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Abstract

When predictor variables possess an underlying grouping structure in multiple regres-

sion, selecting important groups of variables is an essential component of building a meaning-

ful regression model. Some methods exist to perform group selection, but do not perform well

when the data include outliers. Four methods for robust variable selection of grouped data,

based on the group LASSO, are presented: two regular methods and two adaptive methods.

For each of the two methods in the regular and adaptive groups, one method works well for

data with outliers in the y-direction, and the other method works well for data with outliers

in both the x- and y- directions. The effectiveness of each of these methods is illustrated

with an extensive simulation study and a real data example.

Keywords: Group LASSO, Robust variable selection, Multiple regression
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Chapter 1

Introduction

In regression analysis, variable selection is an important problem. Initially, there may

be a large number of explanatory variables in the model. Including more predictors than

necessary in the model can result in poor prediction accuracy, and having fewer predictors

than needed can increase biases in parameter estimation and prediction results. In addition to

these considerations, outliers in the data can also be problematic when performing estimation

and variable selection. Therefore, robust regression methods should be utilized in such cases.

An interesting new problem in statistics is group variable selection, where the predictor

variables can be naturally grouped, and important groups of variables are to be selected.

This type of data is common in many scientific applications. Examples include fMRI data

with grouped gene expressions or demographic data that can be grouped by socioeconomic

or physical factors. In such cases, it is common to have outliers in the data and some

multicollinearity between the predictor variables. Thus, it is necessary to develop a method

to do well in the presence of outliers and with some correlation between predictors.

In this dissertation, we propose four robust methods to simultaneously perform param-

eter estimation and group variable selection. The first two are regular-type group variable

selection methods, where there is a tuning parameter applied to all the parameters. The

first performs well in the presence of outliers in the y-direction, and the second excels in

the presence of outliers in both the y-direction and the x-direction. The second two are

adaptive-type group variable selection methods, where a tuning parameter is applied to each

individual group. Similarly to the first two methods, there is an adaptive-type method that

is resistant to outliers in the y-direction, and another adaptive-type method that is resistant

to outliers in both the x- and y-direction. The second two adaptive-type group variable
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selection methods exhibit some nice statistical properties, which will be proven. To show

the effectiveness of all of these new methods, we present simulation studies and a real data

example.

1.1 Problem Description

The multiple regression model involves modeling one response variable as a function of

more than one predictor variable. This model can be written mathematically as:

yi = β0 + xi1β1 + xi2β2 + . . .+ xipβp + εi (1.1)

Here, yi is the response variable, xi1, . . . , xip, are the predictor variables, βj’s are the regres-

sion coefficients, and εi’s are the error terms for i = 1, . . . , n and j = 1, . . . , p. Alternatively,

these equations can be rewritten in matrix form:

y = Xβ + ε (1.2)

where y is an n x 1 vector of responses, X is the n x p matrix of predictors, β is the p x

1 vector of regression coefficients, and ε is the n x 1 vector of random errors. Assume from

now on that the response has been centered, and the predictors are standardized such that

there need not be an intercept.

The assumptions for the standard multiple regression model include: that there is an

approximate linear relationship between the response and predictor variables, and the errors

are independent (uncorrelated) and are normally distributed with mean 0 and constant

variance σ2. When these assumptions are fulfilled, the data are ideal. In this case, the

ordinary least square (OLS) estimators for the regression coefficients β̂ can be found, which

are the best linear unbiased estimators, a result following from the Gauss-Markov theorem.

However, when the errors do not follow the normal distribution or come from a mixture

distribution, the least squares estimates can exhibit high bias in the presence of observations
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that deviate from a majority of the data points. As a result, choosing a“good” estimation

technique can be difficult, depending on the type of outlying observations. In particular, we

would like to apply a robust estimation and variable selection methods to grouped data for

a couple of different situations of outliers.

1.1.1 Why Variable Selection is Needed

Variable selection is useful for two purposes: interpretation and prediction. Having

fewer predictors in the model results in a model that is easier to understand. Patterns

and relationships between the predictors and response are easier to explain. With regard to

prediction performance, there is a tradeoff. Including more predictors increases the prediction

performance, since there is more known information being taken into account when making

a prediction. This leads to having more accurate predictions. Having less predictors in

the model decreases the variance of the regression model, leading to more precise prediction.

However, the results from the prediction can be biased. A good regression model found using

variable selection tries to find a balance between interpretation and prediction by including

not too few and not too many predictors.

1.1.2 Why Robustness is Needed

Outliers can also cause problems when performing variable selection. Traditional vari-

able selection methods, such as forward selection, backwards elimination, and stepwise regres-

sion, are based on the OLS estimators; consequently, these methods are sensitive to outliers

and also lead to unstable models, which would cause poor prediction results. Shrinkage

methods also exist, which perform variable selection by shrinking unnecessary predictors to

zero, effectively eliminating them from the regression model. Nevertheless, shrinkage meth-

ods can be badly affected by outliers as well, if they are based on the least squares penalty

function. Thus, a robust method must be used in order to build more accurate linear models

to use for prediction or estimation purposes.
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1.2 Overview of Dissertation

Chapter 2 is a review of the literature, including a discussion of existing variable selection

methods and a review of group variable selection methods, which includes the group LASSO.

In Chapter 3, we propose two new methods for robust variable selection with grouped data

with one tuning parameter and discuss their properties. In Chapter 4, we propose two adap-

tive robust group variable selection methods and prove some statistical properties. Chapter

5 includes simulation studies and an application on a real data set. Chapter 6 is a summary

of the dissertation.
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Chapter 2

Literature Review

In this chapter, we review existing variable selection methods. These methods include

forward selection, backwards elimination, and stepwise regression, as well as shrinkage meth-

ods based on the least absolute shrinkage and selection operator (LASSO). We also review

some robust regression techniques involved in estimation and variable selection.

2.1 Classical Variable Selection Methods

In this section, we discuss classical variable selection techniques. These methods include

forward selection, backwards elimination, and stepwise regression.

The least squares estimators (LSE) are named as such because they minimize the sum

of the squares of the differences between the actual observations and the predicted values.

The least squares estimators β̂ minimize

S(β) =
n∑
i=1

ε2i = εTε = (y−Xβ)T (y−Xβ). (2.1)

To minimize the equation, take the derivative, set equal to zero, and solve. This results

in the following expression:

∂S

∂β
|β̂ = −2XTy + 2XTXβ̂ = 0. (2.2)

Therefore, the least-squares estimator of β is:

β̂ = (XTX)
−1

XTy. (2.3)
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For each coefficient β̂j in β̂, the standard error, se(β̂j) is computed, and a test statistic

tj =
β̂j

se(β̂j)
can be calculated. This test statistic can be used to determine if the corresponding

coefficient is statistically significant, and with this information, various variable selection

methods can be used to build a regression model.

2.1.1 Forward Selection

Forward selection starts with no predictors in the model and sequentially adds significant

variables to build an appropriate model. Forward selection is performed with the following

steps:

1. Begin with no predictors in the model (other than the intercept).

2. Set an upper limit on the significance level α for entry into the regression model.

3. Calculate the test statistic and p-value for adding each individual predictor variable to

the model.

4. Add the most significant predictor with a significance level less than or equal to the

previously set α to the model.

5. Calculate the test statistic and p-value for adding the individual candidate predictors

to the model, given that the model already includes the intercept and the variable

added in the previous step.

6. The most significant predictor variable with a p-value less than or equal to α is then

added to the model.

7. Repeat until the next predictor variables that can be added to the model all have a

significance level greater than α.
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2.1.2 Backwards Elimination

Backwards elimination works in the opposite direction of forward selection. It begins

with all predictors in the model and eliminates those that are not significant. The algorithm

for backwards elimination is below:

1. Start with all predictors in the model (including the intercept).

2. Set an lower limit on the significance level α for deletion from the regression model.

3. Remove the predictor with the largest p-value greater than α.

4. Next, build the model with the remaining predictors.

5. Remove the predictor with the largest p-value greater than α from the remaining

predictor variables, given that the predictor from the previous step is already removed

from the model.

6. Repeat until the potential predictor variables to be removed from the model all have

a significance level less than α.

2.1.3 Stepwise Regression

Stepwise regression is a combination of forward selection and backwards elimination.

It begins with no predictors in the model, except for the intercept. Then, the predictors

are potentially added and then reevaluated for potential elimination, depending on how the

addition of other predictors may have changed the existing predictors’ test statistic value

and p-value. This algorithm can be described by the following:

1. Start with no predictors in the model (except for the intercept).

2. Set a significance level αIN for entry into the model and a significance level αOUT for

removal from the model.
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3. Perform one step of forward selection.

4. Run model to determine significance of variables still in the model.

5. Perform one step of backwards elimination.

6. Run model to determine significance of variables still in the model.

7. Repeat the sequence of forward selection and backwards elimination until the predictors

that can be added have a significance level greater than αIN and the predictors that

can be removed have a significance level less than αOUT .

2.1.4 Criticisms

The methods of forward selection, backwards elimination, and stepwise regression have

been criticized as valid variable selection methods when the assumptions of the least squares

estimators have been violated. Some problems include underestimating the standard errors

of the regression coefficients, which can result in inflating test statistics, causing p-values

to be too low [13]. Also, as a result, parameter estimates can be overestimated. Another

shortcoming is the discrete nature of the aforementioned procedures. A variable is either

included or excluded at one step. There is no continual process of adding or removing

variables. This is an advantage of the following procedures.

2.2 LASSO Estimation Based Techniques

In this section, we describe shrinkage variable selection methods. In particular, this

topic is about the least absolute shrinkage and selection operator (LASSO), and its derived

robust counterparts.

2.2.1 LASSO

The LASSO [21] was proposed as a compromise between subset selection and ridge

regression. Subset selection, such as stepwise regression, is a discrete procedure, which
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can result in highly variable models with small changes in the data. Ridge regression is a

continuous procedure that is also an estimation method; it shrinks coefficients and is more

stable than subset selection. The LASSO will shrink coefficients and set some exactly to 0.

Hence, LASSO is both a shrinkage and variable selection method.

The LASSO estimates are originally obtained by minimizing:

n∑
i=1

(yi −
p∑
j=1

βjxij)
2 subject to

p∑
j=1

|βj| ≤ t (2.4)

where t ≥ 0 is a tuning parameter. An equivalent way of writing (2.4) is using the Lagrangian

form of:

1

2

n∑
i=1

(yi −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

|βj| (2.5)

where λ ≥ 0 is the shrinkage parameter, which controls the degree of shrinkage on the es-

timates. The shrinkage parameter is designed such that the larger it is, the more shrinkage

that is applied to the regression coefficients; thus, the larger λ is, the more regression coeffi-

cients that will be zero. It is typically chosen using k-fold general cross-validation in order

to minimize an estimate of the model error or prediction error, depending on the user’s

choice. The LASSO solutions do not have a closed form. The constraint of the LASSO

makes the solutions of (2.4) nonlinear in the yi’s. The solution to this equation is classified

as a quadratic programming problem with an added constraint.

The LASSO was also motivated by a shortcoming in the nonnegative garotte, whose

solutions depend explicitly on the least squares estimates. When the predictors are highly

correlated, the LSE behave poorly, which in turn affects the garotte solutions, which will

also behave badly. The LASSO avoids this problem by not relying explicitly on least squares

estimates. However, the LASSO still suffers in the case of predictors with severe multi-

collinearity; the LASSO is ideal for cases with little to no correlation between predictors [6].

It has been shown that the oracle property does not hold for the LASSO [8]. The LASSO
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does automatic variable selection because of the singularity of the L1 penalty at the origin;

however, when the regression coefficients are large, the estimates can be biased when using

the LASSO procedure.

2.2.2 Adaptive LASSO

An extension of the LASSO is the adaptive LASSO [27]. Instead of one tuning parame-

ter, there is a tuning parameter for each coefficient. This idea arose from the notion that the

LASSO requires that each coefficient is equally penalized in the L1 penalty, and that may

not necessarily be the best way to treat the predictors when they don’t all contribute to the

regression model. Hence, the adaptive lasso was derived, where each regression coefficient

is penalized differently with its own tuning parameter. The adaptive LASSO is designed to

minimize the following equation:

n∑
i=1

(yi −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

wj|βj| (2.6)

where the weights are defined to be wj to be wj = 1

|β̂j |ν
, where β̂j is the LSE for the jth

parameter and ν > 0. Equivalently, (2.6) can be written as:

n∑
i=1

(yi −
p∑
j=1

βjxij)
2 +

p∑
j=1

λj|βj| (2.7)

The solution to (2.6) is a convex optimization problem. Algorithms used to solve for the

LASSO solutions can be used to compute the adaptive LASSO solutions with a very simple

modification. One useful algorithm involves a modification of the least angle regression

algorithm (LARS algorithm) used by Efron et al [7]. The tuning parameter λj for each

regression coefficient is found using cross-validation along with the LARS algorithm, similar

to how it is found for the LASSO. It has been shown by Zou [27] that the oracle properties,

including consistency and sparsity, do hold for the adaptive LASSO method. The adaptive

LASSO is able to find sparse solutions more efficiently than the LASSO.
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2.2.3 LAD-LASSO

When there are outliers in the response, the LASSO estimates, both the regular LASSO

and the adaptive LASSO, can result in an unstable model. In order to effectively perform

estimation and variable selection in this case, the LAD-LASSO has been proposed [23]. The

LAD-LASSO is based on the least absolute deviation (LAD) estimator, which has been shown

to perform well in situations where the data has outlying observations in the y-direction.

Instead of minimizing the squared differences of the LSE, whose objective function is shown

below,:

n∑
i=1

(yi −
p∑
j=1

βjxij)
2 (2.8)

the LAD estimator minimizes the absolute differences:

n∑
i=1

|yi −
p∑
j=1

βjxij|. (2.9)

It is known that the LAD estimators have
√
n-consistency and asymptotic normality

under certain conditions [2][17], which is why it would be useful to combine the LAD es-

timation criterion with other methods. Thus, the LAD-LASSO estimators are designed to

minimize:

n∑
i=1

|yi −
p∑
j=1

βjxij|+ λ

p∑
j=1

|βj| (2.10)

where λ ≥ 0 is again a shrinkage parameter. When using the same shrinkage parameter for all

regression coefficients, the estimators that result can have some issues. For example, in this

case, the estimators can be subject to bias [8]. Therefore, we consider the following LAD-

LASSO criterion, which combines Zou’s adaptive LASSO, to perform consistent variable

selection, with LAD regression, to perform robust estimation in the presence of heavy-tailed

errors:
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n∑
i=1

|yi −
p∑
j=1

βjxij|+ n

p∑
j=1

λj|βj| (2.11)

The above adaptive LAD-LASSO includes a shrinkage parameter for each regression

coefficient. In doing so, several statistical properties can be proven to exist for the resulting

estimators. The estimated shrinkage parameter λ̂j is found to be λ̂j = log(n)

n|β̃j |
, where β̃ are the

unpenalized LAD estimators. The estimated shrinkage parameter results from an idea from

Tibshirani [21]. The LAD-LASSO estimator can be seen as a Bayesian estimator with each

regression coefficient following a double-exponential prior with location parameter equal to

0 and scale parameter equal to nλj, which leads to the equation λj = 1
n|βj | . In order to

guarantee both consistency and sparsity, the choice of λ̂j must be λ̂j = log(n)

n|β̃j |
, according to

Wang et al. [23].

Under certain conditions, the adaptive LAD-LASSO method fulfills the oracle property,

including estimation consistency and sparsity. The consistency of the estimators is a partic-

ular nice property, because it implies that the adaptive LAD-LASSO can identify the true

model consistently [23]. The computation is easily found using an augmented dataset as de-

scribed by Wang et al., which is implemented later for a proposed method in Chapter 3 and

4. The method involves defining {(y∗i ,x∗i )} with i = 1, . . . , n+ p, where {(y∗i ,x∗i )} = (yi,xi)

for 1 ≤ i ≤ n and (y∗n+j,x
∗
n+j) = (0, nλjej) for 1 ≤ j ≤ p such that ej is a p-dimensional

vector with the jth component equal to 1 and all others are equal to 0.

2.2.4 WLAD-LASSO

It is known that if there are outliers in the predictors, but not in the response, the LAD

estimators will be outperformed by the LSE. As a result, the LAD-LASSO estimators will

also be outperformed by the LASSO estimators in the case of outliers in the predictor space.

To account for both outliers in the response and the predictors, the weighted least absolute
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deviation (WLAD) method [12] can be combined with the LASSO to create the WLAD-

LASSO [1]. The WLAD estimators add an extra weight to the function to be minimized,

which will down weigh the outliers in the x-direction:

n∑
i=1

wi|yi −
p∑
j=1

βjxij| (2.12)

Here, the weights are wi for i = 1, . . . , n and are determined by using robust measures.

Therefore, the WLAD-LASSO method minimizes the following:

n∑
i=1

wi|yi −
p∑
j=1

βjxij|+ λ

p∑
j=1

|βj| (2.13)

Here, λ ≥ 0 is the shrinkage parameter found by general cross-validation, like before for the

LASSO and LAD-LASSO. The weights wi are found as robust distances, such that more

extreme outliers in the x-direction are assigned smaller weights. For this algorithm, the

weights are found as follows:

1. For each xi in X for i = 1, . . . , n, calculate the robust location and scatter estimates,

µ̃ and Σ̃.

2. Compute the robust distances: RD(xi) = (xi − µ̃)T Σ̃−1(xi − µ̃).

3. Calculate the weights wi = min
{

1, p
RD(xi)

}
for i = 1, . . . , n.

These weights are designed to decrease as the robust distances increase; hence, the

resulting estimators are expected to be robust to outliers in both the x- and y-directions.

Theoretically, because of the one tuning parameter λ for all of the regression coefficients,

the oracle property does not hold for the WLAD-LASSO in (2.13). As a result, Arslan [1]

proposes the adaptive WLAD-LASSO which minimizes the given equation:

n∑
i=1

wi|yi −
p∑
j=1

βjxij|+
p∑
j=1

λj|βj| (2.14)
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The adaptive tuning parameters are chosen using general cross-validation, and Arslan

[1] suggests λ̂j = 1

|β̂j |ν
, where ν > 0. This follows from the same Bayesian logic that

is used for the shrinkage parameter for the adaptive LAD-LASSO. The compuation of the

adaptive WLAD-LASSO is very similar to that of the adaptive LAD-LASSO. First, calculate

ỹi = wiyi and x̃i = wixi for i = 1, . . . , n. Next, define {(y∗i ,x∗i )} for i = 1, . . . , n + p, where

{(y∗i ,x∗i )} = (ỹi, x̃i) for 1 ≤ i ≤ n and (y∗n+j,x
∗
n+j) = (0, nλjej) for 1 ≤ j ≤ p such that ej

is a p-dimensional vector with the jth component equal to 1 and all others are equal to 0.

It has been shown that these estimators possess the properties of
√
n-consistency, sparsity,

and asymptotic normality, which together imply the estimators have the oracle property [1].

2.3 Other Regression Methods for Estimation and Selection

2.3.1 Least Angle Regression

Least angle regression (LARS) is a variable selection procedure that can be thought of as

accelerated forward selection [7]. All of the regression coefficients are set to zero. Then, the

predictor that is most correlated with the response is identified. Geometrically, the algorithm

takes the largest step possible in the direction of the most correlated predictor until a second

predictor has as much correlation with the current residual that the first predictor does.

Then, the algorithm continues in a direction that is equiangular between the two variables

until a third predictor enters the model, and so on. This direction is called the “least angle

direction.” Due to the structure of the algorithm, it is clear that LARS is negatively affected

by multicollinearity.

2.3.2 Nonnegative Garotte

The LASSO was inspired by the nonnegative garotte [4]. The nonnegative garrote

minimizes the following criterion:
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n∑
i=1

(yi −
p∑
j=1

cjβjxij)
2 (2.15)

The cj’s are nonnegative factors subject to the following constraints: cj ≥ 0 and
∑
cj ≤

λ. Essentially, the garotte takes the least squares estimates of the regression coefficients and

scales them, using a nonnegative constant cj. Because the sum of these constants is restrained

by a tuning parameter, λ, this means that the least squares estimates will actually shrink.

The nonnegative garotte tends to have smaller prediction errors than any of the discrete

subset selection methods and gives similar results to ridge regression when there are not

many small nonzero coefficients, based on simulation studies by Breiman [4]. The garotte’s

main shortcoming involves its direct dependency on the LSE. In any situation where the

LSE perform poorly, such as the case of multicollinearity, the garotte, as a result, would also

perform badly.

2.3.3 Ridge Regression

Ridge regression [14] is an estimation method which minimizes:

n∑
i=1

(yi −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

β2
j (2.16)

The ridge procedure is not a variable selection method, but an estimation method. It still

shrinks regression coefficients toward zero, but they never quite become exactly equal to zero.

This has the effect of increasing the variance of the estimates; however, it does introduce some

bias as well. Ridge estimators perform well in the presence of multicollinearity. When there

is multicollinearity, the ridge estimators have a variance that is well constrained (although

the estimators suffer a small amount of bias), unlike the LSE, which have a variance that

becomes inflated (while the estimators themselves remain unbiased) [14].
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2.3.4 Elastic Net

The elastic net is a regularization and variable selection method proposed by Zou and

Hastie [28]. It is designed to minimize:

n∑
i=1

(yi −
p∑
j=1

βjxij)
2 + λ2

p∑
j=1

β2
j + λ1

p∑
j=1

|βj| (2.17)

The penalty involves a convex combination of the LASSO and ridge penalty. The

algorithm for the elastic net involves the naive version, which does a dual-type shrinkage.

First, it finds the ridge regression coefficients, and then performs a LASSO shrinkage. To

correct for the double shrinkage, there is a correction to be applied to the coefficients from

the naive version, which is scaling those coefficients by (1 + λ2).

2.3.5 Bridge Regression

Bridge regression is another variable selection method, which was proposed by Frank

and Friedman [9]. This method minimizes the following criterion:

n∑
i=1

(yi −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

|βj|γ (2.18)

When γ = 1 and γ = 2, the bridge minimization criterion reduces to the LASSO and

ridge regression minimization criterion, respectively. If 0 < γ ≤ 1, the bridge estimators

produce sparse models and are well suited to a case where variable selection is needed when

the predictors exhibit multicollinearity. With the appropriate shrinkage parameter choice,

the bridge estimators exhibit the oracle property [19].

2.4 Group Variable Selection Methods

In this section, we review existing group variable selection methods and their properties.

These methods include the group LASSO, the group LARS, the group bridge, and the

adaptive group LASSO.
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2.4.1 Group LASSO

In some real data applications, predictors can be grouped in a natural way such that

selecting groups of variables is of interest. Genetic data sometimes has this property. For

example, data from genes can be grouped such that a group of genes correspond to the same

biological pathway. The group LASSO method [26] is ideal for these kind of situations; it will

shrink entire groups of predictors to 0 or estimate the regression coefficients for the entire

group. The regression coefficients of groups will either all be 0 or all be nonzero.

For the group LASSO method, assume the predictor variables can be naturally grouped

into k groups for k = 1, . . . , K, where each group consists of pk predictor variables such that∑K
k=1 pk = p. Within each group k, there are j predictors for j = 1, . . . , pk. The predictor

variables should be standardized so that each xij has mean 0 and variance 1 for j = 1, . . . , p.

The criterion to be minimized is:

1

2

n∑
i=1

(yi −
K∑
k=1

xikβk)
2 + nλ

K∑
k=1

||βk||2 (2.19)

where λ ≥ 0 is a tuning parameter, yi is the ith response, xik is a 1 x pk vector of

predictors in the kth group for the ith observation, and βk is a pk x 1 vector of regression

coefficients for group k. As for the criterion above, for each group of predictors, minimize

the sum of the squared distances, while simultaneously shrinking unimportant groups with

the LASSO penalty (the L2 norm in this case). The tuning parameter λ controls the rate

of shrinkage and can be chosen using cross-validation. In particular, the Yuan and Lin [26]

use a shrinkage parameter based on an approximate Cp-type criterion.

The LASSO method of simultaneous estimation and selection is ideal for predictors with

little to no multicollinearity, but not for data with outliers. In particular, because it uses

the LSE, the group LASSO performs poorly in terms of robustness [16].
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The computation of the group LASSO is based on the shooting algorithm [11]. Orig-

inally, this method was proposed for the LASSO method, but was adapted for the group

LASSO [26].

First, rewrite (2.19) with respect to the groups:

1

2
||Y −

K∑
k=1

Xkβk||+ nλ
K∑
k=1

||βk||2 (2.20)

where Y ∼ n x 1 vector of responses, Xk ∼ n x pk matrix of predictors from group k, βk ∼

pk x 1 vector of regression coefficients for group k, and λ ≥ 0 is a tuning parameter.

Then, the algorithm for the group LASSO involves applying the following equation

iteratively with the groups for k = 1, . . . , K:

βk =

(
1−

λ
√
pk

‖Sk‖

)
+

Sk (2.21)

where Sk = XT
k (Y − Xβ−k) with β−k = (βT1 , . . . ,β

T
k−1,0

T ,βTk+1, . . . ,β
T
K), the β vector

without coefficient vector βk, and ‖η‖ = (ηTη)1/2. Choose initial βk for k = 1, . . . , K

to be the LSE. This algorithm is stable and reaches convergence tolerance within a few

iterations; on the other hand, the computational burden increases dramatically as the number

of predictors increases [26].

2.4.2 Group LARS

Yuan and Lin [26] also proposed the group LARS. It is best described by considering its

algorithm. When all the groups have the same number of predictors (p1 = p2 = . . . = pk),

one may define the angle θ(r,Xk) between an n-vector r and a group represented by Xk

as the angle between the vector r and the space that is spanned by the column vectors of

Xk. The given angle does not depend on the set of orthonormal contrasts representing the

grouping, and it actually ends up being the same as the angle between r and the projection of
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r in the space that is spanned by the columns of Xk. Thus, cos2θ{(r,Xk)} is the proportion

of the total variation sum of squares in r that is explained by the linear regression on Xk.

Beginning with all regression coefficient vectors equal to 0, the group LARS algorithm

finds the group that has the smallest angle with y and proceeds in the direction of the

projection of y on the space that is spanned by the factor until some other group has as

small an angle with the current residual. Group LARS will proceed in the direction of the

projection of the current residual on the space that is spanned by those two groups; it will

continue in that direction until a third group has an equally small angle and then slightly

change direction, and so on. There is a small adjustment when all the group sizes are not

equal.

2.4.3 Group Nonnegative Garotte

Another group variable selection method is the group nonnegative garotte, which is

based on the nonnegative garotte [4]. The group nonnegative garotte takes the LSE, arranged

into vectors according to the grouping information, and scales the coefficients in each group

vector by a constant factor. This minimization criterion can be written as the following:

1

2

n∑
i=1

(yi −
K∑
k=1

(

pk∑
j=1

cjxijkβjk))
2 + λ

K∑
k=1

pkck (2.22)

The algorithm for the group nonnegative garotte is similar to the algorithm for the

group LARS. Because the group nonnegative garotte relies explicitly on the least squares

estimates, it is, therefore, not considered to be a robust method [16]. The next method,

the adaptive group LASSO, is preferable due to the introduction of an adaptive tuning

parameter, allowing for an overall better fit of shrinkage to the groups separately.

2.4.4 Adaptive Group LASSO

Wang and Leng [24] saw a need for combination of the adaptive LASSO method with

the group LASSO method. Because both the LASSO and the group LASSO apply the same
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amount of shrinkage to all of the regression coefficients, those two methods are not consistent

in terms of model selection [8]. Efficiency can also suffer due to the one shrinkage parameter

[27]. As a result, an adaptive tuning parameter is introduced, which assigns a different

tuning parameter for each group, allowing the shrinkage to vary from group to group. The

adaptive group LASSO, like the group LASSO, will shrink insignificant groups to 0 and

estimate significant groups to be nonzero. The adaptive group LASSO criterion to minimize

is the following:

1

2

n∑
i=1

(yi −
K∑
k=1

xikβk)
2 + n

K∑
k=1

λk‖βk‖2 (2.23)

where λk ≥ 0 is an adaptive tuning parameter, yi is the ith response, xik is a 1 x pk

vector of predictors in the kth group for the ith observation, and βk is a pk x 1 vector of

regression coefficients for group k. The flexible tuning parameter applies varying amounts of

shrinkage to the different groups of predictors. As a result, it can be understood intuitively

that applying a high amount of shrinkage to insignificant groups, which would go to 0, and

applying a low amount of shrinkage to significant groups, which would be nonzero, would

result in an efficient estimator. Even if there is no prior information on which groups are

significant and which are not, the shrinkage parameter can be chosen in such as way to get

as efficient an estimator as possible.

To choose an appropriate tuning parameter λk, usually, cross-validation (CV) or gener-

alized cross-validation (GCV) is used. However, these methods can be too computationally

intensive for the adaptive group LASSO, because of the possible high number of tuning pa-

rameters that need to be estimated. An ideal candidate for the tuning parameter, according

to Wang and Leng [24] is:

λk =
λ

||β̂k||
γ
2

(2.24)
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where β̂ = (β̂1, β̂2, . . . , β̂p)
T is the LSE and γ > 0 is a prespecified positive number. For

their simulation study and real data example, the authors chose γ = 1. With this choice of

shrinkage parameter for each group, the problem of finding an optimal shrinkage parameter

reduces to a univariate problem to solve for λ, which can be found similarly as in the case

of the LASSO based on various criteria, including Cp, GCV, AIC, and BIC.

Due to the nature of the adaptive tuning parameter, it can be shown that the adaptive

group LASSO estimators possess the oracle property [24].
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Chapter 3

Regular Robust Group Variable Selection

In this chapter, we propose two robust group variable selection methods. The first

is the group LAD-LASSO, which is based on the LAD-LASSO. The second is the group

WLAD-LASSO, which is based on the WLAD-LASSO.

3.1 Group LAD-LASSO

The group LASSO will identify important groups and estimate their regression coeffi-

cients and shrink unimportant groups such that are of their regression coefficients are 0. It

is known that the LASSO estimates can be sensitive to outliers, because of the dependency

of (2.19) on the OLS criterion. In the case of outliers in the response, the LAD estimators

can relieve some of this sensitivity, in addition to using the LASSO penalty for shrinkage

and selection. Hence, the combination of the LAD-LASSO method with grouped predictors

to obtain:

Q(β) =
1

2

n∑
i=1

|yi −
K∑
k=1

xikβk|+ nλ

K∑
i=1

||βk||2 (3.1)

which is the minimization criterion for the group LAD-LASSO to simultaneously estimate

significant groups and shrink nonsignificant groups to 0. The penalty is the typical L2 norm.

Define xik to be the ith row of predictors in group k; that is, xik is a 1 x pk vector, where

pk is the number of predictors in group k. Note that if pk = 1 for all k, then (3.1) reduces

to the LAD-LASSO equation in (2.10). The vector βk is a pk x 1 vector of regression

coefficients. The computation for our simulation is done using the package grpreg in the

statistical program R [3].
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3.1.1 Tuning Parameter Selection

The tuning parameter, λ, must be selected carefully. It should be chosen such that it

is large enough to have a desired shrinking effect for insignificant groups, but it should also

be chosen such that it is small enough that all the groups are not shrunk to 0. In general,

cross-validation and generalized cross-validation methods can be used to find the optimal

value of the tuning parameter λ [8] [21]. In this case, we use k-fold cross-validation after

modifying the objective function to be that of the group WLAD-LASSO to find the best

value of λ, such that the cross-validation error is minimized.

3.1.2 Theoretical Properties

Unfortunately, because of using one tuning parameter λ to control all shrinkage, the

properties of consistency, sparsity, and the oracle property do not hold for the group LAD-

LASSO [8].

3.2 Group WLAD-LASSO

As before, it is known that the LAD method is adapted to do well for the regression set-

ting when there are outliers in the response; however, it has been studied and determined that

the same method performs poorly in the prescense of outliers in the explanatory variables.

In this case, an adjustment is made the minimization criterion of (2.9) to downweight those

observations that are outliers in the predictors, and the weighted LAD (WLAD) method is

used. The criterion for minimization for the WLAD method is the following:

Q(β) =
n∑
i=1

wi|yi − xTi β| (3.2)
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where wi are the weights assigned to downweight observations in the predictors for i =

1, . . . , n. These outliers are designed to be downweighted proportionally to a calculated ro-

bust distance, such that points farther away from the center of the corresponding distribution

of a predictor variables are downweighted more.

Similarly to the LAD-LASSO, the WLAD method can be combined with the LASSO

in order to minimize the following criterion:

Q(β) =
n∑
i=1

wi|yi − xTi β|+ nλ

p∑
j=1

|βj| (3.3)

where wi is a positive weight assigned to each observation for i = 1, . . . , n. The WLAD-

LASSO [1] is ideally used for data with outliers in both the response and the predictors.

Minimizing the LAD lessens the effect of outliers in the response, while the weights will

relieve the effect of outliers in the explanatory variables. We would like to also extend this

idea to an application with grouped predictors.

While the group LAD-LASSO method works well on data where there are outlying

observations in the response, it does not do as well when there are outliers also in the

predictors. As a result, we propose a small modification to the WLAD-LASSO criterion to

extend it to grouped predictors:

Q(β) =
1

2

n∑
i=1

wi|yi −
K∑
k=1

xikβk|+ nλ

K∑
i=1

||βk||2 (3.4)

where wi is a positive weight assigned to each observation for i = 1, . . . , n. The above is

the objective function to be minimized for the group WLAD-LASSO. Denote xik to be the

ith row of predictors corresponding to group k, and let βk be a pk x 1 vector of regression

coefficients. The penalty is the typical L2 norm.
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3.2.1 Weights

In order to compute the estimators for the group WLAD-LASSO in (3.4), the weights

must be calculated first. These weights will be based on a robust distance [15]. Given a set

of points x1, . . . , xn, the weights can be found with the following steps:

1. For each xi in X for i = 1, . . . , n, calculate the robust location and scatter estimates,

µ̃ and Σ̃.

2. Compute the robust distances: RD(xi) = (xi − µ̃)T Σ̃−1(xi − µ̃).

3. Calculate the weights wi = min
{

1, p
RD(xi)

}
for i = 1, . . . , n.

One such set robust location and scatter estimates could be the MVE and MCD. For

our simulations and real data example, we use the minimum covariance determinant (MCD)

estimator of location and scatter. The method finds the h(> n
2
) observations out of the

n total observations whose classical covariance matrix has the lowest possible determinant.

The raw MCD estimates of location and scatter are the average of the h points and their

covariance matrix, respectively. The raw estimates are reweighted to increase the finite-

sample efficiency, and these reweighted MCD estimates of location and scatter are used to

help create the robust distances. This algorithm is utilized with the rrcov package in R [22].

Large values of RD(xi) indicate leverage points. For high leverage points, which are

points that are considered outliers in the explanatory variables, these weights will be small,

while for other points considered regular, the weights will be close to 1. The statistical

software program R is used for simulations and analysis using the package grpreg [3].

3.2.2 Tuning Parameter Selection

The tuning parameter λ for group WLAD-LASSO is selected in the same way as for the

group LAD-LASSO method, but now the consideration of the weight for each observation is

also taken into account when calculating λ. Thus, in this case, we use k-fold cross-validation
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after modifying the objective function to be that of the group LAD-LASSO to find the best

value of λ, such that the cross-validation error is minimized.

3.2.3 Theoretical Properties

Similarly as for the group LAD-LASSO, because of the nature of the tuning parameter

λ, the properties of consistency, sparsity, and the oracle property cannot be proven.
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Chapter 4

Adaptive Robust Group Variable Selection Methods

In this section, we discuss the adaptive robust group variable selection methods, which

include the adaptive group LAD-LASSO and the adaptive group WLAD-LASSO.

4.1 Adaptive Group LAD-LASSO

For the first proposal of an adaptive robust group variable selection method, we combine

the adaptive tuning parameter from the adaptive group LASSO with the objective function

of the group LAD-LASSO. With this mixture, we get the following objective function to

minimize:

Q(β) =
1

2

n∑
i=1

|yi −
K∑
k=1

xikβk|+ n
K∑
i=1

λk||βk||2 (4.1)

Define xik to be a 1 x pk vector of predictors, where pk is the number of predictors in

group k, while βk is a pk x 1 vector of regression coefficients. The penalty is the typical L2

norm. The tuning parameter is defined such that λk ≥ 0. Effectively, this results in regression

estimators that will be robust to outliers in the response, while enjoying the shrinkage and

nice theoretical properties of the adaptive LASSO to perform group selection. This is done

in R with a small modification to our code using the grpreg package for our simulations [3].
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4.1.1 Tuning Parameter Selection

In general, the tuning parameter can usually be found using cross-validation (CV) or

general cross-validation (GCV). However, this can be computationally intensive for the adap-

tive group variable selection problems, because there may be a large number of tuning pa-

rameters to compute if the number of groups k is large. For the tuning parameter λk in the

adaptive group LAD-LASSO, we follow the example of Wang and Leng [24] and choose:

λk =
λ

||β̃k||
γ
2

(4.2)

such that β̃ = (β̃T1 , . . . , β̃
T
p )T is the LAD estimator and γ > 0 is a positive number

chosen beforehand. For our simulation and real data application, we use γ = 1, as used by

Wang and Leng [24]. As a result, instead of calculating a λk for each group, this reduces to a

one-dimension problem where we need only need to choose an appropriate λ. Some selection

criteria for λ, suggested by Wang and Leng [24], are as follows:

Cp =
||Y −Xβ̂||22

σ̂2
− n+ 2 ∗ df (4.3)

GCV =
||Y −Xβ̂||22

(1− n−1 ∗ df)2
(4.4)

AIC = log(
1

n
||Y −Xβ̂||22) + 2 ∗ df/n (4.5)

BIC = log(
1

n
||Y −Xβ̂||22) + log(n) ∗ df/n (4.6)

The df are the degrees of freedom as defined in Yuan and Lin [26], given by:

df =
K∑
k=1

I{||β̂k||2 > 0}+
K∑
k=1

||β̂k||2
||β̃k||2

(pk − 1) (4.7)

Adapted for the adaptive group LAD-LASSO, β̃ are the unpenalized LAD estimators,

and σ̂2 is the variance estimator associated with β̃. For our simulations with software, we
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use the default setting of choosing λ with the smallest value of the BIC criterion, which is

the equation in (4.7).

4.1.2 Theoretical Properties

In order to establish a few theoretical properties, we need to make some important

assumptions and define some notations. First, decompose the regression coefficient β =

(βTa ,β
T
b ), where βa = (β1, . . . , βp0)

T are the significant coefficients and βb = (βp0+1, . . . , βp)
T

are the insignificant coefficients. Denote the corresponding adaptive group LAD-LASSO

estimators as β̂ = (β̂Ta , β̂
T
b ), and let the adaptive group LAD-LASSO objective function be

denoted by Q(β) = Q(βa,βb).

In addition to the above, we must make the following assumptions:

• The errors εi have continuous and positive density at the origin.

• The matrix cov(x1) = Σ exists and is positive definite.

We must also define an = max{λj, j ≤ p0} and bn = min{λj, j > p0}. First, we can

establish the consistency of the adaptive group LAD-LASSO estimators.

Theorem 4.1. (Estimation Consistency) If
√
nan →p 0, then β̂ − β = Op(

√
n).

Theorem 1 implies that if the shrinkage associated with the relevant nonzero predictors

is sufficiently small, then the corresponding adaptive group LAD-LASSO estimator can be

√
n-consistent. The proof can be seen in the Appendix. The next theorem relates to the

method’s ability to properly estimate insignificant variables as zero.

Theorem 4.2. (Selection Consistency) If
√
nan →p 0 and

√
nbn →p ∞, then P (β̂b = 0)→

1.

This theorem can also be thought of as proving the sparsity property. In other words,

the adaptive group LAD-LASSO can consistently estimate zero coefficients as zero. That is,

29



the method can perform parameter estimation and variable selection simultaneously. The

proof of the theorem can be found in the Appendix. With both Theorem 1 & 2, we can

establish the Oracle property.

Theorem 4.3. (Oracle Property) If
√
nan →p 0 and

√
nbn →p ∞, then

√
n(β̂a − βa) →d

N(0,Σa).

Based on Theorem 2, with probability tending to one, all of the zero coefficients will

be estimated as such, essentially performing variable selection. Based on Theorem 1, all of

the estimates of the nonzero coefficients must be consistent, which implies that the nonzero

coefficients must be estimated as such with probability tending to one. Putting these two

theorems together leads to the conclusion of Theorem 3, which states that the adaptive group

LAD-LASSO has the property to identify the correct model consistently.

The details and proofs of the above theorems are shown in appendix A.

4.2 Adaptive Group WLAD-LASSO

Similarly, we can extend the adaptive tuning parameter to the group WLAD-LASSO

to create the adaptive group WLAD-LASSO. By combining the adaptive LASSO with the

group WLAD-LASSO, we will get a method with nice theoretical properties that is able

to perform well in the presence of outliers in both the response and predictor space. The

adaptive group WLAD-LASSO requires the minimization of the following criterion:

Q(β) =
1

2

n∑
i=1

wi|yi −
K∑
k=1

xikβk|+ n

K∑
i=1

λk||βk||2 (4.8)

Define xik to be a 1 x pk vector of predictors, where pk is the number of predictors in

group k, while βk is a pk x 1 vector of regression coefficients. The penalty is the typical

L2 norm. The tuning parameter is defined such that λk ≥ 0. The objective function is

a combination of the adaptive group LAD-LASSO with a weight wi to downweight high

leverage points.
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4.2.1 Weights

The weights wi are calculated the same as for the regular group WLAD-LASSO. This

procedure can be found in section 3.2.1. Like before, we use the minimum covariance deter-

minant (MCD) estimator of location and scatter.

Large values of RD(xi) will indicate high leverage points, which will be assigned a small

weight close to 0. For points that are not considered outliers, their weights will be assigned

such that they are close to 1. The weights and computation are found in R using the grpreg

package [3] with a small modification.

4.2.2 Tuning Parameter Selection

For the adaptive group WLAD-LASSO, we stick with the earlier choice for the adaptive

group LAD-LASSO and choose:

λk =
λ

||β̃k||
γ
2

(4.9)

such that β̃ = (β̃T1 , . . . , β̃
T
p )T is the WLAD estimator and γ > 0 is a positive number

chosen beforehand. For our simulation and real data application, we use γ = 1, as used by

Wang and Leng [24], and we also use the default setting in the grpreg package in R, which

chooses the λ with the smallest value for the BIC criterion (4.7).

4.2.3 Theoretical Properties

It can be shown that with the appropriate choice in tuning parameter, the adaptive

group WLAD-LASSO possesses the properties of consistency, sparsity, and, therefore, the

oracle. We must make the same assumptions as before with the adaptive group LAD-LASSO

and remind ourselves of the notation required.

First, decompose the regression coefficient β = (βTa ,β
T
b ), where βa = (β1, . . . , βp0)

T are

the significant coefficients and βb = (βp0+1, . . . , βp)
T are the insignificant coefficients. Denote
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the corresponding adaptive group WLAD-LASSO estimators as β̂ = (β̂Ta , β̂
T
b ), and let the

adaptive group WLAD-LASSO objective function be denoted by Q(β) = Q(βa,βb).

In addition to the above, we must make the following assumptions, like before:

• The errors εi have continuous and positive density at the origin.

• The matrix cov(x1) = Σ exists and is positive definite.

• The weights wi are defined such that 0 < wi ≤ 1.

We must also define an = max{λj, j ≤ p0} and bn = min{λj, j > p0}. First, we can

establish the consistency of the adaptive group WLAD-LASSO estimators.

Theorem 4.4. (Estimation Consistency) If
√
nan →p 0, then β̂ − β = Op(

√
n).

Theorem 1 implies that if the shrinkage associated with the relevant nonzero predictors

is sufficiently small, then the corresponding adaptive group WLAD-LASSO estimator can

be
√
n-consistent. The next theorem establishes the sparsity of the adaptive group WLAD-

LASSO estimators.

Theorem 4.5. (Selection Consistency) If
√
nan →p 0 and

√
n→p ∞, then P (β̂b = 0)→ 1.

The above theorem states that the adaptive group WLAD-LASSO can consistently

estimate insignificant coefficients as zero. This allows for simultaneous parameter estimation

and variable selection. With the previous two theorems and the assumptions from earlier,

the oracle property can be established for the adaptive group WLAD-LASSO estimators.

Theorem 4.6. (Oracle Property) If
√
nan →p 0, then

√
n(β̂a − βa)→d N(0,Σa).

Based on Theorem 5, with probability tending to one, all of the zero coefficients will

be estimated as such, essentially performing variable selection. Based on Theorem 4, all of

the estimates of the nonzero coefficients must be consistent, which implies that the nonzero

coefficients must be estimated as such with probability tending to one. Putting these two
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theorems together leads to the conclusion of Theorem 6, which states that the adaptive group

WLAD-LASSO has the property to identify the correct model consistently. The details for

the proof of Theorems 4, 5, and 6 can be found in the Appendix.
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Chapter 5

Simulation Studies and Real Data Application

In this chapter, several simulation studies and a real data application are presented,

which can be divided into two categories. The first simulation study is for the regular

robust group variable selection methods, while the other is for the adaptive robust group

variable selection methods. For the regular methods, there is a simulation study showing

the effectiveness of the group LAD-LASSO method when the data presents with outliers in

the y-direction. Then, there is a study comparing the performance of the group WLAD-

LASSO to that of the group LASSO and group LAD-LASSO when there are outliers in

both the x- and y-direction. For the adaptive methods, a similar study is presented for the

adaptive group LAD-LASSO for outliers only in the y-direction and for the adaptive group

WLAD-LASSO for outliers in both directions. The previous simulations are all for predictors

split into two groups. Another simulation study is presented comparing the adaptive group

methods for predictors separated into seven groups for data with x- and y-outliers. The last

section presents a real data application.

5.1 Simulation Study: 2 Groups

5.1.1 Simulation Setup

There will be four simulation studies presented in total in this section. They can be

distinguished by the type of group variable selection method (regular or adaptive) and by

the type of outliers present in the data (strictly y-outliers or both x- and y-outliers). Thus,

in order, we will present studies to showcase the effectiveness of the group LAD-LASSO

(regular/y-outliers), the group WLAD-LASSO (regular/x- and y-outliers), the adaptive
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group LAD-LASSO (adaptive/y-outliers), and the adaptive group WLAD-LASSO (adaptive/x-

and y-outliers).

For sample sizes n=50,100, and 200, let ε be the contamination rate equal to values

ε=0.1, 0.2, and 0.3 such that m = [εn] is the number of contaminated data points. The

first n − m data points are generated from the true model y1 = X1β1 + σε, where X is

multivariate normal with 0 mean and the pairwise correlation between xi and xj equal to

cor(xi,xj) = 0.5|i−j|. The regression parameter vector is set to be β1 = (3, 1.5, 2, 0, 0, 0),

such that there are two sequential groups of three variables. The errors ε are generated

from the standard normal distribution, the t-distribution with 3 degrees of freedom, and

the t-distribution with 5 degrees of freedom, while σ will be 0.5 and 1. This will allow for

heavy-tail error distributions and some outliers in the response direction. The m points

from the contaminated data are produced with the following model: y2 = X2β2, where X2

is multivariate normally distributed with µ2 6= 0 and covariance equal to I. Let β2 6= β1.

For each combination of sample size, contamination rate, sigma, and error distribution, the

simulation is performed 200 times, and the model error (ME) will be calculated for each of

the given method’s fit on the data for comparison purposes. The model error is calculated

by:

ME(β̂) =
(β̂ − β)TXTX(β̂ − β)

n
(5.1)

Ideally, this model error will be very close to 0, indicating the method is doing a great job

of estimating the actual model.

In addition to the model error, the simulations for the adaptive methods include a

column for the mean percentage of correct zeros, which is denoted as mean % of CZ in the

tables
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5.1.2 Regular GVS Methods: Y-Direction Outliers

First, the group LASSO and group LAD-LASSO will be evaluated for data with outliers

in the y-direction only. The results for the various errors can be found in Tables 5.1-5.3.

For all cases of contamination greater than 0 (ε > 0), the group LAD-LASSO has the

smallest model error. The group LAD-LASSO also has the model error that is close to 0,

indicating the group LAD-LASSO is the better group variable selection method with outliers

in the y-direction. Figure 5.1 shows the box plots of model error for each method at various

contamination levels for t3 errors where σ = 0.1 and n = 100.

5.1.3 Regular GVS Methods: X-Direction and Y-Direction Outliers

All of the regular group selection methods will be compared using simulated data with

both x- and y-direction outliers: the group LASSO, the group LAD-LASSO, and the group

WLAD-LASSO. The results can be found in Tables 5.4-5.6 for σ = 1. Results for σ = 0.5

are similar and can be found in tables B.1-B.3 in Appendix B. The group WLAD-LASSO

consistently has the smallest model error that is also closest to 0. Figure 5.2 gives the box

plots for model error comparing the three methods in the case of contamination in both the

x- and y-directions. In each case, it can be seen that the group WLAD-LASSO gives the

smallest model error, especially in the cases of contamination.
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Table 5.1: Simulation results for N(0, 1) errors for strictly Y-outliers

σ n ε Method Mean ME Median ME
0.5 50 0 g LASSO 0.03 0.02

g LAD-LASSO 0.03 0.03
0.1 g LASSO 0.37 0.22

g LAD-LASSO 0.17 0.13
0.2 g LASSO 1.27 0.99

g LAD-LASSO 0.34 0.24
0.3 g LASSO 2.95 2.36

g LAD-LASSO 0.70 0.46
100 0 g LASSO 0.01 0.01

g LAD-LASSO 0.01 0.01
0.1 g LASSO 0.26 0.18

g LAD-LASSO 0.09 0.07
0.2 g LASSO 1.18 0.95

g LAD-LASSO 0.21 0.17
0.3 g LASSO 3.03 2.88

g LAD-LASSO 0.37 0.33
200 0 g LASSO 0.01 0.01

g LAD-LASSO 0.01 0.01
0.1 g LASSO 0.22 0.18

g LAD-LASSO 0.06 0.05
0.2 g LASSO 1.22 1.09

g LAD-LASSO 0.15 0.13
0.3 g LASSO 3.08 3.08

g LAD-LASSO 0.24 0.21
1.0 50 0 g LASSO 0.10 0.10

g LAD-LASSO 0.11 0.10
0.1 g LASSO 0.46 0.28

g LAD-LASSO 0.25 0.20
0.2 g LASSO 1.44 1.07

g LAD-LASSO 0.47 0.32
0.3 g LASSO 3.04 2.33

g LAD-LASSO 1.02 0.60
100 0 g LASSO 0.06 0.05

g LAD-LASSO 0.06 0.05
0.1 g LASSO 0.37 0.26

g LAD-LASSO 0.13 0.12
0.2 g LASSO 1.09 0.91

g LAD-LASSO 0.25 0.19
0.3 g LASSO 2.84 2.69

g LAD-LASSO 0.51 0.38
200 0 g LASSO 0.03 0.02

g LAD-LASSO 0.03 0.02
0.1 g LASSO 0.26 0.22

g LAD-LASSO 0.07 0.05
0.2 g LASSO 1.18 1.07

g LAD-LASSO 0.15 0.12
0.3 g LASSO 2.99 2.79

g LAD-LASSO 0.34 0.28
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Table 5.2: Simulation results for t3 errors for strictly Y-outliers

σ n ε Method Mean ME Median ME
0.5 50 0 g LASSO 0.07 0.06

g LAD-LASSO 0.09 0.06
0.1 g LASSO 0.43 0.23

g LAD-LASSO 0.19 0.16
0.2 g LASSO 1.34 1.13

g LAD-LASSO 0.37 0.27
0.3 g LASSO 3.03 2.34

g LAD-LASSO 0.79 0.50
100 0 g LASSO 0.04 0.03

g LAD-LASSO 0.04 0.03
0.1 g LASSO 0.29 0.20

g LAD-LASSO 0.09 0.06
0.2 g LASSO 1.20 0.99

g LAD-LASSO 0.20 0.17
0.3 g LASSO 3.08 2.91

g LAD-LASSO 0.38 0.30
200 0 g LASSO 0.02 0.01

g LAD-LASSO 0.02 0.02
0.1 g LASSO 0.23 0.19

g LAD-LASSO 0.06 0.05
0.2 g LASSO 1.11 1.02

g LAD-LASSO 0.16 0.14
0.3 g LASSO 2.87 2.75

g LAD-LASSO 0.27 0.24
1.0 50 0 g LASSO 0.31 0.23

g LAD-LASSO 0.31 0.22
0.1 g LASSO 0.58 0.36

g LAD-LASSO 0.38 0.26
0.2 g LASSO 1.50 1.15

g LAD-LASSO 0.57 0.39
0.3 g LASSO 3.24 2.78

g LAD-LASSO 1.50 0.78
100 0 g LASSO 0.14 0.11

g LAD-LASSO 0.14 0.12
0.1 g LASSO 0.40 0.26

g LAD-LASSO 0.22 0.17
0.2 g LASSO 1.23 1.05

g LAD-LASSO 0.30 0.22
0.3 g LASSO 2.98 2.70

g LAD-LASSO 0.93 0.56
200 0 g LASSO 0.08 0.06

g LAD-LASSO 0.07 0.06
0.1 g LASSO 0.31 0.26

g LAD-LASSO 0.09 0.07
0.2 g LASSO 1.15 1.02

g LAD-LASSO 0.18 0.14
0.3 g LASSO 2.94 2.73

g LAD-LASSO 0.44 0.34
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Table 5.3: Simulation results for t5 errors for strictly Y-outliers

σ n ε Method Mean ME Median ME
0.5 50 0 g LASSO 0.05 0.04

g LAD-LASSO 0.05 0.04
0.1 g LASSO 0.39 0.21

g LAD-LASSO 0.17 0.12
0.2 g LASSO 1.21 0.91

g LAD-LASSO 0.41 0.27
0.3 g LASSO 3.04 2.42

g LAD-LASSO 0.66 0.47
100 0 g LASSO 0.02 0.02

g LAD-LASSO 0.02 0.02
0.1 g LASSO 0.27 0.17

g LAD-LASSO 0.09 0.08
0.2 g LASSO 1.11 1.01

g LAD-LASSO 0.22 0.15
0.3 g LASSO 2.76 2.46

g LAD-LASSO 0.38 0.28
200 0 g LASSO 0.01 0.01

g LAD-LASSO 0.01 0.01
0.1 g LASSO 0.24 0.20

g LAD-LASSO 0.06 0.05
0.2 g LASSO 1.21 1.16

g LAD-LASSO 0.15 0.13
0.3 g LASSO 3.00 2.89

g LAD-LASSO 0.25 0.23
1.0 50 0 g LASSO 0.17 0.14

g LAD-LASSO 0.17 0.14
0.1 g LASSO 0.56 0.36

g LAD-LASSO 0.30 0.22
0.2 g LASSO 1.41 0.99

g LAD-LASSO 0.57 0.37
0.3 g LASSO 3.40 2.74

g LAD-LASSO 1.25 0.63
100 0 g LASSO 0.10 0.09

g LAD-LASSO 0.09 0.08
0.1 g LASSO 0.37 0.27

g LAD-LASSO 0.14 0.12
0.2 g LASSO 1.30 1.10

g LAD-LASSO 0.27 0.22
0.3 g LASSO 2.90 2.60

g LAD-LASSO 0.61 0.41
200 0 g LASSO 0.04 0.04

g LAD-LASSO 0.05 0.04
0.1 g LASSO 0.29 0.24

g LAD-LASSO 0.08 0.07
0.2 g LASSO 1.13 0.98

g LAD-LASSO 0.17 0.14
0.3 g LASSO 2.92 2.84

g LAD-LASSO 0.37 0.32
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Figure 5.1: Boxplots for Model Error for the strictly y-outlier simulation for comparing the
group LASSO (gLASSO) to the group LAD-LASSO (gLAD-LASSO) for various contamina-
tion levels for ε ∼ t3 over 200 simulations for σ = 1 and n = 100.
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Table 5.4: Simulation results for N(0, 1) error for X- and Y-outliers

σ n ε Method Mean ME Median ME
1.0 50 0 g LASSO 0.11 0.10

g LAD-LASSO 0.13 0.10
g WLAD-LASSO 0.21 0.17

0.1 g LASSO 11.09 10.85
g LAD-LASSO 7.94 7.50
g WLAD-LASSO 0.30 0.22

0.2 g LASSO 27.88 27.79
g LAD-LASSO 27.28 26.61
g WLAD-LASSO 0.64 0.34

0.3 g LASSO 50.40 50.84
g LAD-LASSO 48.92 48.22
g WLAD-LASSO 0.58 0.12

100 0 g LASSO 0.05 0.04
g LAD-LASSO 0.06 0.05
g WLAD-LASSO 0.10 0.08

0.1 g LASSO 10.64 10.41
g LAD-LASSO 7.49 7.07
g WLAD-LASSO 0.09 0.09

0.2 g LASSO 28.56 28.63
g LAD-LASSO 26.45 26.41
g WLAD-LASSO 0.29 0.21

0.3 g LASSO 51.58 51.31
g LAD-LASSO 49.54 49.34
g WLAD-LASSO 0.22 0.10

200 0 g LASSO 0.03 0.03
g LAD-LASSO 0.03 0.03
g WLAD-LASSO 0.04 0.04

0.1 g LASSO 10.58 10.45
g LAD-LASSO 7.20 7.40
g WLAD-LASSO 0.06 0.05

0.2 g LASSO 28.66 28.71
g LAD-LASSO 26.79 27.22
g WLAD-LASSO 0.23 0.17

0.3 g LASSO 51.76 51.58
g LAD-LASSO 51.46 51.40
g WLAD-LASSO 0.11 0.09
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Table 5.5: Simulation results for t3 error for X- and Y-outliers

σ n ε Method Mean ME Median ME
1.0 50 0 g LASSO 0.24 0.22

g LAD-LASSO 0.30 0.23
g WLAD-LASSO 0.52 0.32

0.1 g LASSO 10.90 10.28
g LAD-LASSO 8.63 8.03
g WLAD-LASSO 0.73 0.39

0.2 g LASSO 27.26 27.62
g LAD-LASSO 25.45 25.27
g WLAD-LASSO 0.10 0.06

0.3 g LASSO 50.95 50.37
g LAD-LASSO 48.55 48.45
g WLAD-LASSO 0.64 0.18

100 0 g LASSO 0.15 0.12
g LAD-LASSO 0.13 0.11
g WLAD-LASSO 0.11 0.06

0.1 g LASSO 11.27 11.34
g LAD-LASSO 8.13 8.38
g WLAD-LASSO 0.08 0.05

0.2 g LASSO 27.55 27.29
g LAD-LASSO 26.49 26.96
g WLAD-LASSO 0.14 0.10

0.3 g LASSO 51.61 51.29
g LAD-LASSO 49.62 49.30
g WLAD-LASSO 0.20 0.11

200 0 g LASSO 0.09 0.07
g LAD-LASSO 0.08 0.06
g WLAD-LASSO 0.04 0.02

0.1 g LASSO 10.63 10.50
g LAD-LASSO 7.78 8.09
g WLAD-LASSO 0.04 0.03

0.2 g LASSO 28.27 28.58
g LAD-LASSO 27.29 27.38
g WLAD-LASSO 0.09 0.07

0.3 g LASSO 50.82 50.70
g LAD-LASSO 50.86 50.61
g WLAD-LASSO 0.13 0.12
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Table 5.6: Simulation results for t5 error for X- and Y-outliers

σ n ε Method Mean ME Median ME
1.0 50 0 g LASSO 0.19 0.16

g LAD-LASSO 0.19 0.18
g WLAD-LASSO 0.10 0.07

0.1 g LASSO 10.98 10.72
g LAD-LASSO 8.21 7.06
g WLAD-LASSO 0.13 0.09

0.2 g LASSO 28.59 27.59
g LAD-LASSO 25.58 24.64
g WLAD-LASSO 0.31 0.15

0.3 g LASSO 51.09 50.39
g LAD-LASSO 48.10 47.81
g WLAD-LASSO 0.49 0.13

100 0 g LASSO 0.09 0.08
g LAD-LASSO 0.09 0.08
g WLAD-LASSO 0.04 0.03

0.1 g LASSO 10.76 10.34
g LAD-LASSO 7.78 7.87
g WLAD-LASSO 0.05 0.04

0.2 g LASSO 28.51 28.11
g LAD-LASSO 26.32 26.60
g WLAD-LASSO 0.11 0.08

0.3 g LASSO 51.00 51.09
g LAD-LASSO 50.42 51.29
g WLAD-LASSO 0.22 0.09

200 0 g LASSO 0.05 0.04
g LAD-LASSO 0.05 0.04
g WLAD-LASSO 0.02 0.02

0.1 g LASSO 10.92 10.84
g LAD-LASSO 7.70 8.13
g WLAD-LASSO 0.03 0.02

0.2 g LASSO 28.40 28.13
g LAD-LASSO 26.70 27.39
g WLAD-LASSO 0.07 0.06

0.3 g LASSO 51.28 51.02
g LAD-LASSO 50.94 50.79
g WLAD-LASSO 0.12 0.09
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Figure 5.2: Boxplots for Model Error for the x- and y-outlier simulation for comparing the
group LASSO (gLASSO) and the group LAD-LASSO (gLAD-LASSO) to the group WLAD-
LASSO (gWLAD-LASSO) for various contamination levels for ε ∼ t3 over 200 simulations
for σ = 1 and n = 100.
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5.1.4 Adaptive GVS Methods: Y-Direction Outliers

The adaptive group LASSO and adaptive group LAD-LASSO will be evaluated for data

with outliers in the y-direction only. In addition to the model error, the tables include a

column for the mean % of correct zeros, denoted as Mean % of CZ. For the 200 times the

simulation is run, the percentage of correct zeros is calculated (of the zeros found by the

model, the percentage of correct zeros is determined as the fraction of coefficients that are

actually supposed to be zero and the overall number of zero coefficients), and this column

indicates the overall average percentage of correct zeros of those 200 simulations. Tables

5.7-5.9 give the resulting model errors for the various setups. Figure 5.3 gives the box plots

for model error for the two adaptive methods. In all cases with contamination, the adaptive

group LAD-LASSO gives the smallest model error, which is also close to 0. This is supported

visually by the box plots, indicating that the adaptive group LAD-LASSO works well for

data with contaminations in the response variable.

5.1.5 Adaptive GVS Methods: X-Direction and Y-Direction Outliers

All of the adaptive group selection methods will be compared using simulated data

with both x- and y-direction outliers: the adaptive group LASSO, the adaptive group LAD-

LASSO, and the adaptive group WLAD-LASSO. The results can be found in Tables 5.10-5.12

for σ = 1. Results are similar for σ = 0.5 and can be found in tables B.4-B.6 in Appendix

B. Box plots of model error can be found in Figure 5.4. It is clear from the table that the

adaptive group WLAD-LASSO results in the smallest model error of the three methods; the

adaptive group WLAD-LASSO also gives the model error closest to 0.
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Table 5.7: Simulation results for N(0, 1) errors for strictly Y-outliers

σ n ε Method Mean % of CZ Mean ME Median ME
0.5 50 0 ag LASSO 99.7 0.03 0.02

ag LAD-LASSO 100 0.02 0.01
0.1 ag LASSO 26.4 0.57 0.39

ag LAD-LASSO 99.8 0.36 0.24
0.2 ag LASSO 26.0 1.75 1.37

ag LAD-LASSO 98.0 0.20 0.08
0.3 ag LASSO 29.8 4.02 3.51

ag LAD-LASSO 95.6 0.72 0.38
100 0 ag LASSO 100 0.01 0.01

ag LAD-LASSO 100 0.01 0.01
0.1 ag LASSO 30.1 0.47 0.34

ag LAD-LASSO 100 0.31 0.24
0.2 ag LASSO 29.9 1.54 1.38

ag LAD-LASSO 100 0.08 0.15
0.3 ag LASSO 33.4 3.46 3.24

ag LAD-LASSO 96.7 0.67 0.28
200 0 ag LASSO 100 0.01 0.01

ag LAD-LASSO 100 0.00 0.00
0.1 ag LASSO 24.5 0.35 0.31

ag LAD-LASSO 100 0.23 0.20
0.2 ag LASSO 25.6 1.31 1.22

ag LAD-LASSO 100 0.36 0.17
0.3 ag LASSO 43.1 3.17 3.03

ag LAD-LASSO 99.4 0.30 0.28
1.0 50 0 ag LASSO 97.8 0.08 0.07

ag LAD-LASSO 92.3 0.08 0.06
0.1 ag LASSO 24.6 0.62 0.44

ag LAD-LASSO 91.5 0.50 0.34
0.2 ag LASSO 25.7 1.79 1.47

ag LAD-LASSO 93.0 0.42 0.15
0.3 ag LASSO 23.2 4.16 3.39

ag LAD-LASSO 94.7 0.20 0.12
100 0 ag LASSO 99.0 0.04 0.03

ag LAD-LASSO 100 0.04 0.03
0.1 ag LASSO 24.2 0.40 0.31

ag LAD-LASSO 95.7 0.31 0.25
0.2 ag LASSO 38.3 1.51 1.36

ag LAD-LASSO 96.2 0.09 0.01
0.3 ag LASSO 43.3 3.53 3.21

ag LAD-LASSO 97.0 0.16 0.16
200 0 ag LASSO 98.8 0.02 0.02

ag LAD-LASSO 99.3 0.02 0.01
0.1 ag LASSO 39.5 0.32 0.26

ag LAD-LASSO 100 0.24 0.20
0.2 ag LASSO 37.6 1.34 1.24

ag LAD-LASSO 96.6 0.24 0.21
0.3 ag LASSO 24.8 3.27 3.14

ag LAD-LASSO 97.4 0.37 0.26
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Table 5.8: Simulation results for t3 errors for strictly Y-outliers

σ n ε Method Mean % of CZ Mean ME Median ME
0.5 50 0 ag LASSO 99.1 0.09 0.05

ag LAD-LASSO 99.8 0.18 0.04
0.1 ag LASSO 45.7 2.87 1.96

ag LAD-LASSO 98.7 0.47 0.32
0.2 ag LASSO 38.4 9.91 7.84

ag LAD-LASSO 96.8 0.30 0.14
0.3 ag LASSO 29.5 24.11 21.95

ag LAD-LASSO 94.8 0.23 0.14
100 0 ag LASSO 93.6 0.03 0.03

ag LAD-LASSO 95.8 0.02 0.02
0.1 ag LASSO 44.7 2.23 1.75

ag LAD-LASSO 95.7 0.30 0.27
0.2 ag LASSO 32.0 8.55 7.33

ag LAD-LASSO 99.5 0.20 0.15
0.3 ag LASSO 23.3 21.39 19.90

ag LAD-LASSO 97.1 0.36 0.23
200 0 ag LASSO 99.3 0.02 0.02

ag LAD-LASSO 99.7 0.01 0.01
0.1 ag LASSO 39.6 1.99 1.71

ag LAD-LASSO 91.4 0.23 0.19
0.2 ag LASSO 31.5 7.78 7.49

ag LAD-LASSO 90.7 0.48 0.44
0.3 ag LASSO 21.8 20.29 19.11

ag LAD-LASSO 94.5 0.44 0.32
1.0 50 0 ag LASSO 95.9 0.28 0.17

ag LAD-LASSO 96.5 0.23 0.15
0.1 ag LASSO 48.1 3.43 2.39

ag LAD-LASSO 95.9 0.64 0.45
0.2 ag LASSO 44.7 11.20 9.51

ag LAD-LASSO 93.5 0.55 0.49
0.3 ag LASSO 23.6 24.10 22.36

ag LAD-LASSO 92.4 0.44 0.39
100 0 ag LASSO 97.0 0.10 0.07

ag LAD-LASSO 99.0 0.11 0.08
0.1 ag LASSO 47.3 2.35 1.91

ag LAD-LASSO 94.8 0.37 0.28
0.2 ag LASSO 41.5 8.83 7.62

ag LAD-LASSO 92.7 0.33 0.29
0.3 ag LASSO 21.4 20.69 18.80

ag LAD-LASSO 92.1 0.27 0.28
200 0 ag LASSO 99.3 0.05 0.04

ag LAD-LASSO 99.8 0.05 0.03
0.1 ag LASSO 45.3 1.86 1.55

ag LAD-LASSO 95.4 0.28 0.21
0.2 ag LASSO 28.1 7.83 7.35

ag LAD-LASSO 92.4 0.54 0.48
0.3 ag LASSO 20.2 20.12 19.56

ag LAD-LASSO 91.3 0.39 0.28

47



Table 5.9: Simulation results for t5 errors for strictly Y-outliers

σ n ε Method Mean % of CZ Mean ME Median ME
0.5 50 0 ag LASSO 97.4 0.05 0.04

ag LAD-LASSO 97.5 0.03 0.02
0.1 ag LASSO 48.7 3.80 2.44

ag LAD-LASSO 93.7 0.35 0.24
0.2 ag LASSO 43.0 10.69 9.03

ag LAD-LASSO 93.0 0.53 0.45
0.3 ag LASSO 32.9 23.98 22.08

ag LAD-LASSO 90.0 0.43 0.40
100 0 ag LASSO 98.4 0.02 0.02

ag LAD-LASSO 98.7 0.01 0.01
0.1 ag LASSO 48.0 2.44 1.81

ag LAD-LASSO 94.1 0.28 0.21
0.2 ag LASSO 36.5 8.48 7.51

ag LAD-LASSO 93.1 0.58 0.48
0.3 ag LASSO 27.6 21.21 20.02

ag LAD-LASSO 91.6 0.32 0.28
200 0 ag LASSO 99.9 0.01 0.01

ag LAD-LASSO 100 0.01 0.00
0.1 ag LASSO 47.3 1.98 1.67

ag LAD-LASSO 95.6 0.24 0.22
0.2 ag LASSO 36.1 7.53 6.95

ag LAD-LASSO 93.3 0.64 0.40
0.3 ag LASSO 23.0 19.87 18.74

ag LAD-LASSO 92.8 0.32 0.25
1.0 50 0 ag LASSO 97.2 0.14 0.12

ag LAD-LASSO 97.8 0.15 0.10
0.1 ag LASSO 47.8 3.85 2.40

ag LAD-LASSO 94.2 0.54 0.34
0.2 ag LASSO 43.0 11.69 9.21

ag LAD-LASSO 92.8 0.30 0.25
0.3 ag LASSO 30.5 23.65 22.12

ag LAD-LASSO 90.5 0.35 0.20
100 0 ag LASSO 98.6 0.07 0.05

ag LAD-LASSO 98.7 0.06 0.05
0.1 ag LASSO 46.6 2.29 1.82

ag LAD-LASSO 94.4 0.33 0.27
0.2 ag LASSO 40.1 8.40 7.25

ag LAD-LASSO 93.1 0.33 0.29
0.3 ag LASSO 26.4 20.95 19.68

ag LAD-LASSO 90.8 0.39 0.28
200 0 ag LASSO 99.1 0.03 0.02

ag LAD-LASSO 99.2 0.02 0.02
0.1 ag LASSO 44.6 1.90 1.55

ag LAD-LASSO 97.0 0.26 0.21
0.2 ag LASSO 32.0 8.02 7.71

ag LAD-LASSO 93.8 0.30 0.16
0.3 ag LASSO 21.1 19.48 18.49

ag LAD-LASSO 92.5 0.25 0.17
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Figure 5.3: Boxplots for Model Error for the strictly y-outlier simulation for comparing the
adaptive group LASSO (agLASSO) to the adaptive group LAD-LASSO (agLAD-LASSO)
for various contamination levels for ε ∼ t3 over 200 simulations for σ = 1 and n = 100.
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Table 5.10: Simulation results for N(0, 1) error for X- and Y-outliers

σ n ε Method Mean % of CZ Mean ME Median ME
1.0 50 0 ag LASSO 94.3 0.09 0.07

ag LAD-LASSO 95.8 0.08 0.07
ag WLAD-LASSO 96.4 0.06 0.05

0.1 ag LASSO 26.8 11.25 10.85
ag LAD-LASSO 27.8 10.48 10.28
ag WLAD-LASSO 92.2 0.08 0.06

0.2 ag LASSO 23.0 29.74 29.74
ag LAD-LASSO 21.4 28.91 28.32
ag WLAD-LASSO 91.4 0.29 0.13

0.3 ag LASSO 10.1 54.09 53.11
ag LAD-LASSO 12.9 53.88 52.95
ag WLAD-LASSO 90.5 0.60 0.18

100 0 ag LASSO 96.6 0.04 0.03
ag LAD-LASSO 98.4 0.04 0.03
ag WLAD-LASSO 98.5 0.03 0.02

0.1 ag LASSO 28.2 11.24 11.10
ag LAD-LASSO 28.6 10.18 9.94
ag WLAD-LASSO 92.9 0.03 0.03

0.2 ag LASSO 23.4 29.44 28.98
ag LAD-LASSO 23.6 28.20 28.25
ag WLAD-LASSO 91.5 0.11 0.08

0.3 ag LASSO 15.4 52.83 52.91
ag LAD-LASSO 19.4 52.00 51.61
ag WLAD-LASSO 90.9 0.23 0.11

200 0 ag LASSO 98.7 0.02 0.01
ag LAD-LASSO 99.0 0.02 0.02
ag WLAD-LASSO 99.4 0.01 0.01

0.1 ag LASSO 28.9 10.91 10.88
ag LAD-LASSO 29.5 9.77 9.78
ag WLAD-LASSO 93.0 0.02 0.02

0.2 ag LASSO 19.8 28.99 28.75
ag LAD-LASSO 20.3 28.26 28.22
ag WLAD-LASSO 91.8 0.07 0.06

0.3 ag LASSO 18.7 53.04 53.02
ag LAD-LASSO 18.9 52.40 52.22
ag WLAD-LASSO 91.2 0.12 0.10
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Table 5.11: Simulation results for t3 error for X- and Y-outliers

σ n ε Method Mean % of CZ Mean ME Median ME
1.0 50 0 ag LASSO 94.9 0.23 0.16

ag LAD-LASSO 95.8 0.23 0.15
ag WLAD-LASSO 95.9 0.15 0.09

0.1 ag LASSO 22.1 11.53 11.21
ag LAD-LASSO 24.8 10.51 10.06
ag WLAD-LASSO 93.6 0.12 0.06

0.2 ag LASSO 13.6 28.80 28.91
ag LAD-LASSO 13.8 29.08 28.99
ag WLAD-LASSO 91.9 0.42 0.20

0.3 ag LASSO 10.9 52.08 52.64
ag LAD-LASSO 11.9 54.27 53.74
ag WLAD-LASSO 90.7 0.84 0.27

100 0 ag LASSO 96.2 0.12 0.10
ag LAD-LASSO 96.5 0.12 0.08
ag WLAD-LASSO 97.3 0.10 0.06

0.1 ag LASSO 25.0 10.99 10.92
ag LAD-LASSO 25.4 10.49 10.41
ag WLAD-LASSO 94.3 0.09 0.06

0.2 ag LASSO 16.0 29.02 29.29
ag LAD-LASSO 16.3 28.52 28.36
ag WLAD-LASSO 92.0 0.11 0.08

0.3 ag LASSO 12.6 53.05 53.41
ag LAD-LASSO 13.3 53.25 53.00
ag WLAD-LASSO 90.9 0.26 0.14

200 0 ag LASSO 97.9 0.06 0.04
ag LAD-LASSO 98.0 0.04 0.03
ag WLAD-LASSO 98.5 0.03 0.02

0.1 ag LASSO 27.4 10.92 10.80
ag LAD-LASSO 29.8 10.06 9.81
ag WLAD-LASSO 94.4 0.05 0.03

0.2 ag LASSO 16.6 28.75 28.58
ag LAD-LASSO 19.3 28.46 28.62
ag WLAD-LASSO 92.2 0.11 0.09

0.3 ag LASSO 13.4 52.43 52.36
ag LAD-LASSO 13.5 52.06 51.82
ag WLAD-LASSO 91.0 0.15 0.12
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5.2 Simulation Study: 7 Groups

This simulation is designed to show the effectiveness of the adaptive group WLAD-

LASSO compared to the other adaptive group variable selection methods, the adaptive

group LASSO and the adaptive group LAD-LASSO. Its setup is similar to the setup for

the 2-group simulation. The sample sizes n, the contamination rate ε, and the number of

contaminated points m are defined to be the same as before. Similarly, the first n − m

data points are generated from the true model y1 = X1β1 + σε, where X is multivariate

normal with 0 mean and the pairwise correlation between xi and xj equal to cor(xi,xj) =

0.5|i−j|. The regression parameter vector is set to be β1 = (3, 1.5, 2, 0, 0, 3, 2, 0.5, 4.5, 3.5,

0, 0, 0, 0, 1.5, 1, 0.5, 5, 3, 4.5, 0, 0, 0, 4.5, 1, 3, 2), such that there are seven alternating groups

of predictor variables of varying sizes. The sizes of the groups are 3, 2, 5, 4, 6, 3, and 4,

respectively, for groups 1, 2, 3, 4, 5, 6, and 7. The errors ε are generated from the standard

normal distribution, the t-distribution with 3 degrees of freedom, and the t-distribution with

5 degrees of freedom, while σ will be 0.5 and 1, which are the same from before. This will

allow for heavy-tail error distributions and some outliers in the response direction. The m

points from the contaminated data are produced with the following model: y2 = X2β2, where

X2 is multivariate normally distributed with µ2 6= 0 and covariance equal to I. Let β2 6= β1.

For each combination of sample size, contamination rate, sigma, and error distribution, the

simulation is performed 200 times, and the model error (ME) will be calculated for each of

the given method’s fit on the data for comparison purposes. The model error is calculated

exactly as before. Ideally, this model error will be very close to 0, indicating the method is

doing a great job of estimating the actual model.

52



Table 5.12: Simulation results for t5 error for X- and Y-outliers

σ n ε Method Mean % of CZ Mean ME Median ME
1.0 50 0 ag LASSO 94.5 0.14 0.09

ag LAD-LASSO 97.5 0.14 0.12
ag WLAD-LASSO 97.8 0.10 0.07

0.1 ag LASSO 23.1 11.62 11.23
ag LAD-LASSO 23.3 10.63 10.08
ag WLAD-LASSO 93.4 0.15 0.10

0.2 ag LASSO 14.9 29.58 29.04
ag LAD-LASSO 16.4 29.38 28.69
ag WLAD-LASSO 92.8 0.36 0.18

0.3 ag LASSO 10.2 53.13 52.55
ag LAD-LASSO 10.6 53.17 52.38
ag WLAD-LASSO 90.1 0.67 0.21

100 0 ag LASSO 98.0 0.07 0.05
ag LAD-LASSO 98.1 0.05 0.04
ag WLAD-LASSO 98.2 0.04 0.03

0.1 ag LASSO 23.9 10.92 10.97
ag LAD-LASSO 25.1 10.19 9.88
ag WLAD-LASSO 93.7 0.05 0.04

0.2 ag LASSO 16.7 29.64 29.38
ag LAD-LASSO 18.1 29.15 28.58
ag WLAD-LASSO 93.0 0.15 0.11

0.3 ag LASSO 11.8 52.53 51.60
ag LAD-LASSO 12.8 52.43 52.40
ag WLAD-LASSO 91.2 0.28 0.12

200 0 ag LASSO 99.0 0.03 0.02
ag LAD-LASSO 99.2 0.03 0.02
ag WLAD-LASSO 99.8 0.02 0.01

0.1 ag LASSO 28.9 11.03 10.76
ag LAD-LASSO 29.4 9.64 9.54
ag WLAD-LASSO 94.3 0.03 0.02

0.2 ag LASSO 19.3 28.78 28.77
ag LAD-LASSO 20.0 28.88 29.14
ag WLAD-LASSO 93.1 0.08 0.07

0.3 ag LASSO 14.1 52.44 52.01
ag LAD-LASSO 14.3 52.81 52.55
ag WLAD-LASSO 92.6 0.14 0.11
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Figure 5.4: Boxplots for Model Error for the x- and y-outlier simulation for comparing the
adaptive group LASSO (agLASSO) and the adaptive group LAD-LASSO (agLAD-LASSO)
to the adaptive group WLAD-LASSO (agWLAD-LASSO) for various contamination levels
for ε ∼ t3 over 200 simulations.
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Additionally, the mean percentages of correct zero coefficients and incorrect zero coeffi-

cients, which are averaged over the 200 simulations, are recorded. They are denoted as the

mean % of CZ and the mean % of IZ, respectively, in the table. These results are shown

in Tables 5.13-5.15 for σ = 1 for standard normal, t3, and t5, respectively. The results for

σ = 0.5 are similar and are shown in tables B.7-B.9 in appendix B. Figure 5.5 presents

the box plots for the model error for the 7 group simulation with t3 errors for a sample

size of 100 where σ = 1. In all cases of contamination, the adaptive group WLAD-LASSO

(agWLAD-LASSO) has the smallest model error.

In all cases with no contamination, the oracle property holds true, since the zero coef-

ficients are estimated as such, given that the mean % of correct zeros is very close to 100%

for all the adaptive methods in the simulation. Similarly, the mean % of incorrect zero co-

efficients is also close to 0%. For all sample sizes and all contamination levels, the adaptive

group WLAD-LASSO has the smallest model error, which is also the model error closest to

zero. Therefore, when there are grouped predictors in regression with outliers in both the

response and the predictors, the adaptive group WLAD-LASSO is the best method in terms

of model error.

5.3 Real Data Example

In order to show the effectiveness of the four proposed methods, a real data example is

presented. The data are from microarray experiments of mammalian eye tissue samples and

contain gene expression information from 120 subjects [20]. The response is the expression

level of gene TRIM32, which causes Bardet-Biedl syndrome. There are 100 predictors, which
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Table 5.13: Simulation results for σ = 1 for N(0, 1) error for X- and Y-outliers for 7 groups

σ n ε Method Mean % of CZ Mean % of IZ Mean ME Median ME

1.0 50 0 ag LASSO 97.3 3.0 0.40 0.38
ag LAD-LASSO 99.4 1.8 0.37 0.36
ag WLAD-LASSO 99.1 1.0 0.39 0.36

0.1 ag LASSO 45.4 56.1 13.19 10.12
ag LAD-LASSO 48.6 50.7 12.72 10.38
ag WLAD-LASSO 98.5 4.8 0.01 0.01

0.2 ag LASSO 36.5 64.0 32.92 29.07
ag LAD-LASSO 44.2 57.6 29.77 26.42
ag WLAD-LASSO 96.3 6.2 0.03 0.03

0.3 ag LASSO 15.7 83.3 53.50 48.21
ag LAD-LASSO 19.4 79.8 56.14 51.49
ag WLAD-LASSO 98.8 6.5 0.06 0.05

100 0 ag LASSO 96.7 2.4 0.18 0.18
ag LAD-LASSO 98.2 1.9 0.18 0.17
ag WLAD-LASSO 99.3 1.0 0.04 0.04

0.1 ag LASSO 37.4 61.3 8.88 7.91
ag LAD-LASSO 40.8 52.8 9.40 7.98
ag WLAD-LASSO 95.9 3.1 0.03 0.03

0.2 ag LASSO 32.6 68.1 23.07 21.63
ag LAD-LASSO 35.1 65.0 23.65 21.60
ag WLAD-LASSO 96.8 5.1 0.01 0.01

0.3 ag LASSO 13.5 78.5 45.98 44.28
ag LAD-LASSO 17.2 72.7 47.49 46.44
ag WLAD-LASSO 94.1 6.1 0.03 0.02

200 0 ag LASSO 96.0 2.9 0.09 0.08
ag LAD-LASSO 98.7 1.4 0.09 0.09
ag WLAD-LASSO 98.9 0.7 0.10 0.09

0.1 ag LASSO 41.5 59.4 6.21 5.91
ag LAD-LASSO 46.3 55.7 6.18 5.82
ag WLAD-LASSO 94.4 6.2 0.02 0.02

0.2 ag LASSO 33.9 64.6 18.29 18.07
ag LAD-LASSO 37.1 62.8 18.63 17.83
ag WLAD-LASSO 94.9 6.4 0.00 0.01

0.3 ag LASSO 11.0 88.3 39.28 38.90
ag LAD-LASSO 28.4 76.2 38.58 36.81
ag WLAD-LASSO 93.1 6.7 0.02 0.01
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Table 5.14: Simulation results for σ = 1 for t3 error for X- and Y-outliers for 7 groups

σ n ε Method Mean % of CZ Mean % of IZ Mean ME Median ME

1.0 50 0 ag LASSO 97.8 2.2 0.14 0.16
ag LAD-LASSO 98.2 1.5 0.12 0.17
ag WLAD-LASSO 99.2 0.6 0.10 0.09

0.1 ag LASSO 47.7 51.8 15.96 13.71
ag LAD-LASSO 48.3 51.1 14.83 12.25
ag WLAD-LASSO 97.6 2.3 0.06 0.03

0.2 ag LASSO 32.4 67.7 32.41 28.55
ag LAD-LASSO 45.5 53.5 32.02 28.73
ag WLAD-LASSO 96.3 5.6 0.03 0.03

0.3 ag LASSO 12.4 87.1 59.70 56.43
ag LAD-LASSO 20.9 84.5 57.85 53.98
ag WLAD-LASSO 95.0 6.7 0.01 0.01

100 0 ag LASSO 97.4 2.1 0.06 0.05
ag LAD-LASSO 98.6 2.0 0.06 0.04
ag WLAD-LASSO 99.2 0.6 0.01 0.01

0.1 ag LASSO 45.7 55.0 16.07 13.87
ag LAD-LASSO 47.0 52.4 15.11 13.41
ag WLAD-LASSO 96.2 4.2 0.02 0.02

0.2 ag LASSO 24.4 74.8 30.48 26.91
ag LAD-LASSO 25.3 73.3 30.32 27.93
ag WLAD-LASSO 95.2 6.2 0.03 0.02

0.3 ag LASSO 17.0 83.2 53.81 51.63
ag LAD-LASSO 25.4 77.2 55.91 51.96
ag WLAD-LASSO 94.5 6.4 0.04 0.04

200 0 ag LASSO 95.9 4.6 0.03 0.03
ag LAD-LASSO 96.9 3.8 0.03 0.02
ag WLAD-LASSO 99.3 2.3 0.01 0.01

0.1 ag LASSO 48.7 53.4 6.80 6.36
ag LAD-LASSO 49.5 51.6 6.76 6.24
ag WLAD-LASSO 97.4 4.7 0.01 0.01

0.2 ag LASSO 34.5 78.3 19.66 18.76
ag LAD-LASSO 37.5 57.4 19.69 19.09
ag WLAD-LASSO 96.3 5.0 0.01 0.01

0.3 ag LASSO 14.8 88.4 39.73 37.73
ag LAD-LASSO 20.2 81.2 39.95 38.52
ag WLAD-LASSO 94.7 6.8 0.02 0.02
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Table 5.15: Simulation results for σ = 1 for t5 error for X- and Y-outliers for 7 groups

σ n ε Method Mean % of CZ Mean % of IZ Mean ME Median ME

1.0 50 0 ag LASSO 96.2 3.1 0.06 0.06
ag LAD-LASSO 98.3 2.3 0.05 0.04
ag WLAD-LASSO 99.6 0.9 0.03 0.02

0.1 ag LASSO 28.4 72.9 17.38 15.45
ag LAD-LASSO 37.8 64.0 15.65 14.10
ag WLAD-LASSO 95.2 3.9 0.02 0.01

0.2 ag LASSO 25.5 76.5 34.67 31.57
ag LAD-LASSO 24.6 75.8 35.74 32.92
ag WLAD-LASSO 97.9 4.7 0.04 0.03

0.3 ag LASSO 15.2 86.8 60.33 57.93
ag LAD-LASSO 23.4 76.6 60.10 55.93
ag WLAD-LASSO 96.1 5.5 0.03 0.02

100 0 ag LASSO 95.6 4.5 0.03 0.03
ag LAD-LASSO 97.5 2.9 0.03 0.03
ag WLAD-LASSO 99.8 1.8 0.06 0.03

0.1 ag LASSO 43.8 56.7 8.54 7.40
ag LAD-LASSO 47.6 54.6 8.44 7.64
ag WLAD-LASSO 96.2 5.1 0.00 0.01

0.2 ag LASSO 25.9 67.3 23.20 22.21
ag LAD-LASSO 37.2 62.1 24.45 22.54
ag WLAD-LASSO 96.5 5.5 0.01 0.01

0.3 ag LASSO 13.4 88.5 44.66 43.25
ag LAD-LASSO 14.5 78.1 45.06 43.46
ag WLAD-LASSO 93.9 6.7 0.02 0.01

200 0 ag LASSO 98.0 1.5 0.04 0.04
ag LAD-LASSO 99.5 1.1 0.04 0.03
ag WLAD-LASSO 99.8 0.6 0.03 0.03

0.1 ag LASSO 45.3 60.0 6.16 5.50
ag LAD-LASSO 42.2 55.1 6.38 5.83
ag WLAD-LASSO 98.7 3.8 0.02 0.02

0.2 ag LASSO 34.1 65.8 18.70 18.20
ag LAD-LASSO 38.4 60.5 18.27 17.64
ag WLAD-LASSO 96.5 5.5 0.01 0.01

0.3 ag LASSO 17.8 82.7 39.09 38.66
ag LAD-LASSO 31.5 60.0 40.10 40.10
ag WLAD-LASSO 92.7 6.9 0.02 0.01
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Figure 5.5: Boxplots for Model Error for the x- and y-outlier simulation for comparing the
adaptive group LASSO (agLASSO) and the adaptive group LAD-LASSO (agLAD-LASSO)
to the adaptive group WLAD-LASSO (agWLAD-LASSO) for various contamination levels
for ε ∼ t3 over 200 simulations with 7 groups and a sample size of 100.
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are the expression levels of 20 genes, which were expanded using 5 basis B-splines [25]. That

is, each 5 consecutive columns corresponds to a grouped gene.

Preliminary analyses of the data indicate there is some multicollinearity between the

predictors. For example, marker 4 has a correlation equal to 0.77 with marker 19, and marker

5 has a correlation equal to 0.99 with marker 30. However, since this happens with only a

few pairs of variables, the multicollinearity is not severe enough to warrant a change from the

LASSO-based methods [6]. A scatter plot matrix indicates that there is at least one outlier

in the response, and some outliers in the predictor space, including about nine observations

for marker 4. However, this is not enough to truly show how well the proposed methods

work in comparison to the non-adaptive and adaptive group LASSO methods. As a result,

24 observations in the response are randomly chosen and shifted to become outliers, and

similarly for the x-matrix, such that each column in the predictor will have 24 observations

randomly shifted to simulate outliers (24 observations are 20% of the overall 120 observations,

indicating there will be 20% contamination of outliers).

In order to compute the robust distances, special considerations are made, due to the

high dimensionality of the predictor matrix, which is 120 x 100. The covariance matrix will

be found using the R-MCD (regularized MCD estimator) [10]. The R-MCD is similar to the

MCD described before for the group WLAD-LASSO; however, exactly half of the observa-

tions are used such that h = n
1

and, to compensate for the shortage of data, regularization is

applied to the MCD estimator resulting in the R-MCD estimator. In particular, the authors

suggest using ridge regularization.

All three methods are performed on the data set to see which groups of genes are

important in predicting the expression level of gene TRIM32. The methods are examined

by using the following measure.

MSE =
1

n− p

n∑
i=1

(yi − ŷi)2 (5.2)
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Table 5.16: MSE for the application on the Bardet data set.

Method Contamination Mean MSE Median MSE
gLASSO 0% 0.023 0.021

gLAD-LASSO 0.029 0.028
gWLAD-LASSO 0.222 0.034

agLASSO 0.010 0.010
agLAD-LASSO 0.010 0.010

agWLAD-LASSO 0.010 0.011
gLASSO 20% y-outliers 84.949 85.476

gLAD-LASSO 0.173 0.176
agLASSO 56.194 56.263

agLAD-LASSO 0.060 0.040
gLASSO 20% x- and y-outliers 94.057 94.432

gLAD-LASSO 94.173 93.841
gWLAD-LASSO 0.216 0.247

agLASSO 64.926 65.095
agLAD-LASSO 65.572 65.583

agWLAD-LASSO 0.038 0.050

We find the mean square error (MSE) for each method over 100 runs of fitting the

model with k-fold cross-validation and report the average of the 100 mean square errors.

The results are below.

5.3.1 Results

It is clear from the table that, with contamination, the group LAD-LASSO and the group

WLAD-LASSO and their adaptive counterparts perform much better than the group LASSO

and the adaptive group LASSO. In particular, the group LAD-LASSO and the adaptive

group LAD-LASSO do well by having the smallest MSE when there is contamination in the

response, while the group WLAD-LASSO and the adaptive group WLAD-LASSO do well

and have the smallest MSE when there is contamination in both the predictors and response.

It is also of note that the adaptive group variable selection methods have a smaller MSE

than the regular group variable selection methods; this can be attributed to the adaptive
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Figure 5.6: Boxplots for Mean Square Error for the adaptive group LASSO (agLASSO),
the adaptive group LAD-LASSO (agLAD-LASSO), and the adaptive group WLAD-LASSO
(agWLAD-LASSO) for various conditions over 100 fittings on the Bardet data set.

shrinkage parameter, which gives the adaptive group variable selection methods their nice

properties of consistency, sparsity, and the oracle property.

62



Chapter 6

Conclusion

Variable selection in regression is still a very important problem in statistics. A new

twist on the variable selection idea is the notion of grouped predictors. With this added

assumption on the structure of the predictors, this creates a new interesting problem to

the already intriguing variable selection topic. Still, there are concerns on the tradeoffs of

prediction accuracy and interpretability. On the one hand, we’d like to be able to have

as accurate predictions as possible by including as many groups of predictor variables as

needed. However, on the other, we’d like to be able to interpret the final model in order to

understand the relationship underlying the groups of predictors and the response. Herein

lies the conundrum of how many groups of variables is too many and how many groups of

variables is too few.

Several variable selection methods have been proposed, each well suited to specific data

situations. In our case, we are interested in data with outliers. In particular, we are interested

in two cases: outliers in the response, and outliers in the response and predictor space. In

addition, most of the variable selection methods have been adapted to the group variable

selection problem, but most of them have not been shown to be robust to outliers in any

direction. In fact, many of them perform poorly in the case of data which exhibits outliers.

In this dissertation, we proposed four methods to perform robust group variable se-

lection. Two of these we call regular robust group variable selection methods, the group

LAD-LASSO and the group WLAD-LASSO. The first is well-suited to perform robust group

variable selection with outliers in the y-direction, while the second is well-suited to perform

robust group variable selection with outliers in both the x- and y-directions. The second

type are called adaptive robust group variable selection methods, which are comprised of the
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adaptive group LAD-LASSO and the adaptive group WLAD-LASSO. These methods are

built to perform robust group variable selection in the presence of outliers in the response

and both the response and predictor space, respectively. These second set of adaptive-type

methods have nice properties, including the oracle property. A simulation study and a real

data application show the effectiveness of all four methods in their respective situations with

outliers in the data.

All of the proposed methods are based on the group LASSO, which will select important

groups. It would be interesting to apply these same robust measures to other group variables

selection methods that not only select important groups, but also select important individual

variables within the groups. That is, the final model would have have important groups that

have been selected, but not every member of the group would be nonzero. Insignificant

groups would still have every variable in the group equal to 0. Exploring the properties

of such methods would also be a natural next step in future research. In addition, for all

methods, including the proposed methods presented, finding the empirical influence curve

as an explicit measure of the robustness is a potential endeavor.
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Appendix A

Proofs of Theorems

A.1 Proof of Theorem 1

Before the proof, first assume all of the conditions presented before the theorem in

section 5.1.2. Therefore, we assume the groups are ordered such that all significant nonzero

groups are first in the grouping order, and all insignificant zero groups are ordered to be

last. For example, if there are four groups, and two are significant, groups 1 and 2 would be

the significant groups, and groups 3 and 4 would be the nonsignificant groups. Furthermore,

assume k0 is the largest value of k such that the group k0 is significant and nonzero.

It should be noted that the objective function of the adaptive group LAD-LASSO Q(β)

(4.1) is convex. As long as we can show a local minimizer of Q(β), which is
√
n-consistent,

then by global convexity of Q(β), the local minimizer must be β̂, the adaptive group LAD-

LASSO estimators. In order to show the existence of a
√
n-consistent local minimizer, we

want to show that for any given ε > 0, there exists a sufficiently large constant C such that

lim
n

inf P

{
inf
||u||=C

Q(β + n−1/2u) > Q(β)

}
> 1− ε, (A.1)

where u = (u1, . . . , up)
T is a p-dimensional vector such that ||u|| = C. Let Dn(u) =

Q(β + n−1/2u)−Q(β). Then,
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Dn(u) =
n∑
i=1

1

2
|yi −

K∑
k=1

xik(βk + n−1/2uk)|+ n
K∑
k=1

λk||βk + n−1/2uk||2

−
n∑
i=1

1

2
|yi −

K∑
k=1

xikβk|+ n
K∑
i=1

λk||βk||2

(A.2)

=
n∑
i=1

1

2
{|yi −

K∑
k=1

xik(βk + n−1/2uk)| − |yi −
K∑
k=1

xikβk|}

+ n
K∑
k=1

λk||βk + n−1/2uk||2 − n
K∑
i=1

λk||βk||2

(A.3)

=
n∑
i=1

1

2
{|yi −

K∑
k=1

xik(βk + n−1/2uk)| − |yi −
K∑
k=1

xikβk|}

n
K∑
k=1

λk||βk + n−1/2uk||2 − n
k0∑
k=1

λk||βk||2

(A.4)

≥
n∑
i=1

1

2
{|yi −

K∑
k=1

xik(βk + n−1/2uk)| − |yi −
K∑
k=1

xikβk|}

n

k0∑
k=1

λk(||βk + n−1/2uk||2 − ||β||2)

(A.5)

≥
n∑
i=1

1

2
{|yi −

K∑
k=1

xik(βk + n−1/2uk)| − |yi −
K∑
k=1

xikβk|}

+ p0
√
nan

k0∑
k=1

||uk||2

(A.6)

Line (A.4) follows from (A.3), because βk = 0 for any j > p0. Separate equation (A.6)

into two parts, divided by the +. Denote the first part as Ln(u). Because of the theorem’s

conditions, we know
√
nan = o(1), which implies the second and last term is of o(1). Next,

we must show how Ln(u) behaves.

Using an equation from Knight (1998), for x 6= 0:

|x− y| − |x| = −y[I(x > 0)− I(x < 0)] + 2

∫ y

0

[I(x ≤ s)− I(x ≤ 0)]ds
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Then Ln(u) can be rewritten as:

n∑
i=1

{|yi −
K∑
k=1

xikβk −
K∑
k=1

xikn
−1/2uk| − |yi −

K∑
k=1

xikβk| (A.7)

which, in turn, can be written as (with help from Knight (1998):

−n−1/2u
n∑
i=1

xi[I(εi > 0)− I(εi < 0)] + 2
n∑
i=1

∫ n−1/2uTxi

0

[I(ε ≤ s)− I(ε ≤ 0)]ds (A.8)

By the Central Limit Theorem, the first term of (A.8) converges in distribution to uTW ,

where W is a p-dimensional normal random vector with mean 0 and covariance matrix Σ.

Now, as for the second part of (A.8), denote the c.d.f. of εi by F and
∫ n−1/2uTxi
0

[I(ε ≤

s)− I(ε ≤ 0)]ds by Zni(u). Hence,

nE[Zni(u)I(n−1/2|uTxi| ≥ η)] ≤ nE{(
∫ n−1/2|uTxi|

0

2ds)2I(n−1/2|uTxi| ≥ η)} (A.9)

= 4E[|uTx|2I(|uTx| ≥
√
nη)] (A.10)

= o(1) (A.11)

However, due to the continuity of f , there exists an η > 0 and 0 < κ < ∞ such that

sup|x|<η f(x) < f(0) + κ. Let R = nE[Z2
ni(u)I(n−1/2|uTxi| < η)]. Then,
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R ≤ 2nηE{
∫ n−1/2|uTxi|

0

|I(εi ≤ s)− I(εi ≤ 0)ds ∗ I(n−1/2|uTxi| < η)} (A.12)

≤ 2nηE{
∫ n−1/2|uTxi|

0

[F (s)− F (0)]ds ∗ I(n−1/2|uTxi| < η)} (A.13)

≤ 2nη{f(0) + κ}E{
∫ n−1/2|uTxi|

0

sds ∗ I(n−1/2|uTxi| < η)} (A.14)

≤ {f(0) + κ}E|uTxi|2 (A.15)

The terms in (A.15) converge to 0 as η → 0. This implies that R is dominated by the

given function. It follows that as n→∞, V ar(
∑n

i=1 Zni) =
∑n

i=1 V ar(Zni) ≤ nE(Z2
ni(u))→

0. Hence,
∑n

i=1{Zni(u)− E[Zni(u)]} = o(1). Furthermore,

E(
n∑
i=1

Zni(u)) = nE[Zni(u)] (A.16)

= nE{
∫ n−1/2uTxi

0

[F (s)− F (0)]ds} (A.17)

= E

∫ n−1/2

0

uTxisf(0)ds}+ o(1) (A.18)

= 0.5f(0)uT (xix
T
i )u+ o(1) (A.19)

because

P{n−1/2max(|uTx1|, . . . , |uTxn| > η∗)} ≤ nP{|uTx1| > η∗n1/2} (A.20)

≤ 1

(η∗)2
E{|uTx1|2I(|uTx1| > η∗n1/2)} → 0

(A.21)

Thus, because of the Law of Large Numbers, it follows that
∑n

i=1 Zni(u)→p
1
2
f(0)uTΣu,

which is a quadratic function in u. Therefore, the second part of (A.8) converges to
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f(0)uTΣu in probability. Hence, when C is sufficiently large, the second term of (A.8)

dominates both the first part of (A.8) and the last term in (A.6). This implies (A.1) and

completes the proof.

A.2 Proof of Theorem 2

First, assume all conditions from the proof of theorem 1 are true. Using an argument

from Bloomfield and Steiger [2], it follows that Q(β) is piecewise linear and reaches the

minimum at some breaking point. Take the first derivative of Q(β) at any differentiable

point β̃ with respect to βj, j = p0 + 1, . . . , p, to obtain:

= −n−1/2
n∑
i=1

sgn(yi − xTi β̃)xik +
√
nλk

β̂b

||β̂b||2
(A.22)

where

sgn(x) =


1 if x > 0

0 if x = 0

−1 if x < 0

(A.23)

.

For any ∆ ∈ Rp, let

V (∆) = n−1/2
n∑
i=1

xisgn(εi − n−1/2xTi ∆). (A.24)

By the Central Limit Theorem, it follows that

V (0) = n−1/2
n∑
i=1

xisgn(εi)→d N(0,Σ), (A.25)

where →d means ‘convergence in distribution.’ Because n−1/2max{|uTxi|} = o(1) and

because of lemma A.2 from Koenker and Zhao [18], it follows that
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sup
||∆||≤M

|V (∆)− V (0) + f(0)Σ∆| = o(1) (A.26)

where M is any fixed number. Then, for any β̃ = (β̃Ta , β̃
T
b )T such that

√
n(β̃a − βa) =

Op(1) and |β̃b − βb| ≤ εn = Mn−1/2,

n−1/2
n∑
i=1

sgn(yi − xTi β̃)− n−1/2
n∑
i=1

xisgn(ε) + f(0)Σ∆∗ = o(1) (A.27)

where ∆∗ =
√
n(β̃ − β). Ultimately, this implies

n−1/2
n∑
i=1

xTi sgn(y1 − xTi β̃) = o(1), (A.28)

which, in turn, implies that the first term of (22) is o(1). As for the second term of (22),

note that if β̂b 6= 0, there exists a c such that |β̂bc| = max{|β̂bc′ | : 1 ≤ c′ ≤ pk}. Without

loss of generality, we can assume c = 1, then we must have

|β̂b1|
||β̂b||2

≥ 1
√
pk

> 0. (A.29)

Note that
√
nλk ≥

√
nbn → ∞. This implies that

√
nλkβ̂bc

||β̂b||2
dominates the first term in

(22) with probability tending to 1. This means (22) cannot be true as long as the sample

size is sufficiently large. Hence, we can conclude that with probability tending to 1, ‖β̂b‖

must be undifferentiable. Therefore, β̂b has to be exactly zero.

A.3 Proof of Theorem 3

With theorem 1 and 2, theorem 3 implies that the group LAD-LASSO estimator is

robust against heavy-tailed errors, because the
√
n-consistency of β̂a is established without

making any moment assumptions on the regression error. Also, it implies that the resulting

estimator has the same asymptotic distribution as the group LAD-LASSO estimator obtained
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under the true model establishing the oracle property of the estimator. Combining theorem

1 and 3, we know that β̂k 6= 0 for k0 < p0 and β̂k = 0 for k0 > p0.

For any v = (v1, . . . , vp0)
T ∈ Rp0 , let Sn(v) = Q(βa + n−1/2v, 0)−Q(βa, 0). Then,

Sn(v) =
n∑
i=1

{|yi−xiaβa−n−1/2vTxia|−|yi−xTiaβa|+n

p0∑
j=1

λj{|βj +n−1/2vj|−|βj|} (A.30)

where xia = (xi1, . . . , xip0)
T . Similar to the proof of theorem 1, the first term of (30),

such that (30) is separated by the +, converges in distribution to vTWa + f(0)vTΣv, where

Wa is a p0-dimensional normal random vector with mean 0 and variance matrix Σa. Also,

the absolute value of the second term of (30), which can be denoted by ∗∗ is constrained by

the following

| ∗ ∗| ≤
√
nan

p0∑
j=1

|vj| → 0 (A.31)

Using the results from theorem 2 and remark 1 from Davis [5], the central limit theorem

follows, which completes the proof of theorem 3.

A.4 Proof of Theorem 4

The proof of theorem 4, which establishes the estimation consistency of the adaptive

group WLAD-LASSO estimators, follows from the proof of theorem 1 and from the proof in

Arslan [1] with the additional assumption on the weights wi such that 0 < wi ≤ 1. Therefore,

it will be omitted.

A.5 Proof of Theorem 5

The proof of theorem 5, which establishes the selection consistency of the adaptive group

WLAD-LASSO estimators, follows from the proof of theorem 2 and from the proof in Arslan
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[1] with the additional assumption on the weights wi such that 0 < wi ≤ 1. Therefore, it

will be omitted.

A.6 Proof of Theorem 6

The proof of theorem 5, which establishes the oracle property of the adaptive group

WLAD-LASSO estimators, follows from the proof of theorem 3 and from the proof in Arslan

[1] with the additional assumption on the weights wi such that 0 < wi ≤ 1. Therefore, it

will be omitted.
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Appendix B

Simulation Results

Table B.1: Simulation results for regular methods when σ = 0.5 for N(0, 1) error for X- and
Y-outliers for 2 groups

σ n ε Method Mean ME Median ME
0.5 50 0 g LASSO 0.03 0.02

g LAD-LASSO 0.03 0.02
g WLAD-LASSO 0.05 0.04

0.1 g LASSO 10.52 10.42
g LAD-LASSO 7.66 7.01
g WLAD-LASSO 0.09 0.07

0.2 g LASSO 27.30 27.11
g LAD-LASSO 25.99 25.75
g WLAD-LASSO 0.44 0.16

0.3 g LASSO 50.71 50.00
g LAD-LASSO 46.52 46.27
g WLAD-LASSO 0.59 0.07

100 0 g LASSO 0.02 0.01
g LAD-LASSO 0.01 0.01
g WLAD-LASSO 0.03 0.02

0.1 g LASSO 10.90 10.76
g LAD-LASSO 7.41 6.99
g WLAD-LASSO 0.04 0.03

0.2 g LASSO 28.02 28.45
g LAD-LASSO 26.42 26.19
g WLAD-LASSO 0.17 0.10

0.3 g LASSO 51.77 51.37
g LAD-LASSO 49.64 49.87
g WLAD-LASSO 0.20 0.08

200 0 g LASSO 0.01 0.01
g LAD-LASSO 0.01 0.01
g WLAD-LASSO 0.01 0.01

0.1 g LASSO 10.74 10.66
g LAD-LASSO 6.78 6.89
g WLAD-LASSO 0.02 0.02

0.2 g LASSO 28.44 28.10
g LAD-LASSO 27.09 27.32
g WLAD-LASSO 0.15 0.11

0.3 g LASSO 51.80 51.76
g LAD-LASSO 51.38 51.62
g WLAD-LASSO 0.12 0.08
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Table B.2: Simulation results for regular methods when σ = 0.5 for t3 error for X- and
Y-outliers for 2 groups

σ n ε Method Mean ME Median ME

0.5 50 0 g LASSO 0.07 0.05
g LAD-LASSO 0.07 0.05
g WLAD-LASSO 0.15 0.08

0.1 g LASSO 10.70 10.51
g LAD-LASSO 8.06 8.02
g WLAD-LASSO 0.20 0.13

0.2 g LASSO 27.88 28.02
g LAD-LASSO 25.36 25.11
g WLAD-LASSO 0.60 0.24

0.3 g LASSO 51.03 49.34
g LAD-LASSO 48.12 48.03
g WLAD-LASSO 0.62 0.10

100 0 g LASSO 0.04 0.03
g LAD-LASSO 0.04 0.03
g WLAD-LASSO 0.02 0.01

0.1 g LASSO 10.77 10.56
g LAD-LASSO 7.20 6.95
g WLAD-LASSO 0.02 0.02

0.2 g LASSO 27.50 27.08
g LAD-LASSO 25.93 25.77
g WLAD-LASSO 0.07 0.04

0.3 g LASSO 51.45 51.40
g LAD-LASSO 50.26 50.12
g WLAD-LASSO 0.24 0.09

200 0 g LASSO 0.02 0.02
g LAD-LASSO 0.02 0.01
g WLAD-LASSO 0.01 0.01

0.1 g LASSO 10.68 10.71
g LAD-LASSO 7.06 7.22
g WLAD-LASSO 0.01 0.01

0.2 g LASSO 28.00 27.81
g LAD-LASSO 26.86 26.91
g WLAD-LASSO 0.05 0.04

0.3 g LASSO 51.55 51.04
g LAD-LASSO 50.79 50.70
g WLAD-LASSO 0.11 0.08
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Table B.3: Simulation results for regular methods when σ = 0.5 for t5 error for X- and
Y-outliers for 2 groups

σ n ε Method Mean ME Median ME

0.5 50 0 g LASSO 0.04 0.03
g LAD-LASSO 0.05 0.04
g WLAD-LASSO 0.03 0.02

0.1 g LASSO 10.61 10.30
g LAD-LASSO 8.26 7.78
g WLAD-LASSO 0.04 0.03

0.2 g LASSO 26.89 26.41
g LAD-LASSO 25.02 24.06
g WLAD-LASSO 0.16 0.06

0.3 g LASSO 51.01 50.40
g LAD-LASSO 48.74 48.55
g WLAD-LASSO 0.55 0.11

100 0 g LASSO 0.02 0.02
g LAD-LASSO 0.02 0.02
g WLAD-LASSO 0.01 0.01

0.1 g LASSO 11.04 10.84
g LAD-LASSO 7.37 7.36
g WLAD-LASSO 0.02 0.01

0.2 g LASSO 27.95 27.80
g LAD-LASSO 25.62 25.82
g WLAD-LASSO 0.06 0.05

0.3 g LASSO 51.61 50.89
g LAD-LASSO 49.02 49.48
g WLAD-LASSO 0.19 0.08

200 0 g LASSO 0.01 0.01
g LAD-LASSO 0.01 0.01
g WLAD-LASSO 0.01 0.01

0.1 g LASSO 10.73 10.71
g LAD-LASSO 7.11 7.22
g WLAD-LASSO 0.01 0.01

0.2 g LASSO 28.51 28.22
g LAD-LASSO 26.58 26.39
g WLAD-LASSO 0.05 0.04

0.3 g LASSO 51.94 51.69
g LAD-LASSO 51.55 51.28
g WLAD-LASSO 0.11 0.08
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Table B.4: Simulation results for adaptive methods when σ = 0.5 for N(0, 1) error for X-
and Y-outliers for 2 groups

σ n ε Method Mean % of CZ Mean ME Median ME

0.5 50 0 ag LASSO 95.0 0.03 0.03
ag LAD-LASSO 95.1 0.02 0.02
ag WLAD-LASSO 95.2 0.01 0.01

0.1 ag LASSO 26.6 11.81 11.60
ag LAD-LASSO 26.7 10.42 9.79
ag WLAD-LASSO 93.9 0.03 0.02

0.2 ag LASSO 18.7 28.45 27.88
ag LAD-LASSO 20.3 28.87 27.78
ag WLAD-LASSO 92.7 0.28 0.08

0.3 ag LASSO 11.7 53.52 52.58
ag LAD-LASSO 13.2 52.79 51.94
ag WLAD-LASSO 90.3 0.77 0.12

100 0 ag LASSO 95.3 0.01 0.01
ag LAD-LASSO 95.4 0.01 0.01
ag WLAD-LASSO 95.6 0.01 0.00

0.1 ag LASSO 27.4 11.04 11.11
ag LAD-LASSO 28.4 9.87 9.43
ag WLAD-LASSO 94.8 0.01 0.01

0.2 ag LASSO 20.9 28.88 28.77
ag LAD-LASSO 23.3 28.52 28.22
ag WLAD-LASSO 93.3 0.07 0.05

0.3 ag LASSO 14.1 53.52 53.16
ag LAD-LASSO 14.8 52.58 52.36
ag WLAD-LASSO 91.5 0.20 0.09

200 0 ag LASSO 97.1 0.01 0.01
ag LAD-LASSO 97.8 0.00 0.00
ag WLAD-LASSO 99.3 0.00 0.00

0.1 ag LASSO 28.5 10.80 10.76
ag LAD-LASSO 29.1 9.46 9.29
ag WLAD-LASSO 94.9 0.01 0.01

0.2 ag LASSO 23.8 28.75 28.63
ag LAD-LASSO 24.3 28.44 28.67
ag WLAD-LASSO 93.8 0.06 0.04

0.3 ag LASSO 15.9 52.31 51.92
ag LAD-LASSO 17.2 52.01 51.90
ag WLAD-LASSO 92.5 0.12 0.09
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Table B.5: Simulation results for adaptive methods when σ = 0.5 for t3 error for X- and
Y-outliers for 2 groups

σ n ε Method Mean % of CZ Mean ME Median ME

0.5 50 0 ag LASSO 95.0 0.08 0.06
ag LAD-LASSO 96.0 0.05 0.03
ag WLAD-LASSO 96.7 0.04 0.02

0.1 ag LASSO 21.9 11.91 11.54
ag LAD-LASSO 23.1 10.90 10.62
ag WLAD-LASSO 92.8 0.06 0.03

0.2 ag LASSO 13.6 29.33 29.42
ag LAD-LASSO 15.1 29.01 28.43
ag WLAD-LASSO 92.0 0.20 0.08

0.3 ag LASSO 10.4 53.54 53.19
ag LAD-LASSO 12.3 51.92 52.11
ag WLAD-LASSO 90.5 0.84 0.23

100 0 ag LASSO 96.9 0.04 0.03
ag LAD-LASSO 97.0 0.02 0.02
ag WLAD-LASSO 98.2 0.02 0.01

0.1 ag LASSO 23.5 11.15 10.91
ag LAD-LASSO 25.3 10.09 9.77
ag WLAD-LASSO 93.4 0.02 0.02

0.2 ag LASSO 18.4 29.49 29.17
ag LAD-LASSO 19.3 29.45 29.33
ag WLAD-LASSO 92.5 0.09 0.06

0.3 ag LASSO 12.8 53.30 54.04
ag LAD-LASSO 12.9 52.58 52.75
ag WLAD-LASSO 90.6 0.25 0.11

200 0 ag LASSO 98.4 0.02 0.02
ag LAD-LASSO 98.9 0.01 0.01
ag WLAD-LASSO 99.7 0.01 0.00

0.1 ag LASSO 26.4 10.95 10.95
ag LAD-LASSO 28.4 9.65 9.59
ag WLAD-LASSO 94.2 0.01 0.01

0.2 ag LASSO 21.7 28.70 28.32
ag LAD-LASSO 21.8 28.53 28.40
ag WLAD-LASSO 92.7 0.07 0.06

0.3 ag LASSO 13.1 52.81 52.79
ag LAD-LASSO 13.3 52.60 52.51
ag WLAD-LASSO 90.7 0.13 0.09
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Table B.6: Simulation results for adaptive methods when σ = 0.5 for t5 error for X- and
Y-outliers for 2 groups

σ n ε Method Mean % of CZ Mean ME Median ME

0.5 50 0 ag LASSO 96.0 0.04 0.04
ag LAD-LASSO 96.5 0.03 0.02
ag WLAD-LASSO 96.6 0.02 0.01

0.1 ag LASSO 22.6 11.41 11.12
ag LAD-LASSO 22.8 10.54 10.05
ag WLAD-LASSO 94.5 0.04 0.03

0.2 ag LASSO 16.7 29.66 29.82
ag LAD-LASSO 19.3 29.16 28.82
ag WLAD-LASSO 93.5 0.21 0.07

0.3 ag LASSO 10.2 54.12 53.47
ag LAD-LASSO 10.6 52.63 52.56
ag WLAD-LASSO 90.0 0.73 0.16

100 0 ag LASSO 96.9 0.02 0.02
ag LAD-LASSO 97.7 0.01 0.01
ag WLAD-LASSO 99.1 0.01 0.01

0.1 ag LASSO 27.0 11.01 10.95
ag LAD-LASSO 27.2 10.08 9.87
ag WLAD-LASSO 95.6 0.02 0.01

0.2 ag LASSO 19.9 29.07 28.97
ag LAD-LASSO 21.1 29.15 28.71
ag WLAD-LASSO 93.6 0.09 0.06

0.3 ag LASSO 10.8 53.17 52.40
ag LAD-LASSO 15.3 52.44 52.93
ag WLAD-LASSO 90.7 0.24 0.08

200 0 ag LASSO 99.2 0.01 0.01
ag LAD-LASSO 99.4 0.01 0.01
ag WLAD-LASSO 99.7 0.00 0.00

0.1 ag LASSO 29.4 10.74 10.74
ag LAD-LASSO 29.6 9.62 9.43
ag WLAD-LASSO 95.9 0.01 0.01

0.2 ag LASSO 21.4 28.58 28.46
ag LAD-LASSO 21.9 28.54 28.82
ag WLAD-LASSO 93.7 0.06 0.05

0.3 ag LASSO 15.7 52.40 52.46
ag LAD-LASSO 16.3 52.66 52.93
ag WLAD-LASSO 92.0 0.14 0.09
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Table B.7: Simulation results for σ = 0.5 for N(0, 1) error for X- and Y-outliers for 7 groups

σ n ε Method Mean % of CZ Mean % of IZ Mean ME Median ME

0.5 50 0 ag LASSO 97.8 4.1 0.09 0.09
ag LAD-LASSO 97.9 3.8 0.09 0.09
ag WLAD-LASSO 98.4 3.6 0.10 0.11

0.1 ag LASSO 45.4 56.2 13.71 11.64
ag LAD-LASSO 47.7 54.6 12.35 10.76
ag WLAD-LASSO 97.0 4.1 0.01 0.01

0.2 ag LASSO 24.6 67.8 31.25 28.21
ag LAD-LASSO 24.7 67.3 31.06 26.26
ag WLAD-LASSO 95.8 5.0 0.03 0.03

0.3 ag LASSO 18.5 81.3 59.90 56.46
ag LAD-LASSO 19.4 80.2 57.51 53. 91
ag WLAD-LASSO 95.0 6.4 0.06 0.06

100 0 ag LASSO 98.5 2.3 0.05 0.05
ag LAD-LASSO 99.2 0.7 0.05 0.05
ag WLAD-LASSO 99.7 0.6 0.10 0.06

0.1 ag LASSO 37.0 65.2 9.05 7.82
ag LAD-LASSO 47.3 53.0 9.01 8.15
ag WLAD-LASSO 98.3 2.7 0.01 0.01

0.2 ag LASSO 17.3 84.8 22.34 21.37
ag LAD-LASSO 29.5 82.7 22.81 21.74
ag WLAD-LASSO 95.0 5.6 0.01 0.01

0.3 ag LASSO 12.3 88.1 46.56 44.35
ag LAD-LASSO 16.1 85.4 49.39 46.84
ag WLAD-LASSO 95.3 5.6 0.03 0.02

200 0 ag LASSO 96.4 4.6 0.02 0.02
ag LAD-LASSO 98.0 1.9 0.02 0.02
ag WLAD-LASSO 100 0.1 0.04 0.05

0.1 ag LASSO 25.8 76.2 6.27 5.71
ag LAD-LASSO 48.1 52.0 6.10 5.61
ag WLAD-LASSO 96.4 5.2 0.01 0.01

0.2 ag LASSO 21.8 79.8 18.66 18.30
ag LAD-LASSO 23.0 78.3 18.28 17.49
ag WLAD-LASSO 95.9 6.0 0.00 0.00

0.3 ag LASSO 14.5 87.5 38.74 38.07
ag LAD-LASSO 28.2 81.7 38.38 36.94
ag WLAD-LASSO 93.7 6.1 0.01 0.01
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Table B.8: Simulation results for σ = 0.5 for t3 error for X- and Y-outliers for 7 groups

σ n ε Method Mean % of CZ Mean % of IZ Mean ME Median ME

0.5 50 0 ag LASSO 99.3 2.6 0.31 0.24
ag LAD-LASSO 99.5 1.2 0.29 0.22
ag WLAD-LASSO 100 0.0 0.36 0.33

0.1 ag LASSO 47.4 52.7 14.65 12.56
ag LAD-LASSO 48.7 52.0 15.97 13.78
ag WLAD-LASSO 98.4 3.1 0.01 0.01

0.2 ag LASSO 45.7 56.0 33.88 31.14
ag LAD-LASSO 49.3 52.8 33.19 30.70
ag WLAD-LASSO 96.1 5.7 0.04 0.03

0.3 ag LASSO 17.9 85.1 63.51 59.32
ag LAD-LASSO 20.9 79.0 59.58 55.98
ag WLAD-LASSO 95.7 6.6 0.01 0.01

100 0 ag LASSO 96.2 3.7 0.15 0.12
ag LAD-LASSO 99.6 0.9 0.14 0.11
ag WLAD-LASSO 99.8 0.3 0.13 0.12

0.1 ag LASSO 41.7 60.7 10.38 9.39
ag LAD-LASSO 46.6 55.2 8.98 7.92
ag WLAD-LASSO 96.3 4.1 0.01 0.01

0.2 ag LASSO 22.4 69.3 24.58 22.78
ag LAD-LASSO 36.5 65.5 24.03 22.76
ag WLAD-LASSO 95.7 6.3 0.01 0.01

0.3 ag LASSO 18.9 83.7 44.18 42.57
ag LAD-LASSO 27.2 75.1 47.04 47.13
ag WLAD-LASSO 94.5 6.9 0.03 0.03

200 0 ag LASSO 96.4 2.9 0.07 0.06
ag LAD-LASSO 97.5 2.7 0.07 0.06
ag WLAD-LASSO 98.3 2.1 0.00 0.00

0.1 ag LASSO 40.7 58.7 7.13 6.76
ag LAD-LASSO 50.8 51.4 6.80 6.11
ag WLAD-LASSO 96.6 5.2 0.01 0.01

0.2 ag LASSO 40.6 62.8 19.13 18.61
ag LAD-LASSO 39.3 59.9 19.81 18.81
ag WLAD-LASSO 94.4 5.7 0.04 0.01

0.3 ag LASSO 26.5 75.9 40.77 39.24
ag LAD-LASSO 40.8 63.6 40.54 39.96
ag WLAD-LASSO 94.1 6.5 0.02 0.02
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Table B.9: Simulation results for σ = 0.5 for t5 error for X- and Y-outliers for 7 groups

σ n ε Method Mean % of CZ Mean % of IZ Mean ME Median ME

0.5 50 0 ag LASSO 97.1 3.0 0.03 0.02
ag LAD-LASSO 98.7 2.8 0.03 0.02
ag WLAD-LASSO 99.8 0.2 0.01 0.01

0.1 ag LASSO 45.8 56.2 16.45 14.52
ag LAD-LASSO 49.3 50.2 15.71 13.18
ag WLAD-LASSO 97.1 4.7 0.02 0.01

0.2 ag LASSO 22.1 79.9 35.70 33.38
ag LAD-LASSO 26.7 76.2 36.71 33.32
ag WLAD-LASSO 96.6 5.0 0.04 0.03

0.3 ag LASSO 17.6 86.5 62.71 59.29
ag LAD-LASSO 20.9 80.3 59.08 54.19
ag WLAD-LASSO 94.1 6.8 0.04 0.01

100 0 ag LASSO 97.7 3.9 0.08 0.07
ag LAD-LASSO 98.8 2.2 0.08 0.07
ag WLAD-LASSO 99.6 2.1 0.07 0.06

0.1 ag LASSO 18.3 83.2 8.70 7.24
ag LAD-LASSO 22.1 80.4 8.32 6.82
ag WLAD-LASSO 97.5 4.1 0.01 0.00

0.2 ag LASSO 17.7 84.5 22.65 21.95
ag LAD-LASSO 18.3 83.6 22.76 20.83
ag WLAD-LASSO 95.7 5.0 0.01 0.01

0.3 ag LASSO 15.0 87.6 43.70 42.23
ag LAD-LASSO 17.0 84.9 46.62 44.61
ag WLAD-LASSO 94.2 6.7 0.01 0.00

200 0 ag LASSO 96.5 3.9 0.04 0.04
ag LAD-LASSO 98.8 2.3 0.04 0.04
ag WLAD-LASSO 98.9 2.2 0.05 0.03

0.1 ag LASSO 46.0 55.8 6.74 6.21
ag LAD-LASSO 49.2 52.5 6.32 5.99
ag WLAD-LASSO 96.9 4.4 0.02 0.02

0.2 ag LASSO 30.4 71.0 17.93 16.74
ag LAD-LASSO 39.0 61.1 18.40 17.31
ag WLAD-LASSO 95.7 4.5 0.06 0.05

0.3 ag LASSO 11.7 89.8 40.46 40.21
ag LAD-LASSO 19.1 73.1 38.93 37.58
ag WLAD-LASSO 94.6 5.8 0.02 0.01
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