
Mitigating GPU Memory Divergence for Data-Intensive Applications

by

Bin Wang

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
August 1, 2015

Keywords: GPU, Memory Divergence, Intra-Warp Conflicts, Cache Indexing Method, Memory
Occlusion, Warp Scheduling

Copyright 2015 by Bin Wang

Approved by

Weikuan Yu, Chair, Associate Professor of Computer Science and Software Engineering
Sanjeev Baskiyar, Associate Professor of Computer Science and Software Engineering

Soo-Young Lee, Professor of Electrical and Computer Engineering

Abstract

Graphics Processing Units (GPUs) have proven as a viable technology for a wide variety of

general purpose applications to exploit the massive computing capability and high computation

efficiency. In GPUs, threads are organized into warps and threads in a warp execute in lock-step.

GPUs deliver massive parallelism by alternating the execution of many concurrent warps and over-

lapping the long latency off-chip memory accesses of some warps with the computation of other

warps. Following the success of GPU accelerations for compute-intensive high performance com-

puting applications, the arrival of big data era has energized a new trend of GPU accelerations for

data-intensive applications. Pioneering works have demonstrated that GPU-based implementations

of data-intensive applications can provide significant performance improvement over traditional

CPU-based implementations.

However, due to the complexity in managing GPU on-chip resources through high level pro-

gramming languages and the complicated memory access patterns in data-intensive applications,

it often takes tremendous efforts to optimize these applications for high performance. Memory di-

vergence is a major performance bottleneck that prevents data-intensive applications from gaining

high performance in GPUs. In the lock-step execution model, memory divergence refers to the

case where intra-warp accesses cannot be coalesced into one or two cache blocks. Even though

the impacts of memory divergence can be alleviated through various software techniques, archi-

tectural support for memory divergence mitigation is still highly desirable to ease the complexity

in the programming and optimization of GPU-accelerated data-intensive applications.

When memory divergence occurs, a warp incurs up to warp-size (e.g., 32) independent cache

accesses. Such a burst of divergent accesses not only generates large volume of long latency off-

chip memory operations, but also exhibits three new architectural challenges, including intra-warp

associativity conflicts, partial caching, and memory occlusion. To be more specific, intra-warp

ii

associativity conflicts are caused by the pathological behaviors of current cache indexing method

that concentrates divergent intra-warp memory accesses into a few cache sets. Divergent memory

accesses are often associated with high intra-warp locality, but current cache management can

not manage all cache lines of a warp as a unit, leading to severe partial caching of high intra-

warp locality. Memory occlusion is a structural hazard in the GPU pipeline that occurs when the

available Memory Status History Register (MSHR) entries are insufficient to track all the memory

requests of a divergent load. In current GPUs, replaying missing memory accesses that are caused

by associativity conflicts, intra-warp locality loss, and MSHR unavailability is a common approach

to overcome the three challenges. However, replaying memory accesses stalls the execution in

Load/Store (LD/ST) units and eventually impacts the instruction throughput in warp schedulers,

severely degrading the performance of executing memory divergent benchmarks on GPUs.

This dissertation introduces three novel and light-weight architectural modifications to inde-

pendently solve the three challenges: 1) a Full Permutation (FUP) based GPU cache indexing

method is presented to uniformly disperse intra-warp accesses into all available cache sets so that

associativity conflicts can be eliminated; 2) a Divergence-Aware Cache (DaCache) Management

technique is designed to orchestrate warp scheduling and cache management, make caching de-

cisions at the granularity of individual warps, reduce partial caching of high intra-warp locality,

and resist inter- and intra-warp cache thrashing; and 3) a Memory Occlusion Aware Warp Sched-

uler (OAWS) is proposed to dynamically predict the MSHR consumption of each divergent load

instruction and only schedule warps that will not incur memory occlusion.

The proposed techniques are implemented in a cycle-accurate GPGPU simulator, and com-

pared with closely related state-of-the-art techniques. Specifically, FUP is compared with conven-

tional indexing method, Bitwise-XOR, and Prime Number Displacement; DaCache is compared

with two representative thrashing resistant cache management techniques, Dynamic Insertion Pol-

icy (DIP) and Re-Reference Interval Prediction (RRIP); and OAWS is compared with state-of-the-

art warp scheduling techniques that can mitigate the impacts of memory occlusion, including Static

Warp Limiting (SWL), Cache Conscious Wavefront Scheduling (CCWS), and Memory Aware

iii

Scheduling and Cache Access Re-execution (MASCAR). Data-intensive workloads from various

publically available GPU benchmark suites are used for performance evaluations. Through sys-

tematic experiments and comprehensive comparisons with existing state-of-the-art techniques, this

dissertation has demonstrated the effectiveness of our aforementioned techniques and the viabil-

ity of mitigating memory divergence through architectural support. Meanwhile, this dissertation

reveals optimization spaces for proposed solutions and other promising opportunities for future

research on GPU architecture.

keywords: GPU, Memory Divergence, Intra-Warp Conflicts, Cache Indexing Method, Mem-

ory Occlusion, Warp Scheduling

iv

Acknowledgments

The completion of the dissertation would not have been possible without the help from my

advisor, my committee members, my reader, my lab mates, and my family.

Foremost, I am grateful for my advisor, Dr. Weikuan Yu, for his consistent support, encour-

agement, and supervision during my Ph.D studies. Without his generous financial support, I would

not have had the opportunity to study in the U.S. and pursue my PhD at Auburn University. Dr. Yu

has always unconditionally given me advice and patiently refined my research ideas. His attitudes

towards good research and work have set a high bar for me to build my research portfolio. His

rigorous research spirit will benefit me and my career in the rest of my life.

Furthermore, I would like to thank my committee members, Dr. Sanjeev Baskiyar, and Dr.

Soo-Young Lee, and the outside reader of this dissertation, Dr. Shiwen Mao. They have given me

valuable advice on my dissertation.

I would also like to acknowledge the generous help I have received from members of The

Parallel Architecture and System Research Lab (PASL) at Auburn University. I will forever appre-

ciate the friendship with Dr. Yuan Tian, Dr. Xinyu Que, Dr. Yandong Wang, Dr. Cong Xu, Dr.

Zhuo Liu, Dr. Cristi Cira, Patrick Carpenter, Dr. Chunxiang Wu, Xuechao Li, Xiaobing Li, Teng

Wang, Yizheng Jiao, Fang Zhou, Huansong Fu, Xinning Wang, Kevin Vasko, Michael Pritchard,

Dr. Hui Chen, Dr. Jianhui Yue, Yue Zhu, Lizhen Shi, Hai Pham, and Hao Zou. Because of their

support and help, Auburn is like a home to me.

My deepest gratitude and appreciation go to my wife, my parents, my sister, and my daughter.

They are the charming gardeners who help me grow strong and make my life blossom. Their love

and sacrifice have paved this long journey for me to pursue my dreams.

Last but not least, I would like to acknowledge the sponsors of this research and my graduate

studies at Auburn University. Particularly, I would like to acknowledge the Alabama Innovation

v

Award, the NASA Award NNX11AR20G, and the National Science Foundation awards 1059376,

1320016, 1340947 and 1432892.

vi

Table of Contents

Abstract . ii

Acknowledgments . v

List of Figures . xi

List of Tables . xiv

1 Introduction . 1

1.1 Overview of Baseline GPU Architecture . 3

1.1.1 Warp Scheduling . 4

1.1.2 Global Memory Accesses and Memory Divergence 5

1.2 Challenges of Memory Divergence . 6

1.2.1 Intra-Warp Associativity Contention . 6

1.2.2 Partial Caching . 7

1.2.3 Memory Occlusion . 7

1.3 Research Contributions . 8

1.3.1 Eliminating Intra-Warp Conflict Misses in GPU 8

1.3.2 DaCache: Memory Divergence-Aware GPU Cache Management 9

1.3.3 OAWS: Memory Occlusion Aware Warp Scheduling 10

1.4 Dissertation Overview . 10

2 Problem Statement . 12

2.1 Intra-Warp Conflict Misses due to Pathological Cache Indexing Method 12

2.1.1 Types of Cache Misses in GPU . 12

2.1.2 Associativity-Sensitive Access Patterns 14

2.2 Partial Caching of Divergent Load Instructions in GPU 14

2.2.1 Partial Caching of Divergent Memory Accesses 15

vii

2.2.2 Warp scheduling and Cache Contention 16

2.3 Memory Occlusion in Data-Intensive GPGPU Workloads 18

2.3.1 Stalls in LD/ST Units and Warp Schedulers 18

2.3.2 Quantifying Memory Occlusion Time . 20

2.3.3 Predictability of MSHR consumption . 21

2.4 Summary . 22

3 Eliminating Intra-Warp Conflict Misses in GPU . 23

3.1 Introduction . 23

3.2 Full-permutation Based GPU Cache Indexing . 24

3.2.1 A Metric for GPU Cache Indexing Method 25

3.2.2 Feature Bits of Intra- and Inter-Warp Addresses 25

3.2.3 Full-Permutation for GPU Cache Indexing 27

3.2.4 Comparison of Various Indexing Methods 28

3.3 Experimental Evaluation . 29

3.3.1 Experimental Methodology . 29

3.3.2 Instructions Per Cycle (IPC) . 30

3.3.3 Cache Hits and Misses . 31

3.3.4 Balance . 32

3.3.5 Average Intra-warp Concentration . 33

3.4 Related Work . 34

3.5 Summary . 35

4 DaCache: Memory Divergence-Aware GPU Cache Management 37

4.1 Introduction . 37

4.2 Divergence-Aware GPU Cache Management . 39

4.2.1 High-level Description of DaCache . 40

4.2.2 Gauged Insertion . 41

4.2.3 Constrained Replacement . 44

viii

4.2.4 Dynamic Partitioning of Warps . 46

4.3 Experimental Evaluation . 48

4.3.1 Instructions Per Cycle (IPC) . 50

4.3.2 Fully Cached Loads . 52

4.3.3 Misses per Kilo Instructions (MPKI) . 54

4.3.4 Static vs. Dynamic Partitioning . 55

4.3.5 Constrained Replacement with L1D Stalling 56

4.3.6 Constrained Replacement with L1D Bypassing 57

4.3.7 Sensitivity to Promotion Granularity . 57

4.4 Related Work . 58

4.4.1 Cache Management for GPU Architecture 59

4.4.2 Warp Scheduling . 60

4.5 Summary . 61

5 OAWS: Memory Occlusion Aware Warp Scheduling 62

5.1 Introduction . 62

5.2 Main Idea of OAWS . 64

5.2.1 Qualification Metric of OAWS . 65

5.2.2 Designing Scheduling Policies for OAWS 66

5.3 Static OAWS . 66

5.4 Dynamic OAWS with L1D Locality Preservation 68

5.4.1 Estimating Occlusion-Free Concurrency 69

5.4.2 Concurrency-Aware Dynamic Prediction 71

5.4.3 Implementation and Overhead . 73

5.5 Experimental Evaluation . 74

5.5.1 Experimental Methodology . 74

5.5.2 Instructions Per Cycle (IPC) . 76

5.5.3 LD/ST Unit Stalls . 78

ix

5.5.4 Fully Cached Load Instructions . 79

5.5.5 Warp Scheduler Cycles . 81

5.5.6 Sensitivity of Static OAWS to SMR . 82

5.6 Related Work . 83

5.7 Summary . 85

6 Conclusions and Future Work . 87

6.1 Conclusions . 87

6.2 Future Work . 89

Appendices . 92

A Publication Contributions . 93

Bibliography . 95

x

List of Figures

1.1 Baseline GPU Architecture. 3

1.2 Baseline Streaming Multiprocessor (SM). Other stages of the pipeline are omitted. . . 5

1.3 Illustrative example of memory occlusion. The MSHR of L1D has 4 entries, two of
which have been allocated to track the outstanding memory requests of cache blocks
A and B. The remaining MSHR entries are sufficient for a coherent load, but occlude
the divergent load so that demand requests of blocks F and G are replayed. 8

2.1 The impacts of cache associativity on highly cache-sensitive benchmarks. Both caches
have 32KB capacity and 128B lines. 13

2.2 Distribution of Misses Per Load Instruction (MPLI) in L1 data cache. MPLIs are
categorized into five groups: 0 (MPLI=0), 1 (MPLI=1), 2 (MPLI=2), 3∼31 (36 MPLI
6 31), and 32 (MPLI=32). MPLIs for coherent (C) and divergent (D) load instructions
are accumulated separately. Each of the benchmarks on the right of the figure has only
C bar for coherent instructions. 15

2.3 The CDF of warp scheduler occupancy by all active warps. The percentage reflects the
frequency that each warp is scheduled. GTO priority refers to the “age” of each warp.
Since each of the two warp schedulers in an SM manages 24 warps, 0 represents
the highest priority, while 23 represents the lowest priority. Our baseline L1D can
typically accommodate three divergent warps for each warp scheduler. 17

2.4 Categorization of L1D thrashing. 18

2.5 The breakdown of LD/ST stall cycles (the stacked bar on left) and the percentage of
cycles for which the warp schedulers are stalled due to LD/ST stalls (the right bar).
The dotted line divides all benchmarks into memory coherent (left) and memory di-
vergent (right) ones. Benchmark characteristics and simulator details are summarized
in Section 5.5.1. 19

2.6 The percentage of memory occlusion time in the memory access latency for coherent
and divergent loads. 20

2.7 The MSHR consumption of each load instruction in BFS kernel and the CDF of warp
execution times when using GTO scheduler. pc=240 and pc=272 are the two divergent
loads. Age 0 represents the oldest warp. 21

xi

3.1 The feature bits in the block addresses when various strides are used in the strided
access of tid*STRIDE. Here tid ∈ [0,31] and the bits of block offsets (0∼6th) are
omitted. 26

3.2 Illustration of full-permutation cache indexing. 27

3.3 Decomposition of a N-bit memory address in various indexing methods. xi and ti
represent partial index bits of block address ai. 28

3.4 The impacts of cache indexing methods on IPC. 30

3.5 The misses/hits of cache accesses when various cache indexing methods are applied. . 31

3.6 The balance of cache access distribution in different cache indexing methods. 32

3.7 Average intra-warp concentration in different cache indexing methods. The y-axis is
in logarithmic scale. 33

4.1 A conceptual example comparing the consequences of divergence-oblivious and divergence-
aware cache management. Divergence-aware cache management can fully cache more
warps with high scheduling priorities. 41

4.2 Illustrative example of insertion and promotion policies of DaCache. 43

4.3 Flow of the proposed dynamic partitioning algorithm. Fully Cached Warps (FCW) is
based on the number of fully cached loads (CNT) and each warp’s GTO scheduling
priority (GTO prio). 46

4.4 IPC of memory-divergent and memory-coherent benchmarks when various cache man-
agement techniques are used. 51

4.5 Percentages of fully cached load instructions in memory divergent benchmarks. . . . 52

4.6 MPKI of various cache management techniques. 54

4.7 DaCache under static and dynamic partitioning. 55

4.8 The impacts of using L1D Stalling to complement Constrained Replacement policy
under static and dynamic partitioning. Results are normalized to corresponding parti-
tioning schemes. 56

4.9 The impacts of using L1D Bypassing to complement Constrained Replacement pol-
icy under static and dynamic partitioning. Results are normalized to corresponding
partitioning schemes. 57

4.10 The impacts of promotion granularity under dynamic partitioning. PromoN means
re-referenced blocks are promoted by N positions along the LRU-chain. 58

xii

5.1 A conceptual example showing the benefits of Occlusion Aware Warp Scheduling . . . 64

5.2 Detailed core model used for OAWS. N is the number of warp issue slots on the core. . 68

5.3 Flow Chart of FCW concurrency throttling logic. 70

5.4 IPCs of various warp scheduling algorithms for memory coherent and memory diver-
gent benchmarks. IPCs are normalized to the GTO scheduling. 77

5.5 Breakdown of LD/ST stall cycles when the memory divergent benchmarks are sched-
uled by GTO (G), MASCAR (M), CCWS (C), SWL-Best (S), OAWS-Static (O),
FCW-Only (F), and OAWS-Dyn (D). MASCAR Replay only exists in MASCAR and
refers to the cycles when the memory access from the re-execution queue can’t be sent
out. 79

5.6 Percentage of fully cached divergent loads in the memory divergent benchmarks. . . . 80

5.7 Percentage of fully cached coherent loads in the memory divergent benchmarks. SPMV
has no coherent loads and is excluded from the figure. 80

5.8 Breakdown of GPU cycles when memory divergent benchmarks are scheduled by
GTO (G), SWL-Best (S), FCW-Only (F), and OAWS-Dyn (D). 81

5.9 IPC of static OAWS with various SMR under five representative benchmarks. 82

xiii

List of Tables

3.1 Baseline GPGPU-Sim Configuration for FUP Study 29

3.2 Highly Cache-Sensitive GPGPU (CUDA) Benchmarks for FUP Study 30

4.1 Baseline GPGPU-Sim Configuration for DaCache Study 48

4.2 GPGPU Benchmarks (CUDA) for DaCache Study 49

5.1 Baseline GPGPU-Sim Configuration for OAWS Study 74

5.2 Data-Intensive GPGPU (CUDA) Benchmarks for OAWS Study 75

5.3 Configurations for SWL-Best and CCWS . 75

xiv

Chapter 1

Introduction

Currently, Graphics Processing Units (GPUs) have been everywhere in our daily lives. De-

vices, such as desktops, laptops, tablets, smart phones, and game consoles, all have GPUs inside.

Beyond the conventional functionality of graphics processing, GPUs have proven as a viable tech-

nology for a wide variety of general purpose applications to exploit the massive computing capa-

bility and high computation efficiency. In High Performance Computing (HPC), GPUs become

a key performance booster to realize the realm of exascale computing. Noticeably, in the latest

Top500 supercomputer list [85], 52 systems are powered by NVIDIA Tesla GPUs, such as the Ti-

tan supercomputer hosted by Oak Ridge National Laboratory, the Piz Daint supercomputer hosted

by Swiss National Supercomputing Center (CSCS), Switzerland, and the Tsubame 2.5 supercom-

puter hosted by Tokyo Institute of Technology, Japan.

Following their success for compute-intensive high performance computing applications, GPUs

have demonstrated significant performance improvements for data-intensive scientific applications

such as molecular dynamics [3], document clustering [101], DNA sequence alignment [88], soft-

ware router [31], and large graph processing [43]. In the meantime, the arrival of big data era has

further stimulated the need of leveraging the massive computation power of GPUs in accelerating

newly emerging data-intensive applications, such as data warehousing applications [5, 26, 27, 97,

34, 87] and big data processing frameworks [10, 13, 14, 79, 32]. For example, GPU appears to

be an efficient vehicle for high throughput implementations of data warehousing applications; the

GPU-based implementations can provide an order of magnitude or more performance improve-

ment over traditional CPU-based implementations [34, 87]. It is reported that companies, such as

Walmart, Amazon, Facebook and NASDAQ, have started to accelerate their service infrastructures

using GPUs [97].

1

Current GPUs are often built with a Single Instruction Multiple Thread (SIMT) execution

model to enable massive parallelism. Within such an execution model, threads are organized into

warps and threads in a warp execute in lock-step. This execution model favors applications with

few control branches and highly regular memory accesses, and generally faces two challenges,

i.e., control divergence and memory divergence. Control divergence occurs when threads in a

warp take different code paths for execution, while memory divergence refers to the case where

intra-warp accesses cannot be coalesced into one or two cache blocks. Divergent control branches

and memory accesses break the lock-step execution of threads within the same warp, severely de-

grading GPU resource utilization and computation throughput. For example, it is well documented

that memory divergence can waste the bandwidth of long-latency memory chips. However, data-

intensive applications often exhibit substantial amount of divergent memory accesses so that they

are hard to be optimized for efficient GPU executions.

Even though various software-based optimization techniques can further improve the perfor-

mance of GPU-accelerated data-intensive applications, they often take non-trivial efforts to revise

existing code to match memory access patterns with GPU hardware characteristics. Therefore,

these optimizations often include a large amount of complicated auxiliary code to manage on-chip

resources and eliminate divergence in high level programming languages, such CUDA [61] and

OpenCL [77]. Rogers et al. [70] conducted a case study of GPU programmability using two dif-

ferent implementations of the Sparse Matrix Multiplication from SHOC [17] benchmark suite and

reported that the scalar implementation executed 2.8x less dynamic instructions than the highly

optimized vector implementation. Recent works on memory divergence management for data-

intensive workloads, such as CCWS [69] and DAWS [70], have demonstrated that architectural

support to mitigate memory divergence is highly promising and more importantly can greatly ease

the complexity in GPU programming.

This dissertation studies architectural support for memory divergence mitigation so that data-

intensive applications can be efficiently executed on GPUs with reduced programming complexity.

2

Memory Partition 1

L2 MC
Memory Partition 1

L2 MC

Memory
Coalescing

L1D

SM1

Interconnect

SM7 SM15

Memory Partition 1

L2 MC

… …

cores

warp scheduler

warp0 warpK warp47

… …

Cache Blocks

Coherent

Divergent

To Memory Modules

LD/ST

Memory Partition 1

L2 MC
Memory Partition 1

L2 MC

SM1

Interconnect

SM7 SM15

Memory Partition 1

L2 MC

… …

To/From
Memory Modules

Figure 1.1: Baseline GPU Architecture.

In particular, this dissertation focuses on the impacts of divergent memory accesses on several hard-

ware units, including cache indexing methods, cache locality management, and warp scheduling

logic. The architectural deficiencies in the three units are quantitatively analyzed using moti-

vational experiments and independently addressed with novel and light-weight techniques. This

dissertation also presents comprehensive evaluations of these proposed techniques and systematic

comparisons with closely related state-of-the-art techniques.

The rest of this chapter details the baseline GPU architecture studied throughout this disser-

tation in Section 1.1, formally defines the three architectural challenges of memory divergence

in Section 1.2, summarizes the contributions of the dissertation in Section 1.3, and presents the

organization of the dissection in Section 1.4.

1.1 Overview of Baseline GPU Architecture

This dissertation studies a Fermi-like baseline GPU architecture, as shown in Figure 1.1. This

GPU works as a coprocessor of CPUs and is connected with CPUs via PCIe bus. Applications

programmed in high level programming languages, such CUDA [61] and OpenCL [77], are first

executed on CPUs. The code portions to execute in GPU cores are launched onto GPUs in the form

of kernels. The data movement between CPU-side host memory and GPU device memory goes

through the PCIe bus. Compared to the bandwidth of host and device memories, the bandwidth of

PCIe bus is a major performance bottleneck in GPU computing.

3

Generally, such a discrete GPU consists of multiple Stream Multiprocessors (SMs), two uni-

directional interconnection networks, several memory partition units, and a collection of off-chip

memory modules. Each SM is highly multi-threaded and pipelined, i.e., each SM has a cluster

of Single Instruction Multiple Thread (SIMT) cores. SIMT cores execute distinct thread, operate

on scalar registers and progress in lock-step. As shown in Figure 1.2, our baseline SM mainly

consists of Operand Collector (i.e., register file), Execution Units (ALU/FPU/SFU), and Load-

Store (LD/ST) units. LD/ST units manage accesses to various memory spaces in GPUs. According

to data destination, GPU memory requests are sent to data cache (L1D), constant cache, texture

cache, and shared memory respectively.

Each memory partition mainly consists of a L2 data cache portion and a memory controller

(MC) that manages off-chip memory modules. Interconnection networks manage data movement

between SMs and L2 caches, and on-chip memory channels connect L2 caches and off-chip global

memory modules. The global memory is cached by the last-level L2 cache if available. GPU global

memory can utilize either GDDR3/5 or DDR3 SDRAM. GDDR3/5 is similar to DDR3 in circuit

organization, but GDDR3/5 can offer higher peak bandwidth than DDR3 because of its higher

data transfer rate per pin and its prefetch buffers. These memory modules collectively provide

high memory bandwidth to sustain the memory demand from massive parallelism, but memory

operations to these memory modules have very long latency. Thus, reducing the traffic to global

memory has been considered as the first principle to achieve high performance in GPUs.

We use GPGPU-Sim [4] to simulate the aforementioned baseline GPU architecture. The

GPGPU-Sim 3.x Manual [1] describes other hardware units that have not been described in this

dissertation in more details.

1.1.1 Warp Scheduling

As shown in Figure 1.2, each SM contains multiple physical warp slots and two warp sched-

ulers independently manage warps with even and odd identifiers [59]. In each cycle, both warp

schedulers pick one ready warp and issue its instruction into the SIMT pipeline backend [53, 59,

4

LD/ST

O
pe

ra
nd

 C
ol

le
ct

or

Execution Units (ALU/FPU/SFU)

A
cc

es
s

G
en

er
at

io
n

Warp
Scheduler

Warp
Scheduler

…

…

W0

W46

W2

…

W1

W47

W3

M
em

 P
or

t

Shared Memory
Texture Cache

Constant Cache

M
A

C
U

L1D

MSHR

MACU
L1D

MSHR

A
B

MSHR

A
B

Coherent Load Divergent Load

D E F Gcache
block

C

1 m
iss

4 m
iss

es

A
B

C

Time

MLP

max

A
B

D
E

F
G

Time

MLP

max

Memory Occlusion!

Available

AddrAddr

Figure 1.2: Baseline Streaming Multiprocessor (SM). Other stages of the pipeline are omitted.

60], i.e, execution units or LD/ST units. The warp scheduler is capable of zero-overhead context

switches for concurrent swaps so that GPU pipeline could remain busy.

To determine the readiness of each decoded instruction, a ready bit is used to track its de-

pendency on other instructions. It is updated in the scoreboard by comparing its source and

destination registers with other in-flight instructions of the warp [8]. Instructions are ready for

scheduling when their ready bits are set, i.e., data dependencies are cleared. GPU scheduling logic

consists of two stages, qualification and prioritization [56]. In the qualification stage, ready warps

are selected based on the ready bit that is associated with each instruction. In the prioritization

stage, ready warps are prioritized for execution based on a chosen metric, such as cycle-based

round-robin [56, 57, 42], warp age [69, 70], instruction age [56, 9], or other statistics that can max-

imize resource utilization [56]. For example, the Greedy-Then-Oldest (GTO) [69, 70] scheduler

maintains the highest priority for the currently prioritized warp until it is stalled. The scheduler

then selects the oldest among all ready warps for scheduling. We use GTO as the baseline warp

scheduling technique in this dissertation because of its performance superiority in a larger variety

of general purpose GPU benchmarks.

1.1.2 Global Memory Accesses and Memory Divergence

Once a memory instruction to global memory is issued, it is first sent to Memory Access

Coalescing Unit (MACU) for access generation. MACU coalesces per-thread memory accesses to

minimize off-chip memory traffic. For example, when 32 threads of a warp access 32 consecutive

5

words in a cacheline-aligned data block, MACU will only generate one memory access to L1D.

Otherwise, multiple memory accesses are generated to fetch all needed data. In the rest of this

dissertation, the memory instructions that incur more than 2 uncoalescable memory accesses are

called divergent instructions, while the others are called coherent instructions.

The resultant memory accesses from MACU are sequentially sent to L1D via a single 128-byte

port [9]. For a load access, if it hits in L1D, the requested data is written back to the register file;

if it misses in L1D, one demand request is generated to fetch data from lower memory hierarchy.

The Missing Status Holding Register (MSHR) is used to track in-flight memory requests and merge

duplicate requests to the same cache line. After MSHR allocation, a memory request is buffered

into the Memory Port for network transfer. An MSHR entry is deallocated after its corresponding

memory request is back and all accesses to that block are serviced. Memory requests buffered in

the memory port are drained by the on-chip network in each cycle when lower memory hierarchy

is not saturated.

L1D does not support coherence, so it evicts cache blocks on stores to global memory. Stores

require no MSHR and are directly buffered into the memory port.

1.2 Challenges of Memory Divergence

It has been well documented that divergent memory accesses can waste the bandwidth of

on-chip network and off-chip memory channels. This dissertation studies three new architectural

challenges that are associated with memory divergence.

1.2.1 Intra-Warp Associativity Contention

Since GPUs normally have a very small L1D, any potential locality could be easily thrashed

by the aggregated memory demands from the massive parallelism, especially when memory di-

vergence boosts the per-warp cache footprint. However, memory divergence incurs not only inter-

warp capacity misses, but also high intra-warp associativity conflict misses when the divergent

6

intra-warp accesses are pathologically concentrated into a few cache sets. Because of the discrep-

ancy between low cache associativity and high concentration of divergent intra-warp accesses, a

warp can have consecutive intra-warp associativity conflicts, resulting in repetitive execution stalls.

Such intra-warp conflicts can cause execution stalls to more warps, hindering possible overlaps of

memory and computation for high instruction throughput.

1.2.2 Partial Caching

Within the lock-step execution model, a warp becomes ready when all of its demanded data is

available; warps that have missing data, regardless of the data size, are excluded for execution. This

execution model of GPU expects that all cache lines of each divergent load instruction are cached

as a unit when there is locality. However, conventional cache management is unaware of the GPU

execution model and the collective nature of divergent memory blocks. As a result, some blocks

of a divergent load can be evicted while others are still cached, resulting in a varying number of

cache misses for individual loads. Coherent loads can also experience this kind of varying number

of cache misses when they issue two memory accesses each time. Thus, partial caching refers to

the scenario where a load instruction has part of its data items hit in the cache and others missed

from a single issuance.

1.2.3 Memory Occlusion

MSHR is often implemented as a fully-associative structure and thus is limited by capacity.

This leads to a structural hazard due to the mismatch between limited memory-level parallelism

(MLP) and massive thread-level parallelism (TLP). This hazard can be exaggerated by bursty cache

accesses from divergent loads. As shown in the right part of Figure 1.3, the coherent load that has

one cache miss can be immediately serviced, while the four uncoalescable memory accesses of the

divergent load suffer from insufficient MSHR entries because only two MSHR entries are available.

In this example, the access to block F that misses in L1D is replayed until memory request of block

A is back and its MSHR entry is deallocated. During the access replay, the currently prioritized

7

LD/ST

O
pe

ra
nd

 C
ol

le
ct

or

Execution Units (ALU/FPU/SFU)

A
cc

es
s

G
en

er
at

io
n

Warp
Scheduler

Warp
Scheduler

…

…

W0

W46

W2

…

W1

W47

W3

M
em

 P
or

t

Shared Memory
Texture Cache

Constant Cache

M
A

C
U

L1D

MSHR

MACU
L1D

MSHR

A
B

MSHR

A
B

Coherent Load Divergent Load

D E F Gcache
block

C

1 m
iss

4 m
iss

es

A
B

C

Time

MLP

max

A
B

D
E

F
G

Time

MLP

max

Memory Occlusion!

Available

AddrAddr

Figure 1.3: Illustrative example of memory occlusion. The MSHR of L1D has 4 entries, two of
which have been allocated to track the outstanding memory requests of cache blocks A and B. The
remaining MSHR entries are sufficient for a coherent load, but occlude the divergent load so that
demand requests of blocks F and G are replayed.

memory instruction can not make progress, occluding L1D and preventing other ready memory

instructions from accessing LD/ST units. We refer to such a scenario as Memory Occlusion.

Memory Occlusion degrades memory instruction throughput in LD/ST units and prevents other

memory instructions that do not need MSHR from accessing L1D.

1.3 Research Contributions

In this dissertation, we have thoroughly investigated three architectural challenges that can

severely impact the performance of using GPUs to accelerate memory divergent benchmarks. The

three challenges lie in cache indexing method, cache locality management, and warp scheduling

logic. For each challenge, this dissertation proposes a solution and compares it with the closely

related state-of-the-art techniques. In particular, this dissertation has made following three contri-

butions.

1.3.1 Eliminating Intra-Warp Conflict Misses in GPU

Cache indexing functions play a key role in reducing conflict misses by spreading accesses

evenly among all sets of cache blocks. Although various methods have been proposed, no sig-

nificant effort has been expended on the behavior of conflict misses in GPU where threads are

8

organized into warps and execute in lock-step. When memory divergence happens, a warp incurs

up to warp-size (e.g., 32) independent cache accesses. Such a burst of divergent accesses not only

increases contention on cache capacity, but also incurs intra-warp associativity conflicts when they

are pathologically concentrated in a few cache sets. Due to the lock-step execution, the LD/ST units

would be stalled when intra-warp concentration exceeds available cache associativity. Through an

in-depth analysis of GPU access patterns, we find that column-majored strided accesses are likely

to incur high intra-warp concentration. Based on the analysis, we propose a Full Permutation

(FUP) based indexing method that adapts to both large and medium strides in this pattern. Across

the 10 highly cache-sensitive GPU applications we have evaluated, FUP eliminates intra-warp as-

sociativity conflicts and outperforms two state-of-the-art indexing methods, bitwise-XOR [25] and

prime displacement [47], by 22% and 15%, respectively.

1.3.2 DaCache: Memory Divergence-Aware GPU Cache Management

The lock-step execution model of GPU requires a warp to have the data blocks for all its

threads before execution. However, there is a lack of salient cache mechanisms that can recognize

the need of managing GPU cache blocks at the warp level for increasing the number of warps ready

for execution. In addition, warp scheduling is very important for GPU-specific cache management

to reduce both intra- and inter-warp conflicts and maximize data locality. To solve this challenge,

we propose a Divergence-Aware Cache (DaCache) management that can orchestrate L1D cache

management and warp scheduling together for GPGPUs. In DaCache, the insertion position of

an incoming data block depends on the fetching warp’s scheduling priority. Blocks of warps with

lower priorities are inserted closer to the LRU position of the LRU-chain so that they have shorter

lifetime in cache. This fine-grained insertion policy is extended to prioritize coherent loads over

divergent loads so that coherent loads are less vulnerable to both inter- and intra-warp thrashing.

DaCache also adopts a constrained replacement policy with L1D bypassing to sustain a good sup-

ply of Fully Cached Warps (FCW), along with a dynamic mechanism to adjust FCW during run-

time. Our experiments demonstrate that DaCache achieves 40.4% performance improvement over

9

the baseline GPU and outperforms two state-of-the-art thrashing-resistant techniques, RRIP [38]

and DIP [64], by 40% and 24.9%, respectively.

1.3.3 OAWS: Memory Occlusion Aware Warp Scheduling

GPUs deliver massive computation parallelism by alternating the execution of many warps

and overlapping the memory accesses of some warps with the computations of other warps. How-

ever, the execution of concurrent warps are often disrupted by various hazardous situations, such

as control and memory divergences, which present a significant impediment to GPU performance

and have attracted a lot of research interest. To solve this challenge, we have closely examined

GPU resource utilization when executing memory-intensive benchmarks. Our detailed analysis

of GPU global memory accesses reveals that divergent load instructions can easily incur memory

occlusion. Such memory occlusion prevents other ready memory instructions from accessing L1

data cache, eventually stalling warp schedulers and degrading the overall performance. We have

designed Memory Occlusion Aware Warp Scheduling (OAWS) that can dynamically predict the

demand of MSHR entries of divergent memory instructions and maintain such a concurrency that

the aggregate MSHR consumption from all active warps is within the MSHR capacity, thereby pre-

venting memory occlusions. Our experimental results show that the static and dynamic versions

of OAWS achieve 35.3% and 74% performance improvement, compared to baseline GTO warp

scheduling. The dynamic OAWS outperforms MASCAR [73], CCWS [69], and SWL-Best [69]

by 65.8%, 57.2%, and 8.5%, respectively.

1.4 Dissertation Overview

In the rest of this dissertation, we detail three architectural challenges that are associated

with divergent memory access patterns in GPUs, and then provide detailed descriptions for our

techniques. Each chapter focuses on one challenge, along with comprehensive performance eval-

uations and comparisons with contemporary state-of-the-art techniques.

10

In Chapter 2, we systematically examine the three challenges that prevent memory divergent

benchmarks from gaining high performance on GPUs to motivate our innovations.

In Chapter 3, we introduce a Full-Permutation based GPU cache indexing to eliminate intra-

warp conflict misses due to pathological behaviors in existing cache indexing methods. Our per-

formance evaluation demonstrates that our technique can distribute divergent intra-warp accesses

into all available cache sets and improve the performance of memory divergent benchmarks.

In Chapter 4, we introduce a memory divergence-aware GPU cache management technique

that leverages both warp scheduling prioritization and memory divergence characteristics to make

caching decisions at instruction level. Our experiments demonstrate that orchestrating warp schedul-

ing and cache management can better preserve intra-warp locality and resist both inter- and intra-

warp thrashing.

In Chapter 5, we introduce a light-weight scheduling technique to source-throttle memory

occlusion, a structural hazard caused by the mismatch between limited capacity of Missing Status

Holding Registers (MSHRs) and bursty requests from divergent memory accesses. We propose

both static and dynamic methods to predict the MSHR consumption of divergent load instructions

and a new qualification metric for scheduling logic to proactively prevent memory occlusion from

occurring. Our experiments demonstrate that both static and dynamic prediction methods can

effectively reduce stall cycles in LD/ST units as well as in warp schedulers and outperform three

state-of-the-art warp scheduling techniques.

Eventually, we conclude this dissertation and outline two promising opportunities as future

work in Chapter 6.

11

Chapter 2

Problem Statement

This chapter presents motivational experiments that are designed to reveal the problems of

intra-warp associativity conflicts, partial caching, and memory occlusion and quantify their direct

impacts on performance and on-chip resource utilization. In Section 2.1, the impacts of associa-

tivity conflicts on performance are demonstrated, and a common memory access pattern that is

prone to cause associativity conflicts in GPUs is analyzed. In Section 2.2, partial caching is quan-

tified using a new metric, Misses Per Load Instruction, and the interplay between cache contention

and warp scheduling is analyzed to motive our solution. In Section 2.3, the impacts of memory

occlusion are quantified in terms of stalled cycles in LD/ST units and warp schedulers and the

occlusion time in L1D access latency, and the predictability of MSHR consumption under the

baseline Greedy-Then-Oldest (GTO) warp scheduling is examined using a representative memory

divergent benchmark.

2.1 Intra-Warp Conflict Misses due to Pathological Cache Indexing Method

In order to illustrate the problem of intra-warp associativity conflicts and quantify their direct

impacts on GPU performance, we use two L1D configurations that have the same total capacity

(32KB) but different cache associativities (8 v.s. 32) to execute 10 highly cache sensitive bench-

marks. The details of the benchmarks and the configuration parameters of GPGPU-Sim that are

used in this experiment are presented in Section 3.3 and Table 3.1, respectively.

2.1.1 Types of Cache Misses in GPU

For simplicity, we categorize cache misses into cold (misses-cold), intra-warp (misses-iwarp)

and inter-warp (misses-xwarp) misses [40]. Meanwhile, we also present the percentages of cache

12

0

20

40

60

80

100

ATAX BICG MVT GES SYRK SYR2K KMN BFS SPMV IIX

Pe
rc

en
ta

ge
 o

f M
is

se
s/

H
its

hits misses-iwarp misses-xwarp misses-cold

8way

32way

(a) Cache miss/hit rates

0

1

2

3

4

ATAX BICG MVT GES SYRK SYR2K KMN BFS SPMV IIX GM

IP
C

8way
32way

(b) Instructions Per Cycle (IPC)

Figure 2.1: The impacts of cache associativity on highly cache-sensitive benchmarks. Both caches
have 32KB capacity and 128B lines.

hits (HIT). An intra-warp miss refers to the case where a thread’s data is evicted by other threads

within the same warp, otherwise a conflict miss is referred to as inter-warp miss. In this experiment,

intra-warp misses are typically correlated with associativity conflicts. As shown in Figure 2.1a,

after increasing the associativity from 8 to 32, the intra-warp misses (misses-iwarp) in ATAX,

BICG, MVT, and GES are significantly reduced. 49% of the misses in GES are still intra-warp

misses, because it has two fully divergent loads that contend for L1D capacity. Meanwhile, larger

associativity reduces the inter-warp misses (misses-xwarp) in SYRK, indicating that associativity

conflicts can also occur between inter-warp accesses. Figure 2.1b presents the impacts of cache

associativity on the IPC of the 10 benchmarks. For ATAX, BICG, MVT, GES, and SYRK, a 32-

way 32KB L1D improves performance by 2.6×. Even though a 32-way cache is impractical for

real GPU architectures, this experiment shows that eliminating associativity conflicts are critical to

sustain high performance for memory divergent benchmarks.

13

2.1.2 Associativity-Sensitive Access Patterns

With multidimensional data arrays, the column-major strided access pattern is prone to

create high intra-warp contention on associativity. The most common example of this pattern

is A[tid*STRIDE+offset], where tid is the unique thread ID and STRIDE is user-defined stride

size. By using this pattern, each thread iterates a stride of data independently. In a conventional

cache indexing function, the target set is computed as set = (addr/blkSz) mod nset , where addr

is the memory address, blkSz is the length of cache block and nset is the number of cache sets.

When the address stride between two consecutive threads is equal to a multiple of blkSz×nset , all

blocks needed by a single warp are mapped into the same cache set. For example, when the stride

size (STRIDE) is 4096 bytes, the two consecutive intra-warp memory addresses, 0x80000000 and

0x80001000, will be mapped into the set 0 in our baseline L1D that has 32 cache sets and 128B

cache lines.

Since cache associativity is often smaller than warp size (32), associativity conflicts occur

within each single divergent load and then the memory pipeline is congested by the burst of intra-

warp accesses. One existing work [40] uses aggressive L1D bypassing to alleviate associativity

conflicts, but leaves L1D capacity under-utilized. By contrast, we investigate the cache indexing

method to dispense the bursty intra-warp access into all cache sets so that intra-warp contention is

reduced and cache capacity can be better utilized.

2.2 Partial Caching of Divergent Load Instructions in GPU

In this section, we use 20 data intensive benchmarks from Rodinia [12], SHOC [17], Poly-

Bench/GPU [28], and MapReduce [32] to reveal and analyze the problem of partial caching in

baseline LRU caches. For each benchmark, Table 4.2 lists a brief description and the input size

that we use in following motivational experiments. The benchmarks are categorized into memory-

divergent and memory-coherent ones, depending on the dynamic memory divergence of load in-

structions in these benchmarks. In general, memory-divergent benchmarks are more sensitive to

cache capacity than memory-coherent benchmarks. Recent work [69, 70, 40, 90] reports that high

14

0
10
20
30
40
50
60
70
80
90

100

C D

ATAX BICG MVT SYR SYR2 GES KMN SC BFS SPMV IIX PVC 2DC 3DC 2MM 3MM COV COR FD GS

Pe
rc

en
ta

ge
 (%

)
32

3~31

2

1

0

Figure 2.2: Distribution of Misses Per Load Instruction (MPLI) in L1 data cache. MPLIs are cat-
egorized into five groups: 0 (MPLI=0), 1 (MPLI=1), 2 (MPLI=2), 3∼31 (36 MPLI 6 31), and
32 (MPLI=32). MPLIs for coherent (C) and divergent (D) load instructions are accumulated sepa-
rately. Each of the benchmarks on the right of the figure has only C bar for coherent instructions.

intra-warp L1D locality exists among these cache-sensitive workloads. In addition, BFS, SPMV,

IIX, and PVC also have rich branch divergence. The GPGPU-Sim configuration parameters used

in following experiments are presented Table 4.1. In order to isolate the impacts of intra-warp as-

sociativity conflicts from the investigation of partial caching, we use the indexing method from real

Fermi GPUs, pseudo-random hashing function [58], to wide spread intra-warp memory accesses.

This change in GPGPU-Sim configuration gives a faithful simulation of real GPU hardware.

2.2.1 Partial Caching of Divergent Memory Accesses

Metrics, such as Miss Rate and Misses Per Kilo Instructions (MPKI), are often used to eval-

uate the performance of cache management. In view of the wide variation of cache misses per

instruction, we use Misses Per Load Instruction (MPLI) to quantify partial caching in GPU

L1D. Divergent load instructions that have MPLIs in the range from 1 to {Req(pc,w)− 1} are

considered as being partially cached, where Req(pc,w) is the number of cache accesses that warp

w incurs at memory instruction pc. For divergent load instructions in our baseline GPU, MPLI is

typically in the range from 0 to 32. MPLI of 0 indicates that a load instruction has no cache misses

and is considered as being fully cached; MPLI of 32 indicates that a load instruction has no cache

hits and is considered as being fully missed; any MPLI value between 1 and 31 indicates a partially

cached instruction. Meanwhile, MPLI is in the range from 0 to 2 for coherent load instructions.

15

MPLI can be calculated by counting the number of cache misses a load instruction experiences

after all of its memory accesses are serviced by L1D.

Figure 2.2 shows the distribution of MPLIs across the 20 GPGPU benchmarks we have eval-

uated in this study. For simplicity, MPLIs are categorized into five groups. For divergent loads,

the two categories of 2 (MPLI=2) and 3∼31 (36 MPLI 6 31) in the figure, together describe the

existence of partial caching. Note that this range can only provide a close approximation for partial

caching because branch divergence can reduce the number of uncoalescable memory accesses a

divergent load can generate. For example, a warp with 16 active threads can maximally generate

16 memory accesses for a divergent load, and an MPLI of 16 indicates full caching for this load

of the warp, while an MPLI of 16 often indicates partial caching for warps with 32 threads. As

we can see from the figure, coherent loads of the memory-divergent benchmarks do not experience

the problem of partial caching because they all generate one memory access per instruction. How-

ever, divergent load instructions in these benchmarks greatly suffer from partial caching. Substan-

tial amount of divergent loads in SYR2, KMN, BFS, SPMV, IIX, and PVC are partially cached.

Memory-coherent benchmarks, such as 2DC, 3DC, COV, COR, and FD, also experience partial

caching (MPLI=1), because their load instructions generate two memory accesses each time. Such

prevalent partial caching comes from massive parallelism and divergence-oblivious cache manage-

ment, exacerbates inter-warp contention on limited L1D capacity, and results in early evictions of

cache lines after being used only once.

2.2.2 Warp scheduling and Cache Contention

In view of the severe cache misses as discussed in Section 2.2.1, we have further examined the

impact of warp scheduling on L1D contention. GPU warp scheduling is often driven by a priori-

tization scheme as introduced in Section 1.1.2. For example, in the baseline Greedy-Then-Oldest

(GTO) warp scheduling, warps are dynamically prioritized by their “ages”, and older warps are

preferentially prioritized at runtime. In order to quantify the cache contention due to aggressive

warp scheduling, we measure the occupancy of warp schedulers by all active warps. Figure 2.3

16

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20 22

C
D

F
 o

f
P

ip
e
li
n

e
 O

c
c
u

p
a
n

c
y
 (

%
)

GTO Priority

ATAX

BICG

MVT

SYR

SYR2

GES

KMN

SC

(a) Memory-Divergent

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20 22

C
D

F
 o

f
P

ip
e
li
n

e
 O

c
c
u

p
a
n

c
y
 (

%
)

GTO Priority

BFS

SPMV

IIX

PVC

(b) Memory- and Branch-Divergent

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18 20 22

C
D

F
 o

f
P

ip
e
li
n

e
 O

c
c
u

p
a
n

c
y
 (

%
)

GTO Priority

2DC

3DC

2MM

3MM

COV

COR

FD

GS

(c) Memory-Coherent

Figure 2.3: The CDF of warp scheduler occupancy by all active warps. The percentage reflects the
frequency that each warp is scheduled. GTO priority refers to the “age” of each warp. Since each
of the two warp schedulers in an SM manages 24 warps, 0 represents the highest priority, while 23
represents the lowest priority. Our baseline L1D can typically accommodate three divergent warps
for each warp scheduler.

shows the Cumulative Distribution Function (CDF) of warp scheduler occupancy when the eval-

uated benchmarks are scheduled under GTO prioritization. Typically, these benchmarks have one

fully divergent load (resulting in 32 accesses) and one coherent load (resulting in one access) in

the kernel, so the cache footprint of each warp is 33 cache lines at runtime. Since the two warp

schedulers in each SM of the baseline GPU have equal access to the shared L1D (32KB, 256 cache

lines), enabling four warps for each warp scheduler will over-subscribe L1D capacity (264 cache

lines), causing inter-warp contention. Thus, only three warps can be fully cached for each warp

scheduler, leading to an aggregated utilization of 77% of the L1D capacity. With 0 representing the

highest GTO priority, fully caching such a small amount of warps means that L1D will inevitably

be thrashed if the warps with GTO priorities lower than 3 are scheduled.

For memory-divergent benchmarks in Figure 2.3a, 58%∼91% of the total cycles are occupied

by the top 3 prioritized warps. Even though warps with lower priorities are infrequently scheduled,

they are highly likely to thrash the locality of other warps with higher priorities whenever they are

scheduled. Meanwhile, the cache lines of these low-priority warps are often evicted before any re-

reference, even though intra-warp locality is high. Since branch divergence reduces the number of

accesses a divergent load can generate, more warps can be fully cached for benchmarks with both

memory- and branch-divergence. As shown in Figure 2.3b, the occupancy drops to 48%∼63%

among these benchmarks. Such variation in warp scheduling incurs immediate cache conflicts.

17

0
10
20
30
40
50
60
70
80
90

100

ATAX BICG MVT SYR SYR2 GES KMN SC BFS SPMV IIX PVC 2DC 3DC 2MM 3MM COV COR FD GS

Pe
rc

en
ta

ge
s o

f M
is

se
s/

H
its

HIT misses-cold misses-iwarp misses-xwarp

Figure 2.4: Categorization of L1D thrashing.

As in the categorization method described in Section 2.1.1, we categorize caches misses into

cold (misses-cold), intra-warp (misses-iwarp) and inter-warp (misses-xwarp) misses. Figure 2.4

shows that the majority of cache misses are due to inter-warp conflicts, which in turn cause high

MPLI as shown in Figure 2.2 and varied occupancy of warp schedulers as shown in Figure 2.3.

2.3 Memory Occlusion in Data-Intensive GPGPU Workloads

This section investigates the impacts of memory occlusion on GPU performance. First, we

breakdown LD/ST stalls cycles to reveal the impact of memory occlusion on the utilization of

LD/ST units and warp schedulers. Second, we quantify how memory occlusion impacts global

memory access time. Finally, we use a case study to demonstrate that MSHR consumption, the

cause of memory occlusion, is predictable under GTO warp scheduling. The configuration param-

eters for GPGPU-Sim and the details of the benchmarks that we use in following experiments are

presented in Table 5.1 and Table 5.2, respectively.

2.3.1 Stalls in LD/ST Units and Warp Schedulers

When LD/ST units are stalled, a ready memory instruction can not be issued. We refer to

such stall cycles as LD/ST stall cycles. Besides MSHR unavailability and memory port conges-

tion, sequentially processing uncoalescable memory accesses makes the LD/ST units unavailable

to warp schedulers and delays other ready memory instructions accessing L1D, even if current

18

0%

20%

40%

60%

80%

100%

BP 2MM 3MM SRAD2 SRAD1 3DC FDTD LBM PF SC IIX SYRK BFS ATAX BICG MVT KMN SYR2K GES SPMV

Pe
rc

en
ta

ge

LDST_COAL
LDST_ICNT
LDST_MSHR

Memory	 Divergent	 Memory	 Coherent	

Figure 2.5: The breakdown of LD/ST stall cycles (the stacked bar on left) and the percentage of
cycles for which the warp schedulers are stalled due to LD/ST stalls (the right bar). The dot-
ted line divides all benchmarks into memory coherent (left) and memory divergent (right) ones.
Benchmark characteristics and simulator details are summarized in Section 5.5.1.

memory instruction is making progress to send out its memory accesses. According to the three

causes that can stall LD/ST units, we breakdown the LD/ST stall cycles into three categories in

Figure 2.5: 1) coalescing stalls (LDST COAL) — when L1D has successfully serviced one unco-

alescable memory access, no matter if it is a cache hit or miss; 2) MSHR stalls (LDST MSHR)

— when a cache miss can not be processed due to MSHR unavailability; and 3) ICNT stalls

(LDST ICNT) — when a cache miss can not be processed due to on-chip network congestion, but

MSHR entries are available. Among the memory coherent benchmarks, 2MM, 3MM, SRAD1,

SRAD2, and LBM experience a large percentage of LDST ICNT stalls. The five benchmarks write

significant amounts of data into global memory, congesting the network from SM to L2 cache.

For memory divergent benchmarks, LDST MSHR dominates LD/ST stall cycles, with an average

of 66% of total cycles waiting for MSHR entries. These divergent benchmarks are read-intensive,

and read requests impose limited pressure on the network from SM to L2 cache, so LDST ICNT

plays a negligible role in these benchmarks.

Although LD/ST units are stalled, warp schedulers can still issue computation instructions

into execution units to overlap the stalls in LD/ST units. The capability of overlapping LD/ST

stalls explains why warp schedulers (the gray bar) are stalled less than LD/ST units across all of the

benchmarks in Figure 2.5. However, LD/ST stalls eventually idle warp schedulers when all warps

are waiting to be scheduled to issue memory instructions. For memory coherent benchmarks, on

19

0%

20%

40%

60%

80%

BP 2MM 3MM SRAD2 SRAD1 3DC FDTD LBM PF SC IIX SYRK BFS ATAX BICG MVT KMN SYR2K GES SPMV

Pe
rc

en
tg

e
Coherent Load

Divergent Load

Figure 2.6: The percentage of memory occlusion time in the memory access latency for coherent
and divergent loads.

average, warp schedulers waste 28% of the total cycles waiting for the availability of LD/ST units.

This percentage increases to 75% for memory divergent benchmarks. Such high stalls in warp

schedulers directly lead to severe degradation of instruction throughput.

2.3.2 Quantifying Memory Occlusion Time

Without memory occlusion, an issued memory instruction with N accesses should retire from

LD/ST units after N cycles plus the latency of register file and LD/ST units. Here, N cycles are

needed by L1D to sequentially process all of the N accesses. Any extra cycle is counted as the delay

caused by memory occlusion. We define these extra cycles as instruction delay. Consequently,

L1D access latency can be divided into memory occlusion time and L1D hit/miss time. In order to

quantify the impacts of memory occlusion, we compare such delays with the memory access time

of load instructions. In this study, the L1D access time of each load instruction starts when it is

issued by warp scheduler and ends when all of its needed data is written back to register file.

Figure 2.6 shows the percentage of memory occlusion time in the average L1D access latency

for both coherent and divergent load instructions across all the data intensive benchmarks. On

average, memory occlusion delays account for 4% of L1D access time for all memory coherent

benchmarks. SRAD1 has very few divergent loads through its 502 kernel invocations. In memory

divergent benchmarks, memory occlusion delays reach 33% and 47% for coherent and divergent

loads, respectively. These large delays dramatically prolong memory access time, demanding a

20

0%

20%

40%

60%

80%

100%

0

2

4

6

8

10

12

14

16

18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

C
D

F
of

 W
ar

p
E

xe
cu

tio
n

M
SH

R
 C

on
su

m
pt

io
n

Pe
r

L
oa

d

Relative Warp Age

pc=80 pc=152 pc=168
pc=240 pc=272 pc=328
pc=400 pc=408 CDF

Figure 2.7: The MSHR consumption of each load instruction in BFS kernel and the CDF of warp
execution times when using GTO scheduler. pc=240 and pc=272 are the two divergent loads. Age
0 represents the oldest warp.

higher degree of computation-memory overlap. However, these memory-divergent benchmarks of-

ten lack sufficient computation instructions, causing the warp scheduler stalls shown in Figure 2.5.

It is clear that memory occlusion is a performance destructor for memory divergent GPGPU work-

loads, which is the third challenge we study in this dissertation.

2.3.3 Predictability of MSHR consumption

Since the depletion of MSHR entries is the cause of memory occlusion, we use one kernel

from BFS to study the predictability of MSHR consumption when using a GTO warp scheduler.

This kernel has 2 divergent load instructions (pc=240 and pc=272), and 6 other coherent loads. As

shown in Figure 2.7, the MSHR consumption levels of the two divergent loads are linear to each

warp’s relative age. Since the oldest warp (age=0) is constantly prioritized under GTO scheduling,

it has the lowest MSHR consumption, while the warp of age 7 has the highest MSHR consumption.

The younger warps (age>7) have lower MSHR consumption because they are only scheduled

when older warps are retiring. The CDF of warp execution times shows that the oldest 8 warps

(age=0-7) occupy 94% of total warp scheduler cycles. This observation also applies to the other

21

memory divergent benchmarks we have evaluated. Thus, we can conclude that a load instruction’s

MSHR consumption is highly correlated with its owner warp’s scheduling priority.

2.4 Summary

In summary, this chapter has analyzed the direct impacts of intra-warp associativity conflicts,

partial caching, and memory occlusion. Therefore, this dissertation is devoted to addressing these

issues, preparing future GPU architectures to efficiently execute memory-divergent benchmarks.

To be more specific, this dissertation seeks architectural optimization to tackle above issues from

the following three directions:

• Using concentration-resistant cache indexing method to uniformly distribute GPU memory

accesses into all available cache sets

• Leveraging warp scheduling logic and memory divergence characteristics to reduce partial

caching and resist inter- and intra-warp cache thrashing

• Predicting the consumption of individual divergent load instructions and then scheduling

instructions that will not incur memory occlusion

The solutions this dissertation presents are:

• Full-permutation Based GPU Cache Indexing (in Chapter 3)

• DaCache: Memory Divergence-Aware GPU Cache Management (in Chapter 4)

• OAWS: Memory Occlusion Aware Warp Scheduling (in Chapter 5)

22

Chapter 3

Eliminating Intra-Warp Conflict Misses in GPU

3.1 Introduction

Recently, GPUs have employed a hierarchy of date caches, which can reduce the latency of

memory operations and save the on-chip network and off-chip memory bandwidth when there is

locality within the accesses. However, the contention from massive parallelism often makes the

caching performance unpredictable. Notably, the bursty divergent accesses can cause associativity

stalls when they are pathologically concentrated into a few cache sets as described in Section 1.2.1

and Section 2.1. To tackle this problem, MRPB [40] aggressively bypasses L1D whenever asso-

ciativity stall occurs, but the cache capacity is still underutilized. Two recent works [69, 70] have

reported that throttling the number of actively scheduled warps is able to reduce the accumulated

working set so that the contention on cache capacity is alleviated and locality is preserved. How-

ever, they are mainly designed to alleviate capacity misses, having little control over intra-warp

associativity conflicts. Without spreading bursty intra-warp accesses evenly into all cache sets, as-

sociativity conflicts inevitably undercut the potential performance benefits that other optimizations

can bring. For example, concurrency throttling techniques, such as CCWS [69] and DAWS [70],

become futile when intra-warp associativity conflicts are high.

Pseudo-random cache indexing methods have been extensively studied to reduce conflict

misses within CPU systems. However, no prior indexing method has exploited the pathological

behaviors of GPU cache indexing. In CPU systems, parallelism is supported at a moderate level,

in which memory accesses are often dispersed over time. However for GPUs, high thread counts

are common, intra-warp accesses often come in long bursts when memory divergence occurs and

then memory bandwidth utilization plays a critical role in sustaining high computation throughput.

These distinctive features pose challenges in designing a GPU-specific indexing method.

23

Based on these observations and the motivational results in Section 2.1, we study how to

design a GPU data cache indexing method to eliminate intra-warp associativity conflicts. Our

contributions from this study include:

• Presenting the problem of intra-warp conflict misses in GPU from the aspect of pathological

behaviors of current cache indexing method;

• Proposing a new metric, intra-warp concentration, to evaluate GPU cache indexing methods.

This metric quantifies the dynamic concentration of divergent intra-warp accesses into cache

sets and is more correlated with intra-warp conflicts;

• and designing a Full-Permutation (FUP) based GPU cache indexing method, which achieves

perfect intra-warp concentration for strided access patterns among GPU benchmarks and

significantly reduces the conflict misses due to intra-warp contention.

Our experimental results show that FUP improves the performance of 10 highly cache-sensitive

GPU benchmarks by 2.46× (Geometric Mean), and outperforms two state-of-the-art cache index-

ing methods, bitwise-XOR [25] and prime displacement [47], by 22% and 15%, respectively. The

metric of intra-warp concentration is also proven to be more closely correlated with the quality of

GPU cache indexing methods than other GPU-oblivious static metrics.

The rest of chapter is organized as follows: Section 3.2 details the design of FUP, experimental

results and related work are presented in Section 3.3 and Section 3.4, respectively, and Section 3.5

summarizes this chapter.

3.2 Full-permutation Based GPU Cache Indexing

In this section, we first elaborate a new metric for quantifying the distribution of intra-warp

accesses and then propose our full-permutation indexing method.

24

3.2.1 A Metric for GPU Cache Indexing Method

We use Intra-warp Concentration to quantify the distribution uniformity of intra-warp ac-

cesses into the cache sets. It is measured by:

Intra-warp concentration =
Nacc

Ncache sets touched
(3.1)

where Nacc is the number of accesses in a load instruction and Ncache sets touched is the number of

sets that are caching the data of the load instruction. Within our baseline GPU, a warp can maxi-

mally generate 32 divergent accesses and the L1D has 32 cache set; an intra-warp concentration of

1 indicates an ideal distribution of intra-warp accesses, i.e., intra-warp contention on cache asso-

ciativity is eliminated. Any value larger than 1 indicates the existence of intra-warp concentration.

An intra-warp concentration of 32 is the worst case where all the intra-warp accesses are concen-

trated into the same cache set. In Section 3.3, we will see several of the benchmarks we have

evaluated constantly experience the highest concentration under our baseline GPU cache indexing

method. Note that coherent loads often lead to an ideal intra-warp concentration.

Different from the static metrics used in [47] to quantify the pathological behaviors of cache

indexing methods of CPU systems, intra-warp concentration describes dynamic contention among

bursty intra-warp accesses. Since avoiding long memory accesses caused by intra-warp contention

is very critical, it is beneficial to introduce the intra-warp concentration metric for measuring the

effectiveness of conflict management by GPU cache indexing methods.

3.2.2 Feature Bits of Intra- and Inter-Warp Addresses

In order to disperse intra-warp accesses into all cache sets, it is necessary to understand how

one address is different from the others. In the column-major strided access pattern as described

in Section 2.1.2, the majority of the bits in intra-warp addresses are the same, i.e., having no

variability, while a small amount of bits are altered. We name those altered positions as Feature

Bits. The length of feature bits depends on the warp size. For example, when warp size is 32, a

25

7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39

128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M

Fe
at

ur
e

B
its

 in
 th

e
B

lo
ck

 A
dd

re
ss

Intra-warp Stride Sizes

Figure 3.1: The feature bits in the block addresses when various strides are used in the strided
access of tid*STRIDE. Here tid ∈ [0,31] and the bits of block offsets (0∼6th) are omitted.

warp would generate up to 32 accesses; consequently, log2(Warp-size) bits in the block addresses

become feature bits to distinguish intra-warp accesses.

In order to illustrate the distributions of feature bits, we conduct a case study using the warp

in which threads have global indices between 0 and 31. We denote ths warp as Warp0. Figure 3.1

shows the positions of feature bits in the intra-warp block addresses of Warp0 when the stride

sizes range from 128 to 32M. Assuming a 40-bit virtual address space, the feature bits of Warp0’s

accesses spread in the range from 7th to 29th bit. Since a GPU kernel is often launched with a

numerous number of threads, this upper bound would be theoretically extended close to the most

significant bit of the block address. Given that the global memory size is no larger than 16GB

among contemporary GPGPU cards, the range from 7th to 34th bit covers any legitimate stride size.

Thus, we use bits in this range (num f eature bits) to search feature bits for GPU cache indexing.

We will show how feature bits can be used in a GPU cache indexing method to spread intra-warp

accesses evenly into cache sets. Compared to the designated feature bits, if the invariable bits are

used to form the set index, identical bits exist in the resultant set indexes of intra-warp accesses,

causing intra-warp concentration.

26

Set Index

S2 blkOffsetS3S4 S1

Memory Address

Full-permutation
based Cache Indexing

R1R2

Forth Design

log2(blkSz)log2nset log2nsetlog2nsetF-3log2nset

F

XOR

XORXORmod

Figure 3.2: Illustration of full-permutation cache indexing.

3.2.3 Full-Permutation for GPU Cache Indexing

In order to cover all feature bits in memory addresses, we propose the Full-Permutation (FUP)

based cache indexing method. In general, FUP uses F bits in the middle of block addresses, where

F = max(num f eature bits,4× log2nset). As shown in Figure 3.2, the F bits are divided into four

groups, i.e., S1, S2, S3, and S4. We now discuss how L1D impacts the implementation of FUP:

1. When num f eature bits is equal to 4× log2nset , each group has log2nset . Thus, the four

groups of bits are paired, and then XORed in parallel at the first level, and then the two

intermediate indexes, R1 and R2, are further XORed to generate the final index.

2. When num f eature bits is smaller than 4× log2nset , FUP could still be implemented as case

1. Over-subscribing the bits of block addresses for cache indexing simplifies the hardware

implementation and can disperse inter-warp accesses into all sets.

3. When num f eature bits is larger than 4× log2nset , S4 has more bits than the other three

groups. We use a prime number based modulo operation (mod) to convert S4 into log2nset

bits so that the remaining logic could be unchanged. This modulo operation could be imple-

mented using a set of narrow add operations [47] and causes limited intra-warp concentration

for very large strides.

In total, this scheme requires 3× log2nset two-input XOR gates for the logic implementation. The

delay of two-level XOR gates is less than 1 cycle even for a very aggressively pipelined processor.

27

blkOffset Ti xi
log2(nset) log2(blkSz) N-log2(nset)-log2(blkSz)

CONV

xi ti
ai

BXOR
pDisp

Figure 3.3: Decomposition of a N-bit memory address in various indexing methods. xi and ti
represent partial index bits of block address ai.

Even when the mod operation is needed, the delay of FUP could still be implemented in no more

than 2 cycles. Since GPU is highly optimized for throughput and GPGPU applications are not

sensitive to cache latency [4], this delay is easily compensated by reduced intra-warp concentration.

FUP naturally adapts to streaming-like coherent loads where inter-warp feature bits tend to be

concentrated in the lower bits of block addresses.

3.2.4 Comparison of Various Indexing Methods

We compare FUP to several presentative indexing methods. Given a N-bit memory address,

Figure 3.3 illustrates the decomposition of address bits in cache indexing methods that we will

compare with. In the conventional method (CONV), the log2(nset) bits in the middle of the block

address, i.e., (xi) bits, are selected as the set index.

Pseudo-random indexing methods are often used to randomize accesses to cache sets. Among

them, XOR-based indexing methods are by far the most extensively studied. We choose the

bitwise-XOR (BXOR) [25] as a representative of pseudo-random indexing methods. BXOR ex-

tends the bits for set index calculation via xi⊕ ti, where ti also has log2(nset) bits. As we can see

from Figure 3.3, both CONV and BXOR are incapable of covering all feature bits of the intra-warp

addresses. The 2× log2(nset) bits used by BXOR mainly cover small strides. For large strides,

BXOR includes invariable bits for index calculation, leading to high intra-warp concentration. Be-

cause of the large range of feature bits, simply altering the bits for BXOR, such as the scheme

reported in [58], is still unlikely to make BXOR adapt to all kinds of strides.

Kharbutli et al. [47] proposed two prime numbers based indexing methods, prime modulo

(pMOD) and prime displacement (pDisp). pMOD uses a prime number of sets in the cache. pDisp

28

Table 3.1: Baseline GPGPU-Sim Configuration for FUP Study

of SMs 30 (15 clusters of 2)
SM Configuration 1400Mhz, Reg #: 32K, Shared Memory: 48KB, SIMD Width:

16, warp: 32 threads, max threads per SM: 1024
Caches / SM Data: 32KB/128B-line/8-way, Constant: 8KB/64B-line/24-way,

Texture: 12KB/128B-line/2-way
Branching Handling PDOM based method [21]

Warp Scheduling GTO
Interconnect Butterfly, 1400Mhz, 32B channel width

L2 Unified Cache 768KB, 128B line, 16-way
Min. L2 Latency 120 cycles (compute core clock)

Memory Partitions 6
Memory Banks 16 per memory partition

Memory Controller Out-of-Order (FR-FCFS), max request queue length: 32
GDDR5 Timing tCL = 12, tRP = 12, tRC = 40, tRAS = 28, tRCD = 12, tRRD = 6,

tCDLR = 5, tWR = 12

calculates the set index as follows: index= (p×Ti+xi) mod n
′
set , where tag Ti has N− log2(nset)−

log2(blkSz), p is a prime number and n
′
set is the largest prime number that is smaller than nset . The

introduction of prime numbers based modulo operation disturbs the high regularity in column-

major strided access pattern, dispersing bursty intra-warp accesses into the majority of available

cache sets (n
′
set < nset). However, using a fraction of the available cache sets underutilizes cache

capacity, and inherently causes intra-warp concentration at the degree of nset/n
′
set .

3.3 Experimental Evaluation

3.3.1 Experimental Methodology

We use GPGPU-Sim [4] (version 3.2.1), a cycle-accurate simulator, for the performance eval-

uation of FUP cache indexing method, as discussed in section 3.2. The main characteristics of our

baseline GPU architecture are summarized in Table 3.1. We present and discuss the performance

impacts of cache indexing methods on highly cache-sensitive GPGPU applications. The highly

cache-sensitive benchmarks we study are from Rodinia [12], SHOC [17], PolyBench/GPU [28],

and MapReduce [32]. Table 3.2 lists a brief description of each benchmark, cache sensitivity type,

29

Table 3.2: Highly Cache-Sensitive GPGPU (CUDA) Benchmarks for FUP Study

Abbr. Application Suites Sensitivity Input
ATAX matrix-transpose and vector multip. PolyBench Associativity 8K×8K
BICG kernel of BiCGStab linear solver PolyBench Associativity 8K×8K
MVT Matrix-vector-product transpose PolyBench Associativity 8K
GES Scalar-vector-matrix multiplication PolyBench Associativity 4K

SYRK Symmetric rank-K operations PolyBench Associativity 512×512
SYR2K Symmetric rank-2K operations PolyBench Capacity 256×256
KMN Kmeans Clustering Rodinia Capacity 28k 4x features
BFS Breadth-First-Search Rodinia Capacity 5M edges

SPMV Sparse matrix multiplication SHOC Capacity default
IIX Inverted Index Mars Capacity 6.8M

0

1

2

3

4

5

6

7

8

ATAX BICG MVT GES SYRK SYR2K KMN BFS SPMV IIX GM

IP
C

CONV
BXOR
pDisp
FUP

Figure 3.4: The impacts of cache indexing methods on IPC.

and the input sizes that we use to motivate the problem of intra-warp associativity conflicts in Sec-

tion 2.1 and evaluate the performance of FUP in the rest of the chapter. All of the benchmarks are

run to completion which takes between 70 million and 1.5 billion instructions. Among all of the

evaluations, CONV is taken as the baseline indexing method for comparison.

3.3.2 Instructions Per Cycle (IPC)

Figure 3.4 shows the IPC results of the benchmarks when using different indexing methods.

On average, BXOR [25], pDisp [47], and FUP outperform CONV by 2.01X, 2.14X, and 2.46X,

respectively. For associativity-sensitive benchmarks, i.e., ATAX, BICG, MVT, GES, SYRK and

30

0
10
20
30
40
50
60
70
80
90

100

ATAX BICG MVT GES SYRK SYR2K KMN BFS SPMV IIX

%
 o

f M
em

or
y

A
cc

es
se

s

hits misses-iwarp misses-xwarp misses-cold

FU
P

B
X

O
R

pD

is
p

C
O

N
V

Figure 3.5: The misses/hits of cache accesses when various cache indexing methods are applied.

SYR2K, the three methods achieve a performance improvement of 3.21X, 3.70X and 4.36X, re-

spectively. Across all the benchmarks, BXOR and FUP do not hurt performance, but pDisp down-

grades the performance of IIX by 18.4%. This performance degradation in IIX is mainly because

pDisp underutilizes cache capacity and constantly introduces an intra-warp concentration of 32/31

that could have been eliminated by CONV.

3.3.3 Cache Hits and Misses

Figure 3.5 shows the results of cache hits and misses when using different indexing meth-

ods. In general, the IPC performance directly comes from the reduced intra-warp associativity

conflicts. In the baseline, CONV constantly incurs high intra-warp misses in ATAX, BICG, MVT,

and GES. By converting associativity contention into capacity contention, BXOR successfully re-

duces intra-warp misses so that cache hit rates increase. Meanwhile, pDisp and FUP eliminate

the intra-warp misses in these benchmarks and cache hit rates further increase, demonstrating their

superior performance over BXOR. FUP outperforms pDisp in preserving cache locality because

of the utilization of all available cache sets. In SYRK and SYR2K, CONV maps inter-warp ac-

cesses into the same cache sets, while BXOR, pDisp, and FUP reduce the inter-warp concentration

31

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

1.05

ATAX BICG MVT GES SYRK SYR2K KMN BFS SPMV IIX GM

B
al

an
ce

CONV BXOR pDisp FUP

Figure 3.6: The balance of cache access distribution in different cache indexing methods.

by widely spreading these inter-warp accesses. For other benchmarks, cache indexing methods

introduce small disturbances into cache hit/miss rates that are reflected in their IPC variance.

3.3.4 Balance

Balance quantifies the accumulated uniformity of distributing the addresses over all the sets

in the cache and can be measured using following equation [47]:

balance =
∑

nset
j=1

b j×(b j+1)
2

m
2×nset

× (m+2×nset−1)
(3.2)

where b j is the total accesses to jth set and m is the total cache accesses. The per-set accesses are

weighted by b j×(b j+1)
2 , and the denominator of the equation gives the sum of the weights of all

sets in a perfectly random address distribution. A lower balance value indicates a better address

distribution over all sets, and a value of 1 indicates an ideal distribution. As shown in Figure 3.6,

all methods except pDisp eventually accumulate an even distribution for all L1D accesses across

all benchmarks. The 3.2% average change of balance in pDisp comes from the fact that it uses

only 31 out of 32 sets in the baseline L1D. More importantly, this metric is disconnected with the

actual performance improvement as shown in Figure 3.4, because it quantifies the final distribution

32

0.5

1

2

4

8

16

32

ATAX BICG MVT GES SYRK SYR2K KMN BFS SPMV IIX GM

Av
g

B
ur

st
y

C
on

ce
nt

ra
tio

n

CONV
BXOR
pDisp
FUP

Figure 3.7: Average intra-warp concentration in different cache indexing methods. The y-axis is
in logarithmic scale.

of cache accesses. Thus, balance is incapable of describing the dynamic intra-warp contention on

cache associativity when intra-warp accesses are pathologically concentrated on a few sets.

3.3.5 Average Intra-warp Concentration

Figure 3.7 presents average bursty concentration when using different indexing methods. For

the associativity-sensitive benchmarks, CONV constantly maps the intra-warp accesses of ATAX,

BICG, MVT and GES into a single set (an average bursty concentration of 32) and that of SYRK

and SYR2K into 2 and 4 sets, respectively. Such degree of intra-warp concentration causes high

intra-warp misses in ATAX, BICG, MVT and GES, and inter-warp misses in SYRK and SYR2K.

By taking more bits of the memory address into consideration, BXOR achieves ideal bursty concen-

trations in SYRK and SYR2K that have medium strides, but still causes high bursty concentrations

in ATAX, BICG, MVT, and GES that have large strides. By keeping intra-warp concentration

within the size of cache associativity, BXOR converts the majority of intra-warp misses in CONV

into inter-warp misses, which is the key to improving performance. Meanwhile, pDisp incurs an

average bursty concentration of 1.09 for the associativity-sensitive benchmarks, slightly drifting

away from its ideal intra-warp concentration of 1.03 (=32/31). By spreading intra-warp accesses

into most of the addressable sets, pDisp not only avoids intra-warp contention, but also provides

33

better potential in L1D locality preservation. This advantage explains 15.3% IPC improvement of

pDisp over BXOR in associativity-sensitive benchmarks, as shown in Figure 3.4. Other than IIX,

pDisp also incurs higher intra-warp concentration in SYRK and SYR2K that have small strides.

For the other benchmarks, BXOR and pDisp have similar results. By taking all feature bits into

account in the cache index calculation, FUP constantly adapts to both large and small strides, and

therefore achieves a perfect intra-warp concentration in all associativity-sensitive benchmarks. For

all the other benchmarks, FUP incurs slightly larger intra-warp concentration than CONV, which

is absorbed by the massive parallelism so that IPC is barely impacted. The variance of intra-warp

concentrations in BXOR, pDisp, and FUP, closely matches their IPC improvement, which sug-

gests the effectiveness of intra-warp concentration as a metric to evaluate the quality of conflict

management for GPU cache indexing methods.

3.4 Related Work

Since we have compared bitwise-XOR and prime displacement methods in Section 3.2.4 in

detail, we briefly review other related work in this section. Pseudo-random cache indexing methods

have been extensively studied to reduce conflict misses. Topham et al. [86] used XOR to build

a conflict-avoiding cache; Seznec and Bodin [74, 7, 76] combined XOR indexing and circular

shift in a skewed associative cache to form a perfect shuffle across all cache banks. XOR is also

widely used for memory indexing [66, 48, 67, 35, 19, 102]; however, no work has exploited the

pathological behaviors of cache indexing methods in GPUs.

Another common approach to reduce conflict misses is to use a secondary indexing method for

alternative cache sets when conflicts happen. This category of work includes skewed-associative

cache [74], column-associative cache [2], and v-way cache [65]. Even though FUP is designed for

LRU caches, we believe FUP is orthogonal to these cache architectures and could be combined

with them into GPUs to further reduce conflict misses.

Some works have also noticed that certain bits in the address are more critical in reducing

cache miss rate. Givargis [24] used offline profiling to detect feature bits for embedded systems.

34

This scheme is only applicable for embedded systems where workloads are often known prior

to execution. Ros et al. [71] proposed ASCIB, a three-phase algorithm, to track the changes in

address bits at runtime and dynamically discard the invariable bits for cache indexing. ASCIB

needs to flush certain cache sets whenever the cache indexing method changes, so it is best suited

for direct-mapped cache. ASCIB also needs extra storage to track the changes in the address bits.

FUP proactively covers all the feature bits in the intra- and inter-warp addresses to realize perfect

intra-warp concentration in strided access patterns and incurs no storage overhead.

Regarding the problem of intra-warp conflict misses in GPU architecture, MRPB [40] is the

most related work. Instead of increasing the utilization of L1D, MRPB attempts to reorder/prioritize

per-warp accesses and aggressively bypass L1D when intra-warp conflicts stall the LD/ST unit.

FUP solves the problem by spreading intra-warp accesses over all cache sets. Without any storage

overhead or complicated logic for request reordering and prioritization, FUP opens another avenue

to solve the problem of intra-warp conflicts in GPUs.

3.5 Summary

The inclusion of on-chip data caches into GPU was intended to reduce memory operation

latency and save bandwidth. However, the high thread counts often destroy the locality in L1D and

cause high intra-warp associativity conflicts upon memory divergence. Without spreading intra-

warp accesses into all available sets, associativity conflicts serialize the LD/ST unit and undercut

the potential of applying other optimization. Thus, it is desirable to investigate how GPU cache

indexing methods should be tailored to disperse bursty intra-warp accesses and eliminate conflicts

among them.

In this work, we first defined a metric called intra-warp concentration and a type of charac-

teristics called feature bits to guide the design of GPU cache indexing method. In addition to the

metric and feature bits, we proposed a Full-Permutation (FUP) based GPU cache indexing method

that uses all feature bits to calculate the set index via two-level XOR gates. By adopting FUP, 10

35

highly cache-sensitive benchmarks experience an average 2.46× performance improvement, out-

performing the two state-of-the-art methods, BXOR and pDisp, by 22% and 15%, respectively.

Meanwhile, intra-warp concentration is also proven to be an effective metric to quantify the dy-

namic uniformity of intra-warp accesses over all cache sets. With the help of FUP, GPUs can adapt

to any stride size that does not overflow device memory capacity.

36

Chapter 4

DaCache: Memory Divergence-Aware GPU Cache Management

4.1 Introduction

GPUs allow an application to be programmed as thousands of threads running the same code

in a lock-step manner, in which warps of 32 threads can be scheduled for execution in every cy-

cle with zero switching overhead. The massive parallelism from these Single-Instruction Multiple

Data (SIMD) threads helps GPUs achieve a dramatic improvement in computational power com-

pared to CPUs. To reduce the latency of memory operations, recent GPUs have employed multiple

levels of data caches to save off-chip memory bandwidth when there is locality within the accesses.

Due to massive multithreading, per-thread data cache capacity often diminishes. For exam-

ple, Fermi supports a maximum of 48 warps (1536 threads) on each Streaming Multiprocessor

(SM), and these warps share 16KB or 48KB L1 Data Cache (L1D) [59]. Thus, coalescing each

warp’s per-thread global memory accesses into fewer memory transactions not only minimizes the

consumption of memory bandwidth, but also alleviates cache contention. When a warp’s accesses

cannot be coalesced into one or two cache blocks, which is referred to as memory divergence, its

cache footprint is often boosted by one order of magnitude, e.g., from 1 to 32 cache blocks. Such

an explosive increase in per-warp cache footprint leads to severe contention among warps, i.e.,

inter-warp contention, on limited L1D capacity.

Under the lock-step execution model, a warp is not ready for execution until all of its threads

are ready (e.g., no thread has outstanding memory request). Meanwhile, cache-sensitive GPGPU

workloads often have high intra-warp locality [69, 70], which means data blocks are re-referenced

by their fetching warps. Intra-warp locality is often associated with strided accesses [40, 90];

however, as described in Section 2.1.2, strided accesses lead to divergent memory accesses when

stride size is large. The execution model, intra-warp locality, and potential memory divergence

37

together pose a great challenge for GPU cache management, i.e., data blocks fetched by a di-

vergent load instruction should be cached as a wholistic group. Otherwise, a warp is not ready

for issuance when its blocks are partially cached. This challenge demands a GPU-specific cache

management that can resist inter-warp contention and minimize partial caching. Though there are

many works on thrashing-resistant cache management for multicore systems [64, 22, 38, 46], they

are all divergence-oblivious, i.e., they make caching decisions at the per-thread access level rather

than at the per-warp instruction level.

Recently, GPU warp scheduling has been studied to alleviate inter-warp contention from its

source. Several warp scheduling techniques have been proposed based on various heuristics. For

example, CCWS [69], DAWS [70], and CBWT [15] rely on detected L1D locality loss, aggregated

cache footprint, and varying on-chip network latencies, respectively, to throttle concurrency at

runtime. Limiting the number of actively scheduled warps directly reduces inter-warp contention

and delivers higher reductions of cache misses than the Belady [6] replacement algorithm in highly

cache-sensitive GPGPU benchmarks [69]. We observe that coherent loads may also carry high

intra- and inter-warp locality, but are vulnerable to the thrashing from both inter- and intra-warp

divergent loads. However, warp scheduling can only be exploited to alleviate inter-warp contention

at a coarse granularity, i.e., warp level. Thus, there is still a need of a salient cache mechanism

that can manage L1D locality at both levels and, more importantly, sustain a good supply of Fully

Cached Warps (FCW) to keep warp schedulers busy.

Taken together, for a greater good on reducing cache misses and maximizing the occupancy of

GPU cores, it is imperative to integrate warp scheduling with the GPU-specific cache management

for a combined scheme that can overcome the inefficiency of existing GPU caches. To this end,

we present a Divergence-Aware Cache (DaCache) management scheme to mitigate the impacts of

memory divergence on L1D locality preservation. Based on the observation that warp scheduling

shapes the locality pattern inside L1D access stream, DaCache gauges insertion positions of in-

coming data blocks according to the fetching warp’s scheduling priority. Specifically, new blocks

are inserted into L1D in an orderly manner based on their issuing warps’ scheduling priorities.

38

DaCache also prioritizes coherent loads over divergent loads in insertion to alleviate intra-warp

contention. In addition, cache ways are conceptually partitioned into two regions, locality re-

gion and thrashing region, and replacement candidates are constrained within thrashing region to

increase thrashing resistance. If no replacement candidate is available in thrashing region, L1D

bypassing is enabled. We propose a simple mechanism to dynamically adjust the partitioning. All

these features in our DaCache design need simple modifications to existing LRU caches.

In summary, this chapter makes the following contributions:

• Evaluating caching effectiveness of GPU data caches for both memory-coherent and memory-

divergent GPGPU benchmarks, and present the problem of partial caching in existing GPU

cache management;

• Proposing a Divergence-Aware Cache management technique, namely DaCache, to orches-

trate warp scheduling and cache management for GPGPUs. By taking prioritization logic of

warp scheduling into cache management, thrashing traffic can be quickly removed so that

cache blocks of the most prioritized warps can be fully cached in L1D; in turn the increased

number of fully cached loads provides more ready warps for warp schedulers to execute;

• Designing a dynamic partitioning algorithm in DaCache to increase thrashing resistance and

implement it in a cycle-accurate simulator. Experimental results show that it can improve

caching effectiveness and improve the performance by 40.4% over baseline GPU architec-

ture, outperform two thrashing resistance cache management, RRIP and DIP, by 40% and

24.9%, respectively.

The rest of chapter is organized as follows: Section 4.2 details the design of DaCache; Ex-

perimental results and related work are presented in Section 4.3 and Section 4.4, respectively.

Section 4.5 summarizes this chapter.

4.2 Divergence-Aware GPU Cache Management

As described in the Section 2.2, divergent load instructions lead to severe cache misses in

L1D, especially inter-warp capacity conflict misses. With more data blocks not being found in

39

L1D, the number of warps that can be actively scheduled are significantly reduced. To address this

problem, we propose Divergence-Aware Cache (DaCache) management for GPUs. Based on the

observation that the re-reference interval of cache blocks are shaped by warp schedulers, DaCache

aims to exploit the prioritization information of warp scheduling logic, protect the cache blocks

of high-priority warps from being evicted by the blocks of low-priority warps, and reduce the

problem of partial caching as defined in Section 2.2. In doing so, DaCache can alleviate conflict

misses across concurrent warps such that more warps can locate all data blocks from L1D for their

load instructions. We refer to such warps as Fully Cached Warps (FCWs).

4.2.1 High-level Description of DaCache

Figure 4.1 shows a conceptual idea of DaCache in maximizing the number of FCWs. In

this example, we assume four warps concurrently execute a for-loop body that has one divergent

load instruction. At runtime, each warp generates four cache accesses in each loop iteration, and

the fetched cache blocks are re-referenced across iterations. This program example is from the

strided access pattern in our evaluated CUDA benchmarks. Ideally, all loads can hit in L1D due

to high intra-warp locality. Severe cache contention caused by massive parallelism and scarce

L1D capacity can easily thrash the locality in L1D. In order to resist thrashing, a divergence-

oblivious cache management may fairly treat accesses from all warps, leading to the scenario that

all warps miss one block in current iteration. By taking warp scheduling prioritization and memory

divergence into consideration, DaCache aims at cache misses concentrated at warps that have lower

scheduling priorities, such as W3 and W4. Consequently, warps with higher scheduling priorities,

such as W1 and W2, can be fully cached so that they are immediately ready to execute the next

iteration of the for-loop body.

DaCache leverages both warp scheduling-awareness and memory divergence-awareness to

maximize the number of FCWs. This goal necessitates several innovative changes on GPU cache

management policies. In general, cache management consists of three components: replacement,

insertion, and promotion policies [99]. Replacement policy decides which block in a set should be

40

W1 W2 W3 W4 W1 W2 W3 W4

Divergence-Oblivious
GPU Cache Management

Divergence-Aware
GPU Cache Management

Hit
Miss

High Low
Scheduling Priority Fully Cached Warps

One load

Figure 4.1: A conceptual example comparing the consequences of divergence-oblivious and
divergence-aware cache management. Divergence-aware cache management can fully cache more
warps with high scheduling priorities.

evicted upon a conflicting cache access, insertion policy defines a new block’s replacement priority,

and promotion policy determines how to update the replacement priority of a re-referenced block.

For example, in LRU caches, blocks at the LRU position are immediate replacing candidates; new

blocks are inserted into the MRU position of the LRU chain; re-referenced blocks are promoted to

the MRU position.

4.2.2 Gauged Insertion

In conventional LRU caches, since the replacement candidates are always selected from the

LRU ends, blocks in the LRU-chains have different lifetimes to stay in cache. For example, blocks

at the MRU ends have the longest lifetime, while blocks at LRU ends have shortest lifetime. Based

on this characteristic, locality of L1D blocks can be differentially preserved by inserting blocks

at different positions in the LRU-chains according to their re-reference intervals. For example,

blocks can be inserted into MRU, central, and LRU positions if they will be re-referenced in the

immediate, near, and distant future, respectively. However, it is challenging for GPU caches to

predict re-reference intervals of individual cache blocks from the thrashing-prone cache access

streams.

Since there is often high intra-warp data locality among memory-divergent GPGPU bench-

marks, the cache blocks of frequently scheduled warps have short re-reference intervals, while the

41

blocks of infrequently warps have long re-reference intervals. Under GTO warp scheduling, old

warps are prioritized over young warps and are more frequently scheduled. Thus, we can use each

warp’s GTO scheduling priority to predict its blocks’ reference intervals. Based on this observa-

tion, the insertion position (way) in DaCache is gauged as:

way = min{WPrio×NSched×Width/NSet ,Asso−1} (4.1)

where WPrio is the issuing warp’s scheduling priority, NSched is the number of warp schedulers in

each SM, NSet is the number of cache sets in L1D, Width is the SIMD width, and Asso is the cache

associativity. Behind this gauged insertion policy, we assume the accesses from divergent loads

(up-to Width accesses) are equally distributed into Nset sets, and Width/NSet quantifies average

intra-warp concentration in each cache set. Since L1D is shared by NSched warp schedulers, warps

with the same priority but from different warp schedulers are assigned with the same insertion

positions. Thus, the cache blocks of consecutive warps from the same warp scheduler are dispersed

by NSched×Width/NSet . For example, in our baseline GPU (2 warp schedulers per SM; 32 threads

per warp; 32 sets per L1D), two warps with priorities of 0 and 2 are assigned insertion positions

of 0 and 4, respectively. The gauged insertion policy is illustrated in Figure 4.2. In the figure,

data blocks of “oldest warp”, “median warp”, and “youngest warp” are initially inserted into the

MRU, central, and LRU positions, respectively. At runtime, the majority of the active warps are

infrequently scheduled and share the LRU insertion position. By doing so, blocks are inserted in

the LRU-chain in an orderly manner based on their issuing warps’ scheduling priorities.

GPU programs often have a mix of coherent and divergent loads, which are assigned with

the same insertion positions under the gauged insertion policy. Consequently, coherent loads will

be interleaved with divergent loads. Interleaved insertion can make coherent loads vulnerable to

thrashing from the bursty behaviors of divergent loads. The thrashing to coherent loads may not

be limited to inter-warp contention. Figure 2.4 demonstrates the existence of intra-warp conflict

misses in conventional LRU caches. We propose to explicitly prioritize coherent loads over diver-

gent loads by inserting blocks of coherent loads into MRU positions, regardless of their issuing

warps’ scheduling priorities. Coherent loads may not carry any locality, and inserting their blocks

42

MRU LRU

2 3 1 A C B a b 2 3 1 A C B a b 2 3 1 A C B a b

Access block 4

2 3 1 A C B a 4

Access block D

A D 2 3 B C a 1

Access block c

A B 2 3 C c 1 a

Inserted to LRU Inserted to central Inserted to MRU

to evict to evict to evict

Access block 3 Access block C Access block b

2 A 1 3 C B a b 2 3 1 A B C a b 2 3 1 A C B b a
Promoted by 1 Promote by 1 Promote by 1

(a) Oldest warp (b) Median warp (c) Youngest warp

1 block of oldest warp A block of median warp a block of youngest warp

Initial State Initial State Initial State

Figure 4.2: Illustrative example of insertion and promotion policies of DaCache.

into MRU positions is adversary to locality preservation. We use a victim cache to detect whether

coherent loads have intra-warp locality, and then MRU insertion and LRU insertion are applied

to coherent loads with and without locality, respectively. Motivated by the observation from Fig-

ure 2.3b, we empirically use MRU insertion for divergent load instructions with no more than 5

memory requests.

Each entry of the victim cache has two fields, PC and data block tag. For a 48bit virtual

address space, maximally the PC field needs 45 bits and the tag field needs 41 bits. Since only the

mostly prioritized warp is sampled at runtime to detect the locality information of coherent loads,

a 16-entry victim cache is sufficient across the evaluated benchmarks, which incurs only 172B

storage overhead on each SM. The dynamic locality information of each coherent load is stored in

a structure named Coherent Load Profiler (CLP). CLP entries have two fields, PC field (45 bits) and

one flag field (1 bit) to indicate locality information. A 32-entry CLP incurs 184B storage overhead.

Note that, when a load instruction is issued into LD/ST, memory access coalescing in MACU

and CLP lookup can be executed in parallel. Once the locality information of a coherent load is

determined, victim cache can be bypassed to avoid repetitive detection. Such storage overhead can

be eliminated by embedding the potential locality information into PTX instructions via compiler

support. We leave this as our future work.

43

Note that the insertion policy only gives an initial data layout in L1D to approximate re-

reference intervals. During the runtime, the initial data layout can be easily disturbed because

re-referenced blocks are directly promoted to the MRU positions, regardless of their current posi-

tions in the LRU-chain. In other words, this MRU promotion can invert the intention of DaCache

insertion policy. Partially motivated by the incremental promotion in PIPP [99] that promotes

re-referenced block by 1 position along the LRU-chain, DaCache also adopts a fine-grained pro-

motion policy to cooperate with the insertion policy. Figure 4.2 illustrates a promotion granularity

of 2 positions. Our experiments in Section 4.3.7 show that a promotion granularity of 4 achieves

the best performance for the benchmarks we have evaluated.

4.2.3 Constrained Replacement

In general, in LRU caches, the block on the LRU end is considered as the replacement can-

didate. However, as we model cache contention by allocating cache block on miss and reserving

blocks for outstanding requests [4], the block at the LRU position may not be replaceable. A re-

placeable block that is the closest to the LRU position is then selected. Thus, the replacement

decision is no longer constrained on the LRU end, and any block in the set may be a replace-

ment candidate. Such unconstrained replacement positions make inter-warp cache conflicts very

unpredictable.

To protect the intention of gauged insertion, we introduce a constrained replacement policy

in DaCache so that only a few blocks close to the LRU end can be replaced. This constrained

replacement conceptually partitions the cache ways into two portions, locality region and thrashing

region. Replacement can then only be made inside the thrashing region. This partitioning (p) can

be calculated as: p = Asso×F
SIMD Width/NSet

− 1, where F is a tuning parameter in the range between 0

and 1. Denoting the MRU and LRU ends with the way indexes of 0 and Asso-1, respectively, the

locality region is located in the range from the 0th to the pth way of a cache set, while the thrashing

region occupies the other ways. We tune the value of F to have the optimal static partitioning p.

Besides, all sets in each L1D are equally partitioned.

44

Given the gauged insertion policy, this logical partitioning of L1D accordingly divides all

active warps into two groups, locality warps and thrashing warps. If a warp’s scheduling priority is

higher than (p+1)/NSched , it’s a thrashing warp, otherwise it is considered as a locality warp. The

cache blocks of locality warps are inserted into the locality region using the gauged insertion policy

so that they can be less vulnerable to thrashing traffic. By doing so, locality warps have a better

chance to be fully cached and immediately ready for re-scheduling. In order to cooperate with

such a constrained replacement policy, divergent loads of thrashing warps are exclusively inserted

into LRU positions so that they can not pollute existing cache blocks in L1D. Though the 3 oldest

warps managed by each warp scheduler are mostly scheduled as shown in Figure 2.3, i.e., p=5 in

our baseline, our experiments in Section 4.3.4 show that maintaining 2 FCWs per warp scheduler

(p=3) actually achieves the optimal performance with the extended insertion and unconstrained

replacement policies.

With the constrained replacement policy, replacement candidates may not always be available.

Thus, we discuss two complementary approaches to enforce constrained replacement. The first

approach is called Constrained Replacement with L1D Stalling. It’s possible that a replacement

candidate cannot be located within our baseline cache model, though at a very low frequency.

Once this happens, the cache controller repetitively replays the missing access until one block in

the thrashing region becomes replaceable. Stalling L1D is the default functionality within our

cache model and then can be used with constrained replacement at no extra cost.

The second approach is called Constrained Replacement with L1D Bypassing. Instead of

waiting for reallocating reserved cache blocks, bypassing L1D proactively forwards the thrashing

traffic into lower memory hierarchy. Without touching L1D, bypassing can avoid not only L1D

thrashing, but also memory pipeline stalls. When a bypassed request is back, its data is directly

written to register file rather than a pre-allocated cache block [40]. In our baseline architecture,

caching in L1D forces the size of missed memory requests to be cache block size. For each cache

access of a divergent load instruction, only a small segment of the cache block are actually used,

depending on the data size and access pattern. Without caching, the extra data in the cache block

45

Start

END

Fully Cached?

CNT == Cmax
&&

FCW<Wmax

FCW--
CNT=Cmax/2

CNT++

CNT-= FCW- GTO_prio

CNT == 0 &&
FCW>1

FCW++
CNT=Cmax/2

GTO_prio <
FCW

CNT--

Yes No

No Yes

No No

Yes Yes

1

2

4 5

6

7

3

Figure 4.3: Flow of the proposed dynamic partitioning algorithm. Fully Cached Warps (FCW)
is based on the number of fully cached loads (CNT) and each warp’s GTO scheduling priority
(GTO prio).

is a pure waste of memory bandwidth. Thus, bypassed memory requests are further reduced to

aligned 32B segments, which is the minimum coalesced segment size as discussed in [61].

4.2.4 Dynamic Partitioning of Warps

Our insertion and replacement policies rely on a static partitioning p, which incorporates the

scheduling priorities of active warps into the cache management. However, the static choice of p

is not very suitable in two important scenarios. First, branch divergence reduces per-warp cache

footprint so that the locality region is capable of accommodating more warps. It can be observed

from Figure 2.3b that branch divergence enables more warps be actively scheduled. Second, ker-

nels may have multiple divergent load instructions so that the capacity of locality region is only

enough to cache one warp from each warp scheduler. For example, SYR2, GES, and SPMV have

two divergent loads, while IIX and PVC have multiple divergent loads.

46

Thus, we propose a mechanism for dynamic partitioning of warps based on the accumulated

statistics of fully cached divergent loads. Figure 4.3 shows the flow of dynamically adjusting Fully

Cached Warps (FCW) based on the accumulated number of fully cached loads (CNT) and each

warp’s GTO scheduling priority (GTO prio). At runtime, CNT is increased by 1 (¶) for each

fully cached load. When CNT is saturated (CNT==Cmax), if FCW has not reached its maximum

value (Wmax), FCW is increased by 1 and accordingly CNT is reset as Cmax/2 to track fully

cached divergent loads under the new partitioning (·). For partially cached loads (¸), CNT is

decreased differently depending on the issuing warp’s scheduling priority. For instance, if a warp’s

scheduling priority is lower than FCW, CNT is decreased by 1 (¹); otherwise, CNT is decreased

by FCW-GTO prio (º) to speed up the process of achieving the optimal FCW. When CNT reaches

zero, FCW is decreased by 1 so that less warps are assigned into the locality region (»). In our

proposal, each warp scheduler has at least 1 warp in the locality region; while Wmax is equal to

48, which is the number of physical warps on each SM. Thus, in the corner cases when FCW is 1

or Wmax (¼), CNT will not be overflowed if it’s saturated.

In order to implement the logic of dynamic partitioning, we first use one register (Div-reg) to

mark whether a load is divergent or not, depending on the number of coalesced memory requests.

Div-reg is populated when a new load instruction is serviced by L1D. We then use another register

(FCW-reg) to track whether a load is fully cached or not. FCW-reg is reset when L1D starts to

service a new load, and is set when a cache miss happens. When all the accesses of the load are

serviced, FCW-reg being unset indicates a fully cached load. The logic of dynamic partitioning is

triggered when a divergent load retires from the memory stage. We empirically use a 8-bit counter

for CNT so that it can maximally record 256 consecutive occurrence of fully/partially cached loads,

i.e., Cmax=256 in Figure 4.3. CNT is initialized as 128 while FCW is 4. This initial value of FCW

is based on our experiments of static partitioning schemes showing that maintaining two FCWs for

each warp scheduler has the best overall performance.

47

Table 4.1: Baseline GPGPU-Sim Configuration for DaCache Study

of SMs 30 (15 clusters of 2)
SM Configuration 1400Mhz, Reg #: 32K, Shared Memory: 48KB, SIMD Width:

16, warp: 32 threads, max threads per SM: 1024
Caches / SM Data: 32KB/128B-line/8-way, Constant: 8KB/64B-line/24-way,

Texture: 12KB/128B-line/2-way
Branching Handling PDOM based method [21]

Warp Scheduling GTO
Interconnect Butterfly, 1400Mhz, 32B channel width

L2 Unified Cache 768KB, 128B line, 16-way
Min. L2 Latency 120 cycles (compute core clock)

Cache Indexing Pseudo-Random Hashing Function [58]
Memory Partitions 6

Memory Banks 16 per memory partition
Memory Controller Out-of-Order (FR-FCFS), max request queue length: 32

GDDR5 Timing tCL = 12, tRP = 12, tRC = 40, tRAS = 28, tRCD = 12, tRRD = 6,
tCDLR = 5, tWR = 12

4.3 Experimental Evaluation

GPGPU-Sim [4] (version 3.2.1), a cycle-accurate simulator, is used for the performance eval-

uation of DaCache. The main characteristics of the baseline GPU architecture are summarized in

Table 4.1. Jia et al. [40] reported that the default cache indexing method employed by this ver-

sion of GPGPU-Sim can lead to severe intra-warp conflict misses, so we use the indexing method

from real Fermi GPUs, pseudo-random hashing function [58]. This indexing method has been

adopted in the latest version of GPGPU-Sim. This change in GPGPU-Sim configuration isolates

the impacts of intra-warp associativity conflicts from the motivational studies of partial caching in

Section 2.2 and performance evaluation of DaCache, and gives a faithful simulation of real GPU

hardware.

20 data intensive benchmarks from Rodinia [12], PolyBench/GPU [28], SHOC [17], and

MapReduce [32] are used for the performance evaluation of DaCache. For each benchmark, Ta-

ble 4.2 lists a brief description, status of branch divergence, and the input size that is used in

motivational experiments presented in Section 2.2 and performance evaluations in the rest of this

48

Table 4.2: GPGPU Benchmarks (CUDA) for DaCache Study

Abbr. Application Suite Input Branch
Memory Divergent Benchmarks

1 ATAX matrix-transpose and vector mul. PolyBench 8K×8K N
2 BICG kernel of BiCGStab linear solver PolyBench 8K×8K N
3 MVT Matrix-vector-product transpose PolyBench 8K N
4 SYR Symmetric rank-K operations PolyBench 512×512 N
5 SYR2 Symmetric rank-2K operations PolyBench 256×256 N
6 GES Scalar-vector-matrix mul. PolyBench 4K N
7 KMN Kmeans Clustering Rodinia 28K 4x features N
8 SC Stream Cluster Rodinia 256K points N
9 BFS Breadth-First-Search Rodinia 5M edges Y

10 SPMV Sparse matrix mul. SHOC default Y
11 IIX Inverted Index Mars 6.8M Y
12 PVC Page View Count Mars 100K Y

Memory Coherent Benchmarks
13 2DC 2D Convolution PolyBench default N
14 3DC 3D Convolution PolyBench default N
15 2MM 2 Matrix Multiply PolyBench default N
16 3MM 3 Matrix Multiply PolyBench default N
17 COV Covariance Computation PolyBench default N
18 COR Correlation Computation PolyBench default N
19 FD 2D Finite Difference Kernel PolyBench default N
20 GS Gram-Schmidt Process PolyBench default N

section. Benchmark SC repetitively invokes the same kernel 290 times with the default input size

(16K points) until the computation completes. Since simulation is several orders of magnitude

slower than real hardware, only two kernel invocations in SC are enabled so that its simulation

time is reasonable with larger input size (256K points). All of the other benchmarks, ranging from

70 million to 6.8 billion dynamic instructions, are run to completion. The benchmarks are catego-

rized into memory-divergent and memory-coherent ones, depending on the dynamic divergence of

load instructions in these benchmarks. In general, memory-divergent benchmarks are more sen-

sitive to cache capacity than memory-coherent benchmarks. Recent works [69, 70, 40, 90] report

that high intra-warp L1D locality exists among these cache-sensitive workloads. In addition, BFS,

SPMV, IIX, and PVC also have rich branch divergence.

49

The following cache management techniques are evaluated:

LRU is the baseline cache management. Without further mentioning, all performance numbers

are normalized to LRU.

Dynamic Insertion Policy (DIP) [64] consists of both LRU and MRU insertions. Cache misses

are sampled from the sets that are dedicated to LRU and MRU insertions, and a winning

insertion policy for all other “follower” sets. This mechanism is referred as set-dueling.

In our evaluation, 4 sets are dedicated for each insertion policy and the other 24 sets are

managed by the winning policy.

Re-Reference Interval Prediction (RRIP) [38] uses Re-Reference Prediction Values (RRPV) to

manage blocks in a set. With an M-bit RRPV-chain, new blocks are predicted with RRPVs

of 2M-1 or 2M-2, depending on the winning policy from the set-dueling mechanism. We

implement RRIP with a Frequency Priority based promotion and a 3-bit RRPV chain.

DaCache consists of gauged insertion and incremental promotion (Section 4.2.2), constrained re-

placement with L1D bypassing (Section 4.2.3), and dynamic partitioning (Section 4.2.4). By

default, DaCache has a promotion granularity of 4 and the locality region starts with host-

ing 2 warps from each warp scheduler. We evaluate DaCache variants with unconstrained

replacement (DaCache-Uncon) and constrained replacement with L1D stalling (DaCache-

Stall) to demonstrate the importance of using warp scheduling to guide cache management.

4.3.1 Instructions Per Cycle (IPC)

Figure 4.4 compares the performance of various cache management techniques for both memory-

divergent and memory-coherent benchmarks. For memory-divergent benchmarks, RRIP on aver-

age has no IPC improvement. The performance gains of RRIP are balanced out by its loss in

ATAX, BICG, MVT, and SYR, which exhibit LRU-friendly accesses patterns under GTO. Because

of the intra-warp locality, highly prioritized warps leave large amount of blocks in the locality re-

gion that no other warps will re-reference, i.e., dead blocks, after they retire from LD/ST units.

50

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

ATAX BICG MVT SYR SYR2 GES KMN SC BFS SPMV IIX PVC Gmean 2DC 3DC 2MM 3MM COR COV GS FD Gmean

Memory Divergent Memory Coherent

IP
C

RRIP DIP DaCache-Uncon DaCache-Stall DaCache

Figure 4.4: IPC of memory-divergent and memory-coherent benchmarks when various cache man-
agement techniques are used.

RRIP’s asymmetric processes of promotion and replacement make it slow to eliminate the dead

blocks, leading to inferior performance in these LRU-friendly benchmarks. Dynamically adjusting

between LRU and MRU insertions makes DIP capable of both LRU-friendly and thrashing-prone

patterns, therefore DIP has 12.4% IPC improvement. In contrast, DaCache-Uncon, DaCache-Stall,

and DaCache have an improvement of 25.9%, 25.6%, and 40.4%, respectively. The performance

advantage of DaCache-Uncon proves the effectiveness of incorporating warp scheduling into L1D

cache management. Based on this warp scheduling-awareness, constrained replacement with L1D

stalling (DaCache-Stall) has no any extra performance gain. However, enabling constrained re-

placement with L1D bypassing achieves another improvement of 14.5% in DaCache.

Among the memory-coherent benchmarks, only GS has experienced significant performance

improvement when DIP is applied. This 8% improvement in DIP is because GS has inter-kernel

data locality, and inserting new blocks into LRU position when detected locality is low can help

to carry data locality across kernels. We believe this performance improvement will diminish

when data size is large enough. For the others, all of the cache management techniques have

negligible performance impact. By focusing on memory divergence, DaCache and its variants

51

0

10

20

30

40

50

60

70

80

90

100

ATAX BICG MVT SYR SYR2 GES KMN SC BFS SPMV IIX PVC

Fu
lly

 C
ac

he
d

D
iv

. L
oa

ds
 (%

)

LRU
RRIP
DIP
DaCache-Uncon
DaCache-Stall
DaCache

(a) Divergent Loads

0

10

20

30

40

50

60

70

80

90

100

ATAX BICG MVT SYR SYR2 GES KMN SC BFS SPMV IIX PVC

Fu
lly

 C
ac

he
d

C
oh

. L
oa

ds
 (%

)

LRU
RRIP
DIP
DaCache-Uncon
DaCache-Stall
DaCache

(b) Coherent Loads

Figure 4.5: Percentages of fully cached load instructions in memory divergent benchmarks.

have no detrimental impacts on memory coherent workloads. We believe DaCache is applicable to

a large variety of GPGPU workloads.

4.3.2 Fully Cached Loads

The percentages of fully cached loads (Figure 4.5) explain the performance impacts of various

cache management techniques on these memory-divergent benchmarks. As shown in Figure 4.5a,

LRU outperforms DIP and RRIP in fully caching divergent loads. Since GTO warp scheduling

essentially generates LRU-friendly cache access patterns, LRU cache matches the inherent pattern

52

so that the blocks of divergent loads are inserted into the contiguous positions of the LRU-chain.

In contrast, DIP and RRIP dynamically insert blocks of the same load into different positions of

LRU-chain and RRPV-chain, respectively, making it hard to fully cache divergent loads. Thus, the

performance impacts of RRIP and DIP mainly come from their capabilities in preserving coherent

loads. As shown in Figure 4.5b, for ATAX, BICG, MVT, and SYR, RRIP also achieves less

fully cached coherent loads than LRU, therefore it has worse performance than LRU in the four

benchmarks; DIP recovers more coherent loads than LRU, but these gains are offset by loss in

caching divergent loads, leading to marginal performance improvement. For SYR2, GES, KMN,

SC, and BFS, RRIP and DIP improve the effectiveness of caching coherent loads, leading to the

performance improvement in the five benchmarks.

DaCache-Uncon, DaCache-Stall, and DaCache constantly outperform LRU, RRIP, and DIP

in fully caching loads, except for benchmark SC. This advantage comes from the following three

factors. First, guided by the warp scheduling prioritization, the gauged insertion implicitly en-

forces LRU-friendliness. Thus, DaCache-Uncon achieves 35.1% more fully cached divergent

loads. Second, deliberately prioritizing coherent loads over divergent loads alleviates the inter-

and intra-warp thrashing from divergent loads. Thus, DaCache-Uncon achieves 27.3% more fully

cached coherent loads. Third, constrained replacement can effectively improve the caching ef-

ficiency for highly prioritized warps. Based on DaCache-Uncon, constrained replacement with

L1D stalling (DaCache-Stall) achieves 37.2% and 27.6% more fully cached divergent and coher-

ent loads than LRU, respectively; while constrained replacement with L1D bypassing (DaCache)

achieves 70% and 34.1% more fully cached divergent and coherent loads than LRU, respectively.

In SC, the divergent loads come from the references to arrays of structs outside of a loop, and

references to different members of the struct entry are sequential so that the LRU has the high-

est percentage of fully cached divergent loads (48.7%). Divergent loads in SC make up only a

small portion of the total loads; therefore the number of fully cached coherent loads dominates the

performance impacts.

53

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ATAX BICG MVT SYR SYR2 GES KMN SC BFS SPMV IIX PVC Gmean

N
or

m
al

iz
ed

 M
PK

I

RRIP DIP
DaCache-Uncon DaCache-Stall
DaCache

Figure 4.6: MPKI of various cache management techniques.

4.3.3 Misses per Kilo Instructions (MPKI)

We also use MPKI to analyze the performance impacts of various cache management tech-

niques on these memory-divergent benchmarks. As shown in Figure 4.6, except ATAX, BICG,

MVT, and SYR, all of the five techniques are effective in reducing MPKIs. Because GPUs are

throughput-oriented and rely on the number of fully cached warps to overlap long latency mem-

ory accesses, the significant MPKI increase of DIP in the four benchmarks is tolerated so that it

doesn’t have negative performance impacts. However, RRIP incurs on average a 32.5% increase

in MPKIs in the four benchmarks, which leads to 14.5% performance degradation. Across the 12

benchmarks, on average, RRIP increases MPKIs by 6.4%, while DIP reduces MPKIs by 3.8%.

Meanwhile, DaCache-Uncon, DaCache-Stall, and DaCache consistently achieve MPKI re-

ductions. On average, they reduce MPKIs by 20.8%, 22.4%, and 25%, respectively. Though

DaCache-Stall reduces 1.6% more MPKIs than DaCache-Uncon, its potential performance advan-

tage is compromised by adversely inserted L1D stall cycles. On the contrary, bypassing L1D in

DaCache not only prevents L1D locality from being thrashed by warps with low scheduling priori-

ties, but also enables these thrashing warps to directly access data cached in lower cache hierarchy.

So 4.2% more MPKI reductions of DaCache brings 40.4% IPC improvement.

54

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ATAX BICG MVT SYR SYR2 GES KMN SC BFS SPMV IIX PVC Gmean

IP
C

Static0 Static1 Static2 Static3 Dyn

Figure 4.7: DaCache under static and dynamic partitioning.

4.3.4 Static vs. Dynamic Partitioning

Figure 4.7 examines the performance of DaCache when various static partitioning schemes

and dynamic partitioning are enabled. For this experiment, the constrained replacement is disabled.

StaticN means that N warps are cached in locality region. For example, in Static0, all blocks

fetched by divergent loads are initially inserted into the LRU positions. Note that our baseline L1D

is 8-way associative, Static3 and Static4 actually lead to identical insertion positions for all warps.

Thus, we only compare dynamic partition (Dyn) with Static0, Static1, Static2, and Static3.

Without any information from warp scheduling, Static0 blindly inserts all blocks of divergent

loads into LRU positions, therefore it becomes impossible to predict which warps’ cache block

are more likely to be thrashed. On average, this inefficiency of Static0 incurs 0.1% performance

loss. On the contrary, by implicitly protecting 1, 2, and 3 warps for each warp scheduler, Static1,

Static2, and Static3 achieve performance improvement of 23%, 24.7%, and 21.9%, respectively.

Note that Static2 equally partitions L1D capacity into locality and thrashing regions, and the lo-

cality region is sufficient to cache two warps from each warp scheduler. Except IIX and PVC, all

other benchmarks have maximally two divergent loads in each kernel, therefore Static2 has the

best performance improvement. Our dynamic partitioning scheme (Dyn) achieves a performance

55

0

0.2

0.4

0.6

0.8

1

1.2

1.4

ATAX BICG MVT SYR SYR2 GES KMN SC BFS SPMV IIX PVC Gmean

IP
C

S0+Stall S1+Stall S2+Stall S3+Stall Dyn+Stall

Figure 4.8: The impacts of using L1D Stalling to complement Constrained Replacement policy un-
der static and dynamic partitioning. Results are normalized to corresponding partitioning schemes.

improvement of 25.9%, outperforming all static partitioning schemes among the evaluated bench-

marks. We expect this dynamic partitioning scheme can adapt to other L1D configurations and

future GPGPU benchmarks that have diverse branch and memory divergence.

4.3.5 Constrained Replacement with L1D Stalling

Figure 4.8 explains when stalling L1D can be an effective complement to replacement policy

under static and dynamic partitioning. SN is equivalent to StaticN in Figure 4.7. The results are

normalized to respective partitioning configurations. For example, Dyn+Stall is normalized to Dyn

so that the impacts of stalling L1D can be explicitly presented. On average, enabling stall to com-

plement replacement incurs 4.3%, 3.4%, 0%, and 6.9% performance loss in S0+Stall, S1+Stall,

S2+Stall, and S3+Stall, respectively. Note that SC is the major contributor of the performance

degradation. In SC, divergent loads are at the end of the kernel but out side of the main for loop

body; stalling the divergent loads to prevent cache thrashing delays the completion of warps. On

average, Dyn+Stall achieves 1% performance improvement. Since stalling L1D only works for a

few partitioning schemes, we can conclude that L1D stalling is not suitable for GPU architecture

to prevent cache thrashing.

56

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ATAX BICG MVT SYR SYR2 GES KMN SC BFS SPMV IIX PVC Gmean

IP
C

S0+Bypass S1+Bypass S2+Bypass S3+Bypass Dyn+Bypass

Figure 4.9: The impacts of using L1D Bypassing to complement Constrained Replacement pol-
icy under static and dynamic partitioning. Results are normalized to corresponding partitioning
schemes.

4.3.6 Constrained Replacement with L1D Bypassing

Figure 4.9 explains when bypassing L1D can be an effective complement to replacement

policy under static and dynamic partitioning. SN is equivalent to StaticN in Figure 4.7. The

results are normalized to respective partitioning configurations. On average, constrained replace-

ment with L1D bypassing incurs 0.6%, -5%, 12.8%, 11.4% and 11.6% performance improvement

in S0+Bypass, S1+Bypass, S2+Bypass, S3+Bypass, and Dyn+Bypass, respectively. Note that

these numbers are relative to partition-only configuration and are mainly used to quantify whether

bypassing L1D is a viable complement to replacement policy. The performance degradation of

S1+Bypass are mainly caused by ATAX, BICG, and MVT. We observe that the three benchmarks

have a large amount of dead blocks in L1D. Aggressive bypassing slows down the removal of dead

blocks so that cache capacity is underutilized.

4.3.7 Sensitivity to Promotion Granularity

Figure 4.10 analyzes the sensitivity of DaCache to the granularity in promotion policy. In this

experiment, Promo-MRU immediately promotes re-referenced blocks to the MRU positions, while

57

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ATAX BICG MVT SYR SYR2 GES KMN SC BFS SPMV IIX PVC Gmean

IP
C

Promo1 Promo2 Promo3 Promo4 Promo5 Promo-MRU

Figure 4.10: The impacts of promotion granularity under dynamic partitioning. PromoN means
re-referenced blocks are promoted by N positions along the LRU-chain.

Promo1, Promo2, Promo3, Promo4, and Promo5 promote re-referenced blocks by 1, 2, 3, 4, and

5 positions respectively along the LRU-chain unless they reach the MRU position. As we can see,

the majority of the benchmarks are sensitive to promotion granularity. These dead blocks are grad-

ually demoted into thrashing region by inserting new blocks and/or promoting re-referenced blocks

into locality region. Thus, promotion granularity plays a critical role in eliminating dead blocks.

Compared with LRU caches that directly promote re-referenced block to the MRU position, incre-

mental promotion slowly promotes “hot” blocks towards the MRU position. The performance gap

between Promo1 (37.1%) and Promo4 (40.4%) shows the importance of a fine-grained promotion

policy in DaCache.

4.4 Related Work

There has been a large body of proposals on cache partitioning [29, 36, 37, 99, 11] and re-

placement policies [30, 65, 80] to increase the cache performance in CPU systems. However, these

proposals do not handle the memory divergence issue within the massive parallelism of GPUs.

Thus, we mainly review the latest work within the context of GPU cache management.

58

4.4.1 Cache Management for GPU Architecture

L1D bypassing has been adopted by multiple proposals to improve the efficiency of GPU

caches. Jia et al. [40] observed that certain GPGPU access patterns experience significant intra-

warp conflict misses due to the pathological behaviors in conventional cache indexing methods,

and thus proposed a hardware structure called Memory Request Prioritization Buffer (MRPB).

MRPB reactively bypasses L1D accesses that are stalled by cache associativity conflicts. Chen

et al. [16] used extensions in L2 cache tag to track locality loss in L1D. If a block is requested

twice by the same SM, it’s assumed that severe contention happens in L1D so that replacement is

temporarily locked down and new requests are bypassed into L2. Chen et al. proposed another

adaptive cache management policy, Coordinated Bypassing and Warp Throttling (CBWT) [15].

CBWT uses protection distance prediction [18] to dynamically assign each new block a protec-

tion distance (PD), which guarantees that the block will not be evicted if its PD has not reached

zero. When no unprotected lines are available, bypassing is triggered and the PD values are de-

creased. CBWT further throttles concurrency to prevent NOC from being congested by aggressive

bypassing. Different from the above three techniques, bypassing L1D in DaCache is coordinated

with warp scheduling logic and a finer-grained scheme to alleviate both inter- and intra-warp con-

tention. At runtime, bypassing is limited to the thrashing region which caches divergent loads from

warps with low scheduling priorities and coherent loads with no locality.

Compiler directed bypassing techniques have been investigated to improve GPU cache perfor-

mance in [39, 98], but the static bypassing decisions mainly work for regular workloads. DaCache

is a hardware solution for GPU cache management and can adapt to program behavior changes at

runtime. In some heterogeneous multicore processors, CPU and GPU cores share the Last Level

Cache (LLC). There are also some work on cache management for this kind of heterogeneous sys-

tems [49, 55]. Although DaCache is designed for discrete GPGPUs, the idea of coordinating warp

scheduling and cache management is also applicable to hybrid CPU-GPU systems.

Dong proposed an AgeLRU algorithm [52] for GPU cache management. AgeLRU uses extra

fields in cache tags to track each cache line’s predicted reuse distance, reuse count, and the active

59

warp ID of the warp fetching the block, which together are used to calculate a score for replace-

ment. The calculated score is reciprocal to each warp’s age, i.e., older warps have higher scores to

be protected. At runtime, the block with the lowest score is selected as replacement candidate and

bypassing can be enabled when the score of the replacement victim is above a given threshold. By

doing so, AgeLRU achieves the goal of preventing young warps from evicting blocks of old warps.

DaCache doesn’t need either storage in tag array or complicated calculation to assist replacement.

By renovating the management policies, DaCache is more complexity-effective than AgeLRU to

realize the same goal.

4.4.2 Warp Scheduling

There are several works that use warp scheduling algorithms to enable thrashing resistance

in GPU data caches. Motivated by the observation that massive multithreading can increase con-

tention in L1D for some highly cache-sensitive GPGPU benchmarks, Rogers et al. proposed a

Cache Conscious Warp Scheduler (CCWS) [69] to limit the number of warps that issue load in-

structions when it detects loss of intra-warp locality. Following that, Rogers et al. also proposed

a Divergence-Aware Warp Scheduling (DAWS) [70] to limit the number of actively scheduled

warps whose aggregate cache footprint does not exceed L1D capacity. Kayiran et al. [44] pro-

posed DYNCTA, a dynamic Cooperative Thread Array (CTA) scheduling mechanism. DYNCTA

throttles the number of CTAs on each core according to application characteristics. Typically,

DYNCTA reduces CTAs for data-intensive applications to minimizing resource contention. By

throttling concurrency, cache contention can be alleviated, and Rogers et al. reported in [69] that

warp scheduling can be more effective than optimal cache replacement [6] in preserving L1D lo-

cality. However, throttling concurrency usually permits only a few warps to be active, though each

warp scheduler is hosting a lot more warps that are ready for execution (maximally 24 warps in our

baseline). Our work is orthogonal to these warp scheduling algorithms, because contention still

exists in reduced concurrency. DaCache can be used to increase cache utilization under reduced

concurrency and also uplift the resultant concurrency.

60

4.5 Summary

GPUs are throughput-oriented processors that depend on massive multithreading to tolerate

long latency memory accesses. The latest GPUs all are equipped with on-chip data caches to reduce

the latency of memory accesses and save the bandwidth of NOC and off-chip memory modules.

These tiny data caches are vulnerable to thrashing from massive multithreading, especially when

divergent load instructions generate long bursts of cache accesses. Meanwhile, the blocks of di-

vergent loads exhibit high intra-warp locality and are expected to be atomically cached so that the

issuing warp can fully hit in L1D in the next load issuance. However, GPU caches are not designed

with enough awareness of either lock-step execution model or memory divergence.

In this work, we renovate the cache management policies to design a GPU-specific data cache,

DaCache. This design starts with the observation that warp scheduling can essentially shape the

locality pattern in cache access streams. Thus, we incorporate the warp scheduling logic into

insertion policy so that blocks are inserted into the LRU-chain according to their issuing warp’s

scheduling priority. Then, we deliberately prioritize coherent loads over divergent loads. In order

to enable thrashing resistance, the cache ways are partitioned by desired warp concurrency into two

regions, the locality region and the thrashing region, so that replacement is constrained within the

thrashing region. When no replacement candidate is available in the thrashing region, incoming

requests are bypassed. We also implement a dynamic partition scheme based on the caching effec-

tiveness that is sampled at runtime. Experiments show that DaCache achieves 40.4% performance

improvement over the baseline GPU and outperform two state-of-the-art thrashing resistant cache

management techniques RRIP and DIP by 40% and 24.9%, respectively.

61

Chapter 5

OAWS: Memory Occlusion Aware Warp Scheduling

5.1 Introduction

To sustain the execution of a massive number of threads, GPUs are designed with GDDR5-

based global memory that supports very high memory bandwidth. In addition, GPUs rely heavily

on global memory coalescing to aggregate memory accesses from a warp of threads for higher

bandwidth and fast access. Furthermore, the GPU scheduler strives to hide the latency of memory

access by alternating the execution of many warps and overlapping the memory access of some

warps with the computation of other warps.

GPU applications usually have a wide range of memory access patterns, many of which are

very irregular. Despite the high-bandwidth GPU global memory, irregular patterns can still stall

the GPU memory and degrade the effectiveness of massive parallelism. Recently GPUs have

employed a hierarchy of data caches to reduce memory latency and save the on-chip network and

off-chip memory bandwidth when there is locality within the accesses. However, the cache is

frequently thrashed by divergent memory accesses. To tackle this problem, GPU L1D bypassing

has been well studied to alleviate cache contention [40, 16, 15, 93, 51, 52, 103, 45]. For example,

MRPB [40] aggressively bypasses L1D whenever an associativity stall occurs, but the cache is still

underutilized. Two recent works [69, 70] reported that throttling the number of concurrent warps

reduces the accumulated working set so that the contention on cache capacity is alleviated and

locality is preserved.

Although the aforementioned efforts improved the memory performance of GPU applications,

they overlooked some hazardous situations that are faced by GPU memory instructions. In this

chapter, we have closely examined GPU resource utilization when executing data-intensive bench-

marks. Our detailed analysis of GPU global memory accesses reveals that divergent accesses can

62

lead to the occlusion of Load-Store units due to rapid depletion of MSHR (Memory Status History

Register) entries. This memory occlusion, in turn, stalls the execution pipeline, reducing GPU par-

allelism and degrading the overall performance. Our analysis shows that memory occlusion can

significantly delay both coherent and divergent GPU instructions, exaggerate the memory stalls,

and deteriorate the overall utilization of GPU.

Based on our analysis, we propose memory Occlusion Aware Warp Scheduling (OAWS) to

monitor the usage of MSHR entries, predict the MSHR requirement of memory instructions, and

schedule the warps that can be satisfied by the available MSHR entries, thereby preventing memory

occlusion and increasing the effective parallelism among GPU warps. OAWS is designed with

both static and dynamic methods to predict the required MSHR entries from GPU warps. Static

OAWS predicts the misses from all warps with a fixed miss rate while dynamic OAWS takes

into account the varying access patterns of different warps to predict cache misses on a per-warp

basis. Particularly, dynamic OAWS has seamlessly integrated the warp priority and a concurrency

estimation model in its prediction to prevent memory occlusion while preserving cache locality.

We have leveraged a wide variety of benchmarks to evaluate the performance of OAWS

and demonstrated that OAWS outperforms three state-of-the-art warp scheduling techniques, i.e.,

CCWS [69], SWL [69], and MASCAR [73]. Specifically, our experiments show that our static and

dynamic versions of OAWS achieve 35.3% and 74% compared to baseline GTO warp scheduling.

To the best of our knowledge, this body of work is the first to investigate the memory occlusion

issue on GPU and address it through warp scheduling algorithms.

The rest of this chapter is organized as follows. Section 5.2 presents a high-level description

of the proposed memory occlusion aware warp scheduling algorithms and the qualification met-

ric. The static and dynamic prediction methods of OAWS are detailed in Sections 5.3 and 5.4,

respectively. The experimental methodology and results are presented in Section 5.5. Section 5.6

summarizes the related work, followed by Section 5.7 that summarizes the chapter.

63

Compute

Mem
Warp A

cause 6
misses

Compute

Mem
Warp B

cause 6
misses

Compute

Mem
Warp C

cause 2
misses Total Execution Time and Latency Overlapping

Warp A

Warp B

Warp C

Time

Warp Scheduling Decisions

(b) Conventional GTO Warp Scheduling

1
2
1

2
3

1
2

4
3

1

5

2

4
3

1

5
6

2

4
3

1

5
6

2

1

4
3

1

5
6

2

1
2

4
3

1

5
6

2

1
2

4
3

1

5
6

2

1
2

4
3

1

5
6

2

1
2

4
3

1

5
6

2

1
2

4
3

1

5
6

2

1
2

4
3

1

3
4

6

5
6

2
1

5

4
5

1

6
1

3
2

6

1
2

4

3
4

6
5

3

2
3

5

4
5

1
6

4

6
1

3

2
3

5
4

2

6
1

3

2

5
4

2

1
2

4

6
5

3

1
2

4

6
5

3

1
2

4

6
5

3

1
2

4

6
5

3

1
2

4

6
5

3
2
1 2

2

5

1
6

4
6

2
1

5
1
2

6

M
SH

R
 100%

B/C
stalled A B C B A C

Exposed Latency

T0 T1 T4 T5 T6 T7 T8

Warp

Total Execution Time and Latency Overlapping

Warp A Warp B

Warp C
Saved
Cycles

Time

Warp Scheduling Decisions
B Insufficient MSHR entries for B

(c) Occlusion-Aware Warp Scheduling

1
2
1

2
3

1
2

4
3

1

5

2

4
3

1

5
6

2

4
3

1

5
6

2

1

4
3

1

5
6

2

1
2

4
3

1

5
6

2

1
2

4
3

1

5
6

2

1
2

4
3

1

5
6

2

1
2

4
3

1

5
6

2

1
2

4
3

1

3
4

2

5
6

2
1

1

1
2

6

3
4

2
1

5

2
3

1

4
5

1
2

6

1
2

4

1
2

6
5

3

2
1

5

2
3

1
6

4

6
1

3

2
1

5
4

2

4
5

1

6

3
2

2

5
6

2

4
3

1

5
6

2

4
3

1

5
6

2

4
3

1

5
6

2

4
3

1

5
6

2

4
3

1
6
5 6

6

3

5
4

2
4

6
5

3
5
6

4

M
SH

R
 100%

ALU ALU
LD/ST LD/ST

A A B C C B

T0
’ T1

’ T2
’ T3

’ T4
’ T5

’ T6
’

Warp

Instruction
Window

T2 T3

(a) Code
Example

Memory
Occlusion

Memory
Occlusion

Time Time

Figure 5.1: A conceptual example showing the benefits of Occlusion Aware Warp Scheduling

5.2 Main Idea of OAWS

As described in the previous section, divergent load instructions can deplete MSHR entries

and occlude the LD/ST units. As a result, they significantly delay the execution of warps and

exacerbate the long latency of off-chip memory operations. To address this problem, we propose

memory Occlusion Aware Warp Scheduling (OAWS) that can monitor the execution of GPU warps,

predict their MSHR requirement, and schedule the warps whose requirements can be met by the

available MSHR entries. In doing so, OAWS can prevent memory occlusion, preserve L1D locality,

and increase the effective warp-level parallelism.

Figure 5.1 provides an example on the benefit of OAWS. Assume that the example kernel

first fetches data from memory and then computes it. There are 3 ready warps, A, B, and C, to be

scheduled (Figure 5.1(a)) . They are ordered by their arrival times. The memory load instructions

in warps A, B, and C are divergent and produce 6, 6, and 2 memory load requests to L2 cache,

respectively. The varying number of memory requests for warps are caused by either branch diver-

gence or warp locality variation [69, 70]. The LD/ST units have 8 MSHR entries. Unless otherwise

noted, we employ by default the GTO [69] warp scheduler.

Figure 5.1(b) shows how the conventional GTO warp scheduler works. The memory load

instructions from warps A, B, and C are issued at T0, T1, and T4, respectively, according to their

64

age. By the time of T2, two MSHR entries are allocated to two memory requests from warp B.

At this time, MSHR entries are used up and memory occlusion occurs. Therefore, the remaining

memory requests of warp B are continuously replayed until the responses for warp A’s memory

loads arrive at T3. At T5, all data required by warp A are returned from L2 and warp A is ready to be

issued for computation. While warp A finishes computation at T6, warps B and C are stalled due to

outstanding memory requests. The computation for warps B and C starts at T7 and T8, respectively.

As shown in the Figure 5.1(b), GTO causes idle cycles between T6 and T7.

In contrast, in Figure 5.1(c), OAWS predicts that available MSHR entries cannot satisfy warp

B’s requests, so it prevents warp B from issuing the memory instruction at T
′

1. Thus, OAWS

avoids the memory occlusion caused by the depletion of MSHR entries by warp B. When warp

A’s requests return from memory, their MSHR entries are released and warp B is then scheduled.

Since the ALU pipeline keeps idle, warp A and C are immediately scheduled for computation at

T
′

4 and at T
′

5, respectively. Finally, warp B is scheduled for computation at T
′

6. Since warp C is

scheduled ahead of warp B, its computation overlaps with warp B’s memory load, reducing the

time to complete these warps. Although this example shows only three warps and a miss penalty

of 12 core cycles for simplicity, the benefit of stall-awareness could be more significant because

the off-chip memory latency is often between 400 and 500 core cycles.

5.2.1 Qualification Metric of OAWS

OAWS aims to prevent memory occlusion with a simple logic, i.e., ensuring the available

MSHR entries are more than the demand from a divergent load instruction. To this end, it needs

to predict the number of cache misses for incoming divergent memory instructions. Meanwhile,

because of the pipelined execution, several memory instructions could have been issued and will

consume some MSHR entries. Thus, the qualification logic of OAWS is to qualify a memory

instruction if its predicted cache misses can satisfy the following condition.

Misspred(pc,w)≤ Availmshr−Missin f light (5.1)

65

where Availmshr is the number of available MSHR entries, Misspred(pc,w) is the predicted num-

ber of cache misses that warp w is going to incur for the memory instruction at address pc, and

Missinflight is the number of predicted cache misses from in-flight load instructions. At runtime,

Missinflight is updated as memory instructions are issued or completed by the LD/ST units. Since

stores do not consume MSHR entries while coherent loads maximally consume two MSHR entries

each time, they are always qualified for scheduling. Note that coherent load instructions rarely

consume 2 entries. They are predicted to consume 1 MSHR entry with 1 cache miss. OAWS

focuses on divergent load instructions which are more likely to cause memory occlusion.

5.2.2 Designing Scheduling Policies for OAWS

To accurately predict the number of cache misses for a divergent load instruction, we have

explored both static and dynamic policies for OAWS. Accordingly, they are referred to as static

OAWS and dynamic OAWS, respectively. Figure 5.2 presents the microarchitecture for both ver-

sions of OAWS. OAWS is implemented as an extension of the warp scheduler’s qualification logic.

Conventional qualification logic is used to pick warps that are ready for execution, which is de-

noted as a N-bit vector Ready[1:N] (¶). OAWS relies on the Divergent Load Classifier (DLC) to

predict Misspred(pc) and then re-qualifies ready warps using the logic in Equation 5.1. The output

of OAWS is another N-bit vector Occlude[1:N] (¸), in which a bit value 0 denotes a warp pre-

dicted to not occlude MSHR entries, 1 otherwise. OAWS then uses the same prioritization logic as

GTO to schedule the occlusion-free warps (¹). The following sections will introduce how static

and dynamic OAWS are implemented.

5.3 Static OAWS

Static OAWS simply assigns a static miss rate (SMR) to each divergent load, then the predicted

cache miss can be given as

Misspred(pc,w) = Divpred(pc,w)×SMR (5.2)

66

where Divpred(pc,w) is the predicted memory divergence of a load instruction pc for warp w

and SMR is the static L1D cache miss rate. This static method is proposed because memory

instructions exhibit stable memory divergence behaviors in GPGPU workloads [70]. Divpred for

the divergent load instruction pc of warp w is equal to the number of active threads in w, similar

to DAWS [70]. With SMR being 0%, OAWS is essentially disabled, and all divergent loads are

assumed to complete without consuming MSHR entries. When SMR is 100%, OAWS assumes all

divergent loads will cause cache misses in L1D, consuming MSHR entries. We tune SMR between

0% and 100% for the optimal performance.

In our experiments, we observe that static OAWS with a SMR of 50% achieves the optimal

performance on the divergent benchmarks evaluated in this study. Given the SIMD width of 32 in

our baseline GPU architecture, 50% means that each load is going to consume 16 MSHR entries.

Since there are only 32 physical MSHR entries per SM, at most two divergent memory loads can

be issued into the memory pipeline. Thus, the qualification logic in Equation 5.1 then serializes

divergent memory instructions to access the memory pipeline. Because Missinflight is decreased

only when a load instruction retires from memory pipeline, this serialization conceptually inserts

a minimum delay of Divpred(pc,w) cycles before a new divergent load can be qualified. When

the miss rate is high, e.g., the remaining MSHR entries are less than 16, no divergent load can be

scheduled and the delay is further extended. Such a serialization delay reduces the frequency of

issuing divergent memory instructions, therefore static OAWS can alleviate the problem of memory

occlusion.

To implement static OAWS, we only need to know whether a load instruction is divergent or

not. This information is provided by DLC. In general, each DLC entry records the history of a

divergent load, including the PC address, the number of instruction occurrences (#inst), the total

number of memory accesses (#acc), and cache locality statistics (#miss). When a load instruction’s

memory accesses are coalesced (º), its PC is first checked against DLC to make sure that no

duplicate records exist in the table. If a new divergent load is detected, a new entry with current

instruction’s PC, #inst (being 1), and #acc are inserted into DLC; otherwise, the existing entry

67

OAWS Scheduling Logic

Memory Access Coalescing Unit

Registers/
Execution

Warp
Scheduler

Decode

I-Buffer/
Scoreboard SI

M
T-

St
ac

k

LD
/S

T

A
LU

Fetch

Prioritization Ready
[1:N]

Issuing
Warp

(WID)

L1D MSHR
req1
req2

empty
empty

Controller

Divergent Load Classifier (DLC)

Occlusion
Prevention

Mem. Coalescing Logic

To/From Memory Port

FCW

Availmshr

Availmshr

Issuing Warp (WID)

Pending Accesses
addr1 addr2 ���

tag data

��
�

tag data

Miss/hit

Occlude
[1:N]

GTO

Missinflight

��
�

PC #inst #acc #miss
0x100 5 160 100
0x200 5 160 91

Concurrency
Limiting

locWarps
[1:N]

Misspred[1:N]

1 4 2 3

5

6

FCW Logic

FCL

7 Div
FCW

Figure 5.2: Detailed core model used for OAWS. N is the number of warp issue slots on the core.

is updated with this information. #miss comes from the cache hit/miss feedback (») when the

individual divergent requests are processed by L1D. Since OAWS only focuses on divergent load

instructions, coherent loads and their information are not populated into DLC. Static OAWS only

needs the PC field to confirm if a load is divergent, while the other fields are used by dynamic

OAWS.

5.4 Dynamic OAWS with L1D Locality Preservation

Static OAWS dictates a fixed miss rate for all warps, which cannot account for the dynamic

nature of divergent accesses across different warps. In addition, the memory divergent benchmarks

have high intra-warp locality. Thus, we propose dynamic OAWS to predict L1D cache misses

on a per-warp basis, and then leverage these predicted misses to accomplish two objectives: (1)

maximize the use of MSHR entries without memory occlusion and (2) maximize the number of

concurrent warps while preserving L1D cache locality.

68

Both objectives require a careful selection of appropriate warps that can strike a balance be-

tween the maximum resource utilization (cache capacity and MSHR entries) and the best perfor-

mance (no memory occlusion and no cache thrashing). We first propose a light-weight concurrency

model to estimate the maximal number of warps that can make the LD/ST units occlusion-free. We

employ then this concurrency model into dynamic OAWS.

5.4.1 Estimating Occlusion-Free Concurrency

The memory divergent benchmarks have high intra-warp locality so that they all can benefit

from a throttled concurrency; meanwhile, warps that incur cache misses, regardless of the number

of missed accesses, will inevitably thrash other warps’ cache blocks and consume MSHR entries.

Motivated by the above observation, we propose to use the number of fully cached loads to estimate

such a concurrency that the aggregate MSHR consumption from all active warps is less than MSHR

capacity. Being fully cached means a load’s data is completely reserved in L1D and will incur

neither cache eviction nor MSHR consumption. Under GTO prioritization, only a few old warps

are actively scheduled, as shown in figure 2.7; thus, monitoring the dynamic changes of fully

cached loads gives a close approximation of Fully Cached Warps (FCW). We also observe that

L1D locality in the data intensive benchmarks can be associated with both coherent and divergent

loads. Since coherent loads often exhibit streaming-like accesses, we only use the locality statistics

from divergent loads to estimate FCW.

Figure 5.3 shows the flow of FCW estimation based on the accumulated number of fully

cached loads (CNT) and each warp’s GTO scheduling priority (GTO prio). At runtime, CNT is

increased by 1 (A©) for each fully cached load. When CNT is saturated (CNT==Cmax), if FCW has

not reached its maximum value (Wmax), FCW is increased by 1 and, accordingly, CNT is reset as

Cmax/2 to track fully cached divergent loads under the new concurrency (B©). For partially cached

loads (C©), CNT is decreased differently depending on the issuing warp’s scheduling priority. For

instance, if a warp’s scheduling priority is lower than FCW, CNT is decreased by 1 (D©); otherwise,

CNT is decreased by FCW-GTO prio (E©) to speed up the process of achieving the optimal FCW.

69

Start

END

Fully
Cached?

CNT == Cmax
&&

FCW<Wmax

FCW--
CNT=Cmax/2

CNT++

CNT-= FCW- GTO_prio

CNT == 0
&&

FCW>1

FCW++
CNT=Cmax/2

GTO_prio
< FCW

CNT--

Yes No

No Yes

No No

Yes Yes

A

B

D E

F

G

C

Figure	 for	 MICRO	

Figure 5.3: Flow Chart of FCW concurrency throttling logic.

When CNT reaches zero, FCW is decreased by 1 so that less warps are actively scheduled (F©). In

our proposal, each warp scheduler enables at least one active warp (i.e., the oldest warp) to keep

the on-chip resources busy, while Wmax is equal to 48, which is the number of physical warps on

each SM. In the corner cases when FCW is 1 or Wmax (G©), CNT will not be overflowed if it is

saturated. Such logic is a component inside MACU, denoted as FCW Logic in Figure 5.2.

In order to simplify its implementation, we first use one register (Div in Figure 5.2) to mark

whether a load is divergent or not, depending on the number of coalesced memory requests. Div

is asserted when a new load instruction is serviced by L1D. We then use another register (FCL in

Figure 5.2) to track whether a load is fully cached or not. FCL is reset when L1D starts to service

a new load, and is set when a cache miss happens on it. When all the accesses of the load are

serviced, unset FCL indicates a fully cached load. This logic is triggered when a divergent load’s

accesses are serviced by L1D. We empirically use a 7-bit counter for CNT so that it can maximally

record 128 consecutive occurrence of fully/partially cached loads, i.e., Cmax=128 in Figure 5.3.

CNT is initialized as 64 while FCW is 1 for each warp scheduler. These initial values give FCW

the flexibility to gradually learn L1D locality changes at runtime.

70

5.4.2 Concurrency-Aware Dynamic Prediction

We first use FCW to categorize all warps into two groups: locality warps and thrashing

warps, based on their scheduling priorities. Assuming GTO priorities are in descending order, i.e.,

the oldest warp has the highest GTO priority of 0, a warp is a locality warp if its GTO priority

is less than FCW, otherwise it is a thrashing warp. This classification is based on the observation

that older warps are more frequently scheduled in GTO than younger ones so that they have higher

L1D locality, and when a thrashing warp is scheduled, L1D locality is highly likely to be thrashed.

FCW can be used to throttle concurrency by only scheduling locality warps, which is referred

to as FCW Throttling. However, the training process of FCW may take FCW Throttling a long

time to arrive at the optimal value. This slow training process can be a disadvantage for FCW

Throttling to quickly respond to program behavior changes during runtime. Memory occlusion

may then occur. For example, when one locality warp fetches new data into L1D, it may deplete

all available MSHR entries, occluding LD/ST units and preventing other locality warps from ac-

cessing L1D. Meanwhile, for benchmarks that have rich branch divergence, FCW Throttling may

lose the opportunity to schedule thrashing warps with fewer active threads. Such kind of thrashing

warps have small memory footprint and incur little cache thrashing. To prevent memory occlu-

sion while maintaining sufficient concurrency, we integrate the use of FCW in dynamic OAWS

for the prediction of cache misses, i.e., the required MSHR entries. The ultimate goal of dynamic

OAWS is to disqualify some locality warps when memory occlusion occurs while qualifying some

thrashing warps when the LD/ST units are occlusion-free.

In dynamic OAWS, we use the cache miss history of divergent memory instructions to predict

the cache misses from a divergent load instruction. For locality warps, we predict their cache

misses as

Misspred(pc,w) = Divpred(pc,w)×HMR(pc) (5.3)

where Divpred(pc,w) is the predicted divergence as in Section 5.3 and HMR(pc) is the history miss

rate of current memory instruction at pc. In DLC, HMR(pc) could be calculated as #misses/#acc.

71

For thrashing warps, we penalize them with a flat miss rate of 100%, i.e., their predicted cache

misses is calculated as Misspred(pc,w) = Divpred(pc,w). This penalization means that the pre-

dicted number of misses is directly taken from the predicted memory divergence of thrashing

warps. Setting such strict qualification standard for thrashing warps causes them to be scheduled

when locality is high and outstanding memory requests are low.

By predicting cache misses based on HMR, the dynamic OAWS leverages the MSHR usage

statistics from LD/ST units at its qualification logic to schedule warps. When the L1D cache is

under-utilized due to a conservative FCW, more data accesses hit in the cache, therefore HMR is

low. When HMR is low, more warps are predicted with fewer misses; therefore, more warps are

scheduled for higher concurrency. Conversely, when the cache is over-subscribed with too many

warps (FCW being too big), HMR is then very high, eventually bringing down the number of

actively scheduled warps. This feedback-driven method eliminates the need of deducing program

behavior changes or potential associativity conflicts. This feature helps OAWS achieve stable

performance improvement across a wide range of workloads.

Per-instruction miss history gives uniform predictions for all active warps, which contradicts

the observation that GTO prioritization creates skewed cache misses. In order to enforce the GTO

scheduling prioritization as well as provide differentiated predictions for all active warps, we add

each warp’s GTO priority (a.k.a, warp ages) in addition to its history-based miss prediction. With-

out the need of adding extra logic into warp scheduler to enforce the threadblock-awareness, such

as the proposal in OWL [42], we realize this goal through miss predictions. We amend our Equa-

tion 5.3 by adding GTOgprio to the predicted misses, as shown below:

Misspred(pc,w) = Divpred(pc,w)×HMR(pc)+GTOgprio (5.4)

where GTOgprio is a warp’s global GTO priority within an SM. GTOgprio is unique; thus, it could

help provide differentiated predictions for all active warps among schedulers that share the same

72

set of MSHR entries. For locality warps, this linear prediction method matches the observation in

Figure 2.7 that the cache misses of divergent loads are linear to warp ages under GTO scheduling.

Taken together, our dynamic OAWS strives to maintain a maximal number of concurrent

warps and predict the demands on MSHR entries to prevent memory occlusion. These two objec-

tives are seamlessly integrated into the dynamic prediction policy that takes into account the GTO

priority, the history of per-instruction miss rate (HMR), and the estimated concurrency FCW.

5.4.3 Implementation and Overhead

We summarize other implementation details that have not been covered previously. Note that

qualification logic is executed at a per-cycle basis. Calculating HMR at the same frequency based

on the miss/hit statistics from DLC is impractical. Thus, we store each instruction’s predicted

cache misses into the instruction buffer, the same way as the ready bit for baseline qualification

logic. By doing so, the process of miss prediction can be executed off the critical path of warp

scheduling.

Divergent Load Classifier. The benchmarks we evaluate in this work typically have only one

or two divergent loads in each kernel. But IIX from MapReduce [32] has 26 divergent loads in one

of its kernels. Thus, we have 32 entries for DLC in both static and dynamic OAWS implementa-

tions. Because the fields of DLC are periodically updated, the entries that reach 0 (#inst) could

be evicted. DLC could also be managed under a LRU policy for more complicated workloads. In

addition, DLC is cleared at each kernel invocation.

Overhead Analysis. In order to implement the qualification logic in Equation 5.1, OAWS

stores the information of both Availmshr and Missin f light into two registers. Our baseline GPU has

32 MSHR entries, and both registers need only 5 bits. FCW training needs two registers: 1-bit Div

and 7-bit FCL. Our baseline GPU has a SIMD-width of 32. We use 5 bits to store the predicted

cache misses for each instruction. Considering that there are 48 warps per SM and each warp can

have two instructions, storing the predicted per-instruction cache misses has a total overhead of

480 bits (60 bytes). Each DLC entry needs 9 bytes, i.e., 40 bits for PC, 5 bits for #inst, 10 bits for

73

Table 5.1: Baseline GPGPU-Sim Configuration for OAWS Study

of SMs 30 (15 clusters of 2)
SM Configuration 1400MHz, Reg #: 32K, Shared Memory: 48KB, SIMD Width:

16, warp: 32 threads, max threads per SM: 1024
Caches / SM Data: 32KB/128B-line/8-way, Constant: 8KB/64B-line/24-way,

Texture: 12KB/128B-line/2-way
Branching Handling PDOM based method [21]
Warp Scheduling GTO
Interconnect Butterfly, 1400MHz, 32B channel width
L2 Unified Cache 768KB, 128B line, 16-way
Min. L2 Latency 120 cycles (compute core clock)
Cache Indexing Pseudo-Random Hashing Function [58]
Memory Partitions 6
Memory Banks 16 per memory partition
Memory Controller Out-of-Order (FR-FCFS), max request queue length: 32
Min. DRAM Latency 100 cycles (compute core clock)
GDDR5 Timing tCL = 12, tRP = 12, tRC = 40, tRAS = 28, tRCD = 12, tRRD = 6,

tCDLR = 5, tWR = 12

#acc, 10 bits for #miss, and 5 bits for Div. Thus, DLC table needs 288 bytes. In total, implementing

OAWS needs 348-byte on-chip storage and four registers in each SM.

5.5 Experimental Evaluation

In this section, we will evaluate OAWS and discuss its design parameters for MSHR predica-

tion and warp scheduling.

5.5.1 Experimental Methodology

We use GPGPU-Sim [4] (version 3.2.1), a cycle-accurate simulator, to evaluate our OAWS

mechanisms. The baseline GPU architectural parameters are summarized in Table 5.1. We use

highly memory-divergent benchmarks from Rodinia [12], SHOC [17], PolyBench/GPU [28], Par-

boil [78], and MapReduce [32] for performance evaluation. These benchmarks’ input sizes are

listed in Table 5.2. We also evaluate the performance of OAWS on memory-coherent benchmarks

from PolyBench/GPU [28], Rodinia [12], and Parboil [78]. All of the benchmarks are simulated

74

Table 5.2: Data-Intensive GPGPU (CUDA) Benchmarks for OAWS Study

Abbr. Application Suite Input
Memory Divergent Benchmarks

1 ATAX matrix-transpose and vector mul. PolyBench 8K×8K
2 BICG kernel of BiCGStab linear solver PolyBench 8K×8K
3 MVT Matrix-vector-product transpose PolyBench 8K
4 GES Scalar-vector-matrix mul. PolyBench 4K
5 SYRK Symmetric rank-K operations PolyBench 512×512
6 SYR2K Symmetric rank-2K operations PolyBench 256×256
7 KMN Kmeans Clustering Rodinia 28k 4x features
8 BFS Breadth-First-Search Rodinia 5M edges
9 SC Streaming Cluster Rodinia 256K Points

10 PF Particle Filter Rodinia default
11 SPMV Sparse matrix mul. SHOC default
12 IIX Inverted Index MapReduce 6.8M

Memory Coherent Benchmarks
13 3DC 3D Convolution PolyBench default
14 2MM 2 Matrix Multiply PolyBench default
15 3MM 3 Matrix Multiply PolyBench default
16 FD 2D Finite Difference Kernel PolyBench default
17 BP backprop Rodinia default
18 SRAD1 SRAD version 1 Rodinia default
19 SRAD1 SRAD version 1 Rodinia default
20 LBM Lattrice-Boltzmann method Parboil default

Table 5.3: Configurations for SWL-Best and CCWS

SWL-Best CCWS
Bench.Warps Actively

Scheduled
Bench. Warps Actively

Scheduled
Name Value

ATAX 2 SYR2K 2 KT HROT T LE 8
BICG 2 KMN 4 Victim Tag Array 8-way
MVT 2 BFS 3 16 entries per warp
GES 1 SPMV 2 (768 total entries)

SYRK 2 IIX 4 Warp Base Score 100

to completion and execute between 70 million and 1.5 billion instructions. The following warp

scheduling algorithms are evaluated:

GTO is the baseline warp scheduler. All performance results are normalized to GTO.

75

Static Warp Limiting (SWL) [69] statically limits the number of warps that can be actively sched-

uled and needs to be tuned on a per-benchmark basis. Table 5.3 presents the warp-limiting

value with the best performance for some memory divergent benchmark (SWL-Best). Other

benchmarks are scheduled with maximal concurrency.

Cache Conscious Wavefront Scheduling (CCWS) [69] relies on a dedicated victim cache and a

6-bit Warp ID field in the tag of cache block to detect intra-warp locality and other storage

to track per-warp locality changes. The warp that has the largest locality loss is exclusively

prioritized. Configuration parameters for CCWS are summarized in Table 5.3.

Memory Aware Scheduling and Cache Access Re-execution (MASCAR) [73] exclusively pri-

oritizes memory instructions from one “owner” warp when the memory subsystem is satu-

rated; otherwise, memory instructions of all warps are prioritized over any computation

instruction. MASCAR uses a re-execution queue to replay L1D accesses that are stalled due

to MSHR unavailability or network congestion. Saturation here means that MSHR has only

1 entry or the queue inside memory port has only 1 slot. The re-execution queue has 32

entries.

Static OAWS (OAWS-Static) is described in Section 5.3. The default value for SMR is 50%. We

will present the sensitivity analysis of SMR in Section 5.5.6.

Dynamic OAWS (OAWS-Dyn) is described in Section 5.4. OAWS-Dyn consists of two compo-

nents, light-weight concurrency model and dynamic MSHR prediction. We also present the

performance of using the light-weight concurrency model to manage concurrency, which is

referred to as FCW-Only.

5.5.2 Instructions Per Cycle (IPC)

Figure 5.4 shows IPC comparisons for our warp scheduling algorithms and the three state-

of-the-art warp scheduling algorithms. We have the following key observations. First, OAWS-

Static consistently improves performance for all memory divergent benchmarks, and on average

achieves 35.3% IPC gains compared to baseline GTO scheduling and outperforms MASCAR by

76

0

0.5

1

1.5

2

2.5

3

BP 2MM 3MM SRAD1 SRAD2 3DC FD LBM Gmean PF SC IIX SYRK BFS ATAX BICG MVT KMN SYR2K GES SPMV Gmean

Memory Coherent Memory Divergent

IP
C

MASCAR CCWS SWL-Best

OAWS-Static FCW-Only OAWS-Dyn

3.2 3.6 3.1

Figure 5.4: IPCs of various warp scheduling algorithms for memory coherent and memory diver-
gent benchmarks. IPCs are normalized to the GTO scheduling.

29.2%. The performance improvement of OAWS-Static comes with the lowest hardware overhead,

which strongly suggests the necessity and effectiveness of memory occlusion prevention. Second,

by focusing on locality changes at the granularity of individual divergent loads, FCW-Only auto-

matically increases or decreases concurrency to preserve effective concurrency, and therefore can

outperform CCWS and SWL-Best by 56% and 7.7%, respectively. Finally, by conditionally loosen-

ing the concurrency limiting from FCW-Only, OAWS-Dyn significantly increases the performance

of benchmarks that are branch divergent, such as IIX and BFS. Overall, OAWS-Dyn achieves 74%

IPC improvement and outperforms MASCAR, CCWS, and SWL-Best by 65.8%, 57.2%, and 8.5%,

respectively.

MASCAR and CCWS only improve performance by 4.8% and 10.4%, respectively, compared

to the baseline. These low IPC gains can be explained from the following two aspects. First,

we use an allocate-on-fill rather than an allocate-on-miss policy to manage L1D blocks on cache

read misses. Given a 32-entry MSHR and 32KB L1D (256 blocks), the allocate-on-miss policy fre-

quently reserves 32 cache blocks for outstanding memory requests in the memory divergent bench-

marks, which wastes 12.5% of the L1D capacity. Second, reserving cache blocks can increase

associativity conflicts in L1D. The memory divergent benchmarks from PolyBench/GPU [28] are

highly sensitive to cache associativity [40]. Though we have applied the pseudo-random cache

indexing function that is used in real Fermi architectures [58], associativity conflicts still have not

been well mitigated. For example, each divergent load in ATAX generates 32 requests that are

77

constantly mapped into 8 out of the 32 sets in L1D. Consequently, allocate-on-miss policy exag-

gerates associativity conflicts. We have evaluated both policies for all experiments, and observed

that MASCAR and CCWS perform similarly under the two policies, because they both provide ex-

clusive accesses to one warp when the memory subsystem is saturated (MASCAR) or L1D locality

loss is high (CCWS). However, GTO scheduling benefits greatly from increased effective L1D

capacity and decreased associativity conflicts.

SWL-Best achieves 60% IPC improvement for all memory divergent benchmarks. The perfor-

mance of SWL-Best could have been better if per-kernel tuning had been performed. For example,

ATAX, BICG, and MVT have both coherent and divergent kernels. SWL-Best’s performance gains

in divergent kernels are balanced out by the existence of coherent kernels where SWL-Best should

not have been enabled. Meanwhile, IIX is a highly complicated benchmark with rich branch- and

memory-divergence. IIX has 149 kernel invocations with the input size used in this evaluation.

Given such complexity, SWL-Best has been included for pure performance comparison purposes.

For the coherent benchmarks, none of the warp scheduling algorithms achieve significant

performance gains. Thus, we conclude that our proposals have no detrimental effects to memory-

coherent benchmarks. In the following sections, we will dissect the performance of both OAWS-

Static and OAWS-Dyn using memory divergent benchmarks only.

5.5.3 LD/ST Unit Stalls

Figure 5.5 breaks down LD/ST stall cycles when memory divergent benchmarks are sched-

uled by various scheduling algorithms. All numbers are normalized to LD/ST active cycles in GTO

scheduling. Since all the evaluated benchmarks are read-intensive, memory occlusion caused by

network congestion (LDST ICNT) is negligible in every scheduling algorithm. Meanwhile, co-

alescing stalls (LDST COAL) depend on memory divergence characteristics in the benchmarks.

Warp scheduling can only impact stall cycles caused by LDST MSHR and MASCAR Replay. As

we can see from Figure 5.5, SWL-Best, OAWS-Static, FCW-Only, and OAWS-Dyn have similar

capability in reducing LD/ST stalls, which corresponds to their superior performance shown in

78

0%

20%

40%

60%

80%

100%

120%

140%

G M C S O F D G M C S O F D G M C S O F D G M C S O F D G M C S O F D G M C S O F D G M C S O F D G M C S O F D G M C S O F D G M C S O F D G M C S O F D G M C S O F D

PF SC IIX SYRK BFS ATAX BICG MVT KMN SYR2K GES SPMV

Pe
rc

en
ta

ge
 (%

)

LDST_COAL LDST_MSHR LDST_ICNT MASCAR_Replay
158%

Figure 5.5: Breakdown of LD/ST stall cycles when the memory divergent benchmarks are sched-
uled by GTO (G), MASCAR (M), CCWS (C), SWL-Best (S), OAWS-Static (O), FCW-Only (F),
and OAWS-Dyn (D). MASCAR Replay only exists in MASCAR and refers to the cycles when the
memory access from the re-execution queue can’t be sent out.

Figure 5.4. Divergent loads in SC are references to arrays of structs and outside of a loop that

generates high locality. Without careful concurrency throttling, divergent loads quickly thrash the

locality of coherent loads. FCW-Only and OAWS-Dyn takes time to learn optimal concurrency,

while OAWS-Static has no direct control over concurrency, therefore they perform equally poor in

reducing LD/ST stalls for SC. When saturation in the memory subsystem is detected, MASCAR

prevents memory accesses of “non-owner” warps from being sent out, i.e., replaying them until

saturation is resolved. Such a strict requirement directly reduces LD/ST throughput, leading to

the poor performance of MASCAR. CCWS prioritizes warps with the highest locality lost, which

means that the prioritized warp often has little data reserved in L1D to start with and needs to im-

mediately fetch data from L2. Switching prioritized warps incurs frequent MSHR consumptions,

making CCWS less capable of LD/ST stall prevention.

5.5.4 Fully Cached Load Instructions

Within the lock-step execution, partially cached instructions still suffer from the problem of

memory occlusion. Thus, we use the number of fully cached load instructions to quantify effective

concurrency in the evaluated concurrency throttling mechanisms, i.e., CCWS, SWL-Best, FCW-

Only, and OAWS-Dyn. Figure 5.6 presents the percentages of fully cached divergent loads. The

results of GTO are also included as the baseline. CCWS has increased fully cached loads for all

79

0%

20%

40%

60%

80%

100%

PF SC IIX SYRK BFS ATAX BICG MVT KMN SYR2K GES SPMV Gmean

Fu
lly

 C
ac

he
d

D
iv

er
ge

nt
 L

oa
ds

 (%
)

GTO CCWS SWL-Best FCW-Only OAWS-Dyn

Figure 5.6: Percentage of fully cached divergent loads in the memory divergent benchmarks.

0%

20%

40%

60%

80%

100%

PF SC IIX SYRK BFS ATAX BICG MVT KMN SYR2K GES Gmean

Fu
lly

 C
ac

he
d

C
oh

er
en

t L
oa

ds
 (%

)

GTO CCWS SWL-Best FCW-Only OAWS-Dyn

Figure 5.7: Percentage of fully cached coherent loads in the memory divergent benchmarks. SPMV
has no coherent loads and is excluded from the figure.

benchmarks except SYRK. This is because SYRK has high inter-warp locality, while CCWS is

specifically designed for intra-warp locality protection. The exclusively prioritized warp can make

faster progress and evict its own data blocks that could have been utilized by other warps. SWL-Best

achieves the best results for benchmarks with no branch divergence, such as SYRK, ATAX, BICG,

MVT, and SYR2K. Due to high inter-warp locality, SWL-Best fully caches 98% and 88% of diver-

gent loads in SYRK and SYR2K, respectively. For memory- and branch-divergent benchmarks,

such as IIX and BFS, FCW-Only preserves more fully cached divergent loads than SWL-Best.

Opportunistically scheduling more warps in OAWS-Dyn directly hampers locality preservation at

instruction level, therefore it slightly underperforms compared to FCW-Only in the majority of the

80

0%

20%

40%

60%

80%

100%

G S F D G S F D G S F D G S F D G S F D G S F D G S F D G S F D G S F D G S F D G S F D G S F D

PF SC IIX SYRK BFS ATAX BICG MVT KMN SYR2K GES SPMV

Pe
rc

en
ta

ge

USEFUL NO Warp Ready LD/ST Stall

Figure 5.8: Breakdown of GPU cycles when memory divergent benchmarks are scheduled by GTO
(G), SWL-Best (S), FCW-Only (F), and OAWS-Dyn (D).

benchmarks. On average, GTO, CCWS, SWL-Best, FCW-Only, and OAWS-Dyn fully cache 20%,

25%, 31%, 45%, and 42% of the total divergent load instructions, respectively.

Figure 5.7 presents the percentages of fully cached coherent loads. Some coherent loads

in SC exhibit streaming accesses, making it have very low percentages of fully cached coherent

loads under all scheduling algorithms. IIX has observable program behavior changes, i.e., coher-

ent memory operations and large computation strictly follow divergent memory operations. Thus,

OAWS-Dyn preserves more coherent loads in L1D than FCW-Only, which explains the perfor-

mance advantage of OAWS-Dyn in IIX as shown in Figure 5.4. The other benchmarks are relatively

simple, therefore the trend of fully cached coherent loads are similar to that in Figure 5.6.

The results in the two figures are highly correlated to the IPC discrepancy in Figure 5.4, except

that SWL-Best does not have the best performance in ATAX, BICG, and MVT. This exception is

caused by the fact that the three benchmarks have both memory divergent and memory coherent

kernels as mentioned earlier.

5.5.5 Warp Scheduler Cycles

Figure 5.8 breaks down the GPU cycles when memory divergent benchmarks are scheduled by

GTO, SWL-Best, FCW-Only, and OAWS-Dyn. This breakdown further reveals the different empha-

sis of the three concurrency throttling methods. Within the baseline GTO scheduling, schedulers

81

 1

 1.2

 1.4

 1.6

 1.8

 2

00 05 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

IP
C

SMR(%)

ATAX KMN BFS SPMV IIX Gmean

Figure 5.9: IPC of static OAWS with various SMR under five representative benchmarks.

are frequently stalled due to LDST Stalls. SWL-Best only enables a small pool of active warps

to alleviate cache contention, which makes it suffer from an insufficient supply of fully cached

warps. Thus, SWL-Best experiences a high percentage of NO Warp Ready cycles. When bench-

marks have a mix of both coherent and divergent kernels, the static number of active warps is often

suboptimal. The resultant concurrency is often excessive for divergent kernels but insufficient for

coherent kernels. For example, when ATAX, BICG, and MVT are scheduled by SWL-Best, di-

vergent kernels are limited by LDST Stalls cycles while coherent kernels are limited by NO Warp

Ready cycles. Though FCW-Only and OAWS-Dyn have a larger pool of warps that are predicted to

be free of LD/ST stalls, program behavior changes and the set-associative L1D together challenge

their capability of finding optimal concurrency. The process of learning optimal concurrency in

FCW-Only and OAWS-Dyn causes significantly more LDST Stalls cycles than the static and deter-

ministic concurrency setting in SWL-Best. OAWS-Dyn has big reductions of LDST Stalls cycles for

IIX and BFS, making it more feasible for real-world GPU workloads that have rich memory- and

branch-divergence.

5.5.6 Sensitivity of Static OAWS to SMR

Figure 5.9 presents the IPC of static OAWS when SMR is swept from 0% to 100%, with

an increment of 5%. When SMR is 0%, static OAWS is equal to GTO scheduling, which is the

82

baseline warp scheduling across all of the evaluations. Static OAWS achieves peak performance

improvement (geometric mean: 35.3%), when SMR is 50%. In addition, in the case of SMR ranging

from 35% to 90%, the static OAWS achieves stable IPC improvement with the standard deviation

of 0.014, indicating its insensitivity to SMR. When SMR is larger than 50%, the qualification logic

of static OAWS prevents two fully divergent load instructions being issued into memory stage,

leading to such similar IPC improvements.

5.6 Related Work

Warp Scheduling plays a critical role in sustaining GPU performance and various schedul-

ing algorithms have been proposed based on different heuristics. Among the concurrency throttling

techniques, Static Warp Limiting (SWL) [69], Cache Conscious Warp Scheduling (CCWS) [69],

and MASCAR [73] were discussed earlier in Section 5.5.1 and compared with our proposed

scheduling mechanisms. On top of CCWS, Divergence Aware Warp Scheduling (DAWS) [70]

actively schedules warps whose aggregate memory footprint does not exceed L1D capacity. The

prediction of memory footprint requires compiler support to mark loops in the PTX ISA and other

structures. Khairy et al. [45] proposed DWT-CS, which use core sampling to throttle concurrency.

When L1D MPKI is above a given threshold, DWT-CS samples all SMs with different number

of active warps and applies the best-performing active warp count on all SMs. Different from

these concurrency throttling mechanisms, OAWS uses the number of fully cached divergent load

instructions to dynamically adjust concurrency at a finer-granularity.

Some other warp scheduling algorithms are designed to improve GPU resource utilization.

Fung et al. [21, 20] investigated the impact of warp scheduling on techniques aiming at branch

divergence reduction, i.e., dynamic warp formation and threadblock compaction. Jog et al. [41]

proposed an orchestrated warp scheduling to increase the timeliness of GPU L1D prefetching.

Narasiman et al. [57] proposed a two-level round robin scheduler to prevent memory instructions

from being issued consecutively. By doing so, memory latency can be better overlapped by compu-

tations. Gebhart et al. [23] introduced another two-level warp scheduler to manage a hierarchical

83

register file design. None of these warp scheduling techniques directly focuses on the problem of

LD/ST stalls. On top of the two-level warp scheduling, Yu et al. [100] proposed a Stall-Aware

Warp Scheduling (SAWS) to adjust the fetch group size when pipeline stalls are detected. SAWS

mainly focuses on pipeline stalls, while OAWS is capable of avoiding LD/ST stalls and preserving

L1D locality.

Kayiran et al. [44] proposed a dynamic Cooperative Thread Array (CTA) scheduling mecha-

nism to enable the optimal number of CTAs according to application characteristics. It typically

reduces concurrent CTAs for data-intensive applications to reduce LD/ST stalls. Lee et al. [50]

proposed two alternative CTA scheduling schemes. Lazy CTA scheduling (LCS) utilizes a 3-phase

mechanism to determine the optimal number of CTAs per core, while Block CTA scheduling (BCS)

launches consecutive CTAs onto the same cores to exploit inter-CTA data locality. Jog et al. [42]

proposed the OWL scheduler, which combines four component scheduling policies to improve

L1D locality and the utilization of off-chip memory bandwidth. CTA scheduling is coarser than

warp scheduling at concurrency throttling, therefore OAWS is better at locality preservation and

LD/ST stall avoidance.

GPU Cache Management has been studied to preserve L1D locality, which can implicitly

reduce LD/ST stalls. L1D bypassing is often adopted to alleviate cache contention. Jia et al. [40]

designed a memory request buffer to reorder and prioritize L1D accesses and proposed to bypass

L1D accesses that are stalled by cache associativity conflicts. Chen et al. [16] used extensions in

L2 cache tag to track locality loss in L1D and bypass is temporarily triggered if a L2 cache block

is requested twice by the same SM. Chen et al. [15] further proposed Coordinated Bypassing and

Warp Throttling (CBWT) to orchestrate L1D bypassing and warp scheduling. Based on protec-

tion distance prediction [18], CBWT triggers bypassing when all L1D blocks are under protection

and throttles concurrency to prevent NOC from being congested by aggressive bypassing. Wang

et al. [93] proposed a DaCache design to orchestrate GPU cache management and warp schedul-

ing. At runtime, DaCache bypasses divergent loads from warps with low scheduling priorities

and coherent loads with no locality. Li et al. [51] proposed an locality monitoring mechanism to

84

bypass blocks that have low/no reuse or long reuse distances. Dong Li proposed an AgeLRU algo-

rithm [52] to prevent young warps from evicting blocks of old warps. AgeLRU enables bypassing

when the replacement score of the replacement candidate is above a given threshold. Based on

CCWS, Dong Li [52] proposed another scheme named Priority-based Cache Allocation (PCAL)

to bypass the memory accesses from non-prioritized warps so that other on-chip resources can be

utilized. Based on DAWS, Zheng et al. [103] proposed Adaptive Cache and Concurrency (CCA) to

bypass streaming memory accesses and accesses from inactive warps. Similarly, Khairy et al. [45]

also proposed a technique to dynamically detect and bypass streaming memory accesses. Jia et al.

and Xie et al. investigated compiler directed static bypassing techniques to improve GPU cache

performance. Though these cache management schemes can ameliorate the problem of LD/ST

stalls via preserved L1D locality, they are all reactive mechanisms. OAWS works from the source

to prevent LD/ST stalls from occurring. Cache management schemes are orthogonal to OAWS and

can be combined with OAWS to further improve GPU performance.

5.7 Summary

Efficient warp scheduling plays a critical role in sustaining high computation throughput of

GPUs. In this chapter, we first identified a structural hazard caused by the lack of MSHR entries

to meet the needs of divergent memory accesses in the GPU execution pipeline, which we referred

to as memory occlusion. We then characterized and analyzed the impact of memory occlusion. To

address the associated performance issues, we proposed a memory occlusion aware warp schedul-

ing that could predict the demand of MSHR entries from GPU instructions and integrate this new

knowledge in the qualification and prioritization logic of GPU warp schedulers to prevent mem-

ory occlusion. Both static and dynamic prediction methods have been designed and implemented

to maximize the use of MSHR entries without memory occlusion while preserving L1D cache

locality.

We have evaluated OAWS with static and dynamic prediction methods on a wide variety

of memory divergent benchmarks. Static and dynamic OAWS techniques achieve 35.3% and

85

74% performance gains, respectively. Compared to state-of-the-art warp schedulers, i.e., MAS-

CAR [73], CCWS [69], and SWL-Best [69], dynamic OAWS outperforms them by 65.8%, 57.2%,

and 8.5%, respectively. In addition, OAWS is a pure hardware solution with minimal hardware

cost, which makes it attractive in the cost-sensitive GPU chip industry. To our best knowledge,

our work is the first to reveal the memory occlusion issue on GPU MSHR entries and propose

occlusion aware warp scheduling algorithms to overcome its performance impact.

86

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Leveraging the massive computation power of GPUs to accelerate data-intensive applications

is a recent trend to embrace the arrival of the big data era. However, data-intensive applications of-

ten exhibit a wide variety of memory access patterns that cannot be coalesced to minimize memory

traffic to high-bandwidth but long latency off-chip memory chips, posing great challenges on GPU

resource management in hardware and GPU programmability in software. For example, mem-

ory divergence is a typical irregular memory access pattern that is well known to waste off-chip

memory bandwidth. Due to the lack of architectural support to mitigate the impacts of memory

divergence, accelerating data-intensive applications often needs tremendous programming efforts

to optimize their memory accesses for high performance and throughput.

This dissertation has examined and quantified three new architectural bottlenecks that are

closely associated with divergent memory operations, including intra-warp associativity conflicts,

partial caching for high intra-warp cache locality, and memory occlusion. Meanwhile, this dis-

sertation embodies a collection of research efforts to mitigate the performance impacts of these

bottlenecks from their sources, including cache indexing method, data cache management poli-

cies, and warp scheduling logic. Based on the comprehensive experimental results and systematic

comparisons with state-of-the-art techniques, this dissertation has made the following three key

contributions.

1) Full-permutation Based GPU Cache Indexing: This dissertation has revealed that cur-

rent cache indexing methods can pathologically cause severe intra-warp associativity conflicts for

divergent memory accesses. It introduces a novel and simple Full-permutation (FUP) Based GPU

87

Cache Indexing method in Chapter 3 to disperse bursty intra-warp memory accesses into all avail-

able cache sets. It also introduces a new metric, intra-warp concentration, to quantify the distri-

bution uniformity of intra-warp accesses into the cache sets. By minimizing intra-warp memory

access concentration, FUP significantly eliminates intra-warp cache conflicts, improves L1D cache

capacity utilization, and outperforms state-of-the-art cache indexing methods.

2) Memory Divergence-Aware GPU Cache Management: This dissertation has provided

GPU L1 data cache management with memory divergence and warp scheduling awareness to ef-

ficiently reserve L1D locality and resist cache thrashing for memory-divergent applications. The

proposed mechanism aims at two inefficiencies in current GPU cache management. First of all,

divergent memory accesses often carry highly regular intra-warp locality, but they are often par-

tially cached so that intra-warp locality is under-utilized to keep warp schedulers busy. Second,

under GTO warp scheduling, old warps are more frequently scheduled and thus their data blocks

have shorter re-reference intervals, but such valuable opportunity to approximate optimal cache

replacement has been ignored. Accordingly, this dissertation has introduced Memory Divergence-

Aware GPU Cache Management (DaCache) in the Chapter 4 to address these issues. DaCache

mainly consists of two policies to resist both inter- and intra-warp thrashing. Based on an LRU

cache, the Gauged Insertion policy provides multiple insertion positions in the LRU-chain for in-

coming data blocks. The insertion positions of blocks of divergent loads are determined by the

issuing warp’s scheduling priority, while blocks of coherent loads are inserted to MRU or LRU

positions, depending on whether the coherent load instruction is detected to have locality or not.

And the Constrained Replacement policy is used to enforce that only blocks with certain replace-

ment priorities can be evicted. Our experimental evaluation with a diverse collection of workloads

adequately demonstrates that DaCache substantially outperforms two state-of-the-art thrashing-

resistant cache management techniques.

3) Memory Occlusion Aware Warp Scheduling: GPUs enable a high degree of Memory

Level Parallelism (MLP) and Warp Level Parallelism (WLP) to overlap the long latency of off-chip

memory operations. When memory divergence occurs, MSHR entries (representing MLP) can be

88

quickly depleted, and then divergent load instructions have to be replayed until all of the divergent

accesses are processed by L1D. This dissertation names such scenarios as memory occlusion. The

structural hazard due to the mismatch between limited MSHR capacity and bursty memory ac-

cesses incurs significant stall cycles in both LD/ST units and warp schedulers. This dissertation in-

troduces a Memory Occlusion Aware Warp Scheduling (OAWS) to predict the MSHR consumption

of divergent load instructions and then only schedule warps that will not incur memory occlusion.

OAWS is implemented with both static and dynamic prediction methods for MSHR consumptions.

Our experimental evaluation shows that OAWS substantially outperforms the state-of-the-art warp

scheduling techniques.

By enabling architectural support for memory divergence mitigation, the techniques proposed

in this dissertation can better prepare future GPU architectures to support more data-intensive

applications with varied memory access patterns at ease.

6.2 Future Work

This dissertation has also opened up many opportunities for future architectural researches on

optimizing data-intensive applications for efficient executions on GPUs. Particularly, the following

two future studies are highly promising.

1) Compiler-Assisted GPU Cache Management: Our DaCache design (in Chapter 4) uti-

lizes a small victim cache to detect whether a coherent load has intra-warp locality at runtime.

This small structure incurs 172B storage overhead on each SM of our baseline GPU. Meanwhile,

DaCache is based on the observation that divergent memory accesses are often associated with

highly regular intra-warp L1D locality. However, the locality of divergent memory accesses may

be unpredictable. Typically, the gather and scatter access pattern [33] often carries low or median

L1D locality. For example, the BFS benchmark in Rodinia [12] has a divergent memory operation

that has median intra- and inter-warp locality. This kind of load operations can thrash the locality

potential of other memory operations, and make it hard to achieve an optimal partitioning for our

constrained replacement policy.

89

The hardware structures that are used to detect such cache-unfriendly access patterns can be

eliminated using compiler assistance. For NVIDIA GPUs with compute capability 2.0 or higher,

CUDA PTX ISA (version 2.0) has introduced optional cache operators on load and store instruc-

tions to guide the management of L1 and L2 caches [62]. For example, the default cache operation

for load instructions, ld.ca, caches data blocks in both L1 and L2 caches with normal eviction pol-

icy; ld.cg will bypass L1, while ld.cs triggers an evict-first policy for both L1 and L2 lines so that

cache pollution from streaming/thrashing accesses can be reduced.

However, such cache operators can only enable coarse-grained caching decisions, i.e., “all-

or-nothing” for a memory instruction in all warps. Under the massive parallelism of GPUs, it

often takes non-trivial efforts to assign a proper cache operator for each memory instruction.

More importantly, performance tuning often has portability issues across GPU devices. Our Da-

Cache design can take the information from cache operators as hints to manage both L1 and L2

caches. Based on these hints, DaCache can further hybridize existing cache operators to man-

age cache locality at a finer-granularity. For example, for divergent load instructions, warps with

high scheduling priorities can cache their data in L1, warps with median scheduling priorities can

cache their data in L2, while warps with low scheduling priorities have to constantly fetch data

from global memory. Store instructions can also be managed to reduce pollution at L2. This kind

of scheduling-aware cache allocation scheme can essentially lead to a non-inclusive GPU cache

hierarchy. Furthermore, the policies in DaCache can be further extended to manage sector-based

GPU caches [68, 75, 72]. By doing so, cache thrashing due to massive parallelism can be further

reduced and a higher number of active warps can be enabled to keep GPU resources busy.

2) Source-Throttling Congestion in On-chip Network: GPUs often employ two on-chip

networks to transfer data between SM and L2 cache portions, one for data transfers from SM to L2

(downstream) and the other for data transfers from L2 to SM (upstream). Since GPGPU bench-

marks are typically read-intensive, the upstream network that transfers requested data blocks is

more vulnerable to be congested, especially when divergent memory accesses incur bursty mem-

ory traffic. Network congestion will not only prolong the latency of off-chip memory accesses,

90

but also prevent the L2/Memory Controller from accepting new requests. Consequently, the back-

pressure originating from network congestion leads to severe under-utilization in various on-chip

resources, such as the warp schedulers in each SM.

The request queues inside upstream network ports can be reorganized to enforce both warp-

scheduling and memory-divergence awareness. Instead of injecting ready memory requests into

upstream network in a FIFO manner, these requests can be assigned with different criticality and

then serviced out-of-order. For example, coherent memory requests as well as divergent memory

requests of high-priority warps can be prioritized. When network congestion occurs, only critical

requests are injected into the upstream network. Based on this scheme, a more proactive method

can be built to prevent network congestion from occurring.

The concepts of warp-scheduling awareness and memory-divergence awareness can also be

applied to manage requests in the queues of L2 caches and memory controllers. Pending memory

requests can be prioritized by issuing warps’ scheduling priorities to access L2 caches and off-chip

memory chips. In order to maximize the utilization of global memory bandwidth, this prioriti-

zation scheme needs to complement existing memory scheduling policies that aim at back-level

parallelism and/or row-buffer locality.

91

Appendices

92

Appendix A

Publication Contributions

During my Ph.D. study, my research has contributed to the following publications (listed in
the chronological order):

1. Xinyu Que, Weikuan Yu, Vinod Tipparaju, Jeffrey Vetter, and Bin Wang. Network-Friendly
One-Sided Communication Through Multinode Cooperation on Petascale Cray XT5 Sys-
tems. In IEEE International Symposium on Cluster Computing and the Grid (CCGRID),
2011. [63]

2. Yuan Tian, Scott Klasky, Weikuan Yu, Hasan Abbasi, Bin Wang, Norbert Podhorszki, Ray
W. Grout, and Matthew Wolf. A System-Aware Optimized Data Organization for Efficient
Scientific Analytics. In The 21st International Symposium on High-Performance Parallel
and Distributed Computing (HPDC), 2012. Poster Paper. [81]

3. Yuan Tian, Scott Klasky, Weikuan Yu, Hasan Abbasi, Bin Wang, Norbert Podhorszki, Ray
W. Grout, and Matthew Wolf. SMART-IO: SysteM-AwaRe Two-Level Data Organization
for Efficient Scientific Analytics. In International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS), 2012. [82]

4. Zhuo Liu, Bin Wang, Patrick Carpenter, Dong Li, Jeffrey S. Vetter, and Weikuan Yu. PCM-
Based Durable Write Cache for Fast Disk I/O. In International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), 2012. [54]

5. Yandong Wang, Yizheng Jiao, Cong Xu, Xiaobing Li, Teng Wang, Xinyu Que, Cristi Cira,
Bin Wang, Zhuo Liu, Bliss Bailey, and Weikuan Yu. Assessing the Performance Impact of
High-Speed Interconnects on MapReduce. In Third Workshop on Big Data Benchmarking
(WBDB), 2012. [96]

6. Yuan Tian, Zhuo Liu, Scott Klasky, Bin Wang, Hasan Abbasi, Shujia Zhou, Norbert Pod-
horszki, Tom Clune, Jeremy Logan, and Weikuan Yu. A Lightweight I/O Scheme to Fa-
cilitate Spatial and Temporal Queries of Scientific Data Analytics. In IEEE Symposium on
Massive Storage Systems and Technologies (MSST), 2013. [84]

7. Bin Wang and Weikuan Yu. Performance and Power Simulation for Versatile GPGPU Global
Memory. In 27th IEEE International Parallel & Distributed Processing Symposium (IPDPS)
PhD Forum, 2013. [92]

8. Yuan Tian, Scott Klasky, Weikuan Yu, Bin Wang, Hasan Abbasi, Norbert Podhorszki, and
Ray Grout. DynaM: Dynamic Multiresolution Data Representation for Large-Scale Scien-
tific Analysis. In IEEE International Conference on Networking, Architecture, and Storage
(NAS), 2013. [83]

93

9. Bin Wang, Yizheng Jiao, Weikuan Yu, Xipeng Shen, Dong Li, and Jeffrey Vetter. A Ver-
satile Performance and Energy Simulation Tool for Composite GPU Global Memory. In
IEEE 21st International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS), 2013. [89]

10. Bin Wang, Bo Wu, Dong Li, Xipeng Shen, Weikuan Yu, Yizheng Jiao, and Jeffrey Vetter. Ex-
ploring Hybrid Memory for GPU Energy Efficiency through Software-Hardware Co-Design.
In The 22nd International Conference on Parallel Architecture and Compilation Techniques
(PACT), 2013. [91]

11. Bin Wang, Zhuo Liu, Xinning Wang, and Weikuan Yu. Eliminating Intra-Warp Conflict
Misses in GPU. In The 18th Design, Automation and Test in Europe (DATE), 2015. [90]

12. Bin Wang, Weikuan Yu, Xian-He Sun and Xinning Wang. DaCache: Memory Divergence-
Aware GPU Cache Management. In The 29th International Conference on Supercomputing
(ICS), 2015. [93]

13. Teng Wang, Sarp Oral, Michael Pritchard, Bin Wang, and Weikuan Yu. TRIO: Burst Buffer
Based I/O Orchestration. In IEEE International Conference on Cluster Computing, 2015. [94]

14. Xinning Wang, Bin Wang, Zhuo Liu, and Weikuan Yu. Preserving Row Buffer Locality
for PCM Wear-Leveling Under Massive Parallelism. In IEEE 23rd International Sympo-
sium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), 2015. [95]

15. Bin Wang, Weikuan Yu, and Jianhui Yue. OAWS: Memory Occlusion Aware Warp Schedul-
ing. Under review.

94

Bibliography

[1] Tor M. Aamodt and Wilson W. L. Fung. GPGPUSim 3.x Manual. http://gpgpu-
sim.org/manual/index.php/GPGPU-Sim 3.x Manual, 2014.

[2] Anant Agarwal and Steven D. Pudar. Column-associative Caches: a Technique for Re-
ducing the Miss Rate for Direct-Mapped Caches. In Proceedings of the 20th International
Symposium on Computer Architecture (ISCA), pages 179–190, 1993.

[3] Joshua A. Anderson, Chris D. Lorenz, and A. Travesset. General Purpose Molecular Dy-
namics Simulations Fully Implemented on Graphics Processing Units. Journal of Compu-
tational Physics, 227(10):5342–5359, May 2008.

[4] Ali Bakhoda, George L. Yuan, Wilson W. L. Fung, Henry Wong, and Tor M. Aamodt.
Analyzing CUDA Workloads Using a Detailed GPU Simulator. In Proceedings of the 2009
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS),
pages 163–174, 2009.

[5] Peter Bakkum and Kevin Skadron. Accelerating SQL Database Operations on a GPU with
CUDA. In Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units (GPGPU), pages 94–103, 2010.

[6] Laszlo A. Belady. A Study of Replacement Algorithms for a Virtual Storage Computer.
IBM Systems Journal, 5(2):78–101, June 1966.

[7] François Bodin and André Seznec. Skewed Associativity Improves Program Performance
and Enhances Predictability. IEEE Transactions on Computers, 46(5):530–544, 1997.

[8] Brett W. Coon and Peter C. Mills and Stuart F. Oberman and Ming Y. Siu. Tracking register
usage during multithreaded processing using a scoreboard having separate memory regions
and storing sequential register size indicators, October 7 2008. US Patent 7,434,032.

[9] Nicolas Brunie, Sylvain Collange, and Gregory Frederick Diamos. Simultaneous Branch
and Warp Interweaving for Sustained GPU Performance. In Proceedings of the 39th Inter-
national Symposium on Computer Architecture (ISCA), pages 49–60, 2012.

[10] Bryan Catanzaro, Narayanan Sundaram, and Kurt Keutzer. A Map Reduce Framework
for Programming Graphics Processors. In Proceedings of Workshop on Software Tools for
MultiCore Systems, 2008.

[11] Jichuan Chang and Gurindar S. Sohi. Cooperative Cache Partitioning for Chip Multipro-
cessors. In Proceedings of the 21th Annual International Conference on Supercomputing
(ICS), pages 242–252, 2007.

95

[12] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W. Sheaffer, Sang-Ha Lee,
and Kevin Skadron. Rodinia: A benchmark suite for heterogeneous computing. In Proceed-
ings of the 2009 IEEE International Symposium on Workload Characterization (IISWC),
pages 44–54, 2009.

[13] Linchuan Chen and Gagan Agrawal. Optimizing MapReduce for GPUs with Effective
Shared Memory Usage. In Proceedings of the 21st International Symposium on High-
Performance Parallel and Distributed Computing (HPDC), pages 199–210, 2012.

[14] Linchuan Chen, Xin Huo, and Gagan Agrawal. Accelerating MapReduce on a Coupled
CPU-GPU Architecture. In Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis (SC), pages 25:1–25:11, 2012.

[15] Xuhao Chen, Li-Wen Chang, Christopher I. Rodrigues, Jie Lv, Zhiying Wang, and Wen mei
W. Hwu. Adaptive Cache Management for Energy-Efficient GPU Computing. In Proceed-
ings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), pages 343–355, 2014.

[16] Xuhao Chen, Shengzhao Wu, Li-Wen Chang, Wei-Sheng Huang, Carl Pearson, Zhiying
Wang, and Wen mei W. Hwu. Adaptive Cache Bypass and Insertion for Many-core Accel-
erators. In Proceedings of the 2nd International Workshop on Many-core Embedded Systems
(MES), pages 1–8, 2014.

[17] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C. Roth,
Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. The Scalable Heterogeneous Com-
puting (SHOC) Benchmark Suite. In Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units (GPGPU), pages 63–74, 2010.

[18] Nam Duong, Dali Zhao, Taesu Kim, Rosario Cammarota, Mateo Valero, and Alexander V.
Veidenbaum. Improving Cache Management Policies Using Dynamic Reuse Distances. In
Proceedings of the 45th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 389–400, 2012.

[19] Jean Marc Frailong, William Jalby, and Jacques Lenfant. XOR-Schemes: A Flexible Data
Organization in Parallel Memories. In Proceedings of the 14th International Conference on
Parallel Processing (ICPP), pages 276–283, 1985.

[20] Wilson W. L. Fung and Tor M. Aamodt. Thread Block Compaction for Efficient SIMT
Control Flow. In Proceedings of the 17th International Conference on High-Performance
Computer Architecture (HPCA), pages 25–36, 2011.

[21] Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. Dynamic Warp For-
mation and Scheduling for Efficient GPU Control Flow. In Proceedings of the 40th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 407–420, 2007.

[22] Hongliang Gao and Chris Wilkerson. A Dueling Segmented LRU Replacement Algorithm
with Adaptive Bypassing. In JWAC 2010 - 1st JILP Worshop on Computer Architecture
Competitions: cache replacement Championship, 2010.

96

[23] Mark Gebhart, Daniel R. Johnson, David Tarjan, Stephen W. Keckler, William J. Dally, Erik
Lindholm, and Kevin Skadron. Energy-Efficient Mechanisms for Managing Thread Context
in Throughput Processors. In Proceedings of the 38th Annual International Symposium on
Computer Architecture (ISCA), pages 235–246, 2011.

[24] Tony Givargis. Improved Indexing for Cache Miss Reduction in Embedded Systems. In
Proceedings of the 40th Design Automation Conference (DAC), pages 875–880, 2003.

[25] Antonio González, Mateo Valero, Nigel Topham, and Joan M. Parcerisa. Eliminating Cache
Conflict Misses Through XOR-based Placement Functions. In Proceedings of the 11th
International Conference on Supercomputing (ICS), pages 76–83, 1997.

[26] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. Gputerasort: High
performance graphics co-processor sorting for large database management. In Proceedings
of the 2006 ACM SIGMOD International Conference on Management of Data, pages 325–
336, 2006.

[27] Naga K. Govindaraju, Brandon Lloyd, Wei Wang, Ming Lin, and Dinesh Manocha. Fast
Computation of Database Operations Using Graphics Processors. In Proceedings of the
2004 ACM SIGMOD International Conference on Management of Data, pages 215–226,
2004.

[28] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalasomayajula, and John Cavazos.
Auto-tuning a High-Level Language Targeted to GPU Codes. In Proceedings of Innovative
Parallel Computing (InPar), pages 1–10, 2012.

[29] Fei Guo, Yan Solihin, Li Zhao, and Ravishankar Iyer. A Framework for Providing Qual-
ity of Service in Chip Multi-Processors. In Proceedings of the 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 343–355, 2007.

[30] Erik G. Hallnor and Steven K. Reinhardt. A Fully Associative Software-Managed Cache
Design. In Proceedings of the 27th International Symposium on Computer Architecture
(ISCA), pages 107–116, 2000.

[31] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue B. Moon. PacketShader: a GPU-
accelerated software router. In Proceedings of the ACM SIGCOMM 2010 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communications,
pages 195–206, 2010.

[32] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju, and Tuyong Wang. Mars:
a MapReduce Framework on Graphics Processors. In Proceedings of the 17th International
Conference on Parallel Architecture and Compilation Techniques (PACT), pages 260–269,
2008.

[33] Bingsheng He, Naga K. Govindaraju, Qiong Luo, and Burton Smith. Efficient Gather and
Scatter Operations on Graphics Processors. In Proceedings of the 2007 ACM/IEEE Confer-
ence on Supercomputing (SC), pages 1–12, 2007.

97

[34] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju, Qiong Luo, and Pe-
dro V. Sander. Relational Query Coprocessing on Graphics Processors. ACM Transactions
on Database Systems, 34(4):21:1–21:39, December 2009.

[35] David T. Harper III and J. Robert Jump. Vector Access Performance in Parallel Memories
Using A Skewed Storage Scheme. IEEE Transactions on Computers, C-36(12):1440–1449,
December 1987.

[36] Ravi Iyer. CQoS: A Framework for Enabling QoS in Shared Caches of CMP Platforms. In
Proceedings of the 18th Annual International Conference on Supercomputing (ICS), pages
257–266, 2004.

[37] Ravi Iyer, Li Zhao, Fei Guo, Ramesh Illikkal, Srihari Makineni, Don Newell, Yan Solihin,
Lisa Hsu, and Steve Reinhardt. QoS Policies and Architecture for Cache/Memory in CMP
Platforms. In Proceedings of the 2007 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pages 25–36, 2007.

[38] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., and Joel S. Emer. High Performance
Cache Replacement Using Re-Reference Interval Prediction (RRIP). In Proceedings of the
37th International Symposium on Computer Architecture (ISCA), pages 60–71, 2010.

[39] Wenhao Jia, Kelly A. Shaw, and Margaret Martonosi. Characterizing and Improving the
Use of Demand-fetched Caches in GPUs. In Proceedings of the 26th ACM International
Conference on Supercomputing (ICS), pages 15–24, 2012.

[40] Wenhao Jia, Kelly A. Shaw, and Margaret Martonosi. MRPB: Memory Request Prioriti-
zation for Massively Parallel Processors. In Proceedings of the 20th IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages 272–283, 2014.

[41] Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir, Onur Mutlu, Ravishankar
Iyer, and Chita R. Das. Orchestrated Scheduling and Prefetching for GPGPUs. In Proceed-
ings of the 40th Annual International Symposium on Computer Architecture (ISCA), pages
332–343, 2013.

[42] Adwait Jog, Onur Kayiran, Nachiappan Chidambaram Nachiappan, Asit K. Mishra, Mah-
mut T. Kandemir, Onur Mutlu, Ravishankar Iyer, and Chita R. Das. OWL: Cooperative
Thread Array Aware Scheduling Techniques for Improving GPGPU Performance. In Pro-
ceedings of Architectural Support for Programming Languages and Operating Systems (AS-
PLOS), pages 395–406, 2013.

[43] Gary J. Katz and Joseph T. Kider Jr. All-Pairs Shortest-Paths for Large Graphs on the
GPU. In Proceedings of the EUROGRAPHICS/ACM SIGGRAPH Conference on Graphics
Hardware, pages 47–55, 2008.

[44] Onur Kayiran, Adwait Jog, Mahmut T. Kandemir, and Chita R. Das. Neither More nor Less:
Optimizing Thread-level Parallelism for GPGPUs. In Proceedings of the 22nd International
Conference on Parallel Architectures and Compilation Techniques (PACT), pages 157–166,
2013.

98

[45] Mahmoud Khairy, Mohamed Zahran, and Amr G. Wassal. Efficient Utilization of GPGPU
Cache Hierarchy. In Proceedings of the 8th Workshop on General Purpose Processing
Using GPUs (GPGPU), pages 36–47, 2015.

[46] Samira Manabi Khan, Yingying Tian, and Daniel A. Jimenez. Sampling Dead Block Pre-
diction for Last-Level Caches. In Proceedings of the 43rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 175–186, 2010.

[47] Mazen Kharbutli, Keith Irwin, Yan Solihin, and Jaejin Lee. Using Prime Numbers for Cache
Indexing to Eliminate Conflict Misses. In Proceedings of the 10th International Symposium
on High Performance Computer Architecture (HPCA), pages 288–299, 2004.

[48] Duncan H. Lawrie and Chandra R. Vora. The Prime Memory System for Array Access.
IEEE Transactions on Computers, 31(5):435–442, 1982.

[49] Jaekyu Lee and Hyesoon Kim. TAP: A TLP-Aware Cache Management Policy for a CPU-
GPU Heterogeneous Architecture. In Proceedings of the 18th IEEE International Sympo-
sium on High Performance Computer Architecture (HPCA), pages 91–102, 2012.

[50] Minseok Lee, Seokwoo Song, Joosik Moon, John Kim, Woong Seo, Yeon-Gon Cho, and
Soojung Ryu. Improving GPGPU Resource Utilization Through Alternative Thread Block
Scheduling. In Processing of the 20th IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 260–271, 2014.

[51] Chao Li, Shuaiwen Song, Hongwen Dai, Albert Sidelnik, Siva Kumar Sastry Hari, and
Huiyang Zhou. Locality-Driven Dynamic GPU Cache Bypassing. In Proceedings of the
29th International Conference on Supercomputing (ICS), pages 128–139, 2015.

[52] Dong Li. Orchestrating Thread Scheduling and Cache Management to Improve Memory
System Throughput in Throughput Processor. PhD thesis, University of Texas at Austin,
May 2014.

[53] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym. NVIDIA Tesla: A
Unified Graphics and Computing Architecture. IEEE Micro, 28(2):39–55, March 2008.

[54] Zhuo Liu, Bin Wang, Patrick Carpenter, Dong Li, Jeffrey S. Vetter, and Weikuan Yu. PCM-
Based Durable Write Cache for Fast Disk I/O. In Proceedings of the 20th IEEE International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS), pages 451–458, 2012.

[55] Vineeth Mekkat, Anup Holey, Pen-Chung Yew, and Antonia Zhai. Managing Shared Last-
Level Cache in a Heterogeneous Multicore Processor. In Proceedings of the 22nd inter-
national conference on Parallel Architectures and Compilation Techniques (PACT), pages
225–234, 2013.

[56] Peter C. Mills, John Erik Lindholm, Brett W. Coon, Gary M. Tarolli, and John Matthew
Burgess. Scheduler in multi-threaded processor prioritizing instructions passing qualifica-
tion rule, May 24 2011. US Patent 7,949,855.

99

[57] Veynu Narasiman, Michael Shebanow, Chang Joo Lee, Rustam Miftakhutdinov, Onur
Mutlu, and Yale N. Patt. Improving GPU Performance via Large Warps and Two-level
Warp Scheduling. In Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 308–317, 2011.

[58] Cedric Nugteren, Gert-Jan van den Braak, Henk Corporaal, and Henri Bal. A Detailed
GPU Cache Model Based on Reuse Distance Theory. In Proceedings of the 20th IEEE
International Symposium on High Performance Computer Architecture (HPCA), pages 37–
48, 2014.

[59] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: Fermi, 2009.

[60] NVIDIA. NVIDIA’s Next Generation CUDA Compute Architecture: Kepler GK110, 2012.

[61] NVIDIA. CUDA C Programming Guide, 2013.

[62] NVIDIA. PTX: Parallel Thread Execution ISA Version 4.2, 2015.

[63] Xinyu Que, Weikuan Yu, Vinod Tipparaju, Jeffrey S. Vetter, and Bin Wang. Network-
Friendly One-Sided Communication through Multinode Cooperation on Petascale Cray
XT5 Systems. In Proceedings of 11th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), pages 352–361, 2011.

[64] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely, Jr., and Joel S. Emer.
Adaptive Insertion Policies for High Performance Caching. In Proceedings of the 34th
International Symposium on Computer Architecture (ISCA), pages 381–391, 2007.

[65] Moinuddin K. Qureshi, David Thompson, and Yale N. Patt. The V-Way Cache: Demand
Based Associativity via Global Replacement. In Proceedings of the 32nd Annual Interna-
tional Symposium on Computer Architecture (ISCA), pages 544–555, 2005.

[66] Ram Raghavan and John P. Hayes. On Randomly Interleaved Memories. In Proceedings of
the 1990 ACM/IEEE Conference on Supercomputing, pages 49–58, 1990.

[67] B. Ramakrishna Rau. Pseudo-Randomly Interleaved Memory. In Proceedings of the 18th
Annual International Symposium on Computer Architecture (ISCA), pages 74–83, 1991.

[68] Minsoo Rhu, Michael Sullivan, Jingwen Leng, and Mattan Erez. A Locality-Aware Mem-
ory Hierarchy for Energy-Efficient GPU Architectures. In Proceedings of the 46th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 86–98, 2013.

[69] Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. Cache-Conscious Wavefront
Scheduling. In Proceedings of the 45th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 72–83, 2012.

[70] Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. Divergence-aware Warp Schedul-
ing. In Proceedings of the 46th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), pages 99–110, 2013.

100

[71] Alberto Ros, Polychronis Xekalakis, Marcelo Cintra, Manuel E. Acacio, and José M.
Garcı́a. ASCIB: Adaptive Selection of Cache Indexing Bits for Removing Conflict Misses.
In Proceedings of the 2012 ACM/IEEE International Symposium on Low Power Electronics
and Design (ISLPED), pages 51–56, 2012.

[72] Jeffrey B. Rothman and Alan Jay Smith. The Pool of Subsectors Cache Design. In Proceed-
ings of the 13th International Conference on Supercomputing (ICS), pages 31–42, 1999.

[73] Ankit Sethia, Davoud Anoushe Jamshidi, and Scott A. Mahlke. Mascar: Speeding up GPU
Warps by Reducing Memory Pitstops. In Proceedings of the 21st IEEE International Sym-
posium on High Performance Computer Architecture (HPCA), pages 174–185, 2015.

[74] André Seznec. A Case for Two-Way Skewed-Associative Caches. In Proceedings of the
20th Annual International Symposium on Computer Architecture (ISCA), pages 169–178,
1993.

[75] André Seznec. Decoupled Sectored Caches: Conciliating Low Tag Implementation Cost. In
Proceedings of the 21st Annual International Symposium on Computer Architecture (ISCA),
pages 384–393, 1994.

[76] André Seznec. A new case for skewed associativity. Technical report, IRISA Technical
Report 1114, 1997.

[77] John E. Stone, David Gohara, and Guochun Shi. OpenCL: A Parallel Programming Standard
for Heterogeneous Computing Systems. Computing in Science and Engineering, 12(3):66–
73, May 2010.

[78] John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Changx, Nasser
Anssari, Geng Daniel Liu, and Wen mei W. Hwu. Parboil: A Revised Benchmark Suite for
Scientific and Commercial Throughput Computing. IMPACT Technical Report, IMPACT-
12-01, University of Illinois, at Urbana-Champaign, 2012.

[79] Jeff A. Stuart and John D. Owens. Multi-GPU MapReduce on GPU Clusters. In Proceed-
ings of the 25th IEEE International Parallel & Distributed Processing Symposium (IPDPS),
pages 1068–1079, 2011.

[80] Ranjith Subramanian, Yannis Smaragdakis, and Gabriel H. Loh. Adaptive Caches: Effective
Shaping of Cache Behavior to Workloads. In Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 385–396, 2006.

[81] Yuan Tian, Scott Klasky, Weikuan Yu, Hasan Abbasi, Bin Wang, Norbert Podhorszki,
Ray W. Grout, and Matthew Wolf. A System-Aware Optimized Data Organization for Ef-
ficient Scientific Analytics. In Proceedings of the 21st International Symposium on High-
Performance Parallel and Distributed Computing (HPDC), pages 125–126, 2012.

101

[82] Yuan Tian, Scott Klasky, Weikuan Yu, Hasan Abbasi, Bin Wang, Norbert Podhorszki,
Ray W. Grout, and Matthew Wolf. SMART-IO: SysteM-AwaRe Two-Level Data Orga-
nization for Efficient Scientific Analytics. In Proceedings of IEEE 20th International Sym-
posium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems
(MASCOTS), pages 181–188, 2012.

[83] Yuan Tian, Scott Klasky, Weikuan Yu, Bin Wang, Hasan Abbasi, Norbert Podhorszki, and
Ray W. Grout. DynaM: Dynamic Multiresolution Data Representation for Large-Scale Sci-
entific Analysis. In Proceedings of IEEE Eighth International Conference on Networking,
Architecture and Storage (NAS), pages 115–124, 2013.

[84] Yuan Tian, Zhuo Liu, Scott Klasky, Bin Wang, Hasan Abbasi, Shujia Zhou, Norbert Pod-
horszki, Tom Clune, Jeremy Logan, and Weikuan Yu. A Lightweight I/O Scheme to Fa-
cilitate Spatial and Temporal Queries of Scientific Data Analytics. In Proceedings of IEEE
29th Symposium on Mass Storage Systems and Technologies (MSST), pages 1–10, 2013.

[85] top500.org. TOP 10 Sites for June 2015. http://www.top500.org/lists/2015/06, 2015.

[86] Nigel P. Topham, Antonio González, and José González. The Design and Performance of
a Conflict-Avoiding Cache. In Proceedings of the 30th Annual International Symposium on
Microarchitecture (MICRO), pages 71–80, 1997.

[87] Pedro Trancoso, Despo Othonos, and Artemakis Artemiou. Data Parallel Acceleration of
Decision Support Queries using Cell/BE and GPUs. In Proceedings of the 6th Conference
on Computing Frontiers (CF), pages 117–126, 2009.

[88] Cole Trapnell and Michael C. Schatz. Optimizing Data Intensive GPGPU Computations for
DNA Sequence Alignment. Parallel Computing, 35(8-9):429–440, 2009.

[89] Bin Wang, Yizheng Jiao, Weikuan Yu, Xipeng Shen, Dong Li, and Jeffrey S. Vetter. A
Versatile Performance and Energy Simulation Tool for Composite GPU Global Memory. In
Proceedings of IEEE 21st International Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunication Systems (MASCOTS), pages 298–302, 2013.

[90] Bin Wang, Zhuo Liu, Xinning Wang, and Weikuan Yu. Eliminating intra-warp conflict
misses in GPU. In Proceedings of the 2015 Design, Automation & Test in Europe Confer-
ence & Exhibition (DATE), pages 689–694, 2015.

[91] Bin Wang, Bo Wu, Dong Li, Xipeng Shen, Weikuan Yu, Yizheng Jiao, and Jeffrey S. Vetter.
Exploring Hybrid Memory for GPU Energy Efficiency Through Software-hardware Co-
design. In Proceedings of the 22nd International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 93–102, 2013.

[92] Bin Wang and Weikuan Yu. Performance and Power Simulation for Versatile GPGPU
Global Memory. In Proceedings of the 27th IEEE International Parallel & Distributed
Processing Symposium (IPDPS), Workshops and Phd Forum, pages 2254–2257, 2013.

102

[93] Bin Wang, Weikuan Yu, Xian-He Sun, and Xinning Wang. DaCache: Memory Divergence-
Aware GPU Cache Management. In Proceedings of the 29th International Conference on
Supercomputing (ICS), pages 128–139, 2015.

[94] Teng Wang, Sarp Oral, Michael Pritchard, Bin Wang, and Weikuan Yu. TRIO: Burst Buffer
Based I/O Orchestration. In Proceedings of IEEE International Conference on Cluster Com-
puting (Cluster), 2015.

[95] Xinning Wang, Bin Wang, Zhuo Liu, and Weikuan Yu. Preserving Row Buffer Locality for
PCM Wear-Leveling Under Massive Parallelism. In Proceedings of IEEE 23rd International
Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS), 2015.

[96] Yandong Wang, Yizheng Jiao, Cong Xu, Xiaobing Li, Teng Wang, Xinyu Que, Cristian Cira,
Bin Wang, Zhuo Liu, Bliss Bailey, and Weikuan Yu. Assessing the Performance Impact of
High-Speed Interconnects on MapReduce. In Third Workshop on Big Data Benchmarking
(WBDB), volume 8163 of Lecture Notes in Computer Science, pages 148–163, 2012.

[97] Haicheng Wu, Gregory Frederick Diamos, Srihari Cadambi, and Sudhakar Yalamanchili.
Kernel Weaver: Automatically Fusing Database Primitives for Efficient GPU Computation.
In Proceedings of the 45th Annual IEEE/ACM International Symposium on Microarchitec-
ture, pages 107–118, 2012.

[98] Xiaolong Xie, Yun Liang, Guangyu Sun, and Deming Chen. An Efficient Compiler Frame-
work for Cache Bypassing on GPUs. In Proceedings of the International Conference on
Computer-Aided Design (ICCAD), pages 516–523, 2013.

[99] Yuejian Xie and Gabriel H. Loh. PIPP: Promotion/Insertion Pseudo-partitioning of Multi-
core Shared Caches. In Proceedings of the 36th Annual International Symposium on Com-
puter Architecture (ISCA), pages 174–183, 2009.

[100] Yulong Yu, Weijun Xiao, Xubin He, He Guo, Yuxin Wang, and Xin Chen. A Stall-Aware
Warp Scheduling for Dynamically Optimizing Thread-level Parallelism in GPGPUs. In
Proceedings of the 29th International Conference on Supercomputing (ICS), pages 128–
139, 2015.

[101] Yongpeng Zhang, Frank Mueller, Xiaohui Cui, and Thomas Potok. Data-Intensive Doc-
ument Clustering on Graphics Processing Unit (GPU) Clusters. Journal of Parallel and
Distributed Computing, 71(2):211–224, February 2011.

[102] Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang. A Permutation-based Page Interleaving
Scheme to Reduce Row-buffer Conflicts and Exploit Data Locality. In Proceedings of the
33rd Annual International Symposium on Microarchitecture (MICRO), pages 32–41, 2000.

[103] Zhong Zheng, Zhiying Wang, and Mikko Lipasti. Adaptive Cache and Concurrency Allo-
cation on GPGPUs. Computer Architecture Letters, 6, 2014.

103

