Bounded Complete Embedding Graphs

by
Jennifer Katherine Aust
A dissertation submitted to the Graduate Faculty of
Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy
Auburn, Alabama
August 1, 2015

Keywords: graph designs, graph decompositions, embeddings, bounded complete embedding graphs

Copyright 2015 by Jennifer Katherine Aust

Approved by
Dean G. Hoffman, Chair, Professor of Mathematics and Statistics
Charles C. Lindner, University Distinguished Professor of Mathematics and Statistics Jessica M. McDonald, Assistant Professor of Mathematics and Statistics Christopher A. Rodger, Don Logan Endowed Chair of Mathematics and Statistics George L. Flowers, Dean of the Graduate School and Professor of Mechanical Engineering

Abstract

In the study of graph embeddings, there is particular interest in small embeddings and in bounds on the minimum number of vertices that must be added in order to achieve an embedding of a particular design. We introduce two new terms, defining a natural approach to the bounding question. A simple graph G is a bounded complete embedding graph if and only if there is some positive integer b such that, for every $n \in \mathbb{P}$ such that a complete G design of order n exists, every complete G-design of order n can be embedded in a complete G-design of order $n+x$, for some positive integer x such that $x \leq b$. A simple graph G is a bounded embedding graph if and only if there is some positive integer c such that, for every positive integer n, every partial G-design of order n can be embedded in a complete G-design of order $n+x$, for some positive integer x such that $x \leq c$.

By definition, every bounded embedding graph is a bounded complete embedding graph; we show that the converse of this fact is false, and that all bounded complete embedding graphs are bipartite. We identify results in the literature that provide, as immediate corollaries, the following results: that k-stars are bounded embedding graphs, that 3 -paths are bounded embedding graphs, and that even cycles are bounded complete embedding graphs.

We establish that paths and complete bipartite graphs are bounded complete embedding graphs. We show that all simple bipartite graphs G that have 2^{t} edges (for some positive integer t), have all vertices of even degree, and admit a β^{+}-labeling, are bounded complete embedding graphs.

We show that the graph $\mathcal{C}_{2 k}^{p}$, consisting of p vertex-disjoint $2 k$-cycles, is a bounded complete embedding graph if $p=2^{t}$, for some positive integer t, or if $2 \leq p \leq 128$ and $2 \leq k \leq 128$. These results on the graph $\mathcal{C}_{2 k}^{p}$ and the supporting constructions comprise a major portion of our work. We produce two constructions of $\mathcal{C}_{2 k}^{p}$-designs on complete

bipartite graphs; we apply these constructions to obtain the designs on complete bipartite graphs that are necessary to build embeddings. We rely on existing graph labeling results that establish, for all values of p and k, the existence of a complete $\mathcal{C}_{2 k}^{p}$-design of order $4 k p+1$; we also present our own independently achieved designs for some values of p and k, and we compare our designs to those created by graph labelings. Furthermore, we establish the spectrum of complete $\mathcal{C}_{2 k}^{p}$-designs when $4 k p=2^{t}$ (for some positive integer t), and we exhibit the additional designs necessary to establish the spectrum of complete $\mathcal{C}_{2 k}^{p}$-designs for $p=2$ and $k \in\{3,5\}$.

Acknowledgments

I thank to my advisor, Dr. Hoffman, for his support and guidance. I thank all the members of my committee for their commitment of time and effort; special thanks go to Dr. Rodger and Dr. McDonald for their comments and suggestions. I also thank Dr. Saad El-Zanati for his support, his assistance with obtaining references for the graph labeling material, and his comments on Chapter 2.

I express very special thanks to my family, most especially to my parents, for their constant love, support, and encouragement throughout my education. I offer my sincere gratitude to my best friend, JPG, for her unwavering friendship and for her understanding of my infrequent visits and ineffective efforts at keeping in touch. I thank my friends at Auburn University for their support, advice, and friendship. I also thank the Heritage Singers of Auburn for the soothing, mind-clearing distraction of beautiful music.

Lastly, I acknowledge the many teachers and mentors who have taught me important mathematics and valuable life skills, who have guided me through tough times, who have encouraged me to follow my dreams, and who have inspired me to persist and endure on this long journey. These teachers and mentors are too many to name, though some have already been mentioned; I thank them all for their contributions to my education and to my personal and professional development.

Table of Contents

Abstract ii
Acknowledgments iv
List of Figures viii
List of Tables xiv
List of Notation xvii
1 Introduction 1
1.1 Notation, Conventions, and Graph Terminology 1
1.2 Graph Designs and Decompositions 4
1.3 Embeddings of Graph Designs 8
1.4 Bounded Complete Embedding Graphs and Bounded Embedding Graphs 10
1.5 Existing Significant Results 18
2 Known Results on Graph Labelings and Cyclic Designs 21
2.1 Cyclic Designs on Complete Graphs and Complete Bipartite Graphs 21
2.2 Graph Labelings and Cyclic Designs 23
2.2.1 Restrictions on Graph Labelings 24
2.2.2 Nine Graph Labeling Types 25
2.2.3 Obtaining Cyclic Designs from Graph Labelings 27
2.3 Existence Results for Labelings of Certain Graphs 28
3 A Few Bounded Complete Embedding Graphs 31
3.1 Constructions for Embeddings 33
3.2 Paths 34
3.3 Complete Bipartite Graphs 39
3.4 A Special Class of Bipartite Graphs 44
4 Cohorts of Even Cycles, Part One 48
4.1 Constructions for Designs on Complete Bipartite Graphs 49
4.2 Superspectra of Cohorts of Even Cycles 54
4.3 Bounded Complete Embedding Results on Cohorts of Even Cycles 56
4.3.1 A Special Design 61
4.4 Spectral Results on Cohorts of Even Cycles 94
4.4.1 The Spectrum of the $\left(2, C_{6}\right)$-Cohort 94
4.4.2 The Spectrum of the ($2, C_{10}$)-Cohort 97
5 Cohorts of Even Cycles, Part Two 104
5.1 Constructions by Blinco and El-Zanati 105
5.1.1 The Blinco-El-Zanati Construction for Even k 107
5.1.2 The Blinco-El-Zanati Construction for Odd k and Even p 115
5.1.3 The Blinco-El-Zanati Construction for Odd k and Odd p 123
5.2 Complete Designs of Order $4 k p+1$ for Even k 132
5.2.1 Our Construction for Even k 132
5.2.2 Comparative Analysis for Even k 143
5.3 Complete Designs of Order $4 k p+1$ for Odd k and Even p 146
5.3.1 Our Construction for Odd k and Even p, Variation I 147
5.3.2 Our Construction for Odd k and Even p, Variation II 191
5.3.3 Comparative Analysis for Odd k and Even p 224
5.4 Complete Designs of Order $4 k p+1$ for Odd k and Odd p 227
5.4.1 Constructions by Group Actions 227
5.4.2 Constructions by the Prescribed Sum Method 243
5.4.3 Comparative Analysis for Odd k and Odd p 247
6 Conjectures and Questions 249
6.1 Questions Generated by the Group Actions Method 249
6.2 Future Work on Bounded Complete Embedding Graphs 256
6.3 Extensions and Generalizations 260
Bibliography 261
Appendices 264
A Superspectra of the Cohorts of Even Cycles 265
B Existence of Satisfactory Divisors for the Dovetail Construction 268

List of Figures

1.1 A P_{2}-design on the K_{4}-subgraph on vertices v_{n}, z_{1}, z_{2}, and z_{3} 12
1.2 A P_{2}-design on the bowtie subgraph on vertices $u_{i-1}, v_{i-1}, u_{i}, v_{i}$, and z 13
1.3 Four C_{4}-blocks corresponding to $(a, b, c, d) \in \mathscr{B}$ 15
2.1 A caterpillar graph (left) and the comet $S_{4,3}$ (right) 29
2.2 The cube Q_{4} 29
4.1 The P_{2}-subgraph of \mathcal{G} defined by the pair $\left(5,\left\{2^{\star}, 8^{\star}\right\}\right)$ 66
4.2 Five P_{2}-subgraphs of \mathcal{G} 66
4.3 A C_{10}-subgraph of \mathcal{G} 67
4.4 The W-separation graph for the C_{10}-design \mathscr{B} on \mathcal{G} 68
4.5 Cycles A (apricot), G (violet), and S (black) are W-separated. 69
4.6 Cycles B (cobalt), H (lilac), and O (black) are W-separated 69
4.7 Cycles C (red), D (violet), and N (black) are W-separated. 69
4.8 Cycles E (sky blue), R (plum), and T (black) are W-separated. 70
4.9 Cycles F (lime), P (violet), and V (black) are W-separated. 70
4.10 Cycles L (pink), Q (violet), and U (black) are W-separated. 70
4.11 Cycles I (jade), J (lilac), K (black), and M (orange) are W-separated. 71
4.12 The \mathcal{C}_{10}^{3}-block $(A, 1) \cup(G, 2) \cup(S, 3)$. 72
4.13 The \mathcal{C}_{10}^{3}-block $(G, 1) \cup(S, 2) \cup(A, 3)$. 73
4.14 The \mathcal{C}_{10}^{3}-block $(S, 1) \cup(A, 2) \cup(G, 3)$. 74
4.15 The \mathcal{C}_{10}^{3}-block $(B, 1) \cup(H, 2) \cup(O, 3)$. 75
4.16 The \mathcal{C}_{10}^{3}-block $(H, 1) \cup(O, 2) \cup(B, 3)$. 76
4.17 The \mathcal{C}_{10}^{3}-block $(O, 1) \cup(B, 2) \cup(H, 3)$. 77
4.18 The \mathcal{C}_{10}^{3}-block $(C, 1) \cup(D, 2) \cup(N, 3)$. 78
4.19 The \mathcal{C}_{10}^{3}-block $(D, 1) \cup(N, 2) \cup(C, 3)$. 79
4.20 The \mathcal{C}_{10}^{3}-block $(N, 1) \cup(C, 2) \cup(D, 3)$. 80
4.21 The \mathcal{C}_{10}^{3}-block $(E, 1) \cup(R, 2) \cup(T, 3)$. 81
4.22 The \mathcal{C}_{10}^{3}-block $(R, 1) \cup(T, 2) \cup(E, 3)$. 82
4.23 The \mathcal{C}_{10}^{3}-block $(T, 1) \cup(E, 2) \cup(R, 3)$. 83
4.24 The \mathcal{C}_{10}^{3}-block $(F, 1) \cup(P, 2) \cup(V, 3)$. 84
4.25 The \mathcal{C}_{10}^{3}-block $(P, 1) \cup(V, 2) \cup(F, 3)$. 85
4.26 The \mathcal{C}_{10}^{3}-block $(V, 1) \cup(F, 2) \cup(P, 3)$. 86
4.27 The \mathcal{C}_{10}^{3}-block $(L, 1) \cup(Q, 2) \cup(U, 3)$. 87
4.28 The \mathcal{C}_{10}^{3}-block $(Q, 1) \cup(U, 2) \cup(L, 3)$. 88
4.29 The \mathcal{C}_{10}^{3}-block $(U, 1) \cup(L, 2) \cup(Q, 3)$. 89
4.30 The \mathcal{C}_{10}^{3}-block $(I, 1) \cup(J, 2) \cup(K, 3)$. 90
4.31 The \mathcal{C}_{10}^{3}-block $(J, 1) \cup(K, 2) \cup(M, 3)$. 91
4.32 The \mathcal{C}_{10}^{3}-block $(K, 1) \cup(M, 2) \cup(I, 3)$. 92
4.33 The \mathcal{C}_{10}^{3}-block $(M, 1) \cup(I, 2) \cup(J, 3)$. 93
4.34 The block B, consisting of cycles \mathfrak{C}_{1} (blue) and \mathfrak{C}_{2} (red) 95
4.35 The block A, consisting of cycles \mathfrak{C}_{3} (blue) and \mathfrak{C}_{4} (red) 96
4.36 The sets $[0,0,2]$ (edges in cobalt) and $[1,3,1]$ (edges in red) 98
4.37 Base block A for the \mathcal{C}_{10}^{2}-design on K_{25} 99
4.38 Base block B for the \mathcal{C}_{10}^{2}-design on K_{25} 100
4.39 Base block C for the \mathcal{C}_{10}^{2}-design on K_{25} 101
5.1 The 6-cycle in Example 5.2 105
5.2 A Blinco-El-Zanati σ^{+}-labeling of \mathcal{C}_{12}^{4} 111
5.3 A Blinco-El-Zanati σ^{+}-labeling of \mathcal{C}_{16}^{5} 113
5.4 A Blinco-El-Zanati σ^{+}-labeling of \mathcal{C}_{10}^{6} 119
5.5 A Blinco-El-Zanati σ^{+}-labeling of \mathcal{C}_{10}^{8} 121
5.6 A Blinco-El-Zanati ρ^{+}-labeling of \mathcal{C}_{6}^{5} 128
5.7 A Blinco-El-Zanati ρ^{+}-labeling of \mathcal{C}_{14}^{5} 130
5.8 Schematic diagram of cycle \mathfrak{C}_{r}, for r odd 134
5.9 Schematic diagram of cycle \mathfrak{C}_{r}, for r even 134
5.10 The \mathcal{C}_{12}^{4} base block from Example 5.14 140
5.11 The \mathcal{C}_{16}^{5} base block from Example 5.15 142
5.12 Small reproductions of \mathcal{C}_{12}^{4} and \mathcal{C}_{16}^{5} base blocks 144
5.13 A \mathcal{C}_{14}^{2} base block $(p=2, k=7)$ 155
5.14 A \mathcal{C}_{18}^{4} base block $(p=4, k=9)$ 157
5.15 A \mathcal{C}_{22}^{6} base block $(p=6, k=11)$ 159
5.16 The right side of a \mathcal{C}_{26}^{8} base block $(p=8, k=13): \mathfrak{C}_{1}, \mathfrak{C}_{3}, \mathfrak{C}_{5}$, and \mathfrak{C}_{7} 161
5.17 The left side of a \mathcal{C}_{26}^{8} base block $(p=8, k=13): \mathfrak{C}_{2}, \mathfrak{C}_{4}, \mathfrak{C}_{6}$, and \mathfrak{C}_{8} 163
5.18 A \mathcal{C}_{6}^{2} base block $(p=2, k=3)$ 166
5.19 A \mathcal{C}_{6}^{4} base block $(p=4, k=3)$ 167
5.20 A \mathcal{C}_{6}^{6} base block $(p=6, k=3)$ 168
5.21 A \mathcal{C}_{6}^{8} base block $(p=8, k=3)$ 169
5.22 A \mathcal{C}_{10}^{2} base block $(p=2, k=5)$ 171
5.23 A \mathcal{C}_{10}^{4} base block $(p=4, k=5)$ 172
5.24 A \mathcal{C}_{10}^{6} base block $(p=6, k=5)$ 174
5.25 A \mathcal{C}_{10}^{8} base block $(p=8, k=5)$ 176
5.26 A \mathcal{C}_{14}^{4} base block $(p=4, k=7)$ 178
5.27 A \mathcal{C}_{14}^{6} base block $(p=6, k=7)$ 180
5.28 A \mathcal{C}_{14}^{8} base block $(p=8, k=7)$ 182
5.29 A \mathcal{C}_{18}^{6} base block $(p=6, k=9)$ 184
5.30 A \mathcal{C}_{18}^{8} base block $(p=8, k=9)$ 186
5.31 The right half of a \mathcal{C}_{22}^{8} base block $(p=8, k=11): \mathfrak{C}_{1}, \mathfrak{C}_{3}, \mathfrak{C}_{5}$, and \mathfrak{C}_{7} 188
5.32 The left half of a \mathcal{C}_{22}^{8} base block $(p=8, k=11): \mathfrak{C}_{2}, \mathfrak{C}_{4}, \mathfrak{C}_{6}$, and \mathfrak{C}_{8} 190
5.33 A \mathcal{C}_{6}^{4} base block $(p=4, k=3)$ 199
$5.34 \mathrm{~A} \mathrm{C}_{6}^{8}$ base block $(p=8, k=3)$ 201
5.35 A \mathcal{C}_{6}^{10} base block $(p=10, k=3)$ 203
5.36 A \mathcal{C}_{10}^{2} base block $(p=2, k=5)$ 204
5.37 A \mathcal{C}_{10}^{6} base block $(p=6, k=5)$ 206
5.38 A \mathcal{C}_{10}^{8} base block $(p=8, k=5)$ 208
5.39 A \mathcal{C}_{14}^{4} base block $(p=4, k=7)$ 210
5.40 A \mathcal{C}_{14}^{6} base block $(p=6, k=7)$ 212
5.41 A \mathcal{C}_{14}^{8} base block $(p=8, k=7)$ 214
5.42 A \mathcal{C}_{18}^{6} base block $(p=6, k=9)$ 216
5.43 A \mathcal{C}_{22}^{6} base block $(p=6, k=11)$ 218
5.44 A \mathcal{C}_{26}^{4} base block $(p=4, k=13)$ 220
5.45 Small reproductions of \mathcal{C}_{10}^{6} and \mathcal{C}_{10}^{8} base blocks 225
5.46 A \mathcal{C}_{10}^{3} base block $(p=3, k=5)$ 232
$5.47 \mathrm{~A}_{6}^{3}$ base block $(p=3, k=3)$ 234
5.48 A \mathcal{C}_{18}^{3} base block $(p=3, k=9)$ 236
5.49 A \mathcal{C}_{22}^{3} base block $(p=3, k=11)$ 238
5.50 A \mathcal{C}_{26}^{3} base block $(p=3, k=13)$ 240
5.51 A \mathcal{C}_{6}^{5} base block $(p=5, k=3)$ 242
$5.52 \mathrm{~A}_{6}^{3}$ base block $(p=3, k=3)$ 244
5.53 A \mathcal{C}_{10}^{3} base block $(p=3, k=5)$ 246
5.54 A \mathcal{C}_{14}^{3} base block $(p=3, k=7)$ 248
6.1 The marigold graph M_{14} 259
A. 1 Python code to output $\operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ for all $p, k \in \llbracket 2,128 \rrbracket$ 266
B. 1 Python code to output divisor lists for all $p, k \in \llbracket 2,32 \rrbracket$ 270

List of Tables

2.1 The nine labeling types and their defining conditions 27
4.1 Dovetail divisors by modular class for $p=3, k=7$ 57
4.2 Dovetail divisors by modular class for $p=5, k=17$ 59
4.3 The \mathcal{C}_{10}^{3}-subgraphs of \mathcal{H} obtained from $\mathscr{B}_{1}, \mathscr{B}_{2}$, and \mathscr{B}_{3}. 63
4.4 The assignment of partitions of U to the elements of $W=\llbracket 1,22 \rrbracket$ 65
4.5 The cycles of \mathscr{B}, the C_{10}-design on $\mathcal{G}=K_{10,22}$ 67
4.6 The sixty triples $[r, s, t]$ that define distinct sets of edges in K_{25} 98
4.7 The distribution of the edge classes $[r, s, t]$ over the base blocks A, B, and C 102
5.1 Cycle list for the σ^{+}-labeling of \mathcal{C}_{12}^{4} in Figure 5.2 112
5.2 Cycle list for the σ^{+}-labeling of \mathcal{C}_{16}^{5} in Figure 5.3 114
5.3 Cycle list for the σ^{+}-labeling of \mathcal{C}_{10}^{6} in Figure 5.4 120
5.4 Cycle list for the σ^{+}-labeling of \mathcal{C}_{10}^{8} in Figure 5.5 122
5.5 Cycle list for the ρ^{+}-labeling of \mathcal{C}_{6}^{5} in Figure 5.4 129
5.6 Cycle list for the ρ^{+}-labeling of \mathcal{C}_{14}^{5} in Figure 5.7. 131
5.7 Cycle list for the \mathcal{C}_{12}^{4} base block in Figure 5.10 139
5.8 Cycle list for the \mathcal{C}_{16}^{5} base block in Figure 5.11 141
5.9 Cycle list for the \mathcal{C}_{14}^{2} base block in Figure 5.13 154
5.10 Cycle list for the \mathcal{C}_{18}^{4} base block in Figure 5.14 156
5.11 Cycle list for the \mathcal{C}_{22}^{6} base block in Figure 5.15 158
5.12 The odd-index cycles for a \mathcal{C}_{26}^{8} base block, as shown in Figure 5.16 160
5.13 The even-index cycles for a \mathcal{C}_{26}^{8} base block, as shown in Figure 5.17 162
5.14 Directory of Tables and Figures for Small Cases $(k<p+4)$ 164
5.15 Cycle list for the \mathcal{C}_{6}^{2} base block in Figure 5.18 165
5.16 Cycle list for the \mathcal{C}_{6}^{4} base block in Figure 5.19 165
5.17 Cycle list for the \mathcal{C}_{6}^{6} base block in Figure 5.20 165
5.18 Cycle list for the \mathcal{C}_{6}^{8} base block in Figure 5.21 166
5.19 Cycle list for the \mathcal{C}_{10}^{2} base block in Figure 5.22 170
5.20 Cycle list for the \mathcal{C}_{10}^{4} base block in Figure 5.23 170
5.21 Cycle list for the \mathcal{C}_{10}^{6} base block in Figure 5.24 173
5.22 Cycle list for the \mathcal{C}_{10}^{8} base block in Figure 5.25 175
5.23 Cycle list for the \mathcal{C}_{14}^{4} base block in Figure 5.26 177
5.24 Cycle list for the \mathcal{C}_{14}^{6} base block in Figure 5.27 179
5.25 Cycle list for the \mathcal{C}_{14}^{8} base block in Figure 5.28 181
5.26 Cycle list for the \mathcal{C}_{18}^{6} base block in Figure 5.29 183
5.27 Cycle list for the \mathcal{C}_{18}^{8} base block in Figure 5.30 185
5.28 The odd-index cycles for a \mathcal{C}_{22}^{8} base block, as shown in Figure 5.31 187
5.29 The even-index cycles for a \mathcal{C}_{22}^{8} base block, as shown in Figure 5.32 189
5.30 Cycle list for the \mathcal{C}_{6}^{4} base block in Figure 5.33 199
5.31 Cycle list for the \mathcal{C}_{6}^{8} base block in Figure 5.34 200
5.32 Cycle list for the \mathcal{C}_{6}^{10} base block in Figure 5.35 202
5.33 Cycle list for the \mathcal{C}_{10}^{2} base block in Figure 5.36 204
5.34 Cycle list for the \mathcal{C}_{10}^{6} base block in Figure 5.37 205
5.35 Cycle list for the \mathcal{C}_{10}^{8} base block in Figure 5.38 207
5.36 Cycle list for the \mathcal{C}_{14}^{4} base block in Figure 5.39 209
5.37 Cycle list for the \mathcal{C}_{14}^{6} base block in Figure 5.40 211
5.38 Cycle list for the \mathcal{C}_{14}^{8} base block in Figure 5.41 213
5.39 Cycle list for the \mathcal{C}_{18}^{6} base block in Figure 5.42 215
5.40 Cycle list for the \mathcal{C}_{22}^{6} base block in Figure 5.43 217
5.41 Cycle list for the \mathcal{C}_{26}^{4} base block in Figure 5.44 219
5.42 Cycles $\mathfrak{C}_{1}, \mathfrak{C}_{2}, \mathfrak{C}_{3}$, and \mathfrak{C}_{4} for Example $5.37(p=12, k=19)$ 221
5.43 Cycles $\mathfrak{C}_{5}, \mathfrak{C}_{6}, \mathfrak{C}_{7}$, and \mathfrak{C}_{8} for Example $5.37(p=12, k=19)$ 222
5.44 Cycles $\mathfrak{C}_{9}, \mathfrak{C}_{10}, \mathfrak{C}_{11}$, and \mathfrak{C}_{12} for Example $5.37(p=12, k=19)$ 223
5.45 Orbits generated by the actions of H 230
5.46 Cycle list for the \mathcal{C}_{10}^{3} base block in Figure 5.46 231
5.47 Cycle list for the \mathcal{C}_{6}^{3} base block in Figure 5.47 233
5.48 Cycle list for the \mathcal{C}_{18}^{3} base block in Figure 5.48 235
5.49 Cycle list for the \mathcal{C}_{22}^{3} base block in Figure 5.49 237
5.50 Cycle list for the \mathcal{C}_{26}^{3} base block in Figure 5.50 239
5.51 Cycle list for the \mathcal{C}_{6}^{5} base block in Figure 5.51 241
5.52 Cycle list for the \mathcal{C}_{6}^{3} base block in Figure 5.52 244
5.53 Cycle list for the \mathcal{C}_{10}^{3} base block in Figure 5.53 245
5.54 Cycle list for the \mathcal{C}_{14}^{3} base block in Figure 5.54 247
6.1 Known values for which $4 k p+1$ is composite and condition (1) holds 252
6.2 Known odd values of p and k for which $4 k p+1$ is prime 253
6.3 Known values for which $4 k p+1$ is composite and condition (1) fails 253
A. 1 The superspectrum of $\mathcal{C}_{2 k}^{p}$, for selected values of p and k 267
B. 1 Divisors for selected values of p and k 271

List of Notation

\mathbb{Z}	the set of integers
\mathbb{N}	the set of non-negative integers
P	the set of positive integers
\mathbb{Z}_{m}	the set of integers modulo m
$\llbracket a, b \rrbracket$	the set of integers i satisfying $a \leq i \leq b$
abs (x)	the absolute value of the real number x
$\|A\|$	the number of elements in the set A
C_{k}	the cycle on k edges
K_{n}	the complete graph on n vertices
$K_{r, s}$	the complete bipartite graph with partite sets of sizes r and s
P_{k}	the path on k edges
S_{k}	the k-star, $K_{1, k}$
$V(G)$	the vertex set of the graph G
$E(G)$	the edge set of the graph G
$v(G)$	the number of vertices in the graph G
$e(G)$	the number of edges in the graph G
$\operatorname{deg}_{G}(v)$	the degree of the vertex v in the graph G
$G[X]$	the subgraph of the graph G induced by the set X
$\operatorname{Spec}(G)$	the spectrum of the graph G
$\operatorname{SSpec}(G)$	the superspectrum of the graph G

Chapter 1

Introduction

Graph designs, also known as graph decompositions, are a major topic in both design theory and graph theory. For a particular graph G, the typical first question about G-designs is that of their existence; subsequent questions typically involve embedding smaller G-designs in larger ones or building G-designs with desirable properties. Embeddings of graph designs are widely studied, and they are the focus of this dissertation. In particular, for a given graph G, we wish to bound the increase in size between the smaller G-design and the larger G-design as strictly as possible: to bound it by a value that is constant with respect to the size of the smaller G-design. We introduce two terms to describe graphs for which this bound exists; these terms are bounded complete embedding graphs and bounded embedding graphs. Our primary goal is the identification of bounded complete embedding graphs; we are successful in identifying several infinite families.

1.1 Notation, Conventions, and Graph Terminology

We denote by \mathbb{Z}, the set of integers; by \mathbb{N}, the set of nonnegative integers; and by \mathbb{P}, the set of positive integers. For any positive integer m, we denote by \mathbb{Z}_{m} the set of integers modulo m. For integers a and b, we denote by $\llbracket a, b \rrbracket$ the set of integers x satisfying $a \leq x \leq b$, with the understanding that $\llbracket a, b \rrbracket=\varnothing$ if $a>b$. We now introduce the essential terminology and notation of graphs; we refer the reader to the text by Bondy and Murty [7] for any graph theory terms we do not define.

Definition 1.1. A graph G is a triple consisting of a nonempty set $V(G)$ of vertices, a set $E(G)$ (disjoint from $V(G)$) of edges, and an incidence relation ψ_{G} that assigns to each edge
of G two (not necessarily distinct) elements of $V(G)$, called its ends.
We denote by $v(G)$ the number of vertices in G and by $e(G)$ the number of edges in G.
Two vertices are said to be adjacent if and only if they are the ends of an edge; two edges are said to be adjacent if and only if they have at least one common end. An edge and a vertex are said to be incident to each other if and only if the vertex is an end of the edge. A loop is an edge whose two ends are the same vertex. Two edges e and f that are not loops are said to be parallel if and only if the ends of e are the ends of f.

Definition 1.2. A graph is said to be simple if and only if it has no loops and no parallel edges.

Note that edges in a simple graph are uniquely determined by their endpoints, so we may specify a simple graph G simply by specifying $V(G)$ and a set of two-element subsets of $V(G)$ that we call $E(G)$.

Definition 1.3. The complement of the simple graph G is the simple graph \bar{G} defined by $V(\bar{G})=V(G)$ and $E(\bar{G})=\{\{u, v\} \subseteq V(G) \mid\{u, v\} \notin E(G)\}$.

Definition 1.4. The degree of vertex v in the graph G, denoted $\operatorname{deg}(v)$ or $\operatorname{deg}_{G}(v)$, is the number of edges of G incident with v, with each loop at v counted twice.

Definition 1.5. A graph G is said to be regular if and only if all vertices in G have the same degree. We say that G is \boldsymbol{k}-regular if and only if $\operatorname{deg}_{G}(v)=k$ for all $v \in V(G)$.

Definition 1.6. A simple graph is complete if and only if every vertex in G is adjacent to every other vertex in G. For $n \in \mathbb{P}$, we denote the complete graph on n vertices by K_{n}.

Definition 1.7. A graph is empty if and only if it has no edges.

Definition 1.8. A graph is said to be bipartite if and only if its vertex set can be partitioned into two sets A and B such that every edge has one end in A and one in B. Such a partition $[A, B]$ is called a bipartition of the graph, and the sets A and B are called its parts.

Definition 1.9. A bipartite graph G on bipartition $[A, B]$ is a complete bipartite graph if and only if G is simple and every vertex of A is adjacent to every vertex of B. For $r, s \in \mathbb{P}$, the complete bipartite graph on parts of sizes r and s is denoted $K_{r, s}$.

Definition 1.10. A graph is a \boldsymbol{k}-star, denoted S_{k}, if and only if it is a complete bipartite graph with one part of size one and one part of size k.

Definition 1.11. A path is a simple graph whose vertices can be arranged in a linear sequence so that two vertices are adjacent if and only if they are consecutive in the sequence. The length of a path is its number of edges; a path of length k is called a \boldsymbol{k}-path and denoted P_{k}.

Definition 1.12. A cycle is a simple graph whose vertices can be arranged in a cyclic sequence so that two vertices are adjacent if and only if they are consecutive in the sequence. The length of a cycle is its number of edges; a cycle of length k is called a \boldsymbol{k}-cycle and denoted C_{k}.

Definition 1.13. A subgraph of a graph G is a graph H such that $V(H) \subseteq V(G)$, $E(H) \subseteq E(G)$, and ψ_{H} agrees with ψ_{G} on $E(H)$.

Definition 1.14. Let G be a graph, and let $W \subseteq V(G)$. The subgraph of G induced by \boldsymbol{W}, denoted $G[W]$, is the subgraph of G having vertex set W and edge set consisting of all edges in G with both ends in W. Subgraphs induced by sets of vertices are commonly called vertex-induced subgraphs or simply induced subgraphs.

Definition 1.15. Let G be a graph, and let $F \subseteq E(G)$. The subgraph of G induced by \boldsymbol{F}, denoted $G[F]$, is the subgraph of G having edge set F and vertex set consisting of all vertices in G that are incident to at least one edge in F. Subgraphs induced by sets of edges are sometimes called edge-induced subgraphs.

Definition 1.16. A graph G is connected if and only if, for any partition of $V(G)$ into two nonempty sets X and Y, there is at least one edge of G with one end in X and one end in Y.

Definition 1.17. The components of a graph G are its maximal connected subgraphs.

Since we are primarily concerned with simple graphs, we will henceforth use the word graph to mean a simple graph; when we wish to emphasize that we have restricted a result to the simple graph case, we may temporarily use the full phrase simple graph for purposes of such emphasis. On the limited occasions when we wish to allow loops or parallel edges, we will use the term multigraph. We will use the symbol \biguplus to denote the vertex-disjoint union of graphs, meaning that each given graph is taken as one component of the new graph.

1.2 Graph Designs and Decompositions

In this section, we define and discuss a single idea with two names: that of graph decompositions or graph designs. We begin with definitions of the two terms.

Definition 1.18. Let G and H be graphs. A \boldsymbol{G}-decomposition of \boldsymbol{H} is a system \mathscr{G} of subgraphs of H, each isomorphic to G, which are pairwise edge-disjoint and whose union is the graph H.

Definition 1.19. Let G and H be graphs, and let $n=v(H)$. A \boldsymbol{G}-design on \boldsymbol{H} is a collection \mathscr{B} of subgraphs of H, each isomorphic to G, whose edge sets partition $E(H)$. Elements of \mathscr{B} are called G-blocks. The collection \mathscr{B} is also called a partial \boldsymbol{G}-design of order $n . \bar{H}$ is called the leave of the partial G-design. If $H=K_{n}$, then \mathscr{B} is called a (complete) G-design of order n.

We observe that, for any graph H with at least one edge and any graph G, a G-design on H and a G-decomposition of H are equivalent. If, however, the graph H has no edges, the terms are not equivalent: the empty collection is not a graph decomposition of H, since the union of its elements is the empty set and thus not a graph, but the empty collection is a graph design on H. Furthermore, if G has at least one edge and H has no edges, the only G-design on H is the empty collection. In particular, the empty collection is a G-design on K_{1}; we will henceforth refer to this design as the trivial complete G-design of order 1.

In general, for a graph G, it is natural to ask for which positive integers n a complete G-design of order n exists. This question is fundamental to the study of graph designs, and is still open for numerous infinite families of graphs. The following term is common in the literature on the question of existence.

Definition 1.20. The spectrum of a graph G, denoted $\operatorname{Spec}(G)$, is

$$
\operatorname{Spec}(G)=\{n \in \mathbb{P} \mid \text { there is a complete } G \text {-design of order } n\}
$$

For any graph G, there are three "obvious" necessary conditions (on the positive integer n) for the existence of a complete G-design of order n. These conditions dictate the size of n and confine it to certain residue classes. We will refer to these conditions often; for convenience, we name them as we discuss them.

The first obvious necessary condition is that K_{n} must have enough vertices to admit a complete G-design. In particular, unless $n=1, K_{n}$ must have at least as many vertices as G, so that K_{n} has subgraphs isomorphic to G.

$$
\text { (SSC-1) } \quad n=1 \quad \text { or } \quad n \geq v(G)
$$

The second obvious necessary condition is that it must be possible to partition $E\left(K_{n}\right)$ into sets of the correct size. In particular, since the edge sets of the G-blocks partition $E\left(K_{n}\right)$ into sets of size $e(G)$, the number of edges in K_{n} must be a multiple of $e(G)$; that is, $e(G) \mid e\left(K_{n}\right)$. Since $e\left(K_{n}\right)=n(n-1) / 2$, we obtain the condition below.
(SSC-2) $\quad 2 e(G) \mid n(n-1)$
The third obvious necessary condition is slightly less obvious than the previous two. Suppose there is a G-design \mathscr{B} of order n, and consider $v \in V\left(K_{n}\right)$. Clearly, v belongs to some (possibly all) of the G-blocks in the design, and every edge incident with v belongs to exactly one G-block in \mathscr{B}; thus

$$
\begin{equation*}
\operatorname{deg}_{K_{n}}(v)=\sum_{B \in \mathscr{B}} \operatorname{deg}_{B}(v) \tag{1.1}
\end{equation*}
$$

For each $B \in \mathscr{B}$, either v is not a vertex of B, in which case $\operatorname{deg}_{B}(v)=0$, or v is a vertex of B. If $v \in V(B)$, then, since B is isomorphic to G, there is some $u_{B} \in V(G)$ so that $\operatorname{deg}_{B}(v)=\operatorname{deg}_{G}\left(u_{B}\right)$. Thus

$$
\begin{equation*}
n-1=\operatorname{deg}_{K_{n}}(v)=\sum_{B \in \mathscr{B}} \operatorname{deg}_{B}(v)=\sum_{B \in \mathscr{B}} \operatorname{deg}_{G}\left(u_{B}\right) \tag{1.2}
\end{equation*}
$$

The greatest common divisor of all the degrees of the vertices of G must divide the rightmost sum above; hence it must also divide $n-1$. We take this condition of divisibilty as the third condition. Clearly, this condition takes its strongest form when the graph G is regular.

$$
\begin{equation*}
\operatorname{gcd}\left\{\operatorname{deg}_{G}(v) \mid v \in V(G)\right\} \mid(n-1) \tag{SSC-3}
\end{equation*}
$$

Since all positive integers n for which a G-design of order n exists (that is, all n in the spectrum of G) must satisfy $\mathrm{SSC}-1, \mathrm{SSC}-2$, and $\mathrm{SSC}-3$, we will refer collectively to these conditions as the Superspectral Conditions. Since many graphs still have unknown spectra, it will be useful to have a name for the set of positive integers n that satisfy the Superspectral Conditions.

Definition 1.21. The superspectrum of a graph G, denoted $\operatorname{SSpec}(G)$, is the set of all positive integers n that satisfy SSC-1, SSC-2, and SSC-3.

The existence, for any graph G, of complete G-designs of infinitely many orders was established in a 1976 paper by Richard M. Wilson, as a special case of a more general result [35]. In this paper, Wilson establishes necessary and "asymptotically sufficient" conditions for the existence of digraph decompositions of complete digraphs. Wilson highlights the special case of symmetric-digraph-decompositions of complete digraphs, restating the conditions as they apply to this special case. Decompositions of complete digraphs by symmetric digraphs are easily seen to be equivalent to G-decompositions of complete graphs. We state Wilson's result for this special case below, using the language of complete G-designs; we will refer to this result as Wilson's Theorem.

Theorem 1.22 (Wilson). Let G be a graph. For all sufficiently large integers n satisfying SSC-2 and SSC-3, a complete G-design of order n exists.

Wilson's Theorem says, in essence, that there are at most finitely many elements of the superspectrum of G that are not elements of the spectrum of G. Wilson's work in the paper goes one step further, providing a description of the spectrum of G in terms of residue classes. He establishes that, for any graph G, there is a positive integer S_{G} such that the spectrum of G may be expressed as a subset of the union of certain residue classes modulo S_{G}, and that only finitely many positive elements of each residue class are missing from the spectrum. Since the spectrum may be expressed in this way, it must have infinitely many elements. We make the additional observation that one particular congruence class is always present in the spectrum, as we describe in the following lemma.

Lemma 1.23. Let G be a graph. Then we have the following.
(i) All positive integers n such that $n \equiv 1(\bmod 2 e(G))$ satisfy $\mathrm{SSC}-2$ and $\mathrm{SSC}-3$.
(ii) If $2 e(G)+1 \geq v(G)$, then $\{n \in \mathbb{P} \mid n \equiv 1(\bmod 2 e(G))\} \subseteq \operatorname{SSpec}(G)$.
(iii) There is some positive integer $N(G)$ such that

$$
\{n \in \mathbb{P} \mid n \geq N(G) \text { and } n \equiv 1(\bmod 2 e(G))\} \subseteq \operatorname{Spec}(G)
$$

Proof. Let G be a graph. Let $n \in \mathbb{P}$ such that $n \equiv 1(\bmod 2 e(G))$; then $2 e(G) \mid(n-1)$, so $2 e(G) \mid n(n-1)$; hence SSC-2 is satisfied. Now we recall an elementary fact from graph theory, relating the sum of the vertex degrees of the graph G to its number of edges:

$$
\begin{equation*}
\sum_{v \in V(G)} \operatorname{deg}_{G}(v)=2 e(G) . \tag{1.3}
\end{equation*}
$$

Since the sum of the degrees of the vertices G must be divisible by the greatest common divisor of those degrees, we must have that $\operatorname{gcd}\left\{\operatorname{deg}_{G}(v) \mid v \in V(G)\right\} \mid 2 e(G)$. Then, since
$2 e(G) \mid(n-1)$ (as observed above), $\operatorname{gcd}\left\{\operatorname{deg}_{G}(v) \mid v \in V(G)\right\} \mid(n-1)$, so SSC- 3 is also satisfied; hence we have proved item (i).

If $2 e(G)+1 \geq v(G)$, then every positive integer n satisfying $n \equiv 1(\bmod 2 e(G))$ also satisfies $\operatorname{SSC}-1$, so $\{n \in \mathbb{P} \mid n \equiv 1(\bmod 2 e(G))\} \subseteq \operatorname{SSpec}(G)$; thus item (ii) holds.

Wilson's Theorem guarantees that all sufficiently large integers satisfying SSC-2 and SSC- 3 are elements of the spectrum of G; by item (i), we have that every positive integer n such that $n \equiv 1(\bmod 2 e(G))$ satisfies SSC-2 and SSC-3. Hence there is some $N(G)$ such that $\{n \in \mathbb{P} \mid n \geq N(G)$ and $n \equiv 1(\bmod 2 e(G))\} \subseteq \operatorname{Spec}(G)$, so item (iii) is verified.

We note that any graph G that has no isolated vertices satisfies the condition in item (ii) of Lemma 1.23, namely that $2 e(G)+1 \geq v(G)$. Since we rarely consider graphs with isolated vertices as candidate graphs for building graph designs, the conclusion of item (ii) holds for almost all graphs that are of interest in the study of graph designs.

1.3 Embeddings of Graph Designs

We now venture beyond the question of existence for graph designs, and discuss when it is possible to build a graph design with a smaller design residing within it; this idea of building one design around another is called embedding the smaller design.

Definition 1.24. Let G be a graph; let $n \in \mathbb{P}$; let \mathscr{B} be a partial G-design of order n. Let $r \in \operatorname{Spec}(G)$, such that $r \geq n$. An embedding of \mathscr{B} of order r is a complete G-design \mathscr{D} of order r such that $\mathscr{B} \subseteq \mathscr{D}$. If such a design \mathscr{D} exists, we say that \mathscr{B} can be embedded in a (complete) G-design of order r.

We observe that every complete G-design has a trivial embedding, namely in itself. The above definition also allows the possibility of a partial G-design being embedded in a complete G-design of the same order; such embeddings are commonly called completions of partial designs. Clearly, a completion of a partial G-design of order n is only possible if
$n \in \operatorname{Spec}(G)$; with rare exception, this condition is far from sufficient. We primarily concern ourselves with the creation of embeddings of order strictly greater than that of the original design; henceforth, we will refer to such embeddings as nontrivial embeddings. It follows from Wilson's Theorem that nontrivial embeddings of G-designs always exist, for any graph G, for both partial and complete G-designs. We state these facts as Theorems 1.25 and 1.26 and offer short proofs.

Theorem 1.25. Let G be a graph. Then, for each $n \in \operatorname{Spec}(G)$, there is some $v(n) \in \mathbb{P}$ such that $v(n)>n$ and there is an embedding of every complete G-design of order n in a complete G-design of order $v(n)$.

Proof. Let G be a graph, let $n \in \operatorname{Spec}(G)$, and let \mathscr{B} be a complete G-design on K_{n}. Wilson's Theorem guarantees that $\operatorname{Spec}\left(K_{n}\right)$ is infinite, so let $v(n) \in \operatorname{Spec}\left(K_{n}\right)$ such that $v(n)>n$, and let \mathscr{C} be a K_{n}-design of order $v(n)$.

For each $C \in \mathscr{C}$, let f_{C} denote the isomorphism of K_{n} with C. We observe that, for any $C \in \mathscr{C}$ and any $B \in \mathscr{B}$, since B is a subgraph of K_{n} isomorphic to G, the graph $f_{C}(B)$ is a subgraph of C (and thus of $K_{v(n)}$) that is isomorphic to G. So the set

$$
\mathscr{D}=\left\{f_{C}(B) \mid C \in \mathscr{C} \text { and } B \in \mathscr{B}\right\}
$$

is a G-design on $K_{v(n)}$. Observe that \mathscr{D} is an embedding of \mathscr{B} of order $v(n)$.

Theorem 1.26. Let G be a graph, let $n \in \mathbb{P}$, and let \mathscr{B} be a partial G-design of order n. Then there is some $v \in \mathbb{P}$ such that $v>n$ and there is an embedding of \mathscr{B} in a complete G-design of order v.

Proof. Let G be a graph, let $n \in \mathbb{P}$, and let \mathscr{B} be a partial G-design of order n. If \mathscr{B} is complete, let $v=v(n)$ as in Theorem 1.25. Otherwise, observe that \mathscr{B} is a G-design on some proper subgraph H of K_{n}; Wilson's Theorem guarantees that $\operatorname{Spec}(H)$ is infinite, so let $v \in \operatorname{Spec}(H)$ such that $v>n$, and let \mathscr{C} be an H-design of order v. We now proceed as
in the proof of Theorem 1.25 to combine the designs \mathscr{C} and \mathscr{B} to form an embedding of \mathscr{B} of order v.

With the existence of embeddings thus established, it is natural to ask what orders of embeddings can be achieved for a particular design, and, in particular, how close the order of the embedding can be to the order of the original design. Many of the existing results on embeddings of graph designs focus on finding embeddings for which the difference between the order, r, of the embedding and the order, n, of the original design is small, and on finding bounds on this difference. One famous bounding result concerns embeddings of partial K_{3}-designs, which are more commonly known as partial Steiner triple systems. In 1975, C. C. Lindner showed [24] that every partial Steiner triple system of order n can be embedded in a complete Steiner triple system of order $6 n+3$. He conjectured a smaller bound (see [24], p. 351, and [25], p. 59): that every partial Steiner triple system of order n can be embedded in a complete Steiner triple system of order v, for any $v \equiv 1 \operatorname{or} 3(\bmod 6)$ such that $v \geq 2 n+1$; this bound was finally proved by D. Bryant and D. Horsley over thirty years later [8].

The ultimate question of smallness for embeddings is to determine the size of the smallest possible embedding; this is typically expressed as determining, for a partial or complete design of order n, the minimum number, x, for which an embedding of order $n+x$ is possible. Many results on the existence of small embeddings are stated as bounds on this minimum number.

1.4 Bounded Complete Embedding Graphs and Bounded Embedding Graphs

In our study of small embeddings, we ask for a particularly restrictive kind of smallness: we ask that the bound on this minimum number of added vertices be constant for a particular graph, that is, independent of the size, n, of the original design for which an embedding is sought. We formulate two versions of this problem; one concerns only the embedding of complete G-designs, while the other addresses the more general problem of embedding partial
G-designs. In both versions, we restrict ourselves to nontrivial embeddings by insisting that the number of vertices added be positive.

Definition 1.27. A graph G is a bounded complete embedding graph ($B C E \operatorname{graph})$ if and only if there is some positive integer b such that, for every $n \in \operatorname{Spec}(G)$, every complete G-design of order n can be embedded in a G-design of order $n+x$, for some $x \in \llbracket 1, b \rrbracket$.

Definition 1.28. A graph G is a bounded embedding graph ($\boldsymbol{B E}$ graph) if and only if there is some positive integer c such that, for every $n \in \mathbb{P}$, every partial G-design of order n can be embedded in a G-design of order $n+x$, for some $x \in \llbracket 1, c \rrbracket$.

With these definitions in hand, our questions are now quite simple to state: we wish to know which graphs are bounded complete embedding graphs and which graphs are bounded embedding graphs. We note that, by definition, complete G-designs are a special case of partial G-designs; we therefore have the following.

Remark 1.29. Let G be a bounded embedding graph. Then G is also a bounded complete embedding graph.

Due to this fact, we amend our earlier statement: we wish to know which graphs are bounded complete embedding graphs, and which of those graphs are bounded embedding graphs. We begin to answer these questions with some elementary examples.

Example 1.30. The graph K_{2} is both a bounded complete embedding graph and a bounded embedding graph. For any $n \in \mathbb{P}$, a unique complete K_{2}-design of order n exists and can be embedded in a complete K_{2}-design of order $n+1$. Thus K_{2} is a bounded complete embedding graph. Furthermore, for any $n \in \mathbb{P}$, any partial K_{2}-design of order n can be embedded in a complete K_{2}-design of order $n+1$. Thus K_{2} is a bounded embedding graph.

Example 1.31. Consider the path P_{2}. Let $n \in \operatorname{Spec}\left(P_{2}\right)$ and suppose n is even. Then a complete P_{2}-design of order n can be embedded in a complete P_{2}-design of order $n+1$, as follows. Suppose we have a complete P_{2}-design \mathscr{B} on K_{n} with $V\left(K_{n}\right)=\left\{v_{i} \mid i \in \llbracket 1, n \rrbracket\right\}$
and we add vertex z to create a K_{n+1}. Since n is even, we have $n=2 t$ for some $t \in \mathbb{P}$. Since all new edges are incident with z, let $\mathscr{C}=\left\{v_{2 i-1} z v_{2 i} \mid i \in \llbracket 1, t \rrbracket\right\}$. Then $\mathscr{B} \cup \mathscr{C}$ is an embedding of \mathscr{B} in a complete P_{2}-design on K_{n+1}.

Let $n \in \operatorname{Spec}\left(P_{2}\right)$ and suppose n is odd. Then any complete P_{2}-design of order n can be embedded in a complete P_{2}-design of order $n+3$, as follows. Suppose we have a complete P_{2}-design \mathscr{B} on K_{n} with $V\left(K_{n}\right)=\left\{v_{i} \mid i \in \llbracket 1, n \rrbracket\right\}$ and we add vertices z_{1}, z_{2}, and z_{3} to create a K_{n+3}. Since n is odd, we have $n=2 s+1$ for some $s \in \mathbb{N}$. The subgraph of K_{n+3} induced by the vertex set $\left\{v_{n}, z_{1}, z_{2}, z_{3}\right\}$ is a K_{4}-subgraph of K_{n+3}, which admits the P_{2}-design $\mathscr{C}=\left\{z_{1} v_{n} z_{2}, z_{1} z_{2} z_{3}, z_{1} z_{3} v_{n}\right\}$ shown in Figure 1.1. For each $j \in\{1,2,3\}$, define $\mathscr{D}_{j}=\left\{v_{2 i-1} z_{j} v_{2 i} \mid i \in \llbracket 1, s \rrbracket\right\}$. Then $\mathscr{B} \cup \mathscr{C} \cup \mathscr{D}_{1} \cup \mathscr{D}_{2} \cup \mathscr{D}_{3}$ is an embedding of \mathscr{B} in a complete P_{2}-design on K_{n+3}.

We have shown that, for any $n \in \operatorname{Spec}\left(P_{2}\right)$, every complete G-design of order n can be embedded in a complete G-design of order $n+x$ for some $x \in \llbracket 1,3 \rrbracket$; thus P_{2} is a bounded complete embedding graph.

Figure 1.1: A P_{2}-design on the K_{4}-subgraph on vertices v_{n}, z_{1}, z_{2}, and z_{3}

Example 1.32. Consider the path P_{2} again. Let $n \in \mathbb{P}$ and suppose \mathscr{B} is a partial P_{2}-design of order n. Form a maximal partial design \mathscr{B}^{*} by adding P_{2}-blocks from the leave of \mathscr{B} until no P_{2}-subgraphs remain in the leave of \mathscr{B}^{*}. If the leave of \mathscr{B}^{*} has no edges, it is a complete G-design of order n, so it can be embedded in a complete G-design of order $n+x$ for some $x \in \llbracket 1,3 \rrbracket$ as shown in the previous example. Suppose, then, that the leave of \mathscr{B}^{*} has at least
one edge. Note that no two edges in the leave of \mathscr{B}^{*} can be adjacent, since two adjacent edges form a P_{2}-subgraph. Hence the leave consists of some positive number, s, of isolated edges and some nonnegative number, t, of isolated vertices. Let the set of edges in the leave be $\left\{e_{i} \mid i \in \llbracket 1, s \rrbracket\right\}$, and let $V\left(K_{n}\right)=\left\{u_{i} \mid i \in \llbracket 1, s \rrbracket\right\} \cup\left\{v_{i} \mid i \in \llbracket 1, s \rrbracket\right\} \cup\left\{w_{j} \mid j \in \llbracket 1, t \rrbracket\right\}$, so that, for all $i \in \llbracket 1, s \rrbracket$, the ends of edge e_{i} are u_{i} and v_{i}. We now consider cases according to the parity of s and t.

CASE 1: s and t are both even. We add one vertex, z, to form a K_{n+1}. We pair the isolated edges; each pair corresponds to a bowtie subgraph of K_{n+1}, all of whose edges are unused by P_{2}-blocks in \mathscr{B}^{*}. The bowtie graph admits a P_{2}-design, as shown in Figure 1.2. Let

$$
\mathscr{C}=\left\{u_{i-1} z v_{i}, u_{i-1} v_{i-1} z, z u_{i} v_{i} \mid i \in \llbracket 1, s \rrbracket \text { and } i \text { is even }\right\} .
$$

We pair the isolated vertices, forming paths centered at z; let

$$
\mathscr{D}=\left\{w_{j-1} z w_{j} \mid j \in \llbracket 1, t \rrbracket \text { and } j \text { is even }\right\} .
$$

Then $\mathscr{B}^{*} \cup \mathscr{C} \cup \mathscr{D}$ is an embedding of \mathscr{B} in a complete P_{2}-design on K_{n+1}.

Figure 1.2: A P_{2}-design on the bowtie subgraph on vertices $u_{i-1}, v_{i-1}, u_{i}, v_{i}$, and z

Case 2: s is even and t is odd. We add three vertices, z_{1}, z_{2}, and z_{3}, to form a K_{n+3}. We pair the isolated edges as in the previous case, forming bowtie graphs centered at z_{1}. Let $\mathscr{C}_{1}=\left\{u_{i-1} z_{1} v_{i}, u_{i-1} v_{i-1} z_{1}, z_{1} u_{i} v_{i} \mid i \in \llbracket 1, s \rrbracket\right.$ and i is even $\}$. We then form
paths from u_{i} to v_{i} centered at z_{2} and at z_{3}; we let $\mathscr{C}_{2}=\left\{u_{i} z_{2} v_{i} \mid i \in \llbracket 1, s \rrbracket\right\}$ and $\mathscr{C}_{3}=\left\{u_{i} z_{3} v_{i} \mid i \in \llbracket 1, s \rrbracket\right\}$. We then pair all but one of the isolated vertices, omitting w_{t}, and form three paths for each pair: one centered at z_{1}, one centered at z_{2}, and one centered at z_{3}. We let $\mathscr{D}_{1}=\left\{w_{j-1} z_{q} w_{j} \mid q \in\{1,2,3\}\right.$ and $j \in \llbracket 1, t \rrbracket$ and j is even $\}$. The subgraph of K_{n+3} induced by the vertex set $\left\{w_{t}, z_{1}, z_{2}, z_{3}\right\}$ is a K_{4}-subgraph of K_{n+3}, which admits the P_{2}-design $\mathscr{D}_{2}=\left\{z_{1} w_{t} z_{2}, z_{1} z_{2} z_{3}, z_{1} z_{3} w_{t}\right\}$. Now we have a P_{2}-design on $K_{n+3}:$ the design $\mathscr{B}^{*} \cup \mathscr{C}_{1} \cup \mathscr{C}_{2} \cup \mathscr{C}_{3} \cup \mathscr{D}_{1} \cup \mathscr{D}_{2}$ is an embedding of \mathscr{B} in a complete P_{2}-design on K_{n+3}.

CASE 3: s is odd. We add two vertices, z_{1} and z_{2}, to form a K_{n+2}. We pair all but one of the isolated edges, omitting e_{s}, and form bowtie graphs centered at z_{1}, as in the previous case. Let $\mathscr{C}_{1}=\left\{u_{i-1} z_{1} v_{i}, u_{i-1} v_{i-1} z_{1}, z_{1} u_{i} v_{i} \mid i \in \llbracket 1, s \rrbracket\right.$ and i is even $\}$. We then form paths from u_{i} to v_{i} centered at z_{2} and at z_{3} for all $i<s$; we let $\mathscr{C}_{2}=\left\{u_{i} z_{2} v_{i} \mid i \in \llbracket 1, s-1 \rrbracket\right\}$ and $\mathscr{C}_{3}=\left\{u_{i} z_{3} v_{i} \mid i \in \llbracket 1, s-1 \rrbracket\right\}$. The subgraph of K_{n+3} induced by the vertex set $\left\{u_{s}, v_{s}, z_{1}, z_{2}\right\}$ is a K_{4}-subgraph of K_{n+3}, which admits the P_{2}-design $\mathscr{C}_{4}=\left\{z_{1} u_{s} v_{s}, v_{s} z_{1} z_{2}, u_{s} z_{2} v_{s}\right\}$. For each isolated vertex w_{j}, we form a path from z_{1} to z_{2} centered at w_{j}; we let $\mathscr{D}=\left\{z_{1} w_{j} z_{2} \mid j \in \llbracket 1, t \rrbracket\right\}$. Then the design $\mathscr{B}^{*} \cup \mathscr{C}_{1} \cup \mathscr{C}_{2} \cup \mathscr{C}_{3} \cup \mathscr{C}_{4} \cup \mathscr{D}$ is an embedding of \mathscr{B} in a complete P_{2}-design on K_{n+2}.

We have shown that, for any $n \in \mathbb{P}$, every partial G-design of order n can be embedded in a complete G-design of order $n+x$ for some $x \in \llbracket 1,3 \rrbracket$; therefore P_{2} is a bounded embedding graph.

The examples we have seen thus far are of graphs that are both bounded complete embedding graphs and bounded embedding graphs; this is not, however, the general pattern concerning the two questions we have asked, as the converse of Remark 1.29 is false. We offer $G=C_{4}$ as a counterexample.

Example 1.33. In Section 1.5, we see that all even cycles are bounded complete embedding graphs; this result is stated as Corollary 1.43. Thus C_{4} is a bounded complete embedding graph.

We claim that C_{4} is not a bounded embedding graph. To show this, we will exhibit, for each $n \in \operatorname{Spec}\left(C_{4}\right)$, a partial C_{4}-design \mathscr{C}_{n} of order $2 n$ such that any embedding of \mathscr{C}_{n} in a complete G-design of order $2 n+t$ requires that $\binom{t}{2} \geq n$.

Let $n \in \operatorname{Spec}\left(C_{4}\right)$, and let \mathscr{B} be a complete G-design of order n. Let $V\left(K_{n}\right)=\llbracket 1, n \rrbracket$, and let $V\left(K_{2 n}\right)=\left\{u_{i}, v_{i} \mid i \in \llbracket 1, n \rrbracket\right\}$. For each C_{4}-block $B=(a, b, c, d) \in \mathscr{B}$, we define a corresponding set of four C_{4}-subgraphs of $K_{2 n}$:

$$
\mathscr{C}(B)=\left\{\left(u_{a}, u_{b}, u_{c}, u_{d}\right),\left(v_{a}, v_{b}, v_{c}, v_{d}\right),\left(u_{a}, v_{b}, u_{c}, v_{d}\right),\left(v_{a}, u_{b}, v_{c}, u_{d}\right)\right\} .
$$

These cycles are shown in Figure 1.3.

Figure 1.3: Four C_{4}-blocks corresponding to $(a, b, c, d) \in \mathscr{B}$

Let $\mathscr{C}_{n}=\bigcup_{B \in \mathscr{B}} \mathscr{C}(B)$. Then \mathscr{C}_{n} is a partial C_{4}-design on $K_{2 n}$, and the leave of \mathscr{C}_{n} is the subgraph induced by the perfect matching $\left\{\left\{u_{i}, v_{i}\right\} \mid i \in \llbracket 1, n \rrbracket\right\}$. Note that this subgraph consists of n isolated edges.

By Theorem 1.26, there is some $t \in \mathbb{P}$ such that there is an embedding of \mathscr{C}_{n} in a complete C_{4}-design of order $2 n+t$. Let $V\left(K_{2 n+t}\right)=\left\{u_{i}, v_{i} \mid i \in \llbracket 1, n \rrbracket\right\} \cup\left\{w_{r} \mid r \in \llbracket 1, t \rrbracket\right\}$, and let \mathscr{D} be an embedding of \mathscr{C}_{n} in a complete C_{4}-design on $K_{2 n+t}$. For each $i \in \llbracket 1, n \rrbracket$,
there is a C_{4}-block $D_{i} \in \mathscr{D}-\mathscr{C}_{n}$ such that $\left\{u_{i}, v_{i}\right\} \in E\left(D_{i}\right)$. Fix $i \in \llbracket 1, n \rrbracket$, and note that $V\left(D_{i}\right)$ cannot contain u_{j} for any $j \in \llbracket 1, n \rrbracket$ such that $j \neq i$, since this would require either $\left\{u_{i}, u_{j}\right\} \in E\left(D_{i}\right)$ or $\left\{v_{i}, u_{j}\right\} \in E\left(D_{i}\right)$, but the edges $\left\{u_{i}, u_{j}\right\}$ and $\left\{v_{i}, u_{j}\right\}$ are already in some block of \mathscr{C}_{n}. Similarly, $V\left(D_{i}\right)$ cannot contain v_{j} for any $j \in \llbracket 1, n \rrbracket$ such that $j \neq i$. Hence $V\left(D_{i}\right)=\left\{u_{i}, v_{i}, w_{r}, w_{s}\right\}$ for some distinct $r, s \in \llbracket 1, t \rrbracket$, and therefore $\left\{w_{r}, w_{s}\right\} \in E\left(D_{i}\right)$. Since each block D_{i} has exactly one edge in the K_{t}-subgraph on vertex set $W=\left\{w_{r} \mid r \in \llbracket 1, t \rrbracket\right\}$, and since no two distinct blocks can contain the same edge, there must be at least as many edges in the K_{t}-subgraph on W as there are blocks D_{i}. Thus $e\left(K_{t}\right) \geq|\llbracket 1, n \rrbracket|$, that is, $\binom{t}{2} \geq n$.

We now see that C_{4} cannot be a bounded embedding graph. For any positive integer c, let $N(c)$ be the smallest element of $\operatorname{Spec}\left(C_{4}\right)$ that is strictly greater than $\binom{c}{2}$; note that the partial C_{4}-design $\mathscr{C}_{N(c)}$ has order $2 N(c)$. If $t \in \mathbb{P}$ such that $\mathscr{C}_{N(c)}$ can be embedded in a complete C_{4}-design of order $2 N(c)+t$, then $\binom{t}{2} \geq 2 N(c)>\binom{c}{2}$, so $t>c$. Hence $\mathscr{C}_{N(c)}$ cannot be embedded in a complete C_{4}-design of order $2 N(c)+x$ for any $x \in \llbracket 1, c \rrbracket$.

We now establish two parallel results regarding bounded complete embedding graphs and bounded embedding graphs; these results allow us to ignore finitely many admissible design orders in the process of showing that a graph is a bounded complete embedding graph or a bounded embedding graph.

Theorem 1.34. Let G be a graph. Suppose that there exist $N, b \in \mathbb{P}$ such that, for all $n \in \operatorname{Spec}(G)$ such that $n \geq N$, every complete G-design of order n can be embedded in a complete G-design of order $n+x$, for some integer $x \in \llbracket 1, b \rrbracket$. Then G is a bounded complete embedding graph.

Proof. Let G be a graph, and suppose that there exist $N, b \in \mathbb{P}$ such that, for all $n \in \operatorname{Spec}(G)$ such that $n \geq N$, every complete G-design of order n can be embedded in a complete G design of order $n+x$, for some integer $x \in \llbracket 1, b \rrbracket$. Let α denote the number of elements in the set $S=\{n \in \operatorname{Spec}(G) \mid n<N\}$, and note that $\alpha \leq N-1$; denote the elements of S by
$n_{1}, n_{2}, \ldots n_{\alpha}$. By Theorem 1.25, there exist positive integers $v\left(n_{i}\right)$ for $1 \leq i \leq \alpha$ such that every complete G-design of order n_{i} can be embedded in a complete G-design of order $v\left(n_{i}\right)$. Let

$$
\mu=\max \left\{v\left(n_{1}\right)-n_{1}, v\left(n_{2}\right)-n_{2}, \ldots, v\left(n_{\alpha}\right)-n_{\alpha}, b\right\}
$$

Then, for all $n \in \operatorname{Spec}(G)$, every complete G-design of order n can be embedded in a complete G-design of order $n+x$ for some positive integer $x \leq \mu$; thus G is a bounded complete embedding graph.

Theorem 1.35. Let G be a graph. Suppose that there exist $N, c \in \mathbb{P}$ such that, for all $n \in \mathbb{P}$ such that $n \geq N$, every partial G-design of order n can be embedded in a complete G-design of order $n+x$, for some integer $x \in \llbracket 1, c \rrbracket$. Then G is a bounded embedding graph.

Proof. Let G be a graph, and suppose that there exist $N, c \in \mathbb{P}$ such that, for all $n \in \mathbb{P}$ such that $n \geq N$, every partial G-design of order n can be embedded in a complete G-design of order $n+x$, for some integer $x \in \llbracket 1, c \rrbracket$. By Theorem 1.26 , there exist positive integers $v(n)$ for $1 \leq n \leq N-1$ such that every partial G-design of order n can be embedded in a complete G-design of order at most $v(n)$. Let

$$
\mu=\max \{v(1)-1, v(2)-2, \ldots, v(N-1)-N+1, c\} .
$$

Then, for all $n \in \mathbb{P}$, every partial G-design of order n can be embedded in a complete G-design of order $n+x$ for some positive integer $x \leq \mu$; thus G is a bounded embedding graph.

In the next section, we describe the known significant results on bounded embedding graphs and bounded complete embedding graphs. These results appear in the literature without mention of the terms bounded embedding graph or bounded complete embedding graph; one result even appears without any mention of embeddings. The value of these results to our investigation is easily recognized, however, with only a few observations.

1.5 Existing Significant Results

We are aware of only two significant results on the identification of bounded embedding graphs. The first is due to D. Roberts and D. G. Hoffman [17].

Theorem 1.36 (Roberts and Hoffman, 2014). Let $k \in \mathbb{P}$. If k is odd, then a partial $S_{k^{-}}$ design of order n can be embedded in a complete S_{k}-design of order $n+x$ for some positive integer $x \leq 7 k-4$. If k is even, then a partial S_{k}-design of order n can be embedded in a complete S_{k}-design of order $n+x$ for some positive integer $x \leq 8 k-4$.

This result is precisely what is required to show that k-stars are bounded embedding graphs, so Roberts and Hoffman have achieved the following result.

Corollary 1.37. For each $k \in \mathbb{P}$, the k-star is a bounded embedding graph.

A result by T. R. Whitt and C. A. Rodger [34] identifies another bounded embedding graph.

Theorem 1.38 (Whitt and Rodger). Let $n, r \in \mathbb{P}$ such that $r \geq n+2$. A partial P_{3}-design of order n can be embedded in a P_{3}-design of order r if and only if $r \equiv 0$ or $1(\bmod 3)$ and $r \geq 4$.

This result guarantees that, for any $n \in \mathbb{P}$, any partial P_{3}-design of order n can be embedded in a complete design of order $n+x$ for some $x \in\{2,3\}$. Hence Whitt and Rodger have achieved the following result.

Corollary 1.39. The graph P_{3} is a bounded embedding graph.

Whitt and Rodger also show that a partial P_{3}-design of order n may be embedded in a design of order $n+1$ under certain conditions, which include a lower bound on the number of edges in the leave; see [34].

In addition to the above results on bounded embedding graphs, the literature affords a single result for bounded complete embedding graphs. A result by C. A. Rodger [27] is the
critical ingredient in showing that the graph $C_{2 k}$ is a bounded complete embedding graph for all positive integers $k \geq 2$.

Theorem 1.40 (Rodger, 1990). Let $k \in \mathbb{P}$ such that $k \geq 2$. For each integer $a \in \llbracket 2 k+1,6 k \rrbracket$, if there exists a $C_{2 k}$-design on K_{a}, then there exists a $C_{2 k}$-design on $K_{a+4 k x}$ for all positive integers x.

An examination of the proof of this result reveals that the design constructions are actually accomplished by building embeddings of smaller designs. In particular, Rodger builds, for each $a \in \operatorname{Spec}\left(C_{2 k}\right)$ such that $2 k+1 \leq a \leq 6 k$ and each positive integer x, an embedding of an arbitrary complete $C_{2 k}$-design of order $a+4 k(x-1)$ in a complete $C_{2 k}$-design of order $a+4 k x$. So Rodger's construction in fact establishes the following result.

Corollary 1.41. Let $k \in \mathbb{P}$ such that $k \geq 2$. For each integer $a \in \operatorname{Spec}\left(C_{2 k}\right)$ such that $2 k+1 \leq a \leq 6 k$ and each $x \in \mathbb{N}$, there is an embedding of every complete $C_{2 k}$-design of order $n=a+4 k x$ in a complete $C_{2 k}$-design of order $n+4 k=a+4 k(x+1)$.

Note that the above corollary does not address the the (trivial) complete $C_{2 k}$-design of order 1 ; since this design can clearly be embedded in any larger $C_{2 k}$-design, we must show that all other orders in the spectrum of $C_{2 k}$ are addressed in the above corollary. In Theorem 1.42, we state the spectrum of $C_{2 k}$, which appears in a 2002 paper by M. Šajna [31]. Šajna's paper is the culmination of work by numerous authors in several papers published over a 38-year period. This work was begun by Kotzig [20] and Rosa [28] and completed by Alspach and Gavlas [2] and Šajna [31]. (See also [5], [3], [27], [4], [23], and [30].)

Theorem 1.42 (Šajna, 2002). Let $k, n \in \mathbb{P}$, and suppose $k \geq 2$. There is a complete $C_{2 k}$-design of order n if and only if the following conditions are satisfied.
(i) $\quad n=1$ or $n \geq 2 k$
(ii) $\quad 4 k \mid n(n-1)$
(iii) $\quad 2 \mid(n-1)$

From Theorem 1.42, we can see how to describe $\operatorname{Spec}\left(C_{2 k}\right)$ in terms of congruence classes modulo $4 k$. For any $n \in \operatorname{Spec}\left(C_{2 k}\right)$, we see from condition (iii) that n is odd, and from conditions (i) and (iii) that $n \notin \llbracket 2,2 k \rrbracket$. Consider the prime factorization of the product $4 k$; let s denote the number of distinct odd prime factors of $4 k$. If $s=0$, then $4 k=2^{\alpha}$ for some integer $\alpha \geq 3$, so by condition (ii) and the fact that n is odd, we must have $2^{\alpha} \mid(n-1)$, so $n \equiv 1(\bmod 4 k)$ for all $n \in \operatorname{Spec}\left(C_{2 k}\right)$. If instead $s>0$, then there exist s distinct odd primes $q_{1}, q_{2}, \ldots, q_{s}$ and $s+1$ positive integers $\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}$ such that

$$
\begin{equation*}
4 k=2^{\alpha_{0}} q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}} \cdots q_{s}^{\alpha_{s}} . \tag{1.4}
\end{equation*}
$$

Then, by condition (ii) and the fact that n is odd, we must have that $2^{\alpha_{0}} \mid(n-1)$ and that, for each $i \in \llbracket 1, s \rrbracket, q_{i}^{\alpha_{i}} \mid n(n-1)$, so either $q_{i}^{\alpha_{i}} \mid n$ or $q_{i}^{\alpha_{i}} \mid(n-1)$. Hence every element of $\operatorname{Spec}\left(C_{2 k}\right)$ is a solution to the system of $(s+1)$ congruences in (1.5) below.

$$
\left\{\begin{align*}
n & \equiv 1\left(\bmod 2^{\alpha_{0}}\right) \tag{1.5}\\
n(n-1) & \equiv 0\left(\bmod q_{i}^{\alpha_{i}}\right) \text { for each } i \in \llbracket 1, s \rrbracket
\end{align*}\right.
$$

There are exactly 2^{s} congruence classes modulo $4 k$ that are solutions to this system. Each one of these classes has exactly one representative among the $4 k$ consecutive integers in the set $\llbracket 2 k+1,6 k \rrbracket$; hence the integers $n=a+4 k x$ described in Corollary 1.41 are precisely the elements of $\operatorname{Spec}\left(C_{2 k}\right)$, except $n=1$. We thus have the following corollary to Rodger's result.

Corollary 1.43. Let $k \in \mathbb{P}$, and suppose $k \geq 2$. Then $C_{2 k}$ is a bounded complete embedding graph.

In subsequent chapters, we identify additional families of bounded complete embedding graphs, including paths, complete bipartite graphs, and certain graphs whose components are even cycles. Before we proceed with these identifications, we pause to discuss two new topics and to state a few known results from these topics that we will use later.

Chapter 2

Known Results on Graph Labelings and Cyclic Designs

In this chapter, we divert ourselves from direct discussion of bounded complete embedding graphs to explore results from the literature that will be helpful to us later. These results all pertain to two closely related topics, namely cyclic methods for generating designs and graph labelings. We begin with the numerous definitions that are required for entry into these topics, and close the chapter with those results that are most important to us. We add, for emphasis, that all results mentioned in this chapter are the work of others.

2.1 Cyclic Designs on Complete Graphs and Complete Bipartite Graphs

In the process of building design embeddings, we build many designs on complete graphs and complete bipartite graphs. In this section, we present terminology and notation for the construction of certain designs, including the difference of an edge in K_{n}, the length of an edge in $K_{n, n}$, the process of clicking edges and subgraphs of K_{n} and $K_{n, n}$, and cyclic designs on K_{n} and $K_{n, n}$.

Definition 2.1. Let n be a positive integer, and let $V\left(K_{n}\right)=\llbracket 0, n-1 \rrbracket$. Let $i, j \in V\left(K_{n}\right)$, with $i \neq j$. The difference of the edge $e=\{i, j\}$, denoted $\operatorname{diff}(e)$ or $\operatorname{diff}(i, j)$, is given by

$$
\operatorname{diff}(i, j)=\min \{|j-i|, n-|j-i|\} .
$$

The edge e is called a wrap-around edge if and only if $\operatorname{diff}(e)=n-|j-i|$.
If we arrange the vertices of K_{n} in order as the vertices of a regular n-gon, then the difference of the edge $\{i, j\}$ is the length of the shorter path from i to j along the perimeter of the regular n-gon. The possible differences in K_{n} are the integers from 1 to $\lfloor n / 2\rfloor$.

Notation 2.2. We denote by \mathcal{D}_{n} the set of available differences in K_{n} :

$$
\mathcal{D}_{n}=\{i \in \mathbb{Z} \mid 1 \leq i \leq\lfloor n / 2\rfloor\}=\llbracket 1,\lfloor n / 2\rfloor \rrbracket .
$$

The length of an edge in $K_{n, n}$ is analogous to the difference of an edge in K_{n}; we use different terms for these two ideas for added clarity in distinguishing designs on K_{n} from designs on $K_{n, n}$.

Definition 2.3. Let n be a positive integer, and let $V\left(K_{n, n}\right)=\llbracket 0, n-1 \rrbracket \times\{0,1\}$. Let $i, j \in \llbracket 0, n-1 \rrbracket$. The length of the edge $e=\{(i, 0),(j, 1)\}$, denoted $\operatorname{Lnth}(e)$ or $\operatorname{Lnth}(i, j)$, is given by

$$
\operatorname{Lnth}(i, j)= \begin{cases}j-i, & \text { if } i \leq j \\ n+j-i, & \text { if } i>j\end{cases}
$$

The edge e is called a wrap-around edge if and only if $i>j$.

Note that, in K_{n}, the edges $\{i, j\}$ and $\{i+1, j+1\}$ (with addition computed modulo n) have the same difference, and that, in $K_{n, n}$, the edges $\{(i, 0),(j, 1)\}$ and $\{(i+1,0),(j+1,1)\}$ (with addition computed modulo n) have the same length. The process of clicking a subgraph provides a means to use these facts to advantage in the construction of designs.

Definition 2.4. The process of clicking an edge $\{i, j\}$ of K_{n} is the increase of each vertex label by one to obtain the edge $\{i+1, j+1\}$, with vertex labels computed modulo n. The process of clicking an edge $\{(i, 0),(j, 1)\}$ of $K_{n, n}$ is the increase of the first coordinate of each vertex label by one to obtain the edge $\{(i+1,0),(j+1,1)\}$, with vertex labels computed modulo n. The process of clicking a subgraph, G, of K_{n} or $K_{n, n}$ is simultaneously clicking all the edges of G.

Note that clicking, when applied to the entire graph K_{n} or $K_{n, n}$, is an automorphism of K_{n} or $K_{n, n}$, respectively. We use the clicking process to build designs by clicking a G-block to obtain other G-blocks for the design. In some cases, we build a design by clicking a single G-block B repeatedly to obtain all the other blocks in the design. In such designs, the original block is usually called a base block for the design.

Definition 2.5. Let n be a positive integer, let $K \in\left\{K_{n}, K_{n, n}\right\}$, and let G be a subgraph of K. Let \mathscr{B} be a G-design on K, and let $s=|\mathscr{B}|$. The design \mathscr{B} is called a cyclic design if and only if the clicking automorphism is a permutation of \mathscr{B}. The design \mathscr{B} is called a purely cyclic design if and only if the clicking automorphism is an s-cycle of \mathscr{B}.

Much theory has been developed in the pursuit of cyclic designs and especially purely cyclic designs. In the next section, we describe a family of graph labelings that were developed as tools for building such designs.

2.2 Graph Labelings and Cyclic Designs

In his 1967 paper, A. Rosa developed four types of labelings, or valuations, of a graph that are helpful in building cyclic designs [29]. Since then, several authors have defined variations on these labelings. We refer the reader to the 2009 survey by S. El-Zanati and C. Vanden Eynden [13] for further reading; we will focus on the variations called ordered labelings, which were developed by El-Zanati and Vanden Eynden in a series of several papers (see, for example, [11], [12], and [6]). In this section, we give definitions for Rosa's four original labelings and for ordered labelings. We also state several results from the literature that establish connections between the existence of certain types of labelings of a graph G and the existence of certain G-designs.

Definition 2.6. A labeling, or valuation, of a graph G is an injection $f: V(G) \rightarrow X$, where $X \subseteq \mathbb{N}$. For any vertex $v \in V(G)$, the number $f(v)$ is called the value of the vertex v; for any edge $e=\{u, v\} \in E(G)$, the number $f^{*}(u, v)$, defined by $f^{*}(u, v)=|f(u)-f(v)|$, is called the (induced) value of the edge e. We denote by $\mathscr{L}(V)$ and $\mathscr{L}(E)$, respectively, the sets of values of the vertices and edges of G, that is,

$$
\mathscr{L}(V)=\{f(v) \mid v \in V(G)\} \quad \text { and } \quad \mathscr{L}(E)=\left\{f^{*}(u, v) \mid\{u, v\} \in E(G)\right\} .
$$

2.2.1 Restrictions on Graph Labelings

We give several conditions on labelings, which we then use to define the various labeling types. We name these conditions for convenient reference; note that these names are not standard in the literature, and that the conditions are often stated in other equivalent forms. There are six conditions total, which provide weak and strong options for each of three possible restrictions on a labeling. For brevity in the statements below, we let $m=e(G)$.
(I) The first restriction concerns the codomain, X, which is the set of available values for the vertices. Both conditions assign X to be a subset of $\mathbb{Z}_{2 m+1}$; the weak condition assigns the entire set, while the strong condition assigns a proper subset.

Weak Codomain Condition (WCDC): $\quad X=\llbracket 0,2 m \rrbracket$
Strong Codomain Condition (SCDC): $\quad X=\llbracket 0, m \rrbracket$
(II) The second restriction concerns the set $\mathscr{L}(E)$ of induced values on the edges. Both conditions require that no two edges have the same induced value.

Weak Edge Value Condition (WEVC):

For each $i \in \llbracket 1, m \rrbracket$, there is a unique edge $\{u, v\} \in E(G)$ such that

$$
\min \left\{f^{*}(u, v),(2 m+1)-f^{*}(u, v)\right\}=i
$$

Strong Edge Value Condition (SEVC):

For each $i \in \llbracket 1, m \rrbracket$, there is a unique edge $\{u, v\} \in E(G)$ such that $f^{*}(u, v)=i$.
(III) The third restriction is only defined when G is bipartite: we may require that the values of the vertices be ordered in some way with respect to the bipartition of the vertex set. Suppose G is bipartite on bipartition $[A, B]$.

Weak Ordering Condition (WOC):
For each edge $\{a, b\} \in E(G)$ (with $a \in A$ and $b \in B$), $f(a)<f(b)$.

Strong Ordering Condition (SOC):

There exists $\lambda \in \mathbb{Z}$ such that $f(a) \leq \lambda$ for all $a \in A$ and $f(b)>\lambda$ for all $b \in B$.
As previously mentioned, Rosa's four original labeling types were created to facilitate the building of cyclic designs on complete graphs; some of the labeling types we present are also useful in producing cyclic designs on complete bipartite graphs with both parts of the same size. We observe that, when vertex values are chosen from $\mathbb{Z}_{2 m+1}$ (as required by both of the codomain conditions above), we may interpret a labeling of the graph G as the identification of a G-subgraph of $K_{2 m+1}$: the value of a vertex in G gives the corresponding vertex of $K_{2 m+1}$ in the G-subgraph. Under this interpretation, the difference of an edge $\{u, v\}$ of G is the difference of the corresponding edge $\{f(u), f(v)\}$ in the G-subgraph of $K_{2 m+1}$, which is

$$
\begin{aligned}
\operatorname{diff}(f(u), f(v)) & =\min \{|f(u)-f(v)|,(2 m+1)-|f(u)-f(v)|\} \\
& =\min \left\{f^{*}(u, v),(2 m+1)-f^{*}(u, v)\right\}
\end{aligned}
$$

With this perspective, we see that the Weak Edge Value Condition requires that the G subgraph of $K_{2 m+1}$ have exactly one edge of each difference $d \in \mathcal{D}_{2 m+1}=\llbracket 1, m \rrbracket$. The Strong Edge Value Condition also requires this, with the extra restriction that wrap-around edges are forbidden.

2.2.2 Nine Graph Labeling Types

We now present the definitions of the labeling types. We begin with the three labeling types that do not include an ordering condition; these are three of Rosa's four original labeling types. Note that graphs that are not bipartite may admit these labelings.

Definition 2.7. Let G be a graph, and let $m=e(G)$. A labeling, or valuation, of G is called a ρ-labeling, or ρ-valuation, of G if and only if the Weak Codomain Condition and the Weak Edge Value Condition hold.

Definition 2.8. Let G be a graph, and let $m=e(G)$. A labeling, or valuation, of G is called a σ-labeling, or σ-valuation, of G if and only if the Weak Codomain Condition and the Strong Edge Value Condition hold.

Definition 2.9. Let G be a graph, and let $m=e(G)$. A labeling, or valuation, of G is called a β-labeling, or β-valuation, of G if and only if the Strong Codomain Condition and the Strong Edge Value Condition hold.

We may impose either the Weak Ordering Condition or the Strong Ordering Condition on any of the three labeling types we have just defined, creating six additional labeling types. Since the ordering conditions are only defined on bipartite graphs, these six new labeling types are also defined only on bipartite graphs.

Definition 2.10. Let G be a bipartite graph on bipartition $[A, B]$, and let $m=e(G)$. A labeling, or valuation, of G is called an ordered labeling, or ordered valuation, of G if and only if the Weak Ordering Condition holds.

Notation 2.11. We denote an ordered labeling by adding a superscripted plus sign (+) to the name of the labeling type:

- a ρ^{+}-labeling is an ordered ρ-labeling;
- a σ^{+}-labeling is an ordered σ-labeling; and
- a β^{+}-labeling is an ordered β-labeling.

Definition 2.12. Let G be a bipartite graph on bipartition $[A, B]$, and let $m=e(G)$. A labeling, or valuation, of G is called a uniformly ordered labeling, or uniformly ordered valuation, of G if and only if the Strong Ordering Condition holds.

Notation 2.13. We denote a uniformly ordered labeling by adding a superscripted double plus sign $(++)$ to the name of the labeling type:

- a ρ^{++}-labeling is a uniformly ordered ρ-labeling;
- a σ^{++}-labeling is a uniformly ordered σ-labeling; and
- a β^{++}-labeling is a uniformly ordered β-labeling.

Rosa's fourth labeling type is the α-labeling, which is identical to the uniformly ordered β-labeling; such labelings are typically called α-labelings in the literature, but occasionally the name bipartite labeling is used. We summarize the nine labeling types and their defining conditions in Table 2.1.

Table 2.1: The nine labeling types and their defining conditions

Labeling Type	Codomain	Edge Values	Ordering
ρ	WCDC	WEVC	-
ρ^{+}	WCDC	WEVC	WOC
ρ^{++}	WCDC	WEVC	SOC
σ	WCDC	SEVC	-
σ^{+}	WCDC	SEVC	WOC
σ^{++}	WCDC	SEVC	SOC
β	SCDC	SEVC	-
β^{+}	SCDC	SEVC	WOC
$\alpha\left(\beta^{++}\right)$	SCDC	SEVC	SOC

2.2.3 Obtaining Cyclic Designs from Graph Labelings

In his 1967 paper, Rosa proved two results that connect the existence of graph labelings to the existence of cyclic designs on certain complete graphs [29]. In a later paper with C. Huang, Rosa connects α-labelings to the existence of cyclic designs on certain complete bipartite graphs [18]. We begin with these important results.

Theorem 2.14 (Rosa, 1967). Let G be a graph, and let $m=e(G)$. The graph G admits a ρ-labeling if and only if there is a purely cyclic G-design on $K_{2 m+1}$.

Theorem 2.15 (Rosa, 1967). Let G be a bipartite graph on bipartition $[A, B]$; let $m=e(G)$. If G admits an α-labeling, then there exists a cyclic G-design on $K_{2 m x+1}$ for all $x \in \mathbb{P}$.

Theorem 2.16 (Huang and Rosa, 1978). Let G be a bipartite graph on bipartition $[A, B]$; let $m=e(G)$. If G admits an α-labeling, then there exists a purely cyclic G-design on $K_{m, m}$.

Since the ρ-labeling is the least restrictive labeling, all of the labelings we have defined are also ρ-labelings; hence, if a graph G (having m edges) admits a labeling of any of these nine types, then there is a purely cyclic G-design on $K_{2 m+1}$, by Theorem 2.14.

Note that the α-labeling is the only one of Rosa's original labelings that includes an ordering condition. El-Zanati, Vanden Eynden, and their co-authors have shown that the designs in Theorems 2.15 and 2.16 may be obtained from less restrictive labelings; note, in particular, that the Strong Ordering Condition may be relaxed to the Weak Ordering Condition in both cases. The following results are proved in [12] and [11].

Theorem 2.17 (El-Zanati, Vanden Eynden, and Punnim, 2001). Let G be a bipartite graph on bipartition $[A, B]$, and let $m=e(G)$. If G admits an ordered ρ-labeling, then there exists a cyclic G-design on $K_{2 m x+1}$ for all $x \in \mathbb{P}$.

Theorem 2.18 (El-Zanati, Kenig, and Vanden Eynden, 2000). Let G be a bipartite graph on bipartition $[A, B]$, and let $m=e(G)$. If G admits an ordered β-labeling, then there exists a purely cyclic G-design on $K_{m, m}$.

2.3 Existence Results for Labelings of Certain Graphs

In this section, we present two known results on the existence of certain types of labelings of various graphs. The first result is a list of all graphs that are currently known to admit β^{+}-labelings; before we provide this list, we pause to define a few families of graphs, so that all items in the list are meaningful to the reader.

Definition 2.19. The base of a graph G is the subgraph of G obtained by deleting all vertices in G of degree one. A caterpillar is a tree whose base is a path.

Definition 2.20. The comet $S_{k, m}$ is the graph obtained from the k-star S_{k} by replacing each edge by a path with m edges.

Definition 2.21. The cube Q_{n} is the graph whose vertex set is the set of binary n-tuples, where two n-tuples are adjacent if and only if they differ in exactly one coordinate.

Example 2.22. A caterpillar and the comet $S_{4,3}$ are shown in Figure 2.1. The cube Q_{4} is shown in Figure 2.2.

Figure 2.1: A caterpillar graph (left) and the comet $S_{4,3}$ (right)

Figure 2.2: The cube Q_{4}

The list of graphs that admit β^{+}-labelings is found in the survey by El-Zanati and Vanden Eynden [13]; these results are the work of several authors. The parity condition mentioned in item (8) of Theorem 2.23 below is explained in [29] and [13].

Theorem 2.23. The following graphs admit β^{+}-labelings.
(1) trees with at most 20 edges
(2) the comets $S_{k, 2}$, for all $k \in \mathbb{P}$

The following graphs admit α-labelings. Note that all α-labelings are β^{+}-labelings.
(3) caterpillars
(4) complete bipartite graphs
(5) the cubes Q_{n}, for all $n \in \mathbb{P}$
(6) the $4 k$-cycles, for all $k \in \mathbb{P}$
(7) the graphs $\biguplus_{i=1}^{r} C_{4}$, for all $r \in \mathbb{P}$ such that $r \neq 3$
(8) all 2-regular bipartite graphs that have at most three components and satisfy the parity condition, except $C_{4} \biguplus C_{4} \biguplus C_{4}$

By Theorem 2.15, we have the following corollary to item (4) of Theorem 2.23 above.

The second result is a ρ^{+}-labeling result on 2-regular bipartite graphs by A. Blinco and S. El-Zanati [6]. In Chapters 4 and 5, we will be particularly interested in the 2-regular bipartite graphs in which all components have the same number of vertices.

Theorem 2.25 (Blinco and El-Zanati, 2004). Let G be a 2-regular bipartite graph. Then G admits a ρ^{+}-labeling.

Corollary 2.26. Let G be a 2-regular bipartite graph, and let $q=e(G)$. Then there is a G-design on $K_{2 q x+1}$ for all $x \in \mathbb{P}$.

Equipped with the language of graph labelings and the designs provided by the labeling results we have presented, we now return to the identification of bounded complete embedding graphs.

Chapter 3

A Few Bounded Complete Embedding Graphs

In this chapter, we present a few infinite families of bounded complete embedding graphs and some other results relevant to the identification problem. We begin the chapter with the fundamental result that all bounded complete embedding graphs are bipartite. In Section 3.1, we present two constructions for building embeddings. Construction I is used in Section 3.2; Construction II is used for all subsequent embedding constructions and is thus one of our most significant tools for bounded complete embedding graph results. In Sections 3.2 and 3.3, we show that paths and complete bipartite graphs, respectively, are bounded complete embedding graphs. We close the chapter with a result for bipartite graphs satisfying certain conditions; this last result is primarily informed by the graph labeling results in Chapter 2.

Theorem 3.1. Let G be a bounded complete embedding graph. Then G is bipartite.

Proof. Let G be a graph, and suppose that G is not bipartite. We will show that G is not a bounded complete embedding graph.

Let $n \in \operatorname{Spec}(G)$, and let \mathscr{B} be a G-design of order n. By Theorem 1.25 , let $t_{n} \in \mathbb{P}$ such that we can embed \mathscr{B} in a G-design \mathscr{D} of order $r=n+t_{n}$. Let \mathscr{C} denote the set of G-blocks that are elements of \mathscr{D} but not \mathscr{B}. Let $V\left(K_{r}\right)=\llbracket 1, n+t_{n} \rrbracket$, with vertex names assigned so that \mathscr{B} is a G-design on the K_{n}-subgraph of K_{r} induced by the vertex set $A=\llbracket 1, n \rrbracket$; let H_{1} denote this subgraph of K_{r}. Let $B=\llbracket n+1, n+t_{n} \rrbracket$, and let H_{2} denote the $K_{t_{n}}$ subgraph of K_{r} induced by B. Let H_{3} denote the $K_{n, t_{n}}$-subgraph of K_{r} on bipartition $[A, B]$. Note that H_{1}, H_{2}, and H_{3} partition the set $E\left(K_{r}\right)$. Furthermore, note that edges of blocks in \mathscr{C} can only be edges of H_{2} and H_{3}, because \mathscr{B} is a complete G-design on H_{1}.

Claim: Let $C \in \mathscr{C}$. If C has an edge in H_{3}, then it must have at least one edge in H_{2}.

Proof of Claim: Let $C \in \mathscr{C}$ and suppose C has an edge in H_{3}. Since H_{3} is bipartite, H_{3} has no G-subgraphs, because G is not bipartite. Thus, since C is a G-block, C is not a subgraph of H_{3}, so it must have at least one edge that is not in H_{3}. Since C cannot have an edge in H_{1}, C must have at least one edge in H_{2}.

Let \mathscr{C}^{*} denote the set of G-blocks in \mathscr{C} that have an edge in H_{3}. Since each of these blocks has at least one edge in H_{2}, we have $e\left(H_{2}\right) \geq\left|\mathscr{C}^{*}\right|$, and each such block has at most $e(G)-1$ edges in H_{3}. Since $e\left(H_{3}\right)=e\left(K_{n, t_{n}}\right)=n t_{n}$, we have that

$$
\begin{equation*}
\frac{t_{n}\left(t_{n}-1\right)}{2}=e\left(H_{2}\right) \geq\left|\mathscr{C}^{*}\right| \geq \frac{n t_{n}}{e(G)-1} \tag{3.1}
\end{equation*}
$$

Thus

$$
\begin{equation*}
t_{n} \geq \frac{2 n}{e(G)-1}+1 \tag{3.2}
\end{equation*}
$$

Now, for any positive integer b, let $N(b)$ be the smallest element of $\operatorname{Spec}(G)$ that is strictly greater than $b \cdot(e(G)-1)$, and let \mathscr{F} be a complete G-design of order $N(b)$. Then, for any $t \in \mathbb{P}$ such that \mathscr{F} can be embedded in a complete G-design of order $n+t$, we have that

$$
\begin{equation*}
t \geq \frac{2 N(b)}{e(G)-1}+1>2 b+1 \tag{3.3}
\end{equation*}
$$

so no complete G-design of order $N(b)$ can be embedded in a complete G-design of order $N(b)+x$ for any $x \in \llbracket 1, b \rrbracket$. Therefore G is not a bounded complete embedding graph.

We have already seen that even cycles are bounded complete embedding graphs; since odd cycles are not bipartite, the above theorem guarantees that we need not consider them. Before we proceed to other families of bounded complete embedding graphs, we develop two essential tools, namely, the two embedding constructions we use to establish our results in this chapter and the next.

3.1 Constructions for Embeddings

In order to show that a particular graph is a bounded complete embedding graph, we must build embeddings of certain designs; in this section, we present two constructions for building these embeddings. The two constructions are quite similar; they are slight variations on the same idea. Many other constructions of a similar nature are possible, but these two constructions are, in many ways, the simplest of the possible variations. We have obtained all of our results on bounded complete embedding graphs using only these two constructions.

Lemma 3.2 (Construction I). Let G be a bipartite graph, and let $n \in \operatorname{Spec}(G)$ such that $n>1$. Suppose that there is some positive integer t such that there exist G-designs on K_{t} and $K_{t, n}$. Then every G-design of order n can be embedded in a G-design of order $n+t$.

Proof. Let G be a bipartite graph, and let $n \in \operatorname{Spec}(G)$ such that $n>1$. Suppose that there is some positive integer t such that there exist G-designs on K_{t} and $K_{t, n}$.

We first identify three edge-disjoint subgraphs H_{1}, H_{2}, and H_{3} of K_{n+t}, as follows. Partition $V\left(K_{n+t}\right)$ into a set A of t vertices and a set B of n vertices. Let H_{1} denote the K_{n}-subgraph induced by B. Let H_{2} denote the K_{t}-subgraph induced by A. The remaining edges are the edges of a $K_{t, n}$-subgraph on bipartition $[A, B]$; let H_{3} denote this subgraph. Note that these three subgraphs induce a partition of the edge set of K_{n+t}.

Since $n \in \operatorname{Spec}(G)$, let \mathscr{B} be a G-design on H_{1}. By assumption, there is a G-design \mathscr{D} on H_{2}, and there is a G-design \mathscr{F} on H_{3}. Then $\mathscr{B} \cup \mathscr{D} \cup \mathscr{F}$ is an embedding of \mathscr{B} in a complete G-design on K_{n+t}, as desired.

Lemma 3.3 (Construction II). Let G be a bipartite graph, and let $n \in \operatorname{Spec}(G)$ such that $n>1$. Suppose that there is some positive integer t such that there exist G-designs on K_{t+1} and $K_{t, n-1}$. Then every G-design of order n can be embedded in a G-design of order $n+t$.

Proof. Let G be a bipartite graph, and let $n \in \operatorname{Spec}(G)$ such that $n>1$. Suppose that there is some positive integer t such that there exist G-designs on K_{t+1} and $K_{t, n-1}$.

We first identify three edge-disjoint subgraphs H_{1}, H_{2}, and H_{3} of K_{n+t}. Partition $V\left(K_{n+t}\right)$ into a set A of t vertices and a set B of n vertices. Let H_{1} denote the K_{n}-subgraph induced by B. Fix a vertex $b \in B$; let H_{2} denote the K_{t+1}-subgraph induced by $A \cup\{b\}$. The remaining edges are the edges of a $K_{t, n-1}$-subgraph on bipartition $[A,(B-\{b\})]$; let H_{3} denote this subgraph. Note that these three subgraphs induce a partition of the edge set of K_{n+t}.

Since $n \in \operatorname{Spec}(G)$, let \mathscr{B} be a G-design on H_{1}. By assumption, there is a G-design \mathscr{D} on H_{2}, and there is a G-design \mathscr{F} on H_{3}. Then $\mathscr{B} \cup \mathscr{D} \cup \mathscr{F}$ is an embedding of \mathscr{B} in a complete G-design on K_{n+t}, as desired.

3.2 Paths

In this section, we prove that paths are bounded complete embedding graphs. We appeal to Construction I (Lemma 3.2) in order to build the embeddings that we need; the constructions of these embeddings differ slightly according to the parity of the length, r, of the path. We begin by establishing the existence of several P_{r}-designs that are needed for these constructions.

We need a P_{r}-design on K_{t} for an appropriate value of t; if r is even, we use $t=2 r$; if r is odd, we use $t=r+1$. We appeal to the spectral result on P_{r}-designs on K_{n} in order to establish the existence of the needed designs. This result is due to M . Tarsi [33]; we modify Tarsi's original statement to use the language of graph designs.

Theorem 3.4 (Tarsi, 1983). Let m, v, and λ be positive integers. There is a P_{m}-design on λK_{v} if and only if the following conditions are satisfied.

$$
\begin{array}{ll}
(i) & v=1 \text { or } v \geq m+1 \\
(i i) & \lambda v(v-1) \equiv 0(\bmod 2 m)
\end{array}
$$

We now apply Theorem 3.4 to obtain the desired P_{r}-designs. We address the design for paths of even length first.

Lemma 3.5. Let r be an even positive integer. There is a P_{r}-design on $K_{2 r}$.

Proof. Let r be an even positive integer. We wish to apply Theorem 3.4, with $m=r, v=2 r$, and $\lambda=1$; in order to do so, we must verify that the two conditions in the theorem hold for these values of m, v, and λ.

Condition (i): $2 r \geq r+1$.

Since r is a positive integer, this is true.

Condition (ii): $(2 r)(2 r-1) \equiv 0(\bmod 2 r)$.
This is clearly true.

We have verified that both conditions hold; hence there is a P_{r}-design on $K_{2 r}$.

Lemma 3.6. Let r be an odd positive integer. There is a P_{r}-design on K_{r+1}.

Proof. Let r be an odd positive integer. We wish to apply Theorem 3.4, with $m=r$, $v=r+1$, and $\lambda=1$; in order to do so, we must verify that the two conditions in the theorem hold for these values of m, v, and λ.

Condition (i): $r+1 \geq r+1$.
This is obviously true.

Condition (ii): $(r+1)(r) \equiv 0(\bmod 2 r)$.
Since r is odd, $r+1$ is even; thus $(r+1)(r)$ is a multiple of $2 r$, so the condition holds.

We have verified that both conditions hold; hence there is a P_{r}-design on K_{r+1}.

The embedding constructions require several path designs on complete bipartite graphs; as with the previous designs, the requirements differ slightly for paths of even length and paths of odd length. In order to establish the existence of the needed designs, we will appeal to the spectral result on path designs by C. Parker [26]. This theorem provides the exact spectrum of P_{k}-designs on $K_{a, b}$ in eight cases, according to the parity of k, a, and b.

Theorem 3.7 (Parker, 1998). Let k, a, and b be positive integers.
(1) Suppose k, a, and b are all even. Then there is $a P_{k}$-design on $K_{a, b}$ if and only if $k \leq 2 a$ and $k \leq 2 b$, with strict inequality in at least one of these inequalities.
(2) Suppose k and a are even and b is odd. Then there is $a P_{k}$-design on $K_{a, b}$ if and only if $k \leq 2 a-2$ and $k \leq 2 b$.
(3) Suppose k and b are even and a is odd. Then there is a P_{k}-design on $K_{a, b}$ if and only if $k \leq 2 a$ and $k \leq 2 b-2$.
(4) Suppose k is even and a and b are odd. Then there is no P_{k}-design on $K_{a, b}$.
(5) Suppose k is odd and a and b are both even. Then there is a P_{k}-design on $K_{a, b}$ if and only if $k \leq 2 a-1$ and $k \leq 2 b-1$.
(6) Suppose k and b are odd and a is even. Then there is a P_{k}-design on $K_{a, b}$ if and only if $k \leq 2 a-1$ and $k \leq b$.
(7) Suppose k and a are odd and b is even. Then there is $a P_{k}$-design on $K_{a, b}$ if and only if $k \leq a$ and $k \leq 2 b-1$.
(8) Suppose k, a, and b are all odd. Then there is $a P_{k}$-design on $K_{a, b}$ if and only if $k \leq a$ and $k \leq b$.

Lemma 3.8. Let r be an even positive integer, and let $n \in \operatorname{Spec}\left(P_{r}\right)$ such that $n>1$. There is a P_{r}-design on $K_{2 r, n}$.

Proof. Let r be an even positive integer, and let $n \in \operatorname{Spec}\left(P_{r}\right)$ such that $n>1$. We apply Theorem 3.7, with $k=r, a=n$, and $b=2 r$. Note that $k=r$ and $b=2 r$ are both even. If n is even, we will appeal to case (1) of this theorem; if n is odd, we will appeal to case (3).

Suppose first that n is even. Since $n \geq r+1$ by Theorem 3.4, we have that

$$
k=r<r+1 \leq n<2 n=2 a .
$$

Since r is a positive integer, $k=r<2(2 r)=2 b$. We have thus satisfied the conditions of Theorem 3.7, case (1), so there is a P_{r}-design on $K_{2 r, n}$.

Now suppose n is odd. As argued for n even, $k=r \leq 2 n=2 a$. Since r is a positive integer, $k=r<2(2 r)-2=2 b-2$. We have thus satisfied the conditions of Theorem 3.7, case (3), so there is a P_{r}-design on $K_{2 r, n}$.

Lemma 3.9. Let r be an odd positive integer, and let $n \in \operatorname{Spec}\left(P_{r}\right)$ such that $n>1$. There is a P_{r}-design on $K_{r+1, n}$.

Proof. Let r be an odd positive integer, and let $n \in \operatorname{Spec}\left(P_{r}\right)$ such that $n>1$. We apply Theorem 3.7, with $k=r, a=n$, and $b=r+1$. Note that $b=r+1$ is even. If n is even, we will appeal to case (5) of this theorem; if n is odd, we will appeal to case (7).

Suppose first that n is even. Since $n \geq r+1$ by Theorem 3.4, we have that

$$
k=r<r+1 \leq n<2 n-1=2 a-1 .
$$

Since r is a positive integer, $k=r<2 r+1=2(r+1)-1=2 b-1$. We have thus satisfied the conditions of Theorem 3.7, case (5), so there is a P_{r}-design on $K_{r+1, n}$.

Now suppose n is odd. Since $n \geq r+1$ by Theorem 3.4, we have that

$$
k=r<r+1 \leq n=a .
$$

As argued for n even, $k<2 b-1$. We have thus satisfied the conditions of Theorem 3.7, case (7), so there is a P_{r}-design on $K_{r+1, n}$.

We are now ready to prove the main result of this section: that paths are bounded complete embedding graphs. The proof is straightforward: we apply Construction I to build, for each $n \in \operatorname{Spec}\left(P_{r}\right)$, an embedding of any P_{r}-design of order n in a P_{r}-design of order $n+t$, where $t=2 r$ for all even values of r and $t=r+1$ for all odd values of r.

Theorem 3.10. Let r be a positive integer. Then P_{r} is a bounded complete embedding graph.

Proof. We approach the proof in two parts, in order to handle separately the slightly different constructions required for paths of even and odd lengths.

Part I: Paths of Even Length

Let r be a positive even integer, and consider P_{r}-designs. Clearly, the trivial complete P_{r}-design of order 1 can clearly be embedded in any larger P_{r}-design; in particular, it can be embedded in the P_{r}-design of order $2 r$ guaranteed by Lemma 3.5.

By Lemma 3.5, there is a P_{r}-design on $K_{2 r}$; by Lemma 3.8, there is a P_{r}-design on $K_{2 r, n}$ for all $n \in \operatorname{Spec}\left(P_{r}\right)$ such that $n>1$. The conditions of Construction I (Lemma $3.2)$ with $t=2 r$ are thus satisfied for all $n \in \operatorname{Spec}\left(P_{r}\right)$ such that $n>1$.

Hence for all even positive integers r, every P_{r}-design of order n can be embedded in a P_{r}-design of order $n+x$ for some $x \in \llbracket 1,2 r \rrbracket$. Therefore P_{r} is a bounded complete embedding graph for even r.

Part II: Paths of Odd Length

Now let r be a positive odd integer, and consider P_{r}-designs. Clearly, the trivial complete P_{r}-design of order 1 can clearly be embedded in any larger P_{r}-design; in particular, the P_{r}-design of order 1 can be embedded in the P_{r}-design of order $r+1$ guaranteed by Lemma 3.6.

By Lemma 3.6, there is a P_{r}-design on K_{r+1}; by Lemma 3.9, there is a P_{r}-design on $K_{r+1, n}$ for all $n \in \operatorname{Spec}\left(P_{r}\right)$ such that $n>1$. The conditions of Construction I (Lemma 3.2) with $t=r+1$ are thus satisfied for all $n \in \operatorname{Spec}\left(P_{r}\right)$ such that $n>1$.

Hence for all odd positive integers r, every P_{r}-design of order n can be embedded in a P_{r}-design of order $n+x$ for some $x \in \llbracket 1,(r+1) \rrbracket$. Therefore P_{r} is a bounded complete embedding graph for odd r.

3.3 Complete Bipartite Graphs

In this section, we prove that all complete bipartite graphs are bounded complete embedding graphs. We begin by analyzing the superspectral conditions as they apply to the complete bipartite graph $K_{r, s}$.

Remark 3.11. Let r, s, and n be positive integers, and suppose there is a $K_{r, s}$-design on K_{n}. Note that $v\left(K_{r, s}\right)=r+s$, that $e\left(K_{r, s}\right)=r s$, and that all vertices in $K_{r, s}$ have degree either r or s. Applying conditions SSC-1, SSC-2, and SSC-3, we have that
(1) $n=1$ or $n \geq r+s$,
(2) $2 r s \mid n(n-1)$, and
(3) $\operatorname{gcd}(r, s) \mid(n-1)$.

These conditions define the superspectrum of $K_{r, s}$.

We will appeal to Construction II (Lemma 3.3) to build the embeddings that we need. One of the designs we will need for Construction II is a $K_{r, s}$-design on $K_{2 r s+1}$, whose existence is guaranteed by Corollary 2.24. The other designs required for Construction II are $K_{r, s}$-designs on $K_{2 r s, n-1}$ for each $n \in \operatorname{Spec}\left(K_{r, s}\right)$ except $n=1$. We appeal to a theorem of D. G. Hoffman and M. Liatti [16] to provide these designs.

Theorem 3.12 (Hoffman and Liatti, 1995). Let a, b, c, and d be positive integers. Let $g=\operatorname{gcd}(a, b)$; let e and f be integers satisfying $a e-b f=g$, and let $h=a e+b f$.

For each integer x, let

$$
\alpha(x)=\left\lceil\frac{x f}{a}\right\rceil, \quad \beta(x)=\left\lfloor\frac{x e}{b}\right\rfloor, \quad \text { and } \quad \gamma(x)=\frac{x}{a b} .
$$

Then there is a $K_{a, b}$-design on $K_{c, d}$ if and only if the following conditions are satisfied.

$$
\begin{align*}
& a b \mid c d \tag{i}\\
& g \mid c \text { and } \alpha(c) \leq \beta(c) \tag{ii}\\
& g \mid d \text { and } \alpha(d) \leq \beta(d) \tag{iii}\\
& c \cdot \alpha(d)+d \cdot \alpha(c) \leq h \cdot \gamma(c d) \leq c \cdot \beta(d)+d \cdot \beta(c) \tag{iv}
\end{align*}
$$

We now apply Theorem 3.12 to obtain $K_{r, s}$-designs on certain complete bipartite graphs. The application of this theorem is done as broadly as possible; note that no conditions are placed on the positive integers r and s. We restrict n by the condition $n \geq r s+1$; this restriction is sufficient, but not necessary, for condition (ii) to hold.

Lemma 3.13. Let r and s be positive integers. Let $n \in \operatorname{SSpec}\left(K_{r, s}\right)$, and suppose $n \geq r s+1$. Then there exists a $K_{r, s^{-}}$design on $K_{2 r s, n-1}$.

Proof. Let r and s be positive integers. Let $n \in \operatorname{SSpec}\left(K_{r, s}\right)$, and suppose $n \geq r s+1$. Since $n \in \operatorname{SSpec}\left(K_{r, s}\right)$, n must satisfy the three conditions stated in Remark 3.11. We apply Theorem 3.12 , with $a=r, b=s, c=n-1$, and $d=2 r s$. As in this theorem, let $g=\operatorname{gcd}(r, s)$, and let e and f be integers such that $r e-s f=g$. Let $h, \alpha(x), \beta(x)$, and $\gamma(x)$ be defined as in the theorem. We need to verify that the four conditions in Theorem 3.12 hold for the chosen values of a, b, c, and d.

Condition (i): $r s \mid(n-1) 2 r s \quad$ This is clearly true.

Condition (ii): $\operatorname{gcd}(r, s) \mid(n-1)$ and $\alpha(n-1) \leq \beta(n-1)$
The condition $\operatorname{gcd}(r, s) \mid(n-1)$ is one of the conditions in Remark 3.11, so it holds.
Now consider the condition $\alpha(n-1) \leq \beta(n-1)$. We observe that $g \geq 1$, because $g=\operatorname{gcd}(r, s)$; we recall that $n \geq r s+1$ by assumption. Combining these facts, we obtain

$$
\begin{equation*}
r s \leq n-1 \leq(n-1) g . \tag{3.4}
\end{equation*}
$$

Thus

$$
\begin{equation*}
r s+(n-1) s f \leq(n-1) g+(n-1) s f \tag{3.5}
\end{equation*}
$$

Dividing by $r s$ and applying the fact that $s f+g=r e$, we obtain

$$
\begin{equation*}
1+\frac{(n-1) f}{r} \leq \frac{(n-1) e}{s} \tag{3.6}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\left\lceil\frac{(n-1) f}{r}\right\rceil \leq\left\lfloor 1+\frac{(n-1) f}{r}\right\rfloor \leq\left\lfloor\frac{(n-1) e}{s}\right\rfloor \tag{3.7}
\end{equation*}
$$

that is, the condition $\alpha(n-1) \leq \beta(n-1)$ holds.

Condition (iii): $\operatorname{gcd}(r, s) \mid 2 r s$ and $\alpha(2 r s) \leq \beta(2 r s)$
The condition $\operatorname{gcd}(r, s) \mid 2 r s$ clearly holds, as $\operatorname{gcd}(r, s)$ divides both r and s.
Furthermore,

$$
\begin{align*}
\alpha(2 r s) \leq \beta(2 r s) & \Longleftrightarrow \quad\left[\frac{(2 r s) f}{r}\right\rceil
\end{aligned} \quad \leq\left\lfloor\frac{(2 r s) e}{s}\right\rfloor \left\lvert\, \begin{aligned}
\lceil 2 s f\rceil & \leq\lfloor 2 r e\rfloor \\
& \Longleftrightarrow 2 s f \leq 2 r e \\
& \Longleftrightarrow \tag{3.8}\\
& \Longleftrightarrow \\
& \Longleftrightarrow \\
s f & \leq r e \\
s f & \leq s f+g
\end{align*}\right.
$$

The last inequality is clearly true, since $g=\operatorname{gcd}(r, s)$ is a positive integer; hence the condition $\alpha(2 r s) \leq \beta(2 r s)$ holds.

Condition (iv): $(n-1) \cdot \alpha(2 r s)+2 r s \cdot \alpha(n-1) \leq h \cdot \gamma((n-1) 2 r s) \leq(n-1) \cdot \beta(2 r s)+2 r s \cdot \beta(n-1)$ By condition (ii), we have that $\left\lceil\frac{(n-1) f}{r}\right\rceil \leq\left\lfloor\frac{(n-1) e}{s}\right\rfloor$, so

$$
\frac{(n-1) f}{r} \leq\left\lceil\frac{(n-1) f}{r}\right\rceil \leq\left\lfloor\frac{(n-1) e}{s}\right\rfloor \leq \frac{(n-1) e}{s}
$$

In particular,

$$
\begin{equation*}
\left\lceil\frac{(n-1) f}{r}\right\rceil \leq \frac{(n-1) e}{s} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(n-1) f}{r} \leq\left\lfloor\frac{(n-1) e}{s}\right\rfloor \tag{3.10}
\end{equation*}
$$

From inequality (3.9), we obtain

$$
\begin{equation*}
\frac{(n-1) f}{r}+\left\lceil\frac{(n-1) f}{r}\right\rceil \leq \frac{(n-1) f}{r}+\frac{(n-1) e}{s} . \tag{3.11}
\end{equation*}
$$

Note that the right-hand side of inequality (3.11) is equal to $(r e+s f)(n-1) / r s$.
Multiplying through by $2 r s$, we obtain

$$
\begin{equation*}
(n-1) \cdot \frac{2 r s f}{r}+2 r s \cdot\left\lceil\frac{(n-1) f}{r}\right\rceil \leq(r e+s f) \frac{(n-1) 2 r s}{r s} \tag{3.12}
\end{equation*}
$$

Note that $(2 r s f) / r$ is an integer, so

$$
\begin{equation*}
\frac{2 r s f}{r}=\left\lceil\frac{2 r s f}{r}\right\rceil=\alpha(2 r s) ; \tag{3.13}
\end{equation*}
$$

thus inequality (3.12) can be written as

$$
\begin{equation*}
(n-1) \cdot \alpha(2 r s)+2 r s \cdot \alpha(n-1) \leq h \cdot \gamma((n-1) 2 r s), \tag{3.14}
\end{equation*}
$$

which is the left-hand inequality to be verified in condition (iv).
From inequality (3.10), we obtain

$$
\begin{equation*}
\frac{(n-1) e}{s}+\frac{(n-1) f}{r} \leq \frac{(n-1) e}{s}+\left\lfloor\frac{(n-1) e}{s}\right\rfloor . \tag{3.15}
\end{equation*}
$$

Note that the left-hand side of inequality (3.15) is equal to $(r e+s f)(n-1) / r s$.

Multiplying through by $2 r s$, we obtain

$$
\begin{equation*}
(r e+s f) \frac{(n-1) 2 r s}{r s} \leq(n-1) \cdot \frac{2 r s e}{s}+2 r s \cdot\left\lfloor\frac{(n-1) e}{s}\right\rfloor \tag{3.16}
\end{equation*}
$$

Note that $(2 r s e) / s$ is an integer, so

$$
\begin{equation*}
\frac{2 r s e}{s}=\left\lfloor\frac{2 r s e}{s}\right\rfloor=\beta(2 r s) \tag{3.17}
\end{equation*}
$$

thus inequality (3.16) can be written as

$$
\begin{equation*}
h \cdot \gamma((n-1) 2 r s) \leq(n-1) \cdot \beta(2 r s)+2 r s \cdot \beta(n-1) \tag{3.18}
\end{equation*}
$$

which is the right-hand inequality to be verified in condition (iv).

Since we have verified all four conditions, there is indeed a $K_{r, s}$-design on $K_{2 r s, n-1}$ for all $n \in \operatorname{SSpec}\left(K_{r, s}\right)$ such that $n \geq r s+1$.

We are now ready to prove the main result of this section: that complete bipartite graphs are bounded complete embedding graphs. We use Construction II to build embeddings of $K_{r, s^{-}}$-designs of all large orders in the spectrum of $K_{r, s}$. We then appeal to Theorem 1.34, which guarantees that these embeddings are sufficient.

Theorem 3.14. Let r and s be positive integers. The complete bipartite graph $K_{r, s}$ is a bounded complete embedding graph.

Proof. Let r and s be positive integers; let $n \in \operatorname{Spec}\left(K_{r, s}\right)$, and suppose that $n \geq r s+1$. By Corollary 2.24, there is a $K_{r, s}$-design on $K_{2 r s+1}$. By Lemma 3.13, there is a $K_{r, s}$-design on $K_{2 r s, n-1}$. The conditions of Construction II (Lemma 3.3) with $t=2 r s$ are thus satisfied for n. Hence every $K_{r, s}$-design of order $n \geq r s+1$ can be embedded in a $K_{r, s}$-design of order $n+2 r s$. Therefore, by Theorem 1.34 (with $N=r s+1$ and $b=2 r s$), $K_{r, s}$ is a bounded complete embedding graph.

3.4 A Special Class of Bipartite Graphs

We now turn our attention to a special class of bipartite graphs, which we will show are bounded complete embedding graphs. For any bipartite graph G that admits a β^{+}-labeling, certain designs that are useful for Construction II are guaranteed by the existence of the β^{+}-labeling. For some such graphs, these designs are sufficient to build embeddings for a bounded complete embedding graph result. We see the conditions that describe these graphs in the following lemma.

Lemma 3.15. Let $s \in \mathbb{P}$, and let G be a graph such that $e(G)=2^{s}$ and $\operatorname{deg}(v)$ is even for all $v \in V(G)$, and suppose that $2 e(G)+1 \geq v(G)$. Then

$$
\operatorname{SSpec}(G)=\left\{n \in \mathbb{P} \mid n \equiv 1\left(\bmod 2^{s+1}\right)\right\}
$$

Proof. Let $s \in \mathbb{P}$, and let G be a graph such that $e(G)=2^{s}$ and $\operatorname{deg}(v)$ is even for all $v \in V(G)$, and suppose that $2 e(G)+1 \geq v(G)$. By Lemma 1.23, we have that

$$
\left\{n \in \mathbb{P} \mid n \equiv 1\left(\bmod 2^{s+1}\right)\right\} \subseteq \operatorname{SSpec}(G)
$$

Now suppose that $n \in \operatorname{SSpec}(G)$ and $n>1$. Since n must satisfy $\operatorname{SSC}-2$, we have that $2^{s+1} \mid n(n-1)$. Since n must also satisfy SSC- 3 , we have $\operatorname{gcd}\{\operatorname{deg}(v) \mid v \in V(G)\} \mid(n-1)$; then, since $\operatorname{gcd}\{\operatorname{deg}(v) \mid v \in V(G)\}$ is divisible by 2 by assumption, we have that $2 \mid(n-1)$. Thus $(n-1)$ is even and n is odd, so $2^{s+1} \mid(n-1)$; thus $n \equiv 1\left(\bmod 2^{s+1}\right)$. Hence

$$
\operatorname{SSpec}(G) \subseteq\left\{n \in \mathbb{P} \mid n \equiv 1\left(\bmod 2^{s+1}\right)\right\}
$$

so $\operatorname{SSpec}(G)=\left\{n \in \mathbb{P} \mid n \equiv 1\left(\bmod 2^{s+1}\right)\right\}$, as desired.
We observe that, for any bipartite graph G, a G-design on a complete bipartite graph of a certain size may be used to build G-designs on certain larger complete bipartite graphs.

Lemma 3.16. Let G be a graph, let $m \in \mathbb{P}$, and suppose that there is a G-design on $K_{m, m}$. Then there is a G-design on $K_{p m, q m}$ for every $p, q \in \mathbb{P}$.

Proof. Let G be a graph, let $m \in \mathbb{P}$, and suppose there is a G-design on $K_{m, m}$. Let $U=\llbracket 1, m \rrbracket \times\{0\}$ and $V=\llbracket 1, m \rrbracket \times\{1\}$, and let $K_{m, m}$ be on bipartition $[U, V]$. Let $p, q \in \mathbb{P}$, and let $K_{p m, q m}$ be on bipartition $[X, Y]$, where

$$
X=\llbracket 1, p \rrbracket \times \llbracket 1, m \rrbracket \times\{0\} \text { and } Y=\llbracket 1, q \rrbracket \times \llbracket 1, m \rrbracket \times\{1\}
$$

Furthermore, for each $i \in \llbracket 1, p \rrbracket$, let $X_{i}=\{i\} \times \llbracket 1, m \rrbracket \times\{0\}$, and for each $j \in \llbracket 1, q \rrbracket$, let $Y_{j}=\{j\} \times \llbracket 1, m \rrbracket \times\{1\}$. Then, for each $(i, j) \in \llbracket 1, p \rrbracket \times \llbracket 1, q \rrbracket$, the subgraph $H(i, j)$ of $K_{p m, q m}$ induced by the vertex set $X_{i} \cup Y_{j}$ is a $K_{m, m}$-subgraph, so it admits a G-design $\mathscr{B}(i, j)$ by assumption. Hence the design

$$
\mathscr{D}=\bigcup_{\substack{1 \leq i \leq p \\ 1 \leq j \leq q}} \mathscr{B}(i, j)
$$

is a G-design on $K_{p m, q m}$, as desired.

We can now establish that any bipartite graph satisfying our selected conditions is a bounded complete embedding graph. The most important of these conditions is that the graph admit a β^{+}-labeling. We recall for the reader that the labeling types are defined in subsection 2.2.2, and that a list of graphs that admit β^{+}-labelings is given in Theorem 2.23.

Theorem 3.17. Let G be a bipartite graph that satisfies the following conditions:
(i) $\quad e(G)=2^{s}$ for some $s \in \mathbb{P}$,
(iii) $\quad G$ admits a β^{+}-labeling.

Then G is a bounded complete embedding graph.
Furthermore, the spectrum of G is the set $\left\{n \in \mathbb{P} \mid n \equiv 1\left(\bmod 2^{s+1}\right)\right\}$.

Proof. Let G be a graph that satisfies conditions (i) - (iii) as given in the statement of the theorem, and let $m=e(G)=2^{s}$. Since G admits a β^{+}-labeling, G has at most $(m+1)$ vertices. Since $m=e(G) \geq 2$, we have $2 e(G)+1=2 m+1>m+1 \geq v(G)$, so we have satisfied the hypotheses of Lemma 3.15; hence the superspectrum of G consists only of those positive integers n satisfying the congruence $n \equiv 1\left(\bmod 2^{s+1}\right)$. Since G admits a β^{+}-labeling, and since every β^{+}-labeling is a ρ^{+}-labeling, we have from Theorem 2.17 that there is a complete G-design of order $2 m+1=2^{s+1}+1$. Furthermore, we have from Theorem 2.18 that there is a G-design on $K_{m, m}$. If $n \in \operatorname{SSpec}(G)$ and $n>1$, then $n-1=x 2^{s+1}=2 x m$ for some $x \in \mathbb{P}$; thus, by Lemma 3.16 with $p=2 x$ and $q=2$, there is a G-design on $K_{n-1,2 m}=K_{2 x m, 2 m}$. We have therefore satisfied the conditions of Construction II, with $t=2 m=2 e(G)$, for every $n \in \operatorname{Spec}(G)$ except $n=1$, so G is a bounded complete embedding graph.

We now consider the spectrum of G. The above construction establishes the existence of a complete G-design of order n for all $n \in \operatorname{SSpec}(G)$ such that $n>2 m+1$. The existence of a complete G-design of order $2 m+1$ is already established by Theorem 2.17, and the existence of a complete G design of order 1 is trivial, so the spectrum of G is precisely its superspectrum; that is, $\operatorname{Spec}(G)=\left\{n \in \mathbb{P} \mid n \equiv 1\left(\bmod 2^{k+1}\right)\right\}$.

We note that the restrictions on the number of edges in G and on the parity of the degrees of vertices in G are necessary, as relaxing either condition causes the superspectrum of G to expand, so that the collection of G-designs guaranteed by the β^{+}-labeling is no longer sufficient. From Theorem 2.23, we see that Theorem 3.17 provides two new infinite classes of bounded complete embedding graphs; further results on graphs that admit β^{+}-labelings may add additional families.

Corollary 3.18. Let $t \in \mathbb{P}$, and let $n=2^{t}$. Then the cube Q_{n} is a bounded complete embedding graph.

Proof. Let $t \in \mathbb{P}$, and let $n=2^{t}$. Then the cube Q_{n} admits a β^{+}-labeling by Theorem 2.23; furthermore, $v\left(Q_{n}\right)=2^{n}$, and Q_{n} is 2^{t}-regular, so $e\left(Q_{n}\right)=2^{n+t-1}$. Hence, by Theorem 3.17, the cube Q_{n} is a bounded complete embedding graph.

Corollary 3.19. Let a and b be distinct positive integers, each at least two, such that $2 a+2 b=2^{t}$ for some $t \in \mathbb{P}$. Then $C_{2 a} \biguplus C_{2 b}$ is a bounded complete embedding graph .

Proof. Let a and b be distinct positive integers, each at least two, such that $2 a+2 b=2^{t}$ for some $t \in \mathbb{P}$. Then $C_{2 a} \biguplus C_{2 b}$ admits a β^{+}-labeling by Theorem 2.23; furthermore, $C_{2 a} \biguplus C_{2 b}$ is 2-regular, and $e\left(C_{2 a} \biguplus C_{2 b}\right)=2 a+2 b=2^{t}$ by assumption. Hence, by Theorem 3.17, the graph $C_{2 a} \biguplus C_{2 b}$ is a bounded complete embedding graph.

Corollary 3.20. Let $a, b, c \in \mathbb{P}$, each at least two, such that $2 a+2 b+2 c=2^{t}$ for some $t \in \mathbb{P}$. Then $C_{2 a} \biguplus C_{2 b} \biguplus C_{2 c}$ is a bounded complete embedding graph.

Proof. Let a, b, and c be positive integers, each at least two, such that $2 a+2 b+2 c=2^{t}$ for some $t \in \mathbb{P}$. Then $C_{2 a} \biguplus C_{2 b} \biguplus C_{2 c}$ admits a β^{+}-labeling by Theorem 2.23; furthermore, $C_{2 a} \biguplus C_{2 b} \biguplus C_{2 c}$ is 2-regular, and $e\left(C_{2 a} \biguplus C_{2 b} \biguplus C_{2 c}\right)=2 a+2 b+2 c=2^{t}$ by assumption. Hence, by Theorem 3.17, the graph $C_{2 a} \biguplus C_{2 b} \biguplus C_{2 c}$ is a bounded complete embedding graph.

We note that item (8) of Theorem 2.23 addresses all 2-regular bipartite graphs with at most three components. All of the graphs in Corollaries 3.19 and 3.20 have cycles of non-uniform length, but the graphs $C_{2 a} \biguplus C_{2 a}$, where a is a positive integer power of two, also satisfy the conditions of Theorem 3.17. The 2-regular bipartite graphs with components of uniform size are the subject of Chapters 4 and 5 , so we omit the statement of the relevant corollary to Theorem 3.17 for such graphs in favor of stating a more general result later.

Chapter 4

Cohorts of Even Cycles, Part One

We have so far seen several families of bounded complete embedding graphs, including three of the most commonly studied families of bipartite graphs; we now turn our attention to a more obscure family of bipartite graphs. Each component of a 2-regular bipartite graph is an even cycle; these cycles may be of the same length or of different lengths. In this chapter and the next, we consider specifically those 2-regular bipartite graphs having all cycles of the same length. Some authors have used the term uniform 2-regular graph to refer to 2-regular graphs having all cycles of the same length. In keeping with this usage, we could call our graphs uniform 2-regular bipartite graphs, but we find this term somewhat cumbersome, and so have coined our own. We have given a name, in general, to any graph whose components are all isomorphic to one another.

Definition 4.1. Let $p \in \mathbb{Z}$ with $p \geq 2$, and let H be a graph. The \boldsymbol{p}-cohort of the graph \boldsymbol{H} is the graph G with exactly p components, each of which is isomorphic to H. We use the shortened phrase (p, H)-cohort to denote these graphs.

Using this terminology, the graphs we wish to consider are the $\left(p, C_{2 k}\right)$-cohorts, for all integers $p \geq 2$ and $k \geq 2$. We refer to these graphs informally as cohorts of even cycles; for convenience, we denote the $\left(p, C_{2 k}\right)$-cohort by $\mathcal{C}_{2 k}^{p}$. We begin our discussion of these graphs with a statement of the superspectral conditions in terms of the parameters p and k.

Remark 4.2. Let p, k, and n be positive integers such that $p \geq 2$ and $k \geq 2$, and suppose there is a $\mathcal{C}_{2 k}^{p}$-design on K_{n}. Note that $v\left(\mathcal{C}_{2 k}^{p}\right)=2 k p=e\left(\mathcal{C}_{2 k}^{p}\right)$, and that all vertices in $\mathcal{C}_{2 k}^{p}$ have degree two. Applying conditions SSC-1, SSC-2, and SSC-3, we have that
(1) $n=1$ or $n \geq 2 k p$,
(2) $4 k p \mid n(n-1)$, and
(3) $2 \mid(n-1)$.

These conditions define the superspectrum of $\mathcal{C}_{2 k}^{p}$.

We believe that $\mathcal{C}_{2 k}^{p}$ is a bounded complete embedding graph for all values of p and k. In this chapter, we establish this conjecture as fact for certain values of p and k; all other cases remain open. We achieve our results using Construction II (Lemma 3.3), with $t=4 k p$, to build the required embeddings. For each p and k, a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p+1}$ is required to build the embeddings; the existence of these designs is guaranteed by Corollary 2.26. In this chapter, we construct the required $\mathcal{C}_{2 k}^{p}$-designs on $K_{4 k p, n-1}$ for all but finitely many $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ and use Theorem 1.34 to establish the bounded complete embedding graph results. We conclude the chapter with a few results on the spectrum of $\mathcal{C}_{2 k}^{p}$.

4.1 Constructions for Designs on Complete Bipartite Graphs

In our first construction, we combine a $C_{2 k}$-design on a small complete bipartite graph and a p-matching decomposition of another small complete bipartite graph in a product-like way in order to create a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, n-1}$. Before we can describe this construction in more detail, we need two definitions and two important theorems.

Definition 4.3. Let G be a graph. A matching in G is a set $M \subseteq E(G)$ such that no two elements of M are incident to the same vertex.

Definition 4.4. Let G be a graph, and let $r \in \mathbb{P}$. An r-matching decomposition of G is a partition of $E(G)$ into matchings having r edges each.

Observe that, for a graph G and a matching M in G, the graph $G[M]$ consists precisely of the edges in M and the vertices that are ends of edges in M; if r denotes the number of
edges in M, then, in the language of cohorts, the graph $G[M]$ is the $\left(r, K_{2}\right)$-cohort. Thus the existence of an r-matching-decomposition of a graph G is equivalent to the existence of an $\left(r, K_{2}\right)$-cohort-design on G; note that $r \mid e(G)$ is a necessary condition for this structure.

Now we can state the first of the two important theorems we need; this result, by D. de Werra, guarantees that we can obtain a matching decomposition of a bipartite graph under certain conditions [9]. We note that de Werra's result is more general in several ways; we state only the special case that suits our needs.

Theorem 4.5 (de Werra, 1972). Let B be a simple bipartite graph, and let Δ denote the maximum degree of B. For any positive integer $m \geq \Delta$, there is a decomposition of B into m matchings of uniform size if and only if $m \mid e(B)$.

We apply the above theorem to obtain an r-matching decomposition of a particular complete bipartite graph.

Lemma 4.6. Let $r, s \in \mathbb{P}$ such that $r \leq s$. Then there exists an r-matching decomposition of $K_{r, s}$.

Proof. Let $r, s \in \mathbb{P}$ such that $r \leq s$. Then $K_{r, s}$ is a bipartite graph with maximum degree $\Delta=s$; since $e\left(K_{r, s}\right)=r s$ is divisible by s, the graph $K_{r, s}$ has a decomposition into s matchings of uniform size by Theorem 4.5. Clearly, all matchings have size $\frac{r s}{s}=r$, so this decomposition is an r-matching decomposition of $K_{r, s}$.

Our second important theorem is the following theorem of Sotteau [32], which gives necessary and sufficient conditions for a $C_{2 k}$-design on a complete bipartite graph.

Theorem 4.7 (Sotteau, 1981). Let $k, a, b, \in \mathbb{P}$, and suppose $k \geq 2$. There is a $C_{2 k}$-design on $K_{a, b}$ if and only if the following conditions are satisfied.
(i) $\quad a \geq k$ and $b \geq k$
(ii) $\quad a$ and b are even
(iii) $\quad 2 k \mid a b$

We now present the construction of a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, n-1}$; we have dubbed it the Dovetail Construction due to the assembly of a $C_{2 k}$-design and a p-matching decomposition to produce the desired $\mathcal{C}_{2 k}^{p}$-design.

Theorem 4.8 (Dovetail Construction). Let $k, p \in \mathbb{P}$ such that $k \geq 2$ and $p \geq 2$, and let $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ such that $n>1$. If there exists a divisor z of $n-1$ such that $p \leq z \leq \frac{n-1}{k}$ and $\frac{n-1}{z}$ is even, then there exists a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, n-1}$.

Proof. Let $k, p \in \mathbb{P}$ such that $k \geq 2$ and $p \geq 2$, and let $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$. Suppose that there exists a divisor z of $n-1$ such that $p \leq z \leq \frac{n-1}{k}$ and $\frac{n-1}{z}$ is even. Then there is some $w \in \mathbb{P}$ such that $w=\frac{n-1}{z}$. Let $G=K_{4 k p, n-1}$ be on bipartition $[A, B]$, where

$$
\begin{align*}
& A=\left\{\left(a_{j}, x\right) \mid j \in \llbracket 1,4 k \rrbracket, x \in \llbracket 1, p \rrbracket\right\} \text { and } \tag{4.1}\\
& B=\left\{\left(b_{i}, y\right) \mid i \in \llbracket 1, w \rrbracket, y \in \llbracket 1, z \rrbracket\right\} . \tag{4.2}
\end{align*}
$$

For each $s \in \llbracket 1, p \rrbracket$, define $A_{s}=\left\{\left(a_{j}, s\right) \mid j \in \llbracket 1,4 k \rrbracket\right\}$; for each $r \in \llbracket 1, z \rrbracket$, define $B_{r}=\left\{\left(b_{i}, r\right) \mid i \in \llbracket 1, w \rrbracket\right\}$. We observe that $\left\{A_{s} \mid 1 \leq s \leq p\right\}$ is a partition of A, and $\left\{B_{r} \mid 1 \leq r \leq z\right\}$ is a partition of B. Furthermore, for each $(s, r) \in \llbracket 1, p \rrbracket \times \llbracket 1, z \rrbracket$, the graph $G\left[A_{s} \cup B_{r}\right]$ is a $K_{4 k, w}$-subgraph of G.

Claim: A $C_{2 k}$-design on $K_{4 k, w}$ exists.

Proof of Claim: We apply Sotteau's Theorem (4.7) with $a=4 k$ and $b=w$. Clearly, $4 k \geq k, 4 k$ is even, and $2 k \mid 4 k w$. Since our assumptions about z guarantee that $w \geq k$ and w is even, the conditions of Sotteau's Theorem are satisfied. Hence a $C_{2 k}$-design on $K_{4 k, w}$ exists.

We now build a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, n-1}$. Let $(\llbracket 1, p \rrbracket \times\{0\}) \cup(\llbracket 1, z \rrbracket \times\{1\})$ be the vertex set of $K_{p, z}$, so that no two vertices having the same second coordinate are adjacent. Since $z \geq p$, the graph $K_{p, z}$ admits a p-matching decomposition \mathscr{M} by Lemma 4.6. Let $H=K_{4 k, w}$
be on bipartition $[X, Y]$, where $X=\left\{x_{j} \mid j \in \llbracket 1,4 k \rrbracket\right\}$ and $Y=\left\{y_{i} \mid i \in \llbracket 1, w \rrbracket\right\}$. Since a $C_{2 k}$-design on $K_{4 k, w}$ exists, let \mathscr{D} be such a design on H. For an arbitrary $C_{2 k}$-block $D \in \mathscr{D}$, note that the vertices of D must alternate between vertices in X and vertices in Y; so D has the form

$$
\begin{equation*}
D=\left(x_{j_{1}}, y_{i_{1}}, x_{j_{2}}, y_{i_{2}}, \ldots, x_{j_{k}}, y_{i_{k}}\right) . \tag{4.3}
\end{equation*}
$$

For any $r \in \llbracket 1, z \rrbracket$ and $s \in \llbracket 1, p \rrbracket$, the map defined by $x_{j} \mapsto\left(a_{j}, s\right)$ and $y_{i} \mapsto\left(b_{i}, r\right)$ is an isomorphism from H to $G\left[A_{s} \cup B_{r}\right]$. Under this isomorphism, the cycle D maps to the cycle

$$
\begin{equation*}
D_{s, r}=\left(\left(a_{j_{1}}, s\right),\left(b_{i_{1}}, r\right),\left(a_{j_{2}}, s\right),\left(b_{i_{2}}, r\right), \ldots,\left(a_{j_{k}}, s\right),\left(b_{i_{k}}, r\right)\right) \tag{4.4}
\end{equation*}
$$

For each matching $M \in \mathscr{M}$ and each $C_{2 k}$-block $D \in \mathscr{D}$, we define the corresponding $\mathcal{C}_{2 k}^{p}$-subgraph of $G=K_{4 k p, n-1}$, denoted $\mathcal{C}(D, M)$, to be the union of the p distinct, vertexdisjoint $2 k$-cycles in the set

$$
\begin{equation*}
\left\{D_{s, r} \mid\{(s, 0),(r, 1)\} \in M\right\} . \tag{4.5}
\end{equation*}
$$

Let $\mathscr{C}=\{\mathcal{C}(D, M) \mid D \in \mathscr{D}, M \in \mathscr{M}\}$. Then \mathscr{C} is the desired $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, n-1}$.
In the special case that $p \mid(n-1)$ in the above theorem, p can serve as the required divisor z. We state this fact as the following corollary; for convenience, we refer to this result as the Dovetail Corollary.

Corollary 4.9 (Dovetail Corollary). Let $k, p \in \mathbb{P}$ such that $k \geq 2$ and $p \geq 2$, and let $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ such that $n>1$. If $n \equiv 1(\bmod p)$, then there exists a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, n-1}$.

Proof. Let $k, p \in \mathbb{P}$ such that $k \geq 2$ and $p \geq 2$, and let $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ such that $n>1$. Suppose that $n \equiv 1(\bmod p)$; then $p \mid(n-1)$. It therefore suffices to show that p satisfies the conditions imposed on the divisor z in Theorem 4.8.

Since $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ and $n>1$, we have $n \geq 2 k p$ by SSC-1. Then, since $k, p \geq 2$,

$$
\begin{equation*}
\frac{n-1}{p} \geq \frac{2 k p-1}{p}=2 k-\frac{1}{p}>k \tag{4.6}
\end{equation*}
$$

Then $\frac{n-1}{k} \geq p$, so we have $p \leq p \leq \frac{n-1}{k}$, as required.
Since $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ and every vertex of $\mathcal{C}_{2 k}^{p}$ has degree $2,(n-1)$ is even by $\operatorname{SSC}-3$; thus n is not divisible by 2 . Furthermore, $(n-1)$ is divisible by p by assumption; thus n is not divisible by p. By SSC-2, we have that $4 k p \mid n(n-1)$, so $4 p \mid n(n-1)$. Since neither 2 nor p divides n, we must have that $(n-1)$ is divisible by $4 p$; then $\frac{n-1}{p}$ is divisible by 4 and is thus even.

We have verified that $z=p$ satisfies the conditions of Theorem 4.8; hence a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, n-1}$ exists.

Once we obtain a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, N-1}$ for a particular $N \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$, the following construction provides $\mathcal{C}_{2 k}^{p}$-designs on $K_{4 k p, n-1}$ for all $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ such that $n>N$ and $n \equiv N(\bmod 4 k p)$. We will refer to this construction as the $4 k p$-Increment Construction.

Theorem 4.10 ($4 k p$-Increment Construction). Let $k, p, m \in \mathbb{P}$ such that $k \geq 2$ and $p \geq 2$. If there is a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, m}$, then there is a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, m+4 k p q}$ for all $q \in \mathbb{P}$.

Proof. Let $k, p, m, q \in \mathbb{P}$ such that $k \geq 2$ and $p \geq 2$. Suppose there is a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, m}$. Note that $4 k p+1 \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ and that, since $4 k p+1 \equiv 1(\bmod p)$, a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, 4 k p}$ exists by Corollary 4.9. Let $G=K_{4 k p, m+4 k p q}$ be on bipartition $[X, Y]$, where $X=\left\{x_{j} \mid j \in \llbracket 1,4 k p \rrbracket\right\}$ and $Y=\left\{y_{i} \mid i \in \llbracket 1, m+4 k p q \rrbracket\right\}$. Let $Y_{0}=\left\{y_{i} \mid i \in \llbracket 1, m \rrbracket\right\}$, and, for all $r \in \llbracket 1, q \rrbracket$, let $Y_{r}=\left\{y_{i} \mid i \in \llbracket m+1+4 k p(r-1), m+4 k p r \rrbracket\right\}$. Then $G\left[X, Y_{0}\right]$
 $K_{4 k p, 4 k p}$-subgraph of G for all $r \in \llbracket 1, q \rrbracket$; let \mathscr{B}_{r} be a $\mathcal{C}_{2 k}^{p}$-design on $G\left[X, Y_{r}\right]$ for each $r \in \llbracket 1, q \rrbracket$. Then $\mathscr{D}=\mathscr{C} \cup \mathscr{B}_{1} \cup \cdots \cup \mathscr{B}_{q}$ is the desired $\mathcal{C}_{2 k}^{p}$-design on $G=K_{4 k p, m+4 k p q}$.

The Dovetail and $4 k p$-Increment Constructions allow us to create the necessary designs for our embedding results, provided we have enough information about the superspectrum of the graph $\mathcal{C}_{2 k}^{p}$.

4.2 Superspectra of Cohorts of Even Cycles

In this section, we describe what is known about the superspectra of cohorts of even cycles. We have already translated the superspectral conditions into statements in terms of the parameters k and p in Remark 4.2; we now analyze those statements to determine what modular congruences they generate. We then give a few results on families of graphs $\mathcal{C}_{2 k}^{p}$ for which the prime factorizations of k and p have the same form.

Remark 4.11. Let $k, p \in \mathbb{P}$ such that $k \geq 2$ and $p \geq 2$. Consider the prime factorization of the product $4 k p$; let s denote the number of distinct odd prime factors of $4 k p$.

If $s=0$, then $4 k p=2^{\alpha}$ for some integer $\alpha \geq 4$; since n is odd by SSC- -3 , we have $4 k p \mid(n-1)$. Thus, by Remark 4.2 and Lemma 1.23,

$$
\begin{equation*}
\operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)=\{n \in \mathbb{P} \mid n \equiv 1(\bmod 4 k p)\}=\left\{n \in \mathbb{P} \mid n \equiv 1\left(\bmod 2^{\alpha}\right)\right\} . \tag{4.7}
\end{equation*}
$$

If $s>0$, then there exist s distinct odd primes $q_{1}, q_{2}, \ldots, q_{s}$ and $s+1$ positive integers $\alpha_{0}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}$ such that

$$
\begin{equation*}
4 k p=2^{\alpha_{0}} q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}} \cdots q_{s}^{\alpha_{s}} \tag{4.8}
\end{equation*}
$$

For any $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ such that $n>1$, since n and $(n-1)$ are relatively prime, condition (3) of Remark 4.2 guarantees that $2^{\alpha_{0}} \mid(n-1)$. Furthermore, for each integer $i \in \llbracket 1, s \rrbracket$, if $q_{i}^{\alpha_{i}} \mid n(n-1)$, then either $q_{i}^{\alpha_{i}} \mid n$ or $q_{i}^{\alpha_{i}} \mid(n-1)$. Condition (2) of Remark 4.2 therefore generates, for each partition $\{I, J\}$ of $\llbracket 1, s \rrbracket$, a system of congruences of the form

$$
\begin{equation*}
n \equiv 0\left(\bmod \prod_{i \in I} q_{i}^{\alpha_{i}}\right) \quad \text { and } n \equiv 1\left(\bmod 2^{\alpha_{0}} \prod_{j \in J} q_{j}^{\alpha_{j}}\right) \tag{4.9}
\end{equation*}
$$

There are clearly 2^{s} such systems. The solution of each of these systems is a single congruence class modulo $4 k p$; since distinct systems generate distinct classes, the superspectrum of $\mathcal{C}_{2 k}^{p}$ consists of 2^{s} distinct congruence classes modulo $4 k p$. We note that any elements of these congruence classes that are in the set $\llbracket 2,2 k p-1 \rrbracket$ are excluded from the superspectrum by condition (1) of Remark 4.2.

If the product $4 k p$ has exactly one odd prime factor, then we can give a more specific description of the superspectrum of $\mathcal{C}_{2 k}^{p}$ in terms of congruence classes modulo $4 k p$.

Lemma 4.12. Let q be an odd prime, and let $\alpha, \beta, \gamma, \varepsilon \in \mathbb{N}$ such that α and γ are not both zero and β and ε are not both zero. Let $k=2^{\alpha} q^{\gamma}$ and let $p=2^{\beta} q^{\varepsilon}$. Since $q^{\gamma+\varepsilon}$ and $2^{\alpha+\beta+2}$ are relatively prime, let x and y be the unique positive integers such that $y q^{\gamma+\varepsilon}-x 2^{\alpha+\beta+2}=1$. Then the superspectrum of the graph $\mathcal{C}_{2 k}^{p}$ is

$$
\left\{n \in \mathbb{P} \mid n \equiv 1 \text { or } y q^{\gamma+\varepsilon}(\bmod 4 k p) \text { and } n \notin \llbracket 2,2 k p-1 \rrbracket\right\} .
$$

Note that $4 k p=2^{\alpha+\beta+2} q^{\gamma+\varepsilon}$ for these values of k and p.

Proof. Let q be an odd prime, and let $\alpha, \beta, \gamma, \varepsilon \in \mathbb{N}$ such that α and γ are not both zero and β and ε are not both zero. Let $k=2^{\alpha} q^{\gamma}$ and let $p=2^{\beta} q^{\varepsilon}$. Since $q^{\gamma+\varepsilon}$ and $2^{\alpha+\beta+2}$ are relatively prime, let x and y be the unique positive integers such that $y q^{\gamma+\varepsilon}-x 2^{\alpha+\beta+2}=1$. Let $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$; by $\operatorname{SSC}-1$, we must have either $n=1$ or $n \geq 2 k p$. By $\operatorname{SSC}-3,(n-1)$ is even; hence n is odd. Now suppose $n>1$; by $\operatorname{SSC}-2$, we have $4 k p \mid n(n-1)$; that is, $2^{\alpha+\beta+2} q^{\gamma+\varepsilon} \mid n(n-1)$. Since n and $(n-1)$ are relatively prime, this condition holds if and only if either

$$
\begin{equation*}
2^{\alpha+\beta+2} q^{\gamma+\varepsilon} \mid(n-1) \tag{4.10}
\end{equation*}
$$

or

$$
\begin{equation*}
2^{\alpha+\beta+2} \mid(n-1) \quad \text { and } \quad q^{\gamma+\varepsilon} \mid n \tag{4.11}
\end{equation*}
$$

If the divisibility condition (4.10) holds, then $n \equiv 1(\bmod 4 k p)$. If, on the other hand, the divisibility conditions in (4.11) hold, then $n \equiv 1\left(\bmod 2^{\alpha+\beta+2}\right)$ and $n \equiv 0\left(\bmod q^{\gamma+\varepsilon}\right)$. Clearly, the unique solution to this pair of congruences is $n \equiv y q^{\gamma+\varepsilon}(\bmod 4 k p)$. So we must have

$$
\begin{equation*}
n \equiv 1 \text { or } y q^{\gamma+\varepsilon}(\bmod 4 k p) . \tag{4.12}
\end{equation*}
$$

The superspectrum of $\mathcal{C}_{2 k}^{p}$ is precisely the set of positive integers n that satisfy congruence (4.12) but do not satisfy the inequality $2 \leq n \leq 2 k p-1$.

Thus $\operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)=\left\{n \in \mathbb{P} \mid n \equiv 1\right.$ or $y q^{\gamma+\varepsilon}(\bmod 4 k p)$ and $\left.n \notin \llbracket 2,2 k p-1 \rrbracket\right\}$.
Using our knowledge of the superspectrum from Remark 4.11 and the techniques of Lemma 4.12, we have computed the exact superspectrum of $\mathcal{C}_{2 k}^{p}$ for all pairs (k, p) such that $p \in \llbracket 2,128 \rrbracket$ and $k \in \llbracket 2,128 \rrbracket$; we refer the reader to Appendix A for further information about these superspectra, including the Python code we used to compute the superspectrum of $\mathcal{C}_{2 k}^{p}$ for specific values of k and p.

4.3 Bounded Complete Embedding Results on Cohorts of Even Cycles

We can now establish that certain cohorts of even cycles are bounded complete embedding graphs. In order to illustrate the general approach to the proof, we begin with two specific graphs in this family, namely \mathcal{C}_{14}^{3} and \mathcal{C}_{34}^{5}.

Theorem 4.13. \mathcal{C}_{14}^{3} is a bounded complete embedding graph.

Proof. Consider the graph \mathcal{C}_{14}^{3}, which is $\mathcal{C}_{2 k}^{p}$ with $p=3$ and $k=7$. We use Construction II, with $t=4 k p=84$, to build embeddings of complete \mathcal{C}_{14}^{3}-designs. Note that there is a \mathcal{C}_{14}^{3}-design on K_{85} by Corollary 2.26. Furthermore, it is easily verified (see Appendix A) that the superspectrum of \mathcal{C}_{14}^{3} is

$$
\operatorname{SSpec}\left(\mathcal{C}_{14}^{3}\right)=\{n \in \mathbb{P} \mid n \equiv 1,21,49, \text { or } 57(\bmod 84) \text { and } n \neq 21\}
$$

In order to apply Construction II, we also need \mathcal{C}_{14}^{3}-designs on complete bipartite graphs of certain sizes; we rely on the Dovetail Construction and the $4 k p$-Increment Construction to provide these designs.

Table 4.1 shows divisors that have been verified for the application of the Dovetail Construction, separated according to the modular congruence classes in the superspectrum. The number in the MIN DIVISOR column is the smallest positive integer satisfying the conditions imposed on the divisor z in the Dovetail Construction. Stars in the n and $n-1$ columns in a particular row indicate that the information in the MIN DIVISOR column is valid for all values of n in the modular class that are greater than one.

Table 4.1: Dovetail divisors by modular class for $p=3, k=7$

MODULAR CLASS	n	$n-1$	MIN DIVISOR
$n \equiv 1(\bmod 84)$	\star	\star	p
$n \equiv 21(\bmod 84)$	105	104	4
$n \equiv 49(\bmod 84)$	\star	\star	p
$n \equiv 57(\bmod 84)$	57	56	4

From Table 4.1, we see that we may apply the Dovetail Construction to the following values of $n: n=57, n=105$, and all $n \in \operatorname{SSpec}\left(\mathcal{C}_{14}^{3}\right)$ such that $n>1$ and $n \equiv 1(\bmod 84)$ or $n \equiv 49(\bmod 84)$. We obtain, for each such n, a \mathcal{C}_{14}^{3}-design on $K_{84, n-1}$ from the Dovetail Construction. For each $n \in \operatorname{SSpec}\left(\mathcal{C}_{14}^{3}\right)$ such that $n \equiv 21(\bmod 84)$ and $n>105$ or such that $n \equiv 57(\bmod 84)$ and $n>57$, we apply the $4 k p$-Increment construction to obtain a \mathcal{C}_{14}^{3}-design on $K_{84, n-1}$. Hence a \mathcal{C}_{14}^{3}-design on $K_{84, n-1}$ exists for every $n \in \operatorname{SSpec}\left(\mathcal{C}_{14}^{3}\right)$ except $n=1$, and thus such a design exists for every $n \in \operatorname{Spec}\left(\mathcal{C}_{14}^{3}\right)$ except $n=1$.

We have thus satisfied the conditions of Construction II, with $t=4 k p=84$, for all $n \in \operatorname{Spec}\left(\mathcal{C}_{14}^{3}\right)$ except $n=1$; thus for all such n, every complete \mathcal{C}_{14}^{3}-design of order n can be embedded in a complete \mathcal{C}_{14}^{3}-design of order $n+84$. We note that the complete \mathcal{C}_{14}^{3}-design of
order 1 can be embedded in the complete \mathcal{C}_{14}^{3}-design of order 85 ; hence we have shown that \mathcal{C}_{14}^{3} is a bounded complete embedding graph.

Theorem 4.14. \mathcal{C}_{34}^{5} is a bounded complete embedding graph.
Proof. Consider the graph \mathcal{C}_{34}^{5}, which is $\mathcal{C}_{2 k}^{p}$ with $p=5$ and $k=17$. We use Construction II, with $t=4 k p=340$, to build embeddings of complete \mathcal{C}_{34}^{5}-designs. Note that there is a \mathcal{C}_{34}^{5}-design on K_{341} by Corollary 2.26. Furthermore, it is easily verified (see Appendix A) that the superspectrum of \mathcal{C}_{34}^{5} is

$$
\operatorname{SSpec}\left(\mathcal{C}_{34}^{5}\right)=\{n \in \mathbb{P} \mid n \equiv 1,85,205, \text { or } 221(\bmod 340) \text { and } n \neq 85\}
$$

In order to apply Construction II, we also need \mathcal{C}_{34}^{5}-designs on complete bipartite graphs of certain sizes; we rely on the Dovetail Construction and the $4 k p$-Increment Construction to provide these designs.

Table 4.2 shows divisors that have been verified for the application of the Dovetail Construction, separated according to the modular congruence classes in the superspectrum. The number in the MIN DIVISOR column is the smallest positive integer satisfying the conditions imposed on the divisor z in the Dovetail Construction; if NONE appears in this column, then no divisor of $(n-1)$ satisfying these conditions exists. Stars in the n and $n-1$ columns in a particular row indicate that the information in the MIN DIVISOR column is valid for all values of n in the modular class that are greater than one.

From Table 4.2, we see that we may apply the Dovetail Construction to the following values of $n: n=205, n=1105$, and all $n \in \operatorname{SSpec}\left(\mathcal{C}_{34}^{5}\right)$ such that $n>1$ and $n \equiv 1(\bmod 340)$ or $n \equiv 221(\bmod 340)$. We obtain, for each such n, a \mathcal{C}_{34}^{5}-design on $K_{340, n-1}$ from the Dovetail Construction. For each $n \in \operatorname{SSpec}\left(\mathcal{C}_{34}^{5}\right)$ such that $n \equiv 85(\bmod 340)$ and $n>1105$ or such that $n \equiv 205(\bmod 340)$ and $n>205$, we apply the $4 k p$-Increment construction to obtain a \mathcal{C}_{34}^{5}-design on $K_{340, n-1}$. Hence a \mathcal{C}_{34}^{5}-design on $K_{340, n-1}$ exists for every $n \in \operatorname{SSpec}\left(\mathcal{C}_{34}^{5}\right)$

Table 4.2: Dovetail divisors by modular class for $p=5, k=17$

MODULAR CLASS	n	$n-1$	MIN DIVISOR
$n \equiv 1(\bmod 340)$	\star	\star	p
$n \equiv 85(\bmod 340)$	425	424	NONE
	765	764	NONE
	1105	1104	6
$n \equiv 205(\bmod 340)$	205	204	6
$n \equiv 221(\bmod 340)$	\star	\star	p

except $n=1,425$, and 765 , and thus such a design exists for every $n \in \operatorname{Spec}\left(\mathcal{C}_{34}^{5}\right)$ except $n=1,425$, and 765 .

We have thus satisfied the conditions of Construction II, with $t=4 k p=340$, for all $n \in \operatorname{Spec}\left(\mathcal{C}_{34}^{5}\right)$ except $n=1,425$, and 765 ; thus for all such n, every complete \mathcal{C}_{34}^{5}-design of order n can be embedded in a complete \mathcal{C}_{34}^{5}-design of order $n+340$. Then, by Theorem 1.34 (with $N=766$ and $b=340$), \mathcal{C}_{34}^{5} is a bounded complete embedding graph.

Observe that, in the proofs of the previous two theorems, once the Dovetail Construction is used to obtain a design for one value in a modular congruence class, we may apply the $4 k p$-Increment Construction to obtain designs for all larger values in the class. Furthermore, we may invoke Theorem 1.34 with an appropriate value of N as necessary, so we may neglect to build a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, n-1}$ for finitely many values of n in $\operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$.

Theorem 4.15. Let $k, p \in \mathbb{P}$ such that $2 \leq k \leq 128$ and $2 \leq p \leq 128$. Then there is some positive integer $N(k, p)$ such that a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, n-1}$ exists for every $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ such that $n \geq N(k, p)$.

Proof. Let $k, p \in \mathbb{P}$ such that $k \geq 2$ and $p \geq 2$. Let M denote the number of distinct modular congruence classes in $\operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$, and let $\left\{n_{i} \mid i \in \llbracket 1, M \rrbracket\right\}$ be the set of canonical representatives of those congruence classes.

Claim: It suffices to show that, for each $i \in \llbracket 1, M \rrbracket$, there is some $N_{i} \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ such that $N_{i} \equiv n_{i}(\bmod 4 k p)$ and there is a divisor z_{i} of $N_{i}-1$ satisfying the conditions of the Dovetail Construction.

Proof of Claim: Suppose that, for each $i \in \llbracket 1, M \rrbracket$, there is some $N_{i} \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ such that $N_{i} \equiv n_{i}(\bmod 4 k p)$ and there is a divisor z_{i} of $N_{i}-1$ satisfying the conditions of the Dovetail Construction. Then we may apply the Dovetail Construction to obtain a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, n-1}$ for each $n \in\left\{N_{i} \mid i \in \llbracket 1, M \rrbracket\right\}$. Then, for each $i \in \llbracket 1, M \rrbracket$, we may apply the $4 k p$-Increment Construction to obtain a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, n-1}$ for all $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ such that $n \equiv n_{i}(\bmod 4 k p)$ and $n>N_{i}$.

Let $N(k, p)=\max \left\{N_{i} \mid 1 \leq i \leq M\right\}$. Then there is indeed a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, n-1}$ for every $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ such that $n \geq N(k, p)$, as desired.

We have verified, for all $k, p \in \mathbb{P}$ such that $2 \leq k \leq 128$ and $2 \leq p \leq 128$, that, for each $i \in \llbracket 1, M \rrbracket$, there is some $N_{i} \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ such that $N_{i} \equiv n_{i}(\bmod 4 k p)$ and there is a divisor z_{i} of $N_{i}-1$ satisfying the conditions of the Dovetail Construction. This verification is a simple matter of computation; we refer the reader to Appendix B for a complete listing of the source code we implemented to complete these computations.

Theorem 4.16. Let $k, p \in \mathbb{P}$ such that $2 \leq k \leq 128$ and $2 \leq p \leq 128$. Then $\mathcal{C}_{2 k}^{p}$ is a bounded complete embedding graph.

Proof. Let $k, p \in \mathbb{P}$ such that $2 \leq k \leq 128$ and $2 \leq p \leq 128$. By Corollary 2.26 , there is a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p+1}$. By Theorem 4.15, there is some positive integer $N(k, p)$ such that a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, n-1}$ exists for every $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ such that $n \geq N(k, p)$; hence a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, n-1}$ exists for every $n \in \operatorname{Spec}\left(\mathcal{C}_{2 k}^{p}\right)$ such that $n \geq N(k, p)$. We have thus satisfied the conditions of Construction II, with $t=4 k p$, for all $n \in \operatorname{Spec}\left(\mathcal{C}_{2 k}^{p}\right)$ such that $n \geq N(k, p)$; hence for all such n, every complete $\mathcal{C}_{2 k}^{p}$-design of order n can be embedded in a complete $\mathcal{C}_{2 k}^{p}$-design of order $n+4 k p$. Therefore, by Theorem 1.34 (with $N=N(k, p)$ and $b=4 k p), \mathcal{C}_{2 k}^{p}$ is a bounded complete embedding graph.

Corollary 4.9 provides an additional result in a special case: if p is a positive power of two, then p must divide $(n-1)$ for all $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$, so we may apply the corollary to obtain all desired designs on the graphs $K_{4 k p, n-1}$.

Theorem 4.17. Let $k \in \mathbb{P}$ such that $k \geq 2$; let $\beta \in \mathbb{P}$, and let $p=2^{\beta}$. Then there is a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, n-1}$ for all $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ except $n=1$.

Proof. Let $k \in \mathbb{P}$ such that $k \geq 2$; let $\beta \in \mathbb{P}$, and let $p=2^{\beta}$. Let $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ such that $n \neq 1$. Since $n-1$ must be even and n must be odd by SSC -3 , and since $4 k p \mid n(n-1)$ by SSC- 2 , we must have that $p \mid(n-1)$; hence we may apply Corollary 4.9 to obtain a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, n-1}$.

Theorem 4.18. Let $k \in \mathbb{P}$ such that $k \geq 2$; let $\beta \in \mathbb{P}$, and let $p=2^{\beta}$. Then $\mathcal{C}_{2 k}^{p}$ is a bounded complete embedding graph.

Proof. Let $k \in \mathbb{P}$ such that $k \geq 2$; let $\beta \in \mathbb{P}$, and let $p=2^{\beta}$. By Corollary 2.26 , there is a $\mathcal{C}_{2 k^{-}}^{p}$ design on $K_{4 k p+1}$. By Theorem 4.17, there is a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, n-1}$ for all $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ except $n=1$, and thus there is a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, n-1}$ for all $n \in \operatorname{Spec}\left(\mathcal{C}_{2 k}^{p}\right)$ except $n=1$. We have thus satisfied the conditions of Construction II, with $t=4 k p$, for all $n \in \operatorname{Spec}\left(\mathcal{C}_{2 k}^{p}\right)$ such that $n \geq 2$; hence for all such n, every complete $\mathcal{C}_{2 k}^{p}$-design of order n can be embedded in a complete $\mathcal{C}_{2 k}^{p}$-design of order $n+4 k p$. Furthermore, the complete $\mathcal{C}_{2 k}^{p}$-design of order 1 can be embedded in the $\mathcal{C}_{2 k}^{p}$-design of order $4 k p+1$. Therefore $\mathcal{C}_{2 k}^{p}$ is a bounded complete embedding graph.

4.3.1 A Special Design

In this section, we exhibit a construction for a \mathcal{C}_{10}^{3}-design on $K_{60,44}$. This design was constructed during our investigations into the reach and power of the Dovetail Construction. We note that this design is not strictly necessary in order to complete the bounded complete embedding graph result on \mathcal{C}_{10}^{3}; we have included it here because the construction technique may have other applications.

For the case $p=3, k=5$, we are able to use the Dovetail and $4 k p$-Increment Constructions to obtain $\mathcal{C}_{2 k}^{p}$-designs on $K_{4 k p, n-1}$ for all $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$, except $n=1$ and $n=45$. For $n=45$, no divisor exists to allow use of the Dovetail Construction, so we have built a \mathcal{C}_{10}^{3}-design on $K_{60,44}$ separately.

Remark 4.19. It is easily verified that there is a $K_{30,22}$-design on $K_{60,44}$; this may be accomplished by an argument similar to that given in the proof of Lemma 3.16, or by applying Theorem 3.12. It therefore suffices to produce a \mathcal{C}_{10}^{3}-design on $K_{30,22}$.

For the remainder of our discussion, we consider the graph $\mathcal{G}=K_{10,22}$ on bipartition $[U, W]$, where $W=\llbracket 1,22 \rrbracket$ and $U=\left\{1^{\star}, 2^{\star}, 3^{\star}, 4^{\star}, 5^{\star}, 6^{\star}, 7^{\star}, 8^{\star}, 9^{\star}, 10^{\star}\right\}$, and the graph $\mathcal{H}=K_{30,22}$ on bipartition $\left[U_{1} \cup U_{2} \cup U_{3}, W\right]$, where W is as previously defined and, for each $i \in\{1,2,3\}, U_{i}=\llbracket 100 i+1,100 i+10 \rrbracket$. Also, for each $i \in\{1,2,3\}$, we let $\mathcal{H}_{i}=\mathcal{H}\left[U_{i} \cup W\right]$, the subgraph of \mathcal{H} induced by the vertex set $U_{i} \cup W$. Note that \mathcal{H}_{i} is isomorphic to \mathcal{G} for all $i \in\{1,2,3\}$.

Definition 4.20. Let A and B be subgraphs of \mathcal{G}; we say that A and B are \boldsymbol{W}-separated if and only if $V(A) \cap V(B) \cap W=\varnothing$, that is, if and only if A and B have no vertex in W in common. Let \mathscr{A} be a collection of subgraphs of \mathcal{G}; we say that \mathscr{A} is \boldsymbol{W}-separated if and only if each vertex in W is a vertex of at most one subgraph in \mathscr{A}.

Remark 4.21. Let \mathscr{B} be a C_{10}-design on \mathcal{G}, and suppose that the collection $\{A, B, C\} \subseteq \mathscr{B}$ is W-separated. If we copy \mathscr{B} onto $\mathcal{H}_{1}, \mathcal{H}_{2}$, and \mathcal{H}_{3}, then we may obtain three \mathcal{C}_{10}^{3}-subgraphs of \mathcal{H} from the copies of A, B, and C in these designs as follows. For each $i \in\{1,2,3\}$, let $(A, i),(B, i)$, and (C, i) denote the copies of A, B, and C, respectively, in the copy of \mathscr{B} on \mathcal{H}_{i}. The three \mathcal{C}_{10}^{3}-subgraphs are $H_{A B C}=(A, 1) \cup(B, 2) \cup(C, 3), \quad H_{B C A}=(B, 1) \cup(C, 2) \cup(A, 3)$, and $H_{C A B}=(C, 1) \cup(A, 2) \cup(B, 3)$.

Remark 4.22. Let \mathscr{B} be a C_{10}-design on \mathcal{G}, and suppose that \mathscr{B} can be partitioned into seven sets, of which six have three elements each and the seventh has four elements, so that each set in the partition is a W-separated collection. Label the cycles in \mathscr{B} so that the sets in
the partition are $\left\{B_{1}, B_{2}, B_{3}\right\},\left\{B_{4}, B_{5}, B_{6}\right\},\left\{B_{7}, B_{8}, B_{9}\right\},\left\{B_{10}, B_{11}, B_{12}\right\},\left\{B_{13}, B_{14}, B_{15}\right\}$, $\left\{B_{16}, B_{17}, B_{18}\right\}$, and $\left\{B_{19}, B_{20}, B_{21}, B_{22}\right\}$. We obtain a \mathcal{C}_{10}^{3}-design on \mathcal{H} as follows. As in Remark 4.21 , we copy the design \mathscr{B} onto $\mathcal{H}_{1}, \mathcal{H}_{2}$, and \mathcal{H}_{3}; we denote these copies by \mathscr{B}_{1}, \mathscr{B}_{2}, and \mathscr{B}_{3}, respectively. For each $B_{j} \in \mathscr{B}$ and each $i \in\{1,2,3\}$, let $\left(B_{j}, i\right)$ denote the copy of cycle B_{j} in \mathscr{B}_{i}. Then the set \mathscr{C} consisting of the \mathcal{C}_{10}^{3}-subgraphs of \mathcal{H} listed in Table 4.3 is a \mathcal{C}_{10}^{3}-design on \mathcal{H}.

Table 4.3: The \mathcal{C}_{10}^{3}-subgraphs of \mathcal{H} obtained from $\mathscr{B}_{1}, \mathscr{B}_{2}$, and \mathscr{B}_{3}.

Subset	$\mathcal{C}_{10 \text {-subgraphs of } \mathcal{H}}^{3}$
$\left\{B_{1}, B_{2}, B_{3}\right\}$	$H_{1,2,3}=\left(B_{1}, 1\right) \cup\left(B_{2}, 2\right) \cup\left(B_{3}, 3\right)$
	$H_{2,3,1}=\left(B_{2}, 1\right) \cup\left(B_{3}, 2\right) \cup\left(B_{1}, 3\right)$
	$H_{3,1,2}=\left(B_{3}, 1\right) \cup\left(B_{1}, 2\right) \cup\left(B_{2}, 3\right)$
$\left\{B_{4}, B_{5}, B_{6}\right\}$	$H_{4,5,6}=\left(B_{4}, 1\right) \cup\left(B_{5}, 2\right) \cup\left(B_{6}, 3\right)$
	$H_{5,6,4}=\left(B_{5}, 1\right) \cup\left(B_{6}, 2\right) \cup\left(B_{4}, 3\right)$
	$H_{6,4,5}=\left(B_{6}, 1\right) \cup\left(B_{4}, 2\right) \cup\left(B_{5}, 3\right)$
$\left\{B_{7}, B_{8}, B_{9}\right\}$	$H_{7,8,9}=\left(B_{7}, 1\right) \cup\left(B_{8}, 2\right) \cup\left(B_{9}, 3\right)$
	$H_{8,9,7}=\left(B_{8}, 1\right) \cup\left(B_{9}, 2\right) \cup\left(B_{7}, 3\right)$
	$H_{9,7,8}=\left(B_{9}, 1\right) \cup\left(B_{7}, 2\right) \cup\left(B_{8}, 3\right)$
$\left\{B_{10}, B_{11}, B_{12}\right\}$	$H_{10,11,12}=\left(B_{10}, 1\right) \cup\left(B_{11}, 2\right) \cup\left(B_{12}, 3\right)$
	$H_{11,12,10}=\left(B_{11}, 1\right) \cup\left(B_{12}, 2\right) \cup\left(B_{10}, 3\right)$
	$H_{12,10,11}=\left(B_{12}, 1\right) \cup\left(B_{10}, 2\right) \cup\left(B_{11}, 3\right)$
$\left\{B_{13}, B_{14}, B_{15}\right\}$	$H_{13,14,15}=\left(B_{13}, 1\right) \cup\left(B_{14}, 2\right) \cup\left(B_{15}, 3\right)$
	$H_{14,15,13}=\left(B_{14}, 1\right) \cup\left(B_{15}, 2\right) \cup\left(B_{13}, 3\right)$
	$H_{15,13,14}=\left(B_{15}, 1\right) \cup\left(B_{13}, 2\right) \cup\left(B_{14}, 3\right)$
$\left\{B_{16}, B_{17}, B_{18}\right\}$	$H_{16,17,18}=\left(B_{16}, 1\right) \cup\left(B_{17}, 2\right) \cup\left(B_{18}, 3\right)$
	$H_{17,18,16}=\left(B_{17}, 1\right) \cup\left(B_{18}, 2\right) \cup\left(B_{16}, 3\right)$
	$H_{18,16,17}=\left(B_{18}, 1\right) \cup\left(B_{16}, 2\right) \cup\left(B_{17}, 3\right)$
$\left\{B_{19}, B_{20}, B_{21}, B_{22}\right\}$	$H_{19,20,21}=\left(B_{19}, 1\right) \cup\left(B_{20}, 2\right) \cup\left(B_{21}, 3\right)$
	$H_{20,21,22}=\left(B_{20}, 1\right) \cup\left(B_{21}, 2\right) \cup\left(B_{22}, 3\right)$
	$H_{21,22,19}=\left(B_{21}, 1\right) \cup\left(B_{22}, 2\right) \cup\left(B_{19}, 3\right)$
	$H_{22,19,20}=\left(B_{22}, 1\right) \cup\left(B_{19}, 2\right) \cup\left(B_{20}, 3\right)$

Definition 4.23. For any C_{10}-design \mathscr{B} on \mathcal{G}, the \boldsymbol{W}-separation graph of \mathscr{B} is the graph $\mathrm{WS}(\mathscr{B})$ with vertex set \mathscr{B} and edge set $\{\{A, B\} \mid A$ and B are W-separated $\}$.

By Remark 4.22, it suffices to exhibit a C_{10}-design on \mathcal{G} that has a partition into W separated collections, six of size 3 and one of size 4 . A C_{10}-design \mathscr{B} on \mathcal{G} has such a partition if and only if there exists a spanning subgraph of $\operatorname{WS}(\mathscr{B})$ whose seven components are six K_{3} 's and one K_{4}. In what follows, we describe the construction of a C_{10}-design on \mathcal{G} with the desired property. We begin with an observation about partitions of the set U that are induced by a C_{10}-design on \mathcal{G}; this observation informs the first stage of our construction.

Remark 4.24. Suppose \mathscr{B} is a C_{10}-design on \mathcal{G}. Then each vertex in W is a vertex of exactly five cycles in \mathscr{B}; furthermore, if $w \in W$ is a vertex of the cycle $B \in \mathscr{B}$, then w is adjacent to exactly two vertices of U in the cycle B. Let $U(B, w)$ denote the set of vertices in U that are adjacent to w in cycle B. For each vertex $w \in W$, the collection

$$
U(\mathscr{B}, w)=\{U(B, w) \mid B \in \mathscr{B} \text { and } w \in V(B)\}
$$

is a partition of U into five subsets, each of size two.

We begin our construction of a C_{10}-design \mathscr{B} on \mathcal{G} by assigning partitions of U (each consisting of five 2 -element subsets of U) to the vertices in W. We denote the partition of U assigned to the vertex w by \mathscr{P}_{w}. The partition assignment is given in Table 4.4. Our assignment scheme uses nine partitions of U, among which each 2-element subset of U occurs exactly once; each of these partitions is repeated either twice or thrice in the assignment scheme. We note that many other assignment schemes are clearly possible; we leave the identification of which characteristics produce an admissible scheme to future work.

We build the design \mathscr{B} from the assigned partitions, so that $U(\mathscr{B}, w)=\mathscr{P}_{w}$ for each $w \in W$. Our process for obtaining cycles from these partitions begins with small paths. Each pair (w, S) consisting of a vertex $w \in W$ and a set $S \in \mathscr{P}_{w}$ defines a unique P_{2}-subgraph of \mathcal{G} centered at w. For example, note that $S=\left\{2^{\star}, 8^{\star}\right\}$ is one of the sets in the partition

Table 4.4: The assignment of partitions of U to the elements of $W=\llbracket 1,22 \rrbracket$

Vertex w		Partition of U assigned to w			
1	$\left\{1^{\star}, 2^{\star}\right\}$	$\left\{3^{\star}, 5^{\star}\right\}$	$\left\{4^{\star}, 9^{\star}\right\}$	$\left\{6^{\star}, 10^{\star}\right\}$	$\left\{7^{\star}, 8^{\star}\right\}$
2	$\left\{1^{\star}, 3^{\star}\right\}$	$\left\{2^{\star}, 10^{\star}\right\}$	$\left\{4^{\star}, 6^{\star}\right\}$	$\left\{5^{\star}, 7^{\star}\right\}$	$\left\{8^{\star}, 9^{\star}\right\}$
3	$\left\{1^{\star}, 4^{\star}\right\}$	$\left\{2^{\star}, 7^{\star}\right\}$	$\left\{3^{\star}, 8^{\star}\right\}$	$\left\{5^{\star}, 10^{\star}\right\}$	$\left\{6^{\star}, 9^{\star}\right\}$
4	$\left\{1^{\star}, 5^{\star}\right\}$	$\left\{2^{\star}, 4^{\star}\right\}$	$\left\{3^{\star}, 6^{\star}\right\}$	$\left\{7^{\star}, 9^{\star}\right\}$	$\left\{8^{\star}, 10^{\star}\right\}$
5	$\left\{1^{\star}, 6^{\star}\right\}$	$\left\{2^{\star}, 8^{\star}\right\}$	$\left\{3^{\star}, 4^{\star}\right\}$	$\left\{5^{\star}, 9^{\star}\right\}$	$\left\{7^{\star}, 10^{\star}\right\}$
6	$\left\{1^{\star}, 7^{\star}\right\}$	$\left\{2^{\star}, 3^{\star}\right\}$	$\left\{4^{\star}, 5^{\star}\right\}$	$\left\{6^{\star}, 8^{\star}\right\}$	$\left\{9^{\star}, 10^{\star}\right\}$
7	$\left\{1^{\star}, 8^{\star}\right\}$	$\left\{2^{\star}, 9^{\star}\right\}$	$\left\{3^{\star}, 7^{\star}\right\}$	$\left\{4^{\star}, 10^{\star}\right\}$	$\left\{5^{\star}, 6^{\star}\right\}$
8	$\left\{1^{\star}, 9^{\star}\right\}$	$\left\{2^{\star}, 6^{\star}\right\}$	$\left\{3^{\star}, 10^{\star}\right\}$	$\left\{4^{\star}, 7^{\star}\right\}$	$\left\{5^{\star}, 8^{\star}\right\}$
9	$\left\{1^{\star}, 10^{\star}\right\}$	$\left\{2^{\star}, 5^{\star}\right\}$	$\left\{3^{\star}, 9^{\star}\right\}$	$\left\{4^{\star}, 8^{\star}\right\}$	$\left\{6^{\star}, 7^{\star}\right\}$
10	$\left\{1^{\star}, 5^{\star}\right\}$	$\left\{2^{\star}, 4^{\star}\right\}$	$\left\{3^{\star}, 6^{\star}\right\}$	$\left\{7^{\star}, 9^{\star}\right\}$	$\left\{8^{\star}, 10^{\star}\right\}$
11	$\left\{1^{\star}, 7^{\star}\right\}$	$\left\{2^{\star}, 3^{\star}\right\}$	$\left\{4^{\star}, 5^{\star}\right\}$	$\left\{6^{\star}, 8^{\star}\right\}$	$\left\{9^{\star}, 10^{\star}\right\}$
12	$\left\{1^{\star}, 9^{\star}\right\}$	$\left\{2^{\star}, 6^{\star}\right\}$	$\left\{3^{\star}, 10^{\star}\right\}$	$\left\{4^{\star}, 7^{\star}\right\}$	$\left\{5^{\star}, 8^{\star}\right\}$
13	$\left\{1^{\star}, 2^{\star}\right\}$	$\left\{3^{\star}, 5^{\star}\right\}$	$\left\{4^{\star}, 9^{\star}\right\}$	$\left\{6^{\star}, 10^{\star}\right\}$	$\left\{7^{\star}, 8^{\star}\right\}$
14	$\left\{1^{\star}, 4^{\star}\right\}$	$\left\{2^{\star}, 7^{\star}\right\}$	$\left\{3^{\star}, 8^{\star}\right\}$	$\left\{5^{\star}, 10^{\star}\right\}$	$\left\{6^{\star}, 9^{\star}\right\}$
15	$\left\{1^{\star}, 8^{\star}\right\}$	$\left\{2^{\star}, 9^{\star}\right\}$	$\left\{3^{\star}, 7^{\star}\right\}$	$\left\{4^{\star}, 10^{\star}\right\}$	$\left\{5^{\star}, 6^{\star}\right\}$
21	$\left\{1^{\star}, 3^{\star}\right\}$	$\left\{2^{\star}, 10^{\star}\right\}$	$\left\{4^{\star}, 6^{\star}\right\}$	$\left\{5^{\star}, 7^{\star}\right\}$	$\left\{8^{\star}, 9^{\star}\right\}$
22	$\left\{1^{\star}, 6^{\star}\right\}$	$\left\{2^{\star}, 8^{\star}\right\}$	$\left\{3^{\star}, 4^{\star}\right\}$	$\left\{5^{\star}, 9^{\star}\right\}$	$\left\{7^{\star}, 10^{\star}\right\}$
16	$\left\{1^{\star}, 2^{\star}\right\}$	$\left\{3^{\star}, 5^{\star}\right\}$	$\left\{4^{\star}, 9^{\star}\right\}$	$\left\{6^{\star}, 10^{\star}\right\}$	$\left\{7^{\star}, 8^{\star}\right\}$
17	$\left\{1^{\star}, 8^{\star}\right\}$	$\left\{2^{\star}, 9^{\star}\right\}$	$\left\{3^{\star}, 7^{\star}\right\}$	$\left\{4^{\star}, 10^{\star}\right\}$	$\left\{5^{\star}, 6^{\star}\right\}$
18	$\left\{1^{\star}, 4^{\star}\right\}$	$\left\{2^{\star}, 7^{\star}\right\}$	$\left\{3^{\star}, 8^{\star}\right\}$	$\left\{5^{\star}, 10^{\star}\right\}$	$\left\{6^{\star}, 99^{\star}\right\}$
19	$\left\{1^{\star}, 10^{\star}\right\}$	$\left\{2^{\star}, 5^{\star}\right\}$	$\left\{3^{\star}, 9^{\star}\right\}$	$\left\{4^{\star}, 8^{\star}\right\}$	$\left\{6^{\star}, 7^{\star}\right\}$
20	$\left\{1^{\star}, 7^{\star}\right\}$	$\left\{2^{\star}, 3^{\star}\right\}$	$\left\{4^{\star}, 5^{\star}\right\}$	$\left\{6^{\star}, 8^{\star}\right\}$	$\left\{9^{\star}, 10^{\star}\right\}$

assigned to the vertex $5 \in W$; the pair $\left(5,\left\{2^{\star}, 8^{\star}\right\}\right)$ defines the P_{2}-subgraph of \mathcal{G} shown in Figure 4.1.

Figure 4.1: The P_{2}-subgraph of \mathcal{G} defined by the pair $\left(5,\left\{2^{\star}, 8^{\star}\right\}\right)$

Remark 4.25. For each $t \in\{1,2,3,4,5\}$, let $w_{t} \in W$, and let $S_{t} \in \mathscr{P}_{w_{t}}$. The collection $\left\{\left(w_{t}, S_{t}\right) \mid 1 \leq t \leq 5\right\}$ corresponds to a C_{10}-subgraph of $\mathcal{G}=K_{10,22}$ if and only if the following conditions hold.
(i) The five vertices $w_{1}, w_{2}, w_{3}, w_{4}$, and w_{5} are distinct.
(ii) The five subsets $S_{1}, S_{2}, S_{3}, S_{4}$, and S_{5} of U are distinct.
(iii) The set $\mathcal{S}=\bigcup_{t=1}^{5} S_{t}$ has exactly five elements.

Observe that, in order for these conditions to hold, each element of \mathcal{S} must be an element of exactly two of the subsets $S_{t}, 1 \leq t \leq 5$. If such a collection corresponds to a C_{10}-subgraph of \mathcal{G}, then that subgraph has vertex set $\left\{w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right\} \cup \mathcal{S}$, and, for each $t \in\{1,2,3,4,5\}$, the vertex w_{t} is adjacent to the two vertices in S_{t}.

As an illustrative example, consider the pairs $\left(1,\left\{7^{\star}, 8^{\star}\right\}\right),\left(3,\left\{6^{\star}, 9^{\star}\right\}\right),\left(5,\left\{2^{\star}, 8^{\star}\right\}\right)$, (19, $\left.\left\{2^{\star}, 9^{\star}\right\}\right)$, and $\left(21,\left\{6^{\star}, 7^{\star}\right\}\right)$. The P_{2}-subgraphs of \mathcal{G} defined by these pairs are shown in Figure 4.2. The collection consisting of these five pairs satisfies the conditions in Remark 4.25; this collection corresponds to the C_{10}-subgraph of \mathcal{G} shown in Figure 4.3.

Figure 4.2: Five P_{2}-subgraphs of \mathcal{G}

Figure 4.3: A C_{10}-subgraph of \mathcal{G}

In order to create a C_{10}-design from such collections, we must identify twenty-two pairwise-disjoint collections of the form $\left\{\left(w_{t}, S_{t}\right) \mid 1 \leq t \leq 5\right\}$, each of which corresponds to a C_{10}-subgraph of \mathcal{G}; these subgraphs are the blocks of the design. We obtain a C_{10}-design that can be partitioned into W-separated collections of size 3 and 4 by careful selection and adjustment. The cycles in \mathscr{B}, the C_{10}-design on \mathcal{G}, are listed in Table 4.5. The W-separation graph for this design is shown in Figure 4.4; the desired spanning subgraph, consisting of six K_{3} 's and one K_{4}, is shown in multiple colors in this figure. The cycles of the design \mathscr{B} are shown in Figures 4.5-4.11; each figure shows the cycles in a W-separated collection corresponding to a component of the spanning subgraph shown in Figure 4.4.

Table 4.5: The cycles of \mathscr{B}, the C_{10}-design on $\mathcal{G}=K_{10,22}$

$$
\begin{array}{ll}
A=\left(1,1^{\star}, 2,3^{\star}, 4,6^{\star}, 14,9^{\star}, 15,2^{\star}\right) & L=\left(9,2^{\star}, 14,7^{\star}, 5,10^{\star}, 1,6^{\star}, 15,5^{\star}\right) \\
B=\left(13,3^{\star}, 20,8^{\star}, 10,10^{\star}, 19,4^{\star}, 22,5^{\star}\right) & M=\left(20,1^{\star}, 19,8^{\star}, 14,3^{\star}, 18,5^{\star}, 6,4^{\star}\right) \\
C=\left(14,1^{\star}, 15,8^{\star}, 12,5^{\star}, 5,9^{\star}, 1,4^{\star}\right) & N=\left(7,2^{\star}, 2,10^{\star}, 4,8^{\star}, 3,3^{\star}, 9,9^{\star}\right) \\
D=\left(8,1^{\star}, 21,10^{\star}, 13,6^{\star}, 6,8^{\star}, 16,9^{\star}\right) & O=\left(18,1^{\star}, 9,10^{\star}, 14,5^{\star}, 8,8^{\star}, 17,2^{\star}\right) \\
E=\left(6,2^{\star}, 10,4^{\star}, 9,8^{\star}, 18,7^{\star}, 7,3^{\star}\right) & P=\left(5,2^{\star}, 19,9^{\star}, 3,6^{\star}, 21,7^{\star}, 1,8^{\star}\right) \\
F=\left(4,1^{\star}, 22,7^{\star}, 20,2^{\star}, 8,6^{\star}, 7,5^{\star}\right) & Q=\left(11,2^{\star}, 16,10^{\star}, 6,9^{\star}, 4,7^{\star}, 19,3^{\star}\right) \\
G=\left(3,10^{\star}, 12,3^{\star}, 21,9^{\star}, 10,7^{\star}, 16,5^{\star}\right) & R=\left(13,1^{\star}, 12,9^{\star}, 11,10^{\star}, 20,5^{\star}, 21,2^{\star}\right) \\
H=\left(11,1^{\star}, 3,4^{\star}, 5,3^{\star}, 1,5^{\star}, 2,7^{\star}\right) & S=\left(6,1^{\star}, 7,8^{\star}, 22,6^{\star}, 18,10^{\star}, 17,7^{\star}\right) \\
I=\left(22,2^{\star}, 4,4^{\star}, 21,8^{\star}, 13,7^{\star}, 15,3^{\star}\right) & T=\left(16,4^{\star}, 15,10^{\star}, 22,9^{\star}, 17,5^{\star}, 19,6^{\star}\right) \\
J=\left(10,1^{\star}, 17,6^{\star}, 9,7^{\star}, 12,4^{\star}, 11,5^{\star}\right) & U=\left(12,2^{\star}, 3,7^{\star}, 8,4^{\star}, 18,9^{\star}, 20,6^{\star}\right) \\
K=\left(16,1^{\star}, 5,6^{\star}, 2,4^{\star}, 7,10^{\star}, 8,3^{\star}\right) & V=\left(17,3^{\star}, 10,6^{\star}, 11,8^{\star}, 2,9^{\star}, 13,4^{\star}\right) \\
\hline
\end{array}
$$

We obtain the \mathcal{C}_{10}^{3}-design \mathscr{B}^{\prime} on $\mathcal{H}=K_{30,22}$ from \mathscr{B} as described in Remark 4.22. The \mathcal{C}_{10}^{3}-blocks of this design are shown in Figures 4.12 - 4.33. In these figures, individual cycles in these blocks are colored to match the colors used in Figures 4.5-4.11.

Figure 4.4: The W-separation graph for the C_{10}-design \mathscr{B} on \mathcal{G}

Figure 4.5: Cycles A (apricot), G (violet), and S (black) are W-separated.

Figure 4.6: Cycles B (cobalt), H (lilac), and O (black) are W-separated.

Figure 4.7: Cycles C (red), D (violet), and N (black) are W-separated.

Figure 4.8: Cycles E (sky blue), R (plum), and T (black) are W-separated.

Figure 4.9: Cycles F (lime), P (violet), and V (black) are W-separated.

Figure 4.10: Cycles L (pink), Q (violet), and U (black) are W-separated.

Figure 4.11: Cycles I (jade), J (lilac), K (black), and M (orange) are W-separated.

$(A, 1)$ in apricot; $(G, 2)$ in violet; $(S, 3)$ in black
Figure 4.12: The \mathcal{C}_{10}^{3}-block $(A, 1) \cup(G, 2) \cup(S, 3)$.

$(A, 3)$ in apricot; $(G, 1)$ in violet; $(S, 2)$ in black
Figure 4.13: The \mathcal{C}_{10}^{3}-block $(G, 1) \cup(S, 2) \cup(A, 3)$.

$(A, 2)$ in apricot; $(G, 3)$ in violet; $(S, 1)$ in black
Figure 4.14: The \mathcal{C}_{10}^{3}-block $(S, 1) \cup(A, 2) \cup(G, 3)$.

$(B, 1)$ in cobalt; $(H, 2)$ in lilac; $(O, 3)$ in black
Figure 4.15: The \mathcal{C}_{10}^{3}-block $(B, 1) \cup(H, 2) \cup(O, 3)$.

$(B, 3)$ in cobalt; $(H, 1)$ in lilac; $(O, 2)$ in black
Figure 4.16: The \mathcal{C}_{10}^{3}-block $(H, 1) \cup(O, 2) \cup(B, 3)$.

$(B, 2)$ in cobalt; $(H, 3)$ in lilac; $(O, 1)$ in black
Figure 4.17: The \mathcal{C}_{10}^{3}-block $(O, 1) \cup(B, 2) \cup(H, 3)$.

$(C, 1)$ in red; $(D, 2)$ in violet; $(N, 3)$ in black
Figure 4.18: The \mathcal{C}_{10}^{3}-block $(C, 1) \cup(D, 2) \cup(N, 3)$.

$(C, 3)$ in red; $(D, 1)$ in violet; $(N, 2)$ in black
Figure 4.19: The \mathcal{C}_{10}^{3}-block $(D, 1) \cup(N, 2) \cup(C, 3)$.

$(C, 2)$ in red; $(D, 3)$ in violet; $(N, 1)$ in black
Figure 4.20: The \mathcal{C}_{10}^{3}-block $(N, 1) \cup(C, 2) \cup(D, 3)$.

$(E, 1)$ in sky blue; $(R, 2)$ in plum; $(T, 3)$ in black
Figure 4.21: The \mathcal{C}_{10}^{3}-block $(E, 1) \cup(R, 2) \cup(T, 3)$.

$(E, 3)$ in sky blue; $(R, 1)$ in plum; $(T, 2)$ in black
Figure 4.22: The \mathcal{C}_{10}^{3}-block $(R, 1) \cup(T, 2) \cup(E, 3)$.

$(E, 2)$ in sky blue; $(R, 3)$ in plum; $(T, 1)$ in black
Figure 4.23: The \mathcal{C}_{10}^{3}-block $(T, 1) \cup(E, 2) \cup(R, 3)$.

Figure 4.24: The \mathcal{C}_{10}^{3}-block $(F, 1) \cup(P, 2) \cup(V, 3)$.

$(F, 3)$ in lime; $(P, 1)$ in violet; $(V, 2)$ in black
Figure 4.25: The \mathcal{C}_{10}^{3}-block $(P, 1) \cup(V, 2) \cup(F, 3)$.

$(F, 2)$ in lime; $(P, 3)$ in violet; $(V, 1)$ in black
Figure 4.26: The \mathcal{C}_{10}^{3}-block $(V, 1) \cup(F, 2) \cup(P, 3)$.

$(L, 1)$ in pink; $(Q, 2)$ in violet; $(U, 3)$ in black
Figure 4.27: The \mathcal{C}_{10}^{3}-block $(L, 1) \cup(Q, 2) \cup(U, 3)$.

$(L, 3)$ in pink; $(Q, 1)$ in violet; $(U, 2)$ in black
Figure 4.28: The \mathcal{C}_{10}^{3}-block $(Q, 1) \cup(U, 2) \cup(L, 3)$.

$(L, 2)$ in pink; $(Q, 3)$ in violet; $(U, 1)$ in black
Figure 4.29: The \mathcal{C}_{10}^{3}-block $(U, 1) \cup(L, 2) \cup(Q, 3)$.

$(I, 1)$ in jade; $(J, 2)$ in lilac; $(K, 3)$ in black
Figure 4.30: The \mathcal{C}_{10}^{3}-block $(I, 1) \cup(J, 2) \cup(K, 3)$.

$(J, 1)$ in lilac; $(K, 2)$ in black; $(M, 3)$ in orange
Figure 4.31: The \mathcal{C}_{10}^{3}-block $(J, 1) \cup(K, 2) \cup(M, 3)$.

$(I, 3)$ in jade; $(K, 1)$ in black; $(M, 2)$ in orange
Figure 4.32: The \mathcal{C}_{10}^{3}-block $(K, 1) \cup(M, 2) \cup(I, 3)$.

Figure 4.33: The \mathcal{C}_{10}^{3}-block $(M, 1) \cup(I, 2) \cup(J, 3)$.

4.4 Spectral Results on Cohorts of Even Cycles

In this section, we obtain a few results on the spectra of cohorts of even cycles. Designs we have built in previous sections provide most of what is needed to determine the spectrum of some of these graphs.

Theorem 4.26. Let $k, p \in \mathbb{P}$, and suppose there is some $\alpha \in \mathbb{P}$ such that $4 k p=2^{\alpha}$. Then the spectrum of $\mathcal{C}_{2 k}^{p}$ is $\{n \in \mathbb{P} \mid n \equiv 1(\bmod 4 k p)\}$.

Proof. Let $k, p \in \mathbb{P}$, and suppose there is some $\alpha \in \mathbb{P}$ such that $4 k p=2^{\alpha}$. Recall from Remark 4.11 that, in this case,

$$
\begin{equation*}
\operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)=\{n \in \mathbb{P} \mid n \equiv 1(\bmod 4 k p)\}=\left\{n \in \mathbb{P} \mid n \equiv 1\left(\bmod 2^{\alpha}\right)\right\} . \tag{4.13}
\end{equation*}
$$

We also recall that, in the proof of Theorem 4.18, we established that, if a complete $\mathcal{C}_{2 k}^{p}{ }^{-}$ design of order n exists, it can be embedded in a complete $\mathcal{C}_{2 k}^{p}$-design of order $n+4 k p$. Note that the trivial complete $\mathcal{C}_{2 k}^{p}$-design of order 1 clearly exists. Since, by Corollary 2.26, there is a complete $\mathcal{C}_{2 k}^{p}$-design of order $4 k p+1$, inductively applying the fact that we can embed any complete $\mathcal{C}_{2 k}^{p}$-design of order n in a complete design of order $n+4 k p$ provides a complete $\mathcal{C}_{2 k}^{p}$-design of order n for each $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$. Therefore the spectrum of $\mathcal{C}_{2 k}^{p}$ is identical to its superspectrum: $\operatorname{Spec}\left(\mathcal{C}_{2 k}^{p}\right)=\{n \in \mathbb{P} \mid n \equiv 1(\bmod 4 k p)\}$.

4.4.1 The Spectrum of the $\left(2, C_{6}\right)$-Cohort

We next address the spectrum of \mathcal{C}_{6}^{2}. We note that, by Corollary 2.26 , there is a complete \mathcal{C}_{6}^{2}-design of order $24 x+1$ for all $x \in \mathbb{P}$; in particular, a complete \mathcal{C}_{6}^{2}-design of order 25 exists. We exhibit a complete \mathcal{C}_{6}^{2}-design of order 33 .

Lemma 4.27. There is a \mathcal{C}_{6}^{2}-design of order 33.

Proof. Let $V\left(K_{33}\right)=\llbracket 0,32 \rrbracket$. Note that a \mathcal{C}_{6}^{2}-design on K_{33} must have exactly $44 \mathcal{C}_{6}^{2}$-blocks, as $e\left(K_{33}\right)=528$ and $e\left(\mathcal{C}_{6}^{2}\right)=12$. We exhibit two \mathcal{C}_{6}^{2}-blocks, B and A, from which we
obtain the remaining blocks in the design by clicking. We thus obtain a cyclic (but not purely cyclic) \mathcal{C}_{6}^{2}-design on K_{33}. Let $B=\mathfrak{C}_{1} \biguplus \mathfrak{C}_{2}$, where $\mathfrak{C}_{1}=(0,7,20,29,14,10)$ and $\mathfrak{C}_{2}=(32,13,25,27,16,15)$; the block B is shown in Figure 4.34 . Observe that B has exactly one edge of each difference in the set $\{1,2,4,7,9,10,11,12,13,14,15,16\}$. We click $B=B_{0}$ 32 times to obtain blocks B_{i} for all $i \in \llbracket 1,32 \rrbracket$.

Figure 4.34: The block B, consisting of cycles \mathfrak{C}_{1} (blue) and \mathfrak{C}_{2} (red)

Let $A=\mathfrak{C}_{3} \biguplus \mathfrak{C}_{4}$, where $\mathfrak{C}_{3}=(1,4,12,15,23,26)$ and $\mathfrak{C}_{4}=(0,5,11,16,22,27)$; the block A is shown in Figure 4.35. Observe that A has exactly three edges of each difference in the set $\{3,5,6,8\}$. We click $A=A_{0} 10$ times to obtain blocks A_{j} for all $j \in \llbracket 1,10 \rrbracket$. Note that consecutive edges in the cycle A have distinct differences, so that no edge of K_{33} occurs in more than one block A_{j}.

We have produced $44 \mathcal{C}_{6}^{2}$-blocks that are edge-disjoint; hence the collection

$$
\mathscr{B}=\left\{B_{i} \mid i \in \llbracket 0,32 \rrbracket\right\} \cup\left\{A_{j} \mid j \in \llbracket 0,10 \rrbracket\right\}
$$

is a cyclic \mathcal{C}_{6}^{2}-design on K_{33}, as desired.

Figure 4.35: The block A, consisting of cycles \mathfrak{C}_{3} (blue) and \mathfrak{C}_{4} (red)

Theorem 4.28. The spectrum of \mathcal{C}_{6}^{2} is $\{n \in \mathbb{P} \mid n \equiv 1$ or $9(\bmod 24)$ and $n \neq 9\}$.
Proof. Note that \mathcal{C}_{6}^{2} is the graph $\mathcal{C}_{2 k}^{p}$ for $p=2$ and $k=3$, and that the trivial complete \mathcal{C}_{6}^{2}-design of order 1 exists. We have computed that

$$
\begin{equation*}
\operatorname{SSpec}\left(\mathcal{C}_{6}^{2}\right)=\{n \in \mathbb{P} \mid n \equiv 1 \text { or } 9(\bmod 24) \text { and } n \neq 9\} \tag{4.14}
\end{equation*}
$$

Since $p=2$ is a power of two, we have from the proof of Theorem 4.18 that, if a complete \mathcal{C}_{6}^{2}-design of order n exists, it can be embedded in a complete \mathcal{C}_{6}^{2}-design of order $n+24$. We have shown that complete \mathcal{C}_{6}^{2}-designs of orders 25 and 33 exist; inductively applying the fact that we can embed any complete \mathcal{C}_{6}^{2}-design of order n in a complete design of order $n+24$ provides a complete \mathcal{C}_{6}^{2}-design of order n for each $n \in \operatorname{SSpec}\left(\mathcal{C}_{6}^{2}\right)$. Therefore the spectrum of \mathcal{C}_{6}^{2} is its superspectrum: $\operatorname{Spec}\left(\mathcal{C}_{6}^{2}\right)=\{n \in \mathbb{P} \mid n \equiv 1$ or $9(\bmod 24)$ and $n \neq 9\}$.

4.4.2 The Spectrum of the $\left(2, C_{10}\right)$-Cohort

We now consider \mathcal{C}_{10}^{2}. We note that, by Corollary 2.26 , there is a complete \mathcal{C}_{10}^{2}-design of order $40 x+1$ for all $x \in \mathbb{P}$; in particular, a complete \mathcal{C}_{10}^{2}-design of order 41 exists. We exhibit a complete \mathcal{C}_{10}^{2}-design of order 25.

Lemma 4.29. There is a \mathcal{C}_{10}^{2}-design of order 25.
Proof. Let $V\left(K_{25}\right)=\mathbb{Z}_{5} \times \mathbb{Z}_{5}$; for convenience, we shorten the usual notation of an ordered pair in diagrams and tables, denoting the pair (i, j) by the two-digit string $i j$. Note that a \mathcal{C}_{10}^{2}-design of order 25 must have exactly fifteen \mathcal{C}_{10}^{2}-blocks, as $e\left(K_{25}\right)=300$ and $e\left(\mathcal{C}_{10}^{2}\right)=20$.

We apply a technique that is similar to cyclic difference methods in order to build this design: we arrange the vertices of K_{25} in a 5 -by- 5 rectangular array, so that the vertex (i, j) may be found in row i and column j. For each of three base blocks, we perform an operation similar to clicking: we increase all first coordinates by one, computing modulo five; this operation is a cyclic shift on the rows, so we call it shifting for convenience. Note that shifting a subgraph of K_{25} four times generates five subgraphs (including the original), which, in general, may or may not be distinct and may or may not be edge-disjoint; we take care to choose our base blocks so that the shifting operation, performed four times, generates a collection of five subgraphs that are indeed all distinct and pairwise edge-disjoint.

In order to choose our base blocks wisely, we consider a property of edges that is similar to the difference of an edge in cyclic difference methods. Applying the shifting operation to an edge with ends $\left(i_{1}, j_{1}\right)$ and $\left(i_{2}, j_{2}\right)$, we obtain the edge with ends $\left(i_{1}+1, j_{1}\right)$ and $\left(i_{2}+1, j_{2}\right)$. We observe that the shifting operation therefore preserves the second coordinates of both ends of the edge, and the difference (modulo 5) between the first coordinates of the ends. So we may identify edge classes by these three pieces of information. For $r, s, t \in \llbracket 0,4 \rrbracket$ such that $r \leq s$, we denote by the ordered triple $[r, s, t]$ the set of edges with ends (i, r) and $(i+t, s)$, with addition computed modulo 5 . We give as illustrative examples the sets $[0,0,2]$ and $[1,3,1]$, which are shown in Figure 4.36.

Figure 4.36: The sets $[0,0,2]$ (edges in cobalt) and $[1,3,1]$ (edges in red)

We observe that distinct triples define distinct, disjoint sets, with two exceptions: for any $r \in \llbracket 0,4 \rrbracket$, the triples $[r, r, 1]$ and $[r, r, 4]$ define the same set, and the triples $[r, r, 2]$ and $[r, r, 3]$ define the same set. We therefore omit the triples $[r, r, 3]$ and $[r, r, 4]$ from the remainder of our discussion. The sixty triples that define distinct sets are given in Table 4.6.

Table 4.6: The sixty triples $[r, s, t]$ that define distinct sets of edges in K_{25}

$[0,0,1]$	[0, 1, 0]	$[0,3,0]$	[1, 2, 0]	$[1,4,0]$	$[2,3,0]$	$[3,4,0]$
[0, 0, 2]	[0, 1, 1]	$[0,3,1]$	$[1,2,1]$	$[1,4,1]$	$[2,3,1]$	$[3,4,1]$
$[1,1,1]$	[$0,1,2]$	$[0,3,2]$	[1, 2, 2]	$[1,4,2]$	[2, 3, 2]	[3, 4, 2]
[1, 1, 2]	[0, 1, 3]	$[0,3,3]$	[1, 2, 3]	$[1,4,3]$	$[2,3,3]$	$[3,4,3]$
$[2,2,1]$	[$0,1,4]$	$[0,3,4]$	$[1,2,4]$	$[1,4,4]$	$[2,3,4]$	$[3,4,4]$
[2, 2, 2]	[0, 2, 0]	[0, 4, 0]	$[1,3,0]$		[2, 4, 0]	
[3, 3, 1]	[0, 2, 1]	$[0,4,1]$	$[1,3,1]$		$[2,4,1]$	
[3, 3, 2]	[0, 2, 2]	$[0,4,2]$	$[1,3,2]$		[2, 4, 2]	
$[4,4,1]$	[0, 2, 3]	$[0,4,3]$	$[1,3,3]$		[2, 4, 3]	
$[4,4,2]$	[0, 2, 4]	$[0,4,4]$	[1, 3, 4]		$[2,4,4]$	

Now we exhibit our three base blocks, A, B, and C. Block A is shown in Figure 4.37, with its cycles in different colors for clarity. The list below gives block A and the four additional blocks A_{1}, A_{2}, A_{3}, and A_{4} obtained by shifting A four times.

$$
\begin{aligned}
& A=(00,11,02,13,04,34,01,32,03,30) \biguplus(10,20,33,21,22,23,31,24,14,42) \\
& A_{1}=(10,21,12,23,14,44,11,42,13,40) \biguplus(20,30,43,31,32,33,41,34,24,02) \\
& A_{2}=(20,31,22,33,24,04,21,02,23,00) \biguplus(30,40,03,41,42,43,01,44,34,12) \\
& A_{3}=(30,41,32,43,34,14,31,12,33,10) \biguplus(40,00,13,01,02,03,11,04,44,22) \\
& A_{4}=(40,01,42,03,44,24,41,22,43,20) \biguplus(00,10,23,11,12,13,21,14,04,32)
\end{aligned}
$$

Figure 4.37: Base block A for the \mathcal{C}_{10}^{2}-design on K_{25}

Block B is shown in Figure 4.38, with its cycles in different colors for clarity. The list below gives block B and the four additional blocks B_{1}, B_{2}, B_{3}, and B_{4} obtained by shifting B four times.

$$
\begin{aligned}
B & =(00,33,02,31,04,30,21,32,23,34) \biguplus(10,11,41,13,43,44,42,22,12,24) \\
B_{1} & =(10,43,12,41,14,40,31,42,33,44) \biguplus(20,21,01,23,03,04,02,32,22,34) \\
B_{2} & =(20,03,22,01,24,00,41,02,43,04) \biguplus(30,31,11,33,13,14,12,42,32,44) \\
B_{3} & =(30,13,32,11,34,10,01,12,03,14) \biguplus(40,41,21,43,23,24,22,02,42,04) \\
B_{4} & =(40,23,42,21,44,20,11,22,13,24) \biguplus(00,01,31,03,33,34,32,12,02,14)
\end{aligned}
$$

Figure 4.38: Base block B for the \mathcal{C}_{10}^{2}-design on K_{25}

Block C is shown in Figure 4.39, with its cycles in different colors for clarity. The list below gives block C and the four additional blocks C_{1}, C_{2}, C_{3}, and C_{4} obtained by shifting C four times.

$$
\begin{aligned}
& C=(00,02,40,32,24,42,20,23,41,44) \biguplus(10,03,13,34,30,11,01,14,33,31) \\
& C_{1}=(10,12,00,42,34,02,30,33,01,04) \biguplus(20,13,23,44,40,21,11,24,43,41) \\
& C_{2}=(20,22,10,02,44,12,40,43,11,14) \biguplus(30,23,33,04,00,31,21,34,03,01) \\
& C_{3}=(30,32,20,12,04,22,00,03,21,24) \biguplus(40,33,43,14,10,41,31,44,13,11) \\
& C_{4}=(40,42,30,22,14,32,10,13,31,34) \biguplus(00,43,03,24,20,01,41,04,23,21)
\end{aligned}
$$

Figure 4.39: Base block C for the \mathcal{C}_{10}^{2}-design on K_{25}

Each of the sixty edge types listed in Table 4.6 is represented by exactly one edge in exactly one of the three base blocks. This condition guarantees that the $15 \mathcal{C}_{10}^{2}$-blocks we have produced are edge-disjoint. Table 4.7 gives the distribution of these types over the base blocks; for each triple $[r, s, t$], we give the block, cycle, and edge where it occurs. We denote the block and cycle in the form $\mathrm{X} . \mathrm{x}$, where $\mathrm{X} \in\{A, B, C\}$ and $\mathrm{x} \in\{\mathrm{i}$, ii $\}$; for each base block, the cycle that contains vertex 00 is cycle (i), and the other is cycle (ii).

Table 4.7: The distribution of the edge classes $[r, s, t]$ over the base blocks A, B, and C

$[0,0,1]:$ A.ii $\{10,20\}$	$[0,3,0]:$ C.i $\{20,23\}$	$[1,4,0]:$ C.i $\{41,44\}$
$[0,0,2]:$ A.i $\{30,00\}$	$[0,3,1]:$ A.ii $\{20,33\}$	$[1,4,1]:$ C.ii $\{01,14\}$
$[1,1,1]:$ C.ii $\{01,11\}$	$[0,3,2]:$ A.i $\{30,03\}$	$[1,4,2]:$ B.i $\{31,04\}$
$[1,1,2]:$ B.ii $\{41,11\}$	$[0,3,3]:$ B.i $\{00,33\}$	$[1,4,3]:$ A.i $\{01,34\}$
$[2,2,1]:$ B.ii $\{12,22\}$	$[0,3,4]:$ C.ii $\{10,03\}$	$[1,4,4]:$ A.ii $\{31,24\}$
$[2,2,2]:$ B.ii $\{22,42\}$	$[0,4,0]:$ C.ii $\{30,34\}$	$[2,3,0]:$ A.ii $\{22,23\}$
$[3,3,1]:$ C.ii $\{03,13\}$	$[0,4,1]:$ B.ii $\{10,24\}$	$[2,3,1]:$ A.i $\{02,13\}$
$[3,3,2]:$ B.ii $\{43,13\}$	$[0,4,2]:$ B.i $\{30,04\}$	$[2,3,2]:$ A.i $\{32,03\}$
$[4,4,1]:$ A.ii $\{14,24\}$	$[0,4,3]:$ B.i $\{00,34\}$	$[2,3,3]:$ B.i $\{02,33\}$
$[4,4,2]:$ A.i $\{34,04\}$	$[0,4,4]:$ C.i $\{00,44\}$	$[2,3,4]:$ B.i $\{32,23\}$
$[0,1,0]:$ B.ii $\{10,11\}$	$[1,2,0]:$ A.ii $\{21,22\}$	$[2,4,0]:$ B.ii $\{42,44\}$
$[0,1,1]:$ A.i $\{00,11\}$	$[1,2,1]:$ B.i $\{21,32\}$	$[2,4,1]:$ B.ii $\{12,24\}$
$[0,1,2]:$ C.ii $\{10,31\}$	$[1,2,2]:$ B.i $\{31,02\}$	$[2,4,2]:$ A.ii $\{42,14\}$
$[0,1,3]:$ C.ii $\{30,11\}$	$[1,2,3]:$ A.i $\{01,32\}$	$[2,4,3]:$ C.i $\{42,24\}$
$[0,1,4]:$ B.i $\{30,21\}$	$[1,2,4]:$ A.i $\{11,02\}$	$[2,4,4]:$ C.i $\{32,24\}$
$[0,2,0]:$ C.i $\{00,02\}$	$[1,3,0]:$ C.ii $\{31,33\}$	$[3,4,0]:$ B.ii $\{43,44\}$
$[0,2,1]:$ C.i $\{40,02\}$	$[1,3,1]:$ A.ii $\{21,33\}$	$[3,4,1]:$ B.i $\{23,34\}$
$[0,2,2]:$ C.i $\{20,42\}$	$[1,3,2]:$ B.ii $\{41,13\}$	$[3,4,2]:$ C.ii $\{13,34\}$
$[0,2,3]:$ A.ii $\{10,42\}$	$[1,3,3]:$ C.i $\{41,23\}$	$[3,4,3]:$ C.ii $\{33,14\}$
$[0,2,4]:$ C.i $\{40,32\}$	$[1,3,4]:$ A.ii $\{31,23\}$	$[3,4,4]:$ A.i $\{13,04\}$

Since we have produced fifteen edge-disjoint \mathcal{C}_{10}^{2}-blocks, the collection

$$
\mathscr{B}=\left\{A, A_{1}, A_{2}, A_{3}, A_{4}, B, B_{1}, B_{2}, B_{3}, B_{4}, C, C_{1}, C_{2}, C_{3}, C_{4}\right\}
$$

is a \mathcal{C}_{10}^{2}-design on K_{25}, as desired.
Theorem 4.30. The spectrum of \mathcal{C}_{10}^{2} is $\{n \in \mathbb{P} \mid n \equiv 1$ or $25(\bmod 40)\}$.
Proof. Note that \mathcal{C}_{10}^{2} is the graph $\mathcal{C}_{2 k}^{p}$ for $p=2$ and $k=5$, and that the trivial complete \mathcal{C}_{10}^{2}-design of order 1 exists. We have computed that

$$
\begin{equation*}
\operatorname{SSpec}\left(\mathcal{C}_{10}^{2}\right)=\{n \in \mathbb{P} \mid n \equiv 1 \text { or } 25(\bmod 40)\} \tag{4.15}
\end{equation*}
$$

Since $p=2$ is a power of two, we have from the proof of Theorem 4.18 that, if a complete \mathcal{C}_{10}^{2}-design of order n exists, it can be embedded in a complete \mathcal{C}_{10}^{2}-design of order $n+40$. We have shown that complete \mathcal{C}_{10}^{2}-designs of orders 25 and 41 exist; inductively applying the fact that we can embed any complete \mathcal{C}_{10}^{2}-design of order n in a complete design of order $n+40$ provides a complete \mathcal{C}_{10}^{2}-design of order n for each $n \in \operatorname{SSpec}\left(\mathcal{C}_{10}^{2}\right)$. Therefore the spectrum of \mathcal{C}_{10}^{2} is its superspectrum: $\operatorname{Spec}\left(\mathcal{C}_{10}^{2}\right)=\{n \in \mathbb{P} \mid n \equiv 1$ or $25(\bmod 40)\}$.

We observe that results similar to Theorems 4.28 and 4.30 are potentially possible for many pairs of values of p and k with the exhibition of a small number of designs. We now turn our attention back to the topic of Chapter 2 and explore in-depth the use of graph labelings to create $\mathcal{C}_{2 k}^{p}$-designs on the graphs $K_{4 k p+1}$.

Chapter 5

Cohorts of Even Cycles, Part Two

In this chapter, we discuss $\mathcal{C}_{2 k}^{p}$-designs on $K_{4 k p+1}$. The existence of such designs is guaranteed by the labeling results presented as Theorem 2.25 and Corollary 2.26 in Chapter 2. Prior to becoming aware of these extensive results in graph labelings, we independently achieved many results on the existence of $\mathcal{C}_{2 k}^{p}$-designs on $K_{4 k p+1}$ for certain values of k and p. In the first section of this chapter, we present further details of the labeling results, in particular the constructions used to achieve them, for comparison purposes with our own designs. In subsequent sections, we present our own constructions and some commentary on comparisons between the constructions. Both approaches to building $\mathcal{C}_{2 k}^{p}$-designs on $K_{4 k p+1}$ separate into three cases, namely: (1) k is even; (2) k is odd and p is even; and (3) k is odd and p is odd.

Since our discussion of $\mathcal{C}_{2 k}^{p}$-designs on $K_{4 k p+1}$ exclusively concerns cyclic difference methods, we describe base blocks by listing their cycles, and we accompany each cycle by a description of the pattern in which differences are to be used to form the cycle. Since each vertex in a complete graph is incident to exactly two edges of each difference, there are two directions in which we can achieve difference d on an edge originating at vertex v; we establish the following notation for the direction in which a difference is to be achieved.

Notation 5.1. In the statement of a difference pattern, a difference written without brackets indicates that the difference is to be achieved by moving clockwise from the current vertex (i.e., in the direction of increasing vertex names), while a difference written inside brackets indicates that the difference is to be achieved by moving counterclockwise from the current vertex (i.e., in the direction of decreasing vertex names).

Example 5.2. We may produce a cycle of length six in K_{61} using the difference pattern

$$
20 \begin{array}{cccc}
{[5]} & 25 & 16 & {[4]}
\end{array} 9 .
$$

If we begin at vertex 0 , we obtain the cycle $(0,20,15,40,56,52)$. This cycle is shown in Figure 5.1.

Figure 5.1: The 6-cycle in Example 5.2

With this notation in hand, we begin our discussion with a detailed analysis of one of the graph labeling results presented at the end of Chapter 2.

5.1 Constructions by Blinco and El-Zanati

In this section, we present the constructions behind Theorem 2.25 (due to A. Blinco and S. El-Zanati, 2004), with supporting results from earlier papers and several illustrative examples. All results presented in this section are the work of others; the examples are of our own choosing, for purposes of comparison in later sections. We begin by repeating the statement of Theorem 2.25 for convenient reference.

Theorem (2.25). Let G be a 2-regular bipartite graph. Then G admits a ρ^{+}-labeling.
In Blinco and El-Zanati's paper [6], the above theorem is stated as a corollary to a more powerful result, which produces a ρ^{+}-labeling on the disjoint union of one or more graphs that admit α-labelings and a single graph that admits a ρ^{++}-labeling.

Theorem 5.3 (Blinco and El-Zanati, 2004). Let G_{1} be a bipartite graph with n_{1} edges. Suppose G_{1} has a ρ^{++}-labeling in which no vertex is labeled $2 n_{1}$. Let $G_{2}, G_{3}, \ldots, G_{t}$ be graphs with α-labelings. Then the graph $G_{1} \biguplus G_{2} \biguplus \cdots \biguplus G_{t}$ has a ρ^{+}-labeling.

The proof of Theorem 2.25 by Blinco and El-Zanati relies on the above theorem and several other results from the literature. We state here only those results that are useful in the proof for the particular graphs we wish to consider. The most significant of these is by S. El-Zanati, C. Vanden Eynden, and N. Punnim [12].

Theorem 5.4 (El-Zanati, Vanden Eynden, and Punnim, 2001). The disjoint union of graphs with α-labelings has a σ^{+}-labeling.

An additional result in the same paper provides a ρ^{++}-labeling of the cycle $C_{2 k}$.
Theorem 5.5 (El-Zanati, Vanden Eynden, and Punnim, 2001). Let $V\left(C_{2 k}\right)=\llbracket 1,2 k \rrbracket$, so that vertices u and v are adjacent whenever $v \equiv u+1(\bmod 2 k)$. Define a labeling H on the vertices of $C_{2 k}$ by

$$
H(v)= \begin{cases}(v-1) / 2, & \text { if } v \text { is odd, } \tag{5.1}\\ 2 k-(v / 2), & \text { if } v \text { is even and } 0<v<k-1, \\ 2 k-1-(v / 2), & \text { if } v \text { is even and } k-1 \leq v<2 k, \\ 2 k+1, & \text { if } v=2 k .\end{cases}
$$

Then H is a ρ^{++}-labeling of $C_{2 k}$.
We note that the critical value of H in Theorem 5.5 is $\lambda=k-1$. A 1975 paper by A. Kotzig [21] provides an α-labeling of $C_{2 k} \biguplus C_{2 k}$; we state the result here and exhibit the labeling when it is needed.

Theorem 5.6 (Kotzig, 1975). The graph $C_{s} \biguplus C_{s}$ admits an α-labeling if and only if s is even and $s>2$.

Blinco and El-Zanati's proof of Theorem 2.25 for all 2-regular bipartite graphs is accomplished in two cases. We consider only the cohorts of even cycles; once restricted to these graphs, the construction by Blinco and El-Zanati has three natural cases, as mentioned at the beginning of this chapter: (1) k is even; (2) k is odd and p is even; and (3) k is odd and p is odd.

5.1.1 The Blinco-El-Zanati Construction for Even k

We first consider the graph $\mathcal{C}_{2 k}^{p}$ in the case that k is even. In this case, the cycle length is a multiple of four. We observe that, since k is even, $C_{2 k}$ admits an α-labeling; this result is commonly cited from a 1965 paper by Kotzig [20]. In our discussion, we employ two α-labelings of $C_{2 k}$, which we call L_{3} and L_{1}; the labeling L_{3} appears in the paper by Kotzig. Let $V\left(C_{2 k}\right)=\llbracket 1,2 k \rrbracket$, so that vertices i and j are adjacent whenever $j \equiv i+1(\bmod 2 k)$. We define the labeling L_{3} by

$$
L_{3}(v)= \begin{cases}\frac{v-1}{2}, & \text { if } v \text { is odd, } \tag{5.2}\\ 2 k+1-\frac{v}{2}, & \text { if } v \text { is even and } 2 \leq v \leq k, \\ 2 k-\frac{v}{2}, & \text { if } v \text { is even and } k+2 \leq v \leq 2 k\end{cases}
$$

The critical value of L_{3} is $\lambda=k-1$. We define the labeling L_{1} by

$$
L_{1}(v)= \begin{cases}k-\frac{v-1}{2}, & \text { if } v \text { is odd and } 1 \leq v \leq k-1, \tag{5.3}\\ k-\frac{v+1}{2}, & \text { if } v \text { is odd and } k+1 \leq v \leq 2 k-1, \\ k+\frac{v}{2}, & \text { if } v \text { is even. }\end{cases}
$$

The critical value of L_{1} is $\lambda=k$.

In order to produce a ρ^{+}-labeling of $\mathcal{C}_{2 k}^{p}$, the Blinco-El-Zanati Construction relies on the construction given in the proof of Theorem 5.4 by El-Zanati, Vanden Eynden, and Punnim. We give below the entire definition of this ρ^{+}-labeling, h, as it is given in [12]; we have made changes to the text only to ensure consistent notation within this document.

For $i \in \llbracket 1, t \rrbracket$, let G_{i} be a graph with n_{i} edges having an α-labeling h_{i} with critical value λ_{i} and vertex bipartition $\left[A_{i}, B_{i}\right]$, where $A_{i}=\left\{v \in V\left(G_{i}\right) \mid h_{i}(v) \leq \lambda_{i}\right\}$. Define integers α_{i} and β_{i} for each $i \in \llbracket 1, t \rrbracket$ by

$$
\alpha_{i}= \begin{cases}\frac{i-1}{2}+\sum_{\substack{j \text { odd, } \\ j<i}} \lambda_{j}, & \text { if } i \text { is odd } \tag{5.4}\\ \sum_{j=1}^{t} n_{j}+\sum_{\substack{j \text { odd, } \\ j \leq i}} n_{j}+\sum_{\substack{j \text { even, } \\ j<i}} \lambda_{j}, & \text { if } i \text { is even }\end{cases}
$$

and

$$
\begin{equation*}
\beta_{i}=\alpha_{i}+\sum_{j>i} n_{j} \tag{5.5}
\end{equation*}
$$

Assuming the graphs G_{i} are vertex-disjoint, we define h on their union, G, by

$$
h(v)= \begin{cases}h_{i}(v)+\alpha_{i}, & \text { if } v \in A_{i} \tag{5.6}\\ h_{i}(v)+\beta_{i}, & \text { if } v \in B_{i}\end{cases}
$$

We note that the result by El-Zanati, Vanden Eynden, and Punnim actually provides a σ^{+}-labeling.

We wish to describe the labeling h as specifically as possible for the graph $G=\mathcal{C}_{2 k}^{p}$ in the case in which k is even. Let $m \in \mathbb{P}$ such that $k=2 m$; let $t=p$; let $G_{i}=C_{2 k}$ and $n_{i}=2 k$ for all $i \in \llbracket 1, p \rrbracket$. For each $i \in \llbracket 1, p \rrbracket$, we may choose h_{i} to be any α-labeling of $C_{2 k} ;$ we describe the result of choosing $h_{i}=L_{3}$ for all $i \in \llbracket 1, p \rrbracket$. Let $V\left(G_{i}\right)=\llbracket 1,2 k \rrbracket \times\{i\}$, so
that $V(G)=\llbracket 1,2 k \rrbracket \times \llbracket 1, p \rrbracket$; then we have, for all $i \in \llbracket 1, p \rrbracket$, that $\lambda_{i}=k-1$, and that

$$
\begin{align*}
& A_{i}=\{(a, i) \mid a \in \llbracket 1,2 k \rrbracket \text { and } a \text { is odd }\}, \text { and } \tag{5.7}\\
& B_{i}=\{(b, i) \mid b \in \llbracket 1,2 k \rrbracket \text { and } b \text { is even }\} . \tag{5.8}
\end{align*}
$$

We can therefore simplify the sums in the definitions of α_{i} and β_{i} as follows.

$$
\begin{align*}
(i \text { odd }) \sum_{\substack{j \text { odd, } \\
j<i}} \lambda_{j} & =\sum_{\substack{j \text { odd, } \\
j<i}}(k-1)=(k-1)\left(\frac{i-1}{2}\right)=(2 m-1)\left(\frac{i-1}{2}\right) \tag{5.9}\\
\sum_{j=1}^{t} n_{j} & =\sum_{j=1}^{p} 2 k=2 k p=4 m p \tag{5.10}\\
(i \text { even }) \sum_{\substack{j \text { odd, } \\
j \leq i}} n_{j} & =\sum_{\substack{j \text { odd, } \\
j \leq i}} 2 k=2 k\left(\frac{i}{2}\right)=k i=2 m i \tag{5.11}\\
(i \text { even }) \sum_{\substack{j \text { even, } \\
j<i}} \lambda_{j} & =\sum_{\substack{j \text { even, } \\
j<i}}(k-1)=(k-1)\left(\frac{i}{2}-1\right)=(2 m-1)\left(\frac{i}{2}-1\right) \tag{5.12}\\
\sum_{j>i} n_{j} & =\sum_{i<j \leq p} 2 k=2 k(p-i)=4 m(p-i) \tag{5.13}
\end{align*}
$$

We obtain the following definitions of α_{i}, β_{i}, and h.

$$
\begin{align*}
& \alpha_{i}= \begin{cases}m(i-1), & \text { if } i \text { is odd }, \\
m(4 p+3 i-2)+1-\frac{i}{2}, & \text { if } i \text { is even. }\end{cases} \tag{5.14}\\
& \beta_{i}= \begin{cases}m(4 p-3 i-1), & \text { if } i \text { is odd }, \\
m(8 p-i-2)+1-\frac{i}{2}, & \text { if } i \text { is even. }\end{cases} \tag{5.15}\\
& h(v, i)=\left\{\begin{array}{ll}
L_{3}(v)+\alpha_{i}, & \text { if } v \text { is odd, } \\
L_{3}(v)+\beta_{i}, & \text { if } v \text { is even, }
\end{array} \quad \text { for all }(v, i) \in V(G) .\right. \tag{5.16}
\end{align*}
$$

We may combine formulas $(5.2),(5.14),(5.15)$, and (5.16) to obtain a direct formula for $h(v, i)$, without reference to α_{i} or β_{i}. For added clarity, we give the formula statement in two parts.

If i is odd, we have
$h(v, i)= \begin{cases}m(i-1)+\frac{v-1}{2}, & \text { if } v \text { is odd, } \\ m(4 p+3-3 i)+1-\frac{v}{2}, & \text { if } v \text { is even and } 2 \leq v \leq 2 m, \\ m(4 p+3-3 i)-\frac{v}{2}, & \text { if } v \text { is even and } 2 m+2 \leq v \leq 4 m .\end{cases}$
If i is even, we have

$$
h(v, i)= \begin{cases}m(4 p+3 i-2)+\frac{v+1-i}{2}, & \text { if } v \text { is odd } \tag{5.18}\\ m(8 p-i+2)+2-\frac{v+i}{2}, & \text { if } v \text { is even and } 2 \leq v \leq 2 m \\ m(8 p-i+2)+1-\frac{v+i}{2}, & \text { if } v \text { is even and } 2 m+2 \leq v \leq 4 m\end{cases}
$$

We note that several alternative labelings can be achieved by applying the construction by El-Zanati, Vanden Eynden, and Punnim with different choices of α-labeling for some or all $C_{2 k}$-subgraphs of $G=\mathcal{C}_{2 k}^{p}$; we could even apply Kotzig's α-labeling of $C_{2 k} \biguplus C_{2 k}$ to some pairs of cycles to obtain further different results. We give two examples of σ^{+}-labelings, both achieved by choosing the labeling L_{3} for all cycles in $G=\mathcal{C}_{2 k}^{p}$, as we have described in detail above; these examples are σ^{+}-labelings of \mathcal{C}_{12}^{4} and \mathcal{C}_{16}^{5}.

Example 5.7. Consider \mathcal{C}_{12}^{4}; this is the case $p=4$ and $k=6$. We exhibit a σ^{+}-labeling generated by the Blinco-El-Zanati Construction as the base block for a purely cyclic design of order $4 k p+1=97$. This base block is shown in Figure 5.2 ; distinct cycles are shown in different colors for enhanced visibility. The cycles and their corresponding difference patterns are listed in Table 5.1.

Example 5.8. Consider \mathcal{C}_{16}^{5}; this is the case $p=5$ and $k=8$. We exhibit a σ^{+}-labeling generated by the Blinco-El-Zanati Construction as the base block for a purely cyclic design of order $4 k p+1=161$. This base block is shown in Figure 5.3; distinct cycles are shown in different colors for enhanced visibility. The cycles and their corresponding difference patterns are listed in Table 5.2.

Figure 5.2: A Blinco-El-Zanati σ^{+}-labeling of \mathcal{C}_{12}^{4}

Table 5.1: Cycle list for the σ^{+}-labeling of \mathcal{C}_{12}^{4} in Figure 5.2

Figure 5.3: A Blinco-El-Zanati σ^{+}-labeling of \mathcal{C}_{16}^{5}

Table 5.2: Cycle list for the σ^{+}-labeling of \mathcal{C}_{16}^{5} in Figure 5.3

5.1.2 The Blinco-El-Zanati Construction for Odd k and Even p

We next consider the graph $\mathcal{C}_{2 k}^{p}$ in the case that k is odd and p is even. In this case, the cycle length is congruent to two modulo four; we let $q \in \mathbb{P}$ such that $p=2 q$. We observe that, since k is odd, C_{2} does not admit an α-labeling (because it fails the parity condition; see [29] and [13]), but $C_{2 k} \biguplus C_{2 k}$ does admit an α-labeling, by Kotzig's result (Theorem 5.6). Let $V\left(C_{2 k} \biguplus C_{2 k}\right)=\llbracket 1,4 k \rrbracket$ so that vertices i and j in $\llbracket 1,2 k \rrbracket$ are adjacent whenever $j \equiv i+1(\bmod 2 k)$ and vertices i and j in $\llbracket 2 k+1,4 k \rrbracket$ are adjacent whenever $j \equiv i+1(\bmod 2 k)$. Kotzig's α-labeling, L, of $C_{2 k} \biguplus C_{2 k}$ is given by

$$
L(v)= \begin{cases}0, & \text { if } v=1, \\ k+\frac{v-1}{2}, & \text { if } v \text { is odd and } 3 \leq v \leq k, \\ k-\frac{v-1}{2}, & \text { if } v \text { is odd and } k+2 \leq v \leq 2 k-1, \\ 4 k, & \text { if } v=2, \tag{5.19}\\ 3 k+2-\frac{v}{2}, & \text { if } v \text { is even and } 4 \leq v \leq k-1, \\ 3 k-1+\frac{v}{2}, & \text { if } v \text { is even and } k+1 \leq v \leq 2 k, \\ 2 k, & \text { if } v=2 k+1, \\ 2 k-\frac{v-1}{2}, & \text { if } v \text { is odd and } 2 k+3 \leq v \leq 3 k, \\ \frac{\text { if } v \text { is odd and } 3 k+2 \leq v \leq 4 k-1,}{2}, & \text { if } v=2 k+2, \\ 2 k+1, & \text { if } v \text { is even and } 2 k+4 \leq v \leq 3 k-1, \\ 2 k-1+\frac{v}{2}, & \text { if } v \text { is even and } 3 k+1 \leq v \leq 4 k .\end{cases}
$$

The critical value of L is $\lambda=2 k$.

In order to produce a ρ^{+}-labeling of $\mathcal{C}_{2 k}^{p}$, the Blinco-El-Zanati Construction relies again on the construction given in the proof of Theorem 5.4 by El-Zanati, Vanden Eynden, and Punnim, which actually produces a σ^{+}-labeling, as previously noted. This σ^{+}-labeling was given in formulas (5.4), (5.5), and (5.6).

We wish to describe the labeling h as specifically as possible for the graph $G=\mathcal{C}_{2 k}^{p}$ in the case that k is odd and p is even. We let $t=q$, and, for all $i \in \llbracket 1, q \rrbracket$, we let $G_{i}=C_{2 k} \biguplus C_{2 k}$, so $n_{i}=4 k$, and $h_{i}=L$, with $\lambda_{i}=2 k$. Let $V\left(G_{i}\right)=\llbracket 1,4 k \rrbracket \times\{i\}$, so that $V(G)=\llbracket 1,4 k \rrbracket \times \llbracket 1, q \rrbracket$; then we have, for all $i \in \llbracket 1, q \rrbracket$, that

$$
\begin{align*}
& A_{i}=\{(a, i) \mid a \in \llbracket 1,4 k \rrbracket \text { and } a \text { is odd }\} \text { and } \tag{5.20}\\
& B_{i}=\{(b, i) \mid b \in \llbracket 1,4 k \rrbracket \text { and } b \text { is even }\} . \tag{5.21}
\end{align*}
$$

We can therefore simplify the sums in the definitions of α_{i} and β_{i} as follows.

$$
\begin{align*}
(i \text { odd }) \sum_{\substack{j \text { odd, } \\
j<i}} \lambda_{j} & =\sum_{\substack{j \text { odd, } \\
j<i}} 2 k=2 k\left(\frac{i-1}{2}\right)=k(i-1) \tag{5.22}\\
\sum_{j=1}^{t} n_{j} & =\sum_{j=1}^{q} 4 k=4 k q=2 k p \tag{5.23}\\
(i \text { even }) \sum_{\substack{j \text { odd, } \\
j \leq i}} n_{j} & =\sum_{\substack{j \text { odd, } \\
j \leq i}} 4 k=4 k\left(\frac{i}{2}\right)=2 k i \tag{5.24}\\
(i \text { even }) \sum_{\substack{j \text { even, } \\
j<i}} \lambda_{j} & =\sum_{\substack{j \text { even, } \\
j<i}} 2 k=2 k\left(\frac{i}{2}-1\right)=k(i-2) \tag{5.25}\\
\sum_{j>i} n_{j} & =\sum_{j=i+1}^{q} 4 k=4 k(q-i)=2 k(p-2 i) \tag{5.26}
\end{align*}
$$

We obtain the following definitions of α_{i}, β_{i}, and h.

$$
\begin{gather*}
\alpha_{i}= \begin{cases}k(i-1)+\left(\frac{i-1}{2}\right), & \text { if } i \text { is odd, } \\
k(2 p+3 i-2), & \text { if } i \text { is even. }\end{cases} \tag{5.27}\\
\beta_{i}= \begin{cases}k(2 p-3 i-1)+\frac{i-1}{2}, & \text { if } i \text { is odd, } \\
k(4 p-i-2), & \text { if } i \text { is even. }\end{cases} \tag{5.28}\\
h(v, i)= \begin{cases}L(v)+\alpha_{i}, & \text { if } v \text { is odd, } \\
L(v)+\beta_{i}, & \text { if } v \text { is even, }\end{cases} \tag{5.29}
\end{gather*}
$$

We may combine formulas (5.19), (5.27), (5.28), and (5.29) to obtain a direct formula for $h(v, i)$, without reference to α_{i} or β_{i}. For added clarity, we split the formula statement into two parts, by the parity of i, with four subdivisions each.

If i is odd, then

$$
\begin{align*}
& h(v, i)= \begin{cases}k(i-1)+\frac{i-1}{2}, & \text { if } v=1, \\
k i-1+\frac{v+i}{2}, & \text { if } v \text { is odd and } 3 \leq v \leq k, \\
k i+\frac{i-v}{2}, & \text { if } v \text { is odd and } k+2 \leq v \leq 2 k-1,\end{cases} \tag{5.30}\\
& h(v, i)= \begin{cases}k(2 p-3 i+3)+\frac{i-1}{2}, & \text { if } v=2, \\
k(2 p-3 i+2)+\frac{i-v+3}{2}, & \text { if } v \text { is even and } 4 \leq v \leq k-1, \\
k(2 p-3 i+2)+\frac{v+i-3}{2}, & \text { if } v \text { is even and } k+1 \leq v \leq 2 k\end{cases} \tag{5.31}\\
& h(v, i)= \begin{cases}k(i+1)+\frac{i-1}{2}, & \text { if } v=2 k+1, \\
k(i+1)+\frac{i-v}{2}, & \text { if } v \text { is odd and } 2 k+3 \leq v \leq 3 k, \\
k(i-1)-1+\frac{v+i}{2}, & \text { if } v \text { is odd and } 3 k+2 \leq v \leq 4 k-1,\end{cases} \tag{5.32}
\end{align*}
$$

$$
h(v, i)= \begin{cases}k(2 p-3 i+1)+\frac{i+1}{2}, & \text { if } v=2 k+2 \tag{5.33}\\ k(2 p-3 i+1)+\frac{v+i-3}{2}, & \text { if } v \text { is even and } 2 k+4 \leq v \leq 3 k-1 \\ k(2 p-3 i+3)+\frac{i-v+3}{2}, & \text { if } v \text { is even and } 3 k+1 \leq v \leq 4 k\end{cases}
$$

If i is even, then

$$
\begin{align*}
& h(v, i)= \begin{cases}k(2 p+3 i-2), & \text { if } v=1, \\
k(2 p+3 i-1)+\frac{v-1}{2}, & \text { if } v \text { is odd and } 3 \leq v \leq k, \\
k(2 p+3 i-1)-\frac{v-1}{2}, & \text { if } v \text { is odd and } k+2 \leq v \leq 2 k-1,\end{cases} \tag{5.34}\\
& h(v, i)= \begin{cases}k(4 p-i+2), & \text { if } v=2, \\
k(4 p-i+1)+2-\frac{v}{2}, & \text { if } v \text { is even and } 4 \leq v \leq k-1, \\
k(4 p-i+1)-1+\frac{v}{2}, & \text { if } v \text { is even and } k+1 \leq v \leq 2 k,\end{cases} \tag{5.35}\\
& h(v, i)= \begin{cases}k(2 p+3 i), & \text { if } v=2 k+1, \\
k(2 p+3 i)-\frac{v-1}{2}, & \text { if } v \text { is odd and } 2 k+3 \leq v \leq 3 k, \\
k(2 p+3 i-2)+\frac{v-1}{2}, & \text { if } v \text { is odd and } 3 k+2 \leq v \leq 4 k-1,\end{cases} \tag{5.36}\\
& h(v, i)= \begin{cases}k(4 p-i)+1, & \text { if } v=2 k+2, \\
k(4 p-i)-1+\frac{v}{2}, & \text { if } v \text { is even and } 2 k+4 \leq v \leq 3 k-1, \\
k(4 p-i+2)+2-\frac{v}{2}, & \text { if } v \text { is even and } 3 k+1 \leq v \leq 4 k .\end{cases} \tag{5.37}
\end{align*}
$$

We give two examples of this labeling construction: σ^{+}-labelings of \mathcal{C}_{10}^{6} and \mathcal{C}_{10}^{8}. Observe that, in both examples, cycles are entwined in pairs by the labeling; this is caused by the need to use $C_{2 k} \biguplus C_{2 k}$-subgraphs of $\mathcal{C}_{2 k}^{p}$ in order to obtain the required α-labelings.

Example 5.9. Consider \mathcal{C}_{10}^{6}; this is the case $p=6$ and $k=5$. We exhibit a σ^{+}-labeling generated by the Blinco-El-Zanati Construction as the base block for a purely cyclic design of order $4 k p+1=121$. This base block is shown in Figure 5.4; distinct cycles are shown in different colors for enhanced visibility. The cycles and their corresponding difference patterns are listed in Table 5.3.

Figure 5.4: A Blinco-El-Zanati σ^{+}-labeling of \mathcal{C}_{10}^{6}

Table 5.3: Cycle list for the σ^{+}-labeling of \mathcal{C}_{10}^{6} in Figure 5.4

Example 5.10. Consider \mathcal{C}_{10}^{8}; this is the case $p=8$ and $k=5$. We exhibit a σ^{+}-labeling generated by the Blinco-El-Zanati Construction as the base block for a purely cyclic design of order $4 k p+1=161$. This base block is shown in Figure 5.5; distinct cycles are shown in different colors for enhanced visibility. The cycles and their corresponding difference patterns are listed in Table 5.4.

Figure 5.5: A Blinco-El-Zanati σ^{+}-labeling of \mathcal{C}_{10}^{8}

Table 5.4: Cycle list for the σ^{+}-labeling of \mathcal{C}_{10}^{8} in Figure 5.5

5.1.3 The Blinco-El-Zanati Construction for Odd k and Odd p

We last consider the graph $\mathcal{C}_{2 k}^{p}$ in the case that k and p are both odd. In this case, the cycle length is congruent to two modulo four; we let $q \in \mathbb{P}$ such that $p=2 q+1$. We use the ρ^{++}-labeling of $C_{2 k}$ by El-Zanati, Vanden Eynden, and Punnim (see Theorem 5.5) and the α-labeling of $C_{2 k} \biguplus C_{2 k}$ by Kotzig (see Theorem 5.6 and formula 5.19) in our description of this construction.

In order to produce a ρ^{+}-labeling of $\mathcal{C}_{2 k}^{p}$, the Blinco-El-Zanati Construction relies on the construction given in the proof of Theorem 5.3 by Blinco and El-Zanati. This construction is identical to the construction by El-Zanati, Vanden Eynden, and Punnim given in [12], except in its weaker hypotheses. We have reproduced below the entire definition of the ρ^{+}-labeling, h, produced in the proof of Theorem 5.3, as it is given in [6]; we have made changes to the text only to ensure consistent notation in this document.

Let G_{1} be a bipartite graph with n_{1} edges and a ρ^{++}-labeling h_{1} such that no vertex of G_{1} is labeled $2 n_{1}$. Let $\left[A_{1}, B_{1}\right]$ be the bipartition of $V\left(G_{1}\right)$ induced by h_{1}. Let λ_{1} be the critical value of h_{1}. For $i \in \llbracket 2, t \rrbracket$, let G_{i} be a graph with n_{i} edges having an α-labeling h_{i} with critical value λ_{i} and vertex bipartition $\left[A_{i}, B_{i}\right]$, where $A_{i}=\left\{v \in V\left(G_{i}\right) \mid h_{i}(v) \leq \lambda_{i}\right\}$. Define integers c_{i} and d_{i} for each $i \in \llbracket 1, t \rrbracket$ by

$$
\begin{align*}
& \qquad c_{i}= \begin{cases}\frac{i-1}{2}+\sum_{\substack{j \text { odd, } \\
j<i}} \lambda_{j}, & \text { if } i \text { is odd, } \\
\sum_{j=1}^{t} n_{j}+\sum_{\substack{j \text { odd, } \\
j \leq i}} n_{j}+\sum_{\substack{j \text { even, } \\
j<i}} \lambda_{j}, & \text { if } i \text { is even, } \\
\text { and } \quad d_{i}=c_{i}+\sum_{j>i} n_{j} .\end{cases} \tag{5.38}
\end{align*}
$$

Assuming the graphs G_{i} are vertex-disjoint, we define h on their union, G, by

$$
h(v)= \begin{cases}h_{i}(v)+c_{i}, & \text { if } v \in A_{i} \tag{5.40}\\ h_{i}(v)+d_{i}, & \text { if } v \in B_{i}\end{cases}
$$

We wish to describe the labeling h as specifically as possible for the graph $G=\mathcal{C}_{2 k}^{p}$ in the case that both k and p are odd. For this choice of G, we must let $G_{1}=C_{2 k}$, so that $n_{1}=2 k$, and let h_{1} be the labeling H given in Theorem 5.5, so that $\lambda_{1}=k-1$. We also let $t=q+1$, and, for all $i \in \llbracket 2, q+1 \rrbracket$, we let $G_{i}=C_{2 k} \biguplus C_{2 k}$, so $n_{i}=4 k$, and $h_{i}=L$, with $\lambda_{i}=2 k$. Furthermore, let $V\left(G_{1}\right)=\llbracket 1,2 k \rrbracket \times\{1\}$ and $V\left(G_{i}\right)=\llbracket 1,4 k \rrbracket \times\{i\}$ for all $i \in \llbracket 2, q+1 \rrbracket$, so that $V(G)=(\llbracket 1,2 k \rrbracket \times\{1\}) \cup(\llbracket 1,4 k \rrbracket \times \llbracket 2, q+1 \rrbracket)$. Then we have, for all $i \in \llbracket 1, q+1 \rrbracket$, that

$$
\begin{align*}
& A_{i}=\left\{(a, i) \mid a \in V\left(G_{i}\right) \text { and } a \text { is odd }\right\}, \text { and } \tag{5.41}\\
& B_{i}=\left\{(b, i) \mid b \in V\left(G_{i}\right) \text { and } b \text { is even }\right\} . \tag{5.42}
\end{align*}
$$

We can therefore simplify the sums in the definitions of c_{i} and d_{i} as follows.

$$
\begin{align*}
&(i>1, \text { odd }) \sum_{\substack{j \text { odd, } \\
j<i}} \lambda_{j}=(k-1)+\sum_{\substack{j \text { odd, } \\
1<j<i}} 2 k=(k-1)+k(i-3) \tag{5.43}\\
& \sum_{j=1}^{t} n_{j}=2 k+\sum_{j=2}^{q+1} 4 k=2 k+4 k q=2 k p \tag{5.44}\\
& \text { (i even) } \sum_{\substack{j \text { odd, } \\
j \leq i}} n_{j}=2 k+\sum_{\substack{j \text { odd, } \\
1<j \leq i}} 4 k=2 k(i-1) \tag{5.45}\\
& \text { (i even) } \sum_{\substack{j \text { even, } \\
j<i}} \lambda_{j}=\sum_{\substack{j \text { even, } \\
1<j<i}} 2 k=k(i-2) \tag{5.46}
\end{align*}
$$

$$
\begin{equation*}
\sum_{j>i} n_{j}=\sum_{j=i+1}^{q+1} 4 k=2 k(p+1-2 i) \tag{5.47}
\end{equation*}
$$

We obtain the following definitions of c_{i}, d_{i}, and h.

$$
\begin{gather*}
c_{i}= \begin{cases}0, & \text { if } i=1, \\
k(i-2)+\frac{i-3}{2}, & \text { if } i \text { is odd and } i>1, \\
k(2 p+3 i-4), & \text { if } i \text { is even. }\end{cases} \tag{5.48}\\
d_{i}= \begin{cases}2 k(p-1), & \text { if } i=1, \\
k(2 p-3 i)+\frac{i-3}{2}, & \text { if } i \text { is odd and } i>1, \\
k(4 p-i-2), & \text { if } i \text { is even. }\end{cases} \tag{5.49}\\
h(v, 1)= \begin{cases}H(v), & \text { if } v \text { is odd, } \\
H(v)+2 k(p-1), & \text { if } v \text { is even. }\end{cases} \tag{5.50}\\
h(v, i)=\left\{\begin{array}{ll}
L(v)+c_{i}, & \text { if } v \text { is odd, } \\
L(v)+d_{i}, & \text { if } v \text { is even, }
\end{array} \quad \text { for all } i \in \llbracket 2, q+1 \rrbracket .\right. \tag{5.51}
\end{gather*}
$$

We may combine formulas (5.1), (5.19), (5.48), (5.49), (5.50), and (5.51) to obtain a direct formula for $h(v, i)$, without reference to c_{i} or d_{i}. We give the formula statement in three parts: $i=1 ; i>1$ and i is odd; and $i>1$ and i is even.

$$
h(v, 1)= \begin{cases}(v-1) / 2, & \text { if } v \text { is odd } \tag{5.52}\\ 2 k p-(v / 2), & \text { if } v \text { is even and } 2 \leq v \leq k-3 \\ 2 k p-1-(v / 2), & \text { if } v \text { is even and } k-1 \leq v \leq 2 k-2 \\ 2 k p+1, & \text { if } v=2 k\end{cases}
$$

If i is odd and $i>1$, then
$h(v, i)= \begin{cases}k(i-2)+\frac{i-3}{2}, & \text { if } v=1, \\ k(i-1)-2+\frac{v+i}{2}, & \text { if } v \text { is odd and } 3 \leq v \leq k, \\ k(i-1)-1+\frac{i-v}{2}, & \text { if } v \text { is odd and } k+2 \leq v \leq 2 k-1,\end{cases}$
$h(v, i)= \begin{cases}k(2 p-3 i+4)+\frac{i-3}{2}, & \text { if } v=2, \\ k(2 p-3 i+3)+\frac{i-v+1}{2}, & \text { if } v \text { is even and } 4 \leq v \leq k-1, \\ k(2 p-3 i+3)+\frac{v+i-5}{2}, & \text { if } v \text { is even and } k+1 \leq v \leq 2 k,\end{cases}$
$h(v, i)= \begin{cases}k i+\frac{i-3}{2}, & \text { if } v=2 k+1, \\ k i-1+\frac{i-v}{2}, & \text { if } v \text { is odd and } 2 k+3 \leq v \leq 3 k, \\ k(i-2)-2+\frac{v+i}{2}, & \text { if } v \text { is odd and } 3 k+2 \leq v \leq 4 k-1,\end{cases}$
$h(v, i)= \begin{cases}k(2 p-3 i+2)+\frac{i-1}{2}, & \text { if } v=2 k+2, \\ k(2 p-3 i+2)+\frac{v+i-5}{2}, & \text { if } v \text { is even and } 2 k+4 \leq v \leq 3 k-1, \\ k(2 p-3 i+4)+\frac{i-v+1}{2}, & \text { if } v \text { is even and } 3 k+1 \leq v \leq 4 k .\end{cases}$
If i is even, then

$$
h(v, i)= \begin{cases}k(2 p+3 i-4), & \text { if } v=1 \tag{5.57}\\ k(2 p+3 i-3)+\frac{v-1}{2}, & \text { if } v \text { is odd and } 3 \leq v \leq k \\ k(2 p+3 i-3)-\frac{v-1}{2}, & \text { if } v \text { is odd and } k+2 \leq v \leq 2 k-1\end{cases}
$$

$$
\begin{align*}
& h(v, i)= \begin{cases}k(4 p-i+2), & \text { if } v=2, \\
k(4 p-i+1)+2-\frac{v}{2}, & \text { if } v \text { is even and } 4 \leq v \leq k-1, \\
k(4 p-i+1)-1+\frac{v}{2}, & \text { if } v \text { is even and } k+1 \leq v \leq 2 k,\end{cases} \tag{5.58}\\
& h(v, i)= \begin{cases}k(2 p+3 i-2), & \text { if } v=2 k+1, \\
k(2 p+3 i-2)-\frac{v-1}{2}, & \text { if } v \text { is odd and } 2 k+3 \leq v \leq 3 k, \\
k(2 p+3 i-4)+\frac{v-1}{2}, & \text { if } v \text { is odd and } 3 k+2 \leq v \leq 4 k-1, \\
k(4 p-i)+1, & \text { if } v=2 k+2, \\
k(4 p-i)-1+\frac{v}{2}, & \text { if } v \text { is even and } 2 k+4 \leq v \leq 3 k-1, \\
k(4 p-i+2)+2-\frac{v}{2}, & \text { if } v \text { is even and } 3 k+1 \leq v \leq 4 k .\end{cases} \tag{5.59}
\end{align*}
$$

We give two examples of this labeling construction: ρ^{+}-labelings of \mathcal{C}_{6}^{5} and \mathcal{C}_{14}^{5}. Observe that, in both examples, cycles are entwined in pairs by the labeling; this is caused by the need to use $C_{2 k} \biguplus C_{2 k}$-subgraphs of $\mathcal{C}_{2 k}^{p}$ in order to obtain the required α-labeling.

Example 5.11. Consider \mathcal{C}_{6}^{5}; this is the case $p=5$ and $k=3$. We exhibit a ρ^{+}-labeling generated by the Blinco-El-Zanati Construction as the base block for a purely cyclic design of order $4 k p+1=61$. This base block is shown in Figure 5.6; distinct cycles are shown in different colors for enhanced visibility. The cycles and their corresponding difference patterns are listed in Table 5.5.

Example 5.12. Consider \mathcal{C}_{14}^{5}; this is the case $p=5$ and $k=7$. We exhibit a ρ^{+}-labeling generated by the Blinco-El-Zanati Construction as the base block for a purely cyclic design of order $4 k p+1=141$. This base block is shown in Figure 5.7; distinct cycles are shown in different colors for enhanced visibility. The cycles and their corresponding difference patterns are listed in Table 5.6.

Figure 5.6: A Blinco-El-Zanati ρ^{+}-labeling of \mathcal{C}_{6}^{5}

Table 5.5: Cycle list for the ρ^{+}-labeling of \mathcal{C}_{6}^{5} in Figure 5.4

Graph $G_{1}=C_{6}:$ Cycle \mathfrak{C}_{1}	(lilac)					
$\mathfrak{C}_{1}=(0,28,1,27,2,31)$	28	$[27]$	26	$[25]$	29	30
Graph $G_{2}=C_{6} \biguplus C_{6}:$	Cycles	\mathfrak{C}_{2}	and \mathfrak{C}_{3}		(lime and jade)	
$\mathfrak{C}_{2}=(36,60,40,58,37,59)$	24	$[20]$	18	$[21]$	22	$[23]$
$\mathfrak{C}_{3}=(42,55,38,57,41,56)$	13	$[17]$	19	$[16]$	15	$[14]$
Graph $G_{3}=C_{6} \biguplus C_{6}:$ Cycles \mathfrak{C}_{4}	and \mathfrak{C}_{5}	$($ sky and cobalt)				
$\mathfrak{C}_{4}=(3,15,7,13,4,14)$	12	$[8]$	6	$[9]$	10	$[11]$
$\mathfrak{C}_{5}=(9,10,5,12,8,11)$	1	$[5]$	7	$[4]$	3	$[2]$

Figure 5.7: A Blinco-El-Zanati ρ^{+}-labeling of \mathcal{C}_{14}^{5}

Table 5.6: Cycle list for the ρ^{+}-labeling of \mathcal{C}_{14}^{5} in Figure 5.7

5.2 Complete Designs of Order $4 k p+1$ for Even k

In this and the two subsequent sections, we present our own constructions of base blocks for purely cyclic $\mathcal{C}_{2 k}^{p}$-designs on the graphs $K_{4 k p+1}$. These base blocks do, of course, induce ρ-labelings of $\mathcal{C}_{2 k}^{p}$, since the existence of such a base block is logically equivalent to the existence of a ρ-labeling of $\mathcal{C}_{2 k}^{p}$. We split our discussion into the same three cases we used to describe the constructions by Blinco and El-Zanati: (1) k is even; (2) k is odd and p is even; and (3) k is odd and p is odd. Each case occupies a separate section; in this section, we address the case that k is even. We conclude each section with comparative analysis of the constructions presented, namely, the construction by Blinco and El-Zanati and our own.

In each section, we describe our construction of a base block for a purely cyclic $\mathcal{C}_{2 k^{-}}^{p}$ design on $K_{4 k p+1}$ in three stages. We begin by partitioning the set of differences in $K_{4 k p+1}$; recall that this set of differences is $\mathcal{D}_{4 k p+1}=\llbracket 1,2 k p \rrbracket$. We then choose a pattern for each set of differences in the partition, and realize each pattern as a $C_{2 k}$-subgraph of $K_{4 k p+1}$. We form the $\mathcal{C}_{2 k}^{p}$-base block, B, as the disjoint union of these cycles.

5.2.1 Our Construction for Even k

Since k is even, there is some $m \in \mathbb{P}$ such that $k=2 m$. In order to form the $\mathcal{C}_{2 k}^{p}$ base block, we partition the set of differences into p subsets $\mathcal{S}_{1}, \ldots, \mathcal{S}_{p}$ of size $2 k=4 m$; each subset \mathcal{S}_{r} is used to form a cycle \mathfrak{C}_{r}, so that we obtain p vertex-disjoint cycles, as required. For each integer $r \in \llbracket 1, p \rrbracket$, the set \mathcal{S}_{r} is given by

$$
\begin{equation*}
\mathcal{S}_{r}=\llbracket 2(r-1) k+1,2 r k \rrbracket . \tag{5.61}
\end{equation*}
$$

In order to form the cycles, we use the differences in increasing order in alternating directions, except that we use the difference $(2 r-1) k$ last, to close the cycle. Using the differences in this way creates a zig-zag pattern between two sets of consecutive vertices, with a one-vertex skip in the center of one of the two sets. We use this difference pattern for each set \mathcal{S}_{r} to
generate the corresponding cycle \mathfrak{C}_{r}; the base block, B, is the disjoint union of these cycles. Further details of cycle formation depend on the parity of the index of the cycle, so we separate our discussion into two cases.

For each odd integer $r \in \llbracket 1, p \rrbracket$, we form cycle \mathfrak{C}_{r} from \mathcal{S}_{r} as follows. We use the difference pattern $\left\{d_{2 i-1}\left[d_{2 i}\right]\right\}_{i=1}^{k}$, where the differences are given by

$$
d_{j}= \begin{cases}2 k(r-1)+j, & \text { if } 1 \leq j \leq k-1 \tag{5.62}\\ 2 k(r-1)+j+1, & \text { if } k \leq j \leq 2 k-1 \\ 2 k(r-1)+k, & \text { if } j=2 k\end{cases}
$$

For each integer $j \in \llbracket 1,2 k \rrbracket$, we denote the j th term of cycle \mathfrak{C}_{r} by x_{j}. If $j=2 i$ is even, then

$$
\begin{equation*}
x_{j}=x_{2 i}=m(r-1)+i \tag{5.63}
\end{equation*}
$$

If $j=2 i-1$ is odd, then

$$
x_{j}=x_{2 i-1}= \begin{cases}m(8 p-3 r+3)-i+2, & \text { if } 1 \leq i \leq m \tag{5.64}\\ m(8 p-3 r+3)-i+1, & \text { if } m+1 \leq i \leq k\end{cases}
$$

Figure 5.8 shows a schematic diagram of the cycle \mathfrak{C}_{r} we have just defined (for odd r). In this diagram, odd-indexed vertices appear on the left, and even-indexed vertices appear on the right. In order to simplify the labels, we use $a=8 p-3 r+3$ in the diagram. We note that, in the case $r=1$, we have $a=8 p$, so the top vertex on the left is vertex 0 , and the top vertex on the right is vertex 1 .

Figure 5.8: Schematic diagram of cycle \mathfrak{C}_{r}, for r odd

Figure 5.9: Schematic diagram of cycle \mathfrak{C}_{r}, for r even

For each even integer $r \in \llbracket 1, p \rrbracket$, we form cycle \mathfrak{C}_{r} from \mathcal{S}_{r} as follows. We use the difference pattern $\left\{\left[d_{2 i-1}\right] d_{2 i}\right\}_{i=1}^{k}$, where the differences are given by

$$
d_{j}= \begin{cases}2 k(r-1)+j, & \text { if } 1 \leq j \leq k-1 \tag{5.65}\\ 2 k(r-1)+j+1, & \text { if } k \leq j \leq 2 k-1 \\ 2 k(r-1)+k, & \text { if } j=2 k\end{cases}
$$

For each integer $j \in \llbracket 1,2 k \rrbracket$, we denote the j th term of cycle \mathfrak{C}_{r} by x_{j}.
If $j=2 i$ is even, then

$$
\begin{equation*}
x_{j}=x_{2 i}=m(2 p-r+2)-i+1 . \tag{5.66}
\end{equation*}
$$

If $j=2 i-1$ is odd, then

$$
x_{j}=x_{2 i-1}= \begin{cases}m(2 p+3 r-2)+i, & \text { if } 1 \leq i \leq m \tag{5.67}\\ m(2 p+3 r-2)+i+1, & \text { if } m+1 \leq i \leq k\end{cases}
$$

Figure 5.9 shows a schematic diagram of the cycle \mathfrak{C}_{r} we have just defined (for even r). In this diagram, odd-indexed vertices appear on the left, and even-indexed vertices appear on the right. In order to simplify the labels, we use $a=2 p-r+2$ and $b=2 p+3 r-2$ in the diagram.

We form the base block B by defining $B=\biguplus_{r=1}^{p} \mathfrak{C}_{r}$. This completes the construction.
Theorem 5.13. The subgraph B of $K_{4 k p+1}$ generated by the above construction is a base block for a purely cyclic $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p+1}$, and hence exhibits a ρ-labeling of $\mathcal{C}_{2 k}^{p}$. There is therefore a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p+1}$ for each pair of integers p and k such that $p \geq 2$, $k \geq 2$, and k is even.

Proof. It is clear from the construction that each difference in $\mathcal{D}_{4 k p+1}$ occurs on exactly one edge in the subgraph B, and that each cycle in B has length $2 k$. It remains to verify that the cycles $\mathfrak{C}_{1}, \ldots, \mathfrak{C}_{p}$ in B are pairwise vertex-disjoint.

For $r \in \llbracket 1, p \rrbracket$, define

$$
\alpha(r)= \begin{cases}\frac{1}{2}(r+1), & \text { if } r \text { is odd } \tag{5.68}\\ p+1-\frac{r}{2}, & \text { if } r \text { is even }\end{cases}
$$

and

$$
\beta(r)= \begin{cases}4 p-\frac{3}{2}(r-1), & \text { if } r \text { is odd } \tag{5.69}\\ p+\frac{3}{2} r, & \text { if } r \text { is even }\end{cases}
$$

Then, for $r \in \llbracket 1, p \rrbracket$, cycle \mathfrak{C}_{r} alternates between vertices in the sets

$$
\begin{equation*}
U_{r}=\{u \in \mathbb{Z} \mid(\alpha(r)-1) k+1 \leq u \leq \alpha(r) k\} \tag{5.70}
\end{equation*}
$$

and

$$
V_{r}=\left\{\begin{array}{l|c}
v \in \mathbb{Z} & (\beta(r)-1) k+1 \leq v \leq \beta(r) k+1 \tag{5.71}\\
v \neq\left(\beta(r)-\frac{1}{2}\right) k+1
\end{array}\right\} .
$$

We observe that, if r is odd, then

$$
\begin{equation*}
1 \leq \alpha(r) \leq\left\lceil\frac{p}{2}\right\rceil \tag{5.72}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{5}{2} p+\frac{3}{2}+\frac{3}{2}\left(\left\lceil\frac{p-1}{2}\right\rceil-\left\lfloor\frac{p-1}{2}\right\rfloor\right) \leq \beta(r) \leq 4 p . \tag{5.73}
\end{equation*}
$$

If r is even, then

$$
\begin{equation*}
\left\lceil\frac{p}{2}\right\rceil+1 \leq \alpha(r) \leq p \tag{5.74}
\end{equation*}
$$

and

$$
\begin{equation*}
p+3 \leq \beta(r) \leq \frac{5}{2} p-\frac{3}{2}\left(\left\lceil\frac{p}{2}\right\rceil-\left\lfloor\frac{p}{2}\right\rfloor\right) . \tag{5.75}
\end{equation*}
$$

Each set U_{r} is a set of k consecutive integers, which contains a unique multiple of k, namely $\alpha(r) k$. Each set V_{r} is a set of k integers among $k+1$ consecutive integers, and each set V_{r} contains a unique multiple of k, namely $\beta(r) k$. In order to show that two sets U_{r} and $U_{r^{*}}$ are disjoint, it suffices to show that $\alpha(r) \neq \alpha\left(r^{*}\right)$. In order to show that two sets V_{r} and $V_{r^{*}}$ are disjoint, it suffices to show that $\left|\beta(r)-\beta\left(r^{*}\right)\right|>1$. In order to show that two sets U_{r} and $V_{r^{*}}$ are disjoint, it suffices to show that $\left|\alpha(r)-\beta\left(r^{*}\right)\right|>1$.

CLAim 1: If $r, r^{*} \in \llbracket 1, p \rrbracket$ such that $r \neq r^{*}$, then U_{r} and $U_{r^{*}}$ are disjoint.

Proof of Claim 1: Suppose that $r, r^{*} \in \llbracket 1, p \rrbracket$ such that $r \neq r^{*}$. If r and r^{*} have the same parity, then $\alpha(r) \neq \alpha\left(r^{*}\right)$ by formula (5.68), since $r \neq r^{*}$. If r and r^{*} have different parity, then the inequalities (5.72) and (5.74) guarantee that $\alpha(r) \neq \alpha\left(r^{*}\right)$. Hence U_{r} and $U_{r^{*}}$ are disjoint.

CLAIM 2: If $r, r^{*} \in \llbracket 1, p \rrbracket$ such that $r \neq r^{*}$, then V_{r} and $V_{r^{*}}$ are disjoint.

Proof of Claim 2: Suppose that $r, r^{*} \in \llbracket 1, p \rrbracket$ such that $r \neq r^{*}$. If r and r^{*} have the same parity, then $\left|\beta(r)-\beta\left(r^{*}\right)\right| \geq 3$ by formula (5.69), since $r \neq r^{*}$. If r and r^{*} have different parity, then suppose, without loss of generality, that r is odd and r^{*} is even; then, by inequalities (5.73) and (5.75), we have that

$$
\beta\left(r^{*}\right) \leq \frac{5}{2} p-\frac{3}{2}\left(\left\lceil\frac{p}{2}\right\rceil-\left\lfloor\frac{p}{2}\right\rfloor\right)
$$

and

$$
\frac{5}{2} p+\frac{3}{2}+\frac{3}{2}\left(\left\lceil\frac{p-1}{2}\right\rceil-\left\lfloor\frac{p-1}{2}\right\rfloor\right) \leq \beta(r) .
$$

Since

$$
\frac{5}{2} p+\frac{3}{2}+\frac{3}{2}\left(\left\lceil\frac{p-1}{2}\right\rceil-\left\lfloor\frac{p-1}{2}\right\rfloor\right)-\left(\frac{5}{2} p-\frac{3}{2}\left(\left\lceil\frac{p}{2}\right\rceil-\left\lfloor\frac{p}{2}\right\rfloor\right)\right)=3
$$

we have that $\left|\beta(r)-\beta\left(r^{*}\right)\right| \geq 3$. Hence V_{r} and $V_{r^{*}}$ are disjoint.

Claim 3: If $r, r^{*} \in \llbracket 1, p \rrbracket$ such that $r \neq r^{*}$, then U_{r} and $V_{r^{*}}$ are disjoint, and $U_{r^{*}}$ and V_{r} are disjoint.

Proof of Claim 3: Suppose that $r, r^{*} \in \llbracket 1, p \rrbracket$ such that $r \neq r^{*}$. The inequalities (5.72) through (5.75) guarantee that $\alpha(r), \alpha\left(r^{*}\right) \leq p$ and $\beta(r), \beta\left(r^{*}\right) \geq p+3$, so $\left|\alpha(r)-\beta\left(r^{*}\right)\right| \geq 3$ and $\left|\alpha\left(r^{*}\right)-\beta(r)\right| \geq 3$; hence U_{r} and $V_{r^{*}}$ are disjoint, and $U_{r^{*}}$ and V_{r} are disjoint.

We have shown that, for $r, r^{*} \in \llbracket 1, p \rrbracket$ such that $r \neq r^{*}$, the sets $U_{r}, U_{r^{*}}, V_{r}$, and $V_{r^{*}}$ are pairwise disjoint; therefore cycles \mathfrak{C}_{r} and $\mathfrak{C}_{r^{*}}$ are vertex-disjoint, as desired.

We give examples of our construction that parallel the examples given in subsection 5.1.1 in order to facilitate comparisons between the two constructions. We make such comparisons after the examples.

Example 5.14. We consider \mathcal{C}_{12}^{4}; for this graph, we have $p=4$ and $k=6$, so $4 k p+1=97$. The cycles in the base block and the difference patterns that generate them are listed in Table 5.7; the base block itself is shown in Figure 5.10.

Example 5.15. We consider \mathcal{C}_{16}^{5}; for this graph, we have $p=5$ and $k=8$, so $4 k p+1=161$. The cycles in the base block and the difference patterns that generate them are listed in Table 5.8; the base block itself is shown in Figure 5.11.

Table 5.7: Cycle list for the \mathcal{C}_{12}^{4} base block in Figure 5.10

Cycle $\mathfrak{C}_{1} \quad$ (cobalt)										
$\begin{array}{lllllllllllll}{[2]} & 3 & {[4]} & 5 & {[7]} & 8 & {[9]} & 10 & {[11]} & 12 & {[6]}\end{array}$										
$\mathfrak{C}_{1}=(0,1,96,2,95,3,93,4,92,5,91,6)$										
Cycle $\mathfrak{C}_{2} \quad$ (red)										
$\begin{array}{llllllllllll} {[13]} & 14 & {[15]} & 16 & {[17]} & 19 & {[20]} & 21 & {[22]} & 23 & {[24]} & 18 \\ \mathfrak{C}_{2}=(37,24,38,23,39,22,41,21,42,20,43,19) \end{array}$										
Cycle $\mathfrak{C}_{3} \quad$ (forest)										
$\begin{array}{llllllllllll} 25 & {[26]} & 27 & {[28]} & 29 & {[31]} & 32 & {[33]} & 34 & {[35]} & 36 & {[30]} \\ \mathfrak{C}_{3}=(79,7,78,8,77,9,75,10,74,11,73,12) \end{array}$										
Cycle $\mathfrak{C}_{4} \quad$ (fuchsia)										
[37] 38 [39] 40 [41] 43 [44] 45										
$\mathfrak{C}_{4}=(55,18,56,17,57,16,59,15,60,14,61,13)$										

Figure 5.10: The \mathcal{C}_{12}^{4} base block from Example 5.14

Table 5.8: Cycle list for the \mathcal{C}_{16}^{5} base block in Figure 5.11

Cycle $\mathfrak{C}_{1} \quad$ (cobalt)	
$\begin{array}{llllllllllllllll} \hline 1 & {[2]} & 3 & {[4]} & 5 & {[6]} & 7 & {[9]} & 10 & {[11]} & 12 & {[13]} & 14 & {[15]} & 16 & {[8]} \\ \mathfrak{C}_{1}=(0,1, & 160, & 2,159, & 3, & 158, & 4, & 156,5, & 155, & 6, & 154, & 7, & 153, & 8) \end{array}$	
Cycle $\mathfrak{C}_{2} \quad$ (red)	
$\begin{array}{lllllllllllll} \hline[17] & 18 & {[19]} & 20 & {[21]} & 22 & {[23]} & 25 & {[26]} & 27 & {[28]} & 29 & {[30]} \\ \mathfrak{C}_{2}= & (57,40,58,39,59,38,60,37, & 62,36,63,35, & 64,34, & 65,33) \end{array}$	
Cycle $\mathfrak{C}_{3} \quad$ (forest)	
$\begin{array}{lcccccccccccccc} \hline 33 & {[34]} & 35 & {[36]} & 37 & {[38]} & 39 & {[41]} & 42 & {[43]} & 44 & {[45]} & 46 & {[47]} & 48 \\ \mathfrak{C}_{3}= & (137,9,136,10,135,11,134,12,132,13,131,14, & 130,15, & 129,16) \end{array}$	
Cycle $\mathfrak{C}_{4} \quad$ (fuchsia)	
Cycle $\mathfrak{C}_{5} \quad$ (orange)	
$\begin{array}{lcccccccccccccc} 65 & {[66]} & 67 & {[68]} & 69 & {[70]} & 71 & {[73]} & 74 & {[75]} & 76 & {[77]} & 78 & {[79]} & 80 \\ \mathfrak{C}_{5}=(113,17,112,18,111,19,110,20,108, & 21,107, & 22,106, & 23, & 105, & 24) \end{array}$	

Figure 5.11: The \mathcal{C}_{16}^{5} base block from Example 5.15

5.2.2 Comparative Analysis for Even k

We observe that our construction of a $\mathcal{C}_{2 k}^{p}$ base block in the case that k is even is highly similar to the construction by Blinco and El-Zanati. We have reproduced (at a reduced size) in Figure 5.12 the images of the base blocks from Examples 5.7, 5.14, 5.8, and 5.15, to facilitate direct visual comparison.

Remark 5.16. We can obtain a σ^{++}-labeling both from the σ^{+}-labeling constructed by Blinco and El-Zanati and from our base block, which induces a σ-labeling. This is achieved in a simple way: by adding a constant to all vertex labels, which has the effect of rotating the base blocks.

Recall that, in the construction by Blinco and El-Zanati, we take $G_{i}=C_{2 k}$ for each $i \in \llbracket 1, p \rrbracket$, and we take G_{i} to have vertex set $\llbracket 1,2 k \rrbracket \times\{i\}$ with bipartition $\left[A_{i}, B_{i}\right]$, where $A_{i}=\left\{(a, i) \in V\left(G_{i}\right) \mid a\right.$ is odd $\}$ and $B_{i}=\left\{(b, i) \in V\left(G_{i}\right) \mid b\right.$ is even $\} . G$ is then assumed to have bipartition $[A, B]$, where A and B are obtained from the bipartitions $\left[A_{i}, B_{i}\right]$ of the graphs G_{i} by

$$
A=\bigcup_{i=1}^{p} A_{i} \text { and } B=\bigcup_{i=1}^{p} B_{i}
$$

We also consider two additional bipartitions of G : the bipartition $[B, A]$, with A and B defined as above, and the $\left[A^{*}, B^{*}\right]$, where

$$
A^{*}=\bigcup_{\substack{i \text { odd, } \\ 1 \leq i \leq p}} A_{i} \cup \bigcup_{\substack{i \text { even, } \\ 1 \leq i \leq p}} B_{i} \quad \text { and } \quad B^{*}=\bigcup_{\substack{i \text { odd, } \\ 1 \leq i \leq p}} B_{i} \cup \bigcup_{\substack{i \text { even, } \\ 1 \leq i \leq p}} A_{i}
$$

The construction by Blinco and El-Zanati produces a σ^{+}-labeling of $G=\mathcal{C}_{2 k}^{p}$ on bipartition $[A, B]$. If we use instead bipartition $\left[A^{*}, B^{*}\right]$ and add $(k+1) \cdot\lfloor p / 2\rfloor$ to each vertex label, with computations done modulo $(4 k p+1)$, we obtain a σ^{++}-labeling of $\mathcal{C}_{2 k}^{p}$ with critical value $\lambda=k p-1+\lfloor p / 2\rfloor$.

Our base block, as given, induces a σ-labeling of $G=\mathcal{C}_{2 k}^{p}$ that is not a σ^{+}-labeling for any of the three bipartitions we have defined. If we take G to have bipartition $[B, A]$, then

Figure 5.12: Small reproductions of \mathcal{C}_{12}^{4} and \mathcal{C}_{16}^{5} base blocks from Examples 5.7, 5.14, 5.8, and 5.15
by subtracting 1 from each vertex label, again computing modulo ($4 k p+1$), we obtain a σ^{++}-labeling of $\mathcal{C}_{2 k}^{p}$ having critical value $\lambda=k p-1$.

For \mathcal{C}_{12}^{4}, we see that the red and fuchsia cycles are configured identically in the two base blocks, so that an appropriate rotation of one base block aligns these cycles with their counterparts in the other base block; this is not the case with the cobalt and forest cycles. We can transform one block into another visually by first reflecting the half of K_{97} containing the cobalt and forest cycles over an appropriate line, then rotating the cobalt and forest cycles into correct positions, and then rotating the entire block. We can accomplish these changes within the construction by Blinco and El-Zanati by trading the α-labeling L_{3} of $C_{2 k}$ for the labeling L_{1} on the forest and cobalt cycles and inverting the order in which the four cycles occur. The inversion of the cycle order is required because the cycle order is fuchsia, forest, red, cobalt, in the base block by Blinco and El-Zanati, while the order is cobalt, red, forest, fuchsia, in our base block. We describe how to achieve this in general for the case in which k and p are both even, thereby producing the labeling induced by our base block from the construction by Blinco and El-Zanati.

Remark 5.17. Let p and k be positive even integers, each at least two. Let $m, q \in \mathbb{P}$ such that $k=2 m$ and $p=2 q$. Let ψ denote the ρ-labeling of $\mathcal{C}_{2 k}^{p}=\mathcal{C}_{4 m}^{2 q}$ induced by the base block described in Theorem 5.13. Let h be as given in equation (5.6) in the construction for Theorem 5.4, and apply this construction to $G=\mathcal{C}_{2 k}^{p}$ with $G_{i}=C_{2 k}$ for all $i \in \llbracket 1, p \rrbracket$, setting $h_{i}=L_{3}$ for all odd $i \in \llbracket 1, p \rrbracket$ and $h_{i}=L_{1}$ for all even $i \in \llbracket 1, p \rrbracket$. Then

$$
\psi(u, j)= \begin{cases}h(u, p-j)+m q+1, & \text { if } j \text { is odd } \tag{5.76}\\ h(2 k+1-u, p-j)+m q+1, & \text { if } j \text { is even }\end{cases}
$$

for all $(u, j) \in V\left(\mathcal{C}_{2 k}^{p}\right)$, with computations done modulo $(4 k p+1)$.

For \mathcal{C}_{16}^{5}, we see that, in order to transform one block into another, we must reflect the entire half of K_{161} containing the red and fuchsia cycles over an appropriate line, rotate
the red and fuchsia cycles into correct positions, and then rotate the entire block. We can accomplish these changes within the construction by Blinco and El-Zanati by trading the α-labeling L_{3} of $C_{2 k}$ for the labeling L_{1} on the red and fuchsia cycles and inverting the order in which the five cycles occur. The inversion of the cycle order is required because the cycle order is orange, fuchsia, forest, red, cobalt in the base block by Blinco and El-Zanati, while the order is cobalt, red, forest, fuchsia, orange, in our base block. We describe how to achieve this in general for the case in which k is even and p is odd, thereby producing the labeling induced by our base block from the construction by Blinco and El-Zanati.

Remark 5.18. Let p and k be positive integers, each at least two, such that k is even and p is odd. Let $m, q \in \mathbb{P}$ such that $k=2 m$ and $p=2 q+1$. Let ψ denote the ρ^{+}-labeling of $\mathcal{C}_{2 k}^{p}=\mathcal{C}_{4 m}^{2 q}$ induced by the base block described in Theorem 5.13. Let h be as given in equation (5.6) in the construction for Theorem 5.4, and apply this construction to $G=\mathcal{C}_{2 k}^{p}$ with $G_{i}=C_{2 k}$ for all $i \in \llbracket 1, p \rrbracket$, setting $h_{i}=L_{3}$ for all odd $i \in \llbracket 1, p \rrbracket$ and $h_{i}=L_{1}$ for all even $i \in \llbracket 1, p \rrbracket$. Then

$$
\psi(u, j)= \begin{cases}2 m(q+1)-h(2 k+1-u, p-j), & \text { if } j \text { is odd } \tag{5.77}\\ 2 m(q+1)-h(u, p-j), & \text { if } j \text { is even }\end{cases}
$$

for all $(u, j) \in V\left(\mathcal{C}_{2 k}^{p}\right)$, with computations done modulo $(4 k p+1)$.

We conclude that the construction by Blinco and El-Zanati and our construction are essentially the same in the case that k is even, and that both constructions would benefit from the small modifications that are necessary to produce the σ^{++}-labeling directly.

5.3 Complete Designs of Order $4 k p+1$ for Odd k and Even p

In this section, we present base block constructions for $\mathcal{C}_{2 k}^{p}$ in the case that k is odd and p is even. There are two variations on the constructions presented in this section. The first variation is limited in two significant ways: first, we achieve $\mathcal{C}_{2 k}^{p}$ base blocks only for
$p \in\{2,4,6,8\}$; second, the general description of the construction applies only to values of k such that $k>p+4$, and the smaller cases must be adapted individually. We altered these constructions in a slight but significant way to produce the second variation, which gives a single construction for the entire case that k is odd and p is even.

5.3.1 Our Construction for Odd k and Even p, Variation I

Since p is even, there is some $q \in \mathbb{P}$ such that $p=2 q$. In order to form the $\mathcal{C}_{2 k}^{p}$ base block, we partition the set of differences into p subsets $\mathcal{S}_{1}, \ldots, \mathcal{S}_{p}$ of size $2 k$; each subset \mathcal{S}_{r} is used to form a cycle \mathfrak{C}_{r}, so that we obtain p vertex-disjoint cycles, as required. For small values of k, namely those such that $k<p+4$, the general construction must be adapted slightly; we describe the general construction for $k>p+4$ first. We emphasize that this construction applies only to $p \in\{2,4,6,8\}$.

We first reserve the differences in the set $D=\llbracket 1, p \rrbracket \cup \llbracket k, k+p-1 \rrbracket$ for use in closing the cycles. We then assign the remaining differences, in consecutive pairs, to the sets in the partition in a descending, alternating pattern that assigns larger differences to sets with smaller indices, so that the pairs $\{k-2, k-1\}$ and $\{k+p, k+p+1\}$ are assigned to different sets. The sets \mathcal{S}_{p-1} and \mathcal{S}_{p} and their corresponding cycles are special in this construction; if $p \geq 4$, then there are at least two other sets; we define these other sets first. Recall that $p=2 q$. For all $z \in \llbracket 1, q-1 \rrbracket$, we define sets $\mathcal{S}_{2 z-1}$ and $\mathcal{S}_{2 z}$ by

$$
\begin{gather*}
\mathcal{S}_{2 z-1}=\{2 z-1, k+2 z-2\} \cup\{4(q+1-z) k+4 z-4 i \mid i \in \llbracket 1, k-1 \rrbracket\} \\
\cup\{4(q+1-z) k+4 z-1-4 i \mid i \in \llbracket 1, k-1 \rrbracket\} \tag{5.78}
\end{gather*}
$$

and

$$
\begin{gather*}
\mathcal{S}_{2 z}=\{2 z, k+2 z-1\} \cup\{4(q+1-z) k+4 z-2-4 i \mid i \in \llbracket 1, k-1 \rrbracket\} \\
\cup\{4(q+1-z) k+4 z-3-4 i \mid i \in \llbracket 1, k-1 \rrbracket\} . \tag{5.79}
\end{gather*}
$$

For all $z \in \llbracket 1, q-1 \rrbracket$, we use the differences in set $\mathcal{S}_{2 z-1}$ in the pattern $\left\{d_{2 i-1}\left[d_{2 i}\right]\right\}_{i=1}^{k}$, where

$$
d_{2 i-1}= \begin{cases}4(q+1-z) k+4 z-4 i, & \text { if } 1 \leq i \leq k-1 \tag{5.80}\\ 2 z-1, & \text { if } i=k\end{cases}
$$

and

$$
d_{2 i}= \begin{cases}4(q+1-z) k+4 z-1-4 i, & \text { if } 1 \leq i \leq k-1 \tag{5.81}\\ k+2 z-2, & \text { if } i=k\end{cases}
$$

We form cycle $\mathfrak{C}_{2 z-1}$ from set $\mathcal{S}_{2 z-1}$ as follows. For each integer $j \in \llbracket 1,2 k \rrbracket$, we denote the j th term of cycle $\mathfrak{C}_{2 z-1}$ by x_{j}.

If $j=2 i-1$ is odd, then

$$
\begin{equation*}
x_{j}=x_{2 i-1}=(z-1)(k+z)-z+i \tag{5.82}
\end{equation*}
$$

If $j=2 i$ is even, then

$$
x_{j}=x_{2 i}= \begin{cases}2 k p-3 k(z-1)+z(z+2)-3 i, & \text { if } 1 \leq i \leq k-1 \tag{5.83}\\ z(k+z)-1, & \text { if } i=k\end{cases}
$$

For all $z \in \llbracket 1, q-1 \rrbracket$, we use the differences in set $\mathcal{S}_{2 z}$ in the pattern $\left\{\left[d_{2 i-1}\right] \quad d_{2 i}\right\}_{i=1}^{k}$, where

$$
d_{2 i-1}= \begin{cases}4(q+1-z) k+4 z-2-4 i, & \text { if } 1 \leq i \leq k-1 \tag{5.84}\\ 2 z, & \text { if } i=k\end{cases}
$$

and

$$
d_{2 i}= \begin{cases}4(q+1-z) k+4 z-3-4 i, & \text { if } 1 \leq i \leq k-1 \tag{5.85}\\ k+2 z-1, & \text { if } i=k\end{cases}
$$

We form cycle $\mathfrak{C}_{2 z}$ from set $\mathcal{S}_{2 z}$ as follows. For each integer $j \in \llbracket 1,2 k \rrbracket$, we denote the j th term of cycle $\mathfrak{C}_{2 z}$ by x_{j}.

If $j=2 i-1$ is odd, then

$$
\begin{equation*}
x_{j}=x_{2 i-1}=4 k p-k(z-1)-\frac{3}{2} z(z-1)-i+1 \tag{5.86}
\end{equation*}
$$

If $j=2 i$ is even, then

$$
x_{j}=x_{2 i}= \begin{cases}2 k p+3 k(z-1)-\frac{1}{2} z(3 z+5)+3(i+1), & \text { if } 1 \leq i \leq k-1 \tag{5.87}\\ 4 k p-z k-\frac{1}{2} z(3 z+1)+1, & \text { if } i=k\end{cases}
$$

The last two sets of differences, \mathcal{S}_{p-1} and \mathcal{S}_{p}, and their corresponding difference patterns and cycles differ slightly in two cases, according to whether $k \equiv 3(\bmod 4)$ or $k \equiv 1(\bmod 4)$. We address the subtle differences in these two cases by defining two new parameters, η and θ, for use in the formulas. We define

$$
\eta(k)= \begin{cases}3 a+\left\lceil\frac{p+1}{4}\right\rceil, & \text { if } k \equiv 3(\bmod 4) \tag{5.88}\\ 3 b+\left\lfloor\frac{p-1}{4}\right\rfloor, & \text { if } k \equiv 1(\bmod 4)\end{cases}
$$

and

$$
\theta(k)= \begin{cases}3 a+\left\lfloor\frac{p+3}{4}\right\rceil, & \text { if } k \equiv 3(\bmod 4) \tag{5.89}\\ 3 b+\left\lfloor\frac{p+1}{4}\right\rfloor, & \text { if } k \equiv 1(\bmod 4)\end{cases}
$$

We now define the sets \mathcal{S}_{p-1} and \mathcal{S}_{p}, their difference patterns, and the cycles \mathfrak{C}_{p-1} and \mathfrak{C}_{p} for all odd values of k such that $k>p+4$. We define sets \mathcal{S}_{p-1} and \mathcal{S}_{p} by

$$
\begin{gather*}
\mathcal{S}_{p-1}=\{p-1, k+p-2\} \cup\{4 k+2 p-4 i, 4 k+2 p-1-4 i \mid i \in \llbracket 1, \eta(k)+1 \rrbracket\} \\
\cup\{4 k+p-4 i, 4 k+p-1-4 i \mid i \in \llbracket \eta(k)+2, k-1 \rrbracket\} \tag{5.90}
\end{gather*}
$$

and

$$
\begin{gather*}
\mathcal{S}_{p}=\{p, k+p-1\} \cup\{4 k+2 p-2-4 i, 4 k+2 p-3-4 i \mid i \in \llbracket 1, \eta(k)+1 \rrbracket\} \\
\cup\{4 k+p-2-4 i, 4 k+p-3-4 i \mid i \in \llbracket \eta(k)+2, k-1 \rrbracket\} \tag{5.91}
\end{gather*}
$$

We use the differences in set \mathcal{S}_{p-1} in the pattern $\left\{d_{2 i-1}\left[d_{2 i}\right]\right\}_{i=1}^{k}$, where

$$
d_{2 i-1}= \begin{cases}4 k+2 p-4 i, & \text { if } 1 \leq i \leq \eta(k)+1 \tag{5.92}\\ 4 k+p-4 i, & \text { if } \eta(k)+2 \leq i \leq k-1 \\ p-1, & \text { if } i=k\end{cases}
$$

and

$$
d_{2 i}= \begin{cases}4 k+2 p-1-4 i, & \text { if } 1 \leq i \leq \eta(k)+1 \tag{5.93}\\ 4 k+p-1-4 i, & \text { if } \eta(k)+2 \leq i \leq k-1 \\ k+p-2, & \text { if } i=k\end{cases}
$$

We form cycle \mathfrak{C}_{p-1} from set \mathcal{S}_{p-1} as follows. For each integer $j \in \llbracket 1,2 k \rrbracket$, we denote the j th term of cycle \mathfrak{C}_{p-1} by x_{j}.

If $j=2 i-1$ is odd, then

$$
\begin{equation*}
x_{j}=x_{2 i-1}=(q-1) k+\frac{1}{6}\left(q^{3}-q\right)-1+i . \tag{5.94}
\end{equation*}
$$

If $j=2 i$ is even, then

$$
x_{j}=x_{2 i}= \begin{cases}(q+3) k+\frac{1}{6}\left(q^{3}+23 q\right)-1-3 i, & \text { if } 1 \leq i \leq \eta(k)+1 \tag{5.95}\\ (q+3) k+\frac{1}{6}\left(q^{3}+11 q\right)-1-3 i, & \text { if } \eta(k)+2 \leq i \leq k-1 \\ q k+\frac{1}{6}\left(q^{3}+11 q\right)-2, & \text { if } i=k\end{cases}
$$

We use the differences in set \mathcal{S}_{p} in the pattern $\left\{\left[d_{2 i-1}\right] d_{2 i}\right\}_{i=1}^{k}$, where

$$
d_{2 i-1}= \begin{cases}4 k+2 p-2-4 i, & \text { if } 1 \leq i \leq \theta(k) \tag{5.96}\\ 4 k+p-2-4 i, & \text { if } \theta(k)+1 \leq i \leq k-1 \\ p, & \text { if } i=k,\end{cases}
$$

and

$$
d_{2 i}= \begin{cases}4 k+2 p-3-4 i, & \text { if } 1 \leq i \leq \theta(k) \tag{5.97}\\ 4 k+p-3-4 i, & \text { if } \theta(k)+1 \leq i \leq k-1 \\ k+p-1, & \text { if } i=k\end{cases}
$$

We form cycle \mathfrak{C}_{p} from set \mathcal{S}_{p} as follows. For each integer $j \in \llbracket 1,2 k \rrbracket$, we denote the j th term of cycle \mathfrak{C}_{p} by x_{j}.

If $j=2 i-1$ is odd, then

$$
\begin{equation*}
x_{j}=x_{2 i-1}=(7 q+1) k+\frac{1}{2}\left(3 q-3 q^{2}\right)+1-i \tag{5.98}
\end{equation*}
$$

If $j=2 i$ is even, then

$$
x_{j}=x_{2 i}= \begin{cases}(7 q-3) k-\frac{1}{2}\left(5 q+3 q^{2}\right)+3+3 i, & \text { if } 1 \leq i \leq \theta(k), \tag{5.99}\\ (7 q-3) k-\frac{1}{2}\left(q+3 q^{2}\right)+3+3 i, & \text { if } \theta(k)+1 \leq i \leq k-1, \\ 7 q k-\frac{1}{2}\left(q+3 q^{2}\right)+1, & \text { if } i=k\end{cases}
$$

We form the base block B by defining $B=\biguplus_{r=1}^{p} \mathfrak{C}_{r}$. This completes the construction.
Theorem 5.19. The subgraph B of $K_{4 k p+1}$ generated by the above construction is a base block for a purely cyclic $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p+1}$, and hence exhibits a ρ-labeling of $\mathcal{C}_{2 k}^{p}$.
There is therefore a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p+1}$ for each pair of integers p and k such that $p \in\{2,4,6,8\}, k$ is odd, and $k>p+4$.

Proof. It is clear from the construction that each difference in $\mathcal{D}_{4 k p+1}$ occurs on exactly one edge in the subgraph B, and that each cycle in B has length $2 k$. It remains to verify that the cycles $\mathfrak{C}_{1}, \ldots, \mathfrak{C}_{p}$ in B are pairwise vertex-disjoint. We will exhibit, separately for each value of p, sets V_{r} such that, for each $r \in \llbracket 1, p \rrbracket$, the vertices of \mathfrak{C}_{r} are all elements of the set V_{r}. For $p=2$, the sets are $V_{1}=\llbracket 0,4 k \rrbracket$ and $V_{2}=\llbracket 4 k+2,8 k \rrbracket$.

For $p=4$, the sets are

$$
\begin{aligned}
& V_{1}=\llbracket 0, k \rrbracket \cup \llbracket 5 k+6,8 k \rrbracket, \\
& V_{2}=\llbracket 8 k+2,11 k-7 \rrbracket \cup\{11 k-4\} \cup \llbracket 15 k-1,16 k \rrbracket, \\
& V_{3}=\llbracket k+1,2 k+3 \rrbracket \cup \llbracket 2 k+7,5 k+5 \rrbracket, \text { and } \\
& V_{4}=\{11 k-5\} \cup \llbracket 11 k-2,15 k-3 \rrbracket .
\end{aligned}
$$

For $p=6$, the sets are

$$
\begin{aligned}
& V_{1}=\llbracket 0, k \rrbracket \cup \llbracket 9 k+6,12 k \rrbracket, \\
& V_{2}=\llbracket 12 k+2,15 k-7 \rrbracket \cup\{15 k-4\} \cup \llbracket 23 k-1,24 k \rrbracket, \\
& V_{3}=\llbracket k+1,2 k+3 \rrbracket \cup\{6 k+11\} \cup \llbracket 6 k+14,9 k+5 \rrbracket, \\
& V_{4}=\{15 k-5\} \cup \llbracket 15 k-2,18 k-17 \rrbracket \cup\{18 k-14,18 k-11\} \cup \llbracket 22 k-6,23 k-3 \rrbracket, \\
& V_{5}=\llbracket 2 k+4,6 k+9 \rrbracket \cup\{6 k+12\}, \text { and }
\end{aligned}
$$

$$
V_{6}=\{18 k-15,18 k-12\} \cup \llbracket 18 k-9,22 k-9 \rrbracket .
$$

For $p=8$, the sets are

$$
\begin{aligned}
& V_{1}=\llbracket 0, k \rrbracket \cup \llbracket 13 k+6,16 k \rrbracket, \\
& V_{2}=\llbracket 16 k+2,19 k-7 \rrbracket \cup\{19 k-4\} \cup \llbracket 31 k-1,32 k \rrbracket, \\
& V_{3}=\llbracket k+1,2 k+3 \rrbracket \cup\{10 k+11\} \cup \llbracket 10 k+14,13 k+5 \rrbracket, \\
& V_{4}=\{19 k-5\} \cup \llbracket 19 k-2,22 k-17 \rrbracket \cup\{22 k-14,22 k-11\} \cup \llbracket 30 k-6,31 k-3 \rrbracket, \\
& V_{5}=\llbracket 2 k+4,3 k+8 \rrbracket \cup\{7 k+18,7 k+21\} \cup \llbracket 7 k+24,10 k+9 \rrbracket \cup\{10 k+12\} \\
& V_{6}=\{22 k-15,22 k-12\} \cup \llbracket 22 k-9,25 k-30 \rrbracket \\
& \qquad \cup\{25 k-27,25 k-24,25 k-21\} \cup \llbracket 29 k-14,30 k-9 \rrbracket \\
& V_{7}=\llbracket 3 k+10,7 k+16 \rrbracket \cup\{7 k+19,7 k+22\}, \text { and } \\
& V_{8}=\{25 k-28,25 k-25,25 k-22\} \cup \llbracket 25 k-19,29 k-18 \rrbracket .
\end{aligned}
$$

It is clear that the sets V_{r} are pairwise disjoint; hence the cycles \mathfrak{C}_{r} are pairwise vertex disjoint, as desired.

Example 5.20. The smallest example for $p=2$ corresponds to $k=7$, as k must be greater than 6 . With these values of p and k, we have $4 k p+1=57$. We exhibit the base block for \mathcal{C}_{14}^{2}. The cycles in the base block and the difference patterns that generate them are listed in Table 5.9; the base block itself is shown in Figure 5.13.

Example 5.21. The smallest example for $p=4$ corresponds to $k=9$, as k must be greater than 8 . With these values of p and k, we have $4 k p+1=145$. We exhibit the base block for \mathcal{C}_{18}^{4}. The cycles in the base block and the difference patterns that generate them are listed in Table 5.10; the base block itself is shown in Figure 5.14.

Example 5.22. The smallest example for $p=6$ corresponds to $k=11$, as k must be greater than 10 . With these values of p and k, we have $4 k p+1=265$. We exhibit the base block for \mathcal{C}_{22}^{6}. The cycles in the base block and the difference patterns that generate them are listed in Table 5.11; the base block itself is shown in Figure 5.15.

Example 5.23. The smallest example for $p=8$ corresponds to $k=13$, as k must be greater than 12 . With these values of p and k, we have $4 k p+1=417$. We exhibit the base block for \mathcal{C}_{26}^{8}. The cycles in the base block and the difference patterns that generate them are listed in Tables 5.12 and 5.13; the base block itself is shown in Figures 5.16 and 5.17.

Table 5.9: Cycle list for the \mathcal{C}_{14}^{2} base block in Figure 5.13

Cycle \mathfrak{C}_{1}	(cobalt)								
28	$[27]$	24	$[23]$	20	$[19]$	16	$[15]$	12	$[11]$

Figure 5.13: A \mathcal{C}_{14}^{2} base block $(p=2, k=7)$

Table 5.10: Cycle list for the \mathcal{C}_{18}^{4} base block in Figure 5.14

Cycle $\mathfrak{C}_{1} \quad$ (cobalt)	
72 [71] 68 [67] 64 [63] 60 [59] 56 [55] 52 [51] 48 [47] 44 [43] 1 [9] $\begin{array}{r} \mathfrak{C}_{1}=(0,72,1,69,2,66,3,63,4, \\ 60,5,57,6,54,7,51,8,9) \end{array}$	
Cycle $\mathfrak{C}_{2} \quad$ (red)	
[70] $69 \begin{array}{ccccccc}{[66]} & 65 & {[62]} & 61 & {[58]} & 57 & \text { [54] }\end{array}$ $53 \begin{array}{lllllllll}{[50]} & 49 & {[46]} & 45 & {[42]} & 41 & {[2]} & 10\end{array}$$\begin{aligned} & \mathfrak{C}_{2}=(144,74,143,77,142,80,141,83,140 \\ & \quad 86,139,89,138,92,137,95,136,134) \end{aligned}$	
Cycle \mathfrak{C}_{3} (forest)	
$40 \quad[39] \quad 36 \quad[35] \quad 32 \quad[31] \quad 28 \quad[27] \quad 24$ $\begin{array}{lllllllll}{[23]} & 20 & {[19]} & 16 & {[15]} & 8 & {[7]} & 3 & {[11]}\end{array}$ $\begin{aligned} & \mathfrak{C}_{3}=(10,50,11,47,12,44,13,41,14, \\ & 38,15,35,16,32,17,25,18,21) \end{aligned}$	
Cycle $\mathfrak{C}_{4} \quad$ (fuchsia)	
$\begin{array}{rllllllll} \hline[38] & 37 & {[34]} & 33 & {[30]} & 29 & {[26]} & 25 & {[22]} \\ 21 & {[18]} & 17 & {[14]} & 13 & {[6]} & 5 & {[4]} & 12 \\ \mathfrak{C}_{4}= & (132,94,131,97,130,100,129,103,128 \\ & 106,127,109,126,112,125,119,124,120) \end{array}$	

Figure 5.14: A \mathcal{C}_{18}^{4} base block $(p=4, k=9)$

Table 5.11: Cycle list for the \mathcal{C}_{22}^{6} base block in Figure 5.15

Figure 5.15: A \mathcal{C}_{22}^{6} base block $(p=6, k=11)$

Table 5.12: The odd-index cycles for a \mathcal{C}_{26}^{8} base block, as shown in Figure 5.16

Cycle $\mathfrak{C}_{1} \quad$ (cobalt)			
Cycle $\mathfrak{C}_{3} \quad$ (forest)			
$$			
Cycle $\mathfrak{C}_{5} \quad$ (orange)			
$\left.\left.\begin{array}{cccccccccccc} 112 & {[111]} & 108 & {[107]} & 104 & {[103]} & 100 & {[99]} & 96 & {[95]} & 92 & {[91]} \\ 88 \\ {[87]} & 84 & {[83]} & 80 & {[79]} & 76 & {[75]} & 72 & {[71]} & 68 & {[67]} & 5 \end{array}\right][17]\right\}$			
Cycle $\mathfrak{C}_{7} \quad$ (sky)			

Figure 5.16: The right side of a \mathcal{C}_{26}^{8} base block $(p=8, k=13): \mathfrak{C}_{1}, \mathfrak{C}_{3}, \mathfrak{C}_{5}$, and \mathfrak{C}_{7}

Table 5.13: The even-index cycles for a \mathcal{C}_{26}^{8} base block, as shown in Figure 5.17

Cycle $\mathfrak{C}_{2} \quad$ (red)		
$\begin{aligned} & \mathfrak{C}_{2}=(416,210,415,213,414,216,413,219,412,222,411,225,410 \\ & \quad 228,409,231,408,234,407,237,406,240,405,243,404,402) \end{aligned}$		[182] 14
Cycle $\mathfrak{C}_{4} \quad$ (fuchsia)		
$$		
Cycle $\mathfrak{C}_{6} \quad$ (plum)		
$\left.\begin{array}{rllllllllllll}{[110]} & 109 & {[106]} & 105 & {[102]} & 101 & {[98]} & 97 & {[94]} & 93 & {[90]} & 89 & {[86]} \\ 85 & {[82]} & 81 & {[78]} & 77 & {[74]} & 73 & {[70]} & 69 & {[66]} & 65 & {[6]} & 18\end{array}\right]$$\mathfrak{C}_{6}=(381,271,380,274,379,277,378,280,377,283,376,286,375$, $289,374,292,373,295,372,298,371,301,370,304,369,363)$		
Cycle $\mathfrak{C}_{8} \quad$ (lime)		
$$		

Figure 5.17: The left side of a \mathcal{C}_{26}^{8} base block $(p=8, k=13): \mathfrak{C}_{2}, \mathfrak{C}_{4}, \mathfrak{C}_{6}$, and \mathfrak{C}_{8}

We now address the cases in which k is too small for the general construction; these are the cases in which $k<p+4$. In these small cases, we must make slight alterations to preserve the general idea of the construction. In the smallest cases, namely those in which $k<p$, the set, D, of differences reserved for closing cycles cannot have the exact form described in the general construction, because the sets $\llbracket 1, p \rrbracket$ and $\llbracket k, k+p-1 \rrbracket$ are not disjoint. We take instead the smallest possible differences that allow us to form p distinct pairs of the form $\{i, k+i-1\}$. In the cases in which $p<k<p+4$, we may use the set D as described in the general construction, but the parts of the construction dedicated to differences d such that $p<d<k$ must be modified or omitted. There are fourteen small cases in total. We exhibit the base blocks for each of these cases; see Table 5.14 for a list of the tables and figures that contain these base blocks.

Table 5.14: Directory of Tables and Figures for Small Cases $(k<p+4)$

k	p	List of Cycles	Base Block
3	2	Table 5.15	Figure 5.18
	4	Table 5.16	Figure 5.19
	6	Table 5.17	Figure 5.20
	8	Table 5.18	Figure 5.21
5	2	Table 5.19	Figure 5.22
	4	Table 5.20	Figure 5.23
	6	Table 5.21	Figure 5.24
	8	Table 5.22	Figure 5.25
7	4	Table 5.23	Figure 5.26
	6	Table 5.24	Figure 5.27
	8	Table 5.25	Figure 5.28
9	6	Table 5.26	Figure 5.29
	8	Table 5.27	Figure 5.30
11	8	Tables 5.28 and 5.29	Figures 5.31 and 5.32

Table 5.15: Cycle list for the \mathcal{C}_{6}^{2} base block in Figure 5.18

Cycle \mathfrak{C}_{1}	(cobalt)	Cycle \mathfrak{C}_{2}	(red)
12 [11]	1 [3]	$\begin{array}{lccccc} \hline[10] & 9 & {[6]} & 5 & {[2]} & 4 \\ \mathfrak{C}_{2}= & (24,14,23,17,22,20) \end{array}$	
$\mathfrak{C}_{1}=(0,12,1,9,2,3)$			

Table 5.16: Cycle list for the \mathcal{C}_{6}^{4} base block in Figure 5.19

Table 5.17: Cycle list for the \mathcal{C}_{6}^{6} base block in Figure 5.20

Cycle $\mathfrak{C}_{1} \quad$ (cobalt)	Cycle $\mathfrak{C}_{4} \quad$ (fuchsia)
	$\begin{array}{cccccc} \hline[26] & 25 & {[22]} & 21 & {[6]} & 8 \end{array}$
$\mathfrak{C}_{1}=(0,36,1,33,2,3)$	$\mathfrak{C}_{4}=(66,40,65,43,64,58)$
Cycle $\mathfrak{C}_{2} \quad$ (red)	Cycle $\mathfrak{C}_{5} \quad$ (orange)
[34] $33 \begin{array}{llllll}\text { [30] } & 29 & {[2]} & 4\end{array}$	
$\mathfrak{C}_{2}=(72,38,71,41,70,68)$	$\mathfrak{C}_{5}=(8,28,9,25,10,19)$
Cycle $\mathfrak{C}_{3} \quad$ (forest)	Cycle $\mathfrak{C}_{6} \quad$ (plum)
28 [27] 24 [23] 5 [7]	$\left[\begin{array}{llllll}{[18]} & 17 & {[14]} & 13 & {[10]} & 12\end{array}\right.$
$\mathfrak{C}_{3}=(4,32,5,29,6,11)$	$\mathfrak{C}_{6}=(62,44,61,47,60,50)$

Table 5.18: Cycle list for the \mathcal{C}_{6}^{8} base block in Figure 5.21

Cycle $\mathfrak{C}_{1} \quad$ (cobalt)	Cycle $\mathfrak{C}_{5} \quad$ (orange)
48 [47] 44 [43] 1 [3]	32 [31] 28 [27] 9 [11]
$\mathfrak{C}_{1}=(0,48,1,45,2,3)$	$\mathfrak{C}_{5}=(8,40,9,37,10,19)$
Cycle $\mathfrak{C}_{2} \quad$ (red)	Cycle $\mathfrak{C}_{6} \quad$ (plum)
[46] $45 \quad[42] \quad 41 \quad[2] \quad 4$	$[30] \quad 29 \quad[26] ~ 25-[10] ~ 12 ~$
$\mathfrak{C}_{2}=(96,50,95,53,94,92)$	$\mathfrak{C}_{6}=(87,57,86,60,85,75)$
Cycle $\mathfrak{C}_{3} \quad$ (forest)	Cycle $\mathfrak{C}_{7} \quad$ (sky)
	$24 \quad[23] \quad 20 \quad[19] \quad 13 \quad$ [15]
$\mathfrak{C}_{3}=(4,44,5,41,6,11)$	$\mathfrak{C}_{7}=(12,36,13,33,14,27)$
Cycle $\mathfrak{C}_{4} \quad$ (fuchsia)	Cycle $\mathfrak{C}_{8} \quad$ (lime)
[38] $37 \begin{array}{lllll}{[34]} & 33 & {[6]} & 8\end{array}$	
$\mathfrak{C}_{4}=(90,52,89,55,88,82)$	$\mathfrak{C}_{8}=(81,59,80,62,79,65)$

Figure 5.18: A \mathcal{C}_{6}^{2} base block $(p=2, k=3)$

Figure 5.19: A \mathcal{C}_{6}^{4} base block $(p=4, k=3)$

Figure 5.20: $\mathrm{A} \mathcal{C}_{6}^{6}$ base block $(p=6, k=3)$

Figure 5.21: $\mathrm{A} \mathcal{C}_{6}^{8}$ base block $(p=8, k=3)$

Table 5.19: Cycle list for the \mathcal{C}_{10}^{2} base block in Figure 5.22

Cycle $\mathfrak{C}_{1} \quad$ (cobalt)			
$\left.\begin{array}{lcccccccc} \hline 20 & {[19]} & 16 & {[15]} & 12 & {[11]} & 8 & {[7]} & 1 \end{array}\right][5]$			
Cycle $\mathfrak{C}_{2} \quad$ (red)			
$\begin{aligned} & {[18]} \\ & \\ & \mathfrak{C}_{2}= \\ & \\ & (40,22,39,25,38,28,37,33,36,34) \end{aligned}$			

Table 5.20: Cycle list for the \mathcal{C}_{10}^{4} base block in Figure 5.23

Cycle $\mathfrak{C}_{1} \quad$ (cobalt)				
$\begin{aligned} & 40 \end{aligned} \begin{array}{llllll} {[39]} & 36 & {[35]} & 32 & {[31]} & 28 \\ \mathfrak{C}_{1}= & (0,40,1,37,2,34,3,31,4,5) \end{array}$				
Cycle $\mathfrak{C}_{2} \quad$ (red)				
$\begin{array}{llllllll} {[38]} & 37 & {[34]} & 33 & {[30]} & 29 & {[26]} & 25 \\ \mathfrak{C}_{2}= & (80,42,79,45,78,48,77,51,76,74) \end{array}$				
Cycle $\mathfrak{C}_{3} \quad$ (forest)				
$\begin{array}{llllllllll} 24 & {[23]} & 20 & {[19]} & 16 & {[15]} & 12 & {[11]} & 3 & {[7]} \\ \mathfrak{C}_{3}=(6,30,7,27,8,24,9,21,10,13) \end{array}$				
Cycle $\mathfrak{C}_{4} \quad$ (fuchsia)				
$\begin{aligned} & {[22]} \end{aligned} \begin{array}{llllllll} 21 & {[18]} & 17 & {[14]} & 13 & {[10]} & 9 & {[4]} \end{array} 8$				

Figure 5.22: A \mathcal{C}_{10}^{2} base block $(p=2, k=5)$

Figure 5.23: A \mathcal{C}_{10}^{4} base block $(p=4, k=5)$

Table 5.21: Cycle list for the \mathcal{C}_{10}^{6} base block in Figure 5.24

Figure 5.24: A \mathcal{C}_{10}^{6} base block $(p=6, k=5)$

Table 5.22: Cycle list for the \mathcal{C}_{10}^{8} base block in Figure 5.25

Cycle $\mathfrak{C}_{1} \quad$ (cobalt)
$\mathfrak{C}_{1}=(0,80,1,77,2,74,3,71,4,5)$
Cycle $\mathfrak{C}_{2} \quad$ (red)
Cycle $\mathfrak{C}_{3} \quad$ (forest)
$64 \begin{array}{lllllllll}{[63]} & 60 & {[59]} & 56 & {[55]} & 52 & {[51]} & 3 & {[7]}\end{array}$ $\mathfrak{C}_{3}=(6,70,7,67,8,64,9,61,10,13)$
Cycle $\mathfrak{C}_{4} \quad$ (fuchsia)
[62] 61 [58] 57 [54] 53 [50] 49 [4] 8 $\mathfrak{C}_{4}=(152,90,151,93,150,96,149,99,148,144)$
Cycle $\mathfrak{C}_{5} \quad$ (orange)
$\mathfrak{C}_{5}=(14,62,15,59,16,56,17,53,18,27)$

Figure 5.25: A \mathcal{C}_{10}^{8} base block $(p=8, k=5)$

Table 5.23: Cycle list for the \mathcal{C}_{14}^{4} base block in Figure 5.26

Figure 5.26: A \mathcal{C}_{14}^{4} base block $(p=4, k=7)$

Table 5.24: Cycle list for the \mathcal{C}_{14}^{6} base block in Figure 5.27

Figure 5.27: A \mathcal{C}_{14}^{6} base block $(p=6, k=7)$

Table 5.25: Cycle list for the \mathcal{C}_{14}^{8} base block in Figure 5.28

Cycle $\mathfrak{C}_{1} \quad$ (cobalt)			
112 [111] 108 [107] 104 [103] 100 [99] 96 [95] 92 [91] 1 [7] $\mathfrak{C}_{1}=(0,112,1,109,2,106,3,103,4,100,5,97,6,7)$			
Cycle $\mathfrak{C}_{2} \quad$ (red)			
[110] 109 [106] 105 [102] 101 [98] 97 [94] 93 [90] $89 \begin{array}{llllll}{[2]} & 8\end{array}$ $\mathfrak{C}_{2}=(224,114,223,117,222,120,221,123,220,126,219,129,218,216)$			
Cycle $\mathfrak{C}_{3} \quad$ (forest)			
88 [87] 84 [83] 80 [79] 76 [75] 72 [71] 68 [67] 3 [9] $\mathfrak{C}_{3}=(8,96,9,93,10,90,11,87,12,84,13,81,14,17)$			
Cycle $\mathfrak{C}_{4} \quad$ (fuchsia)			
$\begin{array}{llllllllllllll} {[86]} & 85 & {[82]} & 81 & {[78]} & 77 & {[74]} & 73 & {[70]} & 69 & {[66]} & 65 & {[4]} & 10 \\ \mathfrak{C}_{4}= & (214,128,213,131, & 212, & 134, & 211, & 137, & 210, & 140, & 209, & 143, & 208,204) \end{array}$			
Cycle $\mathfrak{C}_{5} \quad$ (orange)			
$\begin{array}{lccccccccccccc} 64 & {[63]} & 60 & {[59]} & 56 & {[55]} & 52 & {[51]} & 48 & {[47]} & 44 & {[43]} & 5 & {[11]} \\ \mathfrak{C}_{5}=(18,82,19,79, & 20,76,21,73,22, & 70, & 23,67, & 24, & 29) & \end{array}$			
Cycle $\mathfrak{C}_{6} \quad$ (plum)			
Cycle $\mathfrak{C}_{7} \quad$ (sky)			
$\begin{array}{lccccccccccccc} 40 & {[39]} & 36 & {[35]} & 32 & {[31]} & 28 & {[27]} & 24 & {[23]} & 18 & {[17]} & 13 & {[19]} \\ \mathfrak{C}_{7}=(31,71,32,68,33,65,34,62,35,59,36,54,37,50) \end{array}$			
Cycle $\mathfrak{C}_{8} \quad$ (lime)			
$\left.\begin{array}{lllllllllllll} {[38]} & 37 & {[34]} & 33 & {[30]} & 29 & {[26]} & 25 & {[22]} & 21 & {[16]} & 15 & {[14]} \end{array} 20\right]$			

Figure 5.28: A \mathcal{C}_{14}^{8} base block $(p=8, k=7)$

Table 5.26: Cycle list for the \mathcal{C}_{18}^{6} base block in Figure 5.29

Cycle $\mathfrak{C}_{1} \quad$ (cobalt)		
$\left.\begin{array}{ccccccccc} 108 & {[107]} & 104 & {[103]} & 100 & {[99]} & 96 & {[95]} & 92 \\ {[91]} & 88 & {[87]} & 84 & {[83]} & 80 & {[79]} & 1 & {[9]} \end{array}\right] \begin{gathered} \mathfrak{C}_{1}=(0,108,1,105,2,102,3,99,4, \\ 96,5,93,6,90,7,87,8,9) \end{gathered}$		
Cycle $\mathfrak{C}_{2} \quad$ (red)		
$\begin{array}{ccccccccc} {[106]} & 105 & {[102]} & 101 & {[98]} & 97 & {[94]} & 93 & {[90]} \\ 89 & {[86]} & 85 & {[82]} & 81 & {[78]} & 77 & {[2]} & 10 \\ \mathfrak{C}_{2}= & (216,110,215,113,214,116,213,119,212 \\ & 122,211,125,210,128,209,131,208,206) \end{array}$		
Cycle $\mathfrak{C}_{3} \quad$ (forest)		
$\begin{array}{ccccccccl} 76 & {[75]} & 72 & {[71]} & 68 & {[67]} & 64 & {[63]} & 60 \\ {[59]} & 56 & {[55]} & 52 & {[51]} & 48 & {[47]} & 3 & {[11]} \\ \mathfrak{C}_{3}= & (10,86,11,83,12,80,13,77,14, \end{array}$		
Cycle $\mathfrak{C}_{4} \quad$ (fuchsia)		
$[74]$ 73 $[70]$ 69 $[66]$ 65 $[62]$ 61 $[58]$ 57 $[54]$ 53 $[50]$ 49 $[46]$ 45 $[4]$ 12 $\mathfrak{C}_{4}=$ $(204,130,203,133$, $202,136,201,139,200$, $142,199,145,198,148,197,151,196,192)$		
Cycle $\mathfrak{C}_{5} \quad$ (orange)		
Cycle $\mathfrak{C}_{6} \quad$ (plum)		
$\begin{array}{rlrllllll} {[42]} & 41 & {[38]} & 37 & {[34]} & 33 & {[30]} & 29 & {[26]} \\ 25 & {[22]} & 21 & {[18]} & 17 & {[8]} & 7 & {[6]} & 14 \\ \mathfrak{C}_{6}= & (189,147,188,150,187,153,186,156,185 \\ & 159,184,162,183,165,182,174,181,175) \end{array}$		

Figure 5.29: A \mathcal{C}_{18}^{6} base block $(p=6, k=9)$

Table 5.27: Cycle list for the \mathcal{C}_{18}^{8} base block in Figure 5.30

Cycle $\mathfrak{C}_{1} \quad$ (cobalt)	Cycle $\mathfrak{C}_{5} \quad$ (orange)
Cycle \mathfrak{C}_{2}	e $\mathfrak{C}_{6} \quad$ (plum)
	$\begin{array}{llllll}{[78]} & 77 & {[74]} & 73 & \text { [70] } & 69\end{array}$ $\begin{array}{llllll}{[66]} & 65 & {[62]} & 61 & {[58]} & 57\end{array}$ $\begin{array}{llllll}{[54]} & 53 & {[50]} & 49 & {[6]} & 14\end{array}$ $\begin{gathered} \mathfrak{C}_{6}=(261,183,260,186,259,189 \\ 258,192,257,195,256,198, \\ 255,201,254,204,253,247) \end{gathered}$
Cycle $\mathfrak{C}_{3} \quad$ (forest)	Cycle $\mathfrak{C}_{7} \quad$ (sky)
	$\begin{aligned} & 48 \\ & \hline 47] \end{aligned} 44 \quad[43] \quad 40 \quad[39]$
Cycle $\mathfrak{C}_{4} \quad$ (fuchsia)	Cycle $\mathfrak{C}_{8} \quad$ (lime)
$\left.\left.\left.\left.\begin{array}{cccccc} \hline[110] & 109 & {[106]} & 105 & {[102]} & 101 \\ {[98]} & 97 & {[94]} & 93 & {[90]} & 89 \end{array}\right] \begin{array}{cccc} {[86]} & 85 & {[82]} & 81 \end{array}\right] 4\right] \quad 12\right\}$	$\left.\begin{array}{c} {[46]} \end{array} 45 \quad[42] \quad 41 \quad[38] \quad 37, ~ \begin{array}{ccccc} {[34]} & 33 & {[30]} & 29 & {[26]} \end{array} 25\right\}$

Figure 5.30: A \mathcal{C}_{18}^{8} base block $(p=8, k=9)$

Table 5.28: The odd-index cycles for a \mathcal{C}_{22}^{8} base block, as shown in Figure 5.31

Cycle $\mathfrak{C}_{1} \quad$ (cobalt)		
$$		
Cycle $\mathfrak{C}_{3} \quad$ (forest)		
$\left.\begin{array}{ccccccccccc} 136 & {[135]} & 132 & {[131]} & 128 & {[127]} & 124 & {[123]} & 120 & {[119]} & 116 \\ {[115]} & 112 & {[111]} & 108 & {[107]} & 104 & {[103]} & 100 & {[99]} & 3 & {[13]} \\ \mathfrak{C}_{3}= & (12,148,13,145,14,142,15,139,16,136,17, \end{array}\right] .$		
Cycle $\mathfrak{C}_{5} \quad$ (orange)		
$\begin{array}{lllllllllll}96 & {[95]} & 92 & {[91]} & 88 & {[87]} & 84 & {[83]} & 80 & {[79]} & 76\end{array}$ [75] 72 [71] 68 [67] 64 [63] 60 [59] $5 \quad$ [15] $\begin{array}{r} \mathfrak{C}_{5}=(26,122,27,119,28,116,29,113,30,110,31 \\ 107,32,104,33,101,34,98,35,95,36,41) \end{array}$		
Cycle $\mathfrak{C}_{7} \quad$ (sky)		
$\begin{array}{ccccccccccl} 56 & {[55]} & 52 & {[51]} & 48 & {[47]} & 44 & {[43]} & 40 & {[39]} & 36 \\ {[35]} & 32 & {[31]} & 28 & {[27]} & 24 & {[23]} & 20 & {[19]} & 7 & {[17]} \\ \mathfrak{C}_{7}=(43,99,44,96,45,93,46,90,47,87,48, \\ 84,49,81,50,78,51,75,52,72,53,60) \\ \hline \end{array}$		

Figure 5.31: The right half of a \mathcal{C}_{22}^{8} base block $(p=8, k=11): \mathfrak{C}_{1}, \mathfrak{C}_{3}, \mathfrak{C}_{5}$, and \mathfrak{C}_{7}

Table 5.29: The even-index cycles for a \mathcal{C}_{22}^{8} base block, as shown in Figure 5.32

Figure 5.32: The left half of a \mathcal{C}_{22}^{8} base block $(p=8, k=11): \mathfrak{C}_{2}, \mathfrak{C}_{4}, \mathfrak{C}_{6}$, and \mathfrak{C}_{8}

5.3.2 Our Construction for Odd k and Even p, Variation II

The second variation of our construction is similar to the first in some respects. We continue to use the parameters q, a, and b from the previous construction, which are chosen so that: $p=2 q$; if $k \equiv 3(\bmod 4)$, then $k=4 a+3$; and if $k \equiv 1(\bmod 4)$, then $k=4 b+1$. We again partition the set of differences into p subsets $\mathcal{S}_{1}, \ldots, \mathcal{S}_{p}$ of size $2 k$ and use each subset \mathcal{S}_{r} to form a cycle \mathfrak{C}_{r}. We describe the construction in two cases, according to whether k is congruent to one or congruent to three modulo four. We emphasize that this construction applies to all even values of p.

If $k \equiv 3(\bmod 4)$, we define, for all $z \in \llbracket 1, q \rrbracket$,

$$
\begin{align*}
\mathcal{S}_{2 z-1}=\{ & (q-z) 4 k+2,(q-z) 4 k+k+1\} \\
& \cup\{(q+1-z) 4 k+4-4 i \mid i \in \llbracket 1,3 a+2 \rrbracket\} \\
& \cup\{(q+1-z) 4 k+3-4 i \mid i \in \llbracket 1,3 a+2 \rrbracket\} \\
& \cup\{(q+1-z) 4 k+2-4 i \mid i \in \llbracket 3 a+3, k-1 \rrbracket\} \\
& \cup\{(q+1-z) 4 k+1-4 i \mid i \in \llbracket 3 a+3, k-1 \rrbracket\} \tag{5.100}
\end{align*}
$$

and

$$
\begin{align*}
& \mathcal{S}_{2 z}=\{(q-z) 4 k+1,(q-z) 4 k+k\} \\
& \cup\{(q+1-z) 4 k+2-4 i \mid i \in \llbracket 1,3 a+2 \rrbracket\} \\
& \cup\{(q+1-z) 4 k+1-4 i \mid i \in \llbracket 1,3 a+2 \rrbracket\} \\
& \\
& \cup\{(q+1-z) 4 k-4 i \mid i \in \llbracket 3 a+3, k-1 \rrbracket\} \tag{5.101}\\
& \\
& \cup\{(q+1-z) 4 k-1-4 i \mid i \in \llbracket 3 a+3, k-1 \rrbracket\}
\end{align*}
$$

We use the differences in set $\mathcal{S}_{2 z-1}$ in the pattern $\left\{d_{2 i-1}\left[d_{2 i}\right]\right\}_{i=1}^{k}$, where

$$
d_{2 i-1}= \begin{cases}(q+1-z) 4 k+4-4 i, & \text { if } 1 \leq i \leq 3 a+2 \tag{5.102}\\ (q+1-z) 4 k+2-4 i, & \text { if } 3 a+3 \leq i \leq k-1 \\ (q-z) 4 k+2, & \text { if } i=k\end{cases}
$$

and

$$
d_{2 i}= \begin{cases}(q+1-z) 4 k+3-4 i, & \text { if } 1 \leq i \leq 3 a+2 \tag{5.103}\\ (q+1-z) 4 k+1-4 i, & \text { if } 3 a+3 \leq i \leq k-1 \\ (q-z) 4 k+k+1, & \text { if } i=k\end{cases}
$$

We form cycle $\mathfrak{C}_{2 z-1}$ from set $\mathcal{S}_{2 z-1}$ as follows. For each integer $j \in \llbracket 1,2 k \rrbracket$, we denote the j th term of cycle $\mathfrak{C}_{2 z-1}$ by x_{j}.

If $j=2 i-1$ is odd, then

$$
\begin{equation*}
x_{j}=x_{2 i-1}=(z-1) k+i-1 \tag{5.104}
\end{equation*}
$$

If $j=2 i$ is even, then

$$
x_{j}=x_{2 i}= \begin{cases}(2 p-3 z+3) k+3-3 i, & \text { if } 1 \leq i \leq 3 a+2 \tag{5.105}\\ (2 p-3 z+3) k+1-3 i, & \text { if } 3 a+3 \leq i \leq k\end{cases}
$$

We use the differences in set $\mathcal{S}_{2 z}$ in the pattern $\left\{\left[d_{2 i-1}\right] d_{2 i}\right\}_{i=1}^{k}$, where

$$
d_{2 i-1}= \begin{cases}(q+1-z) 4 k+2-4 i, & \text { if } 1 \leq i \leq 3 a+2 \tag{5.106}\\ (q+1-z) 4 k-4 i, & \text { if } 3 a+3 \leq i \leq k-1 \\ (q-z) 4 k+1, & \text { if } i=k\end{cases}
$$

and

$$
d_{2 i}= \begin{cases}(q+1-z) 4 k+1-4 i, & \text { if } 1 \leq i \leq 3 a+2 \tag{5.107}\\ (q+1-z) 4 k-1-4 i, & \text { if } 3 a+3 \leq i \leq k-1 \\ (q-z) 4 k+k, & \text { if } i=k\end{cases}
$$

We form cycle $\mathfrak{C}_{2 z}$ from set $\mathcal{S}_{2 z}$ as follows. For each integer $j \in \llbracket 1,2 k \rrbracket$, we denote the j th term of cycle $\mathfrak{C}_{2 z}$ by x_{j}.

If $j=2 i-1$ is odd, then

$$
\begin{equation*}
x_{j}=x_{2 i-1}=(4 p-z+1) k-i+1 . \tag{5.108}
\end{equation*}
$$

If $j=2 i$ is even, then

$$
x_{j}=x_{2 i}= \begin{cases}(2 p+3 z-3) k-1+3 i, & \text { if } 1 \leq i \leq 3 a+2 \tag{5.109}\\ (2 p+3 z-3) k+1+3 i, & \text { if } 3 a+3 \leq i \leq k-1 \\ (2 p+3 z) k, & \text { if } i=k\end{cases}
$$

We form the base block B by defining $B=\biguplus_{r=1}^{p} \mathfrak{C}_{r}$. This completes the construction for $k \equiv 3(\bmod 4)$.

If $k \equiv 1(\bmod 4)$, we define, for all $z \in \llbracket 1, q \rrbracket$,

$$
\begin{align*}
\mathcal{S}_{2 z-1}=\{ & (q-z) 4 k+2,(q-z) 4 k+k+1\} \\
& \cup\{(q+1-z) 4 k+4-4 i \mid i \in \llbracket 1,3 b+1 \rrbracket\} \\
& \cup\{(q+1-z) 4 k+3-4 i \mid i \in \llbracket 1,3 b+1 \rrbracket\} \\
& \cup\{(q+1-z) 4 k+2-4 i \mid i \in \llbracket 3 b+2, k-1 \rrbracket\} \\
& \cup\{(q+1-z) 4 k+1-4 i \mid i \in \llbracket 3 b+2, k-1 \rrbracket\} \tag{5.110}
\end{align*}
$$

and

$$
\begin{align*}
\mathcal{S}_{2 z}=\{ & (q-z) 4 k+1,(q-z) 4 k+k\} \\
& \cup\{(q+1-z) 4 k+2-4 i \mid i \in \llbracket 1,3 b \rrbracket\} \\
& \cup\{(q+1-z) 4 k+1-4 i \mid i \in \llbracket 1,3 b \rrbracket\} \\
& \cup\{(q+1-z) 4 k-4 i \mid i \in \llbracket 3 b+1, k-1 \rrbracket\} \\
& \cup\{(q+1-z) 4 k-1-4 i \mid i \in \llbracket 3 b+1, k-1 \rrbracket\} \tag{5.111}
\end{align*}
$$

We use the differences in set $\mathcal{S}_{2 z-1}$ in the pattern $\left\{d_{2 i-1}\left[d_{2 i}\right]\right\}_{i=1}^{k}$, where

$$
d_{2 i-1}= \begin{cases}(q+1-z) 4 k+4-4 i, & \text { if } 1 \leq i \leq 3 b+1 \tag{5.112}\\ (q+1-z) 4 k+2-4 i, & \text { if } 3 b+2 \leq i \leq k-1 \\ (q-z) 4 k+2, & \text { if } i=k\end{cases}
$$

and

$$
d_{2 i}= \begin{cases}(q+1-z) 4 k+3-4 i, & \text { if } 1 \leq i \leq 3 b+1 \tag{5.113}\\ (q+1-z) 4 k+1-4 i, & \text { if } 3 b+2 \leq i \leq k-1 \\ (q-z) 4 k+k+1, & \text { if } i=k\end{cases}
$$

We form cycle $\mathfrak{C}_{2 z-1}$ from set $\mathcal{S}_{2 z-1}$ as follows. For each integer $j \in \llbracket 1,2 k \rrbracket$, we denote the j th term of cycle $\mathfrak{C}_{2 z-1}$ by x_{j}.

If $j=2 i-1$ is odd, then

$$
\begin{equation*}
x_{j}=x_{2 i-1}=(z-1) k+i-1 \tag{5.114}
\end{equation*}
$$

If $j=2 i$ is even, then

$$
x_{j}=x_{2 i}= \begin{cases}(2 p-3 z+3) k+3-3 i, & \text { if } 1 \leq i \leq 3 b+1 \tag{5.115}\\ (2 p-3 z+3) k+1-3 i, & \text { if } 3 b+2 \leq i \leq k\end{cases}
$$

We use the differences in set $\mathcal{S}_{2 z}$ in the pattern $\left\{\left[d_{2 i-1}\right] d_{2 i}\right\}_{i=1}^{k}$, where

$$
d_{2 i-1}= \begin{cases}(q+1-z) 4 k+2-4 i, & \text { if } 1 \leq i \leq 3 b \tag{5.116}\\ (q+1-z) 4 k-4 i, & \text { if } 3 b+1 \leq i \leq k-1 \\ (q-z) 4 k+1, & \text { if } i=k\end{cases}
$$

and

$$
d_{2 i}= \begin{cases}(q+1-z) 4 k+1-4 i, & \text { if } 1 \leq i \leq 3 b \tag{5.117}\\ (q+1-z) 4 k-1-4 i, & \text { if } 3 b+1 \leq i \leq k-1 \\ (q-z) 4 k+k, & \text { if } i=k\end{cases}
$$

We form cycle $\mathfrak{C}_{2 z}$ from set $\mathcal{S}_{2 z}$ as follows. For each integer $j \in \llbracket 1,2 k \rrbracket$, we denote the j th term of cycle $\mathfrak{C}_{2 z}$ by x_{j}.

If $j=2 i-1$ is odd, then

$$
\begin{equation*}
x_{j}=x_{2 i-1}=(4 p-z+1) k-i+1 \tag{5.118}
\end{equation*}
$$

If $j=2 i$ is even, then

$$
x_{j}=x_{2 i}= \begin{cases}(2 p+3 z-3) k-1+3 i, & \text { if } 1 \leq i \leq 3 b \tag{5.119}\\ (2 p+3 z-3) k+1+3 i, & \text { if } 3 b+1 \leq i \leq k-1 \\ (2 p+3 z) k, & \text { if } i=k\end{cases}
$$

We form the base block B by defining $B=\biguplus_{r=1}^{p} \mathfrak{C}_{r}$; this completes the construction for $k \equiv 1(\bmod 4)$.

Theorem 5.24. The subgraph B of $K_{4 k p+1}$ generated by the above construction is a base block for a purely cyclic $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p+1}$, and hence exhibits a ρ-labeling of $\mathcal{C}_{2 k}^{p}$.

There is therefore a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p+1}$ for each pair of integers p and k such that p is even and at least two and k is odd and at least three.

Proof. It is clear from the construction that each difference in $\mathcal{D}_{4 k p+1}$ occurs on exactly one edge in the subgraph B, and that each cycle in B has length $2 k$. It remains to verify that the cycles $\mathfrak{C}_{1}, \ldots, \mathfrak{C}_{p}$ in B are pairwise vertex-disjoint.

For each $z \in \llbracket 1, q \rrbracket$, we define four sets:

$$
\begin{aligned}
U_{2 z-1} & =\llbracket(z-1) k, z k-1 \rrbracket, \\
V_{2 z-1} & =\llbracket(2 p-3 z) k+1,(2 p-3 z+3) k \rrbracket, \\
U_{2 z} & =\llbracket(4 p-z) k+1,(4 p-z+1) k \rrbracket, \text { and } \\
V_{2 z} & =\llbracket(2 p+3 z-3) k+1,(2 p+3 z) k \rrbracket .
\end{aligned}
$$

We observe that the sets $U_{2 z-1}$ partition the set $\mathcal{U}_{1}=\llbracket 0, q k-1 \rrbracket$; the sets $V_{2 z-1}$ partition the set $\mathcal{V}_{1}=\llbracket q k+1,4 q k \rrbracket$; the sets $V_{2 z}$ partition the set $\mathcal{V}_{2}=\llbracket 4 q k+1,7 q k \rrbracket$; and the sets $U_{2 z}$ partition the set $\mathcal{U}_{2}=\llbracket 7 q k+1,8 q k \rrbracket$. The sets $\mathcal{U}_{1}, \mathcal{V}_{1}, \mathcal{V}_{2}$, and \mathcal{U}_{2} are clearly disjoint; they fail to partition $\llbracket 0,8 q k \rrbracket$ only because none of them contains the element $q k$. Thus, for each $r \in \llbracket 1, p \rrbracket$, the sets U_{r} and V_{r} are pairwise disjoint, so we define $W_{r}=U_{r} \cup V_{r}$; note that the sets W_{r} are pairwise disjoint by construction. Furthermore, $V\left(\mathfrak{C}_{r}\right) \subseteq W_{r}$ for each $r \in \llbracket 1, p \rrbracket$. Hence the cycles \mathfrak{C}_{r} are pairwise vertex-disjoint, as desired.

We now offer several examples of this construction: three examples each for $k=3$, $k=5$, and $k=7$, and one example each for $k=9, k=11, k=13$, and $k=19$.

Example 5.25. We consider \mathcal{C}_{6}^{4}; for this graph, we have $p=4$ and $k=3$, so $4 k p+1=49$. The cycles in the base block and the difference patterns that generate them are listed in Table 5.30; the base block itself is shown in Figure 5.33.

Example 5.26. We consider \mathcal{C}_{6}^{8}; for this graph, we have $p=8$ and $k=3$, so $4 k p+1=97$. The cycles in the base block and the difference patterns that generate them are listed in Table 5.31; the base block itself is shown in Figure 5.34.

Example 5.27. We consider \mathcal{C}_{6}^{10}; for this graph, we have $p=10$ and $k=3$, so $4 k p+1=121$. The cycles in the base block and the difference patterns that generate them are listed in Table 5.32; the base block itself is shown in Figure 5.35.

Example 5.28. We consider \mathcal{C}_{10}^{2}; for this graph, we have $p=2$ and $k=5$, so $4 k p+1=41$. The cycles in the base block and the difference patterns that generate them are listed in Table 5.33; the base block itself is shown in Figure 5.36.

Example 5.29. We consider \mathcal{C}_{10}^{6}; for this graph, we have $p=6$ and $k=5$, so $4 k p+1=121$. The cycles in the base block and the difference patterns that generate them are listed in Table 5.34; the base block itself is shown in Figure 5.37.

Example 5.30. We consider \mathcal{C}_{10}^{8}; for this graph, we have $p=8$ and $k=5$, so $4 k p+1=161$. The cycles in the base block and the difference patterns that generate them are listed in Table 5.35; the base block itself is shown in Figure 5.38.

Example 5.31. We consider \mathcal{C}_{14}^{4}; for this graph, we have $p=4$ and $k=7$, so $4 k p+1=113$. The cycles in the base block and the difference patterns that generate them are listed in Table 5.36; the base block itself is shown in Figure 5.39.

Example 5.32. We consider \mathcal{C}_{14}^{6}; for this graph, we have $p=6$ and $k=7$, so $4 k p+1=169$. The cycles in the base block and the difference patterns that generate them are listed in Table 5.37; the base block itself is shown in Figure 5.40.

Example 5.33. We consider \mathcal{C}_{14}^{8}; for this graph, we have $p=8$ and $k=7$, so $4 k p+1=225$. The cycles in the base block and the difference patterns that generate them are listed in Table 5.38; the base block itself is shown in Figure 5.41.

Example 5.34. We consider \mathcal{C}_{18}^{6}; for this graph, we have $p=6$ and $k=9$, so $4 k p+1=217$. The cycles in the base block and the difference patterns that generate them are listed in Table 5.39; the base block itself is shown in Figure 5.42.

Example 5.35. We consider \mathcal{C}_{22}^{6}; for this graph, we have $p=6$ and $k=11$, so $4 k p+1=265$. The cycles in the base block and the difference patterns that generate them are listed in Table 5.40; the base block itself is shown in Figure 5.43.

Example 5.36. We consider \mathcal{C}_{26}^{4}; for this graph, we have $p=4$ and $k=13$, so $4 k p+1=209$. The cycles in the base block and the difference patterns that generate them are listed in Table 5.41; the base block itself is shown in Figure 5.44.

Example 5.37. We consider \mathcal{C}_{38}^{12}; for this graph, we have $p=12$ and $k=19$, so $4 k p+1=913$. The cycles in the base block and the difference patterns that generate them are listed in Tables 5.42, 5.43, and 5.44. Due to the large size of this example, we do not attempt to show the base block as a subgraph of K_{913}.

Table 5.30: Cycle list for the \mathcal{C}_{6}^{4} base block in Figure 5.33

Cycle \mathfrak{C}_{1}		(cobalt)		Cycle \mathfrak{C}_{3}			(lilac)	
24	$[23]$	20	$[19]$	14	$[16]$			

Figure 5.33: A \mathcal{C}_{6}^{4} base block $(p=4, k=3)$

Table 5.31: Cycle list for the \mathcal{C}_{6}^{8} base block in Figure 5.34

Cycle $\mathfrak{C}_{1} \quad$ (lime)	Cycle $\mathfrak{C}_{5} \quad$ (cobalt)
$48 \quad[47] \quad 44 \quad[43] \quad 38 \quad$ [40]	$24 \quad[23] \quad 20 \quad[19] \quad 14 \quad$ [16]
$\mathfrak{C}_{1}=(0,48,1,45,2,40)$	$\mathfrak{C}_{5}=(6,30,7,27,8,22)$
Cycle $\mathfrak{C}_{2} \quad$ (forest)	Cycle $\mathfrak{C}_{6} \quad$ (sky)
$\begin{array}{cccccc} \hline[46] & 45 & {[42]} & 41 & {[37]} & 39 \end{array}$	$\left[\begin{array}{llllll}{[22]} & 21 & {[18]} & 17 & {[13]} & 15\end{array}\right.$
$\mathfrak{C}_{2}=(96,50,95,53,94,57)$	$\mathfrak{C}_{6}=(90,68,89,71,88,75)$
Cycle $\mathfrak{C}_{3} \quad$ (pink)	Cycle $\mathfrak{C}_{7} \quad$ (lilac)
	$12 \begin{array}{llllll}{[11]} & 8 & {[7]} & 2 & {[4]}\end{array}$
$\mathfrak{C}_{3}=(3,39,4,36,5,31)$	$\mathfrak{C}_{7}=(9,21,10,18,11,13)$
Cycle $\mathfrak{C}_{4} \quad$ (orange)	Cycle $\mathfrak{C}_{8} \quad$ (plum)
$\begin{array}{cccccc} {[34]} & 33 & {[30]} & 29 & {[25]} & 27 \end{array}$	$\begin{array}{ccccccc}{[10]} & 9 & {[6]} & 5 & {[1]} & 3\end{array}$
$\mathfrak{C}_{4}=(93,59,92,62,91,66)$	$\mathfrak{C}_{8}=(87,77,86,80,85,84)$

Figure 5.34: A \mathcal{C}_{6}^{8} base block $(p=8, k=3)$

Table 5.32: Cycle list for the \mathcal{C}_{6}^{10} base block in Figure 5.35

Cycle $\mathfrak{C}_{1} \quad$ (violet)	Cycle $\mathfrak{C}_{6} \quad$ (orange)
$60 \quad[59] \quad 56$ [55] 50 [52]	$\left[\begin{array}{lllllll}{[34]} & 33 & {[30]} & 29 & {[25]} & 27\end{array}\right.$
$\mathfrak{C}_{1}=(0,60,1,57,2,52)$	$\mathfrak{C}_{6}=(114,80,113,83,112,87)$
Cycle $\mathfrak{C}_{2} \quad$ (fuchsia)	Cycle $\mathfrak{C}_{7} \quad$ (cobalt)
[58] $57 \quad$ [54] $\quad 53 \quad$ [49] 51	$24 \quad[23] \quad 20 \quad[19] \quad 14 \quad[16]$
$\mathfrak{C}_{2}=(120,62,119,65,118,69)$	$\mathfrak{C}_{7}=(9,33,10,30,11,25)$
Cycle $\mathfrak{C}_{3} \quad$ (lime)	Cycle $\mathfrak{C}_{8} \quad$ (sky)
48 [47] 44 [43] 38 [40]	$[22] ~ 21-[18] ~ 17 ~[13] ~ 15 ~$
$\mathfrak{C}_{3}=(3,51,4,48,5,43)$	$\mathfrak{C}_{8}=(111,89,110,92,109,96)$
Cycle $\mathfrak{C}_{4} \quad$ (forest)	Cycle $\mathfrak{C}_{9} \quad$ (lilac)
[46] 45 [42] 41	12 [11] 8 [7] 2 [4]
$\mathfrak{C}_{4}=(117,71,116,74,115,78)$	$\mathfrak{C}_{9}=(12,24,13,21,14,16)$
Cycle $\mathfrak{C}_{5} \quad$ (pink)	Cycle $\mathfrak{C}_{10} \quad$ (plum)
	$\begin{array}{ccccccc}{[10]} & 9 & {[6]} & 5 & {[1]} & 3\end{array}$
$\mathfrak{C}_{5}=(6,42,7,39,8,34)$	$\mathfrak{C}_{10}=(108,98,107,101,106,105)$

Figure 5.35: A \mathcal{C}_{6}^{10} base block $(p=10, k=3)$

Table 5.33: Cycle list for the \mathcal{C}_{10}^{2} base block in Figure 5.36

Cycle $\mathfrak{C}_{1} \quad$ (lilac)								
$\begin{array}{llllll} 20 & {[19]} & 16 & {[15]} & 12 & {[11]} \end{array} 8$								
Cycle $\mathfrak{C}_{2} \quad$ (plum)								
$\begin{array}{lllllllll} {[18]} & 17 & {[14]} & 13 & {[10]} & 9 & {[4]} & 3 & {[1]} \\ \mathfrak{C}_{2}= & (40,22,39,25,38,28,37,33,36,35) \end{array}$								

Figure 5.36: A \mathcal{C}_{10}^{2} base block $(p=2, k=5)$

Table 5.34: Cycle list for the \mathcal{C}_{10}^{6} base block in Figure 5.37

Figure 5.37: A \mathcal{C}_{10}^{6} base block $(p=6, k=5)$

Table 5.35: Cycle list for the \mathcal{C}_{10}^{8} base block in Figure 5.38

Figure 5.38: A \mathcal{C}_{10}^{8} base block $(p=8, k=5)$

Table 5.36: Cycle list for the \mathcal{C}_{14}^{4} base block in Figure 5.39

Cycle $\mathfrak{C}_{1} \quad$ (cobalt)		
$\begin{array}{lccccccccccccc} 56 & {[55]} & 52 & {[51]} & 48 & {[47]} & 44 & {[43]} & 40 & {[39]} & 34 & {[33]} & 30 & {[36]} \\ \mathfrak{C}_{1}=(0,56,1,53,2,50,3,47,4,44,5,39,6,36) \end{array}$		
Cycle $\mathfrak{C}_{2} \quad$ (sky)		
Cycle $\mathfrak{C}_{3} \quad$ (lilac)		
$\begin{array}{llllllllllllll} 28 & {[27]} & 24 & {[23]} & 20 & {[19]} & 16 & {[15]} & 12 & {[11]} & 6 & {[5]} & 2 & {[8]} \\ \mathfrak{C}_{3}=(7,35,8,32,9,29,10,26,11,23,12,18,13,15) \end{array}$		
Cycle $\mathfrak{C}_{4} \quad$ (plum)		

Figure 5.39: A \mathcal{C}_{14}^{4} base block $(p=4, k=7)$

Table 5.37: Cycle list for the \mathcal{C}_{14}^{6} base block in Figure 5.40

Cycle $\mathfrak{C}_{1} \quad$ (pink)	
$\mathfrak{C}_{1}=(0,84,1,81,2,78,3,75,4,72,5,67,6,64)$	
Cycle $\mathfrak{C}_{2} \quad$ (orange)	
$\begin{array}{lllllllllllll} {[82]} & 81 & {[78]} & 77 & {[74]} & 73 & {[70]} & 69 & {[66]} & 65 & {[60]} & 59 & {[57]} \end{array} 630$	
Cycle $\mathfrak{C}_{3} \quad$ (cobalt)	
$\begin{array}{lccccccccccccc} 56 & {[55]} & 52 & {[51]} & 48 & {[47]} & 44 & {[43]} & 40 & {[39]} & 34 & {[33]} & 30 & {[36]} \\ \mathfrak{C}_{3}= & (7,63,8,60,9,57,10,54,11,51,12,46,13,43) \end{array}$	
Cycle $\mathfrak{C}_{4} \quad$ (sky)	
Cycle $\mathfrak{C}_{5} \quad$ (lilac)	
$\left.\begin{array}{lcccccccccccc} 28 & {[27]} & 24 & {[23]} & 20 & {[19]} & 16 & {[15]} & 12 & {[11]} & 6 & {[5]} & 2 \end{array}\right][8]$	
Cycle $\mathfrak{C}_{6} \quad$ (plum)	
$\begin{array}{llllllllllllll} {[26]} & 25 & {[22]} & 21 & {[18]} & 17 & {[14]} & 13 & {[10]} & 9 & {[4]} & 3 & {[1]} & 7 \\ \mathfrak{C}_{6}=(154,128,153, & 131, & 152, & 134, & 151, & 137, & 150, & 140, & 149, & 145,148,147) \end{array}$	

Figure 5.40: A \mathcal{C}_{14}^{6} base block $(p=6, k=7)$

Table 5.38: Cycle list for the \mathcal{C}_{14}^{8} base block in Figure 5.41

Cycle $\mathfrak{C}_{1} \quad$ (lime)			
112 [111] 108 [107] 104 [103] 100 [99] 96 [95] $90 \quad[89] ~ 86 ~[92] ~$ $\mathfrak{C}_{1}=(0,112,1,109,2,106,3,103,4,100,5,95,6,92)$			
Cycle $\mathfrak{C}_{2} \quad$ (forest)			
$\left.\begin{array}{lcccccccccccc} {[110]} & 109 & {[106]} & 105 & {[102]} & 101 & {[98]} & 97 & {[94]} & 93 & {[88]} & 87 & {[85]} \end{array}\right\}$			
Cycle $\mathfrak{C}_{3} \quad$ (pink)			
$84 \quad[83] \quad 80 \quad[79] \quad 76 \quad[75] \quad 72 \quad[71] ~ 68 ~[67] ~ 62 ~[61] ~ 58 ~[64] ~$ $\mathfrak{C}_{3}=(7,91,8,88,9,85,10,82,11,79,12,74,13,71)$			
Cycle $\mathfrak{C}_{4} \quad$ (orange)			
Cycle $\mathfrak{C}_{5} \quad$ (cobalt)			
$\begin{array}{lccccccccccccc} 56 & {[55]} & 52 & {[51]} & 48 & {[47]} & 44 & {[43]} & 40 & {[39]} & 34 & {[33]} & 30 & {[36]} \\ \mathfrak{C}_{5}=(14,70,15,67,16,64,17,61,18,58,19,53, & 20,50) \end{array}$			
Cycle $\mathfrak{C}_{6} \quad$ (sky)			
$\begin{aligned} & {[54]} \\ & 53 \end{aligned}\left[\begin{array}{llllllllllll} 50] & 49 & {[46]} & 45 & {[42]} & 41 & {[38]} & 37 & {[32]} & 31 & {[29]} & 35 \\ \mathfrak{C}_{6}= & (210,156, & 209, & 159, & 208 & 162, & 207, & 165, & 206, & 168, & 205, & 173, \end{array} 204,175\right) 0$			
Cycle $\mathfrak{C}_{7} \quad$ (lilac)			
$\left.\begin{array}{lllllllllllll} 28 & {[27]} & 24 & {[23]} & 20 & {[19]} & 16 & {[15]} & 12 & {[11]} & 6 & {[5]} & 2 \end{array}\right][8]$			
Cycle $\mathfrak{C}_{8} \quad$ (plum)			
$\begin{array}{llllllllllllll} {[26]} & 25 & {[22]} & 21 & {[18]} & 17 & {[14]} & 13 & {[10]} & 9 & {[4]} & 3 & {[1]} & 7 \\ \mathfrak{C}_{8}= & (203,177, & 202,180, & 201, & 183, & 200, & 186 & 199, & 189, & 198, & 194, & 197,196) \end{array}$			

Figure 5.41: A \mathcal{C}_{14}^{8} base block $(p=8, k=7)$

Table 5.39: Cycle list for the \mathcal{C}_{18}^{6} base block in Figure 5.42

Cycle $\mathfrak{C}_{1} \quad$ (pink)	
108 $[107]$ 104 $[103]$ 100 $[99]$ 96 $[95]$ 92	
Cycle $\mathfrak{C}_{2} \quad$ (orange)	
$\left.\begin{array}{cccccccc} \hline[106] & 105 & {[102]} & 101 & {[98]} & 97 & {[94]} & 93 \end{array}\right][90]$	
Cycle $\mathfrak{C}_{3} \quad$ (cobalt)	
Cycle $\mathfrak{C}_{4} \quad$ (sky)	
$\begin{array}{rlrlrllll} \hline[70] & 69 & {[66]} & 65 & {[62]} & 61 & {[58]} & 57 & {[54]} \\ 53 & {[50]} & 49 & {[44]} & 43 & {[40]} & 39 & {[37]} & 45 \\ \mathfrak{C}_{4}= & (207,137,206,140,205,143,204,146,203 \\ & 149,202,152,201,157,200,160,199,162) \end{array}$	
ycle $\mathfrak{C}_{5} \quad$ (lilac)	
$\begin{array}{ccccccccc} 36 & {[35]} & 32 & {[31]} & 28 & {[27]} & 24 & {[23]} & 20 \\ {[19]} & 16 & {[15]} & 12 & {[11]} & 6 & {[5]} & 2 & {[10]} \\ \mathfrak{C}_{5}= & (18,54,19,51,20,48,21,45,22, \\ 42,23,39,24,36,25,31,26,28) \\ \hline \end{array}$	
Cycle $\mathfrak{C}_{6} \quad$ (plum)	
$\left.\begin{array}{rllllllll}{[34]} & 33 & {[30]} & 29 & {[26]} & 25 & {[22]} & 21 & {[18]} \\ 17 & {[14]} & 13 & {[8]} & 7 & {[4]} & 3 & {[1]} & 9\end{array}\right]$$\mathfrak{C}_{6}=$ $(198,164,197,167,196,170,195,173,194$, $176,193,179,192,184,191,187,190,189)$	

Figure 5.42: A \mathcal{C}_{18}^{6} base block $(p=6, k=9)$

Table 5.40: Cycle list for the \mathcal{C}_{22}^{6} base block in Figure 5.43

Figure 5.43: A \mathcal{C}_{22}^{6} base block $(p=6, k=11)$

Table 5.41: Cycle list for the \mathcal{C}_{26}^{4} base block in Figure 5.44

(cobalt)	
$104 \begin{array}{lllllllllll}{[103]} & 100 & {[99]} & 96 & {[95]} & 92 & {[91]} & 88 & \text { [87] } & 84 & \text { [83] }\end{array}$ $80 \begin{array}{llllllllllllll}{[79]} & 76 & {[75]} & 72 & {[71]} & 68 & {[67]} & 62 & {[61]} & 58 & {[57]} & 54 & {[66]}\end{array}$ $\begin{gathered} \mathfrak{C}_{1}=(0,104,1,101,2,98,3,95,4,92,5,89,6,86,7, \\ 83,8,80,9,77,10,72,11,69,12,66) \end{gathered}$	
Cycle $\mathfrak{C}_{2} \quad$ (sky)	
$\begin{array}{rcccccccccccc}{[102]} & 101 & {[98]} & 97 & {[94]} & 93 & {[90]} & 89 & {[86]} & 85 & {[82]} & 81 & \\ {[78]} & 77 & {[74]} & 73 & {[70]} & 69 & {[64]} & 63 & {[60]} & 59 & {[56]} & 55 & {[53]} \\ 65\end{array}$$\begin{array}{r} \mathfrak{C}_{2}=(208,106,207,109,206,112,205,115,204,118,203,121,202, \\ \\ \quad 124,201,127,200,130,199,135,198,138,197,141,196,143) \end{array}$	
Cycle $\mathfrak{C}_{3} \quad$ (lilac)	
Cycle $\mathfrak{C}_{4} \quad$ (plum)	
$\left.\left.\begin{array}{cccccccccccl}{[50]} & 49 & {[46]} & 45 & {[42]} & 41 & {[38]} & 37 & {[34]} & 33 & {[30]} & 29 \\ {[26]} & 25 & {[22]} & 21 & {[18]} & 17 & {[12]} & 11 & {[8]} & 7 & {[4]} & 3\end{array}\right][1] 13\right]$	

Figure 5.44: $\mathrm{A} \mathcal{C}_{26}^{4}$ base block $(p=4, k=13)$

Table 5.42: Cycles $\mathfrak{C}_{1}, \mathfrak{C}_{2}, \mathfrak{C}_{3}$, and \mathfrak{C}_{4} for Example $5.37(p=12, k=19)$

Table 5.43: Cycles $\mathfrak{C}_{5}, \mathfrak{C}_{6}, \mathfrak{C}_{7}$, and \mathfrak{C}_{8} for Example $5.37(p=12, k=19)$

Table 5.44: Cycles $\mathfrak{C}_{9}, \mathfrak{C}_{10}, \mathfrak{C}_{11}$, and \mathfrak{C}_{12} for Example $5.37(p=12, k=19)$

Cycle \mathfrak{C}_{9}			
$\begin{gathered} 152 \\ 124 \\ 100 \\ \mathfrak{C}_{9}=(151 \\ \end{gathered}$			[127]
Cycle \mathfrak{C}_{10}			
[150] 14 [122] [98] $\mathfrak{C}_{10}=(83$			125
Cycle \mathfrak{C}_{11}			
Cycle \mathfrak{C}_{12}			

5.3.3 Comparative Analysis for Odd k and Even p

We observe that our construction of a $\mathcal{C}_{2 k}^{p}$-base block in the case that k is odd and p is even has significant differences from the construction by Blinco and El-Zanati. We have reproduced (at a reduced size) in Figure 5.45 the images of the base blocks from Examples $5.9,5.29,5.10$, and 5.30 , to facilitate direct visual comparison.

Remark 5.38. We can obtain a σ^{++}-labeling both from the σ^{+}-labeling constructed by Blinco and El-Zanati and from our base block, which induces either a σ-labeling or a σ^{+}labeling, depending on the bipartition used. We obtain the σ^{++}-labeling in a simple way: by adding a constant to all vertex labels, which has the effect of rotating the base blocks.

Recall that, in the construction by Blinco and El-Zanati, we take $G_{i}=C_{2 k} \biguplus C_{2 k}$ for each $i \in \llbracket 1, q \rrbracket$, and we take G_{i} to have vertex set $\llbracket 1,4 k \rrbracket \times\{i\}$ with bipartition $\left[A_{i}, B_{i}\right]$, where $A_{i}=\left\{(a, i) \in V\left(G_{i}\right) \mid a\right.$ is odd $\}$ and $B_{i}=\left\{(b, i) \in V\left(G_{i}\right) \mid b\right.$ is even $\} . G$ is then assumed to have bipartition $[A, B]$, where A and B are obtained from the bipartitions $\left[A_{i}, B_{i}\right]$ of the graphs G_{i} by

$$
A=\bigcup_{i=1}^{q} A_{i} \text { and } B=\bigcup_{i=1}^{q} B_{i}
$$

We also discuss the bipartition $\left[A^{*}, B^{*}\right]$ of G, where

$$
A^{*}=\bigcup_{\substack{i \text { odd, } \\ 1 \leq i \leq q}} A_{i} \cup \bigcup_{\substack{i \text { even, } \\ 1 \leq i \leq q}} B_{i} \quad \text { and } \quad B^{*}=\bigcup_{\substack{i \text { odd, } \\ 1 \leq i \leq q}} B_{i} \cup \bigcup_{\substack{i \text { even, } \\ 1 \leq i \leq q}} A_{i}
$$

For all $i \in \llbracket 1, p \rrbracket$, we define $\hat{G}_{i}=C_{2 k}$, with vertex set $\llbracket 1,2 k \rrbracket \times\{i\}$ and bipartition $\left[\hat{A}_{i}, \hat{B}_{i}\right]$, where $\hat{A}_{i}=\left\{(a, i) \in V\left(\hat{G}_{i}\right) \mid a\right.$ is odd $\}$ and $\hat{B}_{i}=\left\{(b, i) \in V\left(\hat{G}_{i}\right) \mid b\right.$ is even $\}$. We define bipartition $[\hat{A}, \hat{B}]$ of G by

$$
\hat{A}=\bigcup_{i=1}^{2 q} \hat{A}_{i} \text { and } \hat{B}=\bigcup_{i=1}^{2 q} \hat{B}_{i}
$$

Figure 5.45: Small reproductions of \mathcal{C}_{10}^{6} and \mathcal{C}_{10}^{8} base blocks from Examples 5.9, 5.29, 5.10, and 5.30
and we define bipartition $\left[\hat{A}^{*}, \hat{B}^{*}\right]$ of G by

$$
\hat{A}^{*}=\bigcup_{j=1}^{q} \hat{A}_{2 j-1} \cup \bigcup_{j=1}^{q} \hat{B}_{2 j} \quad \text { and } \quad \hat{B}^{*}=\bigcup_{j=1}^{q} \hat{B}_{2 j-1} \cup \bigcup_{j=1}^{q} \hat{A}_{2 j}
$$

The construction by Blinco and El-Zanati produces a σ^{+}-labeling of $G=\mathcal{C}_{2 k}^{p}$ on bipartition $[A, B]$. If we use instead bipartition $\left[A^{*}, B^{*}\right]$ and add $2 k \cdot\lceil q / 2\rceil$ to each vertex label, with computations done modulo $(4 k p+1)$, we obtain a σ^{++}-labeling of $\mathcal{C}_{2 k}^{p}$ with critical value $\lambda=4 k \cdot\lceil q / 2\rceil-1+\lceil q / 2\rceil$.

Our base block induces a σ-labeling of $G=\mathcal{C}_{2 k}^{p}$; this labeling is not a σ^{+}-labeling of G on bipartition $[\hat{A}, \hat{B}]$, but it is a σ^{+}-labeling of G on bipartition $\left[\hat{A}^{*}, \hat{B}^{*}\right]$. If we use the bipartition $[\hat{A}, \hat{B}]$ and add $k q$ to each vertex label, again computing modulo ($4 k p+1$), we obtain a σ^{++}-labeling of $\mathcal{C}_{2 k}^{p}$ having critical value $\lambda=k p-1$.

We observe further that there is a fundamental difference between the construction by Blinco and El-Zanati and ours: separation of cycles. Since the construction by Blinco and El-Zanati requires α-labelings, and since $C_{2 k}$ cannot admit an α-labeling when k is odd, it is necessary to break $G=\mathcal{C}_{2 k}^{p}$ into $C_{2 k} \biguplus C_{2 k}$-subgraphs, which admit α-labelings. Doing so causes the cycles in the final base block to be intertwined in pairs, because the α-labeling of $C_{2 k} \biguplus C_{2 k}$ intertwines the two cycles. In contrast, the cycles in our base block are not intertwined. In fact, there is a linear ordering of the sets \hat{A}_{i} and \hat{B}_{i} such that, if set X occurs before set Y in the ordering, then $x<y$ for all $x \in X$ and all $y \in Y$. The ordering is obtained by taking the sets \hat{A}_{i} of odd index in increasing order, followed by the sets \hat{B}_{i} of odd index in decreasing order, then the sets \hat{B}_{i} of even index in increasing order, and last the sets \hat{A}_{i} of even index in decreasing order. This separation property may be useful in applications in which the intended method is to remove some of the cycles in the base block and replace them with other graphs to produce a base block for a different type of design.

5.4 Complete Designs of Order $4 k p+1$ for Odd k and Odd p

In this section, we present base block constructions for $\mathcal{C}_{2 k}^{p}$ in the case that k and p are both odd. The designs in this section are built using two methods; one method relies on group actions, while the other relies on the formation of a partition of the difference set so that the differences in each subset of the partition can be used to achieve a prescribed sum. Both methods currently require separate constructions for each pair of values of k and p.

5.4.1 Constructions by Group Actions

The approach in this method is to select one cycle of length $2 k$ in $K_{4 k p+1}$ so that it has certain properties, and then allow a particular cyclic group of order p to act on this cycle in order to create the remaining cycles in the base block. Before we describe this method in greater detail, we pause to state essential definitions and results in the theory of group actions. For all terminology of algebraic structures not defined in the discussion that follows, we refer the reader to Hungerford's text [19]. In our discussion, we need only consider actions of finite groups on finite sets, so we restrict our definitions to these groups and sets.

Definition 5.39. Let G be a finite group, and let X be a finite set. Let e denote the identity element of the group G. An action of G on X is a function that associates with every $(g, x) \in G \times X$ an element $g x$ of X, such that the following two properties are satisfied.
(i) For all $x \in X, e x=x$.
(ii) For all $g, h \in G$ and all $x \in X, g(h x)=(g h) x$.

When an action of G on X is given, we say that G acts on X.

An action of G on X induces a relation on X : if $x, y \in X$, we say $x \sim y$ if and only if $y=g x$ for some $g \in G$. It is easily verified that this is an equivalence relation on X; the equivalence classes are called orbits. We note that these orbits, being equivalence classes, form a partition of the set X; this fact is important to our construction.

Definition 5.40. Let G be a finite group and X a finite set; suppose G acts on X. For each $x \in X$, the orbit of x, denoted $\operatorname{Orb}(x)$, is the subset $\operatorname{Orb}(x)=\{g x \mid g \in G\}$ of X.

Now we return to the task of forming a base block for a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p+1}$. We recall that we are considering only odd values of k and p for these constructions, and we note that the integers p and $4 k p+1$ are relatively prime for any choice of k and p. In our description of this construction, we use the integers from $-2 k p$ to $2 k p$ as the representatives of the congruence classes in the ring $\mathbb{Z}_{4 k p+1}$. We denote the set of nonzero elements of this ring by $\mathbb{Z}_{4 k p+1}^{*}$.

In order to form a base block for $\mathcal{C}_{2 k}^{p}$, we first identify a number $x \in \mathbb{Z}_{4 k p+1}^{*}$ such that the set

$$
\begin{equation*}
H=\left\{x^{i} \mid i \in \llbracket 1, p \rrbracket\right\} \tag{5.120}
\end{equation*}
$$

is a group of order p under multiplication modulo $4 k p+1$. In order to proceed with the construction, we must have, for all $z \in \mathbb{Z}_{4 k p+1}^{*}$, that the p numbers in the set $\left\{x^{i} z \mid i \in \llbracket 1, p \rrbracket\right\}$ are distinct modulo $(4 k p+1)$. We assume that this is the case in what follows; we defer to Chapter 6 the discussion of when these conditions are satisfied.

We now define two actions of H. We define the action $\alpha: H \times \mathbb{Z}_{4 k p+1}^{*} \rightarrow \mathbb{Z}_{4 k p+1}^{*}$ by $\alpha(h, z)=\hat{z}$, where \hat{z} is the unique element of $\llbracket-2 k p,-1 \rrbracket \cup \llbracket 1,2 k p \rrbracket$ satisfying the congruence $h \cdot z \equiv \hat{z}(\bmod 4 k p+1)$. We define the action $\beta: H \times \mathcal{D}_{4 k p+1} \rightarrow \mathcal{D}_{4 k p+1}$ by $\beta(h, d)=|\alpha(h, d)|$. We avoid use of the standard notations $h z$ for $\alpha(h, z)$ and $h d$ for $\beta(h, d)$ due to their ambiguity in this context.

The fact that $|\operatorname{Orb}(z)|=p$ for each $z \in \mathbb{Z}_{4 k p+1}^{*}$ and $|\operatorname{Orb}(d)|=p$ for each $d \in \mathcal{D}_{4 k p+1}$ follows from the (assumed) fact that the p numbers in the set $\left\{x^{i} z \mid i \in \llbracket 1, p \rrbracket\right\}$ are distinct modulo $(4 k p+1)$. Then, since the collection of orbits generated by a group action on a set is a partition of the set, there are exactly $2 k$ distinct orbits in $\mathcal{D}_{4 k p+1}$ and exactly $4 k$ distinct orbits in $\mathbb{Z}_{4 k p+1}^{*}$.

We next choose a set T of differences so that each orbit in $\mathcal{D}_{4 k p+1}$ contributes exactly one element to T, and so that, for some function $f: T \rightarrow\{1,-1\}$, we have

$$
\begin{equation*}
\sum_{d \in T} f(d) \cdot d \equiv 0(\bmod 4 k p+1) \tag{5.121}
\end{equation*}
$$

The penultimate stage of the construction is to use the differences in the set T to form a cycle C (as a subgraph of $K_{4 k p+1}$) that will generate the base block under the action of H. In the formation of the cycle C, we require that each difference d in T occurs on exactly one edge in the cycle C, achieved in the direction dictated by $f(d)$ (clockwise if $f(d)=1$ and counterclockwise otherwise), and that no two vertices of C lie in the same orbit in $\mathbb{Z}_{4 k p+1}^{*}$.

We complete the construction by letting H act on the cycle C to generate the base block. Specifically, if $C=\left(c_{1}, c_{2}, \ldots, c_{2 k}\right)$, we define, for any $h \in H$,

$$
\begin{equation*}
h C=\left(\alpha\left(h, c_{1}\right), \alpha\left(h, c_{2}\right), \ldots, \alpha\left(h, c_{2 k}\right)\right) . \tag{5.122}
\end{equation*}
$$

Since no two vertices of C belong to the same orbit in $\mathbb{Z}_{4 k p+1}^{*}$, no two vertices of $h C$ belong to the same orbit in $\mathbb{Z}_{4 k p+1}^{*}$, so $h C$ is a cycle of length $2 k$ for all $h \in H$. For distinct $h_{1}, h_{2} \in H$ and any vertex c_{i} of C, the vertices $\alpha\left(h_{1}, c_{i}\right)$ and $\alpha\left(h_{2}, c_{i}\right)$ are distinct members of the same orbit. Thus, for distinct $h_{1}, h_{2} \in H$, the cycles $h_{1} C$ and $h_{2} C$ are vertex-disjoint. So the graph B whose components are the cycles $h C$, where h ranges over all elements of H, is indeed isomorphic to $\mathcal{C}_{2 k}^{p}$. We observe that, if the edge $\left\{c_{i}, c_{i+1}\right\}$ of C has difference d, then the edge $\left\{\alpha\left(h, c_{i}\right), \alpha\left(h, c_{i+1}\right)\right\}$ of $h C$ has difference $\beta(h, d)$. So the set of differences used on edges of the cycle $h C$ is $h T=\{\beta(h, d) \mid d \in T\}$. Since T has exactly one element from each orbit in $\mathcal{D}_{4 k p+1}$, so does $h T$ for each $h \in H$. Thus, by our careful choice of T and C, every difference in $\mathcal{D}_{4 k p+1}$ occurs on exactly one edge of the graph B; hence B is the desired base block.

We give full details for the construction of the design for $p=3$ and $k=5$ as an illustrative example; we state the other designs we have achieved without these details.

5.4.1.1 The Design for $p=3$ and $k=5$

If $p=3$ and $k=5$, then $n=4 p k+1=61$. Note that $13 \neq 1(\bmod 61), 13^{2} \not \equiv 1(\bmod 61)$, and $13^{3} \equiv 1(\bmod 61)$, so $H=\left\{13^{i} \mid 1 \leq i \leq 3\right\}$ is a group of order 3 under multiplication modulo 61 . Since $13^{2} \equiv-14(\bmod 61)$, we write $H=\{1,13,-14\}$. The orbits generated by the actions of H on \mathbb{Z}_{61}^{*} and on \mathcal{D}_{61} are listed in Table 5.45.

Table 5.45: Orbits generated by the actions of H

Orbits in \mathbb{Z}_{61}^{*}	Orbits in \mathcal{D}_{61}	
$\{1,13,-14\}$	$\{-1,-13,14\}$	$\{1,13,14\}$
$\{2,26,-28\}$	$\{-2,-26,28\}$	$\{2,26,28\}$
$\{3,-22,19\}$	$\{-3,22,-19\}$	$\{3,22,19\}$
$\{4,-9,5\}$	$\{-4,9,-5\}$	$\{4,9,5\}$
$\{6,17,-23\}$	$\{-6,-17,23\}$	$\{6,17,23\}$
$\{7,30,24\}$	$\{-7,-30,-24\}$	$\{7,30,24\}$
$\{8,-18,10\}$	$\{-8,18,-10\}$	$\{8,18,10\}$
$\{11,21,29\}$	$\{-11,-21,-29\}$	$\{11,21,29\}$
$\{12,-27,15\}$	$\{-12,27,-15\}$	$\{12,27,15\}$
$\{16,25,20\}$	$\{-16,-25,-20\}$	$\{16,25,20\}$

We choose the set of differences $T=\{1,2,19,5,6,30,10,21,12,16\}$; define the function f by $f(d)=1$ for all $d \in T$, and observe that

$$
\begin{equation*}
\sum_{d \in T} f(d) \cdot d=1+2+19+5+6+30+10+21+12+16=122 \equiv 0(\bmod 61) . \tag{5.123}
\end{equation*}
$$

Since $f(d)=1$ for every $d \in T$, every difference in T is to be achieved by moving in the clockwise direction. We use these differences to form the cycle

$$
C=(1,17,18,30,-29,-19,2,8,27,-4) .
$$

Note that, as required, no two vertices of C lie in the same orbit in \mathbb{Z}_{61}^{*}. Allowing H to act on C, we obtain the additional cycles $13 C=(13,-23,-10,24,-11,-3,26,-18,-15,9)$ and $-14 C=(-14,6,-8,7,-21,22,-28,10,-12,-5)$. Since the standard labels for the vertices of K_{61} are the canonical representatives of the congruence classes, we revert to these representatives to state the base block. The cycles in the base block and their corresponding difference sets are given in Table 5.46; the base block is shown in Figure 5.46.

Table 5.46: Cycle list for the \mathcal{C}_{10}^{3} base block in Figure 5.46
$\left.\begin{array}{c}\hline \text { Cycle } \mathfrak{C}_{1} \quad \text { (cobalt) } \\ \hline C=\mathfrak{C}_{1}=(1,17,18,30,32,42,2,8,27,57) \\ T=\{1,2,19,5,6,30,10,21,12,16\} \\ \hline \text { Cycle } \mathfrak{C}_{2} \quad(\text { sky }) \\ \hline 13 C=\mathfrak{C}_{2}=(13,38,51,24,50,58,26,43,46,9) \\ 13 T=\{13,26,3,4,17,24,8,29,27,25\} \\ \hline \text { Cycle } \mathfrak{C}_{3} \quad(\text { pink }) \\ \hline-14 C=\mathfrak{C}_{3}=(47,6,53,7,40,22,33,10,49,56) \\ -14 T\end{array}\right)\{14,28,22,9,23,7,18,11,15,20\}$,

Figure 5.46: A \mathcal{C}_{10}^{3} base block $(p=3, k=5)$

5.4.1.2 The Design for $p=3$ and $k=3$

If $p=3$ and $k=3$, then $n=4 p k+1=37$. Construction of the base block is facilitated by the action of the group $H=\{1,10,-11\}$ on \mathcal{D}_{37} and on \mathbb{Z}_{37}^{*}. The cycles in the base block and their corresponding difference sets are given in Table 5.47 ; the base block is shown in Figure 5.47.

Table 5.47: Cycle list for the \mathcal{C}_{6}^{3} base block in Figure 5.47

Cycle $\mathfrak{C}_{1} \quad$ (cobalt)
$C=\mathfrak{C}_{1}=(1,6,7,14,16,32)$
$T=\{1,2,7,5,6,16\}$
Cycle $\mathfrak{C}_{2} \quad($ sky $)$
$10 C=\mathfrak{C}_{2}=(10,23,33,29,12,24)$
$10 T=\{10,17,4,13,14,12\}$
Cycle $\mathfrak{C}_{3} \quad($ pink $)$
$-11 C=\mathfrak{C}_{3}=(26,8,34,31,9,18)$
$-11 T=\{11,15,3,18,8,9\}$

Figure 5.47: A \mathcal{C}_{6}^{3} base block $(p=3, k=3)$

5.4.1.3 The Design for $p=3$ and $k=9$

If $p=3$ and $k=9$, then $n=4 p k+1=109$. Construction of the base block is facilitated by the action of the group $H=\{1,45,-46\}$ on \mathcal{D}_{109} and on \mathbb{Z}_{109}^{*}. The cycles in the base block and their corresponding difference sets are given in Table 5.48; the base block is shown in Figure 5.48.

Table 5.48: Cycle list for the \mathcal{C}_{18}^{3} base block in Figure 5.48

Cycle $\mathfrak{C}_{1} \quad$ (cobalt)	
$C=\mathfrak{C}_{1}=(1,2,19,22,26,38,44,52,74,88,99,8,21,57,106,34,50,82)$	
$T=\{1,17,3,4,12,6,8,22,14,11,13,36,16,18,28,32,49,37\}$	
Cycle $\mathfrak{C}_{2} \quad$ (sky)	
$\begin{aligned} 45 C & =\mathfrak{C}_{2}=(45,90,92,9,80,75,18,51,60,36,95,33,73,58,83,4,70,93) \\ 45 T & =\{45,2,26,38,5,52,33,9,24,50,40,15,43,47,48,23,25,30\} \end{aligned}$	
Cycle $\mathfrak{C}_{3} \quad$ (pink)	
$\begin{aligned} -46 C & =\mathfrak{C}_{3}=(63,17,107,78,3,105,47,6,84,94,24,68,15,103,29,71,98,43) \\ -46 T & =\{46,19,29,34,7,51,41,31,10,39,53,21,27,44,20,54,35,42\} \end{aligned}$	

Figure 5.48: A \mathcal{C}_{18}^{3} base block $(p=3, k=9)$

5.4.1.4 The Design for $p=3$ and $k=11$

If $p=3$ and $k=11$, then $n=4 p k+1=133$. Construction of the base block is facilitated by the action of the group $H=\{1,11,-12\}$ on \mathcal{D}_{133} and on \mathbb{Z}_{133}^{*}. The cycles in the base block and their corresponding difference sets are given in Table 5.49; the base block is shown in Figure 5.49.

Table 5.49: Cycle list for the \mathcal{C}_{22}^{3} base block in Figure 5.49
$\left.\begin{array}{c}\hline \text { Cycle } \mathfrak{C}_{1} \quad \text { (cobalt) } \\ \hline C=\mathfrak{C}_{1}=(1,3,6,16,36,41,50,64,82,112,23, \\ 24,32,49,68,96,21,27,42,58,87,127) \\ T=\{1,2,3,44,5,6,7,8,9,10,14, \\ 15,16,17,18,19,20,58,28,29,30,40\} \\ \hline \text { Cycle } \mathfrak{C}_{2} \quad(\text { sky }) \\ \hline 11 C=\mathfrak{C}_{2}=(11,33,66,43,130,52,18,39,104,35,120, \\ 131,86,7,83,125,98,31,63,106,26,67) \\ 11 T=\{11,22,33,48,55,66,56,45,34,23,21, \\ 32,43,54,65,57,46,27,42,53,64,41\} \\ \hline \text { Cycle } \mathfrak{C}_{3} \quad(\text { pink }) \\ \hline-12 C=\mathfrak{C}_{3}=(121,97,61,74,100,40,65,30,80,119,123, \\ 111,15,77,115,45,14,75,28,102,20,72) \\ -12 T=\{12,24,36,4,60,61,49,37,25,13,35, \\ 47,59,62,50,38,26,31,63,51,39,52\}\end{array}\right]$

Figure 5.49: A \mathcal{C}_{22}^{3} base block $(p=3, k=11)$

5.4.1.5 The Design for $p=3$ and $k=13$

If $p=3$ and $k=13$, then $n=4 p k+1=157$. Construction of the base block is facilitated by the action of the group $H=\{1,12,-13\}$ on \mathcal{D}_{157} and on \mathbb{Z}_{157}^{*}. The cycles in the base block and their corresponding difference sets are given in Table 5.50; the base block is shown in Figure 5.50.

Table 5.50: Cycle list for the \mathcal{C}_{26}^{3} base block in Figure 5.50
$\left.\left.\begin{array}{c}\hline \text { Cycle } \mathfrak{C}_{1} \quad \text { (cobalt) } \\ \hline C=\mathfrak{C}_{1}=(1,11,34,67,75,82,88,110,131,151,10,54,99, \\ 129,3,35,52,70,73,84,103,108,117,121,122,156) \\ T=\{1,2,3,4,5,6,7,8,9,10,11,23,16, \\ 17,18,19,20,21,22,34,30,31,32,33,45,44\}\end{array}\right] \begin{array}{c}\text { Cycle } \mathfrak{C}_{2} \quad(\text { sky }) \\ \hline 12 C=\mathfrak{C}_{2}=(12,132,94,19,115,42,114,64,2,85,120,20,89, \\ 135,36,106,153,55,91,66,137,40,148,39,51,145) \\ 12 T=\{12,24,36,48,60,72,73,61,49,37,25,38,35, \\ 47,59,71,74,62,50,63,46,58,70,75,69,57\} \\ \hline \text { Cycle } \mathfrak{C}_{3} \quad(\text { pink }) \\ \hline-13 C=\mathfrak{C}_{3}=(144,14,29,71,124,33,112,140,24,78,27,83,126, \\ 50,118,16,109,32,150,7,74,9,49,154,141,13) \\ -13 T=\{13,26,39,52,65,78,66,53,40,27,14,15,51, \\ 64,77,67,54,41,28,29,76,68,55,42,43,56\}\end{array}\right]$

Figure 5.50: A \mathcal{C}_{26}^{3} base block $(p=3, k=13)$

5.4.1.6 The Design for $p=5$ and $k=3$

If $p=5$ and $k=3$, then $n=4 p k+1=61$. Construction of the base block is facilitated by the action of the group $H=\{1,-3,9,-27,20\}$ on \mathcal{D}_{61} and on \mathbb{Z}_{61}^{*}. The cycles in the base block and their corresponding difference sets are given in Table 5.51 ; the base block is shown in Figure 5.51.

Table 5.51: Cycle list for the \mathcal{C}_{6}^{5} base block in Figure 5.51

Cycle $\mathfrak{C}_{1} \quad$ (cobalt)
$C=\mathfrak{C}_{1}=(1,13,19,45,50,51)$
$T=\{1,6,12,5,11,26\}$
Cycle $\mathfrak{C}_{2} \quad$ (sky)
$-3 C=\mathfrak{C}_{2}=(58,22,4,48,33,30)$
$-3 T=\{3,18,25,15,28,17\}$
Cycle $\mathfrak{C}_{3} \quad($ pink $)$
$9 C=\mathfrak{C}_{3}=(9,56,49,39,23,32)$
$9 T=\{9,7,14,16,23,10\}$
Cycle $\mathfrak{C}_{4} \quad($ lilac $)$
$-27 C=\mathfrak{C}_{4}=(34,15,36,5,53,26)$
$-27 T=\{27,21,19,13,8,30\}$
Cycle $\mathfrak{C}_{5} \quad($ apricot $)$
$20 C=\mathfrak{C}_{5}=(20,16,14,46,24,44)$
$20 T=\{20,2,4,22,24,29\}$

Figure 5.51: A \mathcal{C}_{6}^{5} base block $(p=5, k=3)$

5.4.2 Constructions by the Prescribed Sum Method

The general approach in this method stems from a straightforward observation about differences occurring in cycles. Suppose that each of the differences in the set $\left\{d_{1}, \ldots, d_{s}\right\}$ occurs on exactly one edge of a cycle of length s in K_{n}; then there exists a function $f: \llbracket 1, s \rrbracket \rightarrow\{1,-1\}$ such that

$$
\begin{equation*}
\sum_{i=1}^{s} f(i) \cdot d_{i} \equiv 0(\bmod n) \tag{5.124}
\end{equation*}
$$

This observation is a direct consequence of the fact that a cycle must begin and end at the same vertex. To see this, fix a vertex v in the cycle and traverse the cycle beginning at v, recording $f(i)=1$ if the edge of difference d_{i} is traversed clockwise and $f(i)=-1$ otherwise; then congruence (5.124) must hold, as the left side records the net change in the vertex label from beginning to end of the cycle, which must be 0 modulo n.

In the first stage of construction by this method, we create a partition of the difference set $\mathcal{D}_{4 k p+1}=\llbracket 1,2 k p \rrbracket$ with p subsets of size $2 k$ and arrange the differences in each subset into a sum of the form in congruence (5.124) with value a multiple of $(4 k p+1)$. In the second stage, we determine an ordering of the signed differences $f(i) \cdot d_{i}$ for each subset and produce p vertex-disjoint cycles to form the base block of a cyclic design. A pattern has emerged in the partitions of the difference sets, but no pattern is apparent in the subsequent parts of the construction.

Two of the three pairs (p, k) for which designs were exhibited in the previous section are repeated here with a different design. These designs were created in the hope of discovering a general pattern in this method, and are included here for completeness.
5.4.2.1 The Design for $p=3$ and $k=3$

If $p=3$ and $k=3$, then $n=4 p k+1=37$. The difference patterns and cycles in the base block are given in Table 5.52; the base block is shown in Figure 5.52.

Table 5.52: Cycle list for the \mathcal{C}_{6}^{3} base block in Figure 5.52

Cycle \mathfrak{C}_{1}	(orange)	Cycle \mathfrak{C}_{2}	(mocha)	Cycle $\mathfrak{C}^{\text {c }}$		(jade)		
1815	943	[13] [17]	[11] 2	10 [1]		14		
$\mathfrak{C}_{1}=(0$,	, 21, 30, 3	$\mathfrak{C}_{2}=(1,25,8,15,4,6)$		$\mathfrak{C}_{3}=(2,12,11,3,17,23)$				

Figure 5.52: A \mathcal{C}_{6}^{3} base block $(p=3, k=3)$

5.4.2.2 The Design for $p=3$ and $k=5$

If $p=3$ and $k=5$, then $n=4 p k+1=61$. The difference patterns and cycles in the base block are given in Table 5.53; the base block is shown in Figure 5.53.

Table 5.53: Cycle list for the \mathcal{C}_{10}^{3} base block in Figure 5.53

Cycle $\mathfrak{C}_{1} \quad$ (orange)		
$\left.\left.\begin{array}{l} 30 \end{array} \begin{array}{llllllll} {[24]} & {[18]} & {[27]} & 21 & {[15]} & {[4]} & {[9]} & {[12]} \end{array}\right] 3\right]$		
Cycle $\mathfrak{C}_{2} \quad$ (mocha)		
$\left.\begin{array}{lllllllll} {[29]} & {[25]} & 23 & {[19]} & {[17]} & {[11]} & 13 & {[5]} & 7 \\ 2 \end{array}\right]$		
Cycle $\mathfrak{C}_{3} \quad$ (jade)		

Figure 5.53: A \mathcal{C}_{10}^{3} base block $(p=3, k=5)$

5.4.2.3 The Design for $p=3$ and $k=7$

If $p=3$ and $k=7$, then $n=4 p k+1=85$. This is the most significant design we have created using this method, because we can show that the first stage of the group action method must fail for $p=3$ and $k=7$. The difference patterns and cycles in the base block are given in Table 5.54; the base block is shown in Figure 5.54.

Table 5.54: Cycle list for the \mathcal{C}_{14}^{3} base block in Figure 5.54

Cycle $\mathfrak{C}_{1} \quad$ (orange)									
$\begin{aligned} & 42 \end{aligned}\left[\begin{array}{cccccccccccc} {[30]} & {[39]} & 21 & 36 & 27 & 18 & 3 & {[33]} & 15 & {[12]} & 24 & 9 \\ \mathfrak{C}_{1}=(0,42,12,58, & 79,30,57, & 75,78,45, & 60,48,72,81) \end{array}\right.$									
Cycle $\mathfrak{C}_{2} \quad$ (mocha)									
$\begin{array}{llllllllllllll} 37 & 29 & 13 & 41 & {[17]} & 35 & {[25]} & {[7]} & 19 & {[23]} & 5 & {[31]} & 11 & {[2]} \\ \mathfrak{C}_{2}= & (1,38,67,80,36,19,54,29,22,41, & 18,23,77,3) \end{array}$									
Cycle $\mathfrak{C}_{3} \quad$ (jade)									

5.4.3 Comparative Analysis for Odd k and Odd p

The comparison between our constructions and the construction by Blinco and El-Zanati is trivial in this case: our constructions have thus far yielded only nine base blocks, while the construction by Blinco and El-Zanati addresses all odd values of p and k. We comment that our group action method, while not particularly fruitful in terms of base blocks, has spawned some interesting questions of a number-theoretic nature. We defer discussion of these questions to Chapter 6.

Figure 5.54: A \mathcal{C}_{14}^{3} base block $(p=3, k=7)$

Chapter 6

Conjectures and Questions

In this chapter, we draw our discussion of bounded complete embedding graphs to a close with comments and ideas about future work on these graphs. With a view toward further progress, we summarize possible extensions and generalizations of the major ideas and approaches in our current efforts. In addition, we revisit our efforts to build $\mathcal{C}_{2 k}^{p}$ base blocks for p and k both odd, posing some questions that arose during that work. We begin with these questions, what we know about their answers, and additional questions spurred by our investigations of these and related ideas.

6.1 Questions Generated by the Group Actions Method

In Section 5.4, we exhibited constructions of base blocks for purely cyclic $\mathcal{C}_{2 k}^{p}$-designs on $K_{4 k p+1}$ for odd values of p and k using two methods, one depending on group actions and the other on a fixed prescribed sum of differences. In the constructions by group actions, we used the action of a cyclic group of order p to generate the $\mathcal{C}_{2 k}^{p}$ base block from a single $2 k$-cycle. We chose the cyclic group to be a subgroup of a particular group, called the group of units, that resides in the ring $\mathbb{Z}_{4 k p+1}$. We pause to give two definitions and a fundamental result regarding this group.

Definition 6.1. Let $m \in \mathbb{P}$ such that $m \geq 2$. The set of invertible elements of \mathbb{Z}_{m} is a group under multiplication modulo m, called the group of units of \mathbb{Z}_{m}; it is denoted \mathscr{U}_{m}.

Definition 6.2. For any $n \in \mathbb{P}$, let $\varphi(n)$ denote the number of positive integers less than n that are relatively prime to n. The function φ is known as the Euler φ-function.

The size of \mathscr{U}_{m} is known to be $\varphi(m)$ (see [10], pp. 7-11). Furthermore, there is an explicit formula for $\varphi(m)$ in terms of the prime factors of m.

Lemma 6.3. Let $m \in \mathbb{P}$ such that $m \geq 2$. Let $r \in \mathbb{P}$, let q_{1}, \ldots, q_{r} be distinct primes, and let a_{1}, \ldots, a_{r} be positive integers such that $m=q_{1}^{a_{1}} \cdots q_{r}^{a_{r}}$. Then

$$
\left|\mathscr{U}_{m}\right|=\varphi(m)=\prod_{i=1}^{r} q_{i}^{a_{i}-1}\left(q_{i}-1\right) .
$$

The constructions of $\mathcal{C}_{2 k}^{p}$-designs on $K_{4 k p+1}$ by group actions were developed by considering the special case when p and k are odd and $(4 k p+1)$ is prime; in this case, the necessary conditions for the construction are easily satisfied, as we see in the following remarks.

Remark 6.4. For any $p, k \in \mathbb{P}$, when $(4 k p+1)$ is prime, the ring $\mathbb{Z}_{4 k p+1}$ is a field, so all of its nonzero elements are invertible, and $\mathscr{U}_{4 k p+1}=\mathbb{Z}_{4 k p+1}^{*}$ is a cyclic group of order $4 k p$ (see [19], p. 116). Then, since p divides $4 k p$, the group $\mathscr{U}_{4 k p+1}$ has a subgroup H of order p (see [19], p. 77). Since $\mathscr{U}_{4 k p+1}$ itself is cyclic, H must also be cyclic.

Recall that we define two actions of H in the construction by group actions. For $h \in H$ and $x \in \mathbb{Z}_{4 k p+1}^{*}$, the action α on $\mathbb{Z}_{4 k p+1}^{*}$ is given by $\alpha(h, z)=\hat{z}$, where \hat{z} is the unique element of $\llbracket-2 k p,-1 \rrbracket \cup \llbracket 1,2 k p \rrbracket$ satisfying the congruence $h \cdot z \equiv \hat{z}(\bmod 4 k p+1)$. The action β on the set of differences $\mathcal{D}_{4 k p+1}$ is given by $\beta(h, d)=|\alpha(h, d)|$, where $h \in H$ and $d \in \mathcal{D}_{4 k p+1}$.

Remark 6.5. When $(4 k p+1)$ is prime, since the group H (from Remark 6.4) is a subgroup of $\mathscr{U}_{4 k p+1}=\mathbb{Z}_{4 k p+1}^{*}$, we have, for any $z \in \mathbb{Z}_{4 k p+1}^{*}$, that the orbit of z under the action α is simply the coset $H z$ of H in $\mathscr{U}_{4 k p+1}$, and is guaranteed to have the same number of distinct elements as H (see [19], p. 38). Since H has order $p,|\operatorname{Orb}(z)|=p$ for each $z \in \mathbb{Z}_{4 k p+1}^{*}$. Since the action β is defined in terms of the action α, it is easily verified that $|\operatorname{Orb}(d)|=p$ for each $d \in \mathcal{D}_{4 k p+1}$.

In our investigations, we soon discovered that the construction by group actions can be applied successfully in some cases when p and k are odd but $(4 k p+1)$ is not prime. We
identified two necessary conditions, which we stated in the discussion of the construction; we repeat these conditions here for reference.
(1) We must have a number $x \in \mathbb{Z}_{4 k p+1}^{*}$ such that the set $H=\left\{x^{i} \mid i \in \llbracket 1, p \rrbracket\right\}$ is a group of order p under multiplication modulo $(4 k p+1)$; that is, the group $\mathscr{U}_{4 k p+1}$ must have a cyclic subgroup of order p.
(2) We must have, for all $z \in \mathbb{Z}_{4 k p+1}^{*}$, that the p numbers in the set $\left\{x^{i} z \mid i \in \llbracket 1, p \rrbracket\right\}$ are distinct modulo $(4 k p+1)$.

During our discussion of the construction by group actions, we assumed that both of these conditions held and described how to proceed if they do. Since we have found some values of p and k for which these conditions do not hold, we must address the issue of when these conditions hold and when they do not. We observe that it is absurd to discuss condition (2) if condition (1) does not hold, so we will assume that condition (1) holds in all subsequent discussions of condition (2). We are thus interested in the following questions.

Question 6.6. Given odd integers p and k, both at least three, does $\mathscr{U}_{4 k p+1}$ have a cyclic subgroup of order p ?

Question 6.7. Given odd integers p and k, both at least three, and given that $\mathscr{U}_{4 k p+1}$ has a cyclic subgroup H of order p generated by the element x, do the orbits of elements of $\mathbb{Z}_{4 k p+1}^{*}$ under the action α of H all have size p ?

In the remainder of this section, we summarize what we know about the answers to these questions, and pose new questions that arose during our pursuit of a particular related idea. We begin with a formal statement of our conclusions from Remarks 6.4 and 6.5 regarding conditions (1) and (2) when ($4 k p+1$) is prime.

Remark 6.8. Let $p, k \in \mathbb{P}$ such that $p \geq 2$ and $k \geq 2$, and suppose that $(4 k p+1)$ is prime. Then conditions (1) and (2) both hold.

Example 6.9. If $p=3$ and $k=7$, then $4 k p+1=85=5 \cdot 17$ is not prime. By Lemma 6.3, the group \mathscr{U}_{85} has order $\varphi(85)=(5-1)(17-1)=64$, so it has no elements of order three; the desired subgroup H therefore does not exist.

Remark 6.10. If $(4 k p+1)$ is not prime but p is prime, then, by a theorem of Cauchy on group elements of prime order (see [19], p. 93), $\mathscr{U}_{4 k p+1}$ has a cyclic subgroup of order p if and only if $p \mid \varphi(4 k p+1)$. Since p clearly cannot divide $(4 k p+1)$, we have, by Lemma 6.3, that $p \mid \varphi(4 k p+1)$ if and only if there is some prime factor q of $(4 k p+1)$ such that $p \mid(q-1)$; that is, such that $q \equiv 1(\bmod p)$.

Hence, if p is prime and $(4 k p+1)$ is not prime, $\mathscr{U}_{4 k p+1}$ has a cyclic subgroup of order p if and only if there is at least one prime factor q of $4 k p+1$ such that $q \equiv 1(\bmod p)$.

In the case that p and $(4 k p+1)$ are both composite, if $p \mid \varphi(4 k p+1)$, then there is a subgroup of $\mathscr{U}_{4 k p+1}$ of order p (see [19], p. 77), but this subgroup is not guaranteed to be cyclic, so it may not have an element of order p, as is sought in condition (1). We have verified whether condition (1) holds for all pairs of odd values of p and k such that $p \in\{3,5\}$ and $k \leq 75$. We exhibit these results in Tables $6.1,6.2$, and 6.3 . For the pairs of values of p and k for which condition (1) holds, which are given in Tables 6.1 and 6.2 , we include the minimum element, x, of order p in $\mathscr{U}_{4 k p+1}$ in the table entry for p and k.

Table 6.1: Known odd values of p and k for which $4 k p+1$ is composite and condition (1) holds

p	k	$4 k p+1$	MIN x	p	k	$4 k p+1$	MIN x
3	11	$133=7 \cdot 19$	11	5	17	$341=11 \cdot 31$	4
3	25	$301=7 \cdot 43$	36	5	39	$781=11 \cdot 71$	5
3	27	$325=5^{2} \cdot 13$	126	5	43	$861=3 \cdot 7 \cdot 41$	379
3	39	$469=7 \cdot 67$	29	5	61	$1221=3 \cdot 11 \cdot 37$	223
3	49	$589=19 \cdot 31$	87				
3	53	$637=7^{2} \cdot 13$	79				
3	67	$805=5 \cdot 7 \cdot 23$	116				

Table 6.2: Known odd values of p and k for which $4 k p+1$ is prime

p	k	$4 k p+1$	MIN x	p	k	$4 k p+1$	MIN x	p	k	$4 k p+1$	MIN x
3	3	37	10	3	51	613	65	5	23	461	88
3	5	61	13	3	55	661	296	5	27	541	48
3	9	109	45	3	59	709	227	5	33	661	197
3	13	157	12	3	61	733	307	5	35	701	89
3	15	181	48	3	63	757	27	5	41	821	51
3	19	229	94	3	69	829	125	5	47	941	349
3	23	277	116	3	71	853	220	5	51	1021	589
3	29	349	122	3	73	877	282	5	53	1061	220
3	31	373	88	5	3	61	9	5	59	1181	81
3	33	397	34	5	5	101	36	5	65	1301	163
3	35	421	20	5	9	181	42	5	69	1381	75
3	45	541	129	5	21	421	252				

Table 6.3: Known odd values of p and k for which $4 k p+1$ is composite and condition (1) fails

p	k	$4 k p+1$	p	k	$4 k p+1$	p	k	$4 k p+1$
3	7	$85=5 \cdot 17$	5	7	$141=3 \cdot 47$	5	49	$981=9 \cdot 109$
3	17	$205=5 \cdot 41$	5	11	$221=13 \cdot 17$	5	55	$1101=3 \cdot 367$
3	21	$253=11 \cdot 23$	5	13	$261=9 \cdot 29$	5	57	$1141=7 \cdot 163$
3	37	$445=5 \cdot 89$	5	15	$301=7 \cdot 43$	5	63	$1261=13 \cdot 97$
3	41	$493=17 \cdot 29$	5	19	$381=3 \cdot 127$	5	67	$1341=9 \cdot 149$
3	43	$517=11 \cdot 47$	5	25	$501=3 \cdot 167$	5	71	$1421=7^{2} \cdot 29$
3	47	$565=5 \cdot 113$	5	29	$581=7 \cdot 83$	5	73	$1461=3 \cdot 487$
3	57	$685=5 \cdot 137$	5	31	$621=3^{3} \cdot 23$	5	75	$1501=19 \cdot 79$
3	65	$781=11 \cdot 71$	5	37	$741=3 \cdot 13 \cdot 19$			
3	75	$901=17 \cdot 53$	5	45	$901=17 \cdot 53$			

Example 6.11. If $p=3$ and $k=11$, we have that $4 k p+1=133=7 \cdot 19$. The group \mathscr{U}_{133} has order $\varphi(133)=(7-1)(19-1)=108$, so it has a cyclic subgroup of order $p=3$, as is required by condition (1). One such subgroup is $H=\{1,11,-12\}$. Furthermore, for all $z \in \mathbb{Z}_{133}^{*}$, the p elements of the set $\left\{11^{i} z \mid i \in \llbracket 1,3 \rrbracket\right\}$ are indeed distinct modulo 133 , as is required by condition (2).

Example 6.11 is the smallest case in which p and k are odd, $(4 k p+1)$ is composite, and conditions (1) and (2) are both satisfied. We were able to complete the construction by group actions for this case; the base block is shown in Figure 5.49. We observe that, in this case, the number $(4 k p+1)$ has a special form:

$$
\begin{equation*}
4 k p+1=t(t+1)+1=t^{2}+t+1 \tag{6.1}
\end{equation*}
$$

in particular for $t=11$. Having observed this, we began investigating numbers of this form for $p=3$. We obtained the following result.

Theorem 6.12. Let $t \in \mathbb{P}$, and let $N=t(t+1)+1$. If $t \geq 2$, then \mathscr{U}_{N} has a cyclic subgroup of order six generated by $(t+1)$, and this subgroup contains the element t, which generates a cyclic subgroup of order three.

Proof. Let $t \in \mathbb{P}$, and suppose $t \geq 2$. Let $N=t(t+1)+1$; then $N \geq 7$. We observe that 1 and -1 are always elements of \mathscr{U}_{m} for any $m \geq 3$; hence 1 and -1 are elements of \mathscr{U}_{N}. Note that $(-t)(t+1) \equiv 1(\bmod N)$ and $-(t+1) \cdot t \equiv 1(\bmod N)$, so $t,(-t),(t+1)$, and $-(t+1)$ are all invertible in \mathbb{Z}_{N} and are thus elements of \mathscr{U}_{N}. Since $N \geq 7$, it is easily verified that $1,-1, t,(-t),(t+1)$, and $-(t+1)$ are all distinct elements of \mathscr{U}_{N}.

Furthermore, we have

$$
\begin{aligned}
& (t+1)^{2} \equiv t(\bmod N) \\
& (t+1)^{3} \equiv-1 \equiv t^{2}+t(\bmod N) \\
& (t+1)^{4} \equiv-(t+1) \equiv t^{2}(\bmod N) \\
& (t+1)^{5} \equiv-t \equiv t^{2}+1(\bmod N) \\
& (t+1)^{6} \equiv 1(\bmod N)
\end{aligned}
$$

So $(t+1)$ generates a cyclic group of order six in \mathscr{U}_{N}, namely $\left\{1,(t+1), t, t^{2}+t, t^{2}, t^{2}+1\right\}$. Since $t \equiv(t+1)^{2}(\bmod N), t$ has order three in \mathscr{U}_{N}, as desired.

Remark 6.13. If $p=3$ and $4 k p+1=12 k+1=t(t+1)+1$ for some $t \in \mathbb{P}$, then condition (1) is satisfied.

Our progress on condition (2) is more limited than our progress on condition (1). Thus far, we have verified that condition (2) holds for two pairs of odd values of p and k for which $(4 k p+1)$ is composite: the pair in Example 6.11 and the pair in Example 6.14.

Example 6.14. If $p=3$ and $k=105$, we have that $4 k p+1=1261=t(t+1)+1$ for $t=35$. The group \mathscr{U}_{1261} thus has a cyclic subgroup of order $p=3$, as is required by condition (1). One such subgroup is $H=\{1,35,-36\}$. Furthermore, for all $z \in \mathbb{Z}_{1261}^{*}$, the p elements of the set $\left\{35^{i} z \mid i \in \llbracket 1,3 \rrbracket\right\}$ are distinct modulo 1261, as is required by condition (2).

Our initial investigation into the integers of the form $12 k+1=t(t+1)+1$ has expanded into a general exploration of numbers of the form $t(t+1)+1$. We note that, if $t \equiv 2(\bmod 3)$ or $t \equiv 0(\bmod 3)$, then $t(t+1)+1 \equiv 1(\bmod 3)$, and if $t \equiv 1(\bmod 3)$, then $t(t+1)+1 \equiv 0(\bmod 3)$. We have explored the prime factorizations of these integers up to $t=60$; none of them has a prime factor q satisfying $q \equiv 2(\bmod 3)$. We are curious whether this is true of all integers of this form. We are also interested in the prime factors of integers of a more general form: $t(r t+1)+1$, for positive integers r and t.

Question 6.15. Is there a positive integer t such that $t(t+1)+1$ has a prime factor q satisfying $q \equiv 2(\bmod 3)$?

Question 6.16. Let $r, t \in \mathbb{P}$, and let $Q=t(r t+1)+1$. Can we characterize the prime factors of Q in terms of their congruence classes modulo some positive integer m ?

These questions provide avenues for future research that extend far beyond the study of bounded complete embedding graphs. We now close our discussion of number-theoretic questions and return to discussion of our central topic.

6.2 Future Work on Bounded Complete Embedding Graphs

In Chapters 1, 3, and 4, we identified several families of graphs as bounded complete embedding graphs. These families are summarized below.

- Even cycles are bounded complete embedding graphs.
(Theorem 1.40, Corollary 1.41, and Corollary 1.43, Rodger, 1990)
- Paths are bounded complete embedding graphs.
(Theorem 3.10)
- Complete bipartite graphs are bounded complete embedding graphs.
(Theorem 3.14)
- Any graph G having all vertices of even degree and $e(G)=2^{k}$ for some $k \in \mathbb{P}$ that admits a β^{+}-labeling is a bounded complete embedding graph.
(Theorem 3.17)
In particular,
* the cubes Q_{n}, where $n=2^{t}$ for some $t \in \mathbb{P}$, are bounded complete embedding graphs;
(Corollary 3.18)
* the graphs $C_{2 a} \biguplus C_{2 b}$, where the positive integers a and b are not equal and are each at least two, and where $2 a+2 b=2^{t}$ for some $t \in \mathbb{P}$, are bounded complete embedding graphs;
(Corollary 3.19)
and
* the graphs $C_{2 a} \biguplus C_{2 b} \biguplus C_{2 c}$, where the positive integers a, b, and c are not all equal and are each at least two, and where $2 a+2 b+2 c=2^{t}$ for some $t \in \mathbb{P}$, are bounded complete embedding graphs.
(Corollary 3.20)
- The graphs $\mathcal{C}_{2 k}^{p}$ for which $p, k \in \llbracket 2,128 \rrbracket$ are bounded complete embedding graphs.
(Theorem 4.16)
- The graphs $\mathcal{C}_{2 k}^{p}$ for which $p \in\left\{2^{t} \mid t \in \mathbb{P}\right\}$ are bounded complete embedding graphs.
(Theorem 4.18)

Numerous infinite families of bipartite graphs remain open to investigation as potential bounded complete embedding graphs. We wish to pursue many of these families.

Of particular interest are the remaining graphs $\mathcal{C}_{2 k}^{p}$. The choice of the bound 128 for terminating computation of divisors for the Dovetail Construction is somewhat arbitrary; we are confident that continued pursuit of these computations will yield further results. It is clearly impossible, however, to verify these divisors for infinitely many values of p and k by direct computation. We hope to achieve additional results, possibly including new constructions, to complete the proof of the following conjecture.

Conjecture 6.17. The graphs $\mathcal{C}_{2 k}^{p}$ are bounded complete embedding graphs for all $p, k \in \mathbb{P}$ such that $p \geq 2$ and $k \geq 2$.

We also intend to study the broader family of 2-regular bipartite graphs, since existing labeling results for these graphs reduce the task of showing that such a graph, G, is a bounded complete embedding graph to exhibiting G-designs on $K_{2 e(G), n-1}$ for all $n \in \operatorname{SSpec}(G)$ such that $n \not \equiv 1(\bmod 2 e(G))$. Further success with the cohorts of even cycles may provide constructions that generalize nicely to accommodate these graphs.

The literature on graph designs is rich with results about path designs and complete bipartite graph designs, and the comets $S_{k, 2}$ admit β^{+}-labelings, so we are also interested in the following graphs.

- cohorts of paths and, more generally, graphs whose components are paths
- cohorts of stars and graphs whose components are stars
- cohorts of complete bipartite graphs and graphs whose components are complete bipartite graphs
- the comets $S_{k, 2}$ and the cohorts of $S_{k, 2}$

The graphs listed above are natural choices for future pursuit, since much is known about their component graphs. In order to reach beyond these families of graphs, we identify a
few characteristics of a graph, G, that have the potential to simplify the process of building G-designs. Clearly, any graph we consider must be bipartite, since all bounded complete embedding graphs are bipartite. Furthermore, regular graphs provide the strongest information from the Superspectral Conditions, especially SSC-3; graphs with most or all vertices having small degree offer more options in the building of designs. We also note that it is common, once a particular design question has been settled for cycles, to consider chorded cycles and other graphs formed by adding edges to a cycle. These considerations motivate our interest in the two families of graphs we define below.

Definition 6.18. Let n be a positive integer, and let $D \subseteq \mathcal{D}_{n}$. The subgraph of K_{n} having precisely those edges whose differences are in D is called the difference graph corresponding to the difference set \boldsymbol{D}; we denote this graph by $K_{n}[D]$. If we describe D by listing its elements, we omit the set brackets around this list in the notation for the difference graph; e.g., we write $K_{n}\left[d_{1}, d_{2}\right]$, not $K_{n}\left[\left\{d_{1}, d_{2}\right\}\right]$.

We note that, for even integers n, some of the difference graphs $K_{n}[D]$ are bipartite; in particular, in order for $K_{n}[D]$ to be bipartite, all the differences in D must have the same parity, and all must be divisors of n. We are, of course, interested in whether such graphs are bounded complete embedding graphs. One subfamily of these graphs is of particular interest, as they have all of the desirable characteristics we described above.

Definition 6.19. Let k be a positive, odd integer. The marigold graph of order $2 k$, denoted $M_{2 k}$, is the difference graph $K_{2 k}[1, k]$.

Example 6.20. The marigold graph M_{14} is shown in Figure 6.1.

We observe that marigold graphs could be defined for all positive integers k, but the graphs obtained from even values of k would not be bipartite. Since we desire only bipartite graphs, we exclude the even values of k from our definition.

Figure 6.1: The marigold graph M_{14}

6.3 Extensions and Generalizations

We close our discussion with a few ideas for extending and generalizing our work. The first of these is, of course, the question of identifying bounded embedding graphs, since the definition of a bounded embedding graph is the natural generalization of the definition of a bounded complete embedding graph to include partial designs. Since every bounded embedding graph is also a bounded complete embedding graph, we will likely only investigate this question for those graphs that have already been identified as bounded complete embedding graphs. Even restricting ourselves in this way, we have several families of graphs to investigate: paths of length at least four, even cycles of length at least six, complete bipartite graphs with both parts of size at least two, and some of the cohorts of even cycles.

We may also generalize our current work by considering designs with holes. In order to embed a complete G-design of order n in a complete G-design of order r, we must build a G-design on the graph $K_{r}-K_{n}$, which is the graph obtained by removing the edges of a K_{n} from a K_{r}. In the context of building embeddings, we only attempt to build such designs for $n, r \in \operatorname{Spec}(G)$. We may generalize our work by considering G-designs on $K_{r}-K_{n}$ for all positive integers n and r such that $n<r$. There are also potentially interesting questions about bounds on the value of $r-n$.

Since our current work requires the building of G-designs on infinitely many complete bipartite graphs, another possible extension is to ask for necessary and sufficient conditions for a G-design on $K_{r, s}$ for particular graphs G of interest. Clearly, it is necessary that G be bipartite, that $v(G) \leq r+s$, that $e(G) \mid r s$, and that $\operatorname{gcd}\left\{\operatorname{deg}_{G}(v) \mid v \in V(G)\right\} \mid \operatorname{gcd}\{r, s\}$. Results of this kind have already been achieved for $G=C_{2 k}$ by Sotteau [32], for $G=P_{k}$ by Parker [26], and for $G=K_{a, b}$ by Hoffman and Liatti [16]; we would like to pursue similar results for cohorts of even cycles, cohorts of paths, and cohorts of complete bipartite graphs.

Bibliography

[1] Jaromír Abrham and Anton Kotzig, All 2-regular graphs consisting of 4-cycles are graceful, Discrete Math. 135 (1994), no. 1-3, 1-14. MR 1310864 (95m:05199)
[2] Brian Alspach and Heather Gavlas, Cycle decompositions of K_{n} and $K_{n}-I$, J. Combin. Theory Ser. B 81 (2001), no. 1, 77-99. MR 1809427 (2002e:05034)
[3] Brian Alspach and Badri N. Varma, Decomposing complete graphs into cycles of length $2 p^{e}$, Ann. Discrete Math. 9 (1980), 155-162, Combinatorics 79 (Proc. Colloq., Univ. Montréal, Montreal, Que., 1979), Part II. MR 597367 (82b:05087)
[4] Elaine T. Bell, Decomposition of K_{n} into cycles of length at most fifty, Ars Combin. 40 (1995), 49-58. MR 1352768 (96d:05086)
[5] J.-C. Bermond, C. Huang, and D. Sotteau, Balanced cycle and circuit designs: even cases, Ars Combin. 5 (1978), 293-318. MR 504873 (80c:05050)
[6] Andrew Blinco and Saad I. El-Zanati, A note on the cyclic decomposition of complete graphs into bipartite graphs, Bull. Inst. Combin. Appl. 40 (2004), 77-82. MR 2020943
[7] J. A. Bondy and U. S. R. Murty, Graph theory, Graduate Texts in Mathematics, vol. 244, Springer, New York, 2008. MR 2368647 (2009c:05001)
[8] Darryn Bryant and Daniel Horsley, A proof of Lindner's conjecture on embeddings of partial Steiner triple systems, J. Combin. Des. 17 (2009), no. 1, 63-89. MR 2475426 (2009m:05015)
[9] D. de Werra, Decomposition of bipartite multigraphs into matchings, Z. Operations Res. Ser. A-B 16 (1972), A85-A90. MR 0306055 (46 \#5182)
[10] David S. Dummit and Richard M. Foote, Abstract algebra, third ed., John Wiley \& Sons, Inc., Hoboken, NJ, 2004. MR 2286236 (2007h:00003)
[11] S. I. El-Zanati, M. J. Kenig, and C. Vanden Eynden, Near α-labelings of bipartite graphs, Australas. J. Combin. 21 (2000), 275-285. MR 1758277 (2000m:05202)
[12] S. I. El-Zanati, C. Vanden Eynden, and Narong Punnim, On the cyclic decomposition of complete graphs into bipartite graphs, Australas. J. Combin. 24 (2001), 209-219. MR 1852820 (2002f:05126)
[13] Saad I. El-Zanati and Charles Vanden Eynden, On Rosa-type labelings and cyclic graph decompositions, Math. Slovaca 59 (2009), no. 1, 1-18. MR 2471688 (2010b:05137)
[14] Kourosh Eshghi, The existence and construction of α-valuations of 2-regular graphs with three components, National Library of Canada, Ottawa, 1997, Thesis (Ph.D.)-University of Toronto.
[15] M. J. Grannell, T. S. Griggs, and F. C. Holroyd, Modular gracious labellings of trees, Discrete Math. 231 (2001), no. 1-3, 199-219, 17th British Combinatorial Conference (Canterbury, 1999). MR 1821960 (2002b:05119)
[16] D. G. Hoffman and Mark Liatti, Bipartite designs, J. Combin. Des. 3 (1995), no. 6, 449-454. MR 1351904 (96d:05029)
[17] D. G. Hoffman and Dan Roberts, Embedding partial k-star designs, J. Combin. Des. 22 (2014), no. 4, 161-170. MR 3158647
[18] Charlotte Huang and Alexander Rosa, Decomposition of complete graphs into trees, Ars Combin. 5 (1978), 23-63. MR 504860 (80e:05091)
[19] Thomas W. Hungerford, Algebra, Graduate Texts in Mathematics, vol. 73, SpringerVerlag, New York-Berlin, 1980, Reprint of the 1974 original. MR 600654 (82a:00006)
[20] Anton Kotzig, Decomposition of a complete graph into $4 k$-gons, Mat.-Fyz. Casopis Sloven. Akad. Vied 15 (1965), 229-233. MR 0195760 (33 \#3958)
[21] , β-valuations of quadratic graphs with isomorphic components, Utilitas Math. 7 (1975), 263-279. MR 0382076 (52 \#2964)
[22] , Decompositions of complete graphs into isomorphic cubes, J. Combin. Theory Ser. B 31 (1981), no. 3, 292-296. MR 638285 (83b:05103)
[23] C. C. Lindner and C. A. Rodger, Decomposition into cycles. II. Cycle systems, Contemporary design theory, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley, New York, 1992, pp. 325-369. MR 1178505
[24] Charles C. Lindner, A partial Steiner triple system of order n can be embedded in a Steiner triple system of order $6 n+3$, J. Combinatorial Theory Ser. A 18 (1975), 349351. MR 0379223 ($52 \# 129$)
[25] Charles C. Lindner and Trevor Evans, Finite embedding theorems for partial designs and algebras, Les Presses de l'Université de Montréal, Montreal, Que., 1977, Séminaire de Mathématiques Supérieures, No. 56 (Été 1971). MR 0460213 (57 \#208)
[26] Carol Ann Parker, Complete bipartite graph path decompositions, ProQuest LLC, Ann Arbor, MI, 1998, Thesis (Ph.D.)-Auburn University. MR 2697563
[27] Chris A. Rodger, Graph decompositions, Matematiche (Catania) 45 (1990), no. 1, 119139 (1991), Graphs, designs and combinatorial geometries (Catania, 1989). MR 1181002 (93i:05103)
[28] Aleksander Rosa, On decompositions of a complete graph into $4 m+2$-gons, Mat. Časopis Sloven. Akad. Vied 17 (1966), 242-246. MR 0225678 (37 \#1271)
[29] , On certain valuations of the vertices of a graph, Theory of Graphs (Internat. Sympos., Rome, 1966), Gordon and Breach, New York; Dunod, Paris, 1967, pp. 349355. MR 0223271 (36 \#6319)
[30] Mateja Šajna, Cycle decompositions of $K(n)$ and $K(n)-I$, ProQuest LLC, Ann Arbor, MI, 1999, Thesis (Ph.D.)-Simon Fraser University (Canada). MR 2700989
[31] , Cycle decompositions. III. Complete graphs and fixed length cycles, J. Combin. Des. 10 (2002), no. 1, 27-78. MR 1871681 (2003e:05072)
[32] Dominique Sotteau, Decomposition of $K_{m, n}\left(K_{m, n}^{*}\right)$ into cycles (circuits) of length $2 k$, J. Combin. Theory Ser. B 30 (1981), no. 1, 75-81. MR 609596 (82e:05088)
[33] Michael Tarsi, Decomposition of a complete multigraph into simple paths: nonbalanced handcuffed designs, J. Combin. Theory Ser. A 34 (1983), no. 1, 60-70. MR 685212 (84i:05037)
[34] Thomas Richard Whitt and Chris A. Rodger, On the embedding of partial three path designs, submitted.
[35] Richard M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph, Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), Congressus Numerantium, No. XV, Utilitas Math., Winnipeg, Man., 1976, pp. 647-659. MR 0396347 (53 \#214)

Appendices

Appendix A
 Superspectra of the Cohorts of Even Cycles

We have computed the exact superspectrum of $\mathcal{C}_{2 k}^{p}$ for all pairs of values of p and k such that $p, k \in \llbracket 2,128 \rrbracket$. The Python code in Figure A. 1 generates a text file (having roughly 96880 lines) that lists, for each pair (p, k), the canonical representatives of all congruence classes modulo $4 k p$ in the superspectrum of $\mathcal{C}_{2 k}^{p}$ and the elements, n, of those congruence classes that are excluded from the superspectrum because they satisfy the double inequality $1<n<2 k p$. The superspectrum of $\mathcal{C}_{2 k}^{p}$ is given in Table A. 1 for twenty-one selected pairs of values of p and k.

Complete tables listing the exact superspectrum of $\mathcal{C}_{2 k}^{p}$ for all pairs of values of p and k such that $p, k \in \llbracket 2,128 \rrbracket$ are provided in the companion document titled Extension A: The Superspectra of the Cohorts of Even Cycles, Revisited. This document is available (in PDF format) through the Auburn University Repository of Research Activities (AUrora). The following is a permanent URL for the document.
http://hdl.handle.net/11200/48522

```
import math
import sys
import time
import itertools
f = open('SSpecP2to128K2to128','w')
PValuesToCheck = [x for x in xrange (2,129)]
KValuesToCheck = [x for x in xrange (2,129)]
f.write('Superspectra of the Cohorts of Even Cycles, ')
f.write('for p in [2, 128], k in [2, 128] \n \n')
f.write('----------------------------------------------------- \n \n')
for p in PValuesToCheck:
    for k in KValuesToCheck:
        f.write('p = ' + str(p) + ' k = ' + str(k) + '\n')
        f.write('congruence classes modulo 4kp = ' + str(4*k*p) + ': ')
        Classes = []
        for n in xrange(1,4*k*p):
            if (((n*(n-1))%(4*k*p)) == 0) and ((n-1) %2 == 0):
                Classes.append(n)
        f.write(str(Classes) + ' \n')
        MyExcludes = []
        for y in xrange (2,2*k*p):
            if (((y* (y-1)) %(4*k*p)) == 0) and ((y-1) %2 == 0):
                    MyExcludes.append(y)
        f.write('Exceptions (1 < n < 2kp): ' + str(MyExcludes) + ' \n \n')
        f.write('----------------------------------------------------- \n \n')
```

Figure A.1: Python code to output $\operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ for all $p, k \in \llbracket 2,128 \rrbracket$

Table A.1: The superspectrum of $\mathcal{C}_{2 k}^{p}$, for selected values of p and k

p	k	SSpec $\left(\mathcal{C}_{2 k}^{p}\right)$ consists of those $n \in \mathbb{P}$ such that:
2	4	$n \equiv 1(\bmod 32)$
2	11	$n \equiv 1$ or $33(\bmod 88) \quad$ except $n=33$
2	15	$n \equiv 1,25,81$, or $105(\bmod 120) \quad$ except $n=25$
3	4	$n \equiv 1$ or $33(\bmod 48)$
3	7	$n \equiv 1,21,49$, or $57(\bmod 84) \quad$ except $n=21$
3	11	$n \equiv 1,33,45$, or $121(\bmod 132) \quad$ except $n=33,45$
3	35	$n \equiv 1,21,85,105,141,225,301$, or $385(\bmod 420)$
	\quad except $n=21,85,105,141$	

Appendix B

Existence of Satisfactory Divisors for the Dovetail Construction

In this Appendix, we are concerned with the existence of satisfactory divisors for the Dovetail Construction (Theorem 4.8), as required in the proof of Theorem 4.15. We repeat the statements of these theorems below for reference. We also repeat a small portion of the proof of Theorem 4.15, as we will need the notation that is defined therein.

Theorem (The Dovetail Construction). Let $k, p \in \mathbb{P}$ such that $k \geq 2$ and $p \geq 2$, and let $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$. If there exists a divisor z of $n-1$ such that $p \leq z \leq \frac{n-1}{k}$ and $\frac{n-1}{z}$ is even, then there exists a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, n-1}$.

Theorem (4.15). Let $k, p \in \mathbb{P}$ such that $2 \leq k \leq 128$ and $2 \leq p \leq 128$. Then there is some positive integer $N(k, p)$ such that a $\mathcal{C}_{2 k}^{p}$-design on $K_{4 k p, n-1}$ exists for every $n \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ such that $n \geq N(k, p)$.

Excerpt from the Proof of Theorem 4.15:

Let $k, p \in \mathbb{P}$ such that $k \geq 2$ and $p \geq 2$. Let M denote the number of distinct modular congruence classes in $\operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$, and let $\left\{n_{i} \mid i \in \llbracket 1, M \rrbracket\right\}$ be the set of canonical representatives of those congruence classes. It suffices to show that, for each $i \in \llbracket 1, M \rrbracket$, there is some $N_{i} \in \operatorname{SSpec}\left(\mathcal{C}_{2 k}^{p}\right)$ such that $N_{i} \equiv n_{i}(\bmod 4 k p)$ and there is a divisor z_{i} of $N_{i}-1$ satisfying the conditions of the Dovetail Construction.

In order to verify the existence of the required values N_{i} and their divisors, we have implemented a short Python program to complete the necessary computations. The Python code in Figure B. 1 generates a text file that lists, for each pair (p, k), the representatives n_{i}, the values N_{i}, and all possible values of z_{i} for each N_{i}. As shown, the code generates output
for all pairs (p, k) such that $p, k \in \llbracket 2,32 \rrbracket$, omitting all values of p that are powers of two (since success is guaranteed for those values by Corollary 4.9). Changing the ranges of the variables PValues and KValues appropriately will produce output for the remaining pairs. The code includes an easy way to check that values N_{i} and their corresponding divisors have been successfully identified for all pairs (p, k) in the output: success has been achieved if the output file does not contain the alert message "Value Too Large: Search Aborted."

Table B. 1 lists divisor information for thirty-nine selected pairs of values of p and k; for each selected pair, the following information is given: the congruence class representatives n_{i}, the required value N_{i} in each congruence class, the smallest possible divisor z_{i} corresponding to each N_{i}, and the value of $N(k, p)$.

Complete tables listing divisor information for all pairs of values of p and k such that $p, k \in \llbracket 2,128 \rrbracket$ are provided in the companion document titled Extension B: Satisfactory Divisors for the Dovetail Construction, Revisited. This document is available (in PDF format) through the Auburn University Repository of Research Activities (AUrora). The following is a permanent URL for the document.
http://hdl.handle.net/11200/48522

```
import math
import sys
import time
import itertools
f = open('DivisorsP2to32K2to32',' w')
PValues = [3,5,6,7]+[x for x in xrange(9,16)]+[x for x in xrange(17,32)]
KValues = [x for x in xrange(2,33)]
def SuperSpectrum(k,p):
    numbers = []
    for n in xrange (1,4*k*p):
        if (((n* (n-1))%(4*k*p)) == 0) and ((n-1) %2 == 0):
                numbers.append(n)
    return numbers
def Divisors(c):
    CZvalues = []
    mybound = int(math.floor((c-1)/k))
    for z in xrange(p,mybound+1):
        if ((c-1)%z == 0) and ((c-1)/z)%2 == 0:
                CZvalues.append(z)
    f.write('\n \n n =' + str(c) + ' n-1 =' + str(c-1))
    if len(CZvalues) != 0:
            f.write(' Divisors: ' + str(CZvalues) + '\n \n')
    else:
        f.write(' Divisors: NONE')
        if c < (400*k*p):
                Divisors(c+(4*k*p))
            else:
                f.write('\n Value Too Large: Search Aborted')
f.write('Divisors for the Dovetail Construction \n \n')
f.write('----------------------------------------------- \n \n')
for p in PValues:
    for k in KValues:
        f.write('Divisors found for p = ' + str(p) + ', ')
        f.write('k = ' + str(k) + '\n\n')
        Classes = []
        Classes = SuperSpectrum(k,p)
        for c in Classes:
            f.write('For the congruence class n == ')
            f.write(str(c) + ' mod ' + str(4*k*p) + ':')
            if (c >= 2*k*p):
                Divisors(c)
            elif (c < (2*k*p)):
                Divisors(c+(4*k*p))
        f.write('\n----------------------------------------------- \n \n')
```

Figure B.1: Python code to output divisor lists for all $p, k \in \llbracket 2,32 \rrbracket$

Table B.1: Divisors for selected values of p and k

p	k	$4 k p$	i	n_{i}	N_{i}	$N_{i}-1$	z_{i}	$N(k, p)$
3	2	24	1	1	25	24	3	
			2	9	33	32	4	33
3	3	36	1	1	37	36	3	
			2	9	45	44	11	45
3	4	48	1	1	49	48	3	
			2	33	33	32	4	49
3	5	60	1	1	61	60	3	
			2	21	81	80	4	
			3	25	85	84	3	
			4	45	105	104	4	105
3	6	72	1	1	73	72	3	
			2	9	81	80	4	81
3	7	84	1	1	85	84	3	
			2	21	105	104	4	
			3	49	49	48	3	
			4	57	57	56	4	105
3	34	408	1	1	409	408	3	
			2	153	561	560	4	
			3	273	273	272	4	
			4	289	289	288	3	561

continued on next page

Table B.1: Divisors for selected p and k, continued

p	k	$4 k p$	i	n_{i}	N_{i}	$N_{i}-1$	z_{i}	$N(k, p)$
3	35	420	1	1	421	420	3	
			2	21	441	440	4	
			3	85	505	504	3	
			4	105	945	944	4	
			5	141	561	560	4	
			6	225	225	224	4	
			7	301	301	300	3	
			8	385	385	384	3	945
3	36	432	1	1	433	432	3	
			2	81	513	512	4	513
5	29	580	1	1	581	580	5	
			2	145	1885	1884	6	
			3	261	841	840	5	
			4	465	465	464	8	1885
5	30	600	1	1	601	600	5	
			2	25	625	624	6	
			3	201	801	800	5	
			4	225	1425	1424	8	1425
5	31	620	1	1	621	620	5	
			2	125	745	744	6	
			3	341	341	340	5	
			4	465	465	464	8	745

continued on next page

Table B.1: Divisors for selected p and k, continued

p	k	$4 k p$	i	n_{i}	N_{i}	$N_{i}-1$	z_{i}	$N(k, p)$
5	32	640	1	1	641	640	5	
			2	385	385	384	6	641
5	33	660	1	1	661	660	5	
			2	45	705	704	8	
			3	121	781	780	5	
			4	165	1485	1484	7	
			5	265	925	924	6	
			6	385	385	384	6	
			7	441	441	440	5	
			8	561	561	560	5	1485
33	12	1584	1	1	1585	1584	36	
			2	1089	1089	1088	34	
			3	1233	1233	1232	44	
			4	1441	1441	1440	36	1585
33	13	1716	1	1	1717	1716	39	
			2	429	2145	2144	67	
			3	573	2289	2288	44	
			4	781	2497	2496	39	
			5	793	2509	2508	38	
			6	1353	1353	1352	52	
			7	1365	1365	1364	62	
			8	1573	3289	3288	137	3289

continued on next page

Table B.1: Divisors for selected p and k, continued

p	k	$4 k p$	i	n_{i}	N_{i}	$N_{i}-1$	z_{i}	$N(k, p)$
33	14	1848	1	1	1849	1848	42	
			2	385	2233	2232	36	
			3	441	2289	2288	44	
			4	561	2409	2408	43	
			5	1057	1057	1056	44	
			6	1177	1177	1176	42	
			7	1233	1233	1232	44	
			8	1617	1617	1616	101	2409
33	15	1980	1	1	1981	1980	33	
			2	45	2025	2024	44	
			3	441	2421	2420	55	
			4	1045	1045	1044	58	
			5	1441	1441	1440	36	
			6	1485	1485	1484	53	
			7	1585	1585	1584	33	
			8	1881	1881	1880	47	2421
33	16	2112	1	1	2113	2112	33	
			2	385	2497	2496	39	
			3	705	2817	2816	44	
			4	1089	1089	1088	34	2817

Table B.1: Divisors for selected p and k, continued

p	k	$4 k p$	i	n_{i}	N_{i}	$N_{i}-1$	z_{i}	$N(k, p)$
33	17	2244	1	1	2245	2244	33	
			2	561	9537	9536	149	
			3	969	3213	3212	73	
			4	1089	3333	3332	34	
			5	1309	3553	3552	37	
			6	1497	1497	1496	34	
			7	1717	1717	1716	33	
			8	1837	1837	1836	34	9537
33	18	2376	1	1	2377	2376	33	
			2	297	7425	7424	58	
			3	649	3025	3024	36	
			4	2025	2025	2024	44	7425
84	53	17808	1	1	17809	17808	84	
			2	4081	21889	21888	96	
			3	4929	22737	22736	98	
			4	5089	22897	22896	106	
			5	5937	23745	23744	106	
			6	10017	27825	27824	94	
			7	11025	11025	11024	104	
			8	16801	16801	16800	84	27825
84	54	18144	1	1	18145	18144	84	
			2	3969	40257	40256	136	
			3	7777	25921	25920	90	
			4	14337	14337	14336	112	40257

continued on next page

Table B.1: Divisors for selected p and k, continued

p	k	$4 k p$	i	n_{i}	N_{i}	$N_{i}-1$	z_{i}	$N(k, p)$
84	55	18480	1	1	18481	18480	84	
			2	385	18865	18864	131	
			3	561	19041	19040	85	
			4	3025	21505	21504	84	
			5	4081	22561	22560	94	
			6	5985	24465	24464	88	
			7	6721	25201	25200	84	
			8	8625	27105	27104	88	
			9	9681	9681	9680	88	
			10	12145	12145	12144	88	
			11	12321	12321	12320	88	
			12	12705	49665	49664	97	
			13	14785	14785	14784	84	
			14	15345	15345	15344	137	
			15	15841	15841	15840	88	
			16	16401	16401	16400	100	49665
84	56	18816	1	1	18817	18816	84	
			2	3969	22785	22784	89	
			3	6273	25089	25088	98	
			4	16513	16513	16512	86	25089
101	14	5656	1	1	5657	5656	202	
			2	505	6161	6160	110	
			3	1617	7273	7272	202	
			4	2121	7777	7776	108	7777

continued on next page

Table B.1: Divisors for selected p and k, continued

p	k	$4 k p$	i	n_{i}	N_{i}	$N_{i}-1$	z_{i}	$N(k, p)$
101	15	6060	1	1	6061	6060	202	
			2	405	6465	6464	202	
					505	12625	12624	263

continued on next page

Table B.1: Divisors for selected p and k, continued

p	k	$4 k p$	i	n_{i}	N_{i}	$N_{i}-1$	z_{i}	$N(k, p)$
101	20	8080	1	1	8081	8080	202	
			2	4545	4545	4544	142	
			3	6161	6161	6160	110	
			4	6465	6465	6464	202	8081
117	64	29952	1	1	29953	29952	117	
			2	9217	39169	39168	128	
			3	16641	16641	16640	128	
			4	25857	25857	25856	128	39169
117	65	30420	1	1	30421	30420	117	
			2	1521	123201	123200	140	
			3	6085	36505	36504	117	
			4	7605	38025	38024	194	
			5	8281	38701	38700	129	
			6	14365	44785	44784	311	
			7	23661	23661	23660	130	
			8	29745	29745	29744	143	123201
117	66	30888	1	1	30889	30888	117	
			2	9153	40041	40040	130	
			3	10153	41041	41040	120	
			4	19305	19305	19304	127	
			5	19657	19657	19656	117	
			6	21385	21385	21384	132	
			7	28809	28809	28808	277	
			8	30537	30537	30536	347	41041

continued on next page

Table B.1: Divisors for selected p and k, continued

p	k	$4 k p$	i	n_{i}	N_{i}	$N_{i}-1$	z_{i}	$N(k, p)$
117	67	31356	1	1	31357	31356	117	
			2	469	31825	31824	117	
			3	23049	23049	23048	134	
			4	23517	54873	54872	361	
			5	26533	26533	26532	134	
			6	27001	27001	27000	125	
			7	27873	27873	27872	134	
			8	28341	28341	28340	130	54873
117	68	31824	1	1	31825	31824	117	
			2	3537	35361	35360	130	
			3	7345	39169	39168	128	
			4	10881	42705	42704	136	
			5	14977	46801	46800	117	
			6	18513	18513	18512	178	
			7	22321	22321	22320	120	
			8	25857	25857	25856	128	46801
117	69	32292	1	1	32293	32292	117	
			2	8073	72657	72656	152	
			3	9477	41769	41768	227	
			4	10557	42849	42848	206	
			5	11961	44253	44252	299	
			6	28405	28405	28404	263	
			7	29809	29809	29808	138	
			8	30889	30889	30888	117	72657

continued on next page

Table B.1: Divisors for selected p and k, continued

p	k	$4 k p$	i	n_{i}	N_{i}	$N_{i}-1$	z_{i}	$N(k, p)$
117	70	32760	1	1	32761	32760	117	
	2	3745	36505	36504	117			
3	5265	38025	38024	194				
4	7281	40041	40040	130				
5	8281	41041	41040	120				
6	11025	43785	43784	421				
7	13105	45865	45864	117				
8	15561	48321	48320	151				
9	17641	17641	17640	126				
10	20385	20385	20384	182				
11	21385	21385	21384	132				
12	23401	23401	23400	117				
13	24921	24921	24920	140				
14	28665	61425	61424	349				
15	30681	30681	30680	118				
16	30745	30745	30744	122	61425			

