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Abstract

A quantum phase-slip is a superconducting phenomenon, which is identified as an exact

dual to Josephson tunneling. Therefore, the device known as a quantum phase-slip junction is

expected to be as significant and fundamental as the Josephson junction in superconductors.

Josephson junctions in general, have several applications in millimeter wave detection, the

voltage standard, digital circuits and also qubits. The aim of this thesis is to demonstrate

a SPICE model of a quantum phase-slip junction to aid the search for analogous classical

applications in fields of digital and RF circuits. Derivation of a SPICE model of a quantum

phase-slip junction using its known compact model, and implementation in JSPICE using C

programming language along with implementation in WRSPICE using Verilog-A have been

presented in this thesis. This model includes transient operation of the device. Basic I-V

curves along with simulation of example circuits of the device are shown to validate the

model.
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Chapter 1

Introduction

An exciting field of superconductivity has been originated with the observation of abrupt

drop of DC resistance to zero of a sample at low temperatures close to absolute zero by

Kamerlingh Onnes in 1911[1]. Several metallic elements, compounds and alloys were then

observed to undergo phase transformations at a low temperature, which is characteristic

of the material and is called the transition temperature below which, the characteristics

of superconductivity are observed. These characteristics mainly include persistent currents

without dissipation and Meissner effect[2, 3].

These properties are altered in sufficiently thin nano-wires where superconductivity is

suppressed well below transition temperature. This change in properties is associated with

phase-slips, which are observed as resistive tails below transition[4]. The phenomenon of

a quantum phase-slip, explained later, has been identified as a dual process to Josephson

tunneling based on flux-charge duality [5]. The subject of this thesis is to use this duality

to develop a SPICE model in order to assist in the exploration of circuit applications of the

superconducting electronic device, quantum phase-slip junction (QPSJ).

In this chapter, we discuss the theoretical background starting from the basics of su-

perconductivity using Ginzburg-Landau theories[6], which will lead to the origin of the idea

of a phase-slip. Experiments in the evolution of a quantum phase-slip phenomenon are then

briefly discussed. The idea of flux-charge duality explaining relationship between a Joseph-

son tunneling and a quantum phase-slip will then be presented in some detail. The resistively

and capacitively shunted junction (RCSJ) model of a Josephson junction (JJ) will be dis-

cussed in detail in parallel with the QPSJ to facilitate the explanation of its complementary
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model. A basic introduction to some circuit applications of JJs will be examined which in

later chapters is further explored in the context of QPSJs.

1.1 Superconductivity

The change in behavior in terms of resistance to electrical current dropping to zero

in some materials at low temperatures close to zero is interpreted as a phase-transition as

explained by Ginzburg-Landau (GL) theories[6] in the macroscopic sense. This theory is

vaild for explanation of several phenomena in superconductors. At the microscopic level,

BCS theory[3] explains it as due to the attraction of electrons in the periodic potential fiels

due to the crystal of atoms. However, for our purpose in discussing the idea of a phase-slip

and in explaining the compact models corresponding to JJs and QPSJs, the GL theory is

sufficient.

1.1.1 Macroscopic wave function and phase in superconductors

According to the GL theory, a phase transition takes place in superconducting materials

below transition temperature TC , where it is energetically favorable for electrons to form a

condensate, which is highly ordered compared to a normal metal phase. In this phase, the

superconducting state is defined by a complex order parameter given by:

Ψ(r) =
√
n(r)eiφ(r) = ψ(r)eiφ(r) (1.1)

Here, |ψ(r)|2 = n(r) is the density of the electrons condensed in the superconducting

state and φ is the position dependent phase factor of the state.

This implies that all the condensed electrons occupy a single quantum state with their

phases overlapped making it continuous while in this condensate. It is noteworthy that the

phase factor enters the macroscopic wave function. This factor of phase can only have values
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modulo 2π and is usually wiped out when averaged over billions of electrons in distinct

quantum states in a normal metal phase. But, in a superconductor, this becomes an element

which gives rise to detectable macroscopic quantum phenomena. We will see later that this

property of superconductors is significant in explaining the behavior of JJs and QPSJs.

1.1.2 Phase-slip in superconductors

In this section, we discuss the origin of a phase-slip in superconductors. By using the

above description of a macroscopic wave function, we can calculate the current density of

the dissipation-less currents induced in a superconductor by assuming an induced supercur-

rent due to an applied magnetic potential (external magnetic field) with the help of time

dependent Schrodinger equation. This simple calculation will facilitate the explanation of

the origin of a phase-slip due to Josephson tunneling or a quantum fluctuations, which are

responsible for quantum phase-slips that will be discussed in detail in later sections. Details

of calculations are not shown and only a simple description of the flow of calculation is given

below[7].

Let us consider motion of a particle in the presence of a magnetic potential. In our

example, the particle is moving in a superconductor. Therefore, the momentum of particles

in the superconducting state described by equation 1.1 in case of magnetic potential is given

by:

p̄ = −ih̄∇− eA(r) (1.2)

Here, p̄ is the momentum operator of the particle, h̄ is the reduced planck's constant,

∇ is the divergence operator and A is the magnetic vector potential.

The behavior in the presence of magnetic potential is considered only for illustrating

supercurrent flow in an example that follows. In practice, a supercurrent can be setup using

either an electric or a magnetic field.
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Figure 1.1: a. Persistent current in a superconducting ring. b. Phase of macroscopic wave
function around the ring.

Now, let us imagine that we setup a supercurrent in a closed ring shown in the figure 1.1

using an external magnetic field and then turning it down. We see that a persistent current

is setup in the ring, which will take infinite time to decay. Using both equations 1.1 and 1.2,

the supercurrent can be calculated as shown in equation 1.3:

j(r) =
e

2m
〈ψ(r)|p̄|ψ(r)〉 (1.3)

j(r) is the current density as a function of position and m is the mass of the electron.

Substituting equation 1.2 in equation 1.3 gives equation 1.4:

j(r) =
e

2m
|ψ(r)|2 |∇φ(r)− eA(r)| (1.4)

In the presence of a magnetic field, φ(r) is constant and therefore ∇φ(r) is zero. Current is

only a function of magnetic field in the loop shown in figure 1.1a. But when the magnetic

field is turned off, supercurrent persists in the loop without dissipation unless significant

changes to the environment are made. In this situation, the supercurrent is a function of

∇φ(r), which now cannot be zero and must have a constant value. φ(r) has values modulo
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2π which means 2π ± k is equivalent to k. Therefore, in this case of a loop, we can write:

∫
∇φ(r)dl = 2πn (1.5)

where n is the winding number.

This is the constant value that is directly proportional to the supercurrent in the loop.

The number n is called the winding number of the loop and is illustrated in the figure 1.1b

as the number of times the phase of the wave function goes over 2π. This example has been

of a superconducting loop but this equation is valid for any continuous superconductor.

Now, the persistent supercurrent without decay is the result of constant winding number

as shown in equations 1.4 and 1.5. When the superconducting order parameter is zero at a

point in the loop, winding number changes to n± 1 and this is called as a phase-slip.

Phase-slips are therefore identified as events in the superconductor where the order pa-

rameter goes to zero and the winding number changes. This also causes a voltage to develop

across the phase-slip region. These events causing suppression of superconductivity in this

way are observed in different situations. Some examples include: phase diffusion through

thermal fluctuations in JJs, when their Josephson energy is in the regime EJ � e2/2CJ

shown in [8]; macroscopic quantum tunneling in JJs whose capacitive energy is much larger

than Josephson energy[9], EJ � e2/2CJ ; thermally activated phase-slips in superconducting

nano-wires whose theory is described in [10, 11, 12] and observed in experiments just below

critical temperatures in superconducting nano-wires [13, 14]; along with quantum phase-slips

due to quantum tunneling of superconducting order parameter between the states whose

phases differ by 2π, experimentally observed in [4, 15, 16, 17, 18, 19, 20, 21, 22]. In this

thesis, we are mainly interested in quantum phase-slips and the SPICE model that primarily

describes the electronic device based on this phenomenon. The theory describing the physics

of this phenomenon leading to the formulation of a compact model of the aforementioned
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Figure 1.2: Flux-charge duality in electrical circuits (adapted from [29]).

QPSJ device is described in the subsequent sections. Thermally activated phase-slips based

on LAMH[10, 11, 12] are also briefly explained as they are relevant in a part of the model.

1.2 Flux-charge duality and quantum phase-slips

Quantum phase-slip phenomenon can be described as a dual phenomenon to Josephson

tunneling based on flux-charge duality of maxwell equations, originally described by mooij

and co-workers [5]. Later on, this has been extended to define the QPSJ as a dual device to

Josephson junction. In the following sub-section, the idea of flux-charge duality in Maxwell’s

equations, in the context of superconductors will be discussed.

1.2.1 Flux-charge duality

Classical flux-charge duality based on Maxwell’s equations can be observed in lumped

element circuits as shown in figure 1.2. In continuous case, superconductors and insulators

can be shown to be the exact duals of each other, based on charge-flux duality [23, 24, 25,

26, 27, 28]. The quantities charge and flux current densities can be interpreted as sum of

bound and free quantities based on Maxwell equations as shown below [29]:

JQ = ρQvQ +
dD

dt
(1.6)

Jφ = vφ ×Bf −
dA

dt
(1.7)
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where, JQ is the current density corresponding to charge, ρQ is the charge density moving

at velocity vQ, D is the electric displacement, Jφ is the current density corresponding to flux,

Bf is the magnetic flux density moving at velocity vφ and A is the vector potential and can

be defined in case of superconductors using equation 1.8:

A = ∧ρQvQ (1.8)

where,

∧ = µ0λ
2 (1.9)

Here, µ0 is the magnetic permeability and λ is the magnetic penetration depth in supercon-

ductors.

Using the equations 1.8 and 1.9 along with D = εE, we can define charge and flux

transport in case of superconductors using equations 1.10 and 1.11 respectively [29].

∧dJ
dt

= E → Lk
d2Q

dt2
= V (1.10)

ε
dE

dt
= J → C

d2Φ

dt2
= I (1.11)

Here, Lk is called the kinetic inductance and C is the kinetic capacitance.

These quantities will be encountered in the context of JJs and QPSJs. These equa-

tions take the duality between charge and flux to illustrate the dual relation in charge/flux

transport in superconductors/insulators.

1.2.2 Josephson junctions and quantum phase-slip junctions

A QPSJ, which is an exact dual to a Josephson junction can now be introduced and

defined based on the theoretical description so far. Consider the figure 1.3. A JJ, shown in
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Figure 1.3: Duality between Josephson tunneling in JJs and Fluxon tunneling in QPSJs.

the left, consists of two superconducting islands of cooper pairs separated by an insulating

potential barrier, while a QPSJ, shown in right, can be viewed as two insulating islands of

flux-quanta (referred to as fluxons [29]) separated by a superconducting potential barrier.

Therefore, the suppression of superconductivity, discussed earlier, associated with a quantum

phase-slip is due to tunneling of fluxons across a superconducting nano-wire. The idea of

charge-flux duality is not just a classical concept, but the variables-charge and flux, also

obey commutation relations when treated as quantum operators.

The behavior of josephson junction depends mainly on the phase difference between

the two superconducting electrodes which are seperated by an insulating potential barrier.

The tunneling of charges between them is a coherent process, and the current through the

junctions is a function of phase difference between these electrodes. Similarly, the tunneling

of a fluxon across the superconducting potential barrier sets up voltage between the ends

of nano-wire which is a function of charge travelling through the wire. This tunneling of

fluxons is also a coherent process. But dissipation occurs in both JJs and QPSJs causing

this an incoherent process which will be discussed in detail in later sections.
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1.3 Quantum phase-slip junctions

QPSJs are therefore formed from superconducting nano-wires, linking two superconduct-

ing electrodes in dielectric region. They show suppression of superconductivity, resulting in

dissipation and voltage drop across the nano-wire associated with a phase difference of 2π

between the ends of the nano-wire, below the transition temperature. In experiments, these

are observed as resistive tails below superconducting transition [30, 31, 18, 20, 32] similar to

thermally activated LAMH phase-slips [10, 11, 12, 13, 14]. Josephson tunneling, however is a

coherent process without dissipation. Therefore, the Quantum phase-slip which is described

by a dual process is also coherent, and has been identified [15, 33] with experimental setups

similar to the approach described in section 1.1.2. Using its quantum nature, a quantum

phase-slip based qubit has also been proposed [34] which is dual to the charge qubit using

Josephson junctions [35]. Nevertheless, we are interested in using QPSJ device in SPICE for

use with classical circuits similar to JJs and therefore, will consider the incoherent process

where dissipation can be measured. This involves usage of the model for QPSJ similar to

RCSJ based device model for a JJ[36]. This model includes parameters to account for dis-

sipation, along with the inductance of the nano-wire, similar to the capacitance in JJ along

with the voltage term depicting the coherent quantum phase-slip. A short description of the

RCSJ model of a Josephson junction will be explained to facilitate the derivation of QPSJ

device model.

1.3.1 Josephson junction and RCSJ model

In this section, we explain and briefly derive the equations governing supercurrent,

voltage and phase in DC Josephson effect. Later on, the canonical transformation based

on commutation relation between q and φ will be used to obtain a model for the QPSJ

from the JJ equations [36]. As explained earlier, equation 1.1 defines the charge carriers

in superconducting state and can be used to describe either side of the superconducting

regions of insulating barrier in a JJ (see figure 1.3). Let us consider the case where voltage
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V is applied between the two superconductors. Then the energy and wave function of both

superconductor regions are eV , ψ1 and −eV , ψ2 respectively. We can write time-dependent

Schrodinger equation on either side of the superconductor as given by equations 1.12 and

1.13 below:

ih̄
dψ1

dt
= eV ψ1 + kψ2 (1.12)

ih̄
dψ2

dt
= −eV ψ2 + kψ1 (1.13)

where φ is the phase difference across the junction.

Substituting equation 1.1 in the above equations and seperating it into real and imagi-

nary parts gives the result:

dφ

dt
=

2e

h̄
V (1.14)

for the imaginary part, and

I = ICsinφ (1.15)

for the difference of real parts. IC is the critical current of a JJ. It is the maximum super-

current that can be carried across the junction.

Equations 1.14 and 1.15 define DC Josephson effect at the device level.

The JJ used in circuits does not behave completely like the equation 1.15 describes.

It has dissipation and therefore deviation from completely coherent behavior as described

by equations 1.14 and 1.15. The description which includes this behavior of a JJ is called

RCSJ model. Resistively and Capacitively shunted junction (RCSJ) model of a JJ takes into
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Figure 1.4: Current biased Josephson junction with Resistor and Capacitor in parallel (RCSJ
model).

consideration, the junction’s intrinsic resistance and capacitance. The current biased junc-

tion shown in figure 1.4 represents an equivalent circuit model. When the current applied is

above the critical current of the junction, the additional current passes through the elements

R and C of the junction. Total current is hence given by:

I = IJ + IR + ICap (1.16)

which gives:

I = ICsinφ+
V

R
+ C

dV

dt
(1.17)

1.3.2 Charge transport in a quantum phase-slip

A very useful explanation of charge transport in JJs can be derived from RCSJ model.

By replacing V in equation 1.17 with its substitute from equation 1.14, we can get a descrip-

tion of JJ in terms of a second order equation in phase. An energy versus phase plot with

this description of the model is called as washboard potential shown in the figure 1.5. The

slope in the plot is due to the applied bias current. In a JJ, the charge carrier oscillates in a

potential well, giving rise to sinusoidal current description given by equation 1.15. But with

enough bias current, the height of the potential well is decreased and the charge carrier rolls

off to lower potential wells, losing energy due to dissipation. Under low bias current, the
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charge carrier can still travel into next potential well through a process called phase diffusion

[8], where thermal activation is responsible for the particles to cross the energy barrier.

In highly capacitive Josephson junctions, another possible way exists for charge carri-

ers to transport via tunneling through the potential barrier between potential wells which

are stimulated by zero-point fluctuations. These fluctuations are caused due to the energy

oscillations between kinetic inductance (see equation 1.10) and junction capacitance. This

phenomenon is called as macroscopic quantum tunneling [9].

In superconducting nano-wires, the thermally activated phase-slips can be described

by a similar process to that of phase diffusion but at a different enery scale proposed by

LAMH [10, 11, 12]. These phase-slips are observed as resistive tails below superconducting

transitions in nano-wires, where the value of resistance is given as a function of potential

barrier (figure 1.5), which is further defined as proportional to the energy needed to destroy

superconductivity, as shown in the following equations.

R(T ) ∝ e−U/T (1.18)

U ≈ ν∆0
2(T )

2
Sξ(T ) (1.19)

where, ∆0 is the superconducting energy gap , ν represents density of states and ξ is

the cross-section of the wire and coherence length at a given temperature T .

Quantum phase-slips follow a similar process as that of macroscopic quantum tunneling

but at a different energy scale derived in detail in [29]. The zero-point fluctuations arise

as a result of oscillations between inductance of the nano-wire and kinetic capacitance (see

equation 1.11). The dissipation in a quantum phase-slip process which allows the charge

carrier to settle in lower-energy potential well arises due to the dielectric constant of the

conducting material, which acts as an effective mass for the fluxon tunneling across the
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Figure 1.5: Washboard potential description of Phase diffusion/LAMH phase-slip (shown in
red) and Macroscopic quantum tunneling/Quantum phase slip (shown in blue) [29].

nano-wire. Therefore, the resistance term that will be shown in resistive and inductive series

junction (RLSJ) model of a QPSJ in next sectionl corresponds to the loss due to dielectric for

the electric field (or voltage drop) along the nano-wire due to the fluxon tunneling across the

wire. This microscopic description manifests as lumped element model in the next section

derived from the dual model to JJ which will be ready to implement in a SPICE model.

1.3.3 Resistive and inductive Series junction model of a quantum phase-slip

junction

As we have already seen, phase-slips are observed when superconductivity is suppressed

and a quantum phase-slip phenomenon can be explained as a dual to Josephson tunneling.

Mooij and Nazarov are the first to realize that a quantum phase-slip process can be described

by the charge-flux duality using quantum conjugates q and φ [5]. Charge and phase quantum

operators satisfy the commutation relation:

[q̂, φ̂] = −i (1.20)

where q is the electric charge and φ is the magnetic flux.
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They also proposed a phase-slip energy dual to the Josephson energy which was later

derived by [29]. In description given by Mooij and Nazarov in [5], they performed canonical

transformation, which satisfies the commutation relations between the resulting expressions,

to the Josephson hamiltonian to arrive at a qualitative description of a coherent quantum

phase-slip. The details are not discussed here, but the canonical transformations performed

are given below.

(q̂, φ̂)→ (−φ̂/2π, 2πq̂) (1.21)

Es → EJ ;EL → EC ; I ↔ Rq
−1V ;Y (ω)↔ Rq

−1Z(ω) (1.22)

where Es is the phase-slip energy, EJ is the Josephson potential energy, EL and EC are

the inductive and capacitive energies of a QPSJ and a JJ respectively.

Using the above equations, we can perform canonical transformation of equation 1.15

to obtain

V = VCsin(2πq) (1.23)

with VC being the critical voltage of the junction and V , the measurable voltage drop

across the junction.

The compact model describing the dissipation and inductance of the wire [5, 16] is shown

in the figure 1.6. Notice that this is a series circuit as opposed to JJ’s parallel circuit which

is a result of canonical transformation.

The capacitance and resistance terms from the equation 1.17 transform into the following

equations.

V

R
→ IR,C

dV

dt
→ L

dI

dt
(1.24)
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Figure 1.6: Voltage biased QPSJ in RLSJ model

The I-V description of a lumped element model of a QPSJ defined by RLSJ model is

therefore given by:

V = VCsin(2πq) + L
dI

dt
+RI (1.25)

Equation 1.25 has been used to develop a SPICE model for a QPSJ with additional mod-

ifications to incorporate transition between normal and superconducting states, thermally

activcated phase slips etc. explained in detail in coming chapters.

1.3.4 Lumped-element superconducting circuits using QPSJs

Apart from flux-qubit mentioned earlier, there can be several circuit applications of

QPSJs in RSFQ and quantum circuits. Present-day JJ-based qubits are limited by high-

frequency charge noise, which can be replaced by QPSJs [29], whose flux-noise is expected to

be much lower. Phase-slip oscillators are proposed [37] along with other circuit applications

like charge based memory device [29], single-charge transistor [17] along with quantum phase-

slip transistor [16] and some other applications [38, 39]. With the implementation of a SPICE

model, there is a possibility to explore many other circuit applications.
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Chapter 2

Compact model implementation in SPICE

Circuit simulations are key to design, validate and optimize the circuit for required

applications. The development of CAD tools and design methodologies is a major research

specialty in the field of semiconductor integrated circuits. But in superconducting digital

electroncis, CAD is far less advanced [40]. The development of RSFQ technology has also

been limited by the available design tools. [40] compares all the available CAD tools for

superconducting electronics. In this work, JSPICE and WRSPICE were used as a platform

to develop and implement a SPICE model for the quantum phase-slip junction, which is a

dual component to a Josephson junction.

The schematic developed in either graphical or text form in a SPICE simulation envi-

ronment, is converted to a system of linear or non-linear differential equations based on nodal

analysis and the software uses numerical models of these systems of equations to solve them

according to specified analysis. These differential equations are effectively the resultant of

all the individual components in the circuit. Therefore, each individual component in the

circuit simulation software is described by a set of linear or non-linear differential equations

called the compact model of the circuit. The coefficients of these set of equations are known

as model parameters.

A compact model is obtained for every analysis of the component (i.e. transient, DC,

AC, temperature etc.) and then represented in a form ready for circuit solutions in SPICE.

The purpose of this chapter is to demonstrate the way to prepare or derive a model ready

for SPICE to incorporate this device into circuits and solve its equations in the circuit

setup. Therefore, this chapter deals with the circuit solutions and numerical analyses usually

followed to reach a point where the the tool can understand and implement the device along
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with other circuit components under all conditions will be discussed, without considering

the details of software tools or programming.

2.1 Modified nodal analysis

Modified nodal analysis (MNA), as the name suggests, deals with improved nodal anal-

ysis, suitable for all the cases that will be seen in describing complicated device equations

using traditional circuit analysis techniques [41]. In subsequent sections, circuit examples

will be used to illustrate the solution methods that are used by a software tool in solving

electrical circuits.

2.1.1 Nodal analysis

There are two general approaches for analysis of linear circuits: mesh analysis and nodal

analysis. Mesh analysis is generally limited to planar circuits and unique equations can be

written for meshes in the circuit described by Kirchoff’s voltage law. The unknowns can then

be solved from the obtained set of equations. It is difficult for a computer to solve a circuit

using mesh analysis when the circuits become complicated and tend to be non-planar. In

contrast, nodal analysis has a unique set of corresponding equations, formed using Kirchoff’s

current law, whether the circuit is planar or not and therefore is easier to implement in

computers.

Nodal analysis is based on nodes of the circuit, where the sum of currents incident at

that node is zero. We therefore form a current equation at each node and then solve for

the unknowns. Using Ohm’s law and Kirchoff’s current law, the set of equations formed by

nodal analysis of a circuit can be represented in matrix form given by equation 2.1.

[Y ][V ] = [I] (2.1)
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Figure 2.1: Example circuit to show element stamping using nodal analysis.

[Y ] matrix and [I] vector are formed immediately from nodal equations and then solved

for [V ].

2.1.2 Element stamping

The easiest way to form the matrix with nodal equations in a computer is through

element stamping. An element stamp which is a matrix [Y ] corresponding to that device

alone, is defined for each component available in the SPICE tool. It also has an RHS vector

[I] if the device is non-linear. This matrix in this stamp has an order which is same as

or smaller than the order of the matrix of the entire circuit, and the matrix element of

this stamp occupy appropriate positions, corresponding to their nodes, in the larger matrix

describing the entire circuit. An example of a simple circuit is shown in the figure 2.1.

We use this circuit to show nodal analysis and element stamping of resistor R3 in the

circuit. Let us write the Kirchoff’s current law (KCL) equations for nodes 1 and 2.

i1 + i2 + i3 = 0→ node1 (2.2)

−i3 + i4− i5 = 0→ node2 (2.3)

Substituting branch equations to rewrite KCL in branch voltages:
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1

R1
v1 +G2v3 +

1

R3
v3 = 0 (2.4)

−1

R3
v3 +

1

R4
v4 = is5 (2.5)

Substitute branch voltages by nodal voltages (using Kirchoff’s voltage law (KVL)):

1

R1
e1 +G2(e1− e2) +

1

R3
(e1− e2) = 0 (2.6)

−1

R3
(e1− e2) +

1

R4
e2 = is5 (2.7)

By representing it in matrix form given by equation 2.1:

 1
R1

+G2 + 1
R3
−G2− 1

R3

− 1
R3

1
R4

+ 1
R3


e1
e2

 =

 0

is5

 (2.8)

In the above matrix equation, notice that each element contributes its conductance only

to entries with row-column positions corresponding to its node numbers. Consider element

R3. Its contribution to the matrix is written below:

 1
R3

− 1
R3

− 1
R3

1
R3

 (2.9)

This matrix is called as element stamp of resistor R3. Every resistor in general, can be

expressed in the exact same form as the above stamp. Some elements have an RHS vector

along with the matrix, particularly when dealing with non-linear devices or when analyses
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other than DC. Therefore, the nodal analysis equation can be rewritten as:

[I] = [Y ][V ] + [RHS] (2.10)

A capacitor has an element stamp given by:

 Gn −Gn

−Gn Gn

 (2.11)

with RHS vector:

 Ieq

−Ieq

 (2.12)

Here, Gn is the effective conductance of the device, which can have different values when

the device is operated in different modes and Ieq is the corresponding current through the

device. Each device is described as a resistance or conductance at that instant, with effective

values described as done in the case of a capacitor. This will be explained in more examples

later.

All the elements in the circuit is described by its stamp, and combining all the stamps

according to their respective node positions, give the circuit matrix which will then be

solved by the SPICE tool for respective node voltages or currents. This technique is valid

for DC, AC, transient, temperature, noise etc. analyses that are available in the software

tool. However, some devices have different set of element stamps for each of these analyses,

which will be discussed in detail in the next section.
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Figure 2.2: Example showing MNA stamp for a voltage source.

2.1.3 Modified nodal analysis

We have seen that nodal analysis is a simple method to obtain the element stamp which

can be implemented in SPICE models. But every device cannot be described by using

branch equations to get to a set of equations of type 2.1 or 2.10. Some of the examples of

this case are voltage sources and inductors. Nodal analysis therefore, leads to a complicated

representation of the device equations, which often are very difficult to implement in a

computer.

Modified nodal analysis (MNA) [42] is a better approach to handle these situations and

is implemented in many CAD tools for circuit simulation [41]. In this method, we add the

aforementioned unused branch equations (with voltage sources, inductors etc.) to new row

in the matrix as additional equations in the form:

[V ] = [R][I] (2.13)

instead of the form in equation 2.1. An example with voltage sources in the circuit is

shown in figure 2.2 to illustrate this concept.

This example has a voltage source and a voltage controlled voltage source, two of the

devices for which, nodal analysis is not suitable to derive an element stamp. MNA stamps
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for these devices are obtained by using similar analyses as before with additional equations

in the matrix. The solution is shown below.

First step is to write Kirchoff’s current law equations:

i1 + i2 + i3 = 0 (2.14)

−i3 + i4− i5− i6 = 0 (2.15)

i6 + i8 = 0 (2.16)

i7− i8 = 0 (2.17)

Using branch equations to eliminate as many branch currents are possible:

1

R1
v1 +G2V 3 +

1

R3
v3 = 0 (2.18)

−1

R3
v3 +

1

R4
v4− i6 = is5 (2.19)

i6 +
1

R2
v2 = 0 (2.20)

i7− 1

R2
v2 = 0 (2.21)

Now, writing down unused branch equations corresponding to voltage sources:

v6 = ES6 (2.22)

v7− E7v3 = 0 (2.23)

Using Kirchoff’s voltage law to eliminate branch voltages from previous equations:
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1

R1
e1 +G2(e1− e2) +

1

R3
(e1− e2) (2.24)

−1

R3
(e1− e2) +

1

R4
e2− i6 = is5 (2.25)

i6 +
1

R2
(e3− e4) = 0 (2.26)

i7− 1

R2
(e3− e4) = 0 (2.27)

(e3− e2) = ES6 (2.28)

e4− E7(e1− e2) = 0 (2.29)

All the above equations can be written in matrix equation form to obtain the solution:



1
R1

+G2 + 1
R3

0 0 0 0

−1
R3

1
R3

+ 1
R4

0 0 −1 0

0 0 1
R2

−1
R2

1 0

0 0 −1
R2

1
R2

0 1

0 −1 1 0 0 0

E7 −E7 0 −1 0 0





e1

e2

e3

e4

i6

i7


=



0

is5

0

0

ES6

0


(2.30)

The last two colums and rows of the matrix along with last two rows of both left hand

side and right hand side vectors of the above equation are the equations added to represent

voltage sources in the form of equation 2.13. The element stamp for a voltage source will

therefore be:


−− −− 1

−− −− −1

1 −1 −−

 (2.31)
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with RHS vector is:


−−

−−

V

 (2.32)

where V is the voltage of the voltage source. Similarly, an inductor’s element stamp

can be obtained which is given below.

The MNA matrix is:


−− −− 1

−− −− −1

1 −1 −Rn

 (2.33)

with the RHS vector:


−−

−−

−V eq

 (2.34)

where Rn is the equivalent resistance in a mode of operation and V eq is the equivalent

voltage across it. A branch current is introduced as an additional variable with other variables

being node voltages, for every device that cannot be worked out using nodal analysis.

2.2 Dynamic element stamping

In all the examples that we have seen so far, we have only considered static elements

like voltage sources and resistors. We have however, looked at element stamps of inductors
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and capacitors, which are dynamic elements in time. In this section, we will see how to

numerically analyze dynamic, linear and non-linear devices to be able to write in a form

that a computer can solve, along with other devices in the circuit.

2.2.1 Linear devices and trapezoidal rule

Inductors and capacitors are the most common examples of linear dynamic devices. But

other devices might exist like an ideal quantum phase-slip, which will be used in the context

of QPSJ etc. Unlike resistors, these dynamic devices behave differently in different modes of

operation. In this thesis, we are mainly interested in transient mode operation of the device.

But other available operations are also briefly discussed.

Numerical analysis of a linear differential equation can be done using several methods.

But the most popular ones suitable in a computer simulation are Forward Euler, Backward

Euler and Trapezoidal methods. Trapezoidal rule has been identified as the most efficient

method and is often used in many SPICE programs including the ones we are interested in.

A short summary of the trapezoidal rule for solving ordinary differential equations is given

below:

ẏ(t) =
dy(t)

dt
= f(y(t)) (2.35)

The above equation can be written as:

y(tn)− y(tn−1)

h
≈ 1

2
[ẏ(tn) + ẏ(tn−1)] (2.36)

where the right hand side is the averaged tangent at the points n and n− 1.

From equations 2.35 and 2.36, we can write:
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y(tn)− y(tn−1)

h
≈ 1

2
[f(y(tn)) + f(y(tn−1))] (2.37)

(2.38)

From equation 2.37, we can write:

y(tn) = y(tn−1) +
h

2
[f(y(tn)) + f(y(tn−1))] (2.39)

Equation 2.39 is the final equation which is used to solve the device equations as a

function of time. Initial conditions of a dynamic element in the circuit are either provided

by the user or, default initial conditions are assumed to obtain solution at n = 1 or time

t = 0. Then the solution continues till the end time specified by the user. The MNA stamp

of a capacitor is derived with the RHS vector below for transient analysis.

Figure 2.3 shows a simple schematic of a capacitor under transient analysis. It can be

represented by the equation 2.40, which can be numerically solved using trapezoidal rule

given by equations 2.41 and 2.42.

i(t) = C
dv(t)

dt
(2.40)

Vt = Vt−1 +
h

2
[v̇(t) + v̇(t− 1)] (2.41)
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Figure 2.3: Capacitor MNA stamp for transient analysis.

i(t) = C
dv(t)

dt
≈ C

[
−v̇(t− 1) +

2

d
(Vt − Vt−1)

]
(2.42)

which is of the form:

I = GnV +RHS (2.43)

From these equations, a MNA stamp based on an examples shown in previous section,

is given by:

 2C
h
−2C

h

−2C
h

2C
h

 (2.44)

with RHS vector: C(v̇(t− 1) + 2Vt−1

d
)

C(v̇(t− 1) + 2Vt−1

d
)

 (2.45)

In the next chapter, this method will be used to derive a part of MNA stamp of a QPSJ,

where the inductor will also be discussed.

27



2.3 Non-linear devices and Newton-Raphson method

2.3.1 Numerical solutions of circuits using Newton-Raphson method

We have seen linear static and linear dynamic devices and their corresponding numerical

analyses in SPICE softwares. But almost all the interesting circuits that require modeling and

computer simulation involve non-linear devices. The solution of a circuit with these devices

require numerically solving a non-linear I-V equation for a solution which takes several

iterations. A common example of non-linear devices is a diode. A non-linear equation is

used to describe the I-V relation of a diode given by equation 2.46. Newton-Raphson method

is the most common method implemented in SPICE softwares and is explained in this section

using the diode example.

I = ISexp(
V1

vt
) (2.46)

where, I is the diode current,

f(x) = 0 (2.47)

Before going into the solution of a circuit with a diode, let us look at the overview

of Newton-Raphson method for solving non-linear equations [43]. Figure 2.4 below shows

a non-linear curve, given by equation 2.47 with a root at r. Here, the assumption is that

f ′(r) 6= 0. Now let us choose a number x1, which serves as our initial condition for the first

iteration in solving for equation 2.47. The tangent line to the graph of f(x) at the point

(x1, f(x1)) has x-intercept x2, which is closer to the root r. This calculation is given by

equation 2.48.
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Figure 2.4: Graphical representation of Newton-Raphson method for numerically solving
non-linear equations.

x2 = x1 −
f(x1)

f ′(x1)
(2.48)

Because of the assumption that f ′(r) 6= 0, we will not have problem with the denomina-

tor being equal to zero. This process is iterated with x2 as the new value at which a tangent

is drawn to obtain an even closer solution to r, which is x3 and so on till a very close number

to r is reached, which is then treated as the solution to the equation 2.47. The equation to

represent Newton-Raphson method is therefore given by equation 2.49 below.

xn+1 = xn −
f(xn)

f ′(xn)
(2.49)

Now consider the circuit with a diode shown in the figure 2.5. Using equation 2.46,

Kirchhoff’s voltage law at node V1 gives equation 2.50.
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Figure 2.5: Example circuit with a diode for demonstrating Newton-Raphson method.

−5 +
V1

2
+ ISexp

V1

vt
= 0 (2.50)

Applying Newton-Raphson method to solve this equation gives:

V1n+1 = V1n −
5− ISexp

(
V1n
Vt

)
− 0.5V1n

−ISV1nexp
(
V1n
Vt

)
− 0.5

(2.51)

Coefficients of V1n can be written as Geq in the MNA matrix of the diode and the

remaining terms can be included in the RHS vector. A detailed model of a diode is not

provided here. But element stamps for non-linear devices will be derived in this way in the

next section while solving for MNA representation of the QPSJ compact model.

2.3.2 Simulation convergence and convergence aids

Newton-Raphson method is the popular method in SPICE tools for circuit simulations,

but it can often run into some problems. This algorithm often fails to find a solution when

the iteration sequence does not converge. In this method, we only choose one initial guess

to start the iteration process to reach the right solution, unlike many methods, where two

initial guesses are required where the method determines if the solution lies in between those
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two guesses or outside. So in this method, if the initial guess is not appropriately chosen, the

iteration process fails to converge, leading to each iteration going further and further away

from the root of the equation. SPICE offers some adjustment parameters that can be set

by the user, to determine the tolerances for detecting and aborting non-converging iterative

processes. In addition, specific models are also modified to obtain better convergence or

avoid frequent non-convergence problems. These are discussed in following chapters.
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Chapter 3

Compact model and MNA analysis of a quantum phase-slip junction

Overview of the theory of a Quantum phase-slip junction from basic principles to the

derivation of a compact model has been presented in chapter 1. In the SPICE model that

we implemented in WRSPICE, some small modifications were made to the original compact

model given in the equation 1.25 to accomodate operation of the device in normal state of

operation above transition, and also the operation of the device in thermal phase-slip region

with some assumptions. Below transition, the device behaves as an ideal QPSJ below critical

voltage of the device. The compact model and the equation derived in chapter 1 are provided

here again with modifications to the model.

V = VCsin(
2πq

2e
) + L

dI

dt
+R(V )I (3.1)

The origin of the voltage drop across a nano-wire along with the geometric inductance

and resistance corresponding to dissipation in the device are discussed in the device. But

this model is generic and is valid to simulate any device similar to a QPSJ with inductance

and resistance values not necessarily corresponding to a valid set to experimentally increase

the probability of high quantum phase-slip rate. Additionally, the resistance R is shown in

Figure 3.1: Voltage biased QPSJ in RLSJ model.
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equation 3.1 as a function of voltage V . It represents a non-linear resistance with its resis-

tance value different in different regions of operation of the device. All the input parameters

of the device are discussed below.

3.1 Input parameters of the device

In this section, the input parameters that can be controlled by the user while performing

QPSJ simulations are discussed, along with the default values that are assigned to these

parameters when the user does not provide values for them.

VC : From the equation 3.1, we can find that the first term has a parameter VC , which is

the critical voltage of the device. The default value for VC is 700µV . The range of the values

that can be assigned to VC is from 10µV to 0.1V . The range cannot be changed by the user.

But it can be modified in the Verilog-A program that will be discussed in the next chapter.

Below critical voltage, the device has ideal quantum phase-slip characteristics, along with

geometric inductance of the device and a sub-gap resistance that might be caused due to

quasi-particles. These parameters can however be set to zero and are discussed later in this

section.

The variable name that can be used to vary critical voltage is vcrit in all the models

that are developed.

Initial charge : In the first term of the equation 3.1, in addition the VC , the parameter

charge (q) exists. q is calculated from the current through the device from previous instant

of time in transient analysis and is the total charge that has passed through the junction in

time t till that instant. It is given by the equation 3.2 below:

q = qic +

∫
eI(t)dt (3.2)
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where I(t) is the current through the junction which is a function of time and e is the

charge of an electron, e = 1.9625× 10−19 Coulombs. A function exists in WRSPICE, which

performs numerical integration when equation 3.2 is presented. This is also valid for Verilog-

A models. In JSPICE however, a numerical analysis for the integration must be performed

manually by defining a time-step and multiplying current at each instant by the time-step

(which is the differential element in the integration) to calculate the total charge. qic is the

initial condition charge, that can be assigned by the user to represent a charged device which

can aid in convergence. It has a default value of 0 and can take any value.

The variable name for initial condition charge in all the models developed is ichrg.

Inductance : This is the total inductance of the device as seen in second term of equation

3.1. It can include both the geometrical and kinetic inductance of the device and has a default

value of 890nH. This value is taken from [16].

The variable name for inductance in all the models is ind.

Sub − gap resistance : As mentioned earlier, the resistance of QPSJ model is divided

into three parts. Below transition temperature, QPSJ has a sub-gap resistance, the origin

of which can be accounted to any known phenomenon that cause it, like quasi-particle

conductance. Its default value is 1× 109Ω.

It has the variable name rsub in all the models.

Normal resistance : Normal resistance is the resistance of the device above its transition

temperature. It has the default value of 1.6× 106Ω.

The variable name used is rnorm.

Drop− back current : Drop-back current is the maximum current through the junction

before the superconductor turns normal. Above this current, normal resistance is sec across

the device. Its default value is dependent on the inductance and is calculated from the

equation 3.3 below:
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Idp =

√
L

1000e
(3.3)

The variable name for drop-back current is idpback.

In order to implement a drop-back current to get an effect similar to retrapping in a

JJ, the time-step (increment in time after each iteration) of the QPSJ simulation must be

limited to 2
eIdp

for SPICE program to capture this effect.

Transition current : This is an additional parameter used to determine the operation

of the device after it goes above critical voltage but before it goes normal. The value of this

parameter can be determined to specify if the device is undergoing thermal phase-slips or

some other kind of dissipation. It is not designed to represent a particular theory for QPSJ,

but can be valid for several theories depending on the choice of the parameters.

It has a default value of 40pA and a variable name of deli. The resistance of the device

during this transition is given by the equation 3.4 below:

R = | 1
VC−deli/2

rsub
− VC+deli/2

rnorm

| (3.4)

3.2 MNA analysis of RLSJ model of a QPSJ

In chapter 2, we have discussed the concept of modified nodal analysis and element

stamps. In the next chapter, we will see that once we have a device description in the format

of MNA stamp, how we can implement it in programs that are compatible with SPICE

softwares. Before that, an MNA stamp must be derived for the QPSJ device based on the

compact model shown in figure 3.1 and RLSJ equation given by 3.1.

The QPSJ device is treated as a combination of an inductor, a variable non-linear

resistor and an ideal quantum phase-slip in series. Therefore, the resultant MNA stamp of
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the device can be obtained from the MNA stamps of these individual devices. The combined

MNA matrix is the equivalent conductance sparse matrix as a function of time, which is

suitable for transient analysis alone. Let us look at the MNA stamp of each of the devices

in the model starting with inductor.

3.2.1 MNA stamp of an inductor

The QPSJ model has a simple inductor without the element of any mutual inductance

involved. Therefore, unlike the case of an actual inductor that is used in regular SPICE

model, this inductor has a simplified version which can be derived as shown below.

Trapezoidal method shown in the equation 2.39 is used here to obtain the following

equation for inductor.

L
dI1

dt
= L

(
−I0

′ +
2

∆
(I1 − I0)

)
(3.5)

Here, ∆ is the time step, I1 is the current in this iteration, I0 is the current in last

iteration, I0
′ is the derivative of last iteration and L is the inductance.

The term multiplying I1 in the equation above is 2L
∆

, which is the 3× 3 element in the

MNA matrix and the remaining terms −L
(
I0
′ + 2I0

∆

)
, which gives the MNA stamp:


−− −− 1

−− −− −1

1 −1 −2L
∆

 (3.6)
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and RHS vector: 
−−

−−

−L
(
I0
′ + 2I0

∆

)
 (3.7)

3.2.2 Non-linear resistor

The next term that will be derived belongs to the non-linear resistor. This is a simple

piece-wise linear function with different slopes corresponding to resistances in those regions.

Since this is not a linear element, its analysis must be done using the Newton-Raphson

method. Instead of resistance, the corresponding conductance is used in the MNA matrix.

It has the form, G(V ).

Using analysis similar to equation 2.49, we can write:

G(V ) = G(VL) + (V − VL)g (3.8)

where, g is the first derivative of the conductance fucntion G(V ), V is the voltage across

the device of current iteration and VL is the voltage across the device in last iteration.

The MNA matrix representation of the device is given by:

 g −g

−g g

 (3.9)

with RHS vector given by:
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−G(VL) + gVL

G(VL)− gVL

 (3.10)

3.2.3 Quantum phase-slip

This is also a non-linear equation but with slight complication. It has two variables,

time and charge. Here, we will make use of the current from previous iteration which relates

time and charge.

Quantum phase-slip equation is given by:

V (t) = VCsin

(
2πq

2e

)
(3.11)

when operated using equation 2.49 gives:

VCsin

(
2πq

2e

)
= VC

(
2π

2e

)
(q − qL)cos

(
2πq

2e

)
dq

dt
(3.12)

dq

dt
= IL (3.13)

(3.14)

⇒ q = qL +
∆(I + IL)

2
(3.15)

Therefore,

38



VCsin

(
2πq

2e

)
� VCsin

(
2πqL

2e

)
+ VC

(
2π

2e

)(
∆(I + IL)

2

)
cos

(
2πqL

2e

)
(3.16)

where IL and qL are current and charge of previous iteration respectively.

The MNA matrix is therefore given by:


−− −− 1

−− −− −1

1 −1 VC
(

2π
2e

) (
∆
2

)
cos
(

2πqL
2e

)
 (3.17)

and RHS vector is given by:


−−

−−

VC
[
sin
(

2πqL
2e

)
+
(

2π
2e

) (
∆IL

2

)
cos
(

2πqL
2e

)]
 (3.18)

3.2.4 MNA matrix and RHS vector of a QPSJ

All the individual device MNA stamps obtained in the previous three sections can be

combined into a single MNA stamp, that can describe the entire QPSJ device. The MNA

matrix is given by:


g −g 1

−g g −1

1 −1 −2L
∆

+ VC
(

2π
2e

) (
∆
2

)
cos
(

2πqL
2e

)
 (3.19)
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and the RHS vector is given by:


−G(V ) + gV

G(V )− gV

−L
(
I0
′ + 2I0

∆

)
+ VC

[
sin
(

2πqL
2e

)
+
(

2π
2e

) (
∆IL

2

)
cos
(

2πqL
2e

)]
 (3.20)

These matrices can be together represented in the form of [I] = [Y ][V ] + [RHS] given

by the equation:


I1

I0

V1

 =


g −g 1

−g g −1

1 −1 −2L
∆

+ VC
(

2π
2e

) (
∆
2

)
cos
(

2πqL
2e

)


V1

V0

I1

+


−G(V ) + gV

G(V )− gV

−L
(
I0
′ + 2I0

∆

)
+ VC

[
sin
(

2πqL
2e

)
+
(

2π
2e

) (
∆IL

2

)
cos
(

2πqL
2e

)]
 (3.21)
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Chapter 4

QPSJ SPICE model program development in JSPICE and WRSPICE

The next step in the implementation of our QPSJ SPICE model is to develop appropriate

programs which are compatible with the softwares JSPICE and WRSPICE, debugging them

and then integrating them with respective softwares. The programs were developed in C

language to be compatible with JSPICE and C++ to be compatible with WRSPICE. A

Verilog-A model has also been developed to make a portable run-time loadable module for

WRSPICE and any other softwares which support Verilog-A models. The Verilog-A model

is simple to implement and portable but does not comprise in it, the mathematical versatility

to describe the device given by MNA stamp of equation 3.21 which is then integrated directly

with MNA stamps of other devices in the circuit. Instead, this model only uses the form

given by equation 3.1, to derive its own MNA stamp, which is not suitable to describe all

the complexities of the device. C and C++ based models have finer-grain control over the

mathermatics of the device and are capable of handling the complete MNA description of

the device and therefore have the logic flow with other devices in the circuit making them

run faster. However, these models are complicated and even the simplest of the devices are

time consuming to develop [44]. Each of these models will be discussed in detail in this

chapter.

4.1 Verilog-A model of the device

The Verilog-A description of a device for implementation in modern circuit simulator

CAD tools has been recently enhanced to provide greater support for compact modeling. It

is mainly because of its dramatic improvement over C language which has been a standard

language for device modeling since 1985 [44]. C interfaces of all the simulators have existing
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functions which are used in the compact models of the device. The Verilog-A description

simply has to connect the device description to these existing functions. Since it is a much

easier language to develop models in, most of the model simulators incorporate Verilog-

A models which are either run-time loadable or pre-loadable modules. But, as already

mentioned, Verilog-A models have not yet reached a point in linking themselves with C or

C++ libraries of the SPICE simulators, that will give complete privileges in the control of

mathematics of the model.

In our Verilog-A model for QPSJ, we use the equation 3.1, by implementing the three

parts of the device of picture 3.1 as three different devices in series. The entire Verilog-A

code for our QPSJ model has been provided in Appendix B. This code is compatible with

all the SPICE programs which support Verilog device models.

The module has been named qps, which is short for quantum phase-slip. It has two

nodes, opposed to three nodes of Josephson junction SPICE model. The extra node for a JJ

is used to determine/measure phase, but its counterpart, charge node has not been included

in the QPSJ model in this version. The two nodes are input-output nodes that connect to the

rest of the circuit. The resistor, inductor and a quantum phase-slip are connected in series

through internal electrical signals of the model. The default parameter and constant values,

which are internal to the model as well as those that can be changed by the user are then

defined with the default values that are provided in the previous section. The device model

equations from the previous chapter are then introduced, but without the MNA analysis.

The syntax of the model is based on the description given in [44] and [45].

This model has been made compatible with and included in WRSPICE, where it can be

loaded during run-time before loading the circuits. The adms translator converts this Verilog-

A model into C++ files using pre-defined functions in WRSPICE to convert this model into

an MNA based device similar to others in the program. This translation is however, not as

accurate or flexible to use as that of an originally developed C++ model. These C++ files

are then compiled to create a loadable file which is then called into the WRSPICE using its
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command line input before a circuit with this device is loaded. The letter p denotes a QPSJ

along with the module name qps for entering all the input parameters in the model section

in SPICE program.

4.2 C and C++ based MNA models of QPSJ

Both the C and C++ models are discussed in this section as both of these models are

very similar, atleast in the context of development of a device model. The older SPICE

softwares used C language as the platform for developing the entire software including the

simulation part of the circuits and setting up device models. The latest softwares use C++

models, although, there is a lot of development in including Verilog-A device models as an

internal part of these programs to eliminate the requirement of developing additional models

added by users to the software in C++. In the context of this thesis, JSPICE uses C and

WRSPICE uses C++. They are very similar as WRSPICE is seen as an advanced version

of JSPICE.

All of the SPICE programs use MNA analysis in solving circuits along with numerical

methods that are already discussed in the previous chapters. The internal details of pro-

gramming these solution methods are not required by the user developing device models.

In this thesis, some of the details of these programs are discussed briefly to provide some

understanding into how new device interface with the rest of the SPICE program.

Several pre-defined functions, or macros, or procedures exist in SPICE programs which

are used in developing models for devices to simplify the programming. A header file is

prepared for each device that includes all the parameter variables, constants, functions and

pointers for MNA matrix elements that the device will use. This header file will also include

the details of key words that are used in a SPICE circuit program while describing the de-

vice. For a QPSJ, in both C and C++ models, the key word qps and the letter p denote the

usage of the device in the circuit. It has the syntax:
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p{name} {node1} {node2} qps

.model qps{parameters}

where the first line defines the position of the input-output nodes of device in the circuit

and the second line links the device to QPSJ model and also takes the parameters as inputs

from the user. These parameters have keyword names defined in the previous chapter. Now,

the developed header file is used in all the functions used by the QPSJ model.

A simple function defined as qps.c in JSPICE or qps.cc in WRSPICE links all these

keywords of device and parameters to the actual variables defined in the header file. This

program also links the functions defined in the device to the SPICE software.

Programs qpsmpar.c,qpsparam.c,qpsask.c and qpsmask.c for JSPICE and qpsaski.cc,

qpsaskm.cc, qpsseti.cc and qpssetm.cc for WRSPICE have functions which act as the bridge

between input-output parameters of the model or an instant. The input parameters given

by the user are assigned to the respective variables to instances or the entire models through

these functions. Similarly, the output values reach the user interface through these functions.

The names of the functions suggest the action of respective functions.

The function qpsload.c of JSPICE or qpsload.cc of WRSPICE is where the actual cal-

culations take place. Each element of the MNA matrix or the RHS vector is calculated here

for the most generic case and the results are assigned to the respective matrix row-column

positions. Each element of the matrix is defined by a pointer. All of these pointers are

assigned to the MNA matrix and RHS vectors based on the numerical method developed in

the previous chapter equation 3.21. The additional calculations to reach this point to obtain

final MNA matrix by using currents/charges of previous state or iteration are also defined

in this function. The actual code used in calculations or actual assignment commands are

not provided here. But they are similar to the already existing devices in SPICE.

The functions qpssetup.c in JSPICE or qpset.cc in WRSPICE are the functions where

the default values for parameters are assigned in a way to take them up when no user values
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are supplied for these variables. Along with this, the pointers representing matrix elements

are specified their positions in the matrix based on the nodes of the device in the circuit.

This action is handled by a predefined function in SPICE which is just called here with their

pointers assigned as its variables. Time-step limits are also assigned in this function.

There are additional functions for each device apart from the specified ones so far.

But the definitions of these functions are not mandatory always. Programs like qpsacld.c

or qpsacld.cc are to assign matrix elements corresponding to AC analysis of the device.

Similarly, there are functions for noise and temperature along with additional functions if

required for each of these device. These functions can be left empty if those analyses are not

required for the device.

The details of the code are not provided for any of these functions, but they are similar

in all the SPICE softwares and can be understood by studying the existing device models in

the software.

The JSPICE functions are developed and small changes are made to the existing SPICE

software to allow it to recognize the new device. A makefile has been developed to compile

and debug these programs. Then the existing setup files are slightly modified to install the

software with the new device included in it. Simple circuit simulations with QPSJ are run

and the results are provided with explanations in the next chapter.

In the development of WRSPICE model for QPSJ, the Verilog-A model has been used.

This Verilog-A model, when used with adms translator, generates C++ files with a load-

able output file. The C++ files are then edited, mainly the program qpsload.cc, to get an

accurate description of the MNA part of the device. Then the setup scripts are modified to

include these C++ files instead of Verilog-A file when the QPSJ model is loaded. This ap-

proach simplified the programming and debugging process, as the simple non-mathematical

functions and header files are already generated by the adms translator from the Verilog-A

program. WRSPICE results with QPSJ based circuits are also provided in the following

chapter.
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Chapter 5

SPICE simulation results and example circuits

The QPSJ model has been implemented in JSPICE and WRSPICE. Although the model

is exactly the same, differences in program executions were observed with better performance

in terms of convergence of the model and also speed, seen in WRSPICE. Therefore, the

simulation results shown in this chapter are performed in WRSPICE. A QPSJ with resistor

in series has been simulated to observe the I-V characteristics of the device. Some of the

basic example circuits are then designed and simulated to verify the validity and working of

the model developed. All the presented examples show efficient operation of the model with

valid and interesting results. They are discussed in this chapter.

5.1 I-V characteristics of a QPSJ

An I-V curve of a QPSJ is expected to show different characteristics in different regions

of operation, which correspond to respective phases. The circuit used for the simulation of

the device is shown in figure 5.1. The SPICE program corresponding to this circuit is given

in Appendix A.

The circuit in figure 5.1 has been simulated with a piece-wise linear voltage starting at

0V and reaching 1.2mV at the end of 4ns. The sub-gap resistance is 1 × 109Ω and normal

resistance is 1.6 × 106Ω. Inductance value is 89mH and critical voltage is 700µV . The

corresponding I-V curve output of the WRSPICE is given by figure 5.2.
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Figure 5.1: QPSJ circuit for transient I-V simulation.

Figure 5.2: I-V characteristics of a QPSJ.

Below 700µV , the device undergoes a phase-slip event which correspond to a voltage

drop across the device. When the voltage is further increased, there is a transition from
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Figure 5.3: Charge-based logic/memory circuit obtained from [29].

superconducting state to normal state. Even in superconducting state, the device exhibits

resistance, which can correspond to thermal phase-slips or quasi-particle resistances etc.,

depending on the experimental or modeling setup. The device then exhibits a normal state

above 700µV till it reaches the applied voltage of 1.2mV . In this region, the behavior seen is

of a resistor. The I-V characteristics are very sensitive to the simulation parameters chosen.

A longer transition between normal and phase-slip state can be seen if inductance value is

decreased. Similarly, lower dissipation can be seen during phase-slip event when sub-gap

resistance is decreased.

5.2 Charge-based superconducting memory

A charge-based memory circuit dual to a flux-based logic has been proposed in [29]. The

circuit is provided in the figure 5.3. The corresponding SPICE program has been provided in

Appendix B. A clear switching between two states has been observed at the critical voltage

along with hysteresis.

The circuit in figure 5.3 has been simulated with a piece-wise linear voltage starting at

0V and reaching 2mV at the end of 4ns. The sub-gap resistance is 1 × 109Ω and normal
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resistance is 1.6×106Ω. Inductance value is 89mH and critical voltage is 700µV . All default

parameters are chosen for this simulation. The corresponding I-V curve is given by figure

5.4.

Figure 5.4: I-V curve of Charge-based logic/memory circuit obtained from [29].

The capacitors charge and discharge as the QPSJs switch between phase-slip regions

and normal regions respectively giving a two-level loop with currents flowing in opposite

directions resulting in hysteresis, while the switching of states between phase-slip and super-

conducting correspond to the switching behavior seen in the circuit.
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Figure 5.5: QPSJ and JJ in parallel.

5.3 QPSJ and JJ in parallel

A simple circuit with a QPSJ and JJ in parallel has been simulated. The parameters of

both JJ and QPSJ are assigned so that the current/ voltage corersponding to their operation

is expected to be comparable. The corresponding circuit is shown in figure 5.5.

Critical voltage of the QPSJ is 10µV , and its inductance is 890µH. Sub-gap and normal

resistances are 1×105Ω and 1×103Ω respectively. Gap voltage of the JJ is 100µV and critical

current of the junction is 50nA. A piece-wise linear voltage has been applied with 0V at 0ns

to 3mV at 2ns. The corresponding SPICE program has been provided in Appendix I and

the simulation result has been given in figure 5.6.
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Figure 5.6: I-V simulation result of QPSJ and JJ in parallel.

An initial switching from phase-slip state to superconducting state has been observed

at the critical voltage of the QPSJ which then triggered the oscillations in JJ. The result of

this is seen as steps in the I-V curve of the circuit with voltage across QPSJ plotted against

current through QPSJ.

5.4 QPS and JJ in series

QPSJ and JJ are now arranged in series with a resistor and the simulation has been

performed similar to the simulation shown in earlier section. Parameters of both JJ and QPSJ

are again adjusted to give an I-V characteristic where both QPSJ and JJ are significant. The

circuit corresponding to the simulation is shown in figure 5.7.
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Figure 5.7: QPSJ and JJ in series.

Critical voltage of the QPSJ is 2mV , and its inductance is 890µH. Sub-gap and normal

resistances are 1×109Ω and 1.6×106Ω respectively. Gap voltage of the JJ is 3mV and critical

current of the junction is 0.5nA. A piece-wise linear voltage has been applied with 0V at

0ns to 4mV at 2ns. The corresponding SPICE program has been provided in Appendix I

and the simulation result has been given in figure 5.8.
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Figure 5.8: I-V simulation result of QPSJ and JJ in series.

The I-V curve seen is dominated by the behavior of QPSJ and therefore the JJ char-

acteristics are hidden. Tuning the parameters of this circuit is required to achieve balance

between behavior of JJ and QPSJ.

5.5 QPS loop

A QPS loop circut has been created with parallel Resistor and Capacitor set in series

with each QPSJ. The circuit is shown in the figure 5.9. Both the QPSJ devices are identical.

This simulation ensures two of the QPSJ devices can be simulated together.

Critical voltage of the QPSJ is 700µV , and its inductance is 89µH. Sub-gap and normal

resistances are 1 × 109Ω and 1.6 × 106Ω respectively. A piece-wise linear voltage has been
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Figure 5.9: Two QPSJ devices forming a loop with resistors and capacitors.

applied with 0V at 0ns to 2mV at 2ns. The corresponding SPICE program has been

provided in Appendix I and the simulation result has been given in figure 5.10.

Figure 5.10: I-V simulation result of QPSJ loop circuit shown in figure 5.9.
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5.6 Charge base logic using QPSJ

In the earlier section, we have seen charge based memory circuit example of a QPSJ.

But that schematic is an exact dual to the Josephson transmission line, which is the building

block of all RSFQ circuits. A QPSJ transmission line, therefore can be the building block of

charge-based logic, a dual to RSFQ logic, and it is also possible to operate flux and charge

complementing each other in a single logic system of complementary quantum logic (CQL).

In this section, a single element of a QPSJ transmission line is simulated in WRSPICE using

our model and is compared to the simulation of single element of a Josephson transmission

line.

Figures 5.11 and 5.12 show Josephson transmission line schematic and QPSJ transmis-

sion line schematics respectively.

Figure 5.11: Josephson transmission line schematic.

Figure 5.12: Quantum phase-slip transmission line.

A current bias is applied to JJ, which is lower than its critical current. Similarly, a

voltage bias is applied to QPSJ, lower than its critical voltage. Now, when an input pulse
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5ps wide is applied, current pulse in case of JJ, and voltage pulse in case of QPSJ, both

the devices switch causing a shift in phase of 2π in case of JJ, and causing a tunneling of

charge of 2e across QPSJ. In JJ, the shift in phase can be seen as a flux quantum across the

JJ, which is seen in the output voltage pulse (plotted as a function of time, see figure 5.13).

Similarly, charge tunneling is seen in I versus time plot (see figure 5.14).

The charge-based logic in QPSJ can be used to construct logic similar to that of RSFQ,

and both QPSJ and JJs can be used together in complementary quantum logic (CQL) to

obtain better performance in logic operations.

Figure 5.13: Time-domain simulation result of JJ based transmission line.
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Figure 5.14: Time-domain result of QPSJ based transmission line.
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Chapter 6

Conclusion and future work

A generic and simple version of a quantum phase-slip junction has been modeled and

implemented in WRSPICE and JSPICE in this work. Many theories and models exist to

account for the details of the behavior of a QPSJ in different regions, but there is no single

established model to describe a QPSJ as a device in a circuit. The model used in this work

is generic and valid for all the models. In the future, we will continue to work on improving

the model and provide the end-user of this model, with a set of variables that he can assign

based on experiments, while all the internal parameters are derived from these user variables.

This version of the QPSJ SPICE model also has some issues with convergence, especially

when we try to modify time-step to observe the effects of plasma oscillations. Although these

issues can be addressed by the user by a proper choice of initial conditions, the numerical

model can be modified to solve convergence problems while still maintaining consistency with

the theory of quantum phase-slips. Implementin this timestep modification to accurately

track plasma oscillations will enable the device to latch a single unit of charge when switched

even when the input conditions are changed. This will lead to an accurate description of

charge-based logic, dual to flux-based logic in JJs and therefore enable the development of

this new logic family.

An interesting next step with this model is to develop a complementary quantum logic

(CQL) family which uses both charge and flux as the logic levels, and there is a possibility

for conversion of flux to charge and vice-versa. Figure 6.1 and 6.2 below illustrate the idea of

charge-flux conversion and flux-charge conversion respectively. Simulation results for these

schematics are also provided in figures 6.3 and 6.4.
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Figure 6.1: Charge-flux conversion scheme based on CQL.

Figure 6.2: Flux-charge conversion scheme based on CQL.
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Figure 6.3: Time-domain simulation results of charge-flux conversion scheme based on CQL.
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Figure 6.4: Time-domain simulation results of flux-charge conversion scheme based on CQL.
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Appendix A

SPICE programs of the circuits discussed in chapter 5

A.1 QPSJ I-V characteristics

SPICE program for the circuit simulation shown in figure 5.1,

p1 1 0 qps

v1 5 0 pwl(0 0 4n 1.2m)

r1 5 1 10

.model qps p(level=2, ind=8900u, vcrit=700u, rsub=1e9, rnorm=1.6e6)

.control

tran 2p 4n

plot -v1 branch vs v(1)

.endc

A.2 Memory/logic circuit based in QPSJ

SPICE program for circuit simulation shown in figure 5.3,

p1 1 4 qps

p2 4 7 qps

r1 1 8 0.001

r2 4 9 0.001

r3 7 10 0.001

v1 8 9 pwl(0 0 2n 2m 4n 0)
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v2 9 10 pwl(0 0 2n 2m 4n 0)

c1 1 0 0.01p

c2 4 0 0.01p

c3 7 0 0.01p

.model qps p(level=2, ind=8900u, vcrit=700u)

.control

tran 100p 4n

plot -v1 branch vs v(1)

.endc

A.3 QPS and JJ in parallel

SPICE program for the circuit simulation shown in figure 5.5,

p1 1 0 qps

b1 1 0 jj1

r1 1 2 10K

v1 2 0 pwl(0 0 2n 3m)

.model qps p(level=2, vcrit=10u, ind=890u, rsub=1e5, rnorm=1e3)

.model jj1 jj(vg=100u,icrit=50n)

.control

tran 2p 2n

plot -v1 branch vs v(1)

.endc
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A.4 QPS and JJ in series

SPICE program for the circuit simulation shown in figure 5.5,

p1 1 2 qps

b1 1 2 jj1

p2 2 3 qps

r1 3 0 10.0

v1 1 0 pwl(0 0 2n 4m)

.model qps p(level=2, vcrit=2m)

.model jj1 jj(vg=3m, icrit=0.5n)

.control

tran 2p 2n

plot -v1 branch vs v(1)

.endc

sectionQPS loop SPICE program for the circuit simulation shown in figure 5.5,

p1 1 2 qps

p2 1 3 qps

c1 2 0 0.0001p

c2 3 0 0.0001p

r2 3 0 1

r1 2 0 1

v1 1 0 pwl(0 0 2n 2m)

.model qps p(level = 2, ind=89u)

.control

tran 100p 2n

plot -v1 branch vs v(1)
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.endc

70



Appendix B

Verilog-A model for QPS

Although Verilog-A model for a QPS is not mathematically completely accurate or flex-

ible, it is a simple model and can be loaded into any compatible SPICE programs. The

entire Verilog-A program is provided here.

//Quantum phase-slip junction model

// January 25,2015

//MODULE: qps(node plus, node minus)

‘include ”disciplines.vams”

‘include ”constants.vams”

‘define IcR 0.4375e-9 // mV, critical current * normal resistance

‘define Vm 23.333e-6 // mV, critical current * subgap resistance

module qps (n1, n4);

inout n1, n4;

electrical n1, n2, n3, n4;

branch(n1,n2) bj; // QPS branch

branch(n2,n3) bl; // Inductance branch

branch(n3,n4) br; // Resistance branch
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// initial conditions

parameter real ic chrg = 0 from [-100:100];

// Add a scaling factor (like length factor) - Currently not added as no standard values

from industry exist for QPS

// parameters used in the model

//Critical voltage

parameter real vcrit = 0.7m from [0.01m:100m]; // Range of values specified is randomly

chosen

//Inductance of the devices

parameter real ind = 890.1e-5 from [1e-15:1e-2]; // Range is randomly chosen

//Critical current density and spread

parameter real icrit = 4e-10 from [1e-12:1e-5]; // Random range chosen

parameter real deli = 4e-11 from [1e-15:1e-7]; // Random range chosen

//Subgap and normal resistances

parameter real rsub = 1e9 from [1e3:1e12]; //‘Vm/vcrit; //In the actual compiled program,

these are assigned to numerical values

parameter real rnorm = 1.6e6 from [1e-6:1e12]; //‘IcR/vcrit;

// pi over e.

parameter phi0 = 1.0/3.291086546e-16;

parameter ch0 = 1.9625e-19;
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//Dropback current

parameter idpback = sqrt((1e-3)*ind/ch0); // Calculate this again. Look into theory

real chrg, dv2, r, avj, rmid, itmp;

analog begin

//Supercurrent.

chrg = idt(ch0*I(br), ic chrg);

V(n1,n4) <+ vcrit*sin(‘M PI*chrg);

V(ch) <+ ch; // May or may not want this line.

I(ch) <+ ch;

I(ch) <+ -V(ch);

// Voltage across inductor.

V(n1,n4) <+ (ind)*ddt(I(br)); // Use different way to represent voltage at nodes

//Quasiparticle current

dv2 = deli/2.0;

avj = abs(V(br));

if (avj <= vcrit - dv2)

r = rsub;

else if (avj < vcrit + dv2)

begin

v1 = (icrit - dv2)*rsub;

v2 = vcrit; // Come up with a better way for transition from super to normal.

rmid = abs(1/(((vcrit-dv2)/rsub)-((vcrit+dv2)/rnorm)));
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r = rmid;

end

else

r = rnorm;

I(br) <+ V(n1,n4)/r;

// Limit time step. This is important, as the simulator may have

// no other way to recognize the supercurrent and plasma

// oscillation and limit the time step accordingly.

//

itmp = avj;

if (itmp < idpback)

itmp = idpback;

$bound step(0.2/(ch0*idpback));

end

endmodule
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