
and the solar power generation, and predicted the solar powngeneration using multiple linear

regression and Support Vector Machines [148] regressionur@urpose is to investigate the
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Figure 5.1: Daily Solar Intensity for 2011 and 2012.

dynamic association between the weather variables and thela power generation, and to
help better predict the solar power generation.

Here, we plot the daily solar intensity for 2011 and 2012 in Figh.1. An apparent
seasonal pattern is shown with the peak points in summer peds, and lowest points in
winter time. It is helpful to consider and use the seasonal tiarns for forecast. And it is
interesting to see a similar pattern for daily observationSimilar patterns can also be seen for
several weather variables, such as temperature, humidignd dew point (See [135]). Fig. 5.1
also shows a strong relation between two days, which meantholar generation process is
not i.i.d. As discussed in Section 5.3.1, we do not require.dli of observations to construct

the SCB.

5.4.2 Prediction Model

Based on (5.2), we use the following local linear model:

xe
yi = 4(i=n) + p(i=N)Xpi + 47 fori=1;u5m; (5.18)
p=2
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where, y; is the solar intensity, Xy, p = 2;3;4;5; 6, represent the series of temperature in
Fahrenheit, humidity in percentage, dew point in Fahrenhéi wind speed in miles per hour
and precipitation in inches, respectively. We usia = 730 observations of 2011 and 2012 for
local linear regression and the model is represented in algigpattern. Note our model and
analysis can be built on any time scale, we take daily patterfor an application example

here. And () is the intercept and ,( ) are the associated coe cients forx,;.

5.4.3 Simultaneous Inference for Time-varying Coe cients

We now perform the SCB analysis. We center all the weather vables on their averages
so that the intercept 1( ) can be interpreted as the expected solar intensity. From GG we
select the bandwidthh = 0:25. The 95% SCB of the coe cients ,( ) are shown from Fig. 5.2
to 5.7. In each gure, the middle thick solid curve is the esthated series for the variable; the
upper and lower solid curves are the envelops for the simuti@ous con dence band for each
variable. From the SCB, we are able to test whether a coe cids is signi cantly associated

with the solar intensity, which equals to test:

Ho: p(i=n)=0;8i 2f 1,2 ::5;ng;v.s. Hy: p(i=n) 6 0;9i 2f 1,2 :::;ng:

If the zero line is included in the SCB, we accept the hypothissthat the coe cient is not
signi cant and could be omitted from the model; otherwise, @ keep it in the model. We can
also test whether the coe cients are constant, by attemptimg to include a constant horizontal

line into the SCB. This is equal to testing:

Ho: p(i=n) = ;81 21 1,2 :;5ng;v.s. Hy o ((i=n) 6 ;91 211,255 ng;

where ¢, is a constant of eachp. If the line is covered, we accept that the coe cient is
constant; otherwise, it is not. In Fig. 5.2, the curve indictes the expected solar intensity for

two years, and illustrates an obvious seasonal pattern. Theidth of the 95% SCB of 4(t) is
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so narrow that no horizontal line can be covered, and even aghier level of 98% SCB cannot
cover a horizontal line. We are con dent that the solar powegeneration is time-varying,
the same as the natural process.

As we center all the weather variables on their averages, th€B of the ,(t) actually
indicates the e ect on the solar intensity. In each gure of kg. 5.3 to 5.5, the zero line is
not covered, while in Fig. 5.6 and 5.7, the zero line is coverby the 95% SCB. Therefore,
we can conclude that for a level of 95%, temperature, humigtiend dew point have a strong
e ect on solar generaion, but the e ect from wind and precigation are weak. Also, we

accept 1(t) to 4(t) as time-varying coe cients, because a constant horizontdine cannot
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be covered entirely in those SCBs. Note the SCB associated lwiwvind in Fig. 5.6 shows

some variations. Although the zero line may not be covered by raarrower SCB, say 90%
SCB, at the 95% signi cant level, we do not accepts(t) as a non-zero function.The SCB
associated with precipitation in Fig. 5.7 is also too wide fo (t) to be accepted as a non-zero
function.

It is interesting to point out that although the overall SCB does not cover the zero line
entirely, for certain time periods, it contains the referece line. For example in Fig. 5.4,
the SCB covers the zero line fronbay = 300 to 400. It suggested that duringDay 300 to
Day 400, the humidity is not a signi cant covariate and can be remved from the original

regression model.

5.4.4 Comparisons with Other Models on the Prediction Resul ts

From the above discussions, we could exclude the variablepsécipitation and simplify
the model for better prediction. We use the model to predicthte daily solar intensity for
January and February in 2013. The weather information of therevious is used as the
weather forecast, and the time for prediction is set fronday = 366 to 423 which was

estimated using data around January and February in 2012. lother words, the predictions
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Figure 5.8: Comparisons of Predictions on Solar Intensityetween TLLE and SVM

are made using the data around the same time in the previousaye The results are shown

in Fig. 5.8.

As a comparison, we also present in Fig. 5.8 the prediction®fn the model proposed

in [135]. The upper gure is the prediction curve made by theite-varying local linear

estimation (TLLE) and the actual observations; the lower oa shows the results from SVM

regression used in [135]. We also perform the multiple limeeegression (MLR). But the

prediction is too poor to be shown as a comparison here. ActiyalMLR uses the time

merely as a common variable and the coe cients are not timearying.

From Fig. 5.8, we can see that the TLLE predicted curve track#he actual observations

better than the SVM regression. And it is also shown in Table 5ihat the root mean squares

error between the predicted series and the observations foLLE, SVM and MLR, which

are 22.59watts=m?, 32.71watts=m? and 53.35watts=m? respectively. Note that the SVM

regression depending highly on the selection of the parareet and the kernels, and thus, is
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Table 5.2: Comparisons of RMS-Error irwatts=m? between TLLE, SVM and MLR

| | TLLE | SVM | MLR |
| RMS-Error | 2259 | 3271 | 53.35 |

not practical in many cases lacking a comprehensive undeastling of the real model. For
example, the kernel function chosen for daily prediction isot guarantied to perform well
in weekly prediction. However, the TLLE analyzes the model usy simultaneous inference,
which re ects the overall pattern of the dynamic pattern of e regression functions. There-
fore, it can be used in many other applications, such as the Umdy short-time solar power

generation forecast where the time scale is set in hours.

5.5 Related Work

Load forecasting in traditional power grids has been widektudied for a long time [149].
Researchers apply di erent statistical methods for betteprediction in di erent cases [133,
134]. Machine learning methods for short-term load foredasy can be found in [134].
In [133], hourly electricity load prediction is made basedate space models.

As the development of the Smart Grid, forecasting on load andegeration is still very
important [44]. Di erent from the load forecast in the traditional power grid, researchers need
to tackle the problems caused from the new type of power griduch as more incorporation
of renewable energy and electric vehicles [132, 135, 136heTauthors of [135] studies the
statistical relationship between the weather variables ahthe solar generation, and predicts
the solar power generation using Support Vector Machinesgression. In [132], a clustering-
Based nonparametric functional time series model is propas to forecast the household-
level electricity demand, for balancing the supply/demandh the low-voltage network. And
a parametric approach for short-term multi-period JPDF foecast of wind generation is

proposed in [136].
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On the other hand, statistical theory on time-series analysand time-varying coe cients
are developing [140,142,150]. In [140], the authors prop@Gaussian approximation princi-
ple for nonstationary multiple time series with nearly optinal rates, while The simultaneous

inference for time series and functional data are discussed[142] and [150] respectively.

5.6 Conclusion

In this chapter, we propose the simultaneous inference foreather dependent power
generation from renewable energy, such as solar energy anddy We rst introduce the local
linear model for time series, and present the constructiori thhe simultaneous con dence band
for time-varying coe cients. And then for an application, we perform the SCB analysis to a
trace of solar intensity and weather data. The presented medlis also shown to outperform

some existing methods for solar intensity prediction.
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Chapter 6

Summary and Future Work

6.1 Summary

In previous chapters, we introduced the background of the St Grid (SG) and the
coverage of the SG research. Out works focus on energy mamaget in SG environment. We
investigated the problems from energy distribution and geration forecasting, using convex
optimization methods and the simultaneous inference. Theysergy of these mathematical
tools produces new solutions to the optimal energy managemén the SG, which brings an
advanced, e cient, green, clean, and sustainable power gri

In Chapter 1, we presented a big picture of the new and emergir§G by introduct-
ing SG infrastructure and SG applications. The SG infrastrcture is classi ed into smart
power system, information technology, and communicatiorystem. And the SG applications
include fundamental applications, emerging applicationgand derived applications.

In Chapter 2, we presented a study of optimal real-time eneyglistribution in smart grid.
With a formulation that captures the key design factors of tle system, we rst presented an
o ine algorithm that can solve the problem with optimal solutions. The proposed framework
is quite general. It does not require any speci ¢ models fohé electricity demand and supply
processes, and only have some mild assumptions on the ujjlitost, and price functions (e.g.,
convex and di erentiable). We then developed an online algthm that requires no future
information about users and the grid, making it easy to be impmented in a real smart grid
system. We also showed that the online solution converges ttte o ine optimal solution
asymptotically and almost surely. The proposed online algthm was evaluated with trace-

driven simulations and was shown to outperform an existingdmchmark scheme.
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In Chapter 3, we presented a study of optimal distributed oime energy distribution in
the smart grid. We considered the problem from the aspect ofi¢ NIST standard. With a
formulation that captures the key design factors of the systn, we extended the work of a
centralized online algorithm presented in Chapter 2, by demposing the problem into many
sub-problems that can be solved in a distributed manner, tluprotecting users' privacy
and achieving scalability. It inherits the advantages of dme algorithms that requires no
future information for a convergent solution, and the advatages of distributed algorithms,
which solves the problem in a distributed manner with localnformation. Although user
power usages are still exchanged with the PGO, the distribetl online algorithm mitigates
the privacy problem since it does not require disclosure ofer's utility function and its
parameters. The proposed algorithm is easy to be implemedta a real smart grid system.
The distributed computation allows scalability for handlng large systems. We then showed
that the distributed online solution converges to the optinal o ine solution asymptotically.
The proposed distributed online algorithm was evaluated Wi trace-driven simulations and
outperformed a benchmark scheme.

In Chapter 4, we developed a hierarchical power schedulingheme to optimally man-
age the power distribution in the smart grid with one Macrogd and cooperative MGs.
Under some mild assumptions, we rst formulated the cooperae MG problem as a convex
optimization problem by capturing the key factors in a grid gstem, i.e., operation cost,
power generation and transmission losses, user utility, stiibuted storage, and grid load
smoothing. We then decomposed the original problem into a tatier power control prob-
lem. The rst-tier control is for the Macrogrid, aiming to maximize user utility, minimize
power transmission cost from/to the Macrogrid, and smoothtte grid load of the Macrogrid.
The second-tier control is for each MG, aiming to minimize # cost of the MGs for power
generation and transmission, while guaranteeing the poweemand of MG users. It balances
the power level with the Macrogrid and makes energy tradingnal storage decisions within

the MG network. We then developed the corresponding onlinend distributed algorithms
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for solving both problems, which were proven to be asymptatlly optimal. The proposed
algorithms were validated with trace-driven simulations.

In Chapter 5, we proposed the simultaneous inference for weer dependent power
generation from renewable energy, such as solar energy anddy We rst introduced the
local linear model for time series, and presented the consttion of the SCB for time-
varying coe cients. The SCBs depict the time dependent chaactristics of the coe cients,
which provided a new dynamic view on the model and the relatigship between the weather
variables and the power generation from solar and wind resaes. We then performed the
SCB analysis to a trace of solar intensity and weather data. e presented model was shown

to outperform some existing methods for solar intensity pdaction.

6.2 Future Work

The research on SG has been just a decade, and as a new powet, ghiere are still
many problems open for research in SG. Here, we brie y extendirodiscussion on energy

management in islanded microgrids and cooperative micrags.

6.2.1 Energy Management for Islanded Microgrids

In Chapters 2 and 3, we focus on the energy distribution in SGreéronment, which can
also be applied into the energy management in grid-connedt®Gs [151]. The mainstream
researches on energy management in MGs also show preferemceonnected MGs. This is
partly because an MG is connected to the macrogrid for most tfme, and partly because
the lack of in nite power bus incurs many new issues that areoommon in traditional power
system. The intermittent power generation of renewable ergy resources is usually hard to
predict, which increases the di culties of power managemen

Without a previous prediction on the generation, energy magement cannot be very
e cient and e ective in islanded MGs. The common solution tothis problem of renewable

energy generation is either an ESS or a backup generation. Hoer, even with an ESS
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of certain capacity, the charging and discharging activids cannot be optimized with no
idea about the generation process. Therefore, the foreaast of renewable power generation
is crucial for energy management in islanded MGs. On the othéand, many MGs are
anticipated to meet the challenges caused by severe weathenditions. Energy management
for islanded MGs in emergency scenarios should be considdareadvance. In this subsection,
we discuss the problems dbrecasting and energy management in emergency scenarits

islanded MGs and present potential methods that may be usedrfsolutions.

Forecasting in Islanded Microgrids

In the traditional power grid, power is generalized in cengdized plants with large capac-
ity. And power supply is following the demand all the time. Ths grid structure and operation
mode require a previous knowledge of the possible demandddhat is why forecasting has
been an important part for power control in the existing grid. The fundamental function
of a power grid is to deliver power to end users. So demand lofadecasting is important in
any form of power grid, including both SG and MG. On the other &nd, in an islanded MG,
distributed generation with small capacity consists of thenajor power supply. To overcome
the di culties of the intermittence of generation from renewvable energy resources, an ESS
is necessary in MG. However, ESS works well under an optimalacging/discharging sched-
ule for both energy e ciency improvement and cost reductionwhich will be meaningless
without knowledge of future generation. Therefore, botlgeneration forecastingand demand
forecasting are impportant problems in islanded MGs for better energy nmagement.

Demand Forecasting Forecasting of power demand or grid load pro le is used in
current power system everyday. The research on the demandshiasted for many years,
but the results are not satisfactory. The di erences betweaepredicted and real-time load
pro les can be seen in traces for the New England area [152] a@dlifornia SCE area [99]. By
applying demand side management in the SG environment, theg can be decreased. And

demand forecasting in traditional power grid provides somichniques and experiences for
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demand forecasting in MG. The popular methods and models eady applied in load pro le
forecasting are summarized in [153]. Many of them can be hilpfor MG forecasting, such
as linear model, non-linear regression, machine learninggutral networks, etc. For example,
forecasting on power consumption of house-hold electric@iances can be applied directly.

The dierence in MGs demand forecasting lies in the much smat load, which can
be easily a ected by occasional activities from a small grpu For example, in our current
power grid, load demand is very large and thus not sensitive tuctuations. It means that
only large scale activities will a ect the overall load prole, such as the Olympic Games.
But in some islanded MGs, the load is aggregated from only axfelemands, i.e., a hundred
residents. The load pro le is more sensitive to disturbanse Even some activity of a small
group of people will have e ects on the overall load. Therefe, more precise predictions
along better DSM schemes on power demand are required in mslad MGs. Models on
human activity power consumption predictions and time sees models in statistics may be
considered for possible solutions.

Generation Forecasting As stated before, generation forecasting is a new but chal-
lenging topic. It involves many uncertain processes that naot be easily represented by a
single mathematical model. For example, the solar energyrgation is varying in di er-
ent weather, seasons and locations. Also, the generationdoasting methods may not be
evaluated and veri ed easily, because of uncertainties. thay take many years to test the
forecasting accuracy, and modify accordingly.

For weather related renewable energy generation, such asw@iand solar energy, the
techniques applied in weather forecasting are helpful to dha model between the actual gen-
eration and weather variables, such as temperature, humigiand wind. But this requires
data monitoring for a long time in di erent places. And a singé model is not su cient for
precise forecasting. Thus, it is important to study the relaonship between power gener-
ation and weather metrics. The methods used in weather fost may be considered for

possible solutions. The SCB method presented in Chapter 5gmosed a model based on
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the dynamic relationship in statistics between solar eneyggeneration and several weather
variables. Although the trace used is observed from a singleusce and the predictions rely
on the accuracy of the weather forecast, this work providesianovel idea for forecasting,

based on which more precise models may be developed with m@eords of data.

Energy Management for Islanded MGs in Emergency

When MGs are disconnected and the power generation in MG isgped by emergencies
or weather disasters, such as hurricanes and tornadoes, thi&s may have to be islanded
for some periods, from many hours to several days. It will be @allenge for the energy
management in emergency. Dierent management schemes mag heeded for di erent
levels of emergency. Some parts of MG system may fail to wolRepending on the capability
of generation and storage, the MGCC should be able to o er derent power distribution
and management plans. Also, the MGCC should be able to acquiaed report additional
information from the macrogrid. As an important topic in MG management, the energy
management for islanded MGs in emergency is still under irstggation and is an open

problem.

6.2.2 Energy Management for Cooperative Microgrids withou t Macrogrid

In Chapter 4, we presented the power management for coopevatMGs and the Macro-
grid, which brings a new perspective to the power grid compitien. In future, the ultimate
SG may be comprised of many MGs without the macrogrid of massi centralized power
generation. It will be a highly exible and sustainable sysm with optimal management at
each level. Each MG will be a truly independent power systentnergy will be a common
commodity that can be traded freely between MGs. However, thiultimate SG will be ex-
tremely hard to realize from the point of view of the current minstream SG researchers and
engineers. In such a system, there will be more exible powesws than the system com-

prised of cooperative MGs and macrogrid. The possibility @hstability of multiple power
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ows within an MG from many outside MGs need further proofs ad supports from exper-
iments and testing. Also, the design of the control system, drenergy management is also
highly complicated. They all require more discussions, wks, researches, and experiments

before realization.
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Appendix A
Proofs in Chapter 2

A.1 Proof of Property 2.1

Proof. i) From (2.11), g(; ¢t)) is a continuous function off The continuity of p (8; dt))
could be guaranteed if all the four conditions of Theorem 2ffom [154] are satis ed. The
conditions are veri ed because Prob-ON is always feasible a closed set ancﬁ is bounded
on a setP in our case. Thereforep (%; dt)) is continuous with respect to%

i) Take , as any sequence such that lim £ = B Then we have
1im E[p, (B ()] = E[lim p (B ()] = Elp (8 ))];

which follows the Bounded Convergence Theorem since we abtg have the continuity of

P (P; qt)) and the closed seP of p, (see 2.2.1). Consequentl [g(P; dt))] is also continuous.
UJ

A.2 Proof of Property 2.2

Proof. i) The di erentiability of g(%; qt)) follows directly from Theorem 4.1 in [155].
i) Similar to the proof in Part ii) of Property 2.1, take any sequencep/, such that

limy:  PBin = 0. We have that

9P+ Pn®  o(F; qt))
Bin

= B (1%"' Poneigt)) B Pon P max;
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for 0< pon < Pin, Which follows the Mean Value Theorem and part (ii) of Propdy 2.2. For

eachi 2 N,
A o #
gE[g(%;c(t))] = “q' g 9P+ ’bi;negm g(1s,c(t))#
= E lm g(1s+’bi;n<2' g(P: 1))

(Elp (B:q)]  p):

A.3 Proof of Lemma 2.1

Proof. For two vectors P, P2 and for anyi 2 N, 0< < 1, it follows from the variance

de nition and the strict convexity of quadratic function f (x) = x? that

var( PL+(1 )P?)  Var(Ph+(L  )Var(P):

We conclude that Var(P;) is strictly convex unless Var@!) = Var( P?2). Since all the con-
straints of Prob-OFF are also convex, we conclude that ProBFF is a convex problem.

We next prove that Prob-OFF has a unique solution. Assume?! and P?? are two optimal
solutions to Prob-OFF. Because the objective function is agave, P!+ (1 )P2 is also
optimal, for 0 < < 1. Note that we have three terms that are all concave (or convex

in (2.7). Thus P+ (1  )P2is optimal only if

U(PHD+L P = UK+ HUPAL) (A.1)

149



|
X X '
f PF+@ )P P+ ) P

X i2N X i2N
=f(PH PO+@ HIPH P (A.2)
i2N i2N
Var( P*+(1 )P?)= Var(P)+(1 )Var(P?);8i 2 N: (A.3)

SinceU( ) is assumed to be a strictly increasing function in Section21, (A.1) holds true
if and only if P(t) = P2(t), foralli 2 N,t2f1,2, ;Tg. Egs. (A.2) and (A.3) are also
su cient for this result. Therefore, we conclude that Prob-OFF is a convex problem with a

unique solution.

A.4 Proof of Lemma 2.2

Proof. We de ne several notations to be used in this proof. De ne; = IOTo i, function
~ (Bc(t), and (Sc(t) = P (P; qt)) for eachi 2 N and p; 2 P. Also de ne
S

Xx—— X
dist(g"; ¥) = (et pA2= (pf pd) ; foranyp; ¢ 2 PN:

i2N i2N

We next show the following two intermediate results that wil be used to prove the

lemma. The rst result is that the solution of the next xed point equation exits.
El~ (Se®)]= = (A.4)

It follows Property 2.1 that E[~ ('~\;c(t))] is a continuous function and it maps a convex
compact subset ofPN to itself. Hence from Brouwer's Fixed Point Theorem in [156}the

existence of the solution to (A.4) can be shown.
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Secondly, we show thaE[~ (:;c(t))] is a pseudo-contraction. SincéN is a compact

set, we need to show equivalently that for any two di erentdtand & 2 PV,
dist(E[~ (< c(t)E[~ (Fre(t)]) < dist(<; ~):

Here, let~! be a solution to (A.4) and=2 6 ~.

To prove this, we modify the Prob-ON to obtain a new problem NewProb-ON as

max:  go(~ )
subject to: p'—_ Pimin ;812 N
!

X .
C p— co(t); 8 t; (A.5)
i2N
where
X . X - X . X . A
W(zI=  Up=t) f( p=) p= 5 (P= Pa)°
i2N i2N i2N i2N

For brevity, we drop the time index ¢) in the remainder of this proof, when their meanings

are clear in the context. Note that~ (’~\; c(t)) is the optimal solution for New-Prob-ON.
Now, we use Proposition 6.1 from [155] to achieve the Lipschitontinuity and acquire

the Lipschitz constant of ~ (:;c(t)) in a neighborhood of~!. Two conditions are necessary

to hold the proposition: the Lipschitz continuity of the di erence function in a neighborhood

of 2! and the second-order growth condition.

We de ne the di erence function go(= =;=2) as

o= = W=D w=
1X
= - ™ MR N )
2i2N
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Then it follows that

dist( go(~5%);  go(-% %)
X . N\ N\ .
= (N (D dist(=h A)dist(~ ), (A.6)
i2N
where the inequality holds from Cauchy-Schwarz inequalityHence, the rst condition of
Proposition 6.1 in [155] holds.
Next, we show that the second condition also holds. In our casthe second-order

growth condition requires that there exists a positive comant a such that
G(~ (o)) Gz ™) aldist(<~ (o)) *

We nd a su cient condition for this second-order growth condition in [157], in which The-
orem 6.1 states that if the Slater quali cation hypothesis blds, the second-order growth
condition (Theorem 6.1 (v)) is equivalent with three other onditions (Theorem 6.1 (vi)-
(viii)). Because the Slater quali cation hypothesis couldbe satis ed if we carefully choose
Pimin  (See Section 2.3). We thus verify that an equivalent condan Theorem 6.1 (vii) is

satis ed. For this, de ne:

L= (P2 Np= gy(~ (Fhet): ™) gol= )

Dk T |

P= 1 i P= Pi;min : (A-7)
i2N i2N

@C

Then, we can write the function' in Theorem 6.1 (vii), for anyd2 RN, as

- e (@ = GO@QLLe Fho); (2 N
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where and (; :i 2 N) are the optimal Lagrange multipliers and variables. Subgut-

ing (A.7), we have that

X 1 (Lot
~ (~1 c(t))(d) — d|2 1 _UOO i ( lg ( )) |
i2N |
X (A '
I Gl )
i2N I
X X 21.
4§00 (3 o C C(t)) i ( o C 10)
i2N i2N |
X (L. ' '
+ _COO i ( p ’_C(t)) :dt)
i2N
Since s the optimal Lagrange multiplier, 0. Also U is a strictly increasing, concave

function, and C and f are strictly increasing, convex functions. Moreovep;, 2 P so that ;

lies in a closed sePy, for i 2 N. Therefore, there exist positive constantsyo, fo, and foo

such that U% ;) voo, L) fo,andf% ;) o forall ; 2 Py. So we have that for
any @2 RN,
X 2 X 2
- C(t))(d) 1+ — d: > a:; (A.8)
i2N i2N
where = o+ 2 0+ ;ooiS a positive constant. Now, we have veri ed the condition

of Theorem 6.1 (vii) and hence from Theorem 6.1 of [157], Them 6.1 (v) is satis ed,
which equals to the second-order growth condition. Thus, rfroposition 6.1 of [155], both

conditions are satis ed. We could use it safely and concludbat:

1

dist(~ (~ c(t)); ~( ; (1)) 1+ — dlst(~ '~2) < dist(~ . Az)
Thus, we can conclude that

E dist(~ (o)~ (Bcn) | < dis(%)
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Further, we have that

dist(E[~ (i ():E[ (F5 o))

X h 1
- E (i) ()
S i2N
TE By (o)
S i2N

E dist(~ (2 c(t)~ (2 o1)

dist(%; 2);

N

The rstinequality is due to Jensen's inequality. This proes our second intermediate result.
Then, suppose that the xed point equation (A.4) has two distnct solutions %! and 2.

We have that
dist(~ %) = dist(E[~ (%ot E[7 (Fre(t)) < dist(; );

which is an contradiction. This implies that (A.4) has at mostone solution. We conclude

that (2.17) has a unique solution.

A.5 Proof of Lemma 2.3

Proof. Given that c(t) is an ergodic process, the updating function (2.14) can bercidered
as a stochastic approximation update equation. We can applyheorem 1.1 of Chapter 6
in [158] for the convergence proof. We verify the assumpti®in Theorem 1.1 of Chapter 6
in [158] in the following.

We rst list the variables used in Theorem 1.1 and corresponthem to our problem and
our notation style: 5 = B(t), (= ct+1), (Y)i = (@ ®);ct+1) p(1);8i2N,
(= 2, 0@dt) = (p(P;dt) p);8i2N, M =07 =0andZ = 0 for eacht.
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Now we need to verify that all the assumptions in Chapter 6 of §B] from (A.1.1) to
(A.1.8) are satis ed. According to Property 2.1,E[Y;] is a continuous function ofp/\(t)
and f (1’5 (t 1);c(t)) 2 PN for any t. Thus, (A.1.1) is satis ed. (A.1.2) also follows from
Property 2.1 that g(%; qt)) is a continuous function ofﬁ which guarantees (A.1.7) as well.

For (A.1.3), we can take the following form of the function

(OB )i = (Elp P @);ct+1)]  p1):

According to [158], (A.1.3) holds due to the strong law of largeumbers, because(t) is an
ergodic process. Sincg = Z; = 0 for eacht, we have both (A.1.4) and (A.1.5) hold true.
For (A.1.6), it holds becauseg(%; qt)) is bounded. Hence, all the assumptions are satis ed.
It follows Theorem 1.1 in [158] and Property 2.2 thapi{t) converges almost surely to the

unique solution of E[p (8; dt))] = B

A.6 Proof of Lemma 2.4

Proof. Rewrite (2.14) and sum fromt =1 to T. We have

X 4 NG
— (B B )= (@ H D)

t=1 t=1

Expanding the sum on the LHS, it follows that
1 X |
— T B(T) pt 1) (B(T) B(Q)
XT t=1
= (P @) /M+w(T) A 1)

t=1
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Take limit over T on both sides and it follows that

P
T A =pl 1)

. - B(T) pi()
Jim T Jm =
1 X
=im T GO AMAM pe D)

The second term of the LHS is zero a6 ! 1 . Rearranging the terms, we have

XT
im %mo.(t 1)
X
AR IO

Since the sequencp, () converges as shown in Lemma 2.3,

. 1 X
Im g™ = pt 1) =0
t=1
, and the LHS will be zero. Thus the limit on the RHS will also be ze. O

A.7 Proof of Theorem 2.1

Proof. The proof is equivalent to showing that liny,, %(( p) ( P)) =0 holds true
almost surely, wherep is online optimal solution andP is the oine optimal solution.
Recall that (t) and ; (t) are the non-negative multipliers that satisfy the KKT condtions

of the online problem (see (2.15)). We de ne a new di erentiale concave function () as
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follows.

X X X X "X
(P) = U(P; (t);!(t)) f P; (1) P; (t)

t=1 i2N t=1 IiDN i2N

T X X C( inPi (1)

> Var(P; ) ) (1) é(’“t) 1

i2N t=1
X X
(P (1) Pimin (1)): (A.9)

t=1 i2N

Note that the sum of the rst three terms on the RHS of (A.9) is equbto ( P ), while the

last two terms on the RHS of (A.9) are both non-negative. It fotws that

(P) (P): (A.10)

Furthermore, with the concave and di erentiable propertis of function ( ), we have [98]

(P) (p)+5(p) (P p); (A.11)
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where denotes the i

nner product operation. Combining (A.10) and (A1), we have

(P) (P) (p)+5(p) (P p) (A.12)
X X
= U(p: (1); (1)
t=1 i2N |
X X - X T X
f P, (1) p; (1) > Var(f)
t=1 i2N P i2N i2N
X C( b ()
(t) i2N Mi l +
c(t)
X X
L@ ) Pimin (D) +
t=1 i2N |
X X X '
(P (t) p@) Up@:hit) g p) +
t=1 i2N P i2N !
X C( P (1) .
B p(k) pi) (1) Cg) + M

As (t) and , (t) are

the Lagrange multipliers and variables of Prob-ON, we oasubsti-

tute (2.15) into the above inequality (A.12) to have

(P)

Adding Bi(T)+ pi(T)

XT

1
T k=1

p) Bt D=

XX
U(pi (1);!i(1))

t=1 i2N I

X X X T X
f P (1) P —  Var(p)+
t=1 i2N i2N i2N |
X X X '
P @ p@) = pk) Bt 1)

t=1 i2N k=1

to the last component of the RHS of the above inequality, we ka

XT

P (K)

k=1

B(T)+w(T) @ 1) (A.13)
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From Lemma 2.4, the limit of the above equation is zero for alisers. We can take limit

of (A.13) and it follows that

(P 1 XX -
fm 2= lms o UR ()
| t=1 i2N |
X X X T X -
f p; (t) p; (1) > Var(f) :_!_|'r1n %:
t=1 2N i2N i2N '

Thus limy; Tl(( P) (p)) O0holdsforall users. Because is optimal to the o ine
problem and ( P ) is the o ine objective value, we also have (P ) ( p ). We conclude

that Theorem 2.1 holds true. O]
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Appendix B
Proofs in Chapter 3

B.1 Proof of Theorem 3.2

Proof. Substituting (3.16) and (3.17) into (3.19), we have

X
D( ()= Si( 1)+ R( (1)

i2N (

X
= max (U(pi(t); (b))

i2N
SO pE P Op® +

(t)?(t) C(g(H)g

X
= max (Upi(t); (1)
i2N

S(EM) At 1)7
2 )

X
Clo®) (V) pi(t)  o(t)

i2N

=maxfL(g(t);g(t); (1)a:

Comparing function L($(t); g(t); (t)) with the centralized online problem Prob-ON
(3.6), and its constraint (3.7), it can be seen that functionL (g(t); g(t); (t)) is actually
the Lagrangian of Prob-ON and (t) is the Lagrange multiplier. And function D( (t)) is
then the dual function for Prob-ON. Similar to the Prob-OFF cae, the Slater's condition
holds true here again by careful choices @f(t) and g(t). Therefore, the distributed on-
line subproblems (3.16) and (3.17) have the same solutionthe centralized online problem

Prob-ON.
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On the other hand, Theorem 3.1 has proved that the solution d?rob-ON is optimal
and asymptotically convergent to the o ine optimal solution. We then conclude that the
solution of the distributed online subproblems is also optial and converges asymptotically

to the optimal o ine solution. [
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Appendix C
Proofs in Chapter 4

C.1 Proof of Lemma 4.1

Proof. We prove (4.18) in this section, while (4.19) can be proved the same way. Rewrite

the rst update equation in (4.17) and sum up fromt =1 to T. We have

X X
Y @o de w= @o da )

t=1 t=1

Expanding the sum on the left-hand-side (LHS), some terms cdre canceled. Also, adding
term  &(T)+ di(T) to the right-hand-side (RHS), it follows that

|
T |
Lram " 4e n @m &)

t=1

X
= (4 dm+dm d¢

t=1

Taking limit over T on both sides, we have

P
im L 4M  Lde y L dM d@)
T T T T

X
= lim lel @ dm+am du )

t
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The second term of the LHS goes to zero. Rearranging the remagnterms, we have

!
.

X
m S dm £ de D
X
= lim 27 @ &) CED

t=1

Due to the rst updating function in (4.17), d(t) is convergent ast ! 1 . Thus, the LHS
of (C.1) is zero. It follows (C.1) that (4.18) holds true. m

C.2 Proof of Theorem 4.1

Proof. The convergence of the online solution is equivalent to theogvergence of the on-
line objective value to that of the oine problem Prob-MA2. Thus, we next prove that
limyiy Tl(F(d ;p) F(d;p)) =0, where (d ;p ) is the solution to Prob-MA3 and (@; p)
is the solution to Prob-MA2.
It can be shown that Prob-MA3 is also a convex optimization ptadem, and the Slater's
condition is also satis ed. We derive the KKT conditions of Pob-MA3 as follows.
8
v Ut @) (d® e )+ @ +
I ( CHPn (1) (P () Pm(t 1)+ (1)
m (1) ()G (t)=hnax (1) =0
M (G (1))=hnax (t) 1)=0
i (D (d (1) dimin (1)) =0
m (1) (P (1) + Pmimax (1)) =0
m () (Pm () Pmimax (1)) =0
t); @); L); @) 08i2N;, m2M;t 2T;

(C.2)

where the non-negative Lagrangian multipliers (t), ;(t), ,(t), and . (t) are the dual

points where the KKT conditions are satis ed and the optimalvalue is achieved.
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To prove the theorem, we need another di erentiable concavenction H (d; p) as de ned

in (C.3).

H(d;p) |
X X X '
= U(di(t);!i(t) Cm (Bm (1))
t=1 2N m2M |
T X _ X '
> Var(dir) + Var(Bm)
i2N m2M
X ey , X X
(t) 1 + i (D(di(t)  dimin (1))
t=1 Brmax () t=1 i2N
X X
+ ( mOEn®) + Pomax (1)) (OB ()  Pmmax (1))
t=1 m2M
= F(d;p) |
X c(y |, X X
+ (1) 1 + (D) dimin (1))
t=1 Brnax () t=1 i2N
Xr
+ (m@® WO+ () + 1 (1)) Pmymax (1)) (C.3)
t=1 m2M

Recall that G(I(t)) is the generation cost andd, . (t) is the maximum generation cost in the
Macrogrid. Therefore the second term on the RHS of (C.3) is naregative. Following (C.2),

the last two terms on the RHS of (C.3) are both non-negative dier. It follows that

F(d;p) H(T;p): (C.4)

Due to the concavity and di erentiability of H( ), we have

H(@;p) H(d;p)+5H(;p) ((@:p) (d;p)), (C.5)

where denotes the inner product operation. According to (C.4) and@.5), we can derive

inequality (C.6).
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F(d;p) H( ;p )+ 5H( ;p) ((@p) (d;p))

= F(d ;p)

X G X X

+ (t 1 +
B (1)
X X

+ (Cn®  nOPa®+C O+ () Prma (1))
t=1 m2M
X X

+ (Gt d (1)

t=1 i2N

i (t)(d| (t) di;min (t))

t=1 i2N

X
Ut @i+ 0 OSD_T qay di

e () Ty
X X
£ 77 e Pt
t=1 m2M |
X '
AP n® o0 OFEDesT bk b0 0 €O
ax k=1

Substituting (C.2) into inequality (C.6) , we have

F(d;p) F(d;p)+

|
1 X '

@O 4@ ¢ d d 1) +
t=1 i2N k=1 I
X X 1 X '

P Pu(® T Pu() Pnt 1)
t=1 m2M k=1

Adding &(T)+ d(T)and Pm(T)+ Pm(T) to the last two terms on the RHS of the above

inequality, respectively, taking limit over T on both sides, and applying Lemma 4.1, we have

im F(d;p) im F(d ;p ):

T T Tl

(C.7)
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On the other hand, @;p) is the optimal solution to Prob-MA2 and thus F(d;p) is the

optimal objective value of Prob-MA2. Since it is a maximizatn problem, we have

F(@p) F(d;p): (C.8)

Considering both (C.7) and (C.8), we conclude that Theorem.2 holds true. O
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AGL
AMI
BESS
CAES
CG
CHP
COA
CPP
CSP
DC
DER
DG
DOA
DOE
DPA
DR
DSM
EC
ED
EP
EPRI
ESS

Appendix D

Acronyms

Actual Grid Load

Advanced Metering Infrastructure
Battery Energy Storage System
Compressed Air Energy Storage
Coalition Game

Combined Heat and Power
Centralized Online Algorithm
Critical-peak Pricing
Concentrating Solar Power
Direct Current

Distributed Energy Resource
Distributed Generation
Distributed Online Algorithm
U.S. Department of Energy
Dynamic Pricing Algorithm
Demand Response

Demand Side Management
Electrochemical Capacitors
Energy Distributor

Energy Provider

Electric Power Research Institute

Energy Storage System
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EV
FACTS
Ga2v
GCV
GHG
GPS
GRS
HVDC
HPS
IEA
IEEE
IPM
JPDF
KKT
MG
MGCC
MGNC
MLR
NCC
NIST
oL
OPDA
ORPA
PCC
PDR
PEV
PGO

Electric Vehicle

Flexible AC Transmission Systems
Grid-to-Vehicle

Generalized Cross-Validation
Greenhouse Gas

Global Positioning System

Grid Energy Storage

High Voltage Direct Current
Hierarchical Power Scheduling
International Energy Agency
Institute of Electrical and Electronics Engineers
Interior Point Method

Joint Probability Density Function
KarushKuhnTucker

Microgrid

Microgrid Control Center

Microgrid Network Controller
Multiple Linear Regression

No Cooperation Control

National Institute of Standard and Technology
Original Load

Online Power Distribution Algorithm
Optimal Real-time Pricing Algorithm
Point of Common Coupling

Peak Day Rebates

Plug-In Electric Vehicles

Power Grid Operator
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PHEV
PLC
PLP
PMU
PV
RC
RTP
SC
SCB
SCE
SG
SH
SMES
SVM
TES
TOU
V2G
VPP
WMN
WSN

Plug-In Hybrid Electric Vehicles
Power Line Communication
Peak Load Pricing

Phasor Measurement Unit
Photovoltaic

Real Consumption

Real-time Pricing

Smart City

Simultaneous Con dence Bands
Southern California Edison
Smart Grid

Smart Home

Superconducting Magnetic Energy Storage
Support Vector Machines
Thermal Energy Storage

Time of Use

Vehicle-to-Grid

Virtual Power Plant

Wireless Mesh Network

Wireless Sensor Network

169



Appendix E

Publications

Book

1. Yu Wang , Shiwen Mao, and R.M. Nelms,Online Algorithms for Optimal Energy
Distribution in Microgrids. Springer Briefs Series, New York, NY: Springer, June,

2015.
Journal & Magazine Publications

1. Yu Wang , Shiwen Mao, and R.M. Nelms, "On hierarchical power schedod for the
macrogrid and cooperative microgridslEEE Transactions on Industrial Informatics,
Special Issue on New Trends of Demand Response in Smart Grid,appear. DOI:

10.1109/TI11.2015.2417496.

2. Yu Wang , Shiwen Mao, and R.M. Nelms, Asymptotic optimal online energgistri-
bution in the smart grid, invited paper, E-Letter of the IEEE Communications Society
Multimedia Communications Technical Committee(MMTC), Special Issue on Smart

Grid, vol. 9, no. 4, pp.33-36, July 2014.

3. Yu Wang , Shiwen Mao, and R.M. Nelms, Distributed online algorithm fo optimal
real-time energy distribution in the smart grid,IEEE Internet of Things Journal, vol.1,

no.l, pp.70-80, Feb. 2014.

4. Yu Wang , Shiwen Mao, and R. M. Nelms, "An online algorithm for optimal eal-
time energy distribution in smart grid," IEEE Transactions on Emerging Topics in

Computing Special Issue on Cyber-Physical Systems, vol.1, no.1, ip.21, July 2013.
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Conference Publications

1. Yu Wang , Guangqun Cao, Shiwen Mao, and R.M. Nelms, Analysis of solar g&n
ation and weather data in smart grid with simultaneous infeence of nonlinear time
series, inProc. 2015 International Workshop on Smart Cities and Urbamnformatics

(SmartCity 2015), Hong Kong, P.R. China, Apr. 2015, pp.672-G7

2. Yu Wang , Shiwen Mao, and R.M. Nelms, Optimal hierarchical power sctaling for
cooperative microgrids, poster paper, ifProc. IEEE MASS 2014, Philadelphia PA,
Oct. 2014,

3. Yu Wang , Shiwen Mao, and R. M. Nelms, "A distributed online algorithmfor opti-
mal real-time energy distribution in smart grid,” in Proc. IEEE GLOBECOM 2013,
pp.1644-1649, Atlanta, GA, December 2013.
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