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Abstract

With the increase of density, speed and test time of large VLSI circuits, man-

ufacturers are eager to find efficient ways to bring up yields. Often, VLSI testing

only tells if a circuit is faulty but is unable to locate faults. Diagnosis helps find

locations of faults so that problems with the design and manufacturing process can

be analyzed.

By adding a few logic gates and only two flip-flops to the netlist model, we are

able to generate distinguishing tests for path delay faults with the same tools as

are used for detecting a stuck-at fault. As a result, the capability of automatic test

pattern generation (ATPG) tool is improved for diagnosis of path delay faults. Our

proposed diagnosis method improves the capability to pinpoint the cause of failure

by narrowing down the list of suspected fault candidates.

The proposed ATPG procedure generates tests to distinguish between path delay

fault pairs, i.e., two faults are required to have different output responses. Test pattern

generated from the model is shown to distinguish between any pair of path delay

faults. In order to evaluate the improvement in tests we use a previously proposed

Diagnostic Coverage (DC) metric.

We apply our diagnosis method to several ISCAS’89 benchmark circuits. Experi-

mental results show the improvement of DC. The proposed diagnosis system may also

be used for other fault models if behavior of faults can be mapped onto a stuck-at

fault. It may also enhance the ability of conventional ATPG tools to significantly

improve DC without increasing their complexity.
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Chapter 1

Introduction

The first semiconductor chips held few transistors each. Subsequent advances

added more transistors to the chip which enable it to do more work. Current tech-

nology has moved quickly. There are millions or even billions of gates in today’s

microprocessor. However, many integrated circuits are not perfect. They may con-

tain fabrication defects on manufacture.

Sometimes, initial die yield may be just 20% for high end circuits. Therefore, we

need to carefully test the circuits and identify the locations and nature of faults in

order to raise yield.

With the increases in die size, transistor density and process time of the chips,

manufacturers need to find ways to improve the yields. After testing circuits, the

defective circuits will be found. Fault diagnosis [1] is then applied on a malfunctioning

circuit. It narrows down the range of the suspect area. This helps researchers locate

the defects in a device and identify defects in manufacturing. The costs of time and

equipment for the diagnostic work are so large that sometimes they dramatically

increase the price of the product. However, fault diagnosis is a necessary step for the

industry. Therefore, smart diagnosis algorithms need to be applied.

The purpose of fault diagnosis is to find the cause of defects in a manufactured

chip. A good diagnosis system should efficiently help scientists quickly and accurately

find the location of a defect. It is possible that certain single-location defects may

behave as multiple faults. Defects of this kind will affect several fault locations or

affect several branches.
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Diagnosis plays an important role in improving yield. Physical defects in circuits

are modeled with different fault models. In this thesis, we are dealing with stuck-at

faults and path delay faults. Our work consists of detection test and exclusive test.

The DC is about 20% after detection test. And then We will generate an exclusive test

for distinguishing a pair of path delay faults. A test is found if the output response

of two faults is different. We use Diagnostic Coverage (DC) to measure the quality

of our work. Experimental results show the improvement of DC after implementing

our exclusive test.

1.1 Motivation

In 1947, John Bardeen [2] and Walter Brattain [3] at Bell labs performed a series

of experiments and found that output power could be greater than the input power

after two gold points contacts were used on a crystal of germanium. In the following

months, they got more knowledge of semiconductors. In 1956, Shockley, Bardeen and

Brattain were awarded the Nobel Prize in Physics for the discovery of the transistor

effect.

The transistor is one of the most famous inventions of the 20th century. Re-

searchers use transistors to design different logic devices. People have created circuits

by combining millions of transistors into a single chip. This made the device extreme-

ly small. As the function, transistor density and complexity increased, Gordon Moore

made analysis of the number of components for each circuit in the previous years and

he made a prediction that has been regarded as the Moore’s law [4]. Over the history

of computing hardware, the number of transistors in a dense integrated circuit has

doubled approximately every two years. That observation is accurate. While scien-

tists are trying to combine more components into a circuit, some circuits are unable

to function as well as they are expected to. The reason is that the transistors and the

wires that connect them are not absolutely safe and stable. Sometimes, they may be

2



unexpectedly open or short. Testing the circuits verifies the correctness of a circuit

design. Faults in a circuit may be of any type and occur at any place. Several fault

models are categorized as: stuck-at fault, transition delay fault, stuck-open fault,

path delay fault and so on. Fault models are built in order to analyze them in differ-

ent ways. Test patterns are generated for detecting them. Moreover, the number of

test patterns is minimized by using one pattern to detect several equivalent faults.

However, even if scientists know exactly which kind of fault causes a malfunction

in the circuit, they are still unable to correct the fault. If some similar problems occur

many times, scientists began to look for the cause of the problem. They analyze the

failed devices in order to identify the location of the fault. That work could be applied

to the manufacturing process to improve the final results.

The standard that evaluates fault diagnosis is the accuracy with which faults

can be located. This can be called a diagnostic metric. Fault equivalence is an

indispensable concept in digital circuit world, especially in testability, test generation

and logic analysis. Functionally equivalent faults are undistinguished. If none of the

input test vectors can distinguish two faults at primary outputs, those two faults are

functionally equivalent.

Fault equivalence methods are broadly categorized as structural and functional.

Structural equivalence methods determine the extent to which two nodes are physical-

ly connected to each other. These methods are fast but not very complete. Functional

fault equivalence methods will identify more classes, but they are more expensive and

there are difficult to develop algorithms to solve this problem under various condition-

s. This is because functional fault equivalence identification in combinational circuits

is co-NP complete [5].

3



1.2 Problem Statement

In this thesis, we propose a diagnostic method to improve diagnosis of path delay

faults of a scan circuit. Our tests consist of detection test and exclusive test. After

the detection test of path delay faults, the diagnostic coverage (DC) is generally found

to be less than 20%, which may be considered unsatisfactory. In order to improve

DC, we insert test modeling logic into the original circuit netlist. The modeling logic

does not affect the hardware as it is not implemented. It enables us to generate a test

for a stuck-at fault at the control signal of a multiplexer in the inserted logic. This

test is an exclusive test that determines whether a targeted pair of path delay faults

can be distinguished.

1.3 Contribution

In the field of fault diagnosis, it is crucial to enhance the fault resolution. The

resolution normally refers to a group of faults that cannot be distinguished from each

other. If more faults can be distinguished, there will be many more small groups,

leading to higher resolution. As a result, the diagnostic coverage (DC) can increase.

Diagnostic coverage (DC) is the ratio of the number of undistinguished fault groups

to the total number of faults.

A test pattern generation tool for a single stuck-at fault is used in order to distin-

guish path delay faults. The traditional detection test is accomplished by generating

test patterns for path delay faults and using fault simulation to detect which faults

contain the same signatures. The DC in this traditional method is low. Moreover, if

two paths end in the same output with same transition, these two path delay faults

will be not distinguished. In the benchmark circuits, there are so many similar cases.

By adding a few gates and several flip-flops, we can generate a test for a stuck-at

fault in order to distinguish a pair of path delay faults. Whether a test for the stuck-at

4



fault is found indicates whether or not the two path delay faults can be distinguished.

If a test is found, the DC of path delay faults along the scan circuits will improve,

because new groups will be constituted after generating test on the test model. The

test model collects the path information of the target path. Actually this model we

insert into the original circuit is based on the fault type and signal requirements of

paths related to the target path.

Fault simulation shows that the test pattern generated for a single stuck-at fault

in the distinguishing model can only detect one of the two path delay faults. Fault

simulation also convinces us that the pattern is able to activate only one path delay

fault if these two faults are distinguished. If there is no test pattern found then the

pair of two faults are analyzed for the cause, as shown in the latter part of the thesis.

1.4 Thesis Organization

This thesis is broadly divided into seven chapters. The organization of chapters

is as follows:

Chapter 2 introduces the background and gives an overview of VLSI testing to

the reader.

Chapter 3 explains applications and algorithms for fault diagnosis.

Chapter 4 discusses how to generate delay test by using stuck-at fault testing

tools.

Chapter 5 shows the theoretical proof of construction of our exclusive test on a

pair of path delay faults.

Chapter 6 explains the method of constructing our test model.

Chapter 7 gives experimental results and their analysis.

Chapter 8 concludes the thesis work, outlining recent developments and sugges-

tions for future research.
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Chapter 2

Very-Large-Scale Integration (VLSI) Testing Technology

While more and more transistors are combined into a single circuit, more faults

may be found in the circuit. VLSI testing is now playing an important role in the

digital world.

Circuits will be tested to detect if they function well. Many integrated circuits are

not perfect. Fabrications defects are created in the manufacture process. Therefore,

testing chips before selling them to costumers is really necessary.

2.1 Concepts of Testing

Students are sometimes required to take exams after they learn from the teacher’s

lecture and textbook. In the exam, students will answer some questions. Then the

exam paper is graded by the teacher. If the answer is wrong, teacher will mark it as

a wrong answer. Whether the answer is right or wrong is based on the text book or

the notes.

Testing is similar to answering questions from a tester. The result of circuit is

like the student’s answer while questions are similar to test patterns. Every circuit

will be assigned test patterns to see what result it produces. If the result at the

output is different from the right answer, it will be marked as wrong. Moreover, it

is necessary to record what the expected response of good circuit should be before

performing test on circuits.
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2.2 Types of Testing

Testing types can be broadly categorized into three parts: verification testing [6],

manufacturing testing [7] and acceptance testing [8]. Verification testing is ferocious-

ly expensive. It comprises electron beam testing, repeated functional tests and so

on. Manufacturing test is to determine whether the manufactured chip meets the

standard. It tests each device on the chip. Acceptance testing is to guarantee the

quality of purchased parts. In this thesis, our focus is an manufacturing test.

2.3 Types of Fault Models

Fault models [9] are necessary for a test methodology. Approximation of defects

in the circuit could be analyzed by the fault models. In the field of VLSI testing,a fault

model identifies targets for testing and makes analysis possible. We will introduce

several fault models in this section.

2.3.1 Stuck-at Fault

Stuck-at fault is one of the most common faults in VLSI testing field. Individual

signals and pins are assumed to be stuck at logical 1 or 0 [12]. This defect causes the

line to be permanently stuck at one value. A wire that connects to a transistor can

cause this fault when it is broken. In order to target a stuck-at 0 fault, test patterns

could be applied in order to get a value 1 at the target point. If the result is not 1 but

0, the fault can be detected since the value is different from the expected response of

a good circuit. To test a stuck-at 0 fault, test pattern will be set to make 1 at the

target point.
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2.3.2 Transition Delay Fault

It is assumed that in the fault-free circuit all gates have some nominal delays

and that the delay of a single gate has changed [13]. Transition delay fault is either

a slow-to-rise or slow-to-fall fault. Fault list contains 2N faults for a circuit with N

nodes. Unlike a stuck-at fault, a test transition fault requires two vectors that will

cause a rise or fall transition at the node.

2.3.3 Path Delay Fault

A delay defect in a circuit is assumed to cause the cumulative delay of a combina-

tional path to exceed some specified duration [13]. Paths can start from the primary

input or flip-flop’s input to primary output or flip flop’s output. The specified du-

ration is usually the duration of clock period. And sometimes it may also be the

vector period. A path may contain several gates and wires. The propagation delay

of interconnect or the switching delay of a device is able to cause path delay. Two

vectors are needed to detect path delay faults. Moreover, detecting a path delay fault

is more complicated than for a transition delay fault. Not only the on-path signal

needs to be considered but the off path signal also requires careful consideration in

order to activate a path delay fault. Three types of path delay faults need to be

considered. We will discuss them in the latter part of this thesis.

2.3.4 Other Kinds of Fault Models

A stuck-open [10] fault sets an unexpected high-impedance state at the output

of a gate. A test sequence is applied to the output, VDD and GND independently.

A stuck-open fault also requires two vectors. A bridging fault [11] consists of two

connected signals that should not be. This kind of fault shorts the circuit between

lines or cells. Since a bridging fault is a bidirectional fault, it means that line a affects
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line b, while b also affects a. There are various types of bridging faults: wire-Or, wire-

And and so on. The two signal lines are connected. For wire-or fault, the line which

has a value of 1 will determine the final result, no matter what the state of the other

line is. It acts like an OR gate that gets a 1 at the output if the value of 1 appears

at the input. Similarly, for wire-AND, if one line is set to be 0, the other line will be

forced to be 0. Other kinds of faults are IDDQ [14] faults, stuck-off faults and so on.

2.4 Background and Algorithms of Automatic Test Pattern Generator

(ATPG)

ATPG is an electronic technology applied to find particular test patterns for a

digital circuit. These test patterns are able to find a difference between the behavior of

a good circuit and a faulty circuit. ATPG helps people save time to find test patterns.

In timing test, the process of the ATPG targeting a particular fault consists of two

phases: fault activation and fault propagation. In the fault activation phase, it sets

a value at the fault site which is opposite of the value from fault model. In the

fault propagation phase, the test pattern sensitizes the target path to make sure that

the resulting value of signal move towards the end of path. If the target fault is a

stuck-at 0 fault, ATPG will just generate a test pattern to establish a 1 value that

is the opposite value of the 0 at the target point. Actually, the second test pattern

of the timing test is similar to targeting a stuck-at fault. Path delay fault consists of

slow-to-rise and slow-to-fall fault.

The total amount of detected defects and number of test patterns are used to

measure the effectiveness of ATPG. The former one is related to the test quality while

the latter one indicates test application time.
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2.4.1 Failures of ATPG to Generate Test

Unfortunately, ATPG sometimes may fail to generate test patterns for a partic-

ular fault. First of all, the fault may be a redundant fault, which is undetectable by

the ATPG. Because the circuit is designed in a way that output will never change.

Secondly, it is also due to the algorithm of the ATPG itself, since ATPG is a NP-

complete problem [15]. There will be cases where patterns exist, but ATPG gives up

since it will take an incredibly long time to find them. NP-complete problems are

in NP, the set of all decision problems whose solutions can be verified in polynomial

time [16]; NP may be equivalently defined as the set of decision problems that can be

solved in polynomial time on a non-deterministic Turing machine [17]. Even if there

exists a test pattern that could detect a fault, the ATPG might give up because it

costs quite a long time to find that pattern.

2.4.2 D-Algorithm

Nowadays, there are a lot of algorithms for ATPG. The D algorithm is a very

famous ATPG algorithm. We will show how it works in this section.

Overview of Singular Cover

Singular cover shows the necessary prime implicants of the Karnaugh map [18]

with the minimal set of assignments of logic signal. The gates in the circuit are shown

in a table with their inputs and outputs. There are three conditions for each input:

’X’,’0’,’1’. As a result, each gate has three lines to show different conditions. An

example is shown in Figure 2.1.

We can easily find the corresponding three cases for each gate, it is shown in

Table 2.1.
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Figure 2.1: A Singualar Cover example.

Table 2.1: An example Singular Cover.

Gate Input0 Input1 Output Gate Input0 Input1 Output

AND B C E NOR D E F

1 0 X 0 1 1 X 0

2 X 0 0 2 X 1 0

3 1 1 1 3 0 0 1

D-Cube

D-cube is a collapsed truth table entry that can be used to characterize an

arbitrary logic block [13]. We use Roth’s 5-value algebra [19]. It can either change

all of D’s to D’s or D’s to D’s . It is shown in Table 2.2

D-intersection

The definition of D-intersection is defined as the set of circumstances under which

different cube labels for different logic gates can coexist in the circuit [13]. In other

words, a specific signal value has already been assigned to one cube, the other cubes

must assign same signal value or unknown value. The equation set for this example

is Equation 2.1
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Table 2.2: An example of D-cube.

input0 input1 output

B C E

D 1 D

1 D D

D D D

D D D

1 D D

D 1 D

0
⋂

0 = X
⋂

0 = 0
⋂

X = 0;

1
⋂

1 = X
⋂

1 = 1
⋂

X = 1;

(2.1)

D-contains

If the set of A cube vertices is a superset of the B cube vertices, cube A D-contains

cube B.

Primitive D-cubes of failure

There are four items that could be modeled by Primitive D-cubes of failure. They

are as following:

� stuck-at 1 fault.

� stuck-at 0 fault.

� bridging fault.

� arbitrary change in logic gate function.

For instance, the primitive D-cube of failure of a NOR gate stuck at 0 is ”0 0

D”. Because in the good circuit, both of the input must be set to 0 in order to make
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a 1 at the output of the gate. However, the fault circuit will cause the output to be

0. Primitive D-cubes of failure are different from the propagation D-cubes. Because

primitive D-cubes model a failure at the gate. However, the propagation D-cubes

model a situation which propagates fault effects through gate.

Implication Procedure

Implication procedure could be categorized as three steps

� step1: Application of Primitive D-cubes of failure to model the fault.

� step2: propagation of fault effect to the output with appropriate propagation

D-cubes(also called D-drive procedure).

� step3: justification internal circuit signals with singular cover cubes.

2.5 Fault Simulation

The purpose of fault simulation is to guide the test pattern generation process,

measure effectiveness of test patterns and generate fault dictionaries. Fault simu-

lation needs three components: fault list, test set and design model. Given these

components, fault simulation will determine fault coverage [20] and set of undetected

faults [21]. In the VLSI testing world, there are a lot of fault simulation algorithms,

such as serial, parallel, deductive and concurrent fault simulation. Figure 2.2 shows

the flowchart of fault simulation.

2.6 Fault Equivalence [22]

If all of the tests that detect fault1 can also detect fault2, these two faults are

equivalent. In other words, the corresponding functions of the two faults are same.

This concept can also help us distinguish a pair of faults. If a test is found that could
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Figure 2.2: Fault simulation flowchart.

be able to detect one of the two fault but not the other, these two faults will not be

equivalent.

2.7 Fault Collapsing [23]

If two faults are equivalent, any fault from a set of equivalent faults can actually

represent the whole set. In this case, most of equivalent faults can be removed.

The process of removing equivalent faults from the entire set of faults is called fault

collapsing.

2.8 Scan Design for Test

The application of scan design to hardware test was published in the 1973 paper

by Williams and Angell of Stanford University [24]. Many companies like IBM, NEC

and others have broadly implemented the concept since then.

2.8.1 Scan Design

Scan design is the most popular structured Design for Testability(DFT) ap-

proach. Adding a test mode to the circuit enables all flip-flops to form one or more

shift registers. Also, all flip-flops can be set to any state by just shifting logic states
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Figure 14.2: A single-clock scan flip-flop.

Section 14.3.
For a circuit to have the scan capability, first the designer uses only D type flip-

flops (DFF) with one or more clock signals, all of which are controlled from primary
inputs. A typical DFF is shown in Figure 14.1. Once the circuit is functionally
verified, the DFFs are replaced by scan flip-flops (SFF). One typical SFF is shown
in Figure 14.2. Here a multiplexer and two new signals, scan-data SD and test
control TC, are added to the D flip-flop (DFF.) The original data input D is stored
in the flip-flop when TC is 1 and SD is stored when TC is 0.

Another popular design style, called level-sensitive scan design (LSSD), uses two
non-overlapping clock signals. Figure 14.3 shows a scan flip-flop with two function
clocks, MCK and SCK. When MCK is high, data D is latched in the master latch.
When SCK is high, the state of master latch is copied in the slave latch. For a proper
operation of a general sequential circuit, MCK and SCK are never turned high,
simultaneously. In the scan mode, MCK is held low and scan data SD is latched
in by using clocks TCK and SCK as master and slave clocks, respectively [210].
The TCK (or TC for the single-clock flip-flop of Figure 14.2) inputs of all scan flip-
flops are supplied by a new primary input. The SD input of one SFF is supplied
by another new primary input SCANIN. All SFFs are chained by connecting the
Q output of one SFF to the SD input of the next SFF. The Q output of the last
SFF in the chain is a new primary output SCANOUT. The complete design is given
in Figure 14.4, with the wiring added for scan design shown in broken lines. This
design has the advantage of reducing the effort of test generation. Especially for the
case of full-scan, where all flip-flops are scanned, a combinational ATPG program

Figure 14.1:  A D flip-flop.

Figure 2.3: A D flip-flop [13].
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Figure 14.2: A single-clock scan flip-flop.
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For a circuit to have the scan capability, first the designer uses only D type flip-

flops (DFF) with one or more clock signals, all of which are controlled from primary
inputs. A typical DFF is shown in Figure 14.1. Once the circuit is functionally
verified, the DFFs are replaced by scan flip-flops (SFF). One typical SFF is shown
in Figure 14.2. Here a multiplexer and two new signals, scan-data SD and test
control TC, are added to the D flip-flop (DFF.) The original data input D is stored
in the flip-flop when TC is 1 and SD is stored when TC is 0.

Another popular design style, called level-sensitive scan design (LSSD), uses two
non-overlapping clock signals. Figure 14.3 shows a scan flip-flop with two function
clocks, MCK and SCK. When MCK is high, data D is latched in the master latch.
When SCK is high, the state of master latch is copied in the slave latch. For a proper
operation of a general sequential circuit, MCK and SCK are never turned high,
simultaneously. In the scan mode, MCK is held low and scan data SD is latched
in by using clocks TCK and SCK as master and slave clocks, respectively [210].
The TCK (or TC for the single-clock flip-flop of Figure 14.2) inputs of all scan flip-
flops are supplied by a new primary input. The SD input of one SFF is supplied
by another new primary input SCANIN. All SFFs are chained by connecting the
Q output of one SFF to the SD input of the next SFF. The Q output of the last
SFF in the chain is a new primary output SCANOUT. The complete design is given
in Figure 14.4, with the wiring added for scan design shown in broken lines. This
design has the advantage of reducing the effort of test generation. Especially for the
case of full-scan, where all flip-flops are scanned, a combinational ATPG program

Figure 14.1:  A D flip-flop.

Figure 2.4: A scan flip-flop [13].

through scan chain. Observing the states of the flip-flops is quite convenient. This

can be done by shifting the states of shift register. The time for observing could be

the total amount time of the flip-flops of the longest scan register. A D flip-flop is

shown in Figure 2.3 .

After adding a multiplexer and two new signals, scan data and test control, the D

flip-flop becomes the scan flip-flop shown in Figure 2.4. Test control signal is similar

to a switch that either propagates data or scan data into the D flip-flop.

In Figure 2.5, all of the D flip-flops have been replaced by the scan flip-flops.

All of the test control (TC) signals are connected to a single TC signal. As a result,

this TC signal controls all of the scan flip-flops. A scan chain is then built by firstly

setting one of scan flip flop’s scan input as a new primary input SCANIN. Then the

scan chain connects the output of each scan flip-flop(SFF) to the Scan input of the

next SFF. At the end of this chain, the output of the SFF is defined as SCANOUT.
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Figure 14.3: A two-clock scan flip-flop.

Figure 14.4: A scan design schematic.

(much simpler than sequential ATPG) can produce tests for all stuck-at faults in
the circuit.

14.2.1 Scan Design Rules

A circuit is designed to meet its functional requirements. After the functional
correctness of the design is verified, it is modified to include the scan function. In
order to be able to make it scan-testable, the designer must adhere to certain rules
during the functional design. In general, these rules depend upon the specific design
environment, which may dictate choices such as single versus multiple clocks, etc.
The following four rules, however, are found to be useful:

R-1: Only D-type master-slave flip-flops should be used. This rule prohibits the use
of other types of flip-flops (JK, toggle, etc.) or other forms of asynchronous
logic (unclocked RS latches, combinational feedback elements.)

R-2: At least one primary input pin must be available for test. In general, flip-flops
can be connected as multiple scan registers (see Section 14.2.3), each of which

Figure 2.5: Scan design [13].

The scan circuit starts from the output of a SFF and end at the data input of SFF.

This circuit go through combinational logic.

2.8.2 Scan Design Rules

� Rule1: The D-type master-slave flip-flop is the only one that could be used.

� Rule2: There should be at least one primary pin available.

� Rule3: The primary inputs are required to control all of flip-flop clocks.

� Rule4: Data inputs of flip-flops should not be fed by clocks.

2.8.3 Process of Scan Test

Firstly, the scan enable signal will be activated so that a series of test patterns

are shifted through the scan chain. Secondly, the Scan Enable (SE) signal is disabled

before the test patterns for primary inputs have been applied to the circuit. Finally,

functional clock signals are pulsed to test the circuit and capture the combinational

circuit outputs. And we shift results out to verify correct capture values. Different

test patterns could be shifted through SFFs when the SE is enabled.
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Figure 2.6: Partial scan design.

2.8.4 Summary of Scan Design

Scan design is regarded as a milestone in the industry. Before generating tests,

design automation tools can insert scan logic into a circuit with D flip-flops. This

method is quite simple and efficient. Nowadays, more scan methods have been devel-

oped. Figure 2.6 shows a partial scan design. Partial scan method only transforms a

subset of D flip-flops in the circuit into scan flip-flops. Multiple scan chains reduce

time to load and unload by inserting multiple scan chains in parallel instead of using

long scan chain. In fault diagnosis, scan design helps get high fault coverage. Both

of the scan overheads of area and performance are only about 5%. However, there

are also some disadvantages of scan design. When this methodology is applied to a

large circuit, it may take an incredibly long test time to test the circuit. Moreover,

test data is also quite large. In a word, it’s not a fast test.
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  How does Scan Work?  Prepared by Mahmut Yilmaz 

Here is a timing‐diagram of the LOC process (source: Mentor Graphics Scan and ATPG Process Guide, August 2006): 

 

 

As you can see above, we shift the test vector using a slow clock frequency. Then, we set scan enable to 0 and disable scan mode. In the next 
step, we  toggle  the  clock  first  time  to  launch  a  transition  in  combinational  blocks. After  that, we  toggle  the  clock  again  (at  the  functional 
frequency) to capture the final responses of the combinational blocks. The launch & capture events happen at functional frequency. Finally, we 
shifted‐out the captured responses using the slow clock frequency. 

   

12 
 

Figure 2.7: Process of LOC.

2.9 Launch on Capture (LOC) and Launch on Shift (LOS)

2.9.1 Introduction to LOC

Two vectors V1 and V2 are used to perform delay fault testing. Figure 2.7

shows the LOC waveform. There are five steps to implement LOC. (1) The circuit is

initialized to be 1 which sets the circuit to scan mode. The first test vector is shifted

into the scan chains with a slow scan clock. Values are also set on primary inputs. (2)

The second vector is obtained by the response of first vector. (3) SCANEN is set to

be 0 to set the circuit to functional mode. Second,the primary input vector is applied,

and the circuit is clocked to launch the second vector. (4) The functional clock is

applied to the circuit, with responses captured in scan flip-flops. (5) Set SE=1 and

scan out the captured results as well as scan in the next vector.

2.9.2 Introduction to LOS

The difference of LOS is that the second vector is obtained by shifting one bit

from first vector. Also, at step3, we hold SCANEN=1 for one cycle in order to clock

the circuit in scan mode for one clock period while new primary inputs are applied.

Figure 2.8 shows the process of LOS.
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  How does Scan Work?  Prepared by Mahmut Yilmaz 

15 
 

You can see that we need to have a very fast Scan Enable signal in order to use LOS. Scan Enable should be able to switch from 1 to 0 within a 
very short time. This is usually a difficult process because Scan Enable is not designed to operate at high frequencies. Due to this reason, many 
industrial designs use LOC instead of LOS. (There are some designs that use LOS. There are workarounds to fast Scan Enable signal requirement, 
but I will not go into details for now.) 

As you can see above, we shift the test vector using a slow clock frequency until the last bit. The last shifted bit creates the Launch event. Then, 
before we  toggle  the system clock  to capture  responses, we set scan enable  to 0 and disable scan mode. This has  to happen very  fast since 
Launch  &  Capture  event  happen  at  high  frequency.  In  the  next  step,  we  toggle  the  clock  again  to  capture  the  final  responses  of  the 
combinational blocks. Finally, we shifted‐out the captured responses using the slow clock frequency. 

Here is a timing‐diagram of the LOS process (source: Mentor Graphics Scan and ATPG Process Guide, August 2006): 

 

 

 

 

Figure 2.8: Process of LOS.

2.9.3 LOC vs LOS

LOC is different from LOS. In industry, LOC is more widely used that LOS,

because sometimes using LOC cost less than LOC. The advantages and disadvantages

of them are as following:

1. In LOS, the last shift happens at the fast clock speed. The entire design will

become active that makes average power in the launch cycle very high.

2. In LOS, fast test generation methodologies for combinational circuits can be

applied without many modifications. Scanned flip-flops are considered primary inputs

in the ATPG for combinational circuits, so the new constraints on these “primary

inputs” must be added to the existing ATPG.

3. In LOS, some redundant faults would be detected. SCANEN signals must

operate at full speed. A large number of the sensitizable paths under the launch-

on-shift constraints are sequential false paths that are not sensitizable in functional

mode.

4. In LOS, switching the SCANEN signal during a short time period also costs

a lot of time. Since SCANEN signal is broadly placed in the circuit.

5. In LOC, SCANEN signal is not required to operate at full speed. Sensitizable

paths under the launch-on-capture constraints are also sensitized in functional mode.

19



Chapter 3

Background and Overview of Fault Diagnosis

With the development of VLSI testing, failed chips can be detected more easily

than before. Moreover, scientists also try to find ways to identify the locations of these

faults in order to increase the yield. If the behavior of a unit under test (UUT) [25] is

different from the expected behavior, this UUT fails. Diagnosis helps scientists locate

the physical fault in the model of a UUT.

3.1 Approach of Fault Diagnosis

Over the years, a lot of diagnosis algorithms are applied into the industry work.

Two main types of diagnosis algorithms are circuit partitioning (Effect-cause diag-

nosis) [26] and model-based diagnosis (cause-effect diagnosis) [27]. The effect-cause

diagnosis identifies possibly-faulty portions of a circuit, especially logic block inter-

connects. It’s based on observed behaviors and expected (good-circuit) functions.

Figure 3.1 shows the principle of back tracing failures, a method of effect-cause algo-

rithm. It separates known-good portions of circuit from likely areas of failure. It’s

similar to picking up suspects from passengers in the airport. Intersection of multiple

cones is highly suspect. This algorithm is simple and popular, but it sometimes fails

in giving indication of a defect mechanism. Another algorithm compares behaviors

to fault simulations with assumed fault models. Fault signatures [28] generated by a

simulator can be used to predict the presence of different faults. It predicts what may

happen when the circuit is not good. Figure 3.2 shows the process of it. However,

wrong directions could be given by some unmodeled defects.
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Back-Tracing Failures 

Figure 3.1: Principle of failures back-tracing algorithm.

Tests 

Defective Circuit 

Fault Simulator 

010001010100010101010 … 

Behavior Signature 

010100110000101010100 … 

101000100001011101100 … 

010100010100011101100 … 

000111000101010011110 … 

Candidate Signatures 

Diagnosis  

Algorithm 

Comparison &  

Conclusion 

Cause-Effect Diagnosis 

Figure 3.2: Process of cause-effect algorithm.

3.2 Combinational Fault Diagnosis Methods

Most of the work of combinational fault diagnosis will be done before testing.

Fault simulation will be used to determine a response to a given test. A database

will be constructed in this process to keep a record of responses. This database can

be defined as a fault dictionary. If faults need to be located, one tries to match the

actual results of a test with one of the previously computed expected results stored

in the database. The results are the response that represents the response of faults

to each test pattern.
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Table 3.1: An example of fault table.

F1 F2 F3 F4 F5 F6 F7 E1 E2 E3

T1 0 1 1 0 0 0 0 0 0 1

T2 1 0 0 1 0 0 0 0 1 0

T3 1 1 0 1 0 1 0 0 1 0

T4 0 1 0 0 1 0 0 1 0 1

T5 0 0 1 0 1 1 0 1 0 1

T6 0 0 1 0 0 1 1 0 0 0

3.2.1 Fault Table

A fault table is a matrix of test patterns and faults as shown in Table 3.1. The

column represents faults while rows indicate whether each test pattern can detect the

fault. If the test pattern can detect the fault, it will be 1 in the table. Otherwise,

it will be 0. The test results of E matches a subset of column vectors {Fi, Fj, Fk} in

the fault table. This result corresponds to where a group of indistinguishable faults

{Fi, Fj, Fk} has been located. In the example the results of three test experiments

E1, E2, E3 are demonstrated. E1 corresponds to a case where a single fault is located,

since E1 only matches the F5. E2 matches both F1 and F4. E2 corresponds to the a

case where a subset of two indistinguishable faults is located. E3 shows no match in

the fault table indicating no faults can be located.

3.2.2 Fault Dictionary

A fault dictionary keeps the fault signatures as fault tables in order to be able

to quickly detect the relationship between actual responses and expect results when

there appears a fault. A fault table is actually a matrix where columns represent

faults and rows represent tests. The test result is 1 when the actual result is not the

same as the expected response, and it will be 0 otherwise. A fault dictionary consists
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Table 3.2: An example of fault table.

Faults Test1 Signature Test2 Signature Test3 Signature index

F1 1 1 1 1

F2 0 1 1 2

F3 0 1 1 2

F4 1 0 0 3

of the same data as a fault table, with the difference that faults and expected results

of test experiments are reorganized and represented in a more compressed form.

3.2.3 Reduction in Size of Diagnostic Data

A full response dictionary stores responses to each test vector. Millions or even

billions of fault signatures are required to be included in the dictionary. As a result,

the dictionary may be extremely large. Fortunately, compression techniques solve

this kind of problem. Detected faults in fault simulation are removed from sets of

simulated faults. Since faults detected by the same test patterns will produce same

signature, these faults can be assigned to the same group. These faults are called

equivalent faults.

In order to further reduce the size of a dictionary, another approach is a pass-fail

dictionary [29]. As the name suggests, a pass-dictionary only keeps the data of pass

or fail status of a fault for all applied vectors.

Table 3.2 shows a pass-fail dictionary. A 1 in the table indicates that fault failed

this test while 0 is an indication of passing the test. F1 fails in all test vectors, thus

given a signature of 111. The index will be 1 for it. Different index indicates different

conditions of how the fault corresponds to the three tests. The index increases by 1

if the signature is unique. The same index will be assigned to same faults.
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Figure 3.3: Example of different conditions of diagnosis.

3.3 Generating Tests to Distinguish Faults

Distinguishing equivalent faults with test pattern T can improve the fault reso-

lution. If a pair of faults needs to be distinguished, there should be a test that can

detect only one of these faults.

� Case1: F1 and F2 haven’t influence on same set of outputs. A test should be

generated for F1 will be using only circuit feeding the output of, or for F2 using

only the circuit feeding the outputs of F2.

� Case2: F1 and F2 have influence on same groups of outputs. A test should

generate F1 without activating F2. This idea will be used in this thesis.

Figure 3.3 shows an example of different conditions of diagnosis. Several cases

are as follows:

1. There are two faults in the circuit. F1: b1 is stuck-at 0. F2: d is stuck-at

1. F1 can influence both outputs h and k. But F2 can only influence output k. Test

pattern is 0010, can activate F1, and it will influence both outputs. As for F2, only
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an output k can be detected. If both of h and k are wrong, then it is due to the

presence of F1. F2 will be present if only k is wrong.

2. There are two faults in the circuit. F1: b2 is stuck-at 0. F2: e2 is stuck-at 1.

These two faults will both influence the same output. But there exist a test pattern

0100 which only activates F2.

3. There are two faults in circuit. F1: b2 is stuck-at 0. F2: e2 is stuck-at 1.

Test patterns, 0110, activates F1, and F2 is not activated, since d=0 blocks the AND

gate.

4. There are two faults in circuit. F1: b1 is stuck-at 1. F2: b2 is stuck-at 1.

Test pattern 1001 activates both of these faults to propagate to the same OR gate.

However, the faults produce different values at the inputs of the gate, hence they are

distinguished. If the output k is 0, it will be F1. Otherwise, if the output k is 1, there

will two possible cases. One is F2, another is that neither F1 and F2 are present.

3.4 Redundant and ATPG Untestable Faults

3.4.1 Redundant Fault (RE)

The redundant fault class includes faults that the test generator considers unde-

tectable. After the test pattern generator exhausts all patterns, it performs a special

analysis to verify that the fault is undetectable under any conditions [30]. Figure 3.4

shows an example of a redundant fault. If D is a s-a-0 fault, output G will be stuck

at 0, whatever values are applied to A,B,C.

3.4.2 ATPG Untestable Fault (AU)

The ATPG untestable fault class includes all faults for which the test generator

is unable to find a pattern to create a test, and yet cannot prove the fault redundant.

Testable faults become ATPG untestable faults because of constraints, or limitation-

s, placed on the ATPG tool (such as a pin constraint or an insufficient sequential
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Figure 3.4: Example of redundant fault in circuitry.

depth). These faults may possibly be detectable, if you remove some constraint, or

change some limitation on the test generator (such as removing a pin constraint or

changing the sequential depth). You cannot detect more of them by increasing the

test generator abort limit [30].
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Chapter 4

Generating Test for Delay Faults Using Stuck-at Fault Tools

4.1 Background

A lot of work on delay testing can only be applied to scan circuits. A paper:

Generating Test for Delay Faults in Nonscan Circuits [31] shows how to implement

their proposed method in nonscan circuits. This proposed model augments the netlist

of a circuit with a logic block in which testing a single stuck-at fault is equivalent to

testing a path delay fault. This makes generating a test for path delay faults easier.

4.2 Three Major Phases in Path Delay Fault Testing

Initialization vectors, path activation vectors and propagation vectors are three

kind of test vectors that enable a test to activate the path delay fault and propagate

fault effects to primary outputs. We can observe the results at the output.

4.2.1 Initialization Sequence

In this phase, the initialization sequence vectors are V0, V1 · · · Vi. Activating a

clear signal will bring the flip-flops to the 0 state. If the clear signal is not applied to

a flip-flop, then the flip-flop will go to a known state. At the end of the initialization

sequence, all flip-flops are set in states required by the path activation vectors.

4.2.2 Path Activation Sequence

In this step, two consecutive vectors will be applied to the circuit. We denote

these two vectors as (Vi+1, Vi+2) whose states are (Si+1, Si+2). Signals of both U0(X0)
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and U1(X1) are specified only for Vi+2. Signals S0(00) and S1(11) indicate steady val-

ue for both vectors without static hazard. R(01) and F(10) are hazard free transition.

XX is don’t care.

Vi+2 should arrive at the flip-flops before the application of clock period. For

example, if a falling transition occurs at the destination flip-flop, the right value

should be 0. And a path delay fault will be detected if the value captured in the

flip-flop is 1. D indicates that an expected value of 0 in good circuit and 1 in faulty

circuit. This can be indicated as second state.

4.2.3 Propagation Sequence

The main purpose of a third vector Vi+3 is to propagate the fault effect to the

primary output. This is similar to the D-algorithm, which also needs to propagate

the fault effect to the output to be observed.

4.3 Test Generation Model

The Verilog netlist is modified in order to generate a test for a single stuck-at

fault that can detect a path delay fault.

4.3.1 Test Specified for a Single Stuck-at Fault

1. Initialization vectors can precede path activation vectors if necessary. The

single Stuck-at fault is required to be activated only after two vectors have been

applied to combinational logic.

2. After the activation of the stuck-at fault, fault effect in the form of D or D

will be injected to the destination flip-flop. The stuck-at fault must not influence the

circuit before the activation of second vector.

3. After the flip-flops have captured the fault effect, the stuck-at fault should

allow fault-free circuit function during propagation of the error to a primary output.
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4.3.2 Test Model for Falling Transition at Destination Flip-flop

Figure 4.1 shows the test generation for a slow-to-fall path delay fault. The

path a-c-e is the target path that lies between the two flip-flops FFS and FFD. The

transition at e is a falling transition. A model within the dashed line is inserted

into the circuit which makes e’ the end point of the target path. AND1 and AND2

capture the signal requirement of the related path during Vi+1 and Vi+2.The output

of AND1 feeds the FF1 while the output of FF1 feeds AND2. FF1 begins at 0 state.

After the second vector of activation, the result of AND1 will be propagated to an

input of AND2. A stuck-at 1 fault is inserted at the output of AND2N. This stuck-at

1 fault will only be activated after two consecutive vectors of path activation are

applied. The states of the output of AND2N could be defined as D. This fault effect

is required to be propagated to output of the path in order to observe i. The TERM

gate (OR gate) and AND4N could be used to accomplish this task under the control

of the Finite State Machine(FSM). The TERM gate is an OR gate since it is a falling

transition.

1. Initialization phase: During this phase, the fault effect is not allowed to feed

the FFD. At this time, the flip-flop FF2 stays at 1 state to ensure that. At the end

of initialization, the FF2 will be cleared to a 0 state to guarantee that the output

of AND4 gate remains before and after fault activation. Continuity can be provided

through the TERM gate.

2. Activation phase: In the path activation phase, the FSM produces a 1 output

to inject a D into FFD only when the path is activated and AND2 turns to 1.

Subsequently, the FSM settles into a 1 state with a 0 output and remains in that

state throughout the propagation phase. Figure 4.2 presents the FSM state diagram.

As shown in Figure 4.1, the FSM is implemented with the single flip-flop FF2, which

is clocked by Ck.
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Figure 4.1: Test generation model for a falling transition [31].

When there is a rising transition at the destination flip-flop, the TERM gate will

be a AND gate. Figure 4.3 shows the test generation for that.
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Figure 4.3: Test generation model for a rising transition at destination flip-flop [31].
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Chapter 5

Background and Overview of Exclusive Test

In this chapter, exclusive test [33] is shown how to be applied to fault diagnosis.

The purpose of diagnosis is to generate test vectors targeting pairs of faults. The

different responses of the output can be used to distinguish faults, which increases

the resolution of diagnosis. Distinguishing pairs of faults also reduces the size of the

fault candidate list [32].

5.1 Background

5.1.1 XOR Gate

The XOR gate (sometimes EOR gate, or EXOR gate and pronounced as Ex-

clusive OR gate) is a digital logic gate that implements an “exclusive or”; that is, a

true output results if one, and only one, of the inputs to the gate is true. Table 5.1

shows the truth table of an XOR gate. The XOR gate can be used in half adder

circuit. Moreover, as the name suggest, the XOR gate plays an important role in the

exclusive test.

5.1.2 Exclusive Test for a Pair of Faults

An Exclusive test is to detect only one fault from a pair of targeted faults at a

primary output. The object of exclusive test is a pair of fault set. A fault pair has

two faults, F1 and F2. An exclusive test must detect one and only one of the two

faults. There is circuit C0 which is fault free. C1 and C2 are same circuit which has

F1 and F2, respectively. For clarity, we will only consider single output functions for
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Table 5.1: Truth table of XOR gate.

Input0

A

Input1

B

Output

A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

C0

C1

C0

C2

Input
X 

s-a-0

Figure 5.1: Exclusive test for two faults.

now. We show an example of a multiple output circuit at the end of this section.

Figure 5.1 consists of three XOR gates and several circuits. In order to detect a

stuck-at 0 fault at the output of the circuit, the input vector should generate a 1 at

the output. This test is an exclusive test for the fault pair (F1,F2). This Boolean

satisfiability formulation of the exclusive test problem is shown in Equation 5.1,

(C0 ⊕ C1)⊕ (C0 ⊕ C2) = 1; (5.1)

Equation 5.1 can simplify to Equation 5.2,

(C1 ⊕ C2) = 1; (5.2)
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Figure 5.2: Exclusive test after simplification.

Equation 5.3 shows the test to detect the stuck-at 0 fault could distinguish the

output of two circuits. This problem is also expressed as

(C1 ⊕ C2)⊕ (C0 ⊕ C0) = 1; (5.3)

Equation 5.3 indicates that an exclusive test could be a test for a pair of faults

in two copies of circuits. A different single fault is included in each copy of the circuit

under test producing a single output through an Exclusive-OR gate. This problem

could also be adapted to a single fault ATPG under an alternative approach. In an

exclusive test, if no test exists for these faults, the two faults may be equivalent or

redundant. If these two faults are independent, there will be no vector that can detect

both of them. Then, there exists a test that detects only one of the two faults.

5.2 Boolean Analysis of New Exclusive Test Algorithm

An exclusive test generation algorithm can simplify the DATPG to a single stuck-

at fault problem. A new primary input will be inserted in the CUT. The stuck-at

fault is inserted at a new added primary input pin. The existence of the test will be

an exclusive test for the two faults under analysis.
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Figure 5.3: A CUT for exclusive test.

Boolean algebra is used for the analysis of the exclusive test. Figure 5.3 shows

the single ATPG problem. The new added primary input is the control signal of the

multiplexer.

A⊕B = AB + AB; (5.4)

Equation 5.4 shows the XOR function. Based on Figure 5.3, we could get Equa-

tion 5.5 which shows the function clearly implemented as Shannon’s expansion [34]

for G.

G(X, y) == yC1 + yC2; (5.5)

Detecting either a stuck-at 0 or stuck-at 1 fault on y, equation 5.6 shows the

expression of this problem. This is same as equation 5.2. Thus we prove that a

vector X that detects either stuck-at 0 or stuck-at 1 fault at y in the circuit G(X,y)

of Figure 5.3 is also able to detect the stuck-at 0 fault in the circuit of Figure 5.2.

∂G

∂y
= G(X, 0)⊕G(X, 1) = C1⊕ C2 = 1; (5.6)

Equation 5.2 indicates the C1 is not equal to C2.
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5.3 Diagnostic Metric

When we want to measure how long a desk is or the weight of a chair, we need

a special unit for them. Fault diagnosis also needs various types of units to measure.

In this section, some criterion of fault diagnosis will be shown.

5.3.1 Fault Coverage (FC)

Fault coverage is the percentage of faults detected from all faults that test pattern

set tests, treating untestable faults the same as undetected faults [30]. 100% FC

means all of the modeled faults are detected by test vectors FastScan calculates FC

using the Equation 5.7 :

FC =
Number of detected faults

Total number of faults
. (5.7)

5.3.2 Diagnostic Resolution (DR)

In fault diagnosis, diagnostic resolution measures the quality of a given test set.

Equation 5.8 is the expression of DR.

DR =
Total number of faults

Number of syndromes(signatures)
. (5.8)

From the equation we can see that DR gives us the average of faults per group.

In the detection test period, which is before the exclusive test phase, each fault counts

once since the equivalent fault class is unknown. After the exclusive test, the total

number of faults is reduced for the reason that more fault groups have already been

built. A perfect DR of 1.0 indicates that all of the faults groups are identified which

means each one fault could represent each equivalent fault class.

Table 5.2 shows a modified dictionary. For a full-response dictionary, there are

four different signatures: 101010, 000101,001010,100000 from four faults. As a result:
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Table 5.2: Modified dictionary.

Faults Test1 signature Test2 signature Test3 signature index

F1 1/10 1/10 1/10 1

F2 0/00 1/01 1/01 2

F3 0/00 1/10 1/10 2

F4 1/10 0/00 0/00 3

the DR is 4/4=1 which is also a perfect DR. But for a pass-fail dictionary, there are

three unique signatures: (111,011,100) from 4 faults. So the DR=4/3=1.33. Two

main kinds of fault sets are diagnosed fault sets and undiagnosed sets. Undiagnosed

fault sets means that there are at least two faults that have same syndromes. During

the diagnosis period, more pairs of faults are selected from undiagnosed faults sets to

be diagnosed in order to achieve a satisfactory diagnosis resolution. Fault dictionary

will be updated and faults regrouped when exclusive test simulates more faults. How-

ever, dictionary based diagnosis methods also have limitations. They always require

substantial storage space.

5.3.3 Diagnostic Coverage (DC)

For a set of test vectors, a fault group is such that each fault in the group is

distinguishable from all other faults in every other fault group. Faults in a same group

hold the same signature while faults from different groups have different signatures.

If there is a new test that only detects a part of faults in a group then this group will

be portioned into two groups. One of the two new groups contains the faults that

can be detected by the new test vectors. The other group consists of the rest of the

faults that cannot be detected by the test.
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Figure 5.4: Relationship between DR and DE.

If there are enough test vectors that distinguish between each fault pair, the

number of fault groups will be equal to the total number of faults. In other word,

each fault group has only one fault.

The original group is defined as G0 before fault diagnosis. As there are more and

more tests generated for distinguishing the faults, new fault groups are constructed

as some new detected faults leave the original groups. G1, G2 · · · Gn are new group

names. If each fault group has only one fault, n = N (total number of faults). The

diagnostic coverage is defined as Equation 5.9

DC =
Total number of detected fault groups

Total number of faults
; (5.9)

DC =1 means that each group has only one fault which is also a perfect diagnosis.

It is easy to see that DC is actually the reciprocal of DR which we previously defined.
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5.3.4 Other Kinds of Diagnostic Metrics

There are also some other kinds of diagnostic metrics. In a given circuit, the

diagnostic power is the fraction of faults that are fully distinguished [35].

Another diagnostic metric is diagnostic expectation (DE) [36]. The DE is the

expected size of a fault’s indistinguishable class resulting from diagnosis if the prob-

ability of each fault is assumed to be the same. Figure 5.4 shows the relationship

between DR and DE in several types of benchmark circuits. As what we can see

from the figure, DR of larger circuits decreases as DE increases. As a result, in order

to keep high diagnostic expectation of larger circuits, a high diagnostic resolution is

required.

5.4 Multiple Output Circuits

Exclusive test can be also applied to multiple output circuits. Some of the circuits

are not required to modify the circuit in order to have only one single output. Each

pair of outputs could be added a XOR gate to construct the exclusive test model. The

advantage of multiple output circuit models is that more outputs for observing and

propagating the fault effects can be used. Moreover, if two faults are detected on two

different outputs of a multiple output circuit, these two faults can be distinguished

and diagnosed. Similarly, if a pair of faults is established to be equivalent in a multiple

output circuit, the pair of these faults can also be found equivalent in single output

circuit. A multiple output circuit model can be regarded as the extension of single

output model.
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Chapter 6

Diagnostic Test Generation for Path Delay Faults

As we have discussed before, many failed circuits of modern VLSI chips have

relationships to timing issues. Sometimes, if the clock period is so short or there

is delay along a path, it may result in a violation of setup time. The violation of

long path constraint and short path constraint can also cause time-related problems.

Diagnosis of a timing related problem helps improve the yields of chips and product

quality.

Some types of delay fault models have been introduced previously. The path fault

detection can be done by generating test patterns for a single stuck-at fault. Moreover,

path delay fault also requires considering the off-path signal, which increases the

complexity of the model.

We propose a model that can diagnose path delay faults. The algorithm of the

model may also be further extended to be applied to other fault models. With this

diagnosis system, we can also distinguish between various types of faults. This greatly

extends the range of application of this method.

6.1 Setting the Goal

The work of this chapter enhances the path delay fault diagnosis ability with

existing tools. We focus on using the existing techniques to implement our model.

The basic tool we use is the ATPG simulation and test pattern generation for detecting

a single stuck-at fault.
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Launch-off-capture (LOC) and launch-off-shift (LOS) are important ways of con-

duction of scan test. These will be discussed in detail in the latter part. In scan test-

ing, the first vectors are shifted through the scan chain to the scan flip-flop. Then the

second vector may be produced by clocking the circuit in the normal mode (launch-

off-capture test) or in the scan mode (launch-off-shift or LOS test), following which

the response is captured in the scan register in the normal mode and scanned out

in the scan mode. As we previously discussed, SCANEN switches the circuit mode

between scan mode and normal mode. However, the SCANEN may cause problems

while using it in LOS. As a result, LOC is more widely used than LOS today.

The Diagnostic Coverage metric will be used in this thesis to evaluate the effec-

tiveness of exclusive test. The new modeling technique is quite efficient and easy to

be implemented. Our work contains two parts: detection test phase and exclusive

test phase.

6.2 Path Delay Fault

In this chapter, path delay fault will be discussed in detail. The delay defect

in the circuit is assumed to cause the cumulative delay of a combinational path to

exceed some specified duration [13]. The specified duration can be the duration of a

clock period or the vector period. Propagation delay is how long a signal event will

take in order to traverse the path.

The total number of the path delay faults is twice the number of physical paths

in the circuit since each path may have slow-to-rise or slow-to-fall faults. Path delay

faults are more complicated than transition delay fault. There are several types of

path delay fault tests.
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6.2.1 Robust Path-delay Test

A robust path delay test guarantees to produce an incorrect value at the desti-

nation if the delay of the path under test exceeds a specified time interval (or clock

period), irrespective of the delay distribution in the circuit [13]. When the gating

inputs used to sensitize the path are stable from the time of the launch event to the

time of the capture event, the robust detection can be used. Robust detection keeps

the gating of the path constant during fault detection. Therefore, it will not affect

the path timing. Because it avoids any possible reconvergent timing effects, it is the

most desirable type of detection and for that reason is the approach FastScan tries

first.

Fast and slow transition on a path is shown in Figure 6.1. The path delay fault

test requires a vector pair (V1, V2) to detect the fault at the output. The initial value

(0) is steady-state output of V1 and final value (1) is output of V2. Fast transition

means that the transitions propagating through paths whose delays are smaller than

clock period. Slow transitions indicate that propagating time through paths with

delays is greater than clock period.

In order to measure the delay of a path the following properties are required:

1. Transition from the initial value to final value should be a real event. Because

a real event can exist without help from others.

2. This controlling event doesn’t allow other events to appear before it occurs.

As a result, the output value will remain the initial value until the controlling event

occurs at the output.

Figure 6.2 shows an example of the robust detection. Robust detection occurs

when the gating inputs used to sensitize the path stable from the time of the launch

event to the time of the capture event. The off-path of the target circuit is able to

sensitize the target path in both initial state and after transition state.
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Figure 12.5: Output events produced by combinational logic.

Figure 12.6: Robust path delay sensitization for rising and falling transitions.

1. It should be a “real event” defined as a transition from the initial value to the
final value. This is because a real event can exist without the help of any other
event. For a falling transition in Figure 12.5, to appear it must be preceded by
another event (a rising transition.) Notice that the falling event at the output
in Figure 12.3 is not a real event.

2. It should be a “controlling event.” A controlling event permits no other events
to appear prior to its own appearance. Thus, the output will remain at the
initial value until the controlling event occurs at the output.

Having set the requirements for the event the test must produce at the output, we
construct the test by recursively moving backward along the path under test. The
on-path input of the gate contains the source of the output transition. It is a real
transition of the same or the opposite type depending on whether or not the gate has
an inversion. If the on-path event is a transition from the controlling value to non-
controlling value, then it will prevent any output events prior to its own occurrence.
So, there is no specific requirement for off-path inputs in V1. To ascertain that the
output has a real event, all off-path inputs of the gate should have non-controlling
value in V2. When the on-path event is a transition from non-controlling value
to controlling value, all off-path inputs must have a steady non-controlling value in
both V1 and V2. This is because any transition (even a glitch) can be propagated to
the output from the off-path input. These conditions are illustrated in Figure 12.6
for AND and OR gates. The reader can easily work them out for other types of
gates. The grey regions in waveforms are the times when “don’t care” values or
transients (glitches) can occur. We notice that glitches are permitted in on-path
signals (shown in bold lines.) This is because these are fault detection tests and not
“diagnostic tests.” That means the output will not change from the initial value
(due to V1) during an interval that equals the delay of the path under test. However,
an incorrect output at the end of the clock period can also be due to some delayed

Figure 6.1: Fast and slow transitions on a path [13].
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To get maximum benefit from path delay testing, the launch and capture events must have
accurate timing. The timing for all other events is not critical.

FastScan detects a path delay fault with either a robust test, a non-robust test, or a functional
test. If you save a path delay pattern in ASCII format, the tool includes comments in the file that
indicate which of these three types of detection the pattern uses. Robust detection occurs when
the gating inputs used to sensitize the path are stable from the time of the launch event to the
time of the capture event. Robust detection keeps the gating of the path constant during fault
detection and thus, does not affect the path timing. Because it avoids any possible reconvergent
timing effects, it is the most desirable type of detection and for that reason is the approach
FastScan tries first. However, FastScan cannot use robust detection on many paths because of
its restrictive nature and if it is unable to create a robust test, it will automatically try to create a
non-robust test. The application places faults detected by robust detection in the DR
(det_robust) fault class.

Figure 6-26 gives an example of robust detection for a rising-edge transition within a simple
path. Notice that, due to the circuitry, the gating value at the second OR gate was able to retain
the proper value for detection during the entire time from launch to capture events.

Figure 6-26. Robust Detection Example
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Figure 6.2: Robust detection example [30].

6.2.2 Non-Robust Path-delay Test

Non-Robust Path-delay Test detects a path-delay fault without the presence of

other path-delay faults. The path-delay fault for which a non-robust test exists is

defined as single-testable path-delay fault [37].

After applying a pair of vectors which cause a transition at the input of a path, we

can measure the output value after a period (usually the clock period.) The expected

output value should be uniquely controlled by the transition propagating through the

path.

Referring to Figure 6.4, the path B, E, G, J and K is our target path. So signals

B, E, G, J and K can be called on-path signals. Off-path signals represent the signals
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Figure 12.2: An example of transition propagation through paths.

making them the reference for all other transitions. The output has three transitions,
brought via three paths. The reader can examine the progress of each transition
by following the dashed lines with arrows. This circuit has five paths, which can
potentially produce that many transitions at the output. The actual number depends
on specific delays and the input stimuli.

Let us examine the three activated paths: Path P1: A – H – K, Path P2: B –
E – Q – H – K, and Path P3: B – E – G – J – K. In the operation of this circuit,
the input and output signals (irrespective of whether or not they are latched) are
synchronized with a clock of period T. Given that these delays have been derived
from the analysis of the design data (device parameters, routing capacitances, etc.),
the critical path has a delay of 6 units in the fault-free circuit. Path P3 is one of
the two critical paths. Suppose we choose T = 7. Any path will be faulty if its delay
exceeds 7 units. Consider two cases:

1. Single faulty path: We examine the output at 7 units of time. As long as the
delay of path P3 is 6 units or less, the output will have risen to logic 1 value
irrespective of the delay of path P1 or P2. Thus, the delay faults of P1 and P2
will not be detected by this input vector pair. If the delay of path P3 exceeds 7
units, say, due to some manufacturing defect, then the last edge in the output
will be shifted to the right and we will observe a 0 instead of 1. Thus, the delay
fault of path P3 is detectable by this vector-pair.

2. Multiple faulty paths: Suppose all three paths have more than 7 units of delay.
Then the entire waveform at the output will be translated to the right by more
than 7 units and we will observe a failure. If P1 is not faulty but P2 and P3 are
faulty, then the output will rise at 2 units and will remain high beyond 7 units.
It may fall depending on the relative delays of P2 and P3. However, observing
at 7 units, we will see no failure. In this case the fault of P2 interferes with the
detection of the fault of P3. As we shall see later, this is because the present
vector-pair is a “non-robust” test for the delay fault of P3.

We have considered only three paths that are activated by the given input vector-pair.
Other paths, when activated, can be analyzed similarly.

Figure 6.3: Non-robust detection test [13].
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Non-robust detection does not require constant values on the gating inputs used to sensitize the
path. It only requires the proper gating values at the time of the capture event. FastScan places
faults detected by non-robust detection in the DS (det_simulation) fault class.

Figure 6-27 gives an example of non-robust detection for a rising-edge transition within a
simple path.

Figure 6-27. Non-robust Detection Example

Notice that due to the circuitry, the gating value on the OR gate changed during the 0 to 1
transition placed at the launch point. Thus, the proper gating value was only at the OR gate at
the capture event.

Functional detection further relaxes the requirements on the gating inputs used to sensitize the
path. The gating of the path does not have to be stable as in robust detection, nor does it have to
be sensitizing at the capture event, as required by non-robust detection. Functional detection
requires only that the gating inputs not block propagation of a transition along the path.
FastScan places faults detected by functional detection in the det_functional (DF) fault class.
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Figure 6.4: Non-robust detection example [30].

that are not on the target path. The vector pair (V1,V2) = (010,000) produces a

falling transition at B to test the fault at P3. After the application of second vector

V2, all of the off-path input signals should be non-controlling values. This condition

is defined as static sensitization. For example, 0 will be fed into each OR or NOR

gate while 1 is fed to each AND or NAND gate. In figure 6.3, transitions occur at

P1 and P3, but only P3 is static sensitization. Therefore, non-robust test is only

achieved for the fault in P3.
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Figure 6-28 gives an example of functional detection for a rising-edge transition within a simple
path. Notice that, due to the circuitry, the gating (off-path) value on the OR gate is neither
stable, nor sensitizing at the time of the capture event. However, the path input transition still
propagates to the path output.

Figure 6-28. Functional Detection Example

Related Commands:

Add Ambiguous Paths - specifies the number of paths FastScan should select when
encountering an ambiguous path.
Analyze Fault - analyzes a fault, including path delay faults, to determine why it was
not detected.
Delete Paths - deletes paths from the internal path list.
Load Paths - loads in a file of path definitions from an external file.
Report Paths - reports information on paths in the path list.
Report Statistics - displays simulation statistics, including the number of detected
faults in each fault class.
Set Pathdelay Holdpi - sets whether non-clock primary inputs can change after the first
pattern force, during ATPG.
Write Paths - writes information on paths in the path list to an external file.

Launch Point

X
X

Capture Point

Gating Value Changed
During Transition

Launch Point

X
X

Capture Point

0 0
0

0

Initial State

After Transition

1
0 1 1

1

1

1

1

1

1
1

0

1

0
1

AND

AND

AND

AND

OR

OR

0

0

1

1

1

1

1

Figure 6.5: Functional detection example [30].

Figure 6.4 shows the non-robust detection test in detail. After the second vector,

the off-path signal should all be non-controlling.The gating value on the OR gate

changed during the 0 to 1 transition placed at the launch point. Thus, the proper

gating value was only at the OR gate at the capture event.

6.2.3 Functional Detection Test

Functional detection test has fewer requirements than non-robust test or robust

test. Functional detection test further releases the requirements on the gate inputs

used to sensitize the path. The input gate signals of the path do not have to be

stable as in robust detection, nor does it have to be sensitizing at the capture event,

as required by non-robust detection. Functional detection requires only that the

gating inputs not block propagation of a transition along the path. FastScan places

faults detected by functional detection in the det functional (DF) fault class.

Figure 6.5 gives an example of functional detection for a rising transition. The off

path signal of the OR gate is neither stable, nor sensitizing the at the time of capture
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Figure 6.6: A scan circuit example of path a-d-e.

event. However, the path input transition still propagates to the path output, because

the on-path signal of the OR gate during capture cycle is controlling value.

6.3 Modeling a Path Delay Fault

We need to use the synchronous model for path delay faults. Figure 6.6 shows

a path of a scan circuit. Figure 6.7 shows a device of modeling a slow-to-fall path

delay fault on the path a-d-e with a synchronous sequential circuit. The logic that is

within the dotted line does not belong to the original circuit. We insert this model

in order to model a slow-to-fall path delay fault. Therefore, e’ becomes the new path

output. Any fault that detects a s-a-0 fault at signal OUT1 will detect a slow-to-fall

fault at path a-d-e.

The flip-flop FF1 which is placed between AND2 and AND3 is initialized be the

0 value. The signal requirement of the input of these gates is based on the target

path signal requirement which we discussed previously. The first vector is required

to set e as 1. Input of AND2 will be set based on signal requirements. Second vector

will force the e to be 0 in order to make a falling transition. The signal requirement

of second vector is placed at the input of AND3. Because the FF1 is initialized to 0,

which is fed to AND3, the signal Out1 will be 0, propagating the value of signal e to

e’ in the first phase. Since signal e is 1 at the same time, it makes e’ as 1.
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Figure 6.7: Model of a slow-to-fall fault in path a-d-e.

At this time, the output of AND2 comes at the input of FF1. Since signal a, b, c

in the gate AND3 propagates the value to Out1, they will propagate 1 to the TERM

gate, and e’ will be forced to 1 since it is an output of a OR gate. This process models

a slow-to-fall path delay fault.

Figure 6.8 shows the architecture of modeling a slow-to-rise path delay fault.

The difference is the gate is the AND gate placed after e. And any fault that detects

a s-a-0 fault at signal OUT1 will detect a slow-to-rise fault at path a-d-e.

6.4 ATPG Model of Path Delay Faults

ATPG model is actually a Verilog netlist of the circuit under test (CUT). Some

logics are inserted into the netlist in order to model the path delay fault.

The exclusive test for a pair of path delay faults should be a single output model.

In this exclusive test, only one of these faults will be activated. Suppose the model

is a multi-output model. It will be quite possible to activate both of the two faults

at the same time which makes the test inefficient. As a result, a single output model

is our choice.
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Figure 6.8: Model of a slow-to-rise fault in path a-d-e.

The ATPG model in Figure 6.9 presents the conventional Boolean formulation.

The model we construct can model the two path delay faults. One is the slow-to-fall

fault on path a-d-e while the other one is on path m-k-h-e with the same transition.

The models of delay faults on path a-d-e and path m-k-h-e are placed in parallel.

Note that a 1 output from the XOR gate cannot be obtained by a single vector. In

order to detect a stuck-at 0 fault at the output of XOR gate, the value in Out1 and

Out2 should be different. Both of the OR gate Term1 and Term2 has an input that

is connected to e in the original path. The other input of these two OR gates is

connected to the former AND gate. In other words, if the In03 is different from In06,

a stuck-at 0 fault at the output of XOR gate will be detected.

The XOR gate in Figure 6.9 can be replaced by a multiplexer. The control signal

of the multiplexer is the new adding primary input pin. Any test that could detects a

stuck-at 0 or stuck-at 1 fault in the control signal will be the test that only activates

the one of these two faults in the path.

For example, the vector pair (011,111) is applied to a, b, c, and creates a falling

transition at e. After the first vector, both Out1 and Out2 will be 1 since the e

is 1 which is a controlling value for the two TERM gates(OR gates). The pair of
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Figure 6.9: An ATPG model: test that detect a s-a-0 fault distinguish a pair of
slow-to-fall faults.

vectors creates a transition at the input of a-d-e. But no transition is created at path

m-k-h-e. Therefore, value of Out1 is 1 while the value on Out2 is 0 after applying

the second vector. This condition makes a difference at Out1 and Out 2 that enables

ATPG to generate a test pattern to detect the stuck-at 0 fault at output of XOR

gate. Figure 6.10 shows an ATPG model to detect a slow-to-rise fault.

6.4.1 Scan Circuit Test

For a scanned sequential circuit under test(CUT), ATPG will generate two-vector

tests. The vectors are generated by a scan program of ATPG to accommodate the

modeling flip-flop. Either a Launch-off-capture sequence or Launch-off-shift sequence

can be applied to generate the second vector.

Figure 6.11 shows the model for distinguishing two slow-to-fall path delay faults.

Out3 will feed the input of the destination flip-flop. Similarly, the model for dis-
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Figure 6.10: An ATPG model: test that detect a s-a-0 fault distinguish a pair of
slow-to-rise faults.

tinguishing two slow-to-rise path delay faults can also be constructed, as shown in

Figure 6.12.

6.5 Scan-Based At-Speed Test Generation

The Mentor Graphics Fastscan ATPG tools can generate test patterns for path

delay faults. Actually, the test is in LOC form which consists of a scan-in sequence and

primary input vectors. Our work consists of two parts: detection test and exclusive

test.

6.6 Detection Test Phase

During the detection phase, ATPG tools are used to diagnosis path delay faults.

Diagnostic coverage (DC) will then be calculated. Whether to generate exclusive
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Figure 6.11: ATPG test model: distinguish two slow-to-fall faults.

tests on undistinguished fault groups depends on the DC. Figure 6.13 shows the test

flow of the detection phase.

Test patterns generated by ATPG will try to detect the path delay faults in

the circuit. DFTadvisor [38] is used to full-scan a benchmark circuit with a single

scan chain. Then test patterns will try to activate the path delay faults with fault

simulator. Meanwhile, each fault will store one or several patterns(signatures) that

could activate the fault. A diagnostic dictionary is constructed after diagnostic fault

simulation. The dictionary is a pass/fail dictionary which is a compact dictionary. It

only stores pass/fail information for each fault corresponding to test patterns. Fault

simulation consists of four steps. First, we need to find detected faults with input

test vectors. And then we will group faults with same signature. Thirdly, diagnostic

coverage is calculated. Finally, the test will go through step 1 to step 3 until no

vectors left.
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Figure 6.12: ATPG test model: distinguish two slow-to-rise faults.

6.6.1 Fullscan Circuit

The benchmark circuit is full-scanned by DFTadvisor. All D flip-flops have a

multiplexer added at the input to make them scan flip-flops.

6.6.2 Construction of Diagnostic Dictionary

Given a test pattern, good machine simulation can predict the logic values in a

good circuit. It uses the test pattern to activate the path delay faults in the fault lists.

Fault diagnosis is performed by observing the failures on test to the expected response

to every test (signature) in the dictionary. The cost of physical defect localization

depends on the size of the fault set, size of tests and capability of the dictionary.

Faults activated by same set of test patterns will be assigned into the same group.

Table 6.1 shows the total group numbers and the diagnostic coverage. If two

outputs of the paths are not located at same place, the two faults from these paths
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Figure 6.13: Detection test flow in detection phase.

can be distinguished. Moreover, diagnostic dictionary also reveals that different tran-

sitions of the path delay faults in the same output can also be distinguished. As a

result, the total number of groups will be twice the total numbers of outputs of the

scan circuit path. The total number of outputs of the scan circuit is equal to the

number of flip-flops (number of output of scan circuit).

6.6.3 The Need for Generating Exclusive Test

The diagnostic coverage (DC) of path delay faults in these circuits shown in

Table 6.1 is usually less than 20%. All of them are in need of generating exclusive
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Table 6.1: Diagnostic coverage after detection test phase

Circuit Diagnostic coverage Total flip-flops Total groups

s298 16.87% 14 28

s382 13.38% 21 42

s420 18.10% 16 32
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3.Diagnostic 
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Test
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Stop
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Figure 6.14: Flowchart of automatic exclusive test generation system.

tests. Exclusive test on them will pick out some faults in a group to constitute new

groups. Therefore, new groups increase the DC.

6.7 Exclusive Test Phase

The automatic exclusive test generation system will generate exclusive tests for

a given circuit to improve diagnostic coverage (DC). The system is used for our test

generation and the flowchart is shown in Figure 6.14 .

The whole system is implemented in Perl programming language [39] and consists

of several functional blocks. Block 1 represents the fault sets that are constituted by

conventional detection ATPG system in detection phase. Exclusive test generation is

performed on Block 2. Block 3 is a diagnostic fault simulator.
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• End - A required statement that signals the completion of data for the current path.
Optionally, following the end statement, you can specify the name of the path. However,
if the name does not match the pathname specified with the path statement, the tool
issues an error.

The following shows the path definition syntax:

PATH <pathname> =
   CONDition <pin_pathname> <0|1|Z>;
   TRANsition_condition <pin_pathname> <Rising|Falling|Same|Opposite>;
   PIN <pin_pathname> [+|-];
   PIN <pin_pathname> [+|-];

...
   PIN <pin_pathname> [+|-];
END [pathname];

The following is an example of a path definition file:

PATH "path0" =
    PIN /I$6/Q + ;
    PIN /I$35/B0 + ;
    PIN /I$35/C0 + ;
    PIN /I$1/I$650/IN + ;
    PIN /I$1/I$650/OUT - ;
    PIN /I$1/I$951/I$1/IN - ;
    PIN /I$1/I$951/I$1/OUT + ;
    PIN /A_EQ_B + ;
END ;
PATH "path1" =
    PIN /I$6/Q + ;
    PIN /I$35/B0 + ;
    PIN /I$35/C0 + ;
    PIN /I$1/I$650/IN + ;
    PIN /I$1/I$650/OUT - ;
    PIN /I$1/I$684/I1 - ;
    PIN /I$1/I$684/OUT - ;
    PIN /I$5/D - ;
END ;
PATH "path2" =
    PIN /I$5/Q + ;
    PIN /I$35/B1 + ;
    PIN /I$35/C1 + ;
    PIN /I$1/I$649/IN + ;
    PIN /I$1/I$649/OUT - ;
    PIN /I$1/I$622/I2 - ;
    PIN /I$1/I$622/OUT - ;
    PIN /A_EQ_B + ;
END ;
PATH "path3" =
    PIN /I$5/QB + ;
    PIN /I$6/TI + ;
END ;

Figure 6.15: An example of path definition file.

After fault simulation of a detection test, faults are partitioned into several groups

based on different signatures. Exclusive test is then performed on the undistinguished

fault pairs. There will be two possible cases. One case is that we can find a test. The

two faults will then be assigned to two different groups. The other case is that no

test is found. The reason for that will be discussed later in the section.

6.7.1 Path Definition file

ATPG helps diagnose the path delay faults. A path definition file [30] describes

the paths that we want in the test set. For each path, we must specify two things.

One is the path name that identifies a path. The other is path definition which is

the topology of the path from launch to capture point as defined by an ordered list

of pin pathnames. Each path must be unique.

Figure 6.15 shows the definition of a path. PIN identifies a pin in the path by its

full pin pathname. Pin statements are required to be ordered from launch points to

capture points. A “+”or “-” indicates the inversion with respect to the launch point.

A “+” indicates no inversion while a “-” indicates inversion. The path definition file

shows the start point and end point of a target path. Any gate that is on the target

path is shown in the definition file.
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Figure 6.16: Position of AND gate in test model.
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Figure 6.17: An example a path delay fault model.

6.7.2 Construction of Exclusive Test Model

Signal Requirement for Modeling a Path Delay Fault

The exclusive test model is shown in Figure 6.11. The input signals requirement

of the model depends on the transition at the output of the path and the gate type.

In this section, we will show the methods for preparing input values (which are

signal requirements) for the AND gate of our test model. Figure 6.16 shows the

position of the AND gate(AND1 and AND2).

The path definition file shows the types of gates and which input the target path

goes through. Our purpose is to propagate the transition of an input to the output of

the path. The path definition file help us find the configuration of each gate’s input

signal.
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Table 6.2: Signal requirement for signal e to be 1.

Signal requirement Value

e 1

c,d,f 0

b 0

a 1

Table 6.3: Signal requirement for signal e to be 0.

Signal requirement Value

e 0

c 1

g,b,h 1

a 0

Figure 6.17 shows a path that starts from a and ends at e. Either a slow-to-fall

or slow-to-rise path delay fault needs a transition at the output which requires a 1

or 0. If e is required to be 1, then we can go back through the path to find signal

requirements of each gate. Since Gate3 is a NOR gate, signals d, c, f are all required

to be 0 in order to make e as 1. Thus the signal requirement for Gate3 has been set.

And then we still move backward along the target path. It’s easy to find that c is set

to be 0. Since Gate2 is a AND gate whose output is 0, only the signal b needs to be 0.

Because b is an on-path signal and 0 is controlling value for an AND gate, the rest of

the input signals in Gate2 can be ignored. We will go back through the path until the

start point of the path. Similarly, if e is required to be 0, the signal requirement can

also be found. Therefore, the signal requirement of a slow-to-fall path delay fault at

path a-b-c-e has been constructed as Table 6.2 and Table 6.3. This method is similar

to the D-algorithm.
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Figure 6.18: An example an AND gate for Table 6.2.
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Figure 6.19: An example an AND gate for Table 6.3.

If the signal is required to be 1, the signal will be directly connected to the input

of an AND gate in the exclusive test model. Otherwise, an inverter gate is required

to be placed, and the AND gate can be constructed in Figure 6.18 and Figure 6.19.

This method ensures that the minimum requirement for modeling a path delay

fault is obtained. It helps decrease the complexity of building a AND gate based on

the information of gates.

Modification of Original Verilog Netlist

In Figure 6.11, the control signal y insert is added to the primary input of the

original circuit. A stuck-at 0 or stuck-at 1 fault will be inserted on the y insert

signal. The output of the multiplexer is connected to the input of the scan flip-flop.

Moreover, the e signal, which is the output of original circuit, will be connected to two

OR gates of the test model instead of being connected to the input of scan flip-flop.
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Figure 6.20: An example of AU faults for stuck-at fault.

6.7.3 Analysis of ATPG Untestable (AU) Fault

Analysis is performed when there is no test for a stuck-at fault at y insert signal.

Simulation results reveal that the fault at y insert will be an AU fault. Figure 6.20

shows an example of generating an exclusive test for two path delay faults of the

circuit. Path k connects the TERM1 and TERM2. Signal requirements are revealed

in Figure 6.20.

Paths a-c-f-h-k and b-e-g-h-k are our two target paths. Path activation requires

two vectors. Since it is a rising transition, the first vector needs to feed the input

of FFD to be 0. And the second vector is able to ensure the input of FFD to be 1.

The signal requirements through the target path are based on the kind of gates and

transitions.
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Table 6.4: Signal requirement for path a-c-f-h-k.

First vector Value Second vector Value

k 0 k 1

h 1 j,h 0

f 0 f,g 1

c,d 0 c 1

a 1 a 0

Table 6.5: Signal requirement for path b-e-g-h-k.

First vector Value Second vector Value

k 0 k 1

h 1 j,h 0

f 0 f,g 1

a,e 0 e 1

b 1 b 0

Table 6.4 and Table 6.5 show the signal requirements for the two paths. At the

second vector, both of the signal requirements of the path could feed the input of

FFD to be 1 without conflicts. The test pattern for a stuck-at fault on y insert can

not be found since the second vector can force both Out1 and Out2 to be 1.

Signal a of the first path is required to be 1 in order to make the destination

flip-flop as 0. But at the same time, the signal a of second path needs to be 0 which

has a conflict with the first path signal requirement. The two paths may be multiply

testable [40], sometimes also referred to as functionally testable paths. Neither of

the paths is testable alone. But they are testable when both paths are faulty. Thus,

if a failure is observed then both paths should be considered faulty. They can be

considered as equivalent, though not so in the real sense.
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6.7.4 Diagnostic Test Pattern Generation

The previous sections provide the method for modeling a path delay fault as

a single stuck-at fault. The main benefit of this model is that the conventional

diagnostic tools for single stuck-at faults can be used to diagnose path delay faults.

1. Diagnostic coverage (DC) of tests provides a quantitative measure for their

ability to distinguish any two faults.

2. Detection test determines the DC of the path delay faults. Implementation

exclusive test on those path delay faults can generate more test patterns if necessary

to enhance DC.

3. Signal requirements of modeling a path delay fault are based on the fault

types and the related gate types through the path. Path definition files show the

detailed information about the target path.
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Chapter 7

Experiments Setup and Analysis of Results

Previous sections show the importance of fault diagnosis and how to construct a

test model of exclusive test. In the first section of this chapter, we will briefly describe

our experimental setup. In the second section, results of some circuits will be shown

and evaluated.

7.1 Experimental Setup

In order to evaluate the test model, we will show the schematic views of test

model. We use DFTadvisor to build the final the test model with a Verilog netlist,

and the test model will be used to generate tests in Fastscan. Figure 7.1 shows the

process of generating a test for a pair of faults

7.1.1 Construction of AND Gate of Test Model

A pair of slow-to-fall faults is shown in Figure 7.2. According to the method

we previously discussed, we can obtain signal requirements for testing the two path

delay faults.

Table 7.1 and Table 7.2 show the signal requirements, which will be expressed

by an equation. For example, Table 7.1 will indicate the function as equation 7.1.

Figure 7.3 shows the structure model in gate level. We can see these three signals y,

g, h.

y = (∼ g)&(∼ h). (7.1)
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Figure 7.1: Test flows for a pair of path delay faults.
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Figure 7.2: An example of a pair of slow-to-fall faults.

DFTadvisor can implement the equation by generating a structure model of it,

as shown in Figure 7.4(signal y is the output of AND gate). Gate vin1 is AND gate.

Gate vin2 and Gate vin4 are NOT gate.

7.1.2 Construction of Test Model

A test model of benchmark circuit s27 is shown in Figure 7.5. The output of

the multiplexer will feed the destination flip-flop. Our test model will then be placed
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Table 7.1: Signal requirement for k to be 1 in path g-k.

Signal Value

k 1

g,h 0

Table 7.2: Signal requirement for k to be 0 in path g-k.

Signal Value

k 0

h 1

between the output of last component of the path and the input of destination flip-

flop. Therefore, signal z is connected to the output of the last component in the

target path while outs will feed the input of the destination flip-flop.

7.1.3 Construction of Final ATPG Test Model

A y insert(control signal of the multiplexer in test model) is added to the primary

input of the circuit in order to generate a test for a stuck-at fault at y as shown in

Figure 7.6. The test pattern should distinguish the pair of faults. Figure 7.6 shows

the final test model and Fastscan will then try to generate a test for the fault in the

circuit.

7.2 Results and Analysis

Results are shown in Table 7.3 and Table 7.4. Fastscan is used to generate tests

for path delay faults. The target pair of path delay faults may be distinguished by

generating a test for a single stuck-at fault. All normal flip-flops of the original circuit

are scanned except the modeling flip-flop (MFF) of the test model. The initial state of
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Figure 7.3: An example of AND gate.

unscanned MFF cannot detect fault by the first vector. Table 7.3 shows a comparison

between DC of detection test and exclusive test.

The detection test has a DC shown in column 2. It is about 20% after the

detection test. By applying our method to the undistinguished fault pairs, the DC

greatly increased. As is shown in the third column, the method could raise DC of s27

circuit to 100%. This was the perfect case that each group has only one fault. We

can see that the DC greatly increases after using our test model. It also raises the

DC of benchmark circuit s298 from 23.9% to nearly 97%.

More details are shown in Table 7.4. The total faults of each circuit is shown

in column 2. The fault coverage (FC) of path delay fault can be found at the third

column. FC is less than 100%. The reason is that redundant or untestable fault is

not identified and there were aborted ATPG runs.

The main purpose of our exclusive test is to generate tests that can distinguish

a pair of faults with in the same fault group(constituted by detection test). Test

that can distinguish a pair of faults will partition the groups. And then these two

faults will be placed in separate groups. As a result, the number of groups increases in

exclusive test. Column 4 of Table 7.4 shows the total number of groups after detection

test while column 6 gives the number after exclusive test. It reveals that the number

of total groups has changed a lot. The Diagnostic resolution (DR) decreases as the

number of groups increases, and we can see the difference of column 5 and column 7.

CPU time for each circuit is also listed at the last column, which is acceptable.
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Figure 7.4: An example of AND gate in test model.

During the process of our test, if the exclusive test is not to be found, we enhance

the ATPG abort limit which makes ATPG run longer to try to find a test. However,

sometimes the test is still not to be found. Then we analyze the two faults in the

circuit manually. As we previously described, the output response of two faults is

same after we apply the second vector.

Generally speaking, this method can be also applied to other kinds of faults if

their fault behavior can be mapped to stuck-at fault. The traditional ATPG tools

to diagnose a stuck-at fault can be used for diagnosing these kinds of faults. By

adding a few logics such as primitive gates, multiplexer and model flip-flops to the

original circuit(only modified for ATPG), a test can be implemented by conventional

ATPG tools. It greatly improve the diagnostic coverage of faults with little cost. This

method is very easy to implement on diagnosing faults.
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Figure 7.5: An example of AND gate in test model.

Table 7.3: Comparison between DC of detection test and exclusive test.

Circuit

Name

DC

Detection test

%

DC

Exclusive test

%

s27 50.0 100.0

s298 23.9 96.5

s382 13.3 61.1

s400 12.0 78.8

s420 18.1 51.7

s444 19.53 80.0

s526 34.15 82.9

s838 10.4 31.2

s1423 5.3 62.9
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Figure 7.6: An example of circuit after inserting test model to s27.
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Table 7.4: Comparison between detection test and exclusive test.

Circuit Total FC Detection Test Exclusive Test

Name Faults % Total Groups DR Total Groups DR CPU time (sec)

s27 4 100.00 2 2.00 4 1.00 5

s298 117 70.48 28 2.16 113 1.03 612

s382 314 74.41 42 7.47 192 1.63 4899

s400 350 72.61 42 8.33 274 1.27 943

s420 176 64.71 32 5.50 91 1.93 857

s444 215 31.99 42 5.11 172 1.25 260

s526 123 36.18 42 2.92 102 1.21 501

s838 612 57.95 64 9.56 421 3.20 4821

s1423 2759 44.77 148 18.64 1737 1.58 17897
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Chapter 8

Conclusions, Developments and Future Work

From our experimental results and what we previously discussed, we learned

that our proposed method is capable of successfully improving the diagnostic coverage

metric (DC) by generating exclusive tests. The main purpose of diagnosis is to identify

the location and nature of faults. However, some real defects cannot be mapped to

fault models such as stuck-at faults. This chapter discusses the conclusions, recent

developments an further work that needs to be done.

8.1 Conclusion

A proposed diagnosis method for path delay faults is applied to generate tests to

distinguish a pair of faults. Our exclusive test on a pair of faults will try to increase

the diagnostic coverage (DC), which is the ratio of the number of fault groups to the

number of total faults. We can distinguish more fault pairs to constitute new groups.

This can help increase DC.

At the beginning of the test, there is only one group of faults. Then a detection

test is performed on these faults. DC is always less than 20% after detection test.

In order to improve DC, exclusive test will start. If a test is generated for a pair of

faults, this means that the two faults can be distinguished by this test. Therefore,

these two faults will no longer stay in the same group, and the number of groups is

increased.

In Chapter 4, we introduce a very efficient method for generating delay test by

using stuck-at fault tools. In Chapter 5, we provide the Boolean analysis to give a

theoretical proof of constructing a test model for generating exclusive tests. Only one
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of two faults can be activated if a test is found. If these two faults produce the same

output response after applying the second vector, a test of the two path delay faults

cannot be found. Analysis of the two faults is shown in Chapter 6, which indicates

that the two faults may not be equivalent faults. Then we explain how to construct an

ATPG test model for a pair of path delay faults in Chapter 6. The method augments

the ability of conventional ATPG to generate exclusive test by adding a few logics to

the original circuit. Chapter 6 discuss the steps to construct a test model based on

the transition and path information. Results of the improvement of DC and other

related metrics are presented in Chapter 7.

In field of exclusive test generation, effective and efficient tools can be used to

identify equivalent faults in order to have an adequate exclusive test. When we want

to identify equivalent faults, the backtrack limit and test running time are required

to be increased dramatically. Sometimes, ATPG is still not able to find the exact

conclusions.

Generally speaking, our diagnostic method improves the DC of path delay faults.

The problem of diagnosis of a pair of path delay faults is modeled as a single stuck-

at fault. Equipped with the proposed technique, it’s easy to construct an ATPG

model to generate exclusive tests for path delay faults. Also, our diagnostic method

can further improve the work [41]. Moreover, any fault whose fault behavior can be

mapped to stuck-at faults has the potential to generate exclusive test with similar

methods.

8.2 Developments

At present, there exist some works for path delay fault diagnosis. The path

Scoring [41] method utilizes a reasoning-based diagnosis technique and stuck-at fault

diagnosis results to improve the diagnosis resolutions of delay fault diagnosis.
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Figure 3.  (a) Pattern 1 (b) Pattern 2 (c) Calculate path scores 

In Figure 3, we illustrate this step. In Figure 3(a) and 3(b), 
the solid lines presents the paths that the primary output of the 
sensitized path is failed and the dash lines presents the paths 
that the primary output of the sensitized path is passed. The 
scores of the lines on the sensitized paths are increased or 
decreased. In Figure 3(c), the numbers above the lines present 
the scores of lines and are the sum of the line score for each 
pattern. In the example, we assume that only 2 candidates, i.e., 
path 1 : C-L2-L4-PO1 and path 2 : C-L2-L5-PO2, exist. The 
score of path 1 is 1 and that of path 2 is -5.  

E. Rank candidate paths 
In this step, the path score are finally calculated and ranked. 

The path scores that are step C and step D are summed and the 
candidate path-delay paths are ranked according to this path 
scores. The candidate ranked at top suspect list is the most 

probable fault. Finally, the ranked suspect lists are reported as 
the path delay fault diagnosis results. 

III. EXPERIMENTAL RESULTS 
For these experiments, ISCAS85 and ISCAS89 benchmark 

circuits are synthesized with the Samsung STD150 library. The 
path delay fault test patterns are generated by Synopsys 
TetraMAX. We randomly select the faulty path and insert the 1 
clock period delay. Each benchmark circuit is tested 30 times. 

TABLE I.  EXPERIMENTAL RESULT 

Circuit Avg 
FHR 

Avg 
# candiate Circuit Avg 

FHR 
Avg 

# candiate 

c432 1.0 21.0 s1196 1.0 18.5 

c499 1.0 24.0 s1238 1.6 20.5 

c880 4.5 17.8 s1488 1.0 4.7 

c1908 1.0 26.3 s1494 1.0 5.0 

c2670 1.0 3.0 s5378 1.0 6.4 

c3540 1.0 16.0 s9234 2.5 23.0 

c5315 3.0 8.7 s13207 1.7 1.3 

c7552 7.8 28.3 s35932 1.0 10.0 

Average 2.5 18.1 Average 1.3 11.2 

The experimental results of some ISCAS85 and full-scan 
version of ISCAS89 benchmark circuits are shown in Table 1. 
The first column and fourth column show the circuit names. 
The second column and fifth column show the average first-
hit-rate (FHR). FHR is important qualification guide for 
diagnosis tools and is defined as the rank of the first hit of the 
defect in the ranking list, i.e., average rank of the injected 
location in the ranking list. The third column and sixth column 
show the average number of candidates that is another 
important qualification guide. Traditional CPT could report too 
many candidates in practice. However, our proposed method 
relieves this problem. 

TABLE II.  RESULT OF DIAGNOSIS 

Circuit 
Previous method [6] Proposed method 

Avg 
FHR 

Avg 
# candiate 

Avg 
FHR 

Avg 
# candiate 

c2670 1.4 5.3 1.0 3.0 

c3540 2.1 5.2 1.0 16.0 

c5315 3.2 11.3 3.0 8.7 

s9234 2.6 8.3 2.5 23.0 

s13207 5.0 9.6 1.7 1.3 

s35932 2.1 3.5 1.0 10.0 

Average 2.7 7.2 1.7 10.3 
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Figure 8.1: Calculation of path scores.

The diagnosis algorithm firstly extracts initial candidate faults by applying crit-

ical path tracing algorithm. Secondly, it calculates path scores with stuck-at fault

diagnosis results. Finally, it evaluates candidate paths and reports path delay fault

results.

Figure 8.1 shows how to calculate path scores and rank the suspect. If the

primary output of the sensitized path is failed, the scores of all lines on the path are

increased by 1. Similarly, if the primary output of the sensitized path is passed, the

scores of all lines on the path are decreased by 1 [41]. Path 1: C-L2-L4-PO1 and

Path 2: C-L2-L5-PO2. And we will calculate the total scores of all lines for each

path. Therefore, the score of Path 1 is 1 while the score of Path 2 is −5. Since the

score of path1 is higher than Path 2, it becomes the suspect. Finally, the ranked

suspect lists are reported as the path delay fault diagnosis results.
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8.3 Future Work

8.3.1 Application of Test Model to Non-Scan Circuit

Our work focused on application of our test model on scan circuits. Actually, the

method [31] we previously used for detecting path delay faults with stuck-at faults

tool also works in non-scan circuits. Therefore, if we make some changes to our

method, it may be possible to be implemented in non-scan circuit.

8.3.2 ATPG Tools to Reduce ATPG untestable (AU) Faults

In this thesis, we use the path delay fault model to diagnose faults. However, the

appearance of AU faults indicates that the ATPG has not determined whether there

exists a test for detecting those faults. The ATPG tools may be sometimes neither

capable of generating a test nor making sure that the fault is redundant. ATPG abort

limit and test running time is greatly increased in order to detect more faults.

The presence of AU faults shows that the ATPG algorithms for detecting a fault

still need improvement. Moreover, the diagnostic coverage of path delay fault may

improve further if the ATPG calculation capability is enhanced.

8.3.3 Diagnosis of Real Defects

The main purpose of diagnosis is to find the nature and locations of real defects.

The diagnosis method can use multiple fault models to activate and detect the multi-

ple faults as much as possible. Our method uses traditional ATPG tools for stuck-at

fault to diagnose path delay faults. If more fault models such as stuck-open faults,

and bridge faults can be modeled as we did, more real defects can be detected. Net

diagnosis technology [42] can diagnose a net fault, which often leads to a multiple

fault scenario. The method can be used in many fault models. If the DC of more
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fault models can be improved, net diagnosis technology and electrical test can narrow

down the location of faults and find actual cause.

8.3.4 Overlap Component of Two Paths Blocked by Other Signal

In circuit, there may be an overlap component of the two target paths. This

component may be blocked by the signal from another path(a path other than these

two target paths). In this case, our test model will need more changes.
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