
Inequalities Involving Generalized Matrix Functions

by

Alexander Byaly

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial ful�llment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
1 August 2015

Keywords: Immanant, Generalized Matrix Function, Laplacian Matrix, Brauer Character,
Linear Representation, Modular Character

Copyright 2015 by Alexander Byaly

Approved by

Randall R. Holmes, Professor of Mathematics
Stewart L. Baldwin, Professor of Mathematics
Thomas H. Pate, Professor of Mathematics
Michel Smith, Professor of Mathematics

Abstract

Given a set F of functions that have their domain and codomain in common, if the

codomain is ordered we may partially order F by choosing a subset S of their domain and

saying that for f, g ∈ F , f ≤ g means that f(x) ≤ g(x) for every x ∈ S. We call such an

ordering a dominance ordering of F on S. This dissertation is concerned with dominance

orderings of (normalized) generalized matrix functions on the set of positive semide�nite

matrices and on select subsets. We consider variants of Shur's theorem and Lieb's conjecture

with di�erent subsets of the group algebra and a di�erent dominance order. In particular,

we show that neither holds for Brauer characters with the usual ordering. We suggest a

subset of the positive semide�nite matrices on which a modi�ed Schur's theorem may hold

for Brauer characters. It holds for Brauer characters of p-solvable groups and for many

speci�c Brauer characters of symmetric groups. We provide a computational approach for

generating dominance inequalities involving Brauer characters of symmetric groups.

ii

Acknowledgments

I would like to express my appreciation for my thesis adviser, Randall R. Holmes, whose

advice, criticism, patience, and encouragement were essential to the development of this

work. I am also indebted to my thesis committee, Kenneth Noe, Michel Smith, Stewart L.

Baldwin, and Thomas H. Pate, for keeping me honest.

I would like to thank Tin-Yau Tam, who often saved me when I got myself into trouble,

as well as Carolyn Donegan and Gwen Kirk, who helped me stay out of it. I would also like

to thank my colleagues, Daniel Brice, Steven X. Clontz, and Zachary Sarver, for helping me

get back to work and sometimes the opposite.

I am grateful to Gordon G. Johnson, who asks a lot of questions.

Finally, I would like to thank my parents for their constant support and for the frequency

with which they asked when I would be done.

iii

List of Symbols

CG The group algebra of G over C.

{{π}} The irreducible Brauer character of Sn corresponding to the partition π.

[[π]] The irreducible ordinary character of Sn corresponding to the partition π.

α′ The restriction of α ∈ CG to the p-regular elements of G.

dc The generalized matrix function corresponding to c ∈ CSn.

d̄c In the event that c(id) 6= 0, d̄c = 1
c(id)

dc.

G′ The set of p-regular elements of the group G.

IBr(G) The irreducible Brauer characters of G with respect to p.

Irr(G) The irreducible characters of the group G.

≤S f ≤S g i� g(id)f �S f(id)g.

�S f �S g i� df (A) ≤ dg(A) ∀A ∈ S .

Pn(p) The set of p-regular matrices in Cn×n.

Sn The symmetric group of degree n.

iv

Table of Contents

Abstract . ii

Acknowledgments . iii

List of Symbols . iv

1 Introduction . 1

2 Laplacian Matrices . 6

3 Brauer Characters . 11

4 Linear Programming . 29

4.1 Setting up the linear program . 31

4.2 The Decomposition Matrix . 40

4.3 Producing a solution . 45

4.4 Two complete examples . 51

4.5 Linear programming appendix . 54

5 Further Work . 59

A Generated Results . 63

Bibliography . 65

v

Chapter 1

Introduction

Let H be a set. Then CH is the set of functions from H to C. This forms a vector space

using pointwise addition and the usual scalar multiplication. There is a natural embedding

ιH : H → CH such that ιH(σ) is the indicator function on {σ}. When it is clear from context

we will use the same symbol to refer to σ ∈ H and the corresponding element ιH(σ) ∈ CH.

The image ιH(H) forms a basis for CH.

If G is a group then the group multiplication on ιG(G) uniquely extends to a bilinear

map ∗ : CG× CG→ CG. The pair (CG, ∗) is called the group algebra of G over C.

Given two functions f and g with codomain C, we call f and g equivalent if they agree

on the intersection of their domains and they are both zero outside the intersection.

Let f be a partial function from the symmetric group Sn to C (a function with codomain

C and with domain any subset of Sn).

De�ne the generalized matrix function df : Cn×n → C corresponding to f by

df (A) =
∑

σ∈dom f

f(σ)
n∏
i=1

ai,σ(i),

where A = (aij) ∈ Cn×n.

Note that if f and g are equivalent partial functions from Sn to C, then df = dg. Since

this dissertation is primarily about these generalized matrix functions, it will not be necessary

to distinguish between equivalent partial functions. From here on we will consider CG to

be a set of equivalence classes. Given an equivalence class f in CSn, df is the generalized

matrix function corresponding to any function in the class.

1

Let H be a subset of G. Then CH is a set of equivalence classes to which functions

from H to C belong. But every function f from H to C can be extended to an equivalent

function f̄ : G→ C by setting f̄(x) = 0 for x ∈ G\H. So CH is a subset of CG.

Given S ⊆ Cn×n, we partially order CSn by putting

f �S g ⇔ df (A) ≤ dg(A) ∀A ∈ S.

If f ∈ CSn and f(id) > 0, we de�ne d̄f (A) =
df (A)

f(id)
. We partially order CSn a second way by

putting

f ≤S g ⇔ g(id)df (A) ≤ f(id)dg(A) ∀A ∈ S,

which, when d̄f and d̄g are both de�ned, is equivalent to

f ≤S g ⇔ d̄f (A) ≤ d̄g(A) ∀A ∈ S.

We may think of ≤S as the analogue of �S on the projective space (CSn\{0})/ ≈, where

v ≈ w if and only if v and w are parallel.

Theorem 1.1. Let f, g ∈ CSn such that f(id) > 0 and g(id) > 0. Then

f ≤S g ⇔ f

f(id)
�S

g

g(id)

Proof. This follows by the linearity of f 7→ df .

When f ≤ g is written with the subscript omitted it will mean f ≤H g, where H is the

set of positive semide�nite matrices in Cn×n. Similarly, f � g means f �H g.

Remark 1.2. If f, g ∈ CSn and S ⊆ Cn×n, the statement f �S g is also an assertion

that df (A) and dg(A) are real for every A ∈ S. Furthermore, if S is nonempty the set

{x ∈ CSn : ∃y ∈ CSn(x �S y)} is not closed under scalar multplication unless we restrict

2

ourselves to real scalars. For α ∈ C we have dαf = αdf , so if α is not real then the sets

{A ∈ Cn×n : df (A) ∈ R} and {A ∈ Cn×n : dαf (A) ∈ R} are disjoint.

Compare this to the set {x ∈ CSn : ∃y ∈ CSn(x ≤S y)}, which is all of CSn.

Fix a group G. A matrix representation of G over C (or C-representation of G) is a

homomorphism from G into GLm(C) for some positive integer m. If ρ is a C-representation

of G, tr ◦ ρ is called a C-character of G. A C-character of a group is necessarily constant on

conjugacy classes, since if σ, τ, α ∈ G with σ = α−1τα then for every C-representation ρ of

G we have ρ(σ) = ρ(α)−1ρ(τ)ρ(α) and similar matrices have the same trace.

A C-character that cannot be expressed as the sum of two other C-characters is called

irreducible. The set of irreducible C-characters of G is abbreviated IrrH. If χ is a C-

character of G then χ(id) ≥ 0 [11, p. 8.5], so d̄χ is de�ned.

For a symmetric group Sn we can generate the set of irreducible characters using a

construction on Young tablueaux. If π is a partition of n, a Young diagram of shape π is a

collection of boxes arranged in rows such that the number of boxes in row i is πi. Given a

Young diagram with n boxes, assembling the integers {1, . . . , n} within them yields a Young

tableau.

Figure 1.1: A Young diagram of shape [4, 2, 2, 1].

3 9 5 7
1 8
6 2
4

Figure 1.2: A Young tableau of shape [4, 2, 2, 1].

Fix an integer n and let α be a Young tableau with size n. De�ne Rα = {σ ∈ Sn : ∀i ∈

{1, . . . , n}, σ(i) shares a row with i in α} and Cα = {σ ∈ Sn : ∀i ∈ {1, . . . , n}, σ(i) shares a

3

column with i in α}. The Young symmetrizer yα ∈ CSn is de�ned to be

yα =
∑
σ∈Rα
τ∈Cα

ε(τ)στ,

where ε is the sign function. The action of Sn on CSnyα forms a C-representation of Sn

and the corresponding character is irreducible. Furthermore, generating one such character

for each partition of n yields the complete set of irreducible characters of Sn [3, p. 52]. We

denote the irreducible character of Sn corresponding to the partition α by [[α]].

The character [[1, 1, . . . , 1]] is the sign function ε. The generalized matrix function dε is

the determinant. The character [[n]] is the constant function 1 : Sn → C given by (σ 7→ 1).

The corresponding function d1 is called the permanent. It is known that among the functions

f ∈ CSn satisfying f � 0, ε is a minimum.

Theorem 1.3 (Schur [6, thm 7.3, p. 214]). If G ≤ Sn and χ ∈ Irr(G) then χ ≥ ε.

The minimality of ε is an immediate consequence of two other results regarding gener-

alized matrix functions.

Theorem 1.4 ([6, ex 7.13, p. 219]). If G ≤ Sn and χ ∈ Irr(G) then χ � 0.

Theorem 1.5 (Watkins [6, thm 7.6, p. 215]). If f ∈ CSn and f � 0 then f ≥ ε.

Proof of Theorem 1.3. Let G be a subgroup of Sn and let χ ∈ Irr(G) ⊆ CSn. Then by

Theorem 1.4 we have χ � 0 and therefore by Watkins' theorem we know χ ≥ ε.

Since ε, which corresponds to the �smallest� partition of n, is also minimal in a di�erent

set, this suggests that the character corresponding to the �largest� partition of n may be

maximal in another way.

Conjecture 1.6 (Lieb's conjecture, "Permanental Dominance conjecture") [6, p. 224]). If

G ≤ Sn and χ ∈ Irr(G), then χ ≤ 1.

4

Conjecture 1.7 (Soules' conjecture [6, p. 224]). Let G ≤ Sn and χ ∈ Irr(G). Let ρ be a

C-representation of G such that ρ(σ) is unitary for every σ ∈ G and χ = tr ◦ ρ. Let δi(σ) be

the ith diagonal entry of ρ(σ). Then

δi ≤ 1.

5

Chapter 2

Laplacian Matrices

Let G be a simple oriented graph with vertices {v1, . . . , vn}. This means the edges of

G are directed, for every pair of vertices there is at most one edge connecting them, and

there are no edges connecting a vertex to itself. The edge set E(G) is a set of ordered pairs

such that (u, v) ∈ E(G) corresponds to the existence of an edge from u to v. The laplacian

matrix of G is the matrix L(G) = (aij) where

aij =


degree(i) if i = j,

−1 if vi and vj are adjacent,

0 otherwise.

An edge labeling of a G is a function with domain E(G). Let f be an edge labeling of G

using complex numbers. The generalized laplacian matrix L(G, f) is given by

L(G, f)ij =



∑
e∈E(G),vi∈e |f(e)| if i = j,

f(vi, vj) if (vi, vj) ∈ E(G),

f(vi, vj) if (vj, vi) ∈ E(G),

0 otherwise.

Note that if f is the constant −1 function, this is the same as the laplacian matrix L(G).

Theorem 2.1. L(G,f) is positive semide�nite.

6

Proof. For each k, l ∈ {1, . . . , n} with k < l, de�ne the matrix Mkl by

[Mkl]ij =



|L(G, f)kl| if i = j = k,

|L(G, f)kl| if i = j = l,

L(G, f)ij if i = k and j = l,

L(G, f)ij if i = l and j = k,

0 otherwise.

Then we have

L(G, f) =
∑

1≤k<l≤n

Mkl.

Each matrixMkl is a direct sum of a zero matrix with a 2×2 matrix that has a non-negative

diagonal and determinant zero. This means the matrices {Mkl} are positive semide�nite.

Since the sum of positive semide�nite matrices is positive semide�nite, this completes the

proof.

Corollary 2.2. L(G) is positive semide�nite.

A matrix A = (aij) ∈ Cn×n is called diagonally dominant if

∑
i 6=k

|aik| ≤ |akk|

for every k ∈ {1, . . . , n}.

Theorem 2.3. If A is a hermitian diagonally dominant matrix, then A = D+
∑

i∈I Li, where

D is a nonnegative diagonal matrix and the Li, i ∈ I, are generalized laplacians of oriented

graphs labeled with complex numbers.

Proof. Suppose A = (aij) ∈ Cn×n is hermitian and diagonally dominant. Put I = {(i, j) :

1 ≤ i < j ≤ n}.

7

Let k = (i, j) ∈ I. Set Gk to be the oriented graph with vertex set V (Gk) = {v1, . . . , vn}

and edge set E(Gk) = {(vi, vj)} (the set containing a single edge from vi to vj). Then the

function fk : (vi, vj) 7→ aij is a labeling of Gk.

The generalized laplacian matrix Lk = L(Gk, fk) is zero except possibly in four positions.

The (i, i) and (j, j) entries are both |aij|. The (i, j) entry is aij, and the (j, i) entry is aij = aji.

Thus the matrix

D = A−
∑
k∈I

Lk

is zero o� the diagonal. The ith diagonal entry is

dii = aii −
∑
k∈I

[Lk]ii

= aii −
∑

1≤j<i

[
L(j,i)

]
ii
−
∑
i<j≤n

[
L(i,j)

]
ii

= aii −
∑

1≤j<i

|aji| −
∑
i<j≤n

|aij|

= aii −
∑
j 6=i

|aji|

≥ 0.

Therefore D is a positive diagonal matrix and A = D +
∑

k∈I Lk.

Corollary 2.4. Hermitian diagonally dominant matrices are positive semide�nite.

Proof. A sum of positive semide�nite matrices is positive semide�nite.

We have identi�ed Sn with the subset of CSn consisting of the indicator functions of

the singleton subsets of Sn in the natural way. So in dσ(A), the σ is the function that sends

σ to 1 and every other element of Sn to 0 and dσ(A) =
∏n

i=1 aiσ(i). Given any c ∈ CSn, we

can then write

dc(A) =
∑
σ∈Sn

c(σ)
n∏
i=1

aiσ(i) =
∑
σ∈Sn

c(σ)dσ(A).

8

Lemma 2.5. Let A ∈ Cn×n be a positive semide�nite matrix such that dσ(A) ≥ 0 for every

σ ∈ Sn. Then if H ≤ Sn and χ ∈ Irr(H) we have per(A) ≥ d̄χ(A).

Proof. Let A ∈ Cn×n be positive semide�nite and assume that dσ(A) ≥ 0 for every σ ∈ Sn.

Let H ≤ Sn and let χ ∈ Irr(H). We know that for each σ ∈ H,
∣∣∣χ(σ)
χ(e)

∣∣∣ ≤ 1 because χ(σ) is a

sum of χ(e)-many roots of 1 [11, 8.5(2) and proof, p. 18], so |χ(σ)| cannot be greater than

χ(e).

We have

d̄χ(A) =
1

χ(e)

∑
σ∈H

χ(σ)dσ(A)

=
∑
σ∈H

χ(σ)

χ(e)
dσ(A)

≤

∣∣∣∣∣∑
σ∈H

χ(σ)

χ(e)
dσ(A)

∣∣∣∣∣
≤
∑
σ∈H

∣∣∣∣χ(σ)

χ(e)

∣∣∣∣ dσ(A)

≤
∑
σ∈H

dσ(A)

≤
∑
σ∈Sn

dσ(A)

= per(A).

Theorem 2.6. Let H ≤ Sn and χ ∈ Irr(H). Let B be the set of laplacian matrices of bipartite

graphs with n vertices. Then

χ ≤B 1.

Proof. We will show that every element of B satis�es the hypothesis of Lemma 2.5. Suppose

G is a bipartite graph with vertices {v1, . . . , vn} and put A = (aij) = L(G). Let σ ∈ Sn. We

denote by un�x(σ) the set of elements of {v1, . . . , vn} that σ does not leave constant (with

9

the action σ(vi) = vσ(i)).

Then

dσ(A) =
∏

i∈{1,...,n}

ai,σ(i) 6= 0 ⇔ ∀v ∈ unfix(σ), v is adjacent to σ(v).

Suppose dσ(A) 6= 0, and choose v ∈ unfix(σ). Let J be the orbit of v under 〈σ〉. Either the

elements of J form a cycle in G or J is a pair of adjacent vertices. Since G is bipartite, every

cycle of G has an even number of elements. Thus |J | is even. Let S be the set of orbits of

un�x(σ). Then we have

dσ(A) =
∏

i∈{1,...,n}

ai,σ(i)

=

 ∏
vi∈fix(σ)

ai,i

 ∏
vi∈unfix(σ)

ai,σ(i)

=

 ∏
vi∈fix(σ)

ai,i

∏
J∈S

∏
vi∈J

ai,σ(i)︸ ︷︷ ︸
(−1)|J|=1

.

Since the diagonal entries of L(G) are just the degrees of the corresponding vertices, the

product of the diagonal is positive. So dσ(A) > 0. This happens for every σ ∈ H for which

dσ(A) is nonzero. The conclusion follows from Lemma 2.5.

10

Chapter 3

Brauer Characters

Let O be the ring of algebraic integers in C and let p be a prime. The �eld F is

constructed by choosing a maximal ideal M of O containing p and setting F = O/M .

Denote by U the group of roots of unity of order relatively prime to p in O, and denote by

U ′ the group of roots of unity in F.

Theorem 3.1. For every z ∈ U ′, the order of z is relatively prime to p.

Proof. Let z ∈ U ′. Suppose the order of z is kp for some positive integer k. Then

zkp − 1 = 0

zkp − 1p = 0

(zk − 1)p = 0

zk − 1 = 0,

but kp is the minimal positive integer such that zkp = 1, so this is a contradiction.

Theorem 3.2. The quotient map π : O→ O/M , maps U isomorphically onto U ′.

Proof. First, observe that if z ∈ O is a zero of the polynomial xk − 1 then z + M is a zero

as well. Thus π(U) ⊆ U ′.

Next, we will show that π|U is injective. Suppose z ∈ U with order k > 1, and π(z) = 1.

For any integer n, π(zn) = π(z)n = 1, so 1− zn ∈M . Thus we have

k = k − 0 = k −

[∑
0≤i<k

zi

]
=

[∑
0≤i<k

(1− zi)

]
∈M.

11

Since k is relatively prime to p, 1 can be written as a linear combination of k and p

with integer coe�cients. Because both k and p are in M , 1 is in M as well, which is a

contradiction since M is a proper ideal. Therefore Ker(π|U) is trivial.

To see why π is surjective, let k be an integer relatively prime to p and set Rk (resp.

R′k) to be the group of zeros of xk−1 in O (resp. in O/M). Then π maps Rk injectively into

R′k, but since Rk has order k
(
Rk = {e 2πi

k : 0 ≤ i < k}
)
, and R′k has order no more than k

(R′k is a set of zeroes of a degree k polynomial), π(Rk) = R′k. However, U
′ =

⋃
gcd(p,k)=1

R′k (by

Theorem 3.1), so π(U) = U ′ and this completes the proof.

A p-regular member of a group G is an element of order relatively prime to p. We

denote by G′ the set of p-regular elements of G. Group elements that are not p-regular are

called p-singular. A matrix representation of G over a �eld F is a homomorphism from G

into GLm(F) for some m.

Let ρ : G→ GLm(F) be a matrix representation of G. If σ ∈ G′, then the eigenvalues of

ρ(σ) are all roots of unity (since ρ(σ)k = In for some k, every eigenvalue λ satis�es λk = 1).

Given ρ, de�ne the Brauer character φ corresponding to ρ by

φ : G′ → C,

φ(σ) =
m∑
i=1

ι(ui),

where {ui}mi=1 are the eigenvalues of ρ(σ) counting multiplicity and ι is the inverse of π|U .

A Brauer character that cannot be written as the sum of other Brauer characters is called

irreducible. The set of irreducible Brauer characters of G is denoted IBrG. Given the above

de�nition, it is natural to consider Brauer character analogues to Schur's theorem (1.3) and

the permanental dominance conjecture (1.6).

Conjecture 3.3. Let G ≤ Sn and let φ ∈ IBr(G). Then φ ≥ ε.

Conjecture 3.4. Let G ≤ Sn and let φ ∈ IBr(G). Then φ ≤ 1.

12

However, neither of these hold. We will show this using the group S3 and the prime 3.

(.) (..) (...)
[[3]] 1 1 1

[[2, 1]] 2 0 −1
[[13]] 1 −1 1

(.) (..)
φ1 1 1
φ2 1 −1

Table 3.1: Character tables of S3. The ordinary irreducible characters are on the left and
the irreducible Brauer characters (for p = 3) are on the right. Since characters are constant
on conjugacy classes, these tables may be used to evaluate the corresponding functions.
Elements of the symmetric group are conjugate when they have the same cycle structure, so
we use these structures to denote the classes.

Theorem 3.5. Conjecture 3.3 is false.

Proof. Let

A =


1 1 1

1 1 1

1 1 1

 .
Then A is positive semide�nite, but det(A) = 1 − 1 − 1 − 1 + 1 + 1 = 0 and d̄φ2(A) =

1− 1− 1− 1 + 0 + 0 = −2. Thus φ2 6≥ ε.

Theorem 3.6. Conjecture 3.4 is false.

Proof. Let G be the following graph.

1

2
3

Then the laplacian matrix L(G) is equal to


2 −1 −1

−1 2 −1

−1 −1 2

 .

13

According to Theorem 2.2, L(G) is positive semide�nite, but per(L(G)) = 8+2+2+2−1−1 =

12 and d̄φ1(L(G)) = 8 + 2 + 2 + 2 + 0 + 0 = 14. Thus φ1 6≤ 1.

Since Conjecture 3.3 and Conjecture 3.4 are false, it looks like a dominance relation on

the entire set of positive semide�nite matrices is too much to ask for. However some of these

inequalities may reappear if we restrict our attention to a subset.

Let p be a prime number. We de�ne a positive semide�nite matrix A ∈ Cn×n to be

p-regular if it satis�es
n∏
i=1

ai,σ(i) = 0

for every p-singular σ ∈ Sn. We denote the set of p-regular matrices in Cn×n by Pn(p). When

n and p are clear from context, we will elide them and write P instead. We �nd this set of

interest because if A is p-regular, then

dχ(A) = dχ′(A),

where χ′ is the restriction of χ to p-regular group elements. As a consequence of this we

have the following.

Theorem 3.7. Let p be a prime and let f, g ∈ CSn with f � g. Then

f ′ �Pn(p) g
′.

Proof. On the set Pn(p), the functions df and df ′ are equal.

The the statement that a matrix A is p-regular is a statement that �enough� of the

o�-diagonal entries of A are zero. If they are all zero or if there is a zero row or column the

property is trivially satis�ed. We observe that matrices of this nature are in fact p-regular

for every prime p.

14

Theorem 3.8. If p is a prime and A ∈ Cn×n is a diagonal matrix with nonnegative entries

then A ∈ Pn(p).

Proof. For any p-singular σ ∈ Sn, we have σ 6= id, so the product πni=1aiσ(i) contains an

o�-diagonal (zero) entry of A.

Theorem 3.9. If p is a prime, B ∈ C(n−1)×(n−1) is positive semide�nite, and P ∈ Cn×n is a

permutation matrix then A = P−1(B ⊕ 0)P ∈ Pn(p).

Proof. For σ ∈ Sn the product πni=1aiσ(i) has an entry from every row of A, one of which is

a zero row.

Addtionally, the set Pn(2) is somewhat degenerate. All 2-regular matrices are of one of

these two types.

Theorem 3.10. If A ∈ Pn(2) then either A is a diagonal matrix or A = P−1(B⊕ 0)P , where

B is positive semide�nite and P is a permutation matrix.

Proof. Suppose A ∈ Pn(2) is not a diagonal matrix. Then for some i 6= j there is an entry

aij of A that is nonzero, and since A is Hermetian, aji 6= 0 as well. Put σ = (ij) ∈ Sn. Since

σ is 2-singular, we have
n∏
i=1

ai,σ(i) = 0.

But this is a product of aij and aji and diagonal entries of A. Since we know aij and aji are

nonzero, some diagonal entry akk must be zero.

We claim that every entry on row k or column k is zero as well. Since A ≥ 0, for any

integer l ∈ 1, . . . , n we have that the principal minor allakk − aklalk ≥ 0, so

−|akl|2 = −aklalk = allakk − aklalk ≥ 0.

Thus there is a permutation matrix P such that A = P−1CP , where the last column and

last row of C are zero. We have C = C(n|n)⊕0, and C(n|n) is positive semide�nite because

it is a principal submatrix of C.

15

We will now turn our attention to an analogue of Schur's conjecture involving ≤P .

Conjecture 3.11. Let n be a positive integer and let p be a prime. If G ≤ Sn and φ ∈ IBr(G),

then φ ≥P ε.

We present some cases in which Conjecture 3.11 holds. In particular, we will see it holds

if p = 2 or if the group G is p-solvable. (The group G is called p-solvable if the nonabelian

composition factors of G have order relatively prime to p. In particular, this is true if the

order of G is relatively prime to p.) We will eventually show that it also holds for G = Sn

with n ≤ 6 and for several of the irreducible Brauer characters of larger symmetric groups.

Theorem 3.12 (Fong � Swan [1, thm 72.1]). Let G be a p-solvable group. Let φ ∈ IBr(G).

There exists an irreducible character χ of G such that χ′ = φ.

Theorem 3.13. Let G be a p-solvable group, and let φ ∈ IBr(G). Then there is a χ ∈ Irr(G)

such that dχ(A) = dφ(A) for all p-regular matrices A.

Proof. By the Fong � Swan theorem there exists a χ ∈ Irr(G) with χ′ = φ. If A is a p-regular

matrix, dχ(A) = dχ′(A) = dφ(A).

Corollary 3.14. If G is a p-solvable group and φ ∈ IBr(G) then φ ≥P ε.

Proof. Let G be a p-solvable group and let φ ∈ IBr(G). By Theorem 3.12, φ = χ′ for some

χ ∈ Irr(G). Then for A ∈ P we have d̄φ(A) = d̄χ′(A) = d̄χ(A) ≥ det(A), where the last step

is from Theorem 1.3.

So we see that for a p-solvable group G, the partial order (IBr(G),≤P) is order isomor-

phic to a subset of (Irr(G),≤).

Given a Hermetian A ∈ Cn×n, de�ne G(A) to be the simple graph with vertex set

{v1, v2, . . . , vn} and edge set {{vi, vj} : aij 6= 0}.

Theorem 3.15. Suppose A ∈ Cn×n and p ≥ 3 is a prime. The following are equivalent:

1. A is p-regular.

16

2. G(A) has no cycles of length divisible by p and A ≥ 0.

3. There is a simple graph G with vertex set V (G) = {v1, . . . , vn} that has no cycles of

length divisible by p and A = W ∗W for some (possibly non-square) complex matrix

W = [w1|w2| . . . |wn] with the vectors wi and wj orthogonal exactly when vi and vj are

not adjacent in G.

Proof. (1 ⇒ 2): (contrapositive) Suppose A is positive semide�nite and suppose G(A) has

a cycle c with length k divisible by p. Then c = (vf(1), vf(2), . . . , vf(k)) for some (injective)

function f : {1, . . . , k} → {1, . . . , n}. Let σ be the cycle (f(1), f(2), . . . , f(k)) in Sn. This is

a p-singular permutation, but the factors in the product

n∏
i=1

ai,σ(i) =

[
k∏
i=1

af(i),f(i+1 mod k)

] ∏
i 6∈im(f)

aii

are either diagonal entries of A or entries of A corresponding to edges in G(A). All of these

are nonzero, so the product is nonzero and A is not p-regular.

(2 ⇒ 3): Assume (2). Since A ≥ 0, there is a matrix W ∈ Cn×n such that A = W ∗W . Let

{w1, . . . , wn} be the columns of W , and let G = G(A).

(3⇒ 1): Assume (3). Let σ ∈ Sn be p-singular, and decompose σ into disjoint cycles. Since

the degree of σ is the least common multiple of the cycle lengths, and since p divides the

degree of σ, p must divide one of the cycle lengths. Let d be a component cycle with length

divisible by p. Now, the vertices in G indexed by the integers of d do not form a cycle.

Therefore there is an integer k such that vk is not adjacent to vd(k) = vσ(k). So wk ⊥ wσ(k).

This means that

ak,σ(k) =
m∑
i=1

[W ∗]kiWiσ(k) =
m∑
i=1

WikWiσ(k) = 〈wσ(k), wk〉 = 0,

so
n∏
i=1

ai,σ(i) = 0,

17

and A is a p-regular matrix.

Theorem 3.16. Let G be a simple graph with vertices v1, . . . , vn. Then there exists a basis

x1, . . . , xn of Cn such that E(G) = {{vi, vj} : xi 6⊥ xj, i 6= j}.

Proof. We prove this by well ordering. Suppose there exists a graph for which this theorem

is false, and the graph G is a counterexample with the number of vertices n minimal. Then G

cannot be the empty graph. Let H be the graph induced by removing the vertex vn from G.

There exists a basis X = {x1, . . . , xn−1} of Cn−1 such that E(H) = {{vi, vj} : xi 6⊥ xj, i 6= j}.

Put B = {v : {v, vn} ∈ E(G)} and A = X\B. We will produce a vector x ∈ Cn such that

X ∪ {x} is a basis for Cn, x ⊥ v for all v ∈ A, and x 6⊥ v for all v ∈ B.

Let m be the Lebesgue measure on A⊥. We know that X⊥ = (A ∪ B)⊥ is a one

dimensional subspace of A⊥, so 〈A ∪ B〉 ∩ A⊥ has codimension one as a subspace of A⊥.

Thus m(〈X〉 ∩ A⊥) = 0.

Let b ∈ B. Consider the dimension of b⊥ ∩ A⊥. Clearly it is no greater than dimA⊥,

and if they were equal we would have

b⊥ ∩ A⊥ = A⊥,

b⊥ ⊇ A⊥,

(b⊥)⊥ ⊆ (A⊥)⊥,

〈b〉 ⊆ 〈A〉.

However, 〈B〉 ∩ 〈A〉 = ∅, so this is not the case. Therefore dim(b⊥ ∩ A⊥) < dim(A⊥) and

m(b⊥ ∩ A⊥) = 0. This gives us that S =
(
〈X〉 ∪

⋃
b∈B b

⊥) ∩ A⊥ is a �nite union of measure

zero sets. It cannot be all of A⊥, so there is a vector x ∈ A⊥\S.

Since x ∈ A⊥ we know that x ⊥ v for every v ∈ A. Also x 6∈ S, which contains every

vector of A⊥ that is orthogonal to an element of B or is in the span of X. We have that

X ∪ {x} is a basis of Cn with the desired property.

18

Using Theorem 3.15 and Theorem 3.16, we may now describe a procedure for creating

p-regular matrices.

• Pick a graph G with n vertices and no cycles of length divisible by p.

• Pick vectors v1, . . . , vn ∈ Cn such that vi and vj are orthogonal exactly when i and j

are not adjacent in G.

• Set V = [v1|v2| . . . |vn] and A = V ∗V .

The matrix A is p-regular by Theorem 3.15.

Example for p = 3 and n = 4:

1

2

3

4

v1 =



i

2

0

0


, v2 =



3

0

2

0


, v3 =



0

1

0

1


, v4 =



0

0

2

3



A =



5 −3i 2 0

3i 13 0 4

2 0 2 3

0 4 3 13


If we specialize Conjecture 3.11 to the prime 2, we see that it holds in a trivial way.

Theorem 3.17. Let P = Pn(2) for some positive integer n and let f, g ∈ CSn. Then

f ≤P g.

Proof. By Theorem 3.10, Pn(2) is a set consisting of diagonal matrices and matrices with a

zero row and column.

19

For a diagonal matrix D,

df (D) =
∑
σ∈Sn

f(σ)
n∏
i=1

diσ(i) = f(id)
n∏
i=1

dii,

so we have

g(id)df (D) = g(id)f(id)
n∏
i=1

dii = f(id)dg(D).

For a matrix C with a zero row or column, df (C) = 0, so once again g(id)df (C) = f(id)dg(C).

Thus we have f ≤P g as desired.

Recall the role of Watkins' theorem (1.5) in the proof of Schur's theorem (1.3). We

suspect a similar approach may work to prove Conjecture 3.11, but both the hypothesis and

conclusion of Watkins' theorem are too strong for our needs. This leads us to the following

alternative.

Theorem 3.18. Let c ∈ CSn such that c �P 0. Then c ≥P ε.

We will return to prove this after some technical lemmas.

Theorem 3.19. If A ∈ Pn(p), x ∈ R, and A+ xEnn ≥ 0, then A+ xEnn ∈ Pn(p).

Proof. Let A ∈ Pn(p), x ∈ R and assume that A + xEnn ≥ 0. Then G(A) has no cycles of

length divisible by p by Theorem 3.15. Since G(A+xEnn) = G(A), we have that G(A+xEnn)

also has no cycles of length divisible by p. With A+ xEnn ≥ 0 it follows from Theorem 3.15

that A+ xEnn ∈ Pn(p).

Lemma 3.20. dc(A+ xEnn) = dc(A) + xdc(A(n|n)⊕ 1).

Proof. Let W = {σ ∈ Sn : σ(n) 6= n} and let W ′ = Sn\W . We have

dc(A+ xEnn) =
∑
σ∈Sn

c(σ)dσ(A+ xEnn)

=
∑
σ∈W

c(σ)dσ(A+ xEnn) +
∑
σ∈W ′

c(σ)dσ(A+ xEnn).

20

Now

∑
σ∈W

c(σ)dσ(A+ xEnn) =
∑
σ∈W

c(σ)dσ(A),

while

∑
σ∈W ′

c(σ)dσ(A+ xEnn) =
∑
σ∈W ′

c(σ)

(∏
i 6=n

aiσ(i)

)
(ann + x)

=

[∑
σ∈W ′

c(σ)

(∏
i 6=n

aiσ(i)

)
ann

]
+ x

∑
σ∈W ′

c(σ)

(∏
i 6=n

aiσ(i)

)

=

[∑
σ∈W ′

c(σ)dσ(A)

]
+ x

∑
σ∈W ′

c(σ)dσ(A(n|n)⊕ 1)

=

[∑
σ∈W ′

c(σ)dσ(A)

]
+ xdc(A(n|n)⊕ 1).

Therefore

dc(A+ xEnn) =

[∑
σ∈Sn

c(σ)dσ(A)

]
+ xdc(A(n|n)⊕ 1)

= dc(A) + xdc(A(n|n)⊕ 1).

Proof of Theorem 3.18. We want to show that dc(A) ≥ c(e) det(A) for every A ∈ P = Pn(p).

We proceed by induction on n. For n = 1, det is the identity function, so for A = [a] ∈ P ,

we have

dc(A) = c(e)a = c(e) det(A).

21

Now assume n > 1. Fix A ∈ P . If A is singular then dc(A) ≥ 0 = c(e) det(A) as desired.

Otherwise, put

f(x) = dc(A+ xEnn)− c(e) det(A+ xEnn)

= dc(A)− c(e) det(A) + x [dc(A(n|n)⊕ 1)− c(e) det(A(n|n)⊕ 1)] .

Now our goal is to prove that f(0) ≥ 0. Put r = − det(A)
det(A(n|n))

. Then det(A + rEnn) =

det(A)+r(det(A(n|n)⊕1) = 0, and A+rEnn is still positive semide�nite since the principal

minors that do not involve the nth row are unchanged. By Theorem 3.19, A+ rEnn ∈ P , so

f(r) = dc(A+ rEnn) ≥ 0. Since r ≤ 0, showing that the slope of f is nonnegative would be

su�cient to show f(0) is as well.

The slope is dc(A(n|n)⊕1)−c(e) det(A(n|n)⊕1). By identifying Sn−1 with the elements

of Sn that �x the last row and column of A we may de�ne c′ to be the restriction of c to

Sn−1. Then dc′(A(n|n)) − c′(e) det(A(n|n)) ≥ 0 by the induction hypothesis. However, the

left-hand side of this inequality is equal to the slope of f , completing the proof.

The decomposition matrix of the group G with respect to the prime p is the matrix

representation of the restriction map from span(Irr(G)) to span(IBr(G)) (with respect to the

S5, p = 3 {{5
}}

{{4
,1
}}

{{3
,2
}}

{{3
,1

2
}}

{{2
2
,1
}}

[[5]] 1 0 0 0 0
[[4, 1]] 0 1 0 0 0
[[3, 2]] 0 1 1 0 0

[[3, 12]] 0 0 0 1 0
[[22, 1]] 1 0 0 0 1
[[2, 13]] 0 0 0 0 1

[[15]] 0 0 1 0 0

Table 3.2: The decomposition matrix for S5 relative to the prime 3.

22

bases Irr(G) and IBr(G)). A rather large collection of decomposition matrices is contained

in the computer algebra system GAP [10].

Each row of the decomposition matrix tells us how to express the restriction of an

ordinary character as a sum of Brauer characters. More precisely, if D = (dχφ) is the

decompositiom matrix, then for each χ ∈ Irr(G) we have χ′ =
∑

φ∈IBr(G) dχφφ, where χ
′ is

the restriction of χ to p-regular elements of G [2, p. 267].

We call the partitions of n that do not contain p copies of the same integer p-regular. In

an approach similar to [3] we will use the decomposition matrix to assign p-regular partitions

as labels to the elements of IBr(Sn). Recall that there is a one-to-one correspondence between

the set of partitions α of n and the irreducible characters [[α]] ∈ Irr(Sn). The row of the

decomposition matrix corresponding to the irreducible character [[α]] is called row α.

Theorem 3.21 ([3, p. 282]). Arrange the rows of the decomposition matrix in lexicographic

order, and let α be a p-regular partition of n. Then there is a column of the decomposition

matrix whose �rst nonzero entry is on row α, and this entry is a 1. Additionally, given a

p-regular partition β, the entry on row β of this column is nonzero only if α majorizes β.

Theorem 3.21 gives us a way to assign a Brauer character to each p-regular partition α

of n. For every such partition we call the column corresponding to row α in Theorem 3.21

column α and denote the associated Brauer character by {{α}}. Since the number of p-regular

partitions of n is equal to | IBr(Sn)| [3, p. 285], this assigns a label to every irreducible Brauer

character of Sn.

Observe that the decomposition matrix in Table 3.2 is a row permutation of a matrix

of the form
 I

X

, where I is the identity matrix. This means that each irreducible Brauer

character is the image of an ordinary irreducible character under the restriction map.

Theorem 3.22. Let p = 3. If n ≤ 5 and φ is an irreducible Brauer character of Sn, then

φ ≥P ε.

23

S6, p = 3 {{6
}}

{{5
,1
}}

{{4
,2
}}

{{3
2
}}

{{4
,1

2
}}

{{3
,2
,1
}}

{{2
2
,1

2
}}

[[6]] 1 0 0 0 0 0 0
[[5, 1]] 1 1 0 0 0 0 0
[[4, 2]] 0 0 1 0 0 0 0
[[32]] 0 1 0 1 0 0 0

[[4, 12]] 0 1 0 0 1 0 0
[[3, 2, 1]] 1 1 0 1 1 1 0
[[22, 12]] 0 0 0 0 0 0 1

[[23]] 1 0 0 0 0 1 0
[[3, 13]] 0 0 0 0 1 1 0
[[2, 14]] 0 0 0 1 0 1 0

[[16]] 0 0 0 1 0 0 0

Table 3.3: The decomposition matrix for S6 relative to the prime 3.

Proof. By inspecting the decomposition matrices for Sn and the prime 3, we can see that all

of the Brauer characters are just restrictions of ordinary characters of Sn. For χ ∈ Irr(Sn)

and A ∈ P , we have

d̄χ′(A) = d̄χ(A) ≥ d̄ε(A),

where the inequality is from Theorem 1.3.

For S6 and the prime 3 there exist irreducible Brauer characters that are not restrictions

of ordinary irreducibles. By inspecting the decomposition matrix (Table 3.3) we may see

that they are {{5, 1}}, {{4, 12}}, and {{3, 2, 1}}.

However, {{3, 2, 1}} is a di�erence of restricted ordinary characters:

{{3, 2, 1}} = [[2, 14]]
′ − [[16]]

′
.

We will be able to use this fact to �push� inequalities of ordinary irreducible characters

through the decomposition map to generate an inequality involving {{3, 2, 1}}.

24

Theorem 3.23 (Pate's Theorem [6, p225]). Suppose π = [π1, π2, . . . , πt] and

ρ = [π1, π2, . . . , πs−1, πs − 1, πs+1, . . . , πt, 1]

are partitions of n. Then π ≥ ρ.

Corollary 3.24.

{{3, 2, 1}} ≥P6(3) ε.

Proof. From Pate's theorem, we know [[2, 14]] ≥ [[16]], so

[[2, 14]]

[[2, 14]](id)
� [[16]]

[[16]](id)
.

Using the hook formula (see Theorem 4.5 and explanation), we compute the degrees of the

characters to be [[2, 14]](id) = 5 and [[16]](id) = 1. We have

[[2, 14]]− 5[[16]] � 0,

[[2, 14]]
′ − 5[[16]]

′ �P 0,

{{3, 2, 1}} = [[2, 14]]
′ − [[16]]

′ �P [[2, 14]]
′ − 5[[16]]

′ �P 0.

Since {{3, 2, 1}} is nonnegative on p-regular matrices, the conclusion follows from Theorem

3.18.

There are two other Brauer characters of S6 with respect to the prime 3 that are not

restrictions of ordinary irreducible characters. We can prove a similar inequality for them

using the same strategy. The application to {{4, 12}} is pretty straightforward, but {{5, 1}}

will be more involved.

Corollary 3.25.

{{4, 12}} ≥P ε.

25

[[16]]1

[[2, 14]]5

[[3, 13]]10 [[22, 12]]9

[[4, 12]]10[[3, 2, 1]]16 [[23]]5

[[5, 1]]5 [[4, 2]]9 [[32]]5

[[6]]1

Figure 3.1: Pate's theorem on S6. The subscripts are the character degrees.

Proof. Using Table 3.3, we can see that {{4, 12}} = [[3, 13]]
′
+ [[16]]

′ − [[2, 14]]
′
. Pate's theorem

gives us [[3, 13]] ≥ [[2, 14]], which implies [[3, 13]] � 2[[2, 14]], and hence [[3, 13]]
′ − 2[[2, 14]]

′ �P 0.

Using this, we can split {{4, 12}} into a sum of three parts, each of which is nonnegative on

matrices in P .

{{4, 12}} =
1

2
[[3, 13]]

′
+ [[16]]

′
+

1

2

(
[[3, 13]]

′ − 2[[2, 14]]
′
)
.

Again, by Theorem 3.18, {{4, 12}} ≥P ε.

This approach so far can be summarized as follows:

1. Assemble a pool of inequalities of ordinary characters.

2. Find the corresponding inequalities of Brauer characters.

3. Find a way to compose those inequalities to prove the desired Brauer character φ

satis�es φ �P 0.

4. Conclude from Theorem 3.18 that φ ≥P ε.

The group S6 has 11 ordinary irreducible characters, and Figure 3.1 shows the partial order

revealed by Pate's theorem. For each of the 12 edges we have a ≥-inequality of irreducible

characters and a corresponding �-inequality. This, via the decomposition map, yields an

inequality of Brauer characters.

26

≥ � �P
[[6]] ≥ [[5, 1]] [[6]] � 1

5
[[5, 1]] {{6}} �P 1

5
[{{6}}+ {{5, 1}}]

[[5, 1]] ≥ [[4, 12]] 1
5
[[5, 1]] � 1

10
[[4, 12]] 1

5
[{{6}}+ {{5, 1}}] �P 1

10
[{{5, 1}}+ {{4, 12}}]

[[4, 2]] ≥ [[3, 2, 1]] 1
9
[[4, 2]] � 1

16
[[3, 2, 1]] 1

9
{{4, 2}} �P 1

16
[{{6}}+ {{5, 1}}+ {{32}}+ {{4, 12}}+ {{3, 2, 1}}]

[[4, 2]] ≥ [[4, 12]] 1
9
[[4, 2]] � 1

10
[[4, 12]] 1

9
{{4, 2}} �P 1

10
[{{5, 1}}+ {{4, 12}}]

[[32]] ≥ [[3, 2, 1]] 1
5
[[32]] � 1

16
[[3, 2, 1]] (1) 1

5
[{{5, 1}}+ {{32}}] �P 1

16
[{{6}}+ {{5, 1}}+ {{32}}+ {{4, 12}}+ {{3, 2, 1}}]

[[4, 12]] ≥ [[3, 13]] 1
10

[[4, 12]] � 1
10

[[3, 13]] 1
10

[{{5, 1}}+ {{4, 12}}] �P 1
10

[{{4, 12}}+ {{3, 2, 1}}]
[[3, 2, 1]] ≥ [[22, 12]] 1

16
[[3, 2, 1]] � 1

9
[[22, 12]] (2) 1

16
[{{6}}+ {{5, 1}}+ {{32}}+ {{4, 12}}+ {{3, 2, 1}}] �P 1

9
{{22, 12}}

[[3, 2, 1]] ≥ [[3, 13]] 1
16

[[3, 2, 1]] � 1
10

[[3, 13]] 1
16

[{{6}}+ {{5, 1}}+ {{32}}+ {{4, 12}}+ {{3, 2, 1}}] �P 1
10

[{{4, 12}}+ {{3, 2, 1}}]
[[22, 12]] ≥ [[2, 14]] 1

9
[[22, 12]] � 1

5
[[2, 14]] (3) 1

9
{{22, 12}} �P 1

5
[{{32}}+ {{3, 2, 1}}]

[[23]] ≥ [[22, 12]] 1
5
[[23]] � 1

9
[[22, 12]] 1

5
[{{6}}+ {{3, 2, 1}}] �P 1

9
{{22, 12}}

[[3, 13]] ≥ [[2, 14]] 1
10

[[3, 13]] � 1
5
[[2, 14]] 1

10
[{{4, 12}}+ {{3, 2, 1}}] �P 1

5
[{{32}}+ {{3, 2, 1}}]

[[2, 14]] ≥ [[16]] 1
5
[[2, 14]] � [[16]] (4) 1

5
[{{32}}+ {{3, 2, 1}}] �P {{32}}

Table 3.4: Pate's theorem and the decomposition map.

In addition to the inequalities in Table 3.4, we have a set of 11 similar inequalities

generated by Schur's theorem. For example, consider [[3, 2, 1]] ∈ Irr(S6). We have

[[3, 2, 1]] � 0,

{{6}}+ {{5, 1}}+ {{32}}+{{4, 12}}+ {{3, 2, 1}} �P 0. (5)

After some exploration we eventually discover that a linear combination of the inequalities

(1), (2), (3), (4), and (5) (with coe�cients 5, 1, 1, 1, and 1
4
respectively) yields the inequality

{{5, 1}} �P 0 (and thus {{5, 1}} ≥P ε). Since the corresponding inequalities of ordinary

characters are shorter, we may use our knowledge of these coe�cients to construct a less

cluttered proof by postponing the application of the decomposition map.

Corollary 3.26.

{{5, 1}} ≥P ε

27

Proof. For each of (1), (2), (3), and (4) we multiply the corresponding inequalities in the

middle column of Table 3.4 by 5, 1, 1, and 1, respectively. We have

[[32]]− 5

16
[[3, 2, 1]] � 0,

1

16
[[3, 2, 1]]− 1

9
[[22, 12]] � 0,

1

9
[[22, 12]]− 1

5
[[2, 14]] � 0,

1

5
[[2, 14]]− [[16]] � 0,

and adding these inequalities up yields

[[32]]− [[16]]− 1

4
[[3, 2, 1]] � 0.

Thus,

{{5, 1}} = [[32]]
′ − [[16]]

′ �P
1

4
[[3, 2, 1]]′ �P 0,

where the equality is from Table 3.3. We then have {{5, 1}} ≥P ε by Theorem 3.18.

However, this proof has a noticable shortcoming. In order to produce it we had to

somehow discover the �right coe�cients� with which to combine the available inequalities

and reach the desired conclusion, but no process for obtaining them has been provided.

Unsatis�ed with our dependence on sudden �ashes of inspiration, we will proceed to discuss

a reproducible technique by which a set of �right coe�cients� can be determined.

28

Chapter 4

Linear Programming

4 −1 0 0 0 0 0

2 1 0 0 −1 0 0

−9 −9 16 −9 −9 −9 0

0 −9 10 0 −9 0 0

−5 11 0 11 −5 −5 0

0 1 0 0 0 −1 0

9 9 0 9 9 9 −16

5 5 0 5 −3 −3 0

0 0 0 −9 0 −9 5

9 0 0 0 0 9 −5

0 0 0 −2 1 −1 0

0 0 0 −4 0 1 0

Table 4.1

The proof of Corollary 3.26 was perhaps unsatisfying in that

we relied on providence to give us a suitable collection of coef-

�cients. We would prefer to have a reproducible approach for

�nding them. The problem of discovering the right coe�cients

can be phrased as the following geometry problem. Given a col-

lection of vectors Q = {qi | i = 1, . . . , k} from a real vector space

V , the convex cone of Q is the set of linear combinations of vec-

tors in Q using non-negative coe�cients. We want to be able to

determine whether some vector v ∈ V is in the convex cone of Q.

If we �x an ordered basis B of V , determining cone membership is equivalent to �nding out

if the equation [
[q1]B

∣∣∣[q2]B

∣∣∣ . . . ∣∣∣[qk]B]x = [v]B

has a solution x with xi ≥ 0 for i ∈ {1, . . . , k}.

Let us set up the problem of �nding the coe�cients used in Corollary 3.26 in this

way. Let V be the real span of IBr(S6). We �x B = ({{6}}, {{5, 1}}, {{4, 2}}, {{32}}, {{4, 12}},

{{3, 2, 1}}, {{22, 12}}) as an ordered basis for V . In the �rst row of Table 3.4 we have the

inequality {{6}} �P 1
5

[{{6}}+ {{5, 1}}], which is equivalent to 4{{6}} − {{5, 1}} �P 0. We write

the left hand side as 〈4,−1, 0, 0, 0, 0, 0〉. We generate such vectors for every row to produce

Table 4.1. Also for χ ∈ Irr(S6), the coe�cients of χ′ ∈ V in the basis B are given in the

corresponding row of the decomposition matrix. So the cone we are interested in is the one

generated by the rows of Table 4.1 and the rows of the decomposition matrix. To determine

29

that {{5, 1}} is inside the cone we need to �nd a nonnegative vector x satisfying the following.

1 1 0 0 0 1 0 1 0 0 0 4 2 −9 0 −5 0 9 5 0 9 0 0

0 1 0 1 1 1 0 0 0 0 0 −1 1 −9 −9 11 1 9 5 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 16 10 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 1 1 0 0 −9 0 11 0 9 5 −9 0 −2 −4

0 0 0 0 1 1 0 0 1 0 0 0 −1 −9 −9 −5 0 9 −3 0 0 1 0

0 0 0 0 0 1 0 1 1 1 0 0 0 −9 0 −5 −1 9 −3 −9 9 −1 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −16 0 5 −5 0 0



x =



0

1

0

0

0

0

0


A problem of this form is called a linear program, and there is a wealth of computer

software capable of solving these. Given a candidate solution x we can verify it by matrix

multiplication, allowing us to trust results from software. Even if the generation technique

is defective, we are in the clear as long as we verify the results properly. This does raise

another issue, though. Even if our software is unable to �nd a solution to the linear program,

this does not guarantee that none exists.

Remark 4.1. At this point one might wonder why we de�ned V to be the real span of IBr(S6)

rather than the complex span. Recall from Remark 1.2 that if f ∈ CSn, A ∈ S ⊆ Cn×n, and

df (A) is complex, then f is not �S-related to any other element of CSn.

Theorem 4.2 (Farkas Lemma[7]). Let A be an m × n matrix and let b ∈ Rm. Then the

equation Ax = b has no nonnegative solution if and only if there exists a vector y ∈ Rm such

that yTA has all nonnegative entries and yT b < 0.

Farkas' Lemma is a classical result of linear programming that guarantees that for

problems of a particular form, there exists either a solution or a �Farkas certi�cate�. This is

an exclusive or, where the existence of one coincides with the nonexistence of the other. Thus

with a candidate vector y in hand, performing the multiplication constitutes a proof that

the linear program has no solution. Attacking this programmatically is now really tempting.

We can both verify the solvability of solvable linear programs and verify the unsolvability

of unsolvable linear programs by performing matrix multiplication, so it is not necessary for

us to assert the soundness of the particular software which generated the vector we used.

30

However, care is still required in setting up the correct linear program and properly checking

the results.

4.1 Setting up the linear program

We present an implementation of this technique. Given a positive integer n, a prime p,

and a Brauer character φ ∈ IBr(Sn), we construct a linear program L such that if L has a

solution then φ �Pn(p) 0. This section is a literate Haskell program that can be built using

the command ghc ConstructLP.lhs.

module ConstructLP where

import Appendix

We will be indexing our space of functions using the corresponding partitions of n. We

begin by de�ning an element of the data type Partition n p to be the word �Partition�

followed by a list of Ints.

data Partition n p = Partition [Int] deriving (Eq, Show, Read)

list :: Partition n p -> [Int]

list (Partition xs) = xs

Remark 4.3. The type Partition is called a phantom type because it has type variables

that do not appear in the right hand side of the de�nition. A value of type Partition

A B is in a sense identical to a value of type Partition C D. Each of them is the word

Partition followed by a list of integers. However we have speci�ed that these are di�erent

types, so an attempt to use one in place of the other is a type error and will not compile.

We will use the type n on the left hand side to specify which natural number this is a

partition of. Additionally, we need to order our basis so that we may write elements of our

vector space as tuples. We will be using a di�erent ordering depending on the prime chosen,

so the type p on the left hand side will specify the prime in use. We may extract the n and

p associated with a partition through the following functions.

31

getN :: a n p -> n

getN = undefined

getP :: a n p -> p

getP = undefined

Remark 4.4. Since we are representing n and p using types rather than values, it is not

necessary for our implementations of getN and getP to produce a value of the associated

type. Suppose we have a value t of type Partition N6 N3. We may infer that the type

of getN t is N6. The function value :: N6 -> Integer ignores the value of its

argument and returns 6, so value (getN x) returns 6. The implementation of this is

in the Appendix module.

We want to choose an ordering so that the decomposition matrix, once we have it, is as

similar as possible to the tables of decomposition matrices in [3]. To implement our ordering

we make Partition n p an instance of the Ord type class by de�ning compare ::

Partition n p -> Partition n p -> Ordering. The function compare is ex-

pected to return one of LT, GT, or EQ, depending on whether the �rst argument is less than,

greater than, or equal to the second one. Our ordering will make p-regular partitions least.

instance (Natural n, Natural p) => Ord (Partition n p) where

compare t t’ = case (isRegular t, isRegular t’) of

(True, False) -> LT

(False, True) -> GT

Next, shorter partitions will be less than longer ones.

_ -> case compare ((length . list) t) ((length . list) t’) of

LT -> LT

GT -> GT

And lastly, if everything else is equal and α majorizes β, then α ≤ β.

EQ -> case compare (list t) (list t’) of

GT -> LT −− I f t ≥ t′ in the l e x i c o g r a p h i c order on l i s t s

32

LT -> GT −− then t major i zes t ' .

EQ -> EQ

Given a type n representing a natural number n, we will enumerate the partitions of n

recursively, using partitions of 1 as the base case.

partitions :: (Natural n) => n -> [Partition n p]

partitions n = (fmap Partition . partitions’ . value) n

−−The func t i on value produces the i n t e g e r a s s o c i a t e d wi th the type− l e v e l

−−na tura l number n .

where

partitions’ :: Int -> [[Int]]

partitions’ 1 = [[1]]

Let Pk denote the set of partitions of k. For k ≥ 2, de�ne fk : Pk → Pk−1 to be the function

that decrements the last integer in the partition by 1. Note that fk is not injective. In

particular, if α = (a1, . . . , ar−1, ar) and β = (a1, . . . , ar−1, ar − 1, 1) are partitions of k, then

fk(α) = fk(β). These are the only collisions, and we may generate Pk by computing the

preimages of Pk−1 under f .

partitions’ n = concatMap preimages (partitions’ (n-1))

One of the preimages of (a1, . . . , ar) under fk will always be of the form (a1, . . . , ar, 1) .

preimages part = [part ++ [1]] ++ bump part

There is only a second preimage if incrementing the last integer yields a partition. This is

true in two cases. Either we have a single integer partition or the last integer is less than

the one immediately before it.

bump part = case (reverse part) of

y:[] -> [[y+1]] −− a one i n t e g e r p a r t i t i o n

y1:y2:rest -> if y1 < y2 −− the l a s t one i s l e s s

then [reverse ((y1+1):y2:rest)]

else []

33

We will denote the real span of Irr(Sn) by CSn. Sorting the partitions of n using information

in their type yields our chosen ordered basis for this set.

irrBasis :: (Natural n, Natural p) => n -> p -> [Partition n p]

irrBasis n p = sort (partitions n)

Similarly, CS ′n will denote the real span of IBr(Sn). Recall that IBr(Sn) is in one-to-one

correspondence with the set of p-regular partitions of n.

ibrBasis :: (Natural n, Natural p) => n -> p -> [Partition n p]

ibrBasis n p = filter isRegular (irrBasis n p)

The p-regular partitions are the partitions that do not have the same integer appearing p or

more times.

isRegular :: (Natural p) => Partition n p -> Bool

isRegular t = (all (<p) . map length . group . list) t

where p = (value . getP) t

To represent vectors in CSn or CS ′n we use a list of rational numbers. The type s in Vec

s is used to distinguish which vector space a particular vector belongs to. Vectors in CSn

will have type VecCSn n p, a synonym for Vec (CSn n p). Similarly vectors in CS ′n

will have type VecCSn’ n p.

type Scalar = Ratio Integer

newtype Vec s = Vec [Scalar] deriving (Show, Eq)

getSpace :: vec s -> s

getSpace = undefined

data CSn n p = CSn

data CSn’ n p = CSn’

type VecCSn n p = Vec (CSn n p)

type VecCSn’ n p = Vec (CSn’ n p)

We produce the vectors associated with basis elements by replacing every element of the

basis with one or zero, as needed.

embed :: (Natural n, Natural p) => Partition n p -> VecCSn n p

34

embed t = Vec (fmap (\x -> if x == t then 1 else 0) basis)

where

basis = irrBasis (getN t) (getP t)

embed’ :: (Natural n, Natural p) => Partition n p -> VecCSn’ n p

embed’ t = if isRegular t

then Vec (fmap (\x -> if x == t then 1 else 0) basis)

else undefined

where

basis = ibrBasis (getN t) (getP t)

We are able to determine the dimension of a vector by using the type. This is done by

computing the associated basis and counting the elements.

class HasDimension a where −−A type c l a s s a l l ow s us to d e f i n e a func t i on

dimension :: a -> Int −−with a d i f f e r e n t body depending on the type .

instance (Natural n, Natural p) => HasDimension (CSn n p) where

dimension x = length (irrBasis (getN x) (getP x))

instance (Natural n, Natural p) => HasDimension (CSn’ n p) where

dimension x = length (ibrBasis (getN x) (getP x))

instance HasDimension s => HasDimension (Vec s) where

dimension = dimension . getSpace

In our implementation of vector arithmetic we de�ne the operations only on vectors in the

same space. This constraint is encoded in the type Vec s -> Vec s -> Vec s. It is not

possible to add vectors from di�erent spaces without �rst performing an explicit conversion.

(^+^) :: Vec s -> Vec s -> Vec s −−Addit ion .

(Vec xs) ^+^ (Vec ys) = Vec (zipWith (+) xs ys)

(^-^) :: Vec s -> Vec s -> Vec s −− Sub t rac t i on .

v ^-^ u = v ^+^ (negateV u)

negateV :: Vec s -> Vec s −− Negation .

negateV (Vec xs) = Vec (fmap negate xs)

35

(*^) :: Scalar -> Vec s -> Vec s −−Sca lar mu l t i p l i c a t i o n .

c *^ (Vec xs) = Vec (fmap (*c) xs)

(^*^) :: Vec s -> Vec s -> Scalar −−Sca lar product .

(Vec xs) ^*^ (Vec ys) = sum (zipWith (*) xs ys)

We are ready to use Schur's theorem and Pate's theorem to generate our known inequalities

and associated vectors of CSn. By Schur's theorem (thm 1.3), for every irreducible character

χ we have χ � 0. The set Irr(Sn) form our basis, so to list the associated vectors we just

embed the basis into CSn.

thmSchur :: (Natural n, Natural p) => n -> p -> [VecCSn n p]

thmSchur n p = fmap embed basis

where

basis = irrBasis n p

Now for Pate's theorem (thm 3.23). If we have a partition of n of the form α = (a1, . . . , ai, . . . , ak)

and β = (a1, . . . , ai − 1, . . . , ak, 1) is also a partition of n then α ≥ β. Thus we have

β(id)α − α(id)β � 0. To generate these vectors we �rst determine the character degrees

using the hook length formula, then for each partition of n we enumerate all the ways we

can generate another partition by �moving a piece to the end.�

Theorem 4.5 (Hook length formula [3, p. 56]). The degree of the irreducible character corre-

sponding to the partition p of n is given by

n!∏
(i,j)∈λp hij

where λp is the set of cell coordinates for the Young diagram of p and hij is the �hook length�

of the cell.

The hook length of a cell (i, j) is the size of the set

{(x, y)|(x = i ∧ y ≥ j) ∨ (x ≥ i ∧ y = j)}.

36

For example, consider the partition [4, 22, 1]. The cell (2, 1) has hook length 4 in the corre-

sponding Young diagram.

× ×
×
×

7 5 2 1
4 2
3 1
1

Computing the hook length of (2, 1). The hook length of every cell.

Using the forumula, we have that the degree of [[4, 22, 1]] is 9!
7×5×2×1×4×2×3×1×1

= 216. We

may translate the hook formula directly.

xs @@ n = xs !! (n-1) −−The l i s t index ing opera tor !! uses i n d i c e s t ha t

−−s t a r t wi th 0 . Our opera tor @@ w i l l s t a r t a t 1 .

degree :: (Natural n, Natural p) => Partition n p -> Scalar

degree t = fromIntegral (fac n ‘div‘ product hooklens)

where

n = (value . getN) t

fac x = (product . map toInteger) [1..x]

Next we produce a list of all of the cell coordinates in the tableau. The height of our Young

tableau is the length of the corresponding partition and the width is the greatest (�rst)

element of this partition. To produce a list of all cells in the Young tableau we simply

enumerate {(i, j)|1 ≤ i ≤ h, 1 ≤ j ≤ w} and �lter out all the coordinates that refer to

positions outside our tableau.

t’ = list t

h = length t’

w = head t’

coords = filter legal [(i,j) | i <- [1..h], j <- [1..w]]

Denote the current partition of interest by t = (t1, . . . , th). To determine whether a pair

of coordinates (i, j) refers to a cell in the corresponding Young tableau, we check that the

column index j is less than ti.

37

legal :: (Int,Int) -> Bool

legal (i,j) = j <= (t’ @@ i)

We compute hij numerically as follows. The number of cells to the right of (i, j) is given by

ti − j and the number of cells below is |{tx|x > i, tx ≥ j}|.

hooklens = fmap hooklen coords

hooklen :: (Int, Int) -> Integer

hooklen pos = toInteger (1 + rightOf pos + below pos)

rightOf (i,j) = (t’ @@ i) - j

below (i,j) = length [t’ @@ x | x <- [(i+1)..h], (t’ @@ x) >= j]

We enumerate the inequalities produced by Pate's theorem by, for each partition t of n,

producing the inequalities where t appears as the greater term.

thmPate :: (Natural n, Natural p) => n -> p -> [VecCSn n p]

thmPate n p = concatMap thmPate1 basis

where

basis = irrBasis n p

To list the partitions less than t = (t1, . . . , tr), we loop through every i ∈ {1, . . . , r} and

consider whether si = (t1, . . . , ti − 1, . . . , tr, 1) is also a partition of n. If so, Pate's theorem

applies. We then know [[s]]
[[s]](id)

≥ [[ti]]
[[ti]](id)

so we generate the vector [[si]](id)[[t]]− [[t]](id)[[s]].

thmPate1 :: (Natural n, Natural p) => Partition n p -> [VecCSn n p]

thmPate1 t = fmap mkVector [decrement i | i <- [1..r], verify i]

where

mkVector s = (degree s *^ embed t) ^-^ (degree t *^ embed s)

t’ = list t

r = length t’

We need to verify that si = (t1, . . . , ti − 1, . . . , tr, 1) is a partition. This is true when either

ti is the last term of t with ti > 1 or ti occurs before the last term with ti > ti+i.

verify :: Int -> Bool

verify i | i == r &&

(t’ @@ i) > 1 = True

38

| i < r &&

(t’ @@ i) > (t’ @@ (i+1)) = True

| otherwise = False

We construct the partition si by gluing the following sequences end to end.

decrement :: Int -> Partition n p

decrement i = Partition (

(take (i-1) t’) ++ [(t’ @@ i) - 1] ++ (drop i t’) ++ [1])

{− (t1, . . . , ti−1, ti − 1, ti+1, . . . , tr, 1) −}

Remark 4.6. This does not pick up every inequality between irreducible characters generated

by Pate's theorem. For example consider the partitions of 3 : a = (3), b = (2, 1), and

c = (13). Direct application of Pate's theorem gives us a ≥ b and b ≥ c, but a ≥ c comes

from transitivity. We are not generating the inequalities that come from transitivity, but this

is not a problem because the vector a− c is in the convex cone of the vectors {b− a, c− b}.

Applying transitivity to extend our list of inequalities cannot create a vector outside the

convex cone of the list we started with.

We have encoded all of the inequalities we will use to generate our convex cone as vectors in

CSn, so now we just need to generate their images in CS ′n under the decomposition map. For

this we use a type representing a linear map between two vector spaces. The type encodes the

domain and codomain, but the internal representation is just a matrix of rational numbers.

data LinearMap d r = LinearMap [[Scalar]] deriving Show

domain :: LinearMap d r -> d

domain = undefined

range :: LinearMap d r -> r

range = undefined

matrix :: LinearMap d r -> [[Scalar]]

matrix (LinearMap m) = m

The decomposition matrix is then a value of this type.

type DecompositionMatrix n p = LinearMap (CSn n p) (CSn’ n p)

39

We implement the action of a linear map f through matrix multiplication.

apply :: (HasDimension d, HasDimension r) => LinearMap d r -> Vec d -> Vec r

apply f (Vec v) = Vec [entry i | i <- [1..h]]

where

mat = matrix f

entry i = sum [((mat @@ i) @@ j) * (v @@ j)| j <- [1..w]]

−−I f A ∈ Ch×w , v ∈ Cw , and Av = w ∈ Ch , then wi =
∑w

j=1 aijvj .

w = (dimension . domain) f

h = (dimension . range) f

The full set of vectors used to generate our convex cone is then the decomposition matrix

applied to the results of thmSchur and thmPate.

cone :: (Natural n, Natural p) => DecompositionMatrix n p -> [VecCSn’ n p]

cone d = fmap (apply d) (thmSchur n p ++ thmPate n p)

where

n = (getN . domain) d

p = (getP . domain) d

Our linear program will be of the form Ax = b, where the columns of A are the vectors

returned by cone and b is the vector representing the current Brauer character of interest.

There is only one remaining obstacle to setting this up. Where are we going to get the

decomposition matrix?

4.2 The Decomposition Matrix

In this section we will produce the decomposition matrix for a given symmetric group

and prime by extracting it from the computer algebra system GAP [10]. The GAP system

does not compute the decomposition matrices directly. Rather, it provides an interface to

the Modular Atlas project [15] which aims to produce Brauer character tables for all groups

in the ATLAS of �nite groups [5].

40

As with the previous section, this is a literate Haskell program. It may be built using

the command ghc Decomposition.lhs.

module Decomposition where

import ConstructLP

import Appendix

We begin by de�ning our interface to GAP. It is not necessary for us to capture all of

GAP's functionality. It is su�cient to be able to execute a single command and extract the

result. The following data type represents the GAP functions and values we will be using.

data Gap = T String −−A l i t e r a l va lue wi th no arguments .

| F1 String Gap −−A func t i on wi th a s i n g l e argument .

| F2 String (Gap,Gap) −−A two argument func t i on in p r e f i x no ta t i on .

| I2 String Gap Gap −−An i n f i x two−argument func t i on .

deriving (Show)

We then describe how to convert our internal representation of a GAP command into a string

that GAP is able to use.

render :: Gap -> String

render (T s) = s

render (F1 f x) = concat [f,"(",render x,")"]

render (F2 f (x1,x2)) = concat [f,"(",render x1," , ",render x2,")"]

render (I2 f x1 x2) = concat ["(",render x1,") ",f," (",render x2,")"]

The relationship between our internal GAP instructions and the ones we export is as follows.

> render (T "val")

val

> render (F1 "foo" (T "val"))

foo(val)

> render (F2 "foo" (T "val1") (T "val2"))

foo(val1 , val2)

> render (I2 "foo" (T "val1") (T "val2"))

41

(val1) foo (val2)

Invoking GAP on the command line via gap -q runs a GAP session that accepts standard

input and prints the results to standard output.

run_gap :: Gap -> IO String

run_gap cmd = readProcess "gap" ["-q"] (render cmd ++ ";\nquit;")

With this our interface to GAP is complete. The manual for the GAP character table library

provides instructions for computing decomposition matrices [12], which we implement here.

sym :: (Natural n) => n -> Gap

sym n = T ("\"S" ++ (show . value) n ++ "\"")

−− > render (sym 3)

−− "S3"

(%) :: Gap -> Gap -> Gap

(%) = I2 "mod"

−− > render (T "x" % T "y")

−− x mod y

gapmodtbl :: (Natural n, Natural p) => n -> p -> Gap

gapmodtbl n p = F1 "CharacterTable" (sym n) % (T . show) p

−− > render (gapmodtbl n6 n3)

−− CharacterTable("S6") mod 3

gap_decomposition_matrix :: (Natural n, Natural p) =>

n -> p -> IO (DecompositionMatrix n p)

gap_decomposition_matrix n p = do

gapout <- run_gap $ F1 "DecompositionMatrix" (gapmodtbl n p)

The output produced when asking GAP to display a decomposition matrix is identical to

Haskell's list syntax.

gap> DecompositionMatrix(CharacterTable("M11") mod 2);

[[1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 1, 0, 0, 0],

42

[0, 1, 0, 0, 0], [1, 1, 0, 0, 0], [0, 0, 1, 0, 0],

[0, 0, 0, 1, 0], [0, 0, 0, 0, 1], [1, 0, 0, 0, 1],

[1, 1, 0, 0, 1]]

Due to the similarity we can parse the result into a matrix of integers by using the existing

read function.

let mat = (fmap.fmap) fromIntegral $ read gapout

The rows and columns of this matrix are naturally not in the same order as our basis. To

put them in order we need to ascertain which row corresponds to which partition of n, the

details of which we defer for now.

labels <- gap_decomposition_row_labels n p

With this information we may then order the rows by comparing their partitions.

let sortRows rows =

(fmap snd . sortOn fst . (zip labels)) rows

However, we cannot order the columns in a similar way. Recall that we assign labels to the

columns of the decomposition matrix according to theorem 3.21, which speci�es that the

rows are in lexicographic order. We could brie�y reorder the rows to deduce the column

names, but this is not required since the order they are in admits the same approach.

Theorem 4.7. Arrange the rows of the decomposition matrix so that

• rows corresponding to p-regular partitions come �rst,

• and for every pair of p-regular partitions α, β such that α majorizes β, row α precedes

row β.

Then for every p-regular partition π, the �rst nonzero entry of column π occurs on row π.

Proof. Fix the column π, and consider a partition α such that row α is above row π. Then α

is p-regular and π does not majorize α. By theorem 3.21, the entry on row α is zero. From

the same theorem, we know that the entry on row π is 1, completing the proof.

43

Since our current ordering meets the hypothesis of this theorem, each column shares a

label with the row on which its �rst nonzero entry occurs. The ordering we have imposed

on the row labels is the same for the column labels, so once the columns are sorted the

decomposition matrix will be lower triangular. There is only one column order with this

property. If we skip deducing the column labels and just rearrange the columns to create a

lower triangular matrix, the result will have the columns in the correct order. We do this by

sorting based on the index of the �rst nonzero entry.

let sortCols = transpose . sortOn (elemIndex 1) . transpose

Then all we need to do is wrap the matrix in LinearMap to make the types match.

let mat’ = (transpose . sortCols . sortRows) mat

return (LinearMap mat’)

The row labels are contained in the character parameters of the ordinary character table.

They are partitions represented as descending lists of integers.

gap_decomposition_row_labels :: (Natural n, Natural p) =>

n -> p -> IO [Partition n p]

gap_decomposition_row_labels n p = do

let tbl = F1 "OrdinaryCharacterTable" (gapmodtbl n p)

second g = F2 "List" (g, T "x -> x[2]")

gapout <- (run_gap . second . F1 "CharacterParameters") tbl

Similarly to before, we exploit the fact that lists are represented the same way in GAP and

in Haskell. The read command can already parse them without extra work on our part.

let ps = map Partition . read $ gapout

return ps

44

4.3 Producing a solution

As before, this section is a literate Haskell program. It may be built by ghc Solver.lhs.

Here we assemble all of the previous work and run it through an external linear program

solver to answer the question of cone membership.

module Solver where

import Decomposition

import ConstructLP

import Appendix

We assume the solver is in the lp directory, and that it accepts the description of a linear

program in MPS �xed column format. Fixed MPS format[14] was originally used for linear

programming on mainframe systems in the 1960s and has since become an industry standard.

We further assume that the solver produces a Haskell expression representing a value of type

Either [Scalar] [Scalar] and sends it to standard output. The Right values will

be used for solutions and the Left values will be used for Farkas certi�cates.

solver = "./lp/solver.sh"

The search function combines all of our previous work. Given a positive integers n, k and a

prime p, we generate a cone of inequalities of Brauer characters of Sn with respect to p. Then

we set up the linear program for determining whether the kth irreducible Brauer character

(in the order we used for our basis) is a member of the cone.

search :: (Natural n, Natural p) =>

n -> p -> Int -> IO (Either [Scalar] [Scalar])

search n p k = do

d <- gap_decomposition_matrix n p

let cols = cone d

let target = (embed’ . (@@k)) (ibrBasis n p)

let mps = mps_lp cols target −−The d e t a i l s o f e xp r e s s i n g a l i n e a r program

−−in MPS format w i l l come l a t e r .

45

Next, we record the linear program (in case we want to inspect it later) and dispatch our

linear program solver.

let mpsfile = concat ["./lp/",show n,"/",show p,"/",show k,".mps"]

writeFile mpsfile mps

result <- readProcess solver [] mps

The result should be either a solution or a Farkas certi�cate, and in either case we check

that it has the correct algebraic property.

let resultFile = concat ["./lp/",show n,"/",show p,"/",show k,".out"]

let solution = read result :: Either [Scalar] [Scalar]

let integrity = verify cols target solution

if integrity then writeFile resultFile result

else error "Something has gone terribly wrong."

return solution

The MPS �xed format requires us to name the rows and columns of our linear system. We

will just name them after the order in which they appear.

rowname :: Int -> String

rowname i = ("R" ++ show i)

colname :: Int -> String

colname i = ("X" ++ show i)

A data �le in MPS �xed format represents a deck of computer input cards, with each row

corresponding to a card. Each row is divided into 6 �elds, determined by the character

position. The positions of the �rst characters in each �eld are 1, 5, 15, 25, 40, and 50

respectively. The �le is divided into sections delimited by rows with the section indicator in

�eld 1. The meaning of the data in other �elds is determined by the section the row is in.

mps_lp :: (Natural n, Natural p) => [VecCSn’ n p] -> VecCSn’ n p -> String

mps_lp columns rhs = concat

[mps_section_name columns rhs

, mps_section_rows columns rhs

, mps_section_columns columns rhs

46

, mps_section_rhs columns rhs

, "ENDATA\n"]

In order to correctly �t our data into the MPS �xed format we will be using these utility

functions to append whitespace to either the left or right side.

padRight :: Int -> String -> String

padRight x = take x . (++spaces)

where

spaces = ’ ’:spaces

padLeft :: Int -> String -> String

padLeft x s = (reverse . take x . (++spaces) . reverse) s

where

spaces = ’ ’:spaces

The (optional) name section consists of just the indicator NAME in �eld 1 and the name of

the problem in �eld 3.

mps_section_name :: (Natural n, Natural p) =>

[VecCSn’ n p] -> VecCSn’ n p -> String

mps_section_name _ v = concat

[padRight 14 "NAME"

, "S", (show . value . getN . getSpace) v

, "P", (show . value . getP . getSpace) v

, "\n"]

In the rows section �eld 1 is used to indicate the type of inequality used (we always use E

for equality constraints, but G and L may be used to indicate ≥ and ≤ respectively), and

�eld 2 indicates the name of the corresponding row.

mps_section_rows :: (Natural n, Natural p) =>

[VecCSn’ n p] -> VecCSn’ n p -> String

mps_section_rows _ (Vec coeffs) = "ROWS\n" ++ concatMap f [1..d]

where

f x = " E " ++ rowname x ++ "\n"

d = length coeffs

47

In the COLUMNS section, the �elds have the following meanings.

Field 1 Blank.

Field 2 Column name.

Field 3 Row name.

Field 4 The value of the coe�cient in the position speci�ed by �eld 2 and �eld 3.

Field 5 (Optional) row name.

Field 6 (Optional) value of the coe�cient in the position speci�ed by �eld 2 and �eld 5.

For example, in the linear system


1 0 2

2 1 0

1 3 0

x =


5

0

2

 , (4.1)

if we give the rows and columns the names R1, R2, R3 and C1, C2, C3 respectively the

COLUMNS section will be as follows.

COLUMNS

C1 R1 1 R2 2

C1 R3 1

C2 R2 1 R3 3

C3 R1 2

We omit the entries corresponding to zeroes since every coe�cient we do not specify will be

assumed to be zero.

Here we create the ordered pairs necessary to �ll the columns section, but the work of

organizing the data into the correct format is in the implementation of the column function.

mps_section_columns :: (Natural n, Natural p) =>

[VecCSn’ n p] -> VecCSn’ n p -> String

48

mps_section_columns cols v =

"COLUMNS\n" ++ concat (zipWith format [1..] cols)

where

format col (Vec coeffs) =

column (colname col)

[(rowname row, c) | (row,c) <- zip [1..] coeffs, c /= 0]

The column function expects a column name and a list of ordered pairs of the form (row

name, coe�cient), and it generates the corresponding rows of the MPS record.

column :: String -> [(String,Scalar)] -> String

column col [] = ""

column col [(r,c)] = concat

[" ", padRight 8 col

, " ", padRight 8 r

, " ", (padLeft 12 . show . floor) c

, "\n"]

column col ((r1,c1):(r2,c2):rest) = concat

[" ", padRight 8 col

, " ", padRight 8 r1

, " ", (padLeft 12 . show . floor) c1

, " ", padRight 8 r2

, " ", (padLeft 12 . show . floor) c2

, "\n"] ++ column col rest

The RHS section speci�es the coe�cients of the right hand side. The format is the same as

the COLUMNS section. The RHS section corresponding to equation (4.1) is the following.

RHS

rhs R1 5 R3 2

To populate it we rely on the previously de�ned column function.

mps_section_rhs :: [VecCSn’ n p] -> VecCSn’ n p -> String

mps_section_rhs _ (Vec rhs) = "RHS\n" ++

column "rhs" [(rowname row, c) | (row,c) <- zip [1..] rhs, c /= 0]

49

Once we have retrieved an answer from the linear program solver, we make sure it has the

desired algebraic property. We expect a Right value to be a nonnegative solution to the

provided linear system.

verify :: [VecCSn’ n p] -> VecCSn’ n p -> Either [Scalar] [Scalar] -> Bool

verify cols b (Right x) =

(all (>= 0) x) && (sumv (zipWith (*^) x cols) == b)

where

sumv = foldr (^+^) zero

zero = Vec (repeat 0)

We expect a Left value to be a Farkas certi�cate. Geometrically, a Farkas certi�cate is the

normal vector to a hyperplane separating the vector on the right hand side of the equation

de�ning the linear program from the convex cone of the columns of the matrix. To verify

that a given vector y is a Farkas certi�cate, we check that the scalar product of y with the

right hand side b is nonzero and that for every column c we have sig(〈c, y〉) 6= sig(〈b, y〉),

where

sig(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

This ensures that every column vector either lies on the hyperplane orthogonal to y or is on

a di�erent side of it from b.

verify cols b (Left y’) = (s /= 0) &&

(not . (any sameSide)) cols

where

y = Vec y’

s = b ^*^ y

sameSide c = signum (c ^*^ y) == s

50

4.4 Two complete examples

In this section we show the application of this technique from start to �nish. First we

consider the problem of proving Corollary 3.26. We want to show that the function {{5, 1}}

is in the convex cone of a set of vectors S ⊆ CSn satisfying dv(A) ≥ 0 for all v ∈ S and

all A ∈ P . We populate S by applying the decomposition map to every vector of Irr(S6)

and every inequality yielded by Pate's theorem (3.23). The vectors of S then make up the

columns of the matrix on the left hand side of Equation 4.2.



1 1 0 0 0 1 0 1 0 0 0 4 2 −9 0 −5 0 9 5 0 9 0 0

0 1 0 1 1 1 0 0 0 0 0 −1 1 −9 −9 11 1 9 5 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 16 10 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 1 1 0 0 −9 0 11 0 9 5 −9 0 −2 −4

0 0 0 0 1 1 0 0 1 0 0 0 −1 −9 −9 −5 0 9 −3 0 0 1 0

0 0 0 0 0 1 0 1 1 1 0 0 0 −9 0 −5 −1 9 −3 −9 9 −1 1

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 −16 0 5 −5 0 0


x =



0

1

0

0

0

0

0


(4.2)

The vector {{5, 1}}, when written in terms of our chosen basis is 〈0, 1, 0, 0, 0, 0, 0〉. Thus

the problem of writing {{5, 1}} as a nonnegative linear combination of vectors in S is the

linear program 4.2. Written out in MPS format, this linear program looks like so.

NAME S6P3

ROWS

E R1

E R2

E R3

E R4

E R5

E R6

E R7

COLUMNS

X1 R1 1

51

X2 R1 1 R2 1

X3 R3 1

X4 R2 1 R4 1

X5 R2 1 R5 1

X6 R1 1 R2 1

X6 R4 1 R5 1

X6 R6 1

X7 R7 1

X8 R1 1 R6 1

X9 R5 1 R6 1

X10 R4 1 R6 1

X11 R4 1

X12 R1 4 R2 -1

X13 R1 10 R2 5

X13 R5 -5

X14 R1 -9 R2 -9

X14 R3 16 R4 -9

X14 R5 -9 R6 -9

X15 R2 -9 R3 10

X15 R5 -9

X16 R1 -5 R2 11

X16 R4 11 R5 -5

X16 R6 -5

X17 R2 10 R6 -10

X18 R1 9 R2 9

X18 R4 9 R5 9

X18 R6 9 R7 -16

52

X19 R1 10 R2 10

X19 R4 10 R5 -6

X19 R6 -6

X20 R4 -9 R6 -9

X20 R7 5

X21 R1 9 R6 9

X21 R7 -5

X22 R4 -10 R5 5

X22 R6 -5

X23 R4 -4 R6 1

RHS

rhs R2 1

ENDATA

Running this through a linear program solver produced the following solution vector.

[0,0,0,0,0,1/4,0,0,0,0,0,0,1/135,0,0,7/108,0,0,0,0,0,1/45,5/27]

Remark 4.8. This solution is di�erent from the vector used to prove corollary 3.26. We do

not generally expect the solutions to be unique, but the reason for the di�erence in this case

is that we used vectors with integer coe�cients to generate our convex cone.

From the existence of this vector we may conclude that {{5, 1}} �P6(3) 0, which in turn implies

that {{5, 1}} ≥P ε.

Next we consider the group S8 and the prime p = 5. We will apply this technique to

the Brauer character {{42}}, which is the �fth element of IBr(S8) by the ordering we de�ned

in Section 4.1. The linear program for determining whether {{42}} is in the convex cone

generated by the Schur vectors and the Pate vectors is the following.

53



1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 70 0

0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 21 0 0 70 64 0

0 0 1 0 64 21 0

0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70 64 0 0 0 0 0 0 0 0 70 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70 0 0 0 −70 0 0 0 0 −42 0 0 0 64 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −7 −20 −20 0 −28 0 35 90 35 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −20 0 0 −28 0 0 90 35 0 0 70 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −28 0 −14 0 0 0 56 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70 90 0 0 0 0 0 0 0 0 28 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70 56 0 0 0 0 −70 0 −14 0 0 0 20 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −21 0 −64 0 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −64 0 0 −70 0 −56 0 0 0 64 35 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −70 0 0 0 0 −42 0 −90 0 8 0 −70 0 0 20 21 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −56 0 −42 0 0 0 0 0 28 64 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 28 0 0 0 0 0 0 −7

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −35 0 −90 0 0 0 0 21 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −90 0 −56 0 −70 0 −35 20 −43 0 0 7 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 −70 0 −14 0 0 0 20 −20 −21 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 −64 0 −28 7 0 0



x =



0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0



After attempting to solve this linear program we produced the following Farkas certi�-

cate.



329751752343552000000

0

299774320312320000000

419684048437248000000

−119909728124928000000

0

959277824999424000000

1049210121093120000000

104921012109312000000

209842024218624000000

0

1348984441405440000000

959277824999424000000

1049210121093120000000

0

0

0

0

0



From this we know that {{42}} is not in the convex cone. This does not, however,

mean that there exists a p-regular matrix A such that d{{42}}(A) < 0, in other words, that

{{42}} �P 0. It just means that the inequalities due to Schur's theorem and Pate's theorem

are not su�cient to guarantee the inequality {{42}} �P 0. (If it should turn out that this

inequality does not hold, this would provide a counterexample to Conjecture 3.11, since if

{{42}} �P 0 there exists a matrix A ∈ P such that d{{42}}(A) < 0 ≤ det(A).)

4.5 Linear programming appendix

In this section we consolidate the external dependencies of our program and include the

de�nitions that are tangentially related to our previous work.

54

module Appendix

(module Appendix

, module Data.List

, module Text.Read

, module Data.Ratio

, readProcess

) where

The source code and documentation for our external dependencies are available on Hackage

[13].

import Data.Ratio (Ratio, numerator, denominator)

import Data.List (sort, group, elemIndex, transpose, sortBy)

import Data.Ord (comparing)

import System.Process (readProcess, waitForProcess, runCommand)

import Text.Read (readMaybe)

The sortOn function sorts a list such that the images of the elements under the provided

function f are in ascending order.

sortOn :: (Ord b) => (a -> b) -> [a] -> [a]

sortOn f = fmap fst

. sortBy (comparing snd)

. fmap (\x -> (x, f x))

The types One and S de�ne our type level natural numbers. For example, the number three

is represented as S (S One).

data One = One

data S a = S a

In order to convert a type level natural to an integer we use the following Natural type

class. A type class is needed here rather than an ordinary function because the domain is

not represented by a single type. One and S One are di�erent types.

class (Show a) => Natural a where

value :: (Num b) => a -> b

55

We de�ne the Natural instances recursively, starting with One.

instance Show One where

show _ = "1"

instance Natural One where

value _ = 1

instance (Natural n) => Show (S n) where

show = show . value

instance (Natural n) => Natural (S n) where

value = (+1) . value . (undefined :: S n -> n)

The instance of Natural for S n work as follows. The value of a variable x of type S n

is de�ned to be 1 plus the value of a variable y of type n. Since it is possible to compute

the value of y without knowing anything about it other than its type, the undefined does

not get evaluated.

Next, we include abbreviations of some low order type level naturals for convenience.

type N1 = One

type N2 = S N1

type N3 = S N2

type N4 = S N3

type N5 = S N4

type N6 = S N5

type N7 = S N6

type N8 = S N7

type N9 = S N8

type N10 = S N9

type N11 = S N10

type N12 = S N11

type N13 = S N12

type N14 = S N13

type N15 = S N14

type N16 = S N15

type N17 = S N16

56

type N18 = S N17

type N19 = S N18

type N20 = S N19

type N21 = S N20

type N22 = S N21

type N23 = S N22

type N24 = S N23

We include the following values to be used as arguments to functions that expect type level

naturals. These are used only to disambiguate type information and never get evaluated.

They may be converted to integer values purely by inspecting their types, as shown in the

de�nition of value above.

n1 = undefined :: N1

n2 = undefined :: N2

n3 = undefined :: N3

n4 = undefined :: N4

n5 = undefined :: N5

n6 = undefined :: N6

n7 = undefined :: N7

n8 = undefined :: N8

n9 = undefined :: N9

n10 = undefined :: N10

n11 = undefined :: N11

n12 = undefined :: N12

n13 = undefined :: N13

n14 = undefined :: N14

n15 = undefined :: N15

n16 = undefined :: N16

n17 = undefined :: N17

n18 = undefined :: N18

n19 = undefined :: N19

n20 = undefined :: N20

57

n21 = undefined :: N21

n22 = undefined :: N22

n23 = undefined :: N23

n24 = undefined :: N24

58

Chapter 5

Further Work

We have used Pate's theorem (3.23) to generate most of the dominance inequalities we

used on CSn. However, the continued work of T. H. Pate includes many more results of this

nature, a few of which we will mention here. Pushing these through the decomposition map

would surely yield more relations between Brauer characters.

Theorem 5.1 (Pate [8]). If α is a partition of n of the form (p, qw, 2s, 1t) where p, q, s, t, and

w are non-negative integers and 0 ≤ w ≤ 2, then [[α]] ≤ [[n]].

These next results are about the ordering << on partitions of n. Given partitions α, β

of n we say α << β if for every partition ω of m such that the sequence concatenations (ω, α)

and (ω, β) are partitions of m + n we have [[(ω, α)]] ≤ [[(ω, β)]]. We extend the de�nition to

include the case where ω is the empty sequence, so α << β implies [[α]] ≤ [[β]].

Theorem 5.2 (Pate [9, thm. 14]). Suppose α = (α1, . . . , αs) is a partition of n. For 0 ≤ i < s,

de�ne βi =
(
α1, α2, . . . , αi,

∑s
j=i+1 αj

)
. If βi is a partition of n for every such i, we have

α = βs−1 << · · · << β1 << β0 = (n).

Theorem 5.3 (Pate [8, thm. 7]). If n, p and k are positive integers such that p ≥ n+ k, then

(p, nk+1) << (n+ p, nk).

Consider the partition α = (4, 22). By Theorem 5.2 we have (4, 22) << (42) << (8), thus

[[4, 22]] ≤ [[42]] ≤ [[8]]. These inequalities were not included as basis vectors for the convex

cone we generated, so including them may pick up vectors we previously missed.

59

The approach used in this dissertation is unlikely to scale well to larger groups. Un-

fortunately the worst case time complexity of the simplex method, typically used to �nd a

solution to a linear program, is not very good. There exist examples ([4]) of linear programs

where the time complexity is exponential in the size of the problem. While the linear pro-

grams we constructed do not necessarily achieve the worst case performance � in fact it is

clear that in many cases they did not � no care was taken to prevent this from happening.

We describe a technique by which we may generate convex cones such that testing vectors for

membership has better worst case performance. However the trade o� is that since these are

subsets of the convex cones we previously considered we may miss vectors that we previously

might have picked up.

Let V1 and V2 be vector spaces and put V = V1⊕V2. We observe that if C is the convex

cone of the set X ⊆ U and X = X1 ∪X2, with X1 ⊆ V1 and X2 ⊆ V2, then v is an element

of C if and only if there exist vectors v1 ∈ V1 and v2 ∈ V2 such that v = v1 + v2 and v1 and

v2 are in the convex cones of X1 and X2 respectively. Thus the computational complexity

of determining whether v ∈ C is bounded by the complexity of determining whether the

projections of v onto V1 and V2 are in their respective cones.

Since the worst case complexity is exponential in the dimension of V this is a signi�cant

improvement. Suppose the dimensions of V1 and V2 are both 10, so that the dimension of V

is 20. We see that 220 is far greater than 210 + 210.

We can use the block structure ([6, p. 244]) of the decomposition matrix to obtain a

cone with a decomposition as just described, namely, the cone corresponding to only those

inequalities that involve irreducible characters in the same block. Although this cone is not

as large as the one obtained by using the full list of inequalities, it provides a natural way of

getting results in some situations where the computations are prohibitively time consuming

otherwise (cf. Appendix A).

Consider the example of S7 with the prime 3. The decomposition matrix, when written

in block form, is the following.

60

{{7
}}

{{5
,2
}}

{{4
,3
}}

{{4
,2
,1
}}

{{3
,2
,1

2
}}

{{6
,1
}}

{{3
,2

2
}}

{{5
,1

2
}}

{{3
2
,1
}}

[[7]] 1 0 0 0 0

[[5, 2]] 1 1 0 0 0

[[4, 3]] 0 1 1 0 0

[[4, 2, 1]] 1 1 1 1 0

[[3, 2, 12]] 1 0 1 1 1

[[4, 13]] 0 0 0 1 0

[[23, 1]] 1 0 0 0 1

[[22, 13]] 0 0 1 0 1

[[17]] 0 0 1 0 0

[[6, 1]] 1 0

[[3, 22]] 1 1

[[3, 14]] 0 1

[[5, 12]] 1 0

[[32, 1]] 1 1

[[2, 15]] 0 1

We organize the irreducible characters into their respective blocks and remove all inter-block

relationships. For an example of the resulting partial order see Figure 5.2.

61

[[7]]

[[6, 1]]

[[5, 12]]

[[4, 13]]

[[3, 14]]

[[2, 15]]

[[17]]

[[5, 2]]

[[4, 2, 1]]

[[4, 3]]

[[32, 1]] [[3, 22]]

[[3, 2, 12]] [[23, 1]]

[[22, 13]]

Figure 5.1: Pate's theorem on S7

Block 1

[[7]]

[[5, 2]] [[4, 3]]

[[4, 2, 1]]

[[3, 2, 12]]

[[4, 13]]

[[23, 1]]

[[22, 13]]

[[17]]

Block 2

[[6, 1]] [[3, 22]]

[[3, 14]]

Block 3

[[5, 12]][[32, 1]]

[[2, 15]]

Figure 5.2: Pate's theorem on S7, split into blocks.

62

Appendix A

Generated Results

The following are the results we have programmatically checked. For most of the cases

given a prime p and a character φ ∈ IBr(Sn), we found that φ �Pn(p) 0. Because of this we

will save space by writing out the characters for which the problem proved infeasible. We

point out once again that the fact that a Brauer character produces an infeasible problem

does not say that it is a counterexample to Conjecture 3.11. Rather, it just says that our

method, using Schur's Theorem and Pate's Theorem alone, cannot be used to check the

conjecture for that Brauer character.

Group Prime Infeasible

S6 3 none

S6 5 none

S7 3 none

S7 5 none

S7 7 {{6, 1}}

S8 3 none

S8 5 {{42}}, {{5, 2, 1}}

S8 7 {{6, 2}}

S9 3 {{8, 1}}

S9 5 {{6, 3}}, {{5, 3, 1}}, {{5, 2, 12}}

S9 7 {{7, 2}}, {{6, 3}}

S10 3 {{8, 2}}

S10 5 {{9, 1}}, {{6, 4}}, {{52}}, {{8, 12}}, {{6, 3, 1}}, {{5, 4, 1}}, {{5, 3, 12}}, {{4, 3, 2, 1}}

S10 7 {{7, 3}}, {{6, 4}}, {{7, 2, 1}}

63

From S11 onward the problem grew too large for us to approach this way. The worst

case time complexity for solving a linear program is exponential in both the number of equa-

tions and the number of variables. The system we generated for S11 and the prime 3 has

174 variables and 27 equations, which appears to be past the limit for the software we used.

However, we have some partial results for S11 and S12 produced by considering a subset of

our cone generated by inequalities only between characters that share a block (see Chapter 5).

Group Prime Infeasible

S11 3 {{9, 2}}, {{8, 3}}

S11 5 {{9, 2}}, {{7, 4}}, {{6, 5}}, {{8, 2, 1}}, {{6, 4, 1}}, {{6, 3, 2}}, {{6, 3, 12}},

{{5, 4, 12}}, {{4, 32, 1}}, {{5, 3, 13}}

S11 7 {{8, 3}}, {{7, 4}}, {{6, 5}}, {{7, 3, 1}}, {{52, 1}}, {{7, 2, 12}}, {{6, 22, 1}}

S11 11 {{10, 1}}, {{9, 12}}, {{8, 13}}

S12 3 No results.

S12 5 {{10, 2}}, {{9, 3}}, {{7, 5}}, {{62}}, {{8, 3, 1}}, {{8, 22}}, {{7, 4, 1}}, {{6, 5, 1}},

{{6, 4, 2}}, {{7, 22, 1}}, {{6, 4, 12}}, {{6, 3, 2, 1}}, {{52, 12}}, {{5, 32, 1}},

{{6, 3, 13}}, {{5, 4, 13}}, {{4, 32, 12}}, {{5, 22, 13}}

S12 7 {{8, 4}}, {{7, 5}}, {{62}}, {{8, 3, 1}}, {{7, 4, 1}}, {{6, 4, 2}}, {{52, 2}}, {{7, 3, 12}},

{{6, 3, 2, 1}}, {{52, 12}}, {{7, 2, 13}}, {{6, 22, 12}}, {{5, 23, 1}}

S12 11 {{10, 2}}, {{9, 2, 1}}, {{8, 2, 12}}

64

Bibliography

[1] Larry L Dornho�. Group Representation Theory: Modular representation theory. Vol. 2.

M. Dekker, 1972.

[2] I Martin Isaacs. �Lifting Brauer characters of p-solvable groups�. In: Paci�c Journal

of Mathematics 53.1 (1974), pp. 171�188.

[3] Gordon James and Adalbert Kerber. The representation theory of the symmetric group,

volume 16 of Encyclopedia of Mathematics and its Applications. Addison-Wesley Pub-

lishing Co., Reading, Mass, 1981.

[4] Katta G Murty. �Linear programming�. In: (1983).

[5] John Horton Conway. Atlas of �nite groups: maximal subgroups and ordinary charac-

ters for simple groups. Oxford University Press, 1985.

[6] Russell Merris. Multilinear algebra. Vol. 8. CRC Press, 1997.

[7] Vilmos Komornik. �A Simple Proof of Farkas' Lemma�. English. In: The American

Mathematical Monthly 105.10 (1998), pp. 949�950. issn: 00029890. url: http://

www.jstor.org/stable/2589288.

[8] Thomas H Pate. �Tensor inequalities, ξ-functions and inequalities involving immanants�.

In: Linear algebra and its applications 295.1 (1999), pp. 31�59.

[9] Thomas H Pate. �Tensor inequalities, ξ-functions and inequalities involving immanants�.

In: Linear algebra and its applications 295.1 (1999), pp. 31�59.

[10] GAP � Groups, Algorithms, and Programming, Version 4.7.7. The GAP Group. 2015.

url: http://www.gap-system.org.

65

http://www.jstor.org/stable/2589288
http://www.jstor.org/stable/2589288
http://www.gap-system.org

[11] Randall R. Holmes. Linear Representations of Finite Groups. 2015. url: http://

auburn.edu/~holmerr/book.pdf.

[12] Decomposition Matrices in GAP. url: http://www.math.rwth-aachen.de/

homes/MOC/htm/ctbldeco.htm.

[13] "Hackage, the Haskell package archive". "http://hackage.haskell.org".

[14] IBM ILOG CPLEX Optimization Studio reference manual. url: http://www-

01.ibm.com/support/knowledgecenter/SSSA5P_12.4.0/ilog.odms.

cplex.help/CPLEX/File_formats_reference/topics/MPS_records.

html.

[15] The Modular Atlas project. url: http://www.math.rwth-aachen.de/~MOC/.

66

http://auburn.edu/~holmerr/book.pdf
http://auburn.edu/~holmerr/book.pdf
http://www.math.rwth-aachen.de/homes/MOC/htm/ctbldeco.htm
http://www.math.rwth-aachen.de/homes/MOC/htm/ctbldeco.htm
http://www-01.ibm.com/support/knowledgecenter/SSSA5P_12.4.0/ilog.odms.cplex.help/CPLEX/File_formats_reference/topics/MPS_records.html
http://www-01.ibm.com/support/knowledgecenter/SSSA5P_12.4.0/ilog.odms.cplex.help/CPLEX/File_formats_reference/topics/MPS_records.html
http://www-01.ibm.com/support/knowledgecenter/SSSA5P_12.4.0/ilog.odms.cplex.help/CPLEX/File_formats_reference/topics/MPS_records.html
http://www-01.ibm.com/support/knowledgecenter/SSSA5P_12.4.0/ilog.odms.cplex.help/CPLEX/File_formats_reference/topics/MPS_records.html
http://www.math.rwth-aachen.de/~MOC/

	Abstract
	Acknowledgments
	List of Symbols
	Introduction
	Laplacian Matrices
	Brauer Characters
	Linear Programming
	Setting up the linear program
	The Decomposition Matrix
	Producing a solution
	Two complete examples
	Linear programming appendix

	Further Work
	Generated Results
	Bibliography

