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Abstract

Joint reconstruction of R∗2 and off-resonance frequency maps is very important in many

MR applications. For example, R∗2 quantification can be applied to BOLD functional MRI,

iron deposition measurement, and early detection of articular joint degeneration. Off-

resonance quantification can be used to evaluate the severity of B0 inhomogeneity, and

it shows promise in MR thermometry. To reconstruct these parameter maps, a signal model

must be specified, i.e., how the signal at each voxel evolves based on the spin density, R∗2

decay, and off-resonance frequency at this voxel. A common signal model for this problem

is the mono-exponential model, where the signal is a complex exponential function in time

with the amplitude from the spin density and the decay rate from the other two parameters.

A common approach to reconstruct the three parameter maps given the model is based

on a multi-echo sampling—sampling k-space at a series of echo times. After the sampling,

each k-space frame is inverse Fourier transformed to reconstruct a series of images. A curve

fitting is applied to the series of images on a voxel-by-voxel basis along the time domain to

reconstruct the three parameter maps based on the mono-exponential model. This method

is very straightforward in its reconstruction; however, it generally takes a relatively long time

to acquire the multi-echo data, ranging from tens of seconds to tens of minutes. The long

acquisition time reduces the practicality of the method and makes it difficult to use in some

clinical applications such as cardiac MRI. Reduction of the acquisition time in MRI in general

is very important and has attracted numerous researchers. Typical methods include parallel

imaging, partial Fourier sampling, sparse multi-echo, and single- or multi-shot acquisition.

Sparse multi-echo is generally a direct application of compressed sensing techniques to

this problem. The simplest idea is to sparsely sample each k-space frame in the multi-echo

sampling, and then reconstruct each image by using compressed sensing. A difference from
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regular MR image reconstruction is the presence of a temporal dimension, and therefore a

sparse representation of the signal in the temporal dimension is also very important. In fact,

many authors have used sparse representations in both spatial and temporal domains so that

a higher degree of undersampling is possible and a better reconstruction conditioning can be

achieved.

Although the sparse multi-echo technique has been quite successful in its reconstruc-

tion quality, the time reduction achieved by the undersampling is typically only a factor of

4-6. Similar to the idea of undersampling, single- or multi-shot acquisition also undersam-

ples the space that contains all k-space frames. However, a single- or multi-shot trajectory

can achieve an even higher undersampling rate compared to sparse multi-echo. Typically,

a single-shot trajectory only takes 40-80 milliseconds. Therefore, an important question is

whether a quality reconstruction can be achieved with a single- or multi-shot k-space acqui-

sition. In this dissertation, we propose two methods to do the underlying reconstruction and

present analysis of the ill-conditioning of the problem under different single-shot trajecto-

ries. We present a new linear formulation of the mono-exponential model and demonstrate

its power and potential applications in the reconstruction problem. In the following, we

briefly introduce these contributions.

The first reconstruction method we propose in this dissertation is rooted in a classical

nonlinear optimization strategy called trust-region methods. Specifically, we propose two

trust region algorithms that use different local linearization techniques to address the same

nonlinear optimization problem. A trust region is defined as a local area in the variable space

where a local linear approximation is trustworthy. In each iteration, the method minimizes a

local approximation within a trust region so that the step size can be kept in a suitable scale.

A continuation scheme is applied to gradually reduce the regularization over the parameter

maps and facilitate convergence from poor initializations. The two trust-region methods

are compared to two other previously proposed methods—the nonlinear conjugate gradients

algorithm and the gradual refinement algorithm. Experiments based on various synthetic
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data and real phantom data show that the two trust-region methods have a clear advantage

in both speed and stability.

The second method we propose in this work employs variable splitting, which is very

popular in dealing with convex optimization problems such as image reconstruction with non-

smooth regularizations. Most previous reconstruction algorithms are gradient-based iterative

algorithms and the computational cost is high. We propose to reformulate the problem as a

constrained optimization problem by employing auxiliary variables and use the well-known

variable-splitting method to reduce the computational cost. We show that variable splitting

for this problem is fundamentally different from variable splitting for many other applica-

tions, such as for regularized image reconstruction. As a result, the algorithm is very fast

during the early stage of the iterations and much slower in the later stage. We propose a

two-step method to address this issue. In the first step, we use the proposed variable-splitting

method with regularization over both the auxiliary variable and the ordinary variables. We

show the additional regularization is critical for the algorithm performance. In the second

step, we employ our previously developed ordinary trust region algorithm to refine the esti-

mate from the first step. We demonstrate that the hybrid method is faster than the ordinary

trust region algorithm and the nonlinear conjugate gradient algorithm through simulation

and in vivo data.

The third contribution of this work deals with a new formulation of the mono-exponential

model. The formulation is in linear form which can be utilized by some optimization methods

such as alternating directions. The new formulation results in a new estimator for the spin

density, R∗2, and off-resonance. The new estimator works on multi-echo data. We compare

the new estimator with other traditional curve fitting methods and demonstrate the speed

and accuracy of the new estimator. We show at the end of the chapter how this new for-

mulation as well as the new estimator can be applied to the second iterative reconstruction

algorithm we developed in addressing the joint reconstruction problem.
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The last contribution of this work deals with analysis of the ill-conditioning of the

underlying problem under a variety of single-shot trajectories. The aim of the analysis is

to find the optimal existing trajectory in terms of the conditioning of the reconstruction

problem. We use tools such as the condition number and the singular value curve to study

the ill-conditioning. We verify the analysis result by comparing the reconstruction accuracy

of a reconstruction algorithm for every trajectory. Our results show that some trajectories

are better than other trajectories due to certain strategies used to sample the data space.

The findings can be useful to improve the reconstruction accuracy and convergence speed

for any algorithm developed for the joint reconstruction problem.
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Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) is an important medical imaging technology that

has been used in numerous medical applications. In this first chapter, we first introduce some

MRI terminology and familiarize readers with the basic knowledge of MRI that is essential to

understanding the reconstruction problem. We then elaborate on the specific reconstruction

problem we are dealing with. We finally review methods in dealing with related problems

from various perspectives to unveil the context as well as the novelty of our research.

1.1 Introduction to MRI

1.1.1 MRI basics

The physical basis of MRI is fairly complicated. A rigorous introduction to MRI must

involve quantum physics and is beyond this work. Interested readers can refer to the mono-

graph “Magnetic Resonance Imaging: Physical Principles and Sequence Design” by Robert

W. Brown et al. for a rigorous introduction [8]. In this chapter, we briefly review the key

concepts of MRI that closely relate to our reconstruction problem.

An MRI scanner has patients, subjects, or other objects placed within a strong magnetic

field which is created by a large electromagnetic device (Figure 1.1(a)). When atomic nuclei

are placed in a strong magnetic field, which in MRI is called the B0 field, the nuclei are

magnetized. As a result, the bulk magnetization of these nuclei points in the direction of

the B0 field (Figure 1.1(b)). It is conventional to denote the direction of the B0 field as the

z direction. The plane that is orthogonal to the z direction is the xy plane, where the x and

y axes can be established by the right hand screw rule. The B0 field is always on. When
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imaging starts, a radiofrequency (RF) radiation field, the B1 field, is superimposed onto the

B0 field. The B1 field is tuned to a certain frequency called the Larmor frequency. The

Larmor frequency is defined as

f = γB0 (1.1)

where B0 is the strength of the B0 field and γ is the gyromagnetic ratio, which is different

for different atoms. When the frequency of the B1 field equals the Larmor frequency, the

nuclei resonate, causing the bulk magnetization to spiral away from the direction of the B0

field (Figure 1.1(c)). On one hand, the angle between the bulk magnetization and the B0

field becomes larger and larger; on the other hand, the bulk magnetization is rotating about

the B0 field. When the B1 field is stopped, the magnetization stops going away from the

B0 field but still rotates about it. The rotation of the magnetization introduces a dynamic

magnetic field around the nuclei. The net field from the object being imaged is captured by

an electromagnetic detecting device that is always placed around the object (Figure 1.1(a)).

This detected signal forms the basis of MRI being able to “see” the internal structure of an

object.

(a) (b) (c)

Figure 1.1: (a) shows a SIEMENS MRI scanner and a head receiver coil. (b) the equilibrium
state of the bulk magnetization in B0 field. (c) shows the motion of the magnetization after
the B1 field is applied. 1

To form a useful image, the image must have contrast. The contrast in an MRI image

is provided by the difference of the magnetic fields induced by the rotating magnetization

1
Source: (a) AU MRI center webpage (b)Online tutorial “The basics of MRI”, J.P. Hornak, https://www.cis.rit.edu/htbooks/mri/chap-3/images/

t1-1.gif; (c)Thesis “Functional MRI : Methods and Applications”, Stuart Clare, http://users.fmrib.ox.ac.uk/stuart/~thesis/chapter_2/image270.gif;
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among different biological tissues. For example, water and fat have different concentrations

of 1H protons, and therefore their magnetic fields have different strength. The number of

protons within a unit volume of material is called spin density. From the example, we see the

difference in spin density among various biological tissues offers a type of image contrast. At

the right side of Figure 1.2 is a proton-density-weighted image. Another main type of contrast

is caused by relaxation. Relaxation refers to the fact that the bulk magnetization after the

B1 field is stopped does not remain constant; instead, the magnetization will gradually point

back to the direction of the B0 field. Different tissues often have different relaxation strength;

that is, some restore their direction faster than others. Hence, those tissues having faster

relaxation have a smaller magnetic field strength than others if one ignores their difference

in spin density. There are several types of relaxations, such as T1 relaxation, T2 relaxation,

and T ∗2 relaxation. They refer to relaxation in different directions or of different types. Spin

density as well as these relaxations are the main factors that influence the strength of the

induced magnetic fields. The left and middle images of Figure 1.2 show T1-weighted and

T2-weighted images, respectively. The interaction between various relaxations and the spin

density is described by the famous Block equation in quantum physics. In this work, our

main objective is to reconstruct the spin density and the T ∗2 relaxation maps. Therefore,

these concepts will be revisited in the next section.

Figure 1.2: Different types of contrast for one human brain slice. 2

2
Source: Class notes, “Computed imaging system”, Thomas Denney
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The smallest visible unit of the object being imaged in MRI is called a voxel, correspond-

ing to a pixel in a plane. The objective of MRI is to reconstruct the magnetic field strength

induced by each voxel. If only the B0 field is present, all voxels induce magnetic fields of

the same frequency, causing the bulk magnetic fields to be a pure summation of all these

induced magnetic fields. Each individual contribution would not be discernible. Modern

MRI scanners solve this problem by superposing gradient fields onto the B0 field. The result

of superposition is a linearly varying magnetic field applied to the object. The strength of

the composite external field at a particular voxel depends on its location in the image space.

The varying external field fosters a Fourier encoding of the induced field strength of each

voxel. The Fourier encoding is achieved by varying the gradient field strength many times,

and each time corresponds to a line or a sample of the Fourier frequency domain. The image

of the strength of induced fields from each voxel is then reconstructed by applying an inverse

Fourier transform to the acquired spectrum. Nowadays, all MRI scanners are equipped with

gradient coils that generate the gradient fields and use the Fourier encoding and decoding

process to reconstruct images.

Other important concepts in modern MRI scanners, such as RF coils, coil arrays, and

shimming coils, are less connected to our reconstruction problem and hence are not elab-

orated in this introduction section. As we proceed, we may come across these concepts in

references or experiment parameter specifications. In this case, we may briefly describe the

involved concepts to avoid confusion.

1.1.2 Excitation and relaxation

Before the B1 field is applied, the magnetization of all nuclei point along the z direction.

We thus can use a vector M to represent the magnetization. After the B1 field is applied, the

magnetization vector gradually spirals down to the xy plane (Figure 1.1(c)). The angular

frequency of each magnetization vector is the Larmor frequency. In MRI, it is common

to use the rotating frame instead of the laboratory frame to analyze the behavior of the
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magnetization vector after resonance. The rotating frame means a coordinate system that

rotates about the z axis at the Larmor frequency. In this frame, any vector that rotates at

the Larmor frequency would be a static vector. We denote the x, y axes in the rotating frame

by x′ and y′. Since in the rotating frame, the movement of each magnetization vector in

the x′y′ plane is zero, the magnetization vector, which begins perpendicular to the xy plane,

rotates directly down to the x′y′ plane after the resonance without any rotation in the xy

plane (Figure 1.3). The angle between the magnetization vector and the z axis at the end of

the B1 field is dependent on the strength and length of the B1 field. A B1 field that makes

the magnetization vector completely tip down to the x′y′ plane is called a 90◦ pulse. When

the pulse is stopped, the magnetization vector is completely in the x′y′ plane. In particular,

if the RF pulse is produced along the x′ direction, then the magnetization vector will tip

down to the y′ direction.

Figure 1.3: Motion of the magnetization vector in the rotating frame (left) and laboratory
frame (right).

Before the B1 field is applied, the magnetization is said to be in an equilibrium state

(M0). After the B1 field is applied, several types of relaxation exist to change the magne-

tization vector back to its equilibrium state. Specifically, on one hand, relaxation causes

the longitudinal magnetization (Mz), or the component of M in the z direction, to recover
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from 0 (assuming a 90◦ RF pulse) back to M0. On the other hand, relaxation causes the

transverse magnetization (Mx′y′), or the component of M in the x′y′ plane, to decay from

M0 down to 0. This process is illustrated in Figure 1.4(a). The z direction relaxation is

called T1 relaxation, or the spin-lattice relaxation in physics. The Mz dynamics under T1

relaxation can be described as (Figure 1.4(b))

Mz(t) = M0(1− e−t/T1) (1.2)

where T1 is the time constant associated with the relaxation. Notice this representation

assumes the used RF pulse is a 90◦ pulse. The relaxation in x′y′ plane is called T2 relaxation,

or the spin-spin relaxation. The Mx′y′ dynamics under the T2 relaxation can be described by

Mx′y′(t) = Mx′y′0e
−t/T2 (1.3)

where Mx′y′0 is the initial component of M in the x′y′ plane. When a 90◦ RF pulse is used,

Mx′y′0 = M0. For an arbitrary α-pulse where α represents the angle between M and z,

Mx′y′0 = M0 sinα.

(a) (b) (c)

Figure 1.4: (a) shows the composite function of longitudinal and transverse relaxation. (b)
shows dynamics of Mz under T1 relaxation. (c) shows dynamics of strength of Mx′y′ or Mxy

under T2 or T ∗2 relaxation. 3

The T2 relaxation is caused by molecular interactions and therefore is not invertible.

This is different from another relaxation T ∗2 , which is invertible under certain operations.

3
Source: (a) Class notes, “Computed imaging system”, Thomas Denney
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The T ∗2 relaxation arises in any real MRI equipment, where the B0 field cannot be kept abso-

lutely constant in the xy plane. Even across one voxel, some segments of the voxel may have

a slightly larger B0 strength than other segments. The B0 fluctuation, or B0 field inhomo-

geneity, causes Mx′y′0 to decay faster than the T2 process. In addition to B0 inhomogeneity,

some other factors, such as magnetic susceptibility difference between different tissues, can

also cause a faster decay of Mx′y′0. The total Mx′y′0 decay in a realistic MRI system is called

T ∗2 relaxation. T ∗2 relaxation is always shorter than T2 relaxation (Figure 1.4(c)). The decay

rate of T2 and T ∗2 relaxation refers to the reciprocal of the time constant T2 and T ∗2 and is

denoted by R2 and R∗2, respectively. From previous analysis, R∗2 is always larger than R2.

Since the acceleration from T2 to T ∗2 is caused by an external field that is deterministic, the

acceleration can be reversed. This is achieved by applying a spin-echo sequence, which we

will briefly explain in the next section. The three relaxations have important implications

for the contrast of the reconstructed image. They also have important implications in some

applications of MRI. For example, R∗2 decay rate is an important biomarker for iron depo-

sition in organs such as the liver and heart. Clinical protocols already exist to measure the

R∗2 decay rate to identify the distribution and deposition of iron in these organs [4, 85,114].

Another factor that changes Mxy throughout an imaging process is off-resonance. In

the ideal situation, all bulk magnetizations rotate at the Larmor frequency. After data ac-

quisition, demodulation is applied to remove the signal component at the Larmor frequency,

resulting in a signal that is a Fourier transform of the spatial image. However, in reality,

many factors destroy the homogeneity of the static field. The difference f , γ(B − B0),

where B and B0 denote the actual field and the main field provided by the scanner, is the

off-resonance frequency. Notice the off-resonance frequency may slowly vary across the im-

age space. The off-resonance frequency causes a phase term in the associated magnetization

vector that linearly increases with time. The effect can be represented by

Mx′y′(t) = M0e
ft (1.4)
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The two main reasons for the presence of the off-resonance are (1) main field inhomogeneity

and (2) susceptibility difference between different tissues. Other factors, such as eddy current

induced by the time-varying field, can also influence the off-resonance but may be quite small

compared to the previous two factors. In this work, one of our objectives is to reconstruct

the off-resonance map, or the field map.

1.1.3 k-space

Excitation of the protons can generate signal from the object; however, excitation does

not generate an image. Most modern MRI image reconstruction is based on the Fourier

transform. The Fourier encoding is fulfilled by the dynamic gradient field, which is created

after the excitation by the gradient coils. The encoded signal is then detected by the receiver

coils and inverse Fourier transformed to reconstruct the spatial image. Since relaxation

happens immediately after the excitation, the timing of the Fourier encoding influences the

strength of the received signal. For example, in terms of T2 relaxation or T ∗2 relaxation, the

later the encoding happens, the lower the received signal is. When there are tissues whose

relaxation rates are different, contrast occurs. Figure 1.5 shows the contrast between two

tissues of different T1 or T2 relaxation rates.

Figure 1.5: contrast between tissue A and B caused by different T1 (left) or T2 (right)
relaxation rates 4

4
Source: Class notes, “Computed imaging system”, Thomas Denney

8



The encoding process is closely related to the frequency domain of the image, called

k-space in MRI. Suppose the image size is 256 × 256, then the properties of the discrete

Fourier transform require 256 × 256 grid points in k-space to be able to take the inverse

Fourier transform. Although any sampling trajectory should work as long as the trajectory

passes through all grid points, the most common and well-established sampling trajectory

or pattern is a line-by-line sampling. In 2D imaging, this usually means starting from a line

at the k-space side, sampling each grid point on the line in one direction, and changing to

the next line until all lines are sampled. This sampling pattern is illustrated in Figure 1.6.

Figure 1.6: Line-by-line sampling of k-space. 5

The gradient field is dispatched in three directions, namely the frequency encoding

direction, phase encoding direction, and slice-selective direction, in 2D imaging. The slice-

selective gradient does not participate in the Fourier encoding and therefore we do not

elaborate on it in this section. For simplicity, assume x is the frequency encoding direction

and y is the phase encoding direction. In reality, this may not be true, but the result from this

case can be easily generalized. Let Gx and Gy represent the gradient slope of the frequency

5
Source: “Magnetic Resonance Imaging Principles, Methods, and Techniques”, Perry Sprawls
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encoding gradient and phase encoding gradient, respectively. When Gx > 0, the positive

side of the x axis has a positive magnetic field offset; while Gx < 0, the negative side of the

x axis has a positive magnetic field offset. When Gx = 0, the entire x axis has a constant

B0 field. The same is true for Gy. The total field present at an arbitrary coordinate (x, y)

can be represented by

B0 +Gxx+Gyy (1.5)

The magnetization vector of this voxel can be represented by

M(x, y, t) = m(x, y)e−2πγ(B0+Gxx+Gyy)t = m(x, y)e−2πγ[B0t+(Gxt)x+(Gyt)y] (1.6)

The total signal from the entire xy plane is an integral:

∫ ∞
−∞

∫ ∞
−∞

M(x, y, t)dxdy =

∫ ∞
−∞

∫ ∞
−∞

m(x, y)e−2πγB0te−2πγ[(Gxt)x+(Gyt)y]dxdy (1.7)

Usually, a demodulation step is applied to the measured signal to remove the high-frequency

component caused by e−2πγB0t, causing the remaining signal to be

∫ ∞
−∞

∫ ∞
−∞

m(x, y)e−2πγ[(Gxt)x+(Gyt)y]dxdy (1.8)

Notice how close this is to a Fourier transform. Suppose Gy = 0 at the moment when the

signal is collected. The sampled signal then is

∫ ∞
−∞

∫ ∞
−∞

m(x, y)e−2πγ(Gxtl)xdxdy (1.9)

where (tl)
L
l=1 represents the moments of sampling. Let kx(tl) , Gxtl. Thus, expression (1.9)

can be rewritten as ∫ ∞
−∞

∫ ∞
−∞

m(x, y)e−2πγkx(tl)xdxdy, (1.10)
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and kx(tl) represents sampling of the central k-space line from the negative-to-positive di-

rection.

In order to sample the entire k-space in a line-by-line fashion, the phase encoding gra-

dient Gy and the frequency encoding gradient Gx are not present at the same time. Often,

Gy is generated much earlier than Gx. Each time, Gy lasts T seconds to make ky , GyT

equal the position of a k-space line in the ky direction. When jumping from one line to an-

other, the gradient strength Gy is incremented or decreased by a small amount ∆Gy so that

∆ky , ∆GyT equals to the difference of positions between the two k-space lines. This pro-

cess is called phase encoding. After phase encoding, Gx is applied, and sampling continues

until the entire k-space line can be sampled. This process is called frequency encoding. The

time frame for the frequency encoding is called readout time, since the data is read out by

the receiver coil. The frequency encoding gradient is also referred to as the readout gradient

due to the same reason. If the readout starts from the center column of k-space, it cannot

sample the entire k-space line. Therefore, a preparing gradient is usually applied before

the readout time with an opposite polarity to the readout gradient to move the sampling

backward by half of the k-space range. The entire process is illustrated in Figure 1.7.

1.1.4 MRI pulse sequences

So far, we know the MR imaging process requires running an RF field to excite the

protons and several gradient fields to encode the image. In addition to these functions, an

RF field and gradient field can be used to fulfill other purposes. The orderly combination

of RF field and gradient fields is called a pulse sequence, since each magnetic field lasts a

very short time—such as several milliseconds—resembling an electromagnetic pulse. From

creation of the first MRI image, many different pulse sequences have been developed to

realize different functions. A modern commercial MRI scanner is usually pre-programmed

with tens of pulse sequences for radiologists and researchers to use for their own needs. The
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Figure 1.7: Function of frequency encoding gradient, phase encoding gradient, and slice-
selective gradient in line-by-line sampling 6

two most commonly used types of pulse sequence are spin echo sequences and gradient echo

sequences. In this section, we briefly review the two types of pulse sequence.

Spin echo

As we mentioned, the magnetization vectors in a realistic magnetic field experience T ∗2

relaxation. Part of the relaxation is from T2 relaxation, which is irreversible. The rest of the

T ∗2 relaxation is caused by field inhomogeneity and can be reversed by running a refocusing

RF pulse. The refocusing RF pulse is different from an excitation RF pulse in that the

refocusing pulse causes a 180◦ tipping of the magnetization instead of 90◦ tipping (Figure

1.8). Also, the refocusing RF pulse is applied after the proton excitation is finished. Before

the refocusing pulse, protons in a voxel experience so-called dephasing, since some of them

precess faster than others. Protons gradually become out of phase, and their spins start to

cancel each other. This leads to a very small bulk magnetization for the voxel. After the

6
Source: Class notes, “Computed imaging system”, Thomas Denney
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refocusing pulse, all spins are flipped to the opposite side and continue the precession. The

spin with the largest positive phase becomes the one with the largest negative phase. After

an additional time frame equal to the time between the excitation and the refocusing, all

spins precess back to the in-phase position. The signal at this point is very strong and is

called an echo. A refocusing pulse can be applied multiple times to create multiple echoes.

A pulse sequence that uses the refocusing RF pulse to recreate echoes is called a spin echo

sequence (Figure 1.9).

Figure 1.8: Refocusing of spins by 180◦ RF pulse. (A-D): spins are tipped down and start
to dephase; (E): spins are tipped by an 180◦ pulse to completely opposite directions; (F-G):
spins precess in the same direction and gradually become in-phase. Notice that the rotating
frame is used for this graph. 7

Figure 1.9 also shows the basic components of a pulse sequence: the RF pulse, slice-

selective gradient pulse, phase encoding pulse, and frequency encoding pulse. It also shows

two important timing concepts— time of repetition and time of echo. The time of repetition,

often abbreviated as TR, means the repetition cycle between two consecutive excitation RF

pulses. The time of echo, often shortened as TE, means the time between the center of

the excitation pulse and the echo. In spin echo, both excitation and refocusing RF pulses

must be used. The slice-selective pulse is used whenever an RF pulse is used, including

both excitation and refocusing pulses. The phase encoding pulse is changing its amplitude

each time when it is applied to sample each k-space line. It is therefore shown as a stack

7
Source: Spin echo diagram, Aaron Filler, http://en.wikipedia.org/wiki/File:Spin_Echo_Diagram.jpg
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of boxes to represent a collection of different amplitudes. The frequency encoding pulse, or

the readout pulse, is applied to read out each k-space line. At the center of each readout

is the point when all spins become in-phase. Since every echo is acquired when spins are

in-phase, the reconstructed image is T2-weighted. The outcome is illustrated in Figure 1.10.

When multiple echoes are acquired, multiple T2-weighted images are reconstructed and can

be used to reconstruct an R2 decay rate map.

Figure 1.9: A double-echo spin echo sequence. 8

Figure 1.10: Relaxation of spins in a double spin echo sequence. 9

Spin echo is the most commonly used pulse sequence clinically. This is mainly attributed

to the high signal intensity and high SNR associated with the T2-weighted image. Hardware

imperfections such as field inhomogeneity, nonlinear gradients, and inevitable factors such as

8
Source: Radiopaedia.org, http://radiopaedia.org/cases/spin-echo-sequence-diagrams-1

9
Source: Class notes, “Computed imaging system”, Thomas Denney
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susceptibility differences and chemical shift are largely diminished. Most other sequences do

not have this merit, including another commonly used sequence—the gradient echo sequence.

Gradient echo

The spin echo sequence uses refocusing RF pulse to create an echo. The gradient echo

sequence does not use this method; instead, it uses the frequency-encode gradient to create

an echo. In each TR, a gradient echo sequence applies the frequency-encode gradient twice.

In the first time, a short frequency-encode lobe is applied together with a phase-encode lobe

to move the sampling location from the center of k-space to one side of a k-space line. In

the second time, a long frequency-encode lobe with opposite amplitude and double length

should be applied to sample the k-space line. This lobe is the readout gradient lobe. At

the end of this lobe, the sampling location should be at the other side of the k-space line.

In each TR, this process is repeated except the amplitude of the phase-encode gradient is

different to encode different k-space lines. Figure 1.11 illustrates the application of different

gradient fields in one TR of the gradient echo sequence. Since refocusing is lacking, the

signal experiences T ∗2 relaxation. The reconstructed images from gradient echo are therefore

T ∗2 -weighted images.

Although gradient echo does not have the high signal intensity of spin echo and is more

susceptible to field inhomogeneity, its main advantage is the high imaging speed. A spin echo

sequence takes around a minute or even longer to acquire enough data for reconstructing

a high-resolution image. A gradient echo sequence, however, can achieve this in several

seconds. This is mainly attributed to the low flip angles a gradient echo sequence uses. Flip

angle is the flipped angle between the rotated magnetization vector and the B0 field, caused

by the RF excitation. A spin echo sequence usually uses 90◦ pulse to gain the largest possible

xy-plane magnetization component. In gradient echo, usually a very small flip angle such as

10◦-20◦ is used. A large flip angle requires a long TR time to let the longitudinal relaxation

finish. Otherwise, a phenomenon called saturation would happen which can reduce the
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Figure 1.11: One TR of a gradient echo sequence and the corresponding movement in k-space.
10

signal intensity of the image. Gradient echo uses very small flip angles to largely reduce this

problem. The signal intensity is therefore generally low. However, this strategy facilitates a

very short TR and makes the overall scan time much shorter, making gradient echo clinically

valuable.

Another characteristic of gradient echo is allowing a very flexible sampling of k-space. In

spin echo, all sampling must be concentrated around the echo time. In gradient echo, since

there is no such restriction, k-space can be sampled in any fashion. Specifically, k-space can

be sampled line-by-line, or along a trajectory. A trajectory is an arbitrarily shaped curve

in k-space that tracks the sampling. In our work, we use many different trajectories, and

they are important to the reconstruction result. We therefore elaborate on several common

trajectories used in gradient echo sequences.

The first trajectory is echo planar imaging (EPI). It is very different from other k-

trajectories since it still samples in a line-by-line fashion. For this reason, most literature

10
Source: Class notes, “Computed imaging system”, Thomas Denney
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does not count EPI as a trajectory. However, since EPI is often finished in one TR in contrast

to traditional line-by-line sampling, we place it in the trajectory category in this work. EPI

was proposed very early; however, it experienced a slow development in the first few decades

due to hardware restrictions [6, 20, 91]. EPI is very fast, since it can finish sampling the

entire k-space in one TR. Such trajectories are called single-shot trajectories. The EPI

pulse sequence is illustrated in Figure 1.12 and the trajectory of EPI in k-space is shown in

Figure 1.14(a). After the excitation and the preparation pulses for shifting sampling to the

k-space corner, multiple readout gradients are emitted with alternate amplitudes. Between

two consecutive readout gradients, a phase-encoding blip is applied to move the sampling

upward by one k-space line. The sampling therefore follows a zigzag trajectory to sample

the entire k-space. The blip gradient greatly saves the time needed for phase encoding.

The hardware challenge is to quickly change the frequency-encode gradient from negative

amplitude to positive amplitude, which requires a large gradient slew rate.

Figure 1.12: EPI pulse sequence and the corresponding sampling trajectory in k-space. 11

Without any compensation, EPI can lead to many artifacts, including ghosting, blur-

ring, geometric distortion, and signal drop-out [6, 91]. Figure 1.13 shows the ghosting and

geometric distortion artifacts in two brain EPI images. These artifacts are caused by various

factors, and solutions have been commonly used in commercial EPI protocols. A lot of these

11
Source: Tutorial, “Basic physics of fMRI”, Peter Jezzard, University of Oxford; http://users.fmrib.ox.ac.uk/~peterj/lectures/hbm_1/sld044.htm
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artifacts can be dramatically reduced or even eliminated, such as ghosting; however, in some

areas, such as the sinus-air interface, a large susceptibility difference is present and can still

cause severe signal drop-out and distortion in EPI images. Off-resonance is one of the main

causes of geometric distortion.

ghosting distortion

Figure 1.13: Ghosting and distortion artifacts of EPI sequence. 12

The second trajectory is spiral (Figure 1.14(b)). The spiral trajectory has been used

in many applications, such as fast imaging [38, 46], compressed sensing [68], and MR fin-

gerprinting [70]. The main advantage of spiral is the fast covering of k-space. Typically, a

single-shot spiral trajectory may take 15-25 milliseconds to cover k-space for a reasonable

resolution. Two alternatives exist in the spiral trajectory family: spiral-in and spiral-out.

Between them, spiral-out is more frequently used mainly because the echo time, i.e. the time

when the trajectory passes the k-space origin, is at the beginning of the readout, resulting

in a stronger signal intensity. Since spiral takes a long time to cover k-space, spiral has

the same vulnerability to off-resonance and relaxation as EPI. However, since spiral has a

lower gradient slew rate than EPI, artifacts associated with rosette are usually less severe.

On the other hand, the reconstruction of spiral is much more complicated than EPI since

12
Source: (a) MRIQuestions.com http://mri-q.com/nyquist-n2-ghosts.html; (b) Center for Imaging Science, Universitat zu Lubeck, http://www.

cis.uni-luebeck.de/index.php?id=14;
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spiral does not sample on each k-space grid. Such a trajectory is commonly referred to as a

non-Cartesian trajectory.

The third trajectory is rosette. Rosette is also a non-Cartesian trajectory and was

first introduced in [81]. In this work, Noll used this trajectory to do spectrally selective

imaging, which keeps energy of the on-resonance portions of the image and destroys energy

of the off-resonance portions. The trajectory is shown in Figure 1.14(c). The trajectory

passes the k-space origin many times, causing a high sensitivity to image variation caused by

relaxation, off-resonance frequency, and motion. Twieg later used this trajectory to map R∗2

relaxation maps and off-resonance maps [102]. The method, called “PARSE” in his paper,

is the predecessor of our work. Details about the three trajectories are further discussed in

the last chapter.

EPI Spiral Rosette

Figure 1.14: Three k-space trajectories

1.2 Formulation of the problem

So far, we have briefly explained the basics of MRI, as well as many critical concepts

such as excitation, relaxation, k-space, gradient field (pulse), spin echo sequence, gradient

echo sequence, and k-space trajectories. In this section, we formulate the problem addressed

in this dissertation.
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1.2.1 Mono-exponential modeling

Mono-exponential modeling represents the signal from a voxel as a mono-exponential

function

m(~r)e−z(~r)t (1.11)

where ~r represents the spatial coordinate of the voxel in the image space and t represents

time. m(~r) ∈ C represents spin density at the voxel. Although density is usually a real

number, m(~r) also represents the angle of the initial magnetization vector in the image space.

Therefore, in reality, it is a complex number. z(~r) ∈ C is the complex decay of the signal

whose real and imaginary part are R∗2 decay and off-resonance frequency, respectively. Notice

since the problem we deal with mainly focuses on gradient echo imaging, the prominent

relaxation in the xy plane is the T ∗2 relaxation. Let d(~r) and f(~r) represent the R∗2 decay

rate and off-resonance at this voxel. Then z(~r) , d(~r) + ιf(~r).

Mono-exponential modeling is commonly used for applications such as R∗2 relaxation

mapping [4, 26, 40, 85]. However, some authors have used different models such as a bi-

exponential model [9, 56], where the signal from each voxel is modeled as containing two

exponential functions. It is argued in these papers that bi-exponential modeling can be

superior to mono-exponential modeling in diagnosis of some musculo-skeletal disease since

two types of water are usually present in connective tissues and each causes a different T ∗2 .

However, generally, mono-exponential fits the signal sufficiently well while keeping a low

computational complexity, making it the most common modeling used for T ∗2 relaxation

mapping and other similar applications. For T2 relaxation mapping, many different models

have been employed, such as multi-exponential modeling [90, 113], continuous distribution

modeling [59, 112], and pulse-sequence-dependent modeling [21, 93, 94]. Also, T2 relaxation

mapping uses spin echo sequences which are more complicated than gradient echo sequences.

In this work, we only focus on reconstruction of spin density, R∗2 relaxation rate, and off-

resonance frequency maps.
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1.2.2 Signal acquisition

Our objective is to reconstruct the spin density, R∗2 relaxation rate, and off-resonance

frequency maps. Let the size of each map (image) beN×N , whereN is typically a power of 2,

such as 64, 128, or 256. The number of complex unknowns for this reconstruction problem is

2N2. To make the problem well-posed, one needs at least 2N2 complex data that are sampled

from k-space. There are several ways to acquire the data. The clinically mostly used method

is multi-echo sampling. This sampling approach basically samples multiple k-space frames

each at a different echo time. The number of k-space frames needs to be at least 2 to satisfy

the 2N2 requirement; however, the actual number of echoes used is usually larger than 2 to

improve SNR in the reconstructed maps. Popular choices include 6, 8, 9, and 16 echoes; this

number may vary with applications and tissues of interest [4,5,26,73,111,114]. Since multiple

k-space frames are usually used, the time to finish all sampling is relatively long, ranging from

tens of seconds to minutes for one image slice [4,23,26,73,114]. After acquiring all the k-space

frames, they are inverse Fourier transformed to a sequence of decaying images. The three

parameter maps can then be reconstructed by fitting the mono-exponential model (1.11) to

the sequence of decaying images. Most applications so far only require reconstruction of the

R∗2 decay map and the spin density map; however, the data processing is exactly the same

as all three except that only the absolute value of each image is needed.

A method to shorten the data acquisition time is to undersample the multi-echo k-space

frames [7, 22, 51, 58, 72, 107, 119]. Since each k-space frame is undersampled, the acquisition

time for multiple k-space frames is reduced. The undersampling is achieved by schemes

such as variable-density random phase encoding, EPI, or other non-Cartesian trajectories

like spiral, radial, and rosette. Although these techniques considerably accelerate the data

acquisition, the undersampling causes the reconstruction of each k-space frame to become

underdetermined. Solutions to the problem include parallel imaging [39,86] and compressed

sensing [67]. The former approach is straightforward and is not in the scope of our research.

The latter approach is usually a direct extension of ordinary compressed sensing MRI to
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relaxation mapping. The simplest method is just to enforce a sparsity constraint on each

image frame [119]. More advanced methods include the time dimension and exploit sparsity

of the image sequence in the temporal domain [22, 107] or even simultaneously in both

spatial and temporal domains [72]. Although these methods have been demonstrated to

be quite successful, the undersampling rate of k-space is usually in a moderate range such

as 4-6. A higher undersampling rate can usually cause visible noise-like artifacts in the

reconstructed maps. Due to the rapid development of the compressed sensing theory, a

number of approaches can be used to solve this problem and their implementations are also

well known.

As a similar idea to undersampling, reconstruction based on single- or multi-shot tra-

jectories has attracted increasing interest [83, 95, 102, 103]. These methods discard the idea

of acquiring multiple k-space frames; instead, they use a long readout time in each readout

cycle to expand their sampling to cover a long time frame. At each time point, only one

or a few k-space samples are acquired, depending on the number of single-shot trajectories

used. However, the sampling density in the time domain becomes much larger compared

to multi-echo sampling. Such sampling can be done in tens of milliseconds, dramatically

reducing the acquisition time. The challenge, however, lies in the exceedingly difficult image

reconstruction problem. We have observed the problem to be ill-conditioned, nonlinear, and

of large scale. This work thus focuses on algorithms developed to stably and rapidly solve

the problem.

1.2.3 Problem formulation

Let m(~r), d(~r), f(~r) represent the spin density, the R∗2 decay and the off-resonance

frequency of a voxel located at position ~r (relative to the center of the field of view). The

time-varying signal at this voxel is modeled as

m(~r)e−(d(~r)+ιf(~r))tl (1.12)
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where ι represents the imaginary unit. By defining z(~r) , d(~r) + ιf(~r), we rewrite (1.12) as

m(~r)e−z(~r)tl (1.13)

We call z(~r) the complex frequency at location ~r. Let ~klp denote a multi-shot trajectory

where l = 1, 2, . . . , L and p = 1, 2, . . . , P denote the lth time sample and the pth trajectory

shot among L samples and P shots. When a single-shot trajectory is used, then P = 1. The

acquired k-space data from a multi-shot trajectory can then be represented by

ylp = slp(m(~r), z(~r)) + εlp

slp(m(~r), z(~r)) =

∫
~r

m(~r)e−z(~r)tle−2πι(~klp·~r)d~r
(1.14)

for l = 1, 2, . . . , L and p = 1, 2, . . . , P . ylp, slp and εlp represent the acquired k-space data,

the predicted k-space signal, and the noise at time tl and shot p, respectively. The dot

operator in the exponential term represents inner product. Given data ylp for L discrete

time points and P trajectory shots, we want to estimate m(~r) and z(~r) for every voxel in

the FOV. To proceed, (1.14) requires a suitable discretization in the spatial domain since

data is discrete while unknown maps are (piecewise) continuous. We therefore introduce a

finite-dimensional representation for m(~r)e−z(~r)tl so that

m(~r)e−z(~r)tl ≈
∑
n

mne
−zntlg(~r − ~rn) (1.15)

where rn is the nth voxel geometric center, and mn , m(~rn), zn , z(~rn). Function g(~r) is

chosen as a linear interpolation basis function in our work. With the approximation (1.15),

we can rewrite (1.14) as

slp(mn, zn) ≈ g̃lp

N−1∑
n=0

mne
−zntle−2πι(~klp·~rn) (1.16)
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where g̃lp , g̃(~klp) represents the sample of the Fourier transform of g(~r) at ~klp. Because

the noise in (1.14) is Gaussian, we estimate the discrete unknowns based on minimizing a

least-squares objective function

‖~y − ~s(~m, ~z)‖2 (1.17)

where

~y , [y11, y21, . . . , yL1, y12, . . . , yL2, . . . , yLP ]T

~s , [s11, s21, . . . , sL1, s12, . . . , sL2, . . . , sLP ]T

~m , [m1,m2, . . . ,mN ]T

~z , [z1, z2, . . . , zN ]T

Since the function (1.17) is usually ill-conditioned [47], we apply regularization with respect

to the unknown maps, which changes (1.17) to:

‖~y − ~s(~m, ~z)‖2 + λ1‖D1 ~m‖2 + λ2‖D2~z‖2 (1.18)

where the matrices D1 and D2 are the regularization matrices corresponding to ~m and ~z.

For simplicity, we use the first-order smoothness penalty for both D1 and D2 in this work.

Separate regularizations on the real and imaginary parts of ~z have also been utilized by

other authors [83]. In the next section, we focus on algorithms that can stably and rapidly

minimize (1.18) with respect to ~m and ~z.

1.2.4 Application to functional MRI

Functional magnetic resonance imaging (functional MRI or fMRI) is a functional neu-

roimaging technique that reflects the neural activities of human brains using MRI. fMRI has

been developed over two decades, and currently this technique is widely used in neuroscience
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research and even clinical medicine [53,65]. Many image contrast mechanisms have been de-

veloped to show neural activities, but the most primary form of contrast is the blood-oxygen

level dependent (BOLD) contrast [66]. This contrast mechanism takes advantages of the fact

that neural activities cause variations of the local R∗2 decay rate. Since the R∗2 decay rate is

an unknown variable in our problem, any algorithms that can solve the joint reconstruction

problem can be applied to BOLD fMRI.

fMRI works by utilizing an important mechanism in the human brain called neurovascu-

lar coupling, which was discovered more than a century ago. Neurovascular coupling means

that increased neural activities in a small part of the cerebrum cause an increased cerebral

blood flow around that area. More specifically, the number of oxygenated hemoglobins in the

cerebral blood flow around the area will increase following the increased amount of neural

activity to provide more oxygen. Oxygenated hemoglobin is less paramagnetic than deoxy-

genated hemoglobin. In fact, oxygenated hemoglobin is about 20% less susceptible to an

external magnetic field than deoxygenated hemoglobin. Therefore, when a subject is placed

in an MRI scanner and his/her neural activity starts to increase in some part of his/her

cerebrum, the increased oxygenated hemoglobin causes the local magnetic field to be more

uniform and hence reduces the local R∗2 decay rate. This reduction of the R∗2 decay rate can

be captured by MRI in T ∗2 -weighted images, where the excited area becomes brighter. By

acquiring multiple R∗2-weighted images with a high temporal resolution, one can observe this

variation of the image intensity and localize the excited area.

If one ignores the effect of off-resonance during the MR imaging process, the images

acquired at a particular time t can be represented by

st(~r) = m(~r)e−d(~r)t (1.19)

where m(~r) and d(~r) represent the spin density map and the R∗2 decay map. The T ∗2 -weighted

imaging sets the time point t so that the resultant image st is contrasted by the T ∗2 -weighted
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spin density, where T ∗2 = 1/R∗2 is the time constant associated with the R∗2 decay. The

time t cannot be chosen to be zero, since then the contrast would be a function only of

the spin density. The time t cannot be too big either since then all voxels would have a

small signal and the contrast would be poor. Depending on the R∗2 decay rate distribution

of the imaged object, there is an optimal choice for the t so that the resultant image is

most heavily influenced by the variation of the R∗2 decay. This imaging method is called

the T ∗2 -weighted imaging. Most BOLD contrast based fMRI utilizes this imaging method to

reflect the temporal variation of the R∗2 decay rate.

BOLD functional MRI is an important application of joint reconstruction of spin density,

R∗2 decay, and off-resonance maps mainly because R∗2 decay is the biomarker of the BOLD

effect. In addition, the T ∗2 -weighted imaging method is an indirect method in the sense

that it only reconstructs the R∗2 decay weighted spin density instead of R∗2 decay itself. An

important assumption in T ∗2 -weighted imaging based fMRI is that the spin density must

remain unchanged. However, if one estimates ~m and ~z in (1.14) simultaneously for fMRI,

this assumption can be relaxed. This difference makes any practical method solving the

problem in (1.14) valuable to fMRI due to the robustness of the R∗2 estimate to the variation

of spin density, which can be caused by various factors such as inflow [34]. Inflow refers to

the blood flow in a vessel that passes through the imaging slice. During the imaging process,

some fresh blood will flow in and push the old flow out of the imaging slice, causing a change

in the excited spin density. This variation for some scans is very strong compared to the

actual fMRI signal and can therefore dramatically increase the error of fMRI data analysis.

1.3 Literature review

Overall, the published literature on joint reconstruction of spin density, R∗2 decay and

off-resonance maps through a single- or multi-shot trajectory is quite sparse. This may be

due to the various technical challenges of this problem, such as trajectory miscalibration

and sequence imperfection, which are explained in later chapters. Although papers directly
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addressing the reconstruction problem are sparse, a considerable number of papers address

similar problems. Some of these papers offer important insights into our problem and help us

in developing our reconstruction algorithms. The literature review begins with these papers.

All reconstructions that assume a prior model for the acquired signal can be categorized

as model-based image reconstruction [28]. The model is usually proposed based on some

simplified physical equations, such as the mono-exponential model we use throughout this

work [96]. Most work that has used this model has attempted to reconstruct one or two

parameters maps by assuming the remaining maps are known. An iterative algorithm is

typically necessary due to the nonlinearity of the model.

1.3.1 Multi-echo sampling

Literature can be categorized based on the method used for acquisition. Most previously

mentioned algorithms used continuous sampling in k-space, i.e. some k-trajectories such as

EPI, spiral, radial, or rosette. In this and following sections, we review methods that have

used full multi-echo sampling and undersampled multi-echo sampling. These methods are

the mainstream methods for reconstruction of the R∗2 relaxation rate and are mainly applied

to BOLD functional MRI or detection of iron overload in the body.

Most clinical R∗2 mapping protocols are based on the full multi-echo sampling strategy

[4, 5, 26, 58, 73, 111, 114]. These methods usually follow a two-step reconstruction. In the

first step, they reconstruct all images based on inverse Fourier transform. In the second

step, they fit the mono-exponential model to the sequence of images. In [5], Barth et al.

proposed a multi-echo spiral imaging sequence to sample k-space with eight single-shot spiral

trajectories, each taking less than 25 milliseconds. The sequence was applied to a finger

tapping fMRI experiment and was able to distinguish between BOLD signal and inflow

effects. Wennerberg et al. compared R∗2 mapping to traditional fMRI image reconstruction

and concluded that R∗2 mapping is more resistant to inflow effects and has a higher functional

contrast; however, the activation volume of R∗2 mapping is smaller. Nevertheless, they only
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used two-echo spiral imaging, with one echo at 20 ms and another at 90 ms. The low

echo number and large interval between echoes can cause strong noise which can be much

improved by having more echoes. Anderson et al. used a multi-echo T ∗2 mapping to quantify

iron overload in myocardium [4]. They used eight different echo times in reconstructing

a T ∗2 map, and the result provided an effective tool for quantifying the need for tricular

dysfunction treatment. There are many other similar applications of multi-echo sampling in

R∗2 or T ∗2 parameter mapping. Most of them use 6-8 TEs and provide a gold standard for

the undersampled multi-echo approach.

1.3.2 Undersampled multi-echo sampling

The drawback with full multi-echo sampling is its time consumption. Since usually 6-8

echoes are needed, a full multi-echo sampling takes at least tens of seconds. Using spirals

or random EPI may reduce the acquisition time, but the induced undersampling can cause

artifacts. To address this problem, many researchers discarded the two-step procedure used

in full multi-echo sampling. Instead, they combined either the mono-exponential modeling

or a sparsity constraint with the inverse Fourier transform [7, 22, 51, 72, 93, 107, 119]. In [7]

and [93], Block et al. and Sumpf et al. proposed a radial and an undersampled Cartesian spin

echo multi-echo sequence to reconstruct T2 relaxation time, respectively. The undersampling

rate used was 6-8, and l2 regularization was used to enforce the estimate smoothness. Huang

et al. proposed a multi-echo radial sequence whose undersampling rate is around 4. They

also transformed the nonlinear curve fitting for the mono-exponential modeling to a linear

inversion problem based on principle component analysis (PCA) of the exponential functions.

This technique was also used in [22, 107] and is similar to the idea of MR fingerprinting

[17,70]. Regularization in the temporal domain or simultaneously in the spatial and temporal

domains is very common among papers that used undersampled multi-echo sampling [22,

51, 72, 107]. This inspired our work in the third chapter, and such regularization is very

important in our algorithm. Compressed sensing (CS) has also been frequently used for this
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type of method, where the regularization is based on sparsity of the signal in some transform

domain [51, 72, 107, 119]. The use of CS in the multi-echo approach is somewhat similar to

its use in dynamic MRI [105].

1.3.3 Reconstruction of a single parameter map

Literature can also be categorized based on the number of reconstructed parameter

maps. Some work only addresses reconstruction of one parameter map. These algorithms

often assume one parameter map is known and aim to reconstruct another map [15, 29,

31, 32, 97, 117]. For example, Sutton et al. presented a fast algorithm to reconstruct the

spin density map with a known off-resonance map [97]. The fast computation is realized

by time domain segmentation, which facilitates use of the nonuniform fast Fourier trans-

form (NUFFT). Later, Fessler et al. proposed another fast algorithm dealing with the same

problem [29]. The work generalizes the time-domain segmentation technique in [97] and

combines it with Toeplitz-based matrix-vector multiplication which is much faster than reg-

ular matrix-vector multiplication. Both methods used conjugate gradients to solve a linear

optimization problem, and the latter work showed that CG-Toeplitz is considerably faster

than CG-NUFFT. Both papers used a single-shot spiral trajectory with 18.8 ms of readout

time to acquire k-space data. Since these two techniques are very efficient, they have been

used by many authors in reconstruction of more parameter maps [49, 83]. Similar work in

reconstructing the spin density map with a known field map include [15, 117]. In [117],

Zahneisen et al. generalized the CG-NUFFT algorithm to 3D image reconstruction by using

a concentric shells 3D trajectory. In [15], Compton et al. proposed a hybrid regularization

based on total variation and framelet norm for the same problem and presented a split

Bregman algorithm to efficiently solve the resultant convex optimization problem. These

techniques were mostly published from 2000 to 2010 and are therefore foundational for much

later work on jointly reconstructing multiple parameter maps. Their insights in efficiency,

regularization, and trajectory design have had an important impact on later work.
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1.3.4 Joint reconstruction of two parameter maps

Some authors have attempted to reconstruct two parameter maps out of the three

[10, 11, 74–76, 80, 82, 83, 98]. These problems are very similar to our problem, and some of

them can be easily adapted to reconstructing three parameter maps. Sutton et al. proposed

an algorithm to reconstruct the spin density map and the off-resonance map from a spiral-

in/spiral-out trajectory [98]. The spiral-in/spiral-out trajectory is a succession of a spiral-in

trajectory and a spiral-out trajectory. The authors claimed the trajectory to be superior

due to its efficient sampling and the closely spaced TEs. They used a gradient descent

algorithm and employed the acceleration technique in [97]. Other researchers proposed

a similar signal model whose off-resonance map also includes the through-plane gradient

[75, 76]. However, this algorithm reconstructs multiple slices together, which requires a

large variable size and long computation. Olafsson et al. proposed a gradual refinement

algorithm to jointly reconstruct the R∗2 decay map and the off-resonance map [83]. The

spin density map must be provided by separate pulse sequences. The author demonstrated

that the algorithm converges well when a good initialization is present. However, in the

presence of poor initializations, we found the algorithm has a very low success rate in our

experiments [49]. Another category of methods for reconstructing spin density and off-

resonance maps is called automatic off-resonance correction. These methods are inspired

by the conjugate phase algorithm [71] and assume the spin density map is completely real.

Since this is usually not the case, a low-pass filtering is applied to preprocess the data.

The off-resonance at each voxel can be reconstructed by minimizing the imaginary part of

the reconstructed image. These algorithms are mostly noniterative and therefore very fast.

However, they usually assume off-resonance is linearly varying in the image space which does

not conform to the actual case and possibly causes errors. Also, these algorithms cannot be

extended to include reconstruction of relaxation, since relaxation causes changes in the real

part of the image. Overall, we found much more attention given to joint reconstruction of the

spin density and field maps than joint reconstruction of the spin density and R∗2 relaxation.
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From our experience, we believe reconstructing the R∗2 relaxation map is much more difficult

than the off-resonance map.

1.3.5 Joint reconstruction of the three parameter maps

Although joint reconstruction of spin density, R∗2, and off-resonance maps may be of

the highest difficulty among all model-based approaches and is very sparse in the literature,

this method was proposed in relatively early days. In 2003, before most of the previously

mentioned model-based methods were published, Twieg proposed a conceptual approach

called “PARSE”, which is exactly the joint reconstruction of the three parameter maps [102].

He also pointed out that the rosette is a good k-trajectory candidate for this problem due

to its dense sampling around the k-space origin. The reconstruction algorithm he used is

a gradient descent algorithm which took hours to reach a satisfactory result. Properties

of convergence for this problem were not well analyzed in the paper. Continuation of this

work appeared in 2010, by Twieg and Reeves [103]. They proposed a modified conjugate

gradient algorithm as a replacement of the gradient descent algorithm and analyzed many

properties of the algorithm. They adopted a continuation framework on data length to avoid

local minima and to increase convergence speed. They reported that the proposed conjugate

gradient algorithm was able to yield a satisfactory estimate in a few minutes. However,

the robustness of their method remains unclear, and the progressive data length technique

is highly tailored specifically for this problem. Another early work on this topic is from

Sutton et al. [95]. However, the work lacked thorough analysis and experiments and was not

followed up by a more comprehensive journal paper. All these papers used gradient-based

methods to address the underlying nonlinear optimization problem.
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1.3.6 Algorithm usage

In previous sections, we analyzed the model-based approaches based on their sampling

patterns and reconstruction objectives. In this section, we categorize the algorithms devel-

oped for all undersampling-based reconstruction problems. All algorithms described in the

Section 1.3.2 to 1.3.5 used some kind of undersampling strategies. Most of these algorithms

can be classified into two categories: gradient-based algorithms and alternate minimiza-

tion algorithms. Gradient-based algorithms, such as those used in [7, 93, 119] in Section

1.3.2, [29, 97] in Section 1.3.3, [75, 76, 83, 98] in Section 1.3.4, and [95, 102, 103] in Section

1.3.5 used many classical unconstrained optimization algorithms, such as gradient descent

and conjugate gradients. Their performance is well predicted by established theory in uncon-

strained optimization. Since these methods need to calculate a gradient in every iteration,

they usually call for some fast computation techniques such as NUFFT and Toeplitz matrix-

vector multiplication to reduce the computational burden. The algorithms are usually not

scale independent; that is, their computation time increases linearly with the increase of

dimensionality. If the image size grows from 64 × 64 to 128 × 128, the computation time

quadruples.

Another type of algorithm used the alternate minimization method or variable splitting

method, which is usually seen in convex optimization literature. This kind of algorithm

was used in [58] in Section 1.3.1, and in [22, 51] in Section 1.3.2. Although they were

used much less frequently than gradient-based methods, they were so different from the

gradient-based methods and we believe they can be faster and more stable than gradient-

based methods, especially for reconstruction of multiple parameter maps. Usually, these

methods were adopted in multi-echo (full or sparse) sampling based approaches. However,

we show that this method can also be applied to continuous sampling. More details about

the alternate minimization method will be given in the third chapter.
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1.3.7 Regularization usage

All approaches that undersample the k-space frames must use some sort of regulariza-

tion. Most algorithms in this context used Tikhonov regularization [78]. The regularization

is applied to the parameter maps of interest to enforce smoothness. Tikhonov regularization

is especially a good fit for field map reconstruction because a field map is usually smooth

except at some boundaries of two different tissues. When estimates of multiple parameter

maps are needed, regularization can be applied uniformly or separately to each of the pa-

rameter maps. Since the off-resonance map is usually smoother than the other two maps,

separate regularization over each parameter map may lead to a better reconstruction [83].

When CS is used in reconstruction of these parameter maps, other regularization meth-

ods may be used, such as total variation [15], l1 norm in some transform domain [15,51,119],

and regularization that promotes group sparsity [72,107]. The latter regularization promotes

the correlation between different k-space frames since they are related by the parameter maps.

Although a direct comparison between Tikhonov regularization and the sparsity-promoting

regularization for the joint reconstruction problem is still lacking, it is reasonable to believe

the latter regularization is superior to the former one since the spin density and R∗2 maps

may not be very smooth.

No matter what regularization is used, regularization parameter choice is a problem.

Since there are multiple regularization terms, multiple parameters are present and a fine

tuning is not easy to achieve. However, so far most algorithms have focused on developing

algorithms, and parameters have usually been selected by trial-and-error. Several authors

have used a point spread function analysis to make sure the smoothness induced by the

regularization is within a reasonable range [31, 32, 97]. L-curve method [44] has also been

used in some papers [117]. Overall, a method for choosing an optimal set of parameters is

still an open problem for the nonlinear optimization problem.
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1.3.8 Related literature

Some problems are closely related to the joint reconstruction of multiple parameter

maps. These problems are either similar to the latter problem, or compose part of the latter

problem, or have a similar purpose with the latter problem. At the end of this chapter, we

briefly review literature on these problems.

Coil sensitivity mapping

Coil sensitivity profiles are important to parallel imaging [39,86]. The simplest method

to obtain the sensitivity maps is to divide the images from the coil array by the reference

image acquired from a single-channel body coil. Since a division induces a lot of noise

while sensitivity maps are usually smooth, some kind of smoothing needs to be used [86].

The model-based approach can also be applied to reconstruction of sensitivity maps [28].

These methods usually involve the sensitivity map into modeling of the acquired k-space

data and then solve for the map using iterative algorithms [2, 3, 57]. Joint reconstruction

of coil sensitivity maps and the spin density map has also been investigated [100, 104, 116].

The model-based approach relates coil sensitivity mapping to our problem since their forward

models are very similar. Some of the algorithms used in model-based coil sensitivity mapping

can be adapted to our problem, such as [3].

T1 & T2 mapping

T1 & T2 mapping are important to our problem in many ways. First, most methods for

T1 & T2 mapping are also model-based; some of them also used iterative algorithms which

can inspire algorithm development for our problem [21,93,94]. Second, it is also interesting

to extend algorithms for T ∗2 mapping to T1 or T2 mapping to simultaneously reconstruct

multiple relaxation rate maps [62]. However, in T1 & T2 mapping, the models can be much

more complicated than mono-exponential due to the presence of a composite component

(such as water) and pulse sequence design [59,90,112,113].
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Trajectory calibration

When a non-Cartesian trajectory is used in reconstruction, using trajectory calibration

to find out the “true” trajectory can reduce the induced estimation error. This is espe-

cially the case when the forward model is ill-conditioned, such as in undersampling-based

reconstruction, since the ill-conditioning would increase the error. One of the most commonly

used trajectory calibration techniques is from [25]. Other methods include [19,63,64,99,118].

Compared to these methods, [25] is much easier to implement and does not require use of

special phantoms. In our work, we also used the calibration method in [25].

Dynamic MRI

Dynamic MRI refers to real-time MR imaging of moving organs, such as the heart.

Dynamic MRI has been investigated for a long time and has recently been clinically used in

cardiac imaging [33, 55, 69, 101]. The aim of dynamic MRI is to reconstruct a sequence of

images that correspond to a movie of an organ at different time points. Since usually only a

small portion of the image is dynamically moving while the rest remains static, compressed

sensing can be applied not only to the spatial domain but also the temporal domain. This

characteristic is very similar to relaxation mapping in that a sequence of mutually correlated

images is to be reconstructed. Therefore, the algorithms used in dynamic imaging can be

good references for algorithm development in our problem [52,72].
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Chapter 2

Trust-region methods

In this chapter, we present two trust-region methods based on two different lineariza-

tion strategies for the nonlinear signal model. A trust region is defined as a local area in

the variable space where a local linear approximation is trustworthy. In each iteration, the

method minimizes a local approximation within a trust region so that the step size can be

kept in a suitable scale. A continuation scheme is applied to gradually reduce the regulariza-

tion over the parameter maps and facilitate convergence from poor initializations. The two

trust-region methods are compared to two other previously proposed methods—the nonlin-

ear conjugate gradients and the gradual refinement algorithm. Experiments based on various

synthetic data and real phantom data show that the two trust-region methods have a clear

advantage in both speed and stability.

2.1 Formulation of the cost function

Recall from Section 1.2.3 that we want to minimize

‖~y − ~s(~m, ~z)‖2 + λ1‖D1 ~m‖2 + λ2‖D2~z‖2 (2.1)

with respect to ~m and ~z, where

~y , [y11, y21, . . . , yL1, y12, . . . , yL2, . . . , yLP ]T represents the acquired k-space data

~s , [s11, s21, . . . , sL1, s12, . . . , sL2, . . . , sLP ]T represents the predicted k-space data

~m , [m1,m2, . . . ,mN ]T represents the spin density map

~z , [z1, z2, . . . , zN ]T represents the complex frequency map

36



and

slp(mn, zn) ≈ g̃lp

N−1∑
n=0

mne
−zntle−2πι(~klp·~rn) (2.2)

In (2.1), D1 and D2 are the regularization matrices corresponding to ~m and ~z. In (2.2),

g̃lp , g̃(~klp) represents the sample of the Fourier transform of g(~r) at ~klp, and g(~r) is the

interpolation function of m(~r)e−z(~r)tl for each l.

2.2 Proposed trust-region methods

In this section, we present two trust region (TR) methods [92], the ordinary trust-

region method (OTR) and the change-of-variable trust-region method (CVTR) due to their

different linearization strategies.

2.2.1 The ordinary trust-region method

Approximating the local cost function

Finding a quadratic approximation of the nonquadratic cost function is the first step in

utilizing a trust-region method. Let m0n, z0n represent the parameters at a reference voxel

and ∆mn, ∆zn the offsets. Taking the first-order Taylor expansion about m0n and z0n in the

discrete version of (1.13) leads to the approximation

mne
−zntl ≈ m0ne

−z0ntl + ∆mne
−z0ntl −m0ne

−z0ntl∆zntl (2.3)

where ∆mn and ∆zn are sufficiently small. With this approximation, one then minimizes

the following function in each iteration:

min
∆~m,∆~z

‖~ζ − [Θ1 Θ2][∆~mT ∆~zT ]T‖2 s.t. ‖∆~m‖2 ≤ η1; ‖∆~z‖2 ≤ η2 (2.4)
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where η1, η2 ∈ R+ and

[~ζ](l,p) , ylp −
∑
n

m0ne
−z0ntle−2πι(~klp·~rn);

[Θ1](l,p),n , g̃lpe
−zn0tle−2πι(~klp·~rn);

[Θ2](l,p),n , −g̃lptlm0ne
−zn0tle−2πι(~klp·~rn)

where (l, p) , (p− 1)L+ l. This is a constrained linear optimization problem.

Solving the sub-problem

Equation (2.4) with the regularization in (2.1) is equivalent to

min
∆~m,∆~z

‖~ζ − [Θ1 Θ2][∆~mT ∆~zT ]T‖2

+λ1‖D1(~m0 + ∆~m)‖2 + λ2‖D2(~z0 + ∆~z)‖2

+σ1‖∆~m‖2 + σ2‖∆~z‖2

(2.5)

where σ1 and σ2 are properly chosen positive numbers. To solve (2.5), we choose precon-

ditioned linear conjugate gradients (PCG) [37]. We use diagonal preconditioners which are

defined as the inverse of the diagonal of the Hessian in (2.5). The maximal number of itera-

tions for the sub-problem is set to 40. However, convergence is usually reached in less than

40 iterations with either a small gradient or a low iterate variation.

Summarizing OTR

The following procedure defines one iteration of OTR. Throughout our work, we use

µ1,2,3,4 = 0.60, 2, 0.99, 0.7.
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Procedure 1

• If gradient or iterate variation is sufficiently small, the algorithm is stopped.

• Minimize (2.5) with PCG. Let the solution be ∆~m, ∆~z.

• Calculate the ratio γ between the decrease in (2.4) and the decrease in (2.1) caused by

the new iterate.

• If γ > 0 (descent), ~m← ~m+ ∆~m and ~z ← ~z + ∆~z.

• If γ < µ1, then σ1 ← µ2σ1, σ2 ← µ2σ2. If γ > µ3, then σ1 ← µ4σ1, and σ2 ← µ4σ2.

2.2.2 The change-of-variable trust-region method with regularization

Introducing CVTR

The difference between OTR and CVTR lies in the local approximation. For CVTR,

the nonlinear signal model is first approximated by

mne
−zntl ≈ mne

−z0ntl(1−∆zntl) = mne
−z0ntl − e−z0ntlmn∆zntl (2.6)

and then followed by combining mn∆zn into a new variable cn

mne
−zntl ≈ e−z0ntlmn − tle−z0ntlcn (2.7)

Equation (2.7) also explains how the method is named. The approximation leads to a

different data fidelity term from the one in (2.4):

‖~y − [Θ1 Θ3][~mT ~cT ]T‖2 (2.8)
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where

[Θ3](l,p),n = −g̃lptle−zn0tle−2πι(~klp·~rn)

Reformulating the cost function for CVTR

A problem arises when constructing the approximated cost function for CVTR. The

regularization of ~z would introduce a nonlinear term in the cost function since zn = cn/mn

for the nth voxel. A straightforward solution is to regularize the point-wise product of ~m

and ~z. This solution leads to a new cost function

‖~y − ~s(~m, ~z)‖2 + λ3‖D1 ~m‖2 + λ4‖D2(~m� ~z)‖2 (2.9)

where λ3,4 ∈ R
+ and � represents the point-wise product between two vectors. The main

difference compared to (2.1) lies in the regularization over ~z. A new sub-problem also arises

for CVTR

min
~m,~c
‖~y − [Θ1 Θ3][~mT ~cT ]T‖2

+λ3‖D1 ~m‖2 + λ4‖D2(~m� ~z0 + ~c)‖2

s.t. ‖~m− ~m0‖2 ≤ η3; ‖~c‖2 ≤ η4

(2.10)

where η3, η4 ∈ R+. Similar to (2.5), we use PCG to solve the equivalent problem of (2.10) in

each iteration:

min
~m,~c
‖yl − [Θ1 Θ3][~mT ~cT ]T‖2

+λ3‖D1 ~m‖2 + λ4‖D2(~m� ~z0) +D2~c‖2

+σ3‖~m− ~m0‖2 + σ4‖~c‖2

(2.11)

where σ3 and σ4 are properly chosen positive numbers.
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Specifying the trust region for CVTR

The trust region of CVTR is less intuitive than OTR. Since |∆bn| = |cn/mn| must be

bounded above, |cn| must be bounded above and |mn| must be bounded below. However, a

lower bound for the modulus of a complex number is hard to implement. A more practical

method is to set a bound for the variation of ~m like the bound for ∆~m in OTR. This bounding

method gives the constraints in (2.10).

The two trust regions associated with the two linearization methods bear further dis-

cussion. Figure 2.1 illustrates their differences. The trust region of CVTR is nonconvex in

the (~m, ~z) domain due to the quotient cn/mn. This trust region makes CVTR either slower

than OTR when the trust region is small or causes unacceptable updates when the trust

region is large. An advantage of the CVTR trust region is that it can be much broader in

the spin density direction. This advantage may help stabilize the convergence of the spin

density since the variation of the spin density has a small influence on the convergence. This

advantage may also speed up the convergence of the spin density when decay and frequency

have good initial guesses.

𝑚𝑚

𝑧𝑧

𝑚𝑚

𝑧𝑧

� �

Figure 2.1: Comparison between OTR (left) and CVTR (right) trust regions in a simplified
case where m and z are both real scalars. The black and green lines represent trust region
constraints associated with m and z, respectively. The red dashed line represents the support
for the local linearization.
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Summarizing CVTR

The following defines an iteration of CVTR. µ1,2,3,4 = 0.60, 2, 0.99, 0.7 as for OTR.

Procedure 2

• If gradient or iterate variation is sufficiently small, then the algorithm is stopped.

• Minimize function (2.11) with PCG. Let the solution be ~mest, ~cest.

• Calculate the ratio γ between the decrease in (2.10) and the decrease in (2.9) caused

by the new iterate.

• If γ > 0 (descent), ~m← ~mest and ~z ← ~z + ~cest
~mest

.

• If γ < µ1, then σ1 ← µ2σ1, σ2 ← µ2σ2. If γ > µ3, then σ1 ← µ4σ1, and σ2 ← µ4σ2.

2.2.3 Ill-conditioning and nonlinearity

We observed the conditioning of jointly estimating the spin density, R∗2 decay and the

off-resonance frequency maps out of a single-shot trajectory is very poor [47]. The severe

ill-conditioning as well as the nonlinearity of the signal model (1.13) result in a great chal-

lenge for each iterative method. This situation is illustrated in Figure 2.2, where the cost

function without regularization is plotted by varying R∗2 decay and off-resonance frequency

at a reference voxel and holding all other values constant. On one hand, the ill-conditioning

mainly exists in the R∗2 decay direction, since a large variation of the R∗2 decay introduces

a small variation of the function value. On the other hand, the nonlinearity of the signal

model is reflected by the multiple local minima in the axis of off-resonance frequency of

this subspace. Such a function profile dramatically increases the challenge for an iterative

method.

42



(a)

off-resonance frequency (Hz)

R
2*  d

ec
ay

 (s
ec

-1
)

-300 -200 -100 0 100 200 300-40

-20

0

20

40

60

80

100

(b)

Figure 2.2: Cost function without regularization in a neighborhood of mn = 0.5, zn = 0 for
all n. (a) 3D plot of the cost function, and (b) level sets of the cost function in (a). The
actual complex frequency zn0 at this voxel is zn0 = −17.19 sec−1− ι24.04 Hz, located at the
red square in (b).

2.2.4 Alternative methods for comparison

We use a nonlinear conjugate gradient (NCG) method that we previously developed for

the same problem [100]. In each iteration, the method uses an interpolating polynomial to

make an inexact line search, followed by a check to see whether the residual decreases. If

the residual does not decrease, an exact line search based on a bisection method is applied.

This procedure improves the efficiency of the NCG method. For this particular problem,

rescaling of the variables was reported to be necessary in order to hold mn and zn at the

same scale [7]. However, the rescaling parameter is usually empirically selected, and any

scale mismatch can cause a poor optimization [51]. In this work, we replace rescaling with a

diagonal preconditioning which is defined for this nonlinear forward operator as JHJ, where

J represents the Jacobian matrix at each iterate and H represents conjugate transpose. We

observe that the method speed is significantly improved by the preconditioning. Moreover,

preconditioning makes the comparison between NCG and trust-region methods fairer since

both use the same preconditioner.
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The gradual refinement (GR) method used in our context is inspired by the method

developed in [83]. The reference method only reconstructs R∗2 decay and off-resonance fre-

quency maps. In our work, we extend the reference method to simultaneously reconstruct

the three parameter maps. In each iteration, the GR method minimizes the approximated

cost function in (2.4) without the constraint. The method then accepts the minimizer of

the approximated function without a line search (i.e. step length is always set to 1). [83]

states that the method converges well when a good initialization is present. In our work, we

observe that the GR method has a similar behavior. However, GR can sometimes fail the re-

construction when initialization is poor, which makes the algorithm behavior unpredictable.

This characteristic is compared to the trust-region methods to demonstrate their advantage

in stability for this problem.

2.2.5 Continuation methods

Solving an ill-conditioned nonlinear equation system from poor initializations usually

requires a continuation method [79, 109]. The continuation method embeds the original

problem into a one-parameter series of problems where the complexity of the function surface

and therefore the estimation difficulty monotonically increase. The original problem is set

to be the last problem of this series with the previous solution used as the initialization, so

the sequence of solutions converges to the solution of the original problem. Examples of this

method include the fixed-point continuation method (FPC) devised for sparse reconstruction

[42] and the progressive data length method in [103].

In our work, the regularization parameters must be set high when the algorithm starts

from a distant initial guess so that local minima can be avoided (Figure 2.2). The strong

regularization causes severe oversmoothing artifacts in the estimates. These artifacts are then

reduced by gradually reducing the regularization parameters. Each set of the parameters is

called a continuation phase. The continuation method dramatically increases the probability

of convergence from a distant initialization for all algorithms. For all our experiments,
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the algorithms actually used are the trust region continuation methods, conjugate gradient

continuation method (CGC), and the gradual refinement continuation method (GRC). The

trust region continuation methods include the ordinary trust region continuation method

(OTRC) and the change-of-variable continuation method (CVTRC).

Selecting an optimal continuation scheme is not straightforward. In this work, we use

the same continuation scheme for all methods, and this continuation scheme is found in a

trial-and-error manner. Specifically, we first determine the regularization parameters based

on the object smoothness and the noise level (e.g., running OTR with a good initialization

for varying regularization parameters). We then choose a suitable number of continuation

phases based on the quality of the initialization. The closer the initialization is to the mini-

mizer, the fewer continuation phases we need for convergence. We then find out the reduction

factor for all regularization parameters by trial-and-error.

Procedure 3

• Set λ1, λ2 (λ3, λ4 for CVTRC)

• For j = 1, . . . , J (outer loop)

– Set σ1,2

– For i = 1, . . . , I(j) (middle loop)

∗ Run Procedure 1 or Procedure 2

– End

– λ1 ← λ1/ξ1; λ2 ← λ2/ξ2 or λ3 ← λ3/ξ1; λ4 ← λ4/ξ2

• End
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2.2.6 Choices of parameters

CVTRC and OTRC are nested algorithms of three program loops. The outer and middle

loop are shown in Procedure 3; the inner loop is the PCG loop in Procedures 1 & 2. In the

outer loop, we need to initialize λ1,2 or λ3,4 (regularization parameters), assign ξ1 and ξ2

(regularization reductions in each continuation phase), and set J (number of continuation

phases). We also need to initialize σ1,2 before each middle loop. λ1,2 or λ3,4 are somewhat

dependent on the object and noise level; however, the dependence is continuous and rather

insensitive to many different objects. For example, a phantom and a human brain slice

require about the same regularization parameters based on our experiments, since they are

similarly smooth. ξ1,2 and J can be predetermined; in fact, in all our experiments ξ1 = 10,

ξ2 = 6 and J = 4. σ1 and σ2 are initialized to 104 and 102 respectively in the first continuation

phase for all experiments. After that, they are automatically updated based on Procedures

1 & 2 and passed on to the next continuation phase when j increases.

The middle loop consists of I(j) iterations of Procedure 1 (for OTRC) or Procedure 2

(for CVTRC). In our work, I(1), I(2), I(3), I(4) are set to be (30, 10, 10, 5) for both OTRC

and CVTRC. We set I(1)-I(4) differently to avoid too many iterations for each continuation

phase. Usually, the two algorithms activate the stopping rule before the iteration limits.

Even when that does not happen, these numbers are large enough to obtain a significant

improvement in the estimate. The main parameters in the inner loop are µ1,2,3,4. Choices of

these parameters can be found in the standard literature on trust-region methods [13, 92],

since they are a part of the algorithm. Since NCGC and GRC address the same cost function

(2.1) as OTRC, we use identical regularization parameters and continuation parameters for

these two comparison algorithms.

.
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2.3 Real data reconstruction

The ultimate goal of the trust region algorithms is to reconstruct from real MRI data

with a minimal number of trajectories. An important problem with real data is lack of

ground truth. In this work, we used a multi-echo gradient echo sequence to estimate the three

parameter maps for a cylindrical phantom and treated the estimates as the gold standard

[4,5,26,73,111,114]. The parameters for the multi-echo gradient echo sequence are: TE = 5,

6, 7, 8, · · · , 82 ms, TR = 200 ms, image size = 64 × 64, bandwidth = 390 Hz/Pixel, FOV =

120 mm × 120 mm, slice thickness = 2 mm, flip angle = 15◦. We used a long echo train for

phantoms to reduce noise. We employed a 32-channel head coil but only used one channel of

data for the reconstruction. We chose the channel with the most uniform sensitivity. After

acquiring all k-space frames, we applied an inverse Fourier transform to every frame and

then a curve fitting on a voxel-by-voxel basis to reconstruct the three parameter maps.

Theoretically, the data from any single-shot trajectory should be approximately equal to

~s(~m, ~z) in (1.17) with ~m, ~z given by the estimates from the multi-echo approach. However,

the difference between the actual k-space data and model k-space data is very large in our

findings. The large model mismatch causes the reconstruction for all algorithms to be subop-

timal. The reason is still under investigation. Possible reasons include hidden inconsistency

between the multi-echo gradient echo sequence and the single-shot rosette trajectory, tra-

jectory miscalibration, and perhaps some model limitations such as imperfect modeling for

intra-voxel gradients. We have especially paid attention to trajectory miscalibration because

it is a crucial factor within the model (2.2). We used the calibration technique proposed

in [118] to reduce the miscalibration, but the precision level may be insufficient for this

reconstruction problem.

The trajectory we used in our experiment is a rosette trajectory. This trajectory has

been verified by others to be superior in reconstruction quality to other single-shot trajec-

tories such as spirals and echo planar imaging (EPI) trajectories for this problem [60, 102].
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Its formulation is shown below

~kl =
1

2
kmax sin(wosctl)e

ιwrottl+θ (2.12)

where kmax denotes the range of k-space, wosc the oscillation frequency, wrot the rotation

frequency, and θ the initial angle of the trajectory in the complex domain. In our work, wosc

= 3196 rad/sec, wrot = 1577 rad/sec, time span of the trajectory is 81.92 ms and a total of

8192 samples are acquired. When a single-shot rosette is used, θ=0◦. However, since the

model mismatch is large, we used multi-shot rosette trajectories for reconstruction to improve

the conditioning and make the result less sensitive to modeling error. In particular, we used

four interleaved single-shot rosettes with θ set to 0◦, 22.5◦, 45◦, and 67.5◦, respectively. We

emphasize that the focus of the real data reconstruction is on comparing the four algorithms

in terms of their convergence performance rather than their absolute accuracy relative to a

gold standard.

2.4 Simulations

In this section, we show reconstructions based on a simulated phantom and a human

brain slice. We used a single-shot rosette trajectory to synthesize k-space data, and the

trajectory is specified in the previous section. The model of the k-space data is given by

(2.2). The noise was white Gaussian and the signal-to-noise ratio (SNR) in this work is

defined as

SNR =
‖s‖2

‖s− s0‖2

where s is the noisy data and s0 is the noiseless data. Normalized mean square error (NMSE)

was used as a metric for the accuracy of the reconstructions. The NMSE is defined as:

NMSE =
‖f − f0‖2

‖f0‖2
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where f and f0 represent the estimate and the ground truth. All methods started at a

trivial initialization: mn = 0.5 and zn = 0 for all n. For all experiments, we used a masking

technique to mask out voxels with low spin density before applying any iterative algorithm.

This technique has also commonly been used by some other authors [83,97]. All algorithms

were implemented using MATLAB and run with an Intel Core i7-4700MQ CPU.

2.4.1 Simulated phantom

We simulated a piecewise continuous cylinder phantom to mimic four small cylinders

each filled with different materials and placed within a large cylinder container. Since the off-

resonance map is often modeled as a smooth map [98], we have smoothed the off-resonance

map by a circular averaging filter with a radius of 5 voxels. We use a triple to represent the

maps of the spin density, R∗2 decay, and the off-resonance frequency for each material. The

units for the R∗2 decay and off-resonance frequency are sec−1 and Hz. The parameters of the

material in the large container are (1, 20, 100). The parameters of the four small containers

in the middle are (0.2, 2, -20), (0.4, 10, 60), (0.6, 50, 140), and (0.8, 80, 200) in a left-right,

top-bottom order. Figure 2.3 (a-c) shows the three parameter maps for the phantom.

Figure 2.3: Simulation results: (a-c) ground truth for the spin density, R∗2 decay and the
off-resonance frequency, (d-f) OTRC reconstruction results, (g-i) CVTRC reconstruction
results, and (j-l) NCGC reconstruction results.

Figure 2.3 shows the estimation results obtained through OTRC, CVTRC, and NCGC

with SNR = 100. All three algorithms obtained reasonable reconstructions. Single-shot
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Figure 2.4: Convergence profiles of the spin density map (left), R∗2 decay map (middle)
and the off-resonance frequency map (right). The red triangle line is the profile associated
with the TRC algorithm, while the blue circle line is the profile associated with the CGC
algorithm.

Table 1: Convergence accuracy and time of OTRC, CVTRC, NCGC, and GRC for different
data sets

Data Criteria OTRC CVTRC NCGC GRC 

SNR = 100 
(reference 

 regularization) 

Time(min) 8.2 8.3 26.7 -- 

NMSE(SD, Decay, Freq.) (0.09, 0.14, 0.03) (0.09, 0.20, 0.04) (0.14, 0.19, 0.05) -- 

SNR = 20 
(10x regularization) 

Time(min) 7.9 8.2 27.2 -- 

NMSE(SD, Decay, Freq.) (0.13, 0.26, 0.06) (0.14, 0.34, 0.08) (0.21, 0.47, 0.23) -- 

SNR = 10 
(100x regularization) 

Time(min) 7.8 9.7 25.7 7.1 

NMSE(SD, Decay, Freq.) (0.18, 0.35, 0.10) (0.20, 0.58, 0.10) (0.26, 0.54, 0.33) (0.18, 0.34, 0.10) 

Double Resolution 
(SNR = 100, reference  

regularization) 

Time(min) 10.9 10.8 34.2 -- 

NMSE(SD, Decay, Freq.) (0.17, 0.29, 0.07) (0.16, 0.39, 0.10) (0.22, 0.27, 0.07) -- 

 

reconstruction commonly manifests edge artifacts. We conjecture the artifacts are caused by

insufficient sampling of the k-space high-frequency band for a single-shot trajectory. These

artifacts are present for every method and do not influence the comparison. Also, these

artifacts can be reduced by increasing the overall sampling using a technique such as multi-

shot acquisition.
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Figure 2.5: Robustness of CVTRC and OTRC to variation of ξ1,2. The left, middle and
right columns show NMSE of CVTRC (left) and OTRC (right) for varying ξ1 only, varying
ξ2 only, and simultaneously varying ξ1 and ξ2, respectively.

Figure 2.4 shows the convergence profiles associated with OTRC, CVTRC, NCGC, and

GRC for the same k-space data. OTRC has about the same profile with CVTRC. CVTRC

appears to be slightly faster than OTRC and slightly less accurate than OTRC especially

on the R∗2 decay reconstruction. However, both of them are much faster than NCGC. In

addition, GRC does not converge. It stops because the residual and gradient become infinite

in the next iterate. This numerical instability is caused by the fact that a line search is

missing in GRC. Without a line search, the algorithm updates based on a local quadratic

approximation, which may increase the actual cost function. Trust-region methods never

have this issue because 1) minimization associated with the sub-problem is always applied

within a trust region and 2) a check is carried out in each iteration to guarantee the residual

reduction.

Robustness to different SNRs and discretization

Table 1 shows the accuracy and time required by different methods in processing data

sets with different SNRs and different discretization resolutions. With different SNRs (100,
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20, and 10), all methods except GRC are stable. However, OTRC has higher accuracy than

both NCGC and CVTRC. Both OTRC and CVTRC are much faster than NCGC. GRC

only converges for SNR = 10, and its accuracy is roughly the same as OTRC. Since GRC

and OTRC have the same cost function, similar accuracy is not surprising. However, the

stability of GRC is a major problem for the algorithm in the case of a poor initialization.

Also, when SNR decreases, the regularization parameters for all methods increase in order to

guarantee convergence. However, since all methods have the same regularization parameters

for a given SNR, a direct comparison of performance can still be made.

As real k-space data arises physically from continuous parameter maps, a higher dis-

cretization resolution was used when synthesizing k-space data to test the robustness of the

algorithms. As shown in Table 1, double resolution in the data synthesis leads to longer

reconstruction time and moderately worse accuracy for all algorithms. OTRC and CVTRC

still achieve reasonable accuracy and still outperform NCGC and GRC.

Robustness to ξ and λ parameter sets

Figure 2.5 shows the different sensitivity of OTRC and CVTRC to variation of ξ1 only,

of ξ2 only, and of ξ1 and ξ2 simultaneously. When only ξ1 or only ξ2 changes, CVTRC

displays a large variation in accuracy, while OTRC does not. When both ξ1 and ξ2 change

by the same amount, CVTRC displays much better robustness than it does when a sin-

gle parameter changes. This experiment demonstrates that the current implementation of

CVTRC is susceptible to relative variation between ξ1 and ξ2. It also shows that OTRC

is very robust for these parameters. Furthermore, since the two regularization parameters

are reduced by ξ1 and ξ2 respectively in each continuation phase, the experiment implies

that CVTRC relies more on a good match of the two regularization parameters than OTRC.

Figure 2.6 shows the performance of the two algorithms when only λ1 or only λ2 varies at

the final continuation phase. The two algorithms worked well for a wide range of variations

of λ1,2.
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Figure 2.6: Robustness of CVTRC and OTRC to regularization parameter variation. The
top and bottom rows show NMSE of CVTRC (left) and OTRC (right) for varying λ3 only
and varying λ4 only, respectively.

Advantage of CVTRC

This experiment aims to show the speed advantage of CVTRC over OTRC when an

educated ~z initialization exists. In this scenario, the fact that CVTRC has a larger approxi-

mation support in the spin density dimension should give it an advantage. We used the same

simulated phantom and applied two initializations to the parameter maps. Both initializa-

tions are close to the ground truth of ~z and distant from that of ~m. The first initialization

adds a small amount of noise to the ground truth of the ~z map, and the second initialization

randomly rotates the ~z map by a small angle in space. Since the two initializations are only

statistically similar in initializing ~z, this experiment can well verify that CVTRC converges

faster than OTRC when the initialization of ~z’ is good. The results are shown in Figure 2.7.
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Despite the two initialization differences, CVTRC has a more uniform and faster convergence

profile than OTRC, demonstrating the advantage of CVTRC.
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Figure 2.7: Verification of the faster convergence of CVTRC than OTRC when good initial
guesses for R∗2 decay and off-resonance frequency are present.

2.4.2 Brain slice

Figure 2.8 shows the results of CVTRC, OTRC, NCGC, and GRC for a transversal slice

of a human brain and synthetic k-space data. The slice crosses the orbitofrontal area of the

brain cortex where a large off-resonance ranging from -414 Hz to 378 Hz is present. The

three parameter maps were obtained through the aforementioned multi-echo approach. We

used SNR = 100 in this simulation. All four methods converged by activating the stopping

criterion, including GRC, which does not converge for the simulated phantom with the same

SNR. In fact, as shown in Figure 2.9, GRC is even faster than OTRC by roughly 20%. The

speed gain is due to the fact that GRC does not impose any trust region control and therefore

the variables vary freely in every iteration. This can bring a faster convergence, as in this

example, but it can also destroy the convergence, as shown in the last one. Thus, GRC is

unreliable. In comparison, OTRC uses the same cost function but with a trust region control

and maintains a good balance between stability and speed.

From Figure 2.8 and Figure 2.9, we can also see that the accuracy of reconstruction

is generally worse than the simulated phantom. This is because the surrounding area of

the brain slice has either a fast R∗2 decay or a low spin density. A low spin density makes
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the estimation of the complex frequency z(~r) in these voxels challenging because the time

signal is not sensitive to variations in z(~r) [32]. A large R∗2 decay makes estimation difficult

for every parameter, since the time duration of useful data is limited. In this example, the

intensity of many voxels in this area becomes insignificant after 10 ms, leading to a very

small number of useful samples compared to an 80 ms trajectory. These factors together

cause a high estimation bias in the surrounding area, which increases the MSE of the entire

image. We calculated the NMSEs of algorithms for a rectangular area in the middle, and

these NMSEs are consistent with findings in the previous experiment.

CVTRC generally has a larger estimation error than OTRC in R∗2 decay reconstruction

in the presence of poor initializations. We conjecture that this is caused by the difference

in regularization used in CVTRC. In order to accommodate the change of variables, we

regularize ~m�~z in the CVTRC cost function rather than ~z alone. This causes a suboptimal

regularization over ~z, especially when regularization parameters are small or when spin

density is low.

2.5 Real k-space data

As we state in section 2.3, we employed reconstructions from acquired multi-echo data

to obtain a gold standard. A multi-echo rosette instead of a single-shot rosette was used to

acquire more data and reduce the error caused by noise, model mismatch, and other possible

unidentified factors. Figure 2.10 shows the reconstruction results of OTRC, CVTRC, and

NCGC. GRC is not shown because it does not converge. The other three methods lead to a

reasonable reconstruction, although considerable noise and boundary artifacts are present.

Figure 2.11 shows the convergence profiles of the four methods. GRC failed to converge at

the end, demonstrating its unreliability. OTRC and CVTRC converged much faster than

NCGC, demonstrating their speed advantage. More severe boundary artifacts were present

in the OTRC and CVTRC results than the GRC results. In fact, all our experiments indicate
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that NCGC leads to a smoother result than other methods. This may be due to the well-

known regularization property of the conjugate gradient method when it stops early [43].

However, the long time required to converge dramatically reduces this advantage of NCGC

in the presence of a poor initialization.

2.6 Conclusions and Discussions

We have presented a new approach to joint reconstruction of the spin density, R∗2 decay

and off-resonance frequency maps through single- and multi-shot trajectories. This approach

adopts the trust region framework commonly used to solve nonlinear equation systems. Due

to different local approximation strategies, two trust-region methods OTRC and CVTRC

were proposed. Experiments show that the two methods outperform an NCG method in

speed and the GR method in stability. The four methods were applied to synthetic k-space

data based on simulated phantoms and an orbitofrontol brain slice as well as real phantom

data. Between the two trust-region methods, OTRC usually has smaller boundary artifacts,

but CVTRC can be faster in the presence of a good complex frequency initialization. To our

knowledge, this is the first research focusing on algorithm stability and convergence speed

in joint estimation of the three parameter maps.

The origins of the three methods NCG, TR, and GR can be traced to some of the

classical methods for nonlinear optimization. NCG itself is a classical method for nonlinear

optimization [41]. NCG is a variant of conjugate gradients and is therefore faster than

steepest descent but slower than Newton-like methods. However, for a large system, even

conjugate gradients can lead to an intolerable computation time, especially when a good

preconditioning is absent (cf. [37] P.150). GR can be categorized as a truncated Gauss-

Newton (TGN) method [77]. The method is rooted in the Gauss-Newton method, yet in each

iteration it searches for the Gauss-Newton direction by iteratively solving an approximated

linear system with methods such as conjugate gradients. This strategy makes TGN suitable

for large-scale systems. Since TGN is a Newton-like method, it can possibly approach the
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quadratic convergence rate that the Newton method possesses. In fact, TGN has been

reported to be faster than NCG with a suitable preconditioner in the inner problem [77].

However, an important factor for a general unconstrained optimization problem is the line

search in each iteration, which is lacking in the current GR method and its source method

in [83]. The lack of line search causes the algorithm to be unstable since the residual at the

next iterate may be far away from its predicted value. The trust-region method solves this

issue by confining the variable space for calculating the Gauss-Newton direction to be within

a local domain called a trust region. The algorithm examines the residual at the next iterate

for every iteration to make sure that the residual is actually reduced. In addition, the trust

region size can vary based on the behavior of the previous iteration. This flexibility greatly

preserves the speed advantage of the Newton method. Overall, these strategies allow TR

to be faster than NCG and more stable than the GR method. More discussion of the three

methods can be found in [37].

Experiments show that the full advantage of CVTRC in utilizing a change-of-variable

linearization is reduced by the restriction on variations in ~m and the indirect regularization

of ~z. In particular, the restriction of the variation in ~m in the trust region setup limits the

convergence speed, and the regularization over ~m� ~z instead of ~z allows room for boundary

artifacts. It would be advantageous if these restrictions concerning the trust region setup

and the regularization can be removed or reduced. However, this would be not trivial to

accomplish, since simply removing these restrictions will cause the method to be unstable.

With the current approach, CVTRC works better than OTRC only when initialization of ~z

is good.

Although the two methods can handle a wide range of objects for joint reconstruction,

there are still some limitations in their capabilities. First, there seems to be a “workable”

range for each parameter map within which the convergence can be guaranteed [103]. Cur-

rently, this range is estimated empirically. For example, the largest R∗2 decay rate should

be comparable to the readout time, and the spin density dynamic range should be limited.
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Otherwise, artifacts would increase in regions of low spin density. A deeper understanding of

the off-resonance frequency range is still needed. However, we emphasize that these ranges

are present for all reconstruction methods and are dependent on the number of k-space sam-

ples. Second, parameter tuning including the regularization parameters and the continuation

related parameters are demanding for the two methods. For most objects, these parameters

do not need to be changed much. However, we have observed that a small variation of the

parameters may help reduce the boundary artifacts. In addition, the continuation scheme

must be changed when the initialization quality changes to exploit the acceleration advan-

tage of a good initialization. This is challenging, since various initializations are possible

in a given application. The auxiliary variable method introduced in the next chapter can

very well solve this problem by incorporating a good initialization step [48]. The auxiliary

variable method is therefore very promising as a way to replace the continuation method

used in the trust-region method. Third, although the two trust-region methods are faster

than the commonly used NCG method, they are still time-consuming under the metric for

clinically applicable methods. A C++ implementation instead of the current MATLAB im-

plementation might achieve a speed gain of 10-50. Some fast computational methods have

also been proposed, such as using nonuniform FFTs and time segmentation [97] or using

Toeplitz-based fast matrix multiplication [29]. These methods can be easily applied to the

two trust-region methods, where the acceleration could be several fold. Overall, the two pro-

posed trust-region methods take some vital steps toward improving clinical MRI methods

for fast joint estimation of the spin density, R∗2 decay and off-resonance frequency maps.
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Figure 2.8: A human brain transversal slice with synthetic k-space data. White noise with
SNR = 100 added to the data. Row 1 shows the ground truth of the spin density, R∗2 decay
and the off-resonance frequency for the synthetic data. Row 2 shows OTRC reconstruction
results. Row 3 shows CVTRC reconstruction results. Row 4 shows NCGC reconstruction
results. Row 5 shows GRC reconstruction results. NMSE of the rectangle area for the four
algorithms: (5.0%, 5.2%, 2.7%) for OTRC, (4.3%, 6.1%, 3.6%) for CVTRC, (13.7%, 7.9%,
13.5%) for NCGC, and (4.2%, 4.4%, 2.4%) for GRC.
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Figure 2.9: Convergence profiles of the spin density (left), R∗2 decay (middle) and the off-
resonance frequency (right). Red, green, blue, and black lines represent OTRC, CVTRC,
NCGC, and GRC, respectively.
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Figure 2.10: Reconstruction of a real four-cylinder phantom with acquired k-t space data.
Row 1 shows the gold standard for spin density, R∗2 decay and off-resonance frequency. Row
2 shows OTRC reconstruction results. Row 3 shows CVTRC reconstruction results. Row 4
shows NCGC reconstruction results.
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Figure 2.11: Convergence profiles of spin density (left), R∗2 decay (middle) and off-resonance
frequency (right). Red, green, blue, and black lines represent OTRC, CVTRC, NCGC, and
GRC, respectively.
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Chapter 3

An efficient auxiliary variable method

So far, almost all previous reconstruction algorithms for jointly reconstructing spin den-

sity, R∗2 decay, and off-resonance frequency maps are gradient-based iterative algorithms and

the computational cost is high. In this chapter, we propose a novel auxiliary variable (AV)

method for the joint reconstruction problem. We reformulate the problem to a constrained

optimization problem by employing an auxiliary variable and then transform it to an un-

constrained problem by the penalty method. The cost function is then minimized by the

well-known alternating direction method, which reduces the computational cost by leverag-

ing special structure of the cost function. We show empirically that the algorithm is very

fast during the early stage of the iterations but much slower in the later stage. This may be

due to the inevitable ill-conditioning associated with the penalty method [24, 37]. Another

reason may be the nonconvexity of the new cost function due to the exponential function

constraint. Regularization over both the auxiliary variable and the ordinary variables can

effectively increase the speed but cannot completely solve the problem. To address this issue,

we propose a two-step hybrid method. In the first step, we use the alternating minimization

algorithm that alternates the minimization of the cost function with respect to different

variables. In the second step, we employ the ordinary trust region algorithm we previously

proposed to refine the estimate from the first step. The strategy of variable splitting has been

used in multi-parameter reconstruction based on a multi-echo sequence [22, 58] and parallel

imaging [88]. To our knowledge this is the first paper applying variable splitting to this

reconstruction problem based on single- or multi-shot sampling of k-space. The advantage

of the new algorithm mainly lies in the convergence speed and reduced computation. This

advantage is demonstrated through both simulated and in vivo data .
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The term “auxiliary variable” has been commonly used in the half-quadratic method.

In that method, an auxiliary variable is introduced to facilitate the replacement of a non-

quadratic function with a half-quadratic augmented function so that a splitting method can

be used to efficiently minimize the equivalent cost function [35,36]. Although a similar pro-

cedure is used for our problem, the auxiliary variable has a somewhat different application.

A composite function that is quadratic on the outside is separated into a sum of a quadratic

function and a half-quadratic function by introducing the auxiliary variable. That is, the

original problem is to minimize

‖~y − (γ ◦ θ)(~x)‖2 (3.1)

where the data ~y and the model ~x are two vectors satisfying dim(~y) > dim(~x), and γ(·) and

θ(·) are two functions whose composition forms the nonlinear observation operator. Often,

the range space of the function θ(·) has a much larger dimension than both ~y and ~x. Instead

of directly minimizing (3.1), one introduces an auxiliary variable ~x′ ∈ dom(γ) and solves a

constrained optimization problem

‖~y − γ(~x′)‖2 s.t. ~x′ = θ(~x) for some ~x (3.2)

As ~x′ is the key to the new formulation, we call the method an auxiliary variable method.

The theory concerning convergence and implementation of the auxiliary variable algorithm

for a general γ(·) and θ(·) is still somewhat immature, although algorithms for linear γ(·) and

θ(·) have been investigated [1,88].Other algorithms, such as the trust region, have also been

developed for the composite optimization problem [61], but they are usually computationally

intense due to the gradient and residual evaluations.

The chapter is organized as follows. In Section I, we first define the reconstruction

problem and introduce alternative algorithms. We then introduce the auxiliary variable

algorithm, including its motivation, implementation, and limitations. Finally, we propose

the two-step approach and summarize the reconstruction method. In Section II, we compare
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the proposed method with alternative methods based on data from a simulated phantom, a

real phantom, and brain in vivo data. In Section III, we discuss the context and limitations

of the current implementation of the auxiliary variable method as well as the great potential

of the method for this problem.

3.0.1 Formulation of the auxiliary variable algorithm

Basic framework

Let ~sl(·, ·) , [sl1(·, ·), sl2(·, ·), . . . , slP (·, ·)]T for l = 1, 2, . . . , L. Define

ρl(~m, ~z) , [m1e
−z1tl ,m2e

−z2tl , . . . ,mNe
−zN tl ]T . Equation (2.2) can then be rewritten in a

matrix form:

~s1(~m, ~z)

~s2(~m, ~z)

...

~sL(~m, ~z)


=



D1 0 · · · 0

0 D2 · · · 0

...
...

. . .
...

0 0 · · · DL





F0 0 · · · 0

0 F0 · · · 0

...
...

. . .
...

0 0 · · · F0





ρ1(~m, ~z)

ρ2(~m, ~z)

...

ρL(~m, ~z)


(3.3)

where F0 represents a 2-D discrete Fourier transform, and Dl for l = 1, 2, . . . , L is a P ×N2

matrix whose sparsity greatly depends on whether the trajectory is “on-grid” or “off-grid”.

“On-grid” means that all trajectory samples are located on the Cartesian grid, while “off-

grid” means samples can be arbitrarily located. In the situation of “on-grid” sampling,

each row of Dl is a standard basis vector of length N2 which is zero everywhere except

one element. This element has value 1 and its location represents the sampled grid point.

In the situation of “off-grid” sampling, Dl is a full matrix and each row is a shifted ideal

interpolator for a nonuniform FFT, which is actually a sampled periodic sinc function or

Dirichlet function [30]. Let D, F, ~ρ(~m, ~z) denote the left matrix, the middle matrix, and the

right vector on the right side of the equation. We can then write (3.3) as

~s(~m, ~z) = DF~ρ(~m, ~z) (3.4)
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The objective is to estimate ~m and ~z given the acquired data

~y , [y11, y12, . . . , y1P , y21, . . . , y2P , . . . , yLP ]T . Since noise is usually white Gaussian, the esti-

mation can be done by minimizing a least squares criterion:

‖~y −DF~ρ(~m, ~z)‖2 (3.5)

with respect to ~m and ~z. Notice that the relation between ~ρ and ~y is linear and temporally

decoupled, while that between [~m, ~z]T and ~ρ is spatially decoupled. This observation inspires

us to introduce an auxiliary variable into the modeling so that (3.5) can be reformulated as

‖~y −DF~u‖2 s.t. ~u = ~ρ(~m, ~z) for some ~m and ~z. (3.6)

Introducing the auxiliary variable separates the linear mapping DF from the nonlinear map-

ping ~ρ(·, ·) and decouples the spatial Fourier transform from the temporal exponential func-

tion. In this way, computation associated with each variable can be reduced. Similar strate-

gies have been applied to many image processing and computer vision applications such

as image reconstruction or restoration [35, 36, 54] and shape modeling [12, 108], but most

of these methods decouple the data term from the regularization. Splitting the data term

was investigated in [88], but the observation operator in [88] is linear. We use the penalty

method to transform the constrained problem to an unconstrained problem. The resulting

cost function is

‖~y −DF~u‖2 + α‖~u− ~ρ(~m, ~z)‖2 (3.7)

where we estimate ~u as well as ~m and ~z. The parameter α ∈ R+ is the penalty coefficient.

We minimize the cost function in an alternating direction fashion by minimizing w.r.t. ~u

and ~m, ~z alternately. This is the basic framework of this algorithm.
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Regularization terms

Directly applying the alternating minimization to (3.7) would result in very slow conver-

gence and low accuracy although it would be computationally very efficient. This is because

solving (3.6) is equivalent to solving the original problem (2.2) which has been shown to

be severely ill-conditioned with a single-shot trajectory [47, 49]. Notice that (3.7) may have

even worse conditioning than (3.6) since the variable domain is augmented. Further analysis

is given in later sections.

A remedy to the ill-conditioning is to add appropriate regularization terms. We have

shown in previous work [50] that Tikhonov regularization of ~m and ~z maps works quite

well with the ordinary cost function (2.1). However, our experience shows that regularizing

these two variables leads to a limited improvement in convergence speed for the modified

cost function (3.7). However, if we simultaneously regularize ~u in both the spatial and

temporal dimension, the convergence is greatly accelerated. The importance of the extra

regularization is analyzed in Section 3.0.3. Here, we first define this regularized cost function

for the auxiliary variable algorithm:

Φ(~u, ~m, ~z) , ‖~y −DF~u‖2 + α‖~u− ~ρ(~m, ~z)‖2

+β1‖RL−1E~u‖2 + β2‖E~u‖2+λ1‖R~m‖2 + λ2‖R~z‖2

(3.8)

where R represents a first-order finite difference operator in the spatial domain, and RL−1 ,

diag(R,R, . . . , R) is an L− 1 block-diagonal matrix. E is the first-order finite difference op-

erator in the temporal domain, which is formed by a Kronecker product of a finite difference

operator in time and an N2 ×N2 identity matrix. RL−1E seems to result in slightly better

performance than RL in our experience. This is possibly because RL−1E also leads to a regu-

larization in the temporal domain. Notice that RL−1E and RL have a similar computational

complexity, as we show later, making the former regularization more attractive.
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3.0.2 The alternating direction method

We minimize the cost function (3.8) using the alternating direction method. In each

iteration, the algorithm first minimizes (3.8) w.r.t. ~u given ~m and ~z estimates from the

previous iteration:

~u←− min
~u

Φ(~u, ~m, ~z). (3.9)

The algorithm then minimizes w.r.t. ~m and ~z given the ~u estimate from the previous step.

Since the first term in (3.8) does not involve ~m and ~z, the minimization is done by

~m, ~z ←− min
~m,~z
‖~u− ~ρ(~m, ~z)‖2 + λ1‖R~m‖2 + λ2‖R~z‖2 (3.10)

The two steps are elaborated in the following.

Step 1: minimization w.r.t. ~u

Notice that the function Φ(·, ~m, ~z) is quadratic when ~m and ~z are fixed. Therefore, an

explicit solution actually exists:

~̂u = Ψ−1(FHDH~s+ α~ρ(~m, ~z))

Ψ , FHDHDF + β1E
HRH

L−1RL−1E + β2E
HE + αIL

(3.11)

where Ψ is the normal matrix associated with (3.8) and IL is an LN2×LN2 identity matrix.

Notice that RL−1E and E are both block-tridiagonal and each block is R and I (the N2×N2

identity matrix), respectively. Therefore, we can then rewrite matrix Ψ as

Ψ = FHDHDF + β1F
HXHXF + β2F

HEHEF + αFHF

= FH(DHD + β1X
HX + β2E

HE + αIL)−1F

(3.12)
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where X is a block-diagonal matrix such that RL−1E = FHXF. The estimate of ~u is then

~̂u = FH(DHD + β1X
HX + β2E

HE + αIL)−1

(DH~s+ αF~ρ(~m, ~z))

(3.13)

An efficient implementation of (3.13) is very important to the efficiency of the auxiliary

variable algorithm since the dimension of ~u is very large. Consider a non-Cartesian trajectory,

which is used for most single-shot trajectories. In this case, D is a full matrix, and we cannot

invert the matrix in close-form. Direct inversion based on LU-decomposition is possible

and can be precomputed before the iteration. However, this approach may require a long

computation time and a great deal of memory to store the decomposed matrices. In our

approach, we choose to use preconditioned conjugate gradients (PCG) to iteratively estimate

the inverse. The preconditioner is given by the inverse of DHD + β1X
HX + β2diag(EHE) +

αIL. Notice that all three matrices in the expression are block-diagonal. Therefore, the

inversion can be done by separately inverting each block. Since X is diagonal, inversion of

DH
l Dl + β1X

HX + diag(EHE) + αI for each l can be accomplished by applying the well-

known Woodbury formula [115]. Notice that the inversion result can be precomputed to avoid

inversion on the fly in each iteration. Since the preconditioner differs from direct inversion of

the coefficient matrix only by the side band of β2E
HE, the preconditioner works fairly well

when β2 is relatively small. When β2 is large compared to the other terms, the performance

of the preconditioner degrades. We set the maximum iterations to be 30 in most of our

simulations to avoid excessive iterations. If a Cartesian trajectory is used, D is diagonal.

Thus, the matrix to invert in (3.13) is block-tridiagonal, and each nontrivial block is diagonal.

The well-known tridiagonal matrix inversion algorithm (Thomas algorithm) [16] can be used

to invert the matrix, and the computational cost is on the same scale as the variable size.

Surprisingly, even though EPI has more efficient computations, we observed that EPI—the

only trajectory that is Cartesian—has a much slower convergence than a rosette trajectory

has. A multi-shot EPI may help reduce the problem as reported by some authors [93];
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however, accommodation for the general situation which includes any trajectories should be

developed.

Step 2: minimization w.r.t. ~m and ~z

The second step, as shown in (3.10), is very similar to the curve fitting approach used

in multi-echo sampling [4,5,26,73,111,114]. The only difference is the regularization applied

to ~m and ~z. Without the regularization, the curve fitting is decoupled in the spatial domain

and hence can be accomplished very rapidly. However, we observed that strong outliers exist

in the fitting result if there is no regularization. Similar observations have been made by

other authors when k-space is undersampled [94]. Regularization causes the reconstruction

to be more complicated, and a rapid solution is therefore desired. In this work, we propose

a new block-coordinate descent method to address this sub-problem, and the performance

turns out to be satisfactory.

The block-coordinate descent method is used to decouple the variable space. We split the

variable set ~m and ~z to ~m1, ~m2 and ~z1, ~z2 in the spatial domain according to a checkerboard

pattern so that the black boxes correspond to positions of ~m1 and ~z1 and the white boxes

correspond to positions of ~m2 and ~z2. Define two N2/2-by-N2 rectangular matrices P1 and

P2 to represent the two downsampling matrices for odd and even coordinates, respectively.

We then have P1 ~m = ~m1 and P2 ~m = ~m2. The cost function can be reformulated as

‖~u− ~ρ(~m, ~z)‖2 + λ1‖R0P
H
1 (P1 ~m) +R0P

H
2 (P2 ~m)‖2

+λ2‖R0P
H
1 (P1~z) +R0P

H
2 (P2~z)‖2

(3.14)

since PH
1 P1 + PH

2 P2 = I. We then solve (3.14) through alternately minimizing w.r.t. P1 ~m,

P1~z and P2 ~m, P2~z. Let ~m1,2 , P1,2 ~m and ~z1,2 , P1,2~z. Let ~u1 and ~u2 represent the spatial-

domain partitions of ~u based on odd or even spatial coordinates. Define R01 , R0P
H
1 and

R02 , R0P
H
2 . Clearly, R01 and R02 are two column-downsampled matrices. Initialize vectors
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bm2 = R0P
H
2 (P2 ~m) and bz2 = R0P

H
2 (P2~z). The splitting-based method executes steps (3.15-

3.18) in each iteration

~m1, ~z1 ←− min
~m1,~z1
‖~u1 − ~ρ(~m1, ~z1)‖2

+λ1‖R01 ~m1 + bm2‖2 + λ2‖R01~z1 + bz2‖2

(3.15)

bm1 ←− R0P
H
1 ~m1; bz1 ←− R0P

H
1 ~z1 (3.16)

~m2, ~z2 ←− min
~m2,~z2
‖~u2 − ~ρ(~m2, ~z2)‖2

+λ1‖R02 ~m2 + bm1‖2 + λ2‖R02~z2 + bz1‖2

(3.17)

bm2 ←− R0P
H
2 ~m2; bz2 ←− R0P

H
2 ~z2 (3.18)

Both (3.15) and (3.17) are spatially decoupled, and therefore their Jacobian matrices are

block diagonal. Since this structure makes the inverse of the Gauss-Newton matrix compu-

tationally efficient. we use the Gauss-Newton method. This method may have quadratic

convergence rate especially when a good initialization is provided.

3.0.3 Performance analysis

The performance of the proposed auxiliary variable algorithm can be analyzed in two

levels. For simplicity, we assume a Cartesian trajectory for performance analysis, since any

trajectory can be rounded to a Cartesian trajectory with only a slight deviation. Without

regularization of ~u, the first step of the auxiliary variable algorithm leads to an estimate of
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~u expressed by

~̂u = FH(DHD + αI)−1F(FHDH~y + α~ρ0)

= FH(
1

α
I− 1

(α + 1)α
DHD)(DH~y + αF~ρ0)

= FH(
1

α + 1
DH~y + F~ρ0 −

1

α + 1
DHDF~ρ0)

=
1

α + 1
FHDH~y + ~ρ0 −

1

α + 1
FHDHDF~ρ0

= ~ρ0 +
1

α + 1
FHDH(~y −DF~ρ0)

(3.19)

where ~ρ0 represents the current estimate of ~ρ in the iteration. The last expression demon-

strates the potential efficiency in the absence of regularization on ~u; however, it also indicates

the importance of the regularization. First, performance of the algorithm is limited by the

conditioning of DF~ρ(·, ·), which represents the conditioning of the original reconstruction

problem represented by (3.4). Since the conditioning is actually very poor [47,49], ~y−DF~ρ0

can be very small even when ~ρ0 is far away from the true solution. Thus, ~̂u ≈ ~ρ0 and the

iterate would stop at that point. This observation also implies that the accuracy of the

auxiliary variable algorithm cannot outperform the gradient-based methods, although the

efficiency can be improved. Second, the vector 1
α+1

FHDH(~y−DF~ρ0) can be further reduced

in its modulus by the projection operator in Step 2, which projects the vector into the set

of exponential functions. This inference can be analytically verified when ~ρ0 is sufficiently

close to the ground truth. Qualitatively, the statement can be reasoned from the fact that

the mapping FHDH tends to generate a vector that is rough in the temporal domain. Notice

that FHDH is nothing but an inverse Fourier transform of a randomly sampled spectrum

with zero-filling. It is readily established in compressed sensing that random sampling leads

to a “noise-like” signal in the Fourier domain [68]. The projection operator in Step 2 of the

alternating direction method projects any signal to the nearest exponential function in terms

of the Euclidean norm. The projection can smooth the “noisy” signal, which may result in ~ρ

changing very little across two iterations. In (3.7), this phenomenon means there are many
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noisy exponential functions which are close to an exponential function in l2 norm but also

greatly reduce the residual in the data space. This is reasonable since the amount of data

is very limited for a single-shot trajectory. This phenomenon also implies that the penalty

method may increase the degree of ill-conditioning, a characteristic of the method often seen

in other literature [24,37].

Regularization of ~u makes the estimate in (3.19) much smoother in both the spatial and

temporal domains. The latter smoothing reduces the problem caused by FHDH . This obser-

vation explains why regularization of ~u is necessary. On the other hand, the ill-conditioning

of DF~ρ(·, ·)can be improved by regularizing ~m and ~z, as we have done in [49]. Thus, these

regularization penalties are also necessary. Finally, the problem caused by FHDH may be

completely eliminated by avoiding the penalty method, which transforms (3.6) to (3.7). This

is because (3.7) is only an approximation of (3.6) that relaxes the constraint—an indicator

operator for the set of exponential functions—to a distance operator. If ~u is always confined

to the set of all exponential functions, then Step 1 would no longer lead to an oscillatory

estimate in ~u. This is a subject for further investigation.

3.0.4 Memory usage

For 2-D imaging, the auxiliary variable ~u resides in a 3-D spatial-temporal space. The

number of temporal samples in a single-shot trajectory is very large. For example, for a

64 × 64 image, neglecting the temporal variation, the number of k-space samples—and

therefore temporal sampling points—needs to be at least 8192 to keep the reconstruction

overdetermined. Hence, ~u is of size 642 × 8192 and the size is generally equal to 2N4 where

N is the image size of one dimension. This size is very large and can be non-affordable for

modern computers when N grows to 128. A practical solution is to use a coarser grid in the

temporal domain, by assuming samples acquired within a small time interval can be modeled

as acquired at the same time. For example, we partition the entire acquisition window of

81.92 msec into 128 segments. Since the effect of decay and off-resonance is very subtle
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within such a small time window, the accuracy of such rounding in the temporal domain is

very high. This approximation allows the size of ~u to drop to 642 × 128 for N = 64 In the

example. Moreover, the strategy causes the size of ~u more dependent on the data readout

time which is usually rather fixed, increasing the scalability of the memory usage.

3.0.5 The hybrid method

Our experience shows that the proposed auxiliary variable algorithm is much faster than

the ordinary trust region algorithm during the early stage of the iteration. This advantage is

at least partially due to the reduced computation in the alternating direction method. The

constrained optimization formulation may also help accelerate convergence of ~m and ~z in

the parameter space. The constrained optimization formulation creates a quadratic signal

estimation problem in Step 1 where the signal is the vector ~u. Thus, the solution to this

problem in each iteration is a global minimizer. In (2.1), however, the cost function is non-

quadratic and therefore the estimate of ~m and ~z in each iteration must be restricted in a local

space to keep the linearization valid [49]. The variation of the parameter maps is therefore

limited. However, as the number of iterations increases, the convergence is gradually slowed

down until it is slower than the ordinary trust region algorithm, as discussed previously. To

address this problem, we propose a hybrid method where the first phase uses the alternating

direction algorithm.. As the algorithm becomes too slow, we switch to the OTR algorithm

to refine the estimate. Notice that the OTR refinement is much simpler than the OTR

continuation algorithm proposed in [49]. The OTR continuation algorithm requires that the

regularization parameters be gradually reduced so that convergence from poor initializations

can be reached. Typically, OTR refinement converges within 10 iterations after the AV al-

gorithm initialization by activating the stopping rule of either sufficiently low gradient or

iterate variation. The small number of iterations requires much less time compared to the

original OTR continuation algorithm, which typically requires 40-60 iterations. Below is a

summary of the proposed AV algorithm. Let ξ1,2,3 ∈ R+. Let Jo, Ji ∈ Z+.
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• Set β1,2, α, λ1,2. ξ1,2,3. Initialize ~m and ~z.

• Calculate DH~s.

• Calculate the inverse of DHD +β1X
HX +β2diag(EHE) +αIL (preconditioner for step

1) using the Woodbury formula.

• For jo = 1, . . . , Jo

– For ji = 1, . . . , Ji

∗ Calculate DH~s (precomputed) +αF~ρ(~m, ~z).

∗ Estimate ~u through (3.13) by using PCG.

∗ Estimate ~m and ~z given update of ~u.

– End For

– β1 = β1/ξ1, β2 = β2/ξ2, α = α · ξ3

• End For

• Run OTR refinement program.

3.0.6 Parameter selection

There are many parameters for the proposed hybrid method, namely β1,2, α, λ1,2, ξ1,2,3,

Jo, and Ji(jo) for the alternate direction algorithm, and λ̄1,2 for the OTR refinement algo-

rithm. However, we have observed that most of these perform well with a constant value

for a wide range of objects (images), SNRs, and algorithm initializations. α is the initial

value of the penalty weight. α needs to be increased a few times in the algorithm to enforce

the constraint in (3.6). Based on (3.19), we found a suitable range for the starting value of

α to be [0.1, 1]. We chose α = 0.1 for all our experiments. λ1,2 and λ̄1,2 are regularization

parameters for ~m and ~z. They only depend on the smoothness of the two maps, which is
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quite similar even for different objects. In this work, λ1 = λ̄1 = 1 and λ2 = λ̄2 = 10−4 for

all tested objects. Other parameters for OTR can be found in [49]. Similarly, the algorithm

is quite robust to the choice of β1,2. We used β1 = 104 and β2 = 1 in this work. ξ1,2,3 are

the variation factors of β1, β2, and α. Clearly, choices of ξ1,2,3 depend on the choices of β1,

β2, and α, respectively. In this paper, β1 = β2 = β3 = 10 performs well. Jo and Ji(jo) are

the maximal iterations for the penalty loop (outer loop) and the alternate direction method

loop (inner loop). For the hybrid method, they were chosen to be Jo = 2, Ji(1) = 12, and

Ji(2) = 4.

3.1 Experiments

We tested the AV algorithm with a range of simulations and MRI experiments. For

both simulation and real data acquisition, we used a rosette trajectory (either single-shot

or multi-shot), since it has been verified to be superior to other trajectories in terms of

the reconstruction quality for this problem [60, 102]. A single-shot rosette trajectory was

formulated as

~kl =
1

2
kmax sin(wosctl)e

ιwrottl+θ (3.20)

where kmax represents the k-space range, wosc the oscillation frequency, wrot the rotation

frequency, and θ the starting direction of the trajectory in k-space. In our work, wosc =

3196 rad/sec, wrot = 1577 rad/sec, the time span of the trajectory is 81.92 ms and a total of

8192 samples were acquired. For a single-shot rosette, θ=0◦ in this work. For a multi-shot

rosette, θ was uniformly distributed between 0◦ and 90◦ for each interleave. In particular,

for a four-shot rosette we used θ = 0◦, 22.5◦, 45◦, and 67.5◦, respectively. Our experience

shows such an arrangement of the angles leads to a uniform sampling of k-space.
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In the simulation, we added white Gaussian noise to the model-predicted signal. The

signal-to-noise ratio (SNR) in this work is defined as

SNR =
‖s‖2

‖s− s0‖2

where s is the noisy data and s0 is the noiseless data. Normalized root mean square error

(NRMSE) was used as a metric for the accuracy of the reconstructions. The NRMSE is

defined as:

NRMSE =
‖f − f0‖2

‖f0‖2

where f and f0 represent the estimate and the ground truth. All algorithms were started

at a trivial initialization: mn = 0.5 and zn = 0 for all n. Masking was used to mask out

voxels with low spin density before applying any iterative algorithm. This technique has been

commonly used in dealing with similar problems [83, 97]. All algorithms were implemented

using MATLAB and run with an Intel Core i7-4700MQ CPU.

3.1.1 Simulated phantom

A nested cylinder phantom with four small cylinder containers contained in a large

cylinder container was simulated. Each cylinder was defined with different materials of

varying spin density, R∗2 decay, and off-resonance. Since the off-resonance map is often

smooth in reality [98], we smoothed it from a sharp image like the spin density map by

a circular averaging filter with a radius of 5 voxels. The units for the R∗2 decay and off-

resonance frequency are sec−1 and Hz. Figure 3.1 (a), (f), (k) show the three parameter

maps of the phantom respectively.

Figure 3.1 and 3.2 show the reconstruction performance of AV (with and without re-

finement), OTRC, and NCGC for the simulated phantom. AV without refinement has four

continuation phases. The maximum number of iterations is 12-12-12-12, and the notation is

defined in Section 3.0.6. AV with refinement has 2 continuation phases, and the maximum
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number of iterations is 8-4. Other parameters of the two AV-based algorithms as well as

OTRC and NCGC are given in Section 3.0.6. Figure 3.1 shows that AV with refinement,

OTRC, and NCGC have about the same level of accuracy. Some artifacts are present, espe-

cially in boundary regions. These artifacts are probably caused by the heavy downsampling

of the single-shot acquisition and are therefore unrelated to the chosen algorithm. Increas-

ing k-space samples or using a better edge-preserving regularization can probably reduce

these artifacts. However, these improvements are not the concern of this study. Figure 3.1

shows that AV without refinement results in a large estimation error. This kind of error is

commonly seen in all our experiments.

Figure 3.2 shows the convergence profile of each algorithm for the same phantom. It

is clearly seen that AV with refinement is much faster than OTRC and NCGC. Since OTR

is used as the refinement algorithm, the speed gain mainly comes from the AV algorithm

used to provide the initialization. Comparison between AV with refinement and AV without

refinement demonstrates the critical contribution of the refinement. AV without refinement

converges very fast in the early stage but then quickly slows down. In the discussion section,

we present some explanations for this behavior. By replacing the later stage of AV with

OTR, the overall speed gain of the hybrid algorithm is superior to any other algorithms

presented in this work.

Figure 3.3 compares different regularization strategies on ~u to show that the RE+E

combination outperforms other strategies. The same simulated phantom was used and reg-

ularization parameters were adjusted separately for each regularization combination using a

thorough search. The separate adjustment guarantees the optimality of the parameter selec-

tion for each regularization and a fair comparison between them. We found that the temporal

regularization (E) of ~u is more important than the spatial regularization (R). RE+E, R+E,

and E almost always perform better than R and no regularization. Although temporal reg-

ularization also makes the computation in Step 1 much more complicated, the regularization

is still necessary in our current AV implementation.
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Figure 3.1: Reconstruction results of AV (w/o refinement), AV (w/ refinement), OTRC, and
NCGC on a synthetic phantom and a rosette trajectory. The first, second, and third rows
show the maps of phantom and these algorithms for spin density, R∗2 decay, and off-resonance
frequency, respectively.

Figure 3.4 demonstrates the robustness of the AV algorithm for this problem. In this

example, the AV algorithm was run without refinement to show the robustness of the algo-

rithm alone. The robustness of OTR was shown in [49] and is not elaborated again in this

paper. Our experiments show that variation of the two regularization parameters causes

only a small accuracy variation. The algorithm is robust for a considerably large range for

the two regularization parameters.

3.1.2 Real phantom and in vivo data

Application of the proposed algorithm to real data is our goal; however, high-quality

reconstructions are much more difficult to achieve than with simulated data. Challenges

of real-data reconstruction arise from various factors, such as pulse sequence programming,

trajectory miscalibration, and even model mismatch caused by intra-voxel gradients [75,80].

To enable analysis of the reconstruction results, we must establish a gold standard. A natural
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Figure 3.2: Convergence profiles of AV (w/o refinement), AV (w/ refinement), OTRC, and
NCGC for the simulated phantom

0 1 2 3 4
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (min)

N
R

M
S

E

 

 
RE + E, Mag
R + E, Mag
E only, Mag
R only, Mag
No Regu., Mag

(a) spin density

0 1 2 3 4
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time (min)

N
R

M
S

E

 

 
RE + E, Decay
R + E, Decay
E only, Decay
R only, Decay
No Regu., Decay

(b) R∗
2 decay

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

time (min)

N
R

M
S

E

 

 
RE + E, Freq
R + E, Freq
E only, Freq
R only, Freq
No Regu., Freq

(c) off-resonance frequency

Figure 3.3: Convergence of the AV method with different regularizations on ~u.

choice is to use a multi-echo FLASH sequence. In our work, we used a multi-echo FLASH

sequence developed in-house. Various parameters of the sequence are: TE = 5, 6, 7, 8, · · ·

82 ms, TR = 200 ms, FOV = 120 mm × 120 mm, slice thickness = 2 mm, bandwidth =

390 Hz/Pixel, image size = 64 × 64, flip angle = 15◦. The long echo train is used to reduce

estimation bias caused by noise. All experiments were done on a SIEMENS MAGNETOM

Verio 3T machine with a 32-channel head coil.

We used a four-shot rosette trajectory whose parameters are described at the beginning

of the section. After we obtained the three gold-standard parameter maps from the multi-

echo sequence, we synthesized k-space data using the estimated parameters in the discrete

model (2.2) to investigate the level of error associated with acquiring real data on a rosette

trajectory. To synthesize k-space data, an accurate measurement of the rosette trajectory

is needed to address the trajectory distortion caused by many factors such as eddy current.
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Figure 3.4: Algorithm robustness to regularization parameters β1 and β2.

We used the calibration technique described in [118] and [25] to do the calibration. The two

calibration techniques are very similar to each other. We found that the method of [25] is

slightly better than that of [118]. However, with both calibration techniques, the difference

between the synthetic data and the acquired data is still very large. With such a large

difference, the reconstruction accuracy does not completely reflect the actual performance of

these algorithms. However, their convergence speed can still be compared with each other.

Moreover, we are still investigating the reason for the large mismatch.

Phantom reconstruction

We made a phantom from a large peanut butter jar containing four small test tubes, and

each of them was filled with tap water mixed with different resolutions of copper sulfate. The

copper sulfate was used to increase R2 and therefore also R∗2 as well as to change magnetic

susceptibility. Figure 3.5 compares AV without and with refinement, OTRC, and NCGC for

reconstruction of this real phantom. The left column shows the gold-standard result obtained

from the multi-echo sequence. All parameters related to the AV formulation (3.8) are the

same as the simulation. The two regularization parameters used with the OTR refinement,

OTRC, and NCGC are changed to 102 and 10−1 respectively . All reconstruction results are

quite noisy, since we used small regularization parameters to reduce regularization-induced

artifacts. AV with refinement leads to the best result. Figure 3.6 shows the convergence

profiles of all four algorithms. The advantage of the auxiliary variable algorithm in the first
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few iterations can be clearly seen. The AV algorithm with refinement achieves the best

balance in keeping computation time short while reducing estimation error.

Figure 3.5: Comparison of various algorithms for a real phantom and a rosette trajectory.
Column 1-5 show the gold standard, the reconstruction of AV (w/o refinement), AV (w/
refinement), OTRC, and NCGC, respectively. The first, second, and third rows show the
maps of phantom and these algorithms for spin density, R∗2 decay, and off-resonance fre-
quency, respectively.

In vivo reconstruction

An axial slice of a human head was scanned with the multi-echo sequence and the four-

shot rosette trajectory. The gold standard based on the data from the multi-echo sequence

is shown in the left column of Figure 3.7. Reconstructions from the four algorithms are

shown in the remaining part. AV without refinement led to a result with abnormally-valued,

discontinuously-shaped artifacts. The artifacts were removed after the OTR refinement.

Similarly good results were present for OTRC and NCGC. Some geometric distortions are

present, such as the wider appearance of the spin density map and the expanded ventricle in

the R∗2 decay map. We suspect that this is caused by miscalibration of the trajectory that

may lead to unmodeled phase accumulation. It is known that phase accumulation can cause
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Figure 3.6: Convergence profiles of AV (w/o refinement), AV (w/ refinement), OTRC, and
NCGC for the real phantom

geometric distortion in EPI reconstructions. Figure 3.8 shows the convergence profiles of the

four algorithms. The time advantage of the AV-based methods is still quite apparent.

3.2 Discussion and Conclusions

We have presented an auxiliary variable (AV) algorithm to jointly reconstruct spin

density, R∗2 decay, and off-resonance frequency maps in MRI. A strong body of literature has

developed powerful iterative algorithms to reconstruct the three maps with sparsely sampled

multi-echo acquisition (SSME), and single- or multi-shot acquisition (SS/MS). Gradient-

based algorithms have been successfully applied in both acquisition cases (e.g. [7, 51, 119]

for SSME and [83, 102, 103] for SS/MS). These algorithms are usually straightforward and

generally converge and achieve good accuracy when initialization conditions are satisfied.

Splitting-based algorithms have been studied by several authors for SSME acquisition [22,

72, 107]. These algorithms often aim to reconstruct an image sequence (~u in our paper)

with either a structure constraint that the sequence satisfies a model [22] and/or sparsity

constraints [22, 72, 107]. They usually work quite well with SSME acquisition when the

sampling reduction factor is less than 8. However, for the SS/MS acquisition, we have

not seen any work using a splitting-based method. Several challenges arise in applying

a splitting-based method for SS/MS acquisition. First, since k-space data is continuously

acquired in time, it is not intuitive to view the problem as a constrained optimization problem
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Figure 3.7: Comparison of various algorithms for in vivo data and a rosette trajectory. The
column 1-5 show the gold standard, the reconstruction result of AV (w/o refinement), AV
(w/ refinement), OTRC, and NCGC, respectively. The first, second, and third rows show
the maps of phantom and these algorithms for spin density, R∗2 decay, and off-resonance
frequency, respectively.

as is naturally formulated for any multi-echo acquisition. An auxiliary variable must be

introduced to model the “multi-echo” image sequence, which does not actually exist with

SS/MS acquisition. Second, since the number of k-space samples in SS/MS for each “echois

considerably less than in SSME acquisition, whether splitting-based methods can converge or

achieve good accuracy for SS/MS remains unclear. For example, we found [22] actually uses

a similar cost function and exactly the same alternating direction algorithm to reconstruct

T1 or T2 through an SSME acquisition. The paper uses the same structure constraint and a

sparsity constraint over ~u and achieves a good T1 or T2 reconstruction (without off-resonance

frequency). However, when almost the same algorithm is applied to reconstructing the three

parameter maps in SS/MS acquisition, we observed a much slower convergence (later stage)

as well as worse estimate accuracy. Therefore, the impact of the acquisition strategy on

algorithm performance remains an open question. By continuing to work on this question,

84



0 5 10 15 20 25 30 35
0.8

1

1.2

1.4

1.6

1.8

2

time (min)

N
R

M
S

E

 

 
AV (w/o refine), Mag
AV (w/ refine), Mag
OTRC, Mag
NCGC, Mag

(a) spin density

0 5 10 15 20 25 30 35
0.5

1

1.5

2

time (min)

N
R

M
S

E

 

 
AV (w/o refine), Decay
AV (w/ refine), Decay
OTRC, Decay
NCGC, Decay

(b) R∗
2 decay

0 5 10 15 20 25 30 35

0.4

0.6

0.8

1

1.2

1.4

1.6

time (min)

N
R

M
S

E

 

 
AV (w/o refine), Freq
AV (w/ refine), Freq
OTRC, Freq
NCGC, Freq

(c) off-resonance frequency

Figure 3.8: Convergence profiles of AV (w/o refinement), AV (w/ refinement), OTRC, and
NCGC for the in vivo data

we hope to compare different acquisition strategies and form insights on how to select the

sampling scheme and its specific parameters (e.g. number of echoes, number of shots, etc.).

The penalty method may not be the optimal algorithm for solving the constrained prob-

lem (3.6). It is well known that the penalty method can be inferior and numerically unstable

due to increased ill-conditioning with the increasing penalty weight [24,37]. To address this

issue, we proposed a hybrid algorithm that uses the OTR algorithm in the second phase, since

OTRhas been shown to have good local convergence performance [49]. A hybrid strategy

of combining the penalty method and other methods has been employed by many other re-

searchers to address constrained optimization problems [89,106]. However, other algorithms

may hold more promise for this problem than the penalty method based algorithm. In par-

ticular, methods such as forward-backward splitting or the alternating direction method of

multipliers (ADMM) may be able to achieve local convergence performance similar to the

OTR algorithm while maintaining the speed advantage. [14,27,88].

Two other shortcomings of the hybrid algorithm may be overcome in future work. First,

the Tikhonov regularization terms over ~m and ~z can be replaced by edge-preserving regu-

larization strategies that have been commonly used in the SSME acquisition. The latter

regularization may not only improve performance of the algorithm but also may facilitate a

comparison among different acquisition strategies. Although adding a nondifferentiable regu-

larization term introduces more computational complexity for the gradient-based algorithms,
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this strategy is much easier for splitting-based algorithms since the regularization terms only

appear in one step of the splitting-based algorithm. Second, the computational cost in Step

1 when a non-Cartesian trajectory is used is relatively high due to the PCG algorithm. It

would be highly desired in this step if non-Cartesian trajectories could be addressed with a

computational complexity similar to Cartesian trajectories. If this can be achieved, extension

of the approach to high-resolution reconstruction of these parameter maps can be made much

more practical. We are currently working to solve these two issues. The nonconvexity of the

exponential functions may cause stability issue for the splitting-based algorithm, since most

of these algorithms assume a convex cost function. However, our experience with the alter-

nating direction algorithm does not show any sign of instability. Moreover, several authors

have used principle component analysis (PCA)-based approximation to linearize the set of

decaying exponential functions for T2 mapping [51, 84, 107]. Similar linearization methods

have also been used in MR fingerprinting [70]. These techniques can be used in our problem

to linearize the constraint in (3.6), making the cost function convex.

In conclusion, we have proposed a hybrid algorithm for jointly reconstructing spin den-

sity, R∗2 decay, and off-resonance frequency maps. Overall, the proposed hybrid algorithm

achieves the best balance between efficiency and accuracy, demonstrated by both simulated

and in vivo data. The success of these results suggests that more advanced splitting-based al-

gorithms might be developed to replace use of the refinement algorithm and further improve

the time efficiency. .
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Chapter 4

A novel non-fit estimator of decaying exponential functions

A difficulty of relaxation mapping problems in MRI is the fact that the mathematical

relation between the spatial-temporal signal (the sequence of decaying images) and the re-

laxation maps is nonlinear. No matter which relaxation parameter is of interest among T1,

T2, or T ∗2 , the spatial-temporal signal must satisfy an exponential decay (T2 or T ∗2 ) or rise

(T1) based on the relaxation rate. This nonlinear structure constraint of the spatial-temporal

signal not only increases numerical complexity but also increases the difficulty in analytical

investigation. It is therefore interesting if we can find a new formulation which is linear or can

be linearized easily. This is possible if we consider the frequency-temporal domain instead of

the spatial-temporal domain. Since the signal in the spatial-temporal domain must satisfy

the mono-exponential modeling, the signal in the spatial-temporal domain must satisfy a

convolution relationship which is linear.

In this chapter, we propose a novel non-fit estimator of the spin density map ~m and

the complex frequency map ~z. Traditionally, when multi-echo data is acquired, the data is

inverse Fourier transformed to spatial-temporal domain and then a curve fitting is applied to

find out ~m and ~z. The proposed non-fit estimator can replace the curve fitting to estimate

the two parameter sets. We first derive the new estimator, and then show its comparison

with two commonly used curve fitting methods through simulated data. The new estimator

has some inherent drawbacks and we propose two modifications of the estimator to reduce

the drawbacks. The result shows that the new modified estimator is much faster than the

other two estimators while keeping a similar estimation accuracy when number of echoes

is small. Moreover, the new modified estimator can be potentially useful in the auxiliary

variable method to improve the computational efficiency.
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4.1 A new formulation of the mono-exponential model

In this section, we derive a new formulation of the mono-exponential model. The new

formulation is in a linear form, which may provide convenience in related analysis and numer-

ical computations. The derivation is based on the fact that a k-space frame is a convolution

of a previous k-space frame with a function that only depends on the complex frequency

map ~z and the time between the two frames.

Like the memory-saving technique we used in the auxiliary variable algorithm, we divide

the temporal domain into multiple short segments, each taking around 1 millisecond. This

short length guarantees that the variation of the signal within the segment is small, and

the error of analysis is therefore also small. Let’s abbreviate the temporal-frequency space

as k-t space. Notice that the k-t space used in our application is slightly different from

the k-t space used in dynamic MRI (see Section 1.3.8) in that our application assumes a

deterministic model in the temporal dimension. Let ~v represent the signal in the t-k space.

Assume there are Q k-frames and N2 voxels in the spatial domain. Then the vector ~v has

dimension QN2. Assume Q ≥ 2. Let (~vq)
Q
q=1 represent the Q k-space frames. Let v̌ and v̂

represent the first and the last (Q− 1)N2 elements of ~v, respectively. That is,

v̌ , [~vT1 , ~v
T
2 , . . . , ~v

T
Q−1]T (4.1)

v̂ , [~vT2 , ~v
T
3 , . . . , ~v

T
Q]T (4.2)

Let ~z , e−~z∆t where ∆t is the time interval between two k-space frames. Notice that the

k-space frames must be spaced equally in our analysis. Let Cv̌ represent a tall matrix that is

stacked up by C~vq for q = 1, 2, . . . , Q− 1. C~x for a vector ~x represents a convolution matrix

which is a circulant matrix whose first column is ~x. Mathematically,

Cv̌ , [CT
~v1
, CT

~v2
, . . . , CT

~vM−1
]T (4.3)
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We then can represent the mono-exponential structure constraint of ~u in the spatial-temporal

domain as

v̂ = Cv̌~z (4.4)

which is a linear equation in k-t space. This condition is equivalent to the mono-exponential

structure constraint in the spatial-temporal domain. Since Cv̌ is a “tall” matrix, the

minimum-norm solution ~̂z of (4.4) is

~̂z = (CH
v̌ Cv̌)

−1CH
v̌ v̂ (4.5)

Thus,

‖v̂ −Cv̌(C
H
v̌ Cv̌)

−1CH
v̌ v̂‖2 = 0 (4.6)

for any ~v that satisfies (4.4). If for a ~v, (4.6) is not satisfied, (4.4) is not satisfied either

since the minimum-norm solution is unique when Q ≥ 2. Therefore (4.6) is an equivalent

condition to the mono-exponential structure constraint.

For each q = 1, 2, . . . , Q,

C~vq = F0~uqF
H
0 (4.7)

where ~uq , diag(~uq), F0 represents the 2D Fourier transform matrix, and ~uq represents the

qth image in the image sequence (spatial temporal domain). Due to (4.3), Cv̌ is a stacked

matrix of F0~uqF
H
0 for q = 1, 2, . . . , Q− 1. We then have

CH
v̌ Cv̌ =

Q−1∑
q=0

F0~u
H
q F

H
0 F0~uqF

H
0 = F0

Q−1∑
q=1

(~uHq ~uq)F
H
0 = F0

Q−1∑
q=1

(|~uq|2)FH
0 (4.8)

where |~uq|2 represents the point-wise square of the absolute value of the diagonal matrix ~uq.

Hence,

(CH
v̌ Cv̌)

−1 = F0(

Q−1∑
q=1

(|~uq|2))−1FH
0 , (4.9)
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Cv̌(C
H
v̌ Cv̌)

−1CH
v̌ =



F0~u1

F0~u2

...

F0~uQ−1


(

Q−1∑
q=1

(|~uq|2))−1

[
~uH1 F

H
0 ~uH2 F

H
0 . . . ~uHQ−1F

H
0

]
, (4.10)

and the left-side expression

‖v̂ −Cv̌(C
H
v̌ Cv̌)

−1CH
v̌ v̂‖2 (4.11)

= ‖



F0~u2

F0~u3

...

F0~uQ


−



F0~u1

F0~u2

...

F0~uQ−1


(

Q−1∑
q=1

(|~uq|2))−1

[
~uH1 F

H
0 ~uH2 F

H
0 . . . ~uHQ−1F

H
0

]
v̂‖2(4.12)

= ‖



F0~u2

F0~u3

...

F0~uQ


−



F0~u1

F0~u2

...

F0~uQ−1


(

Q−1∑
q=1

(|~uq|2))−1

Q−1∑
q=1

(~u∗q~uq+1)‖2 (4.13)

Let FQ−1 , diag (F0, F0, . . . , F0)︸ ︷︷ ︸
Q−1

. Let ~λ , (
∑Q−1

q=1 (|~uq|2))−1
∑Q−1

q=1 (~u∗q~uq+1). Notice ~λ is an

N2-long vector whose nth element λn satisfies

λn =

Q−1∑
q=1

(u∗n,qun,q+1)/

Q−1∑
q=1

(|un,q|2). (4.14)

Let Λ , diag([~λT , ~λT , . . . , ~λT︸ ︷︷ ︸
Q−1

]T ). Then (4.13) is equal to

‖FQ−1(û− Λǔ)‖2 = ‖û− Λǔ‖2 (4.15)
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where û and ǔ are defined in a similar manner with v̂ and v̌.

ǔ , [~uT1 , ~u
T
2 , . . . , ~u

T
Q−1]T (4.16)

û , [~uT2 , ~u
T
3 , . . . , ~u

T
Q]T (4.17)

Just like in (4.6), the equivalent condition of the mono-exponential structure constraint can

be represented by

‖û− Λǔ‖2 = 0 (4.18)

That is, when ~u satisfies (4.18), ~u is an exponential function. Although (4.15) seems like

a linear function, it is not a purely linear function since the matrix Λ is also a function of

~u. However, this formulation may provide convenience in related analysis and numerical

computations. In particular, we have developed a new approach in estimating ~z based on

the definition of λ . In the following, we focus on this new approach and compare it to the

other two commonly used approaches. At the end, we mention the application of the new

formulation to the auxiliary variable method.

4.2 A new estimator of ~z

The decay and off-resonance frequency maps can be derived from the coefficient ~λ.

Based on the definition of ~λ in (4.14), the nth element is given by

λn =

Q−1∑
q=1

(u∗n,qun,q+1)/

Q−1∑
q=1

(|un,q|2) =

Q−1∑
q=1

(m∗ne
−z∗ntq)mne

−zntq+1/

Q−1∑
q=1

m2
ne
−Re{zn}2tq) = e−zn∆t

(4.19)

where ∆t , tq+1 − tq for any q = 1, 2, . . . , Q− 1. From (4.19), we see that e−~z∆t is equal to

~λ when ~u is an array of exponential functions in the time domain. The ~z map can then be

derived by (− log~λ)/∆t. If noise is present in ~u, ~λ would be biased from e−~z∆t due to the
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noise. However, since ~λ minimizes

‖û− Λǔ‖2 =

Q−1∑
q=1

‖~uq+1 − ~λ� ~uq‖2, (4.20)

~λ should be a reasonable estimate of e−zn∆t under mild noise. In this work, we call this

estimator the geometric progression estimator since it is rooted in the fact that an exponential

function in its discrete form is a geometric progression.

4.3 Three estimators

Two estimators have been used for measuring the ~z map given reconstructed image

sequence from multi-echo data. The most commonly used estimator is the least squares fit

estimator. The estimator minimizes

‖~u− ~ρ(~m, ~z)‖2 (4.21)

with respect to ~m and ~z, where ~ρ(·) defined in (3.3) represents the mono-exponential model

of the signal. We call this estimator the least squares fit (LSF). This estimator is also

the maximum likelihood estimator, since noise in the k-space is usually white Gaussian.

Despite this advantage, the estimator is essentially solving a nonlinear optimization problem

and therefore calls for nonlinear solvers such as Gauss-Newton and Levenberg-Marquart

algorithms. These algorithms can be hard to implement and can stick in a local minimum

[18]. The performance of this estimator thus depends on SNR and data length, making

the algorithm performance a bit unpredictable. Masking is usually required to mask out

background voxels since the low spin density associated with them causes an ill-conditioned

system for decay and off-resonance frequency. A mask is nontrivial to build and may require

other pulse sequences to find the foreground area. If masking is absent, the algorithm may

take a long time to stop since the iterate for background voxels would keep searching for the
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“solution” although such searching is meaningless. This problem can be relieved by some

adaptive stopping rules, such as stopping searching for low spin density voxels. However,

these rules can cause wrong identification of background voxels or too-early stopping of

iterations for some voxels.

Another well known estimator for mono-exponential modeling is to first take a logarithm

over the reconstructed image sequence. Since the image sequences are close to a mono-

exponential function array, the transformed data should be close to a line in the logarithm

domain. Linear curve fitting is then applied to the transformed data to estimate the spin

density, the R∗2 relaxation, and the off-resonance frequency maps. We call the estimator the

log estimator (LOG). The criterion to minimize the LOG is

∑
q

‖ log ~uq − log ~m+ ~ztq‖2 (4.22)

where tq represents the time for the qth k-space frame. Since the relationship between log ~uq

and ~m, ~z is linear, the function (4.22) can be written in matrix form

‖~ulog − [1 T][~mlog ~z]T‖2 (4.23)

where 1 , [1, 1, . . . 1︸ ︷︷ ︸
Q

]T , T , [−t1,−t2, . . . ,−tQ]T , ~ulog and ~mlog are counterparts of ~u and ~m

in the log domain, respectively. Since the coefficient matrix in (4.23) is Q× 2, its associated

normal matrix is 2 × 2 and therefore can be inverted explicitly. Therefore, a closed-form

solution exists for minimizing (4.23). Although the estimator is computationally inexpensive,

it has several shortcomings as well. First, it is a biased estimator, and the bias is larger in

decay and off-resonance frequency estimation [110]. The bias is dependent on the value of

the spin density, R∗2 decay and off-resonance, and an explicit relationship is not clear yet.

The bias makes the estimates somewhat unreliable. Although [110] proposed a compensation

method by minimizing a data-weighted least squares criterion, the method introduces data
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into the numerator of the estimator and causes very large variance in our experiments. The

second shortcoming of the estimator is that an extra phase unwrapping must be used after

taking the log over the data. The unwrapping may introduce an extra error source into the

estimation. Third, our experiments show that the LOG estimator has a larger variance than

the LSF estimator. The advantage of LOG, compared to LSF, is its speed advantage since

the solution is in closed form.

The third estimator for the ~z map is the geometric progression (GEO) estimator. GEO

has many advantages compared to the other two estimators. The main advantage of GEO is

its straightforward computation and efficient implementation. The GEO criterion is defined

by minimizing the function (4.20) with respect to ~λ. If only the relaxation and off-resonance

maps are needed, the estimate can be obtained by evaluating the autocorrelation function of

each exponential function at 0 and 1 and then dividing the two numbers to estimate ezn∆t, as

defined in (4.19). If the spin density is also needed, the map can be calculated by minimizing

the least squares function (4.21). However, since ~z has already been estimated, (4.21) is a

quadratic function with respect to ~m and explicit solution exists. For the nth voxel, the

estimate m̂n is

m̂n =

∑Q
q=1 e

−ẑ∗n∆tqun,q∑Q
q=1 e

−2Re{ẑn}∆tq
(4.24)

where ẑn represents the estimate of ~z in the nth voxel. Notice e−ẑn∆t can be replaced by

λn, and the former expression is not explicitly calculated in the estimation. This estimation

process is dramatically faster than that of LSF. Since LOG involves phase unwrapping, GEO

may also be slightly faster than LOG.

4.4 Modified geometric progression estimators

When one solves the least squares fit in the LSF and LOG estimation processes, one

needs to invert a normal matrix since the system is usually overdetermined. The inverse

can be implemented as a division, and the denominators of these two estimators do not
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include data. This is rather important to the stability of an estimator. The noise contained

in the data can induce problems such as bias and large variance. For GEO, the formula

is shown in (4.14). The denominator is a summation of squared data along the time axis.

We demonstrate that this is a biased estimator. The demonstration starts from calculating

the expected values of the denominator and numerator in (4.14). Let ~ε denote the white

Gaussian noise. For the numerator,

E{
Q−1∑
q=1

((un,q + εn,q)
∗(un,q+1 + εn,q+1))}

=

Q−1∑
q=1

E{u∗n,qun,q+1 + u∗n,qεn,q+1 + ε∗n,qun,q+1 + ε∗n,qεn,q+1}

=

Q−1∑
q=1

u∗n,qun,q+1,

(4.25)

so the numerator has an unbiased expected value. However, for the denominator,

E{
Q−1∑
q=1

(|un,q + εn,q|2)}

=

Q−1∑
q=1

E{|un,q|2 + u∗n,qεn,q + ε∗n,qun,q + |εn,q|2}

=

Q−1∑
q=1

(|un,q|2 + σ2)

=

Q−1∑
q=1

|un,q|2 + (Q− 1)σ2

(4.26)

where σ is the noise standard deviation. Therefore, the expected value of the denominator is

biased by adding a positive term (Q−1)σ2. The expected value of the estimation is therefore

biased toward a smaller value, causing the estimated decay map to be larger than the actual

value. This behavior is confirmed by our numerical evaluation. Although there is a bias in

decay estimation, the off-resonance frequency is not influenced by the bias. This is because

the denominator is a real number, thereby only influencing the modulus of the estimator.
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The phase of the estimate completely depends on the numerator and is unbiased. Notice

that a completely correct calculation of the expected value of ~λ should have the expectation

outside the fraction; however, this expected value is very hard to derive. The method we use

in this section is only an approximation, and the quality of the approximation is actually not

guaranteed. However, this approximation can still give a broad idea about the estimation

bias. More importantly, the approximated calculation matches the numerical evaluation very

well.

Since the denominator is biased by a positive term, an immediate solution is to subtract

the same positive term from the denominator. We therefore want to calculate a new vector

~λ′ in whch each element λ′n is defined as

λ′n =

Q−1∑
q=1

(u∗n,qun,q+1)/

Q−1∑
q=1

(|un,q|2 − (Q− 1)σ2). (4.27)

We call this new estimator the first modified geometric progression estimator (MODI). Al-

though having a simple form, this estimator requires knowing the standard deviation of the

noise. One of simplest way to measure the noise standard deviation may be imaging the

object twice and then calculating the squared error between the two images. However, this

approach requires additional scans. Other methods for measuring the noise standard devi-

ation remain unclear. However, any method may probably need additional actions to find

the standard deviation. Moreover, experiments show that this modified estimator still has a

relatively large estimation variance compared to LSF and even LOG.

Another modified estimator, called the second modified geometric progression estimator

(MODII), aims to reduce the bias in a different way. Instead of adding a negative term in

the denominator, it adds the same positive term in the numerator to cancel the bias caused

by the noise. MODII attempts to calculate ~λ′′ which minimizes the following criterion:

‖Λ′′−1û− Λ′′ǔ‖2 =

Q−1∑
q=1

‖~λ′′−1 � ~uq+1 − ~λ′′ � ~uq‖2 (4.28)
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This leads to the solution

|λ′′n| =
Q∑
q=2

|un,q|2/
Q−1∑
q=1

|un,q|2 (4.29)

and

∠λ′′n =
1

2

Q−1∑
q=1

∠u∗n,qun,q+1 (4.30)

for its nth element. The proof that shows minimizing (4.28) leads to the MODII decay and

off-resonance estimates is quite straightforward. This criterion basically splits the original

Λ matrix to a multiplication of two identical matrices Λ′′ and times û− Λǔ with Λ′′−1. For

noiseless ~u, minimizing (4.28) and (4.20) lead to the same soluton. For noisy ~u, minimizing

(4.28) leads to smaller bias in R∗2 decay estimate than (4.20) because the numerator in (4.29)

also has a positive bias term (Q− 1)σ2, which keeps the quotient very close to the unbiased

estimate. However, (4.29) can only be used to estimate the decay, since both denominator

and numerator are real. The estimation of off-resonance is as the same as the ordinary GEO

estimator. Notice that the vector ~λ′′ is an estimator for e−
1
2
~z∆t instead of e−~z∆t in the original

GEO estimator.

4.5 Performance evaluation

In this section, we compare the five estimators, LSF, LOG, GEO, MODI, and MODII.

We first compare their dynamic and static performance on estimating parameters from a

single exponential function. We then extend the experiment to a simulated phantom.

4.5.1 Single exponential function

There are many criteria in evaluating the performance of an estimator. In this section,

we mainly focus on the response to different SNRs, response to different data lengths, dis-

tribution of the estimated parameters, and the CPU time. A single exponential signal is

simulated with spin density m = 1 + ι, and complex frequency z = 30− ι100. Total acquisi-

tion time is 30 milliseconds for all experiments. White Gaussian noise is added to the signal.
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SNR is defined as the ratio of |m|2 to noise variance in decibel (dB) scale. Mathematically,

the SNR is defined

SNR = 10 log10

|m|2

σ2
(4.31)

All experiments were implemented using MATLAB and run with an Intel Core i7-4700MQ

CPU.

Figures (4.1) and (4.2) show the dynamics of each estimator with decreasing SNRs.

SNR decreases from 40 dB to 10 dB in both figures. In Figure (4.1), 8 total samples of the

exponential signal are acquired and estimations are made based on the 8 samples. From

the top row, we can see that the GEO estimates of decay are biased toward larger values

when SNR is low. The variances of the other four estimators are very close; however, MODI

has slightly larger variance than the other three estimators. The other three estimators are

also shown below to make their samples clearer. When number of signal samples is low, the

three estimators have similar performance. Figure (4.2) shows the same comparison when

total number of signal samples becomes 64. From the first row, the bias of GEO and larger

variance of MODI in decay estimates are much clearer. The differences in the other three

estimators are shown in the second row. It can be seen that MODII > LOG > LSF in their

variances, and LOG and LSF have about the same performance. However, 64 is usually too

large for number of echoes in a multi-echo sequence. Usually, the number of echoes is around

8, when MODII, LOG, and LSF have about the same performance.

Figure 4.3 shows the distribution of estimates for the five estimators when the number of

signal samples increases from 4 to 64. While the top two plots show the performance of the

five estimators, the bottom plots only show MODII, LSF, and LOG for a clearer comparison.

From the top left plot, we see GEO’s bias in decay estimation increases about linearly with

number of samples. The increasing tendency is well predicted by the analysis in (4.25) and

(4.26). The plot also shows that MODI has a larger variance than MODII, LSF, and LOG

in decay estimation. The top right plot shows that when the number of signal samples is less

than 10, all estimators have similar performance. With an increasing number of samples,
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Figure 4.1: The left and right columns show the estimates of decay and off-resonance, re-
spectively. The top two plots show the distribution of estimates from the five estimators,
while the bottom two plots show the three estimators to make a clearer comparison among
them. The number of data used in this figure is 8. Time used by the five estimators is 21.67,
21.14, 29.12, 2839, and 108.7 microseconds for one estimation.

the variance of LSF and LOG gradually decreases, while that of all geometric progression

estimators does not change much. The comparison between MODII, LSF, and LOG in the

bottom row shows this difference more clearly. It is easy to understand the behavior of LSF

and LOG since they both use a least squares criterion, which basically averages out the

noisy signal and reduces the variance. All geometric progression estimators do not use least

squares, so the noise is not averaged out, causing the estimation variance to be unchanged

with increasing data. This is clearly a shortcoming of all geometric progression estimators.
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Figure 4.2: The left and right columns show the estimates of decay and off-resonance, re-
spectively. The top two plots show the distribution of estimates from the five estimators,
while the bottom two plots show the three estimators to make a clearer comparison among
them. The number of data used in this figure is 64. Time used by the five estimators is
30.75, 30.60, 39.48, 4165, and 118.2 microseconds for one estimation.

However, since most multi-echo sequences sample up to 16 echoes, the difference between

MODII, LSF, and LOG is small in practical images.

In the captions of the three figures4.1, 4.2, and 4.3, times used by the five estimators

are reported. Geometric progression estimators are about 3-4 times faster than LOG and

80-100 times faster than LSF.
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Figure 4.3: The left and right columns show the estimates of decay and off-resonance, re-
spectively. The top two plots show the distribution of estimates from the five estimators,
while the bottom two plots show the three estimators to make a clearer comparison among
them. SNR = 15 for all estimators. Average time used by the five estimators is 46.78, 32.95,
41.49, 3756, and 167.3 microseconds for one estimation.

4.5.2 Simulated phantom

A phantom is simulated with 9 small cylinders, each with different parameter combina-

tions, seated in a larger cylinder. The image size is 256×256. The spin density and R∗2 decay

are designed to vary in orthogonal directions (cf. Figure 4.4). There are three spin density

values, namely 0.8, 0.5, and 0.2, decreasing from top to bottom in the phantom. There are

three R∗2 decay values, namely 10, 30, and 60 (sec−1), increasing from left to right in the

phantom. The off-resonance varies from -200 to 40 (Hz) in a right-left, top-bottom fashion.

The phantom is designed to test how the reconstruction performance varies for different
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combinations of parameters. For example, the small cylinder at the right bottom corner has

the lowest spin density and highest R∗2 decay. The signal from voxels in this cylinder is very

small and quickly vanishes, creating a much larger challenge for estimators.

Figure 4.4 compares the three geometric progression estimators, GEO, MODI, and

MODII. GEO clearly has bias in its spin density and R∗2 decay estimates. MODI is bet-

ter than GEO but has larger variance than MODII especially in the decay estimation. The

normalized root mean square error (NRMSE) was also investigated. NRMSE is defined as

NRMSE =
‖f − f0‖2

‖f0‖2

where f and f0 represent the estimate and the ground truth. If we use a 3-tuple to represent

the NRMSE of spin density, R∗2 decay, and off-resonance frequency maps, the NRMSE of

GEO, MODI, and MODII are (0.20, 1.55, 0.20), (0.19, 1.07, 0.21), and (0.18, 0.42, 0.20),

respectively. MODII is the best one among the three geometric progression estimators.

GEO, MODI, and MODII took 53, 84, and 64 milliseconds to accomplish the estimation.

Figure 4.5 compares LSF, LOG, and MODII. Visually, LSF leads to the best estimate

and LOG has about the same performance with MODII. This is especially apparent from

the small cylinder at the right bottom corner. Since the spin density is very low and the

R∗2 decay is very high in this cylinder, quality reconstruction is hard to obtain. The visual

difference between LSF and the ground truth is smaller than the other estimators. The

NRMSE of LSF and LOG is (0.12, 0.44, 0.11) and (0.10, 0.37, 0.20). The time they spent

in estimation is 1.84 second and 0.88 second, respectively.

4.6 Other applications

The new formulation of the mono-exponential model in (4.18) can be used in more

advanced applications such as undersampling-based reconstruction. Undersampling-based

reconstruction refers to reconstruction of relaxation maps or the off-resonance map when
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Figure 4.4: Reconstruction results of GEO, MODI, and MODII for the simulated phantom.
The four columns from left to right represent ground truth, results from GEO, MODI, and
MODII, respectively.

only a part of k-t space is sampled. Specifically, this includes reconstruction based on

sparsely sampled multi-echo data or the single-shot/multi-shot sampling. If the k-t space

is strongly undersampled, one cannot reconstruct the spatial-temporal signal without use

of the mono-exponential structure constraint. In this situation, û = Λǔ can be used as

the structure constraint to replace the traditional nonlinear constraint. The linear form of

this expression creates efficiency when techniques such as variable splitting are used. For

example, if we want to estimate ~u through minimizing

‖DF~u− ~s‖2 + α‖D̂~u− ΛĎ~u‖2, (4.32)

we can minimize it through a two-step procedure. Here, D̂ and Ď are defined by û = D̂~u,

and ǔ = Ď~u. Let B = D̂ − ΛĎ. Notice B is a bidiagonal matrix. In step 1, we assume B is
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Figure 4.5: Reconstruction results of LSF, LOG, and MODII for the simulated phantom.
The four columns from left to right represent ground truth, results from LSF, LOG, and
MODII, respectively.

fixed, then

~u←− (FHDHDF + αBHB)−1(FHDH~s) (4.33)

In Step 2, we update ~λ based on ~u and then update B. In the auxiliary variable method,

step 2 is a nonlinear optimization problem and requires an iterative algorithm. Through use

of the new formulation, solution of step 2 is based on the definition of ~λ and therefore can

be calculated very rapidly. Notice that the second modified geometric progression estimator

(MODII) can be introduced into the cost function (4.32) as well. The computation com-

plexity of MODII is nearly the same as the ordinary geometric progression estimator. Thus,

application of the new estimator to methods such as the auxiliary variable is very promising.

This part will be studied in future.
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4.7 Conclusions

In this chapter, we have developed a new formulation for the mono-exponential model

of the spatial-temporal signal. The new formulation has a linear form and its solution can be

calculated in explicit form, making the new formulation interesting to many relaxation and

B0 mapping applications. Based on the new formulation, we have presented a novel non-fit

estimator for ~z and ~m. The new estimator has a reasonable estimation accuracy but is much

faster than traditional estimators. The new formulation as well as the new estimator can

be applied to a wide variety of applications and may create a new avenue in approaching

a fast, accurate estimation method for all parameter maps based on single-shot/multi-shot

sampling.

105



Chapter 5

Assessment of single-shot trajectories

The joint reconstruction of spin density, R∗2 decay, and off-resonance frequency from

a single-shot trajectory sampling is an ill-conditioned reconstruction problem. The cause

of the ill-conditioning remains unclear. Since the reconstruction problem is nonlinear, the

conditioning also depends on the value of the independent variables. If one let the algorithm

used to do the reconstruction start from a good initial guess, then whether an accurate

estimation can be achieved largely depends on the local condition number evaluated at the

ground truth. Thus, a phantom and a human brain slice may lead to different local condition

numbers. This dynamic condition number greatly increases the challenge in reducing ill-

conditioning.

Our experience shows that the trajectory seems to play an important role in changing

the conditioning globally. In other words, it seems that some trajectories may lead to a

better conditioning regardless of the ground truth. The advantage in conditioning may vary

in degree with the ground truth, but the advantage always exist. However, this instinct

remains unproved. Moreover, a cohort study with a large amount of trajectories and objects

(images) is still lacking. This chapter aims to make a contribution to this poorly explored

area and provide some fundamental insight into the ill-conditioning of the problem. While

major breakthroughs remain to be discovered, this chapter provides a cornerstone to start

more affirmative and proof-based study in this topic.

The chapter adopts three tools to pry into the world of ill-conditioning, the condition

number calculation, the singular value curve, and the reconstruction algorithm. The condi-

tion number can be calculated around the ground truth to see how ill-conditioned the local

area around the ground truth can be. Varying the ground truth can lead to discoveries about
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the dynamic behavior of the condition number and its relation to the underlying trajectory.

The singular value curve consists of singular values sorted in a descending order. The shape

of each singular value curve of each trajectory can be used to interpret the direct causes of

ill-conditioning. Running reconstruction algorithm from a good initialization for every tra-

jectory and every object (image) can finally confirm the discoveries made from the previous

tools and can be used as direct evidence for advantages of some trajectories.

The chapter is organized as follows. In the first section, concepts such as condition

number, singular value curve, and their relation to the reconstruction algorithm are briefly

reviewed. Various objects and trajectories are described in detail in the second section. The

third section shows all results under each object and each trajectory. Analysis about the

results is also given. Finally, the last section discusses all findings, limitations, and future

directions.

5.1 Background

Recall that the objective of the reconstruction is to estimate the spin density map ~m

and the complex frequency map ~z based on the function

ylp = slp(m(~r), z(~r)) + εlp

slp(m(~r), z(~r)) =

∫
~r

m(~r)e−z(~r)tle−2πι(~klp·~r)d~r
(5.1)

where ylp is the acquired k-t space data and is known, slp is the predicted data, εlp is the

noise, ~klp is the multi-shot trajectory, and l = 1, 2, . . . , L, p = 1, 2, . . . , P are indices of time

and shot. When a single-shot trajectory is used, then P = 1. Our objective is to study

the conditioning of the mapping slp(·, ·) and its relation to the underlying trajectory ~klp.

Notice that the mapping is nonlinear; therefore, the conditioning varies with the independent

variables ~m and ~z. The dynamic conditioning greatly increases the research difficulty. There

may be no way to find an analytic expression of the condition number or to calculate condition
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number for every value of the independent variables. We therefore limit our attention to

the ground truth for these variables, which are the objects being imaged. If we allow the

reconstruction algorithm to start from a good initialization, which, for example, can be

done by using the auxiliary variable method, then the ability of the algorithm to lead to

an accurate solution largely depends on the local conditioning. Therefore, we can simply

calculate the condition number at the ground truth for various objects—phantoms and in

vivo images—which compose a subset of the vector space of the independent variables. The

study can help us gain insight into the local convergence property of any algorithm, and can

affirm us whether trajectory advantages actually exist.

5.1.1 Inverse problem and condition number

An inverse problem is defined by data, model, and an observation operator, or a forward

operator. The operator maps the model to the data. An inverse problem is to estimate the

model given the data. Mathematically, let d represent the data, m represent the model, and

both of them are contained in some normed vector spaces. An inverse problem is to estimate

m from d such that

d = f(m) (5.2)

where f represents the forward operator. If we think of the estimation as a system whose

inputs are the data and the forward operator and the output is the model, then the condition

number is a criterion on how much error would be produced at the output given certain

error in the inputs. For example, if we assume certain noise is present in the data, and the

computing is perfect and void of any round-off error, then the relative condition number of

f is defined by

lim
ε→0+

sup
‖δd‖<ε

‖f−1(d+ δd)− f−1(d)‖
‖f−1(d)‖

/
‖δd‖
‖d‖

(5.3)

where f−1 represents the inverse function, d the unperturbed data, and δd the data pertur-

bation or the error. Notice that f must be assumed to be well-posed in this case; otherwise,
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the condition number may be not well defined. Also, notice that we assume the two normed

vector spaces of the data and model have the same norm, which is a quite reasonable as-

sumption in engineering applications. The definition basically measures the sensitivity of

the estimate to a small perturbation of the data. When the condition number is large,

a small data perturbation can cause a large variation in the estimate. Such a system is

called ill-conditioned because it is hard to find an accurate estimate since error is always

present. Ill-conditioning belongs to a problem (system) instead of an algorithm. This means

changing an algorithm cannot change the condition number. For interested readers, further

explanation about condition number can be found in [87].

In engineering, one often assumes d and m are contained in some Euclidean spaces such

as Rn or Cn, where n represents the dimension. Thus, when f is a linear operator, it can be

represented as a matrix. Let the matrix be F . Equation (5.2) can be then be written as

~d = F ~m (5.4)

The condition number κ associated with a linear mapping can be explicitly formulated as

κ = ‖F‖‖F−1‖ (5.5)

where F−1 is the inverse of the matrix F . One can easily verify that κ >= 1. When κ is

close to 1, we say the matrix is well-conditioned. When κ is much greater than 1, we say

the matrix is ill-conditioned. A well-conditioned matrix usually means the algorithm used to

solve (5.4) can be more accurate and faster than that for an ill-conditioned matrix, although

the convergence speed also depends on some other factors such as the algorithm design. This

impact makes condition number an important criterion and tool in numerical analysis and

methods.
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When the norm used in the definition (5.5) is the 2-norm, the definition is equivalent

to another definition of the condition number κ

κ = σmax(F )/σmin(F ) (5.6)

where σmax and σmin represent the maximal and minimal singular values of the matrix F .

Therefore, the condition number is a ratio of the maximal singular value to the minimal

singular value. This is also the definition one usually uses to calculate the condition number,

since the condition number of rectangular matrices can also be computed.

Calculating condition number for a large-size matrix (thousands of elements in each

dimension) can be computationally very expensive. Our work usually deals with reconstruc-

tion of 64×64 sized images. This is a quite small resolution; however, the linearized forward

operator has dimensions 8192 × 8192, which requires around 10 minutes to calculate the

condition number. We therefore often use a low-resolution counterpart of the image to form

a forward operator with much smaller size. In this work, we first downsample the two images

~m and ~z to 32×32 and then calculate the condition number of the associated forward opera-

tor. We found that the condition number based on the lower-resolution images is sufficiently

accurate in quantifying the conditioning at the original resolution.

5.1.2 Singular value curve

The singular value decomposition (SVD) is a factorization of an arbitrarily shaped

matrix. The matrix can be square or rectangular and the shape of the matrix does not

influence calculation of the SVD. The SVD for a matrix A of size m× n is

A = UΣV H (5.7)

where U and V are two unitary matrices of size m × m and n × n, respectively, and the

matrix Σ is an m×n diagonal matrix whose diagonal is always non-negative and sorted in a
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descending order. The elements of the diagonal are called singular values. The curve formed

by plotting the diagonal is called the singular value curve (SVC) in this work.

Recall that the division of the greatest singular value by the smallest singular value is

the condition number. However, the value of the SVD goes beyond calculating a number.

The SVC actually shows where the ill-conditioning originates. There are two primary sources

of ill-conditioning, a large gap between adjacent singular values and a continuous reduction

of singular values. If none of these two sources in the SVC is present, then the condition

number must be very low and the conditioning of the matrix is good. Details about the two

ill-conditioning sources can be found in the book [45]. The matrix with a clear gap between

adjacent singular values is a rank-deficient matrix, which means that some of its columns or

rows are very close to linear combinations formed by the other columns or rows. A simple

example occurs when some columns of rows of the matrix are out of scale (small values

compared to other columns and rows), which may actually be the case in our problem. The

other source of ill-conditioning is a continuously decreasing series of singular values, a case

called a discrete ill-posed problem by the author. This case happens when the matrix is a

discrete version of an ill-posed problem.

Similar to calculating condition number, calculating the SVD is also computational

expensive. The computation complexity is usually in the scale of O(mn2) floating-point

operations for an m × n matrix. We therefore use the same strategy the condition number

calculation uses—reducing the resolution of the images and then calculating the SVD.

The performance of a reconstruction algorithm given a good initialization is highly

dependent on the local conditioning of the forward operator. The performance includes ac-

curacy and convergence speed; however, we mainly focus on accuracy in this chapter because

we are concerned that the final maps be reasonably accurate regardless of the computational

cost. Both accuracy and convergence speed not only depend on the conditioning but also

the algorithm itself. Some algorithms may inherently lead to better accuracy and speed than
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others. Therefore, the conditioning provides more of an upper bound than an exact predic-

tion so that the accuracy and the speed cannot be better than the upper bound paired with

a certain conditioning. Hence, investigating conditioning is important to an inverse problem

since conditioning establishes a rough estimate for the worst performance of an algorithm.

In this work, we need to calculate condition number and run a reconstruction algorithm

for some objects and some trajectories. Since the algorithm is fixed, the performance of

the algorithm between different objects and trajectories almost completely depends on the

conditioning, thereby relating the objects and trajectories to the conditioning. Running the

algorithm also provides direct evidence for the influence of trajectories on the reconstruction

of different objects.

5.2 Objects and trajectories

5.2.1 Objects

Here, objects refer to the objects scanned by the MRI scanner, including mainly phan-

toms and in vivo images. Since the condition number of the nonlinear forward operator in

(5.1) varies with the objects, we need to investigate the conditioning for a number of objects

to make any convincing conclusions. However, we have not acquired enough in vivo data

and images, which greatly limits the robustness of our current conclusions. Therefore, this

work is intended to be a preliminary study that formalizes the problem and research tools

and applies the tools within a small group of objects.

Specifically, we have investigated the conditioning of the forward operator for a simu-

lated phantom and a real brain slice. The simulated phantom is based on the four-cylinder

phantom we have used in previous chapters. The four-cylinder phantom mimics four small

cylinder containers placed in a large cylinder container. Each cylinder container contains

material of independent spin density, R∗2, and off-resonance values. The phantom is shown

in Figure 2.3. To obtain a statistically more precise estimate of the condition number, we

randomly vary the spin density, the R∗2 decay, and the off-resonance for the five cylinder
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phantoms based on a uniform distribution. The range for the uniform distribution is set

to be [0, 1] for spin density, [0, 80] (sec−1 for the R∗2 decay, and [−200, 200] Hz for the off-

resonance frequency. 10 realizations of the four-cylinder phantom were used to calculate the

condition number. The mean of the 10 calculated condition numbers for each trajectory was

used in the following analysis. The brain slice image was also used in Chapter 2 (Figure 2.8).

Notice that all condition numbers and SVDs were obtained based on the lower resolution

(32× 32) version of these parameter maps.

5.2.2 k-space trajectories

Since single-shot trajectories are most time-efficient in the data acquisition, we mainly

focus on single-shot trajectories, such as echo planar imaging (EPI), spiral, rosette, and ra-

dial. In particular, we have calculated condition numbers, SVDs, and run the reconstruction

algorithm (for nonsingular matrices) for all these single-shot trajectories. We have also ex-

tended the condition number calculation to the multi-shot and multi-echo trajectories. The

extension was quite easy to accomplish and can provide help in interpreting the results of

the single-shot trajectories. We have not run any reconstruction algorithm for the multi-

shot and multi-echo trajectories due to the technical complexity; however, this part of the

extension can be considered in our future direction.

Let N represent the number of voxels in one dimension of the image. To reconstruct

an image from its Fourier encoding, N2 samples need to be acquired in k-space. However, if

two images need to be reconstructed, the number of samples in k-space needs to be doubled

as well. In joint reconstruction of spin density, R∗2 decay and off-resonance maps with the

mono-exponential modeling, two complex images are to be reconstructed—the spin density

map and the complex frequency map, whose real and imaginary part are the R∗2 decay and

off-resonance maps. Hence, 2N2 samples are needed in k-t space. There are usually multiple

ways to change a single-shot trajectory so that it can sample 2N2 points in the k-t space.

All trajectories, including multi-shot and multi-echo trajectories, starts at 5 milliseconds and
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finish at 25 milliseconds after the RF excitation. Exceptions are explicitly pointed out in

the text.

Single-shot trajectories

A single-shot trajectory is the fastest k-t space acquisition fashion currently in use for

joint reconstruction of spin density, R∗2 decay, and off-resonance frequency maps. However,

due to the very limited data from a single-shot trajectory, the conditioning of the resulting

reconstruction problem is usually very poor. Studying these trajectories is therefore very

important.

Echo planar imaging (EPI) The EPI trajectory is a zigzag rectilinear sampling

trajectory in k-space. In regular imaging, the EPI trajectory only needs to sample the N2

grids in k-space. Such an EPI trajectory is shown in Figure 1.14(a). In our problem, since

2N2 samples are needed, one needs to adjust the EPI sampling pattern to have double

samples. Three variants of EPI were used in our experiments.

• A simple way is to sample one dimension of k-space in a double density, such as in

the ky direction. This trajectory does not repeatedly sample any grid in k-space. The

abbreviation of the trajectory is simply EPI. Figure 5.1(a) shows the EPI trajectory.

• Another way is to repeatedly sample the same k-space. That is, after the first regular

EPI is done, a second covering of k-space through exactly the same trajectory is applied.

This repeated EPI trajectory is shortened as REPI1. Figure 5.1(b) shows the REPI1

trajectory.

• The third way also repeats a single EPI trajectory; however, the repetition is accom-

plished in a reverse direction. This trajectory is abbreviated as REPI2. Figure 5.1(c)

shows the REPI2 trajectory.

Spiral The spiral trajectory is probably the most popular non-Cartesian trajectory

used in MRI. The spiral trajectory has many forms. It can spiral in or spiral out, generating
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Figure 5.1: The three EPI trajectories: (a)EPI, (b)REPI1, and (c)REPI2

the spiral-in trajectory and the spiral-out trajectory. A single-echo spiral trajectory needs a

function to specify each sampling location in k-space. The function we used is a constant-

speed spiral. In the presence of a square field of view (FOV), each sample of a spiral-out

trajectory is represented by

~k(t) = [
kmax

2
wradt cos(wrott)

kmax
2

wradt sin(wrott)] (5.8)

where t represent sample time, kmax the k-space range, wrad the radial speed, and Wrot the

rotation speed. When only N2 samples are needed, wrad = 1/Tacq where Tacq is the readout
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time. When representing k-space as a complex domain, the trajectory can be represented by

k(t) =
kmax

2
wradte

2ιπwrott (5.9)

The rotation speed is chosen to finish N/2 circles of spirals so that the number of curves

passing the ky axis is N . The trajectory is shown in Figure 1.14(b). Notice that a spiral-in

trajectory can use the same generating function with the argument t changed to Tacq − t. In

this work, we used 6 variants of the spiral trajectory to meet the 2N2 requirement.

• Both the spiral-out and spiral-in trajectories must use an wrot that is twice as high as

that used for regular imaging. The corresponding spiral-out and spiral-in trajectories

are abbreviated as SPR-out and SPR-in. Figures 5.2(a-b) show these two trajectories.

• Another method to double the number of samples is to repeat the same sampling twice,

similar to EPI. However, in spiral, the repetition can be accomplished by using exactly

the same trajectory or by concatenating spiral-out and spiral-in. These strategies lead

to four different trajectories, the spiral-in-in (SPR-in-in), the spiral-in-out (SPR-in-

out), the spiral-out-out (SPR-out-out), and the spiral-out-in (SOR-out-in). Figures

5.2c-f show these four trajectories.

Another trajectory similar to a spiral is the rectangular spiral (RectSPR). The rect-

angular spiral is identical to the spiral trajectory except that it always moves in a straight

line. The trajectory is shown in Figure 5.3. In this work, we study the repeated rectangular

spiral-out as a comparison to SPR-out-out to demonstrate the importance of sampling every

k-space grid. In reality, this trajectory is very hard to implement since it calls for a very large

gradient slew rate to accomplish the sharp orientation changes. The trajectory is therefore

of more importance in theory than in practice.
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Figure 5.2: The six spiral trajectories: (a)SPR-in, (b)SPR-out, (c)SPR-in-in, (d)SPR-in-out,
(e)SPR-out-out, (f)SPR-out-in
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Figure 5.3: The repeated rectangular spiral-out trajectory

Rosette The rosette trajectory is frequently used by our research group for this

problem. One of its main characteristics is that it crosses the k-space origin many times.

Twieg proposed to use the rosette trajectory for the joint reconstruction problem [102].

Twieg and Reeves compared rosette to a repeated EPI in [103] and concluded rosette leads

to smaller estimation variance than EPI. In this chapter, we compare rosette to a large group

of single-shot trajectories. The generating function for the rosette is given below:

k(t) =
kmax

2
sin(wosct)e

ιwrott (5.10)

where wosc represents the oscillation frequency of the trajectory. We usually set wosc = 3196

rad/sec, wrot = 1577 rad/sec in our work since this combination results in a very uniform

sampling of k-space. This rosette is shown in Figure 1.14(c) in 2D k-space. Two kinds of

rosettes are used in our analysis.

• Since the trajectory periodically curves back to the low frequency area in k-space, there

is no need to increase the oscillation or rotation frequency of the trajectory to increase

the number of k-space samples. Instead, one can just sample more points using the
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same generating function (5.10). The rosette trajectory is therefore much easier to

implement and more friendly to the gradient coil. Such a rosette for sampling 2N2

samples is simply called ROS. Figure 5.4(a) shows the trajectory.

• Since all other trajectories use repetition as a strategy to meet the 2N2 sampling

requirement, we also repeat an N2-long segment of the rosette trajectory to facilitate

a direct comparison between rosettes and other trajectories. Such a repeated rosette

trajectory is abbreviated as RROS and is shown in Figure 5.4) (b). Since each N2-

long segment must uniformly sample the entire k-space, we doubled the wrot and wosc,

reducing the practical value of RROS. The trajectory is therefore more important in

the theoretical sense.

Radial The radial trajectory is also an important non-Cartesian trajectory. Although

it samples off-grid points in k-space, the trajectory moves in a straight line, making the

trajectory easy to implement and more resistant to eddy currents. To use a radial trajectory,

one must specify the number of strokes and the number of samples in each stroke. The

number of strokes is analogous to the number of lines in the line-by-line sampling, and

the number of samples in each stroke is analogous to the number of samples in each line.

We therefore set the number of strokes as the base resolution in the ky direction and the

number of samples in each stroke as the base resolution in the kx direction. The resultant

radial trajectory is shown in Figure 5.5. In this study, we used three variants of the radial

trajectory to meet the 2N2 sampling requirement.

• Doubling the number of strokes doubles the number of samples. We call this radial

trajectory RAD1. It is shown in Figure 5.5(a).

• Doubling the number of samples in each stroke doubles the number of samples. We

call this radial trajectory RAD2. It is shown in Figure 5.5(b).

• Alternately, one can repeat the radial trajectory, abbreviated by RRAD and shown in

Figure 5.5(c).
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Figure 5.4: The two rosette trajectories: (a)ROS and (b)RROS. (c) is a rosette trajectory
in 2D k-space.

Trajectory feasibility

A feasible trajectory means the trajectory can be practically realized by the gradient

coils equipping the MRI system. Typically, two factors restrict a theoretical trajectory, such

as the above trajectories, from being implemented in an MRI system. First, the amplitude of

the gradient must be lower than the maximal gradient magnitude. Since a k-space trajectory

is an integral of the gradient over time, this restriction on gradient magnitude limits how

fast the trajectory can move. Hence, for some trajectories, we may not be able to restrict the

readout time to be less than 20 milliseconds due to the gradient magnitude limits. Second,

the slew rate of the gradient must be lower than the maximal gradient slew rate. Many
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Figure 5.5: The three radial trajectories: (a)RAD1, (b)RAD2, and (c)RRAD. (d) is a radial
trajectory in 2D k-space.

trajectories require a high slew rate, such as EPI and rosettes. The slew rate limits how fast

a trajectory can turn. For EPI, this slew rate restriction causes the “dead time” for EPI when

the trajectory reaches the end of each k-space line. For rosettes, the slew rate constraint,

together with the gradient magnitude constraint, poses a limit on the shortest readout time

the rosette can achieve. The trajectories introduced in this section have not been thoroughly

investigated for feasibility in a real MRI system. They are mainly of theoretical importance

in establishing a criterion for the quality of the signal encoding from each trajectory.
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5.3 Experiments

We chose the ordinary trust region (OTR) algorithm we developed in the second chapter.

We did not use the Auxiliary variable method since it demands OTR in the refinement

process. Such a two-step procedure is good for poor initializations. In this work, however,

our focus is on reconstruction accuracy. Therefore, starting from poor initializations is

unnecessary. Instead, we choose a good initialization by adding a moderate amount of

Gaussian noise to the ground truth of ~m and ~z. The investigation mainly concerns whether

convergence can be achieved in 200 iterations by having a sufficiently small gradient or

residual, and if achieving convergence, how good the estimation bias is. Our experience

shows that 200 iterations are sufficient for this algorithm. Usually, the algorithm stops

before 200 iterations.

The estimation bias is measured by normalized root mean square error (NRMSE), which

is defined by

NRMSE =
‖x− x0‖2

‖x0‖2

where x and x0 represent the estimate and the ground truth.

Masking is a common technique used in model-based reconstruction to rule out voxels

of low spin density from the reconstruction target voxels [49, 83]. However, we point out

that masking is actually a type of regularization. Since the field of view (FOV) is made

smaller with masking, the spectrum is enforced to be somewhat smooth. Such enforcement

is especially helpful for rosette, spiral and radial trajectories. Since they do not sample the

most peripheral area of k-space, they should lose the information in this area. However,

due to the masking, the spectrum including the peripheral area must be somewhat smooth,

forcing the value at an unsampled k-space point to be close to its nearest sampled point.

Therefore, masking may improve the conditioning associated with these trajectories, making

the original ill-conditioning indiscernible. We therefore do not use any masking in this work.
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5.3.1 Condition number

Table 5.1 shows the condition number evaluated at the phantom and brain slice under

different trajectories. The evaluation at the phantom is quite consistent with the evaluation

at the brain slice. Several observations are made in both condition number evaluations:

1. EPI, REPI1, REPI2, RectSPR all lead to better condition numbers than the other

trajectories. Notice that there are two differences between the first four trajectories

and the other trajectories. First, the four trajectories are all Cartesian trajectories.

Second, the four trajectories sample every grid point of k-space. On the other hand,

all the other trajectories, including rosette trajectories, are non-Cartesian trajectories

and only sample within an inscribed circle of k-space. Therefore, the cause of the large

ill-conditioning among the rest trajectories is likely to be related to at least one of

the two factors, Cartesian sampling and full sampling. We think the latter factor is

actually the reason for the large ill-conditioning.

2. Among all non-Cartesian trajectories, rosettes have the best conditioning. Specifically,

the condition number of both ROS and RROS is lower than that of all non-Cartesian

spiral trajectories and radial trajectories. This implies rosette trajectories are indeed

advantageous over many other non-Cartesian trajectories.

3. Repetition of a trajectory usually leads to better conditioning than the equivalent non-

repeating trajectory. Specifically, Table 5.1 shows that for every trajectory, including

EPI, spiral, rosette, and radial, the repeated version always has a slightly smaller

condition number than the non-repeated one. This fact is not very obvious from

comparing condition numbers but is much more obvious from comparing SVCs and

reconstruction accuracy.

The first finding above is quite surprising. Most researchers who have worked on this

problem, including Twieg [102], have thought that rosettes would work better than EPI.

However, this study suggests that EPI has the best conditioning. If EPI does have a better
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conditioning, there seems to be no reason to use rosette instead of EPI. EPI is easier to

program and generate and has a lower requirement on the hardware. EPI is also much more

commonly used in reality than rosette. Therefore, it is quite surprising to us that EPI can be

much less ill-conditioned than rosettes. The reason for the conditioning advantage in EPI is

probably due to fact that EPI samples every grid point in k-space while rosettes only sample

a part of k-space. In the Discussion sections, we give further analysis about why the loss of

sampling can cause a serious conditioning problem. The second finding shows that rosettes

are indeed better than other non-Cartesian trajectories, including spiral and radial, which

have been used by other researchers in related problems such as T2 mapping [7, 98]. The

third finding demonstrates the advantage of repeating the trajectory design for this problem.

Repeating is similar to multi-echo sampling. However, in the latter sampling, every sample

of a single k-space frame is treated as if it is acquired at the same time point. For single-shot

trajectories, the instant sampling of k-space is impossible; however, the experiment shows

that even repeating the samples regardless of time still improves the conditioning of the

reconstruction.

5.3.2 Singular value curve

Figure 5.6-5.7 show the singular value curves (SVCs) related to various trajectories and

the two objects. Although the range of the singular values becomes larger for nearly every

trajectory from the phantom to the brain slice, the shape of the SVC for each trajectory

stays nearly the same. Two features are commonly present in all trajectories:

1. There is a gap at the middle of each singular value curve which reduces the singular

value by about 103. This gap is especially sharp in EPI trajectories or RectSPR, but is

smoother in non-Cartesian trajectories. What causes the gap is not completely clear.

However, we found that the multi-echo version (see Appendix) of the four single-shot

trajectories also have this gap (Figure 5.8). This means the gap probably originates
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Table 5.1: Condition number of various trajectories

 

Phantom 

Trajectory Condition 
number Trajectory Condition 

number Trajectory Condition 
number 

EPI 4.74E07 REPI1 1.26E04 REPI2 6.51E05 

RectSPR 3.25E03 SPR-in 5.49E21 SPR-out 5.05E20 

SPR-in-in 2.95E20 SPR-in-out 7.38E20 SPR-out-out 7.74E20 

SPR-out-in 9.17E20 ROS 3.48E13 RROS 1.38E13 

RAD1 2.30E21 RAD2 1.64E21 RRAD 3.84E20 

Brain slice 

Trajectory Condition 
number Trajectory Condition 

number Trajectory Condition 
number 

EPI 6.81E010 REPI1 1.54E08 REPI2 2.33E09 

RectSPR 2.03E08 SPR-in 2.99E24 SPR-out 1.14E24 

SPR-in-in 8.35E22 SPR-in-out 5.88E22 SPR-out-out 7.92E22 

SPR-out-in 9.01E23 ROS 2.58E16 RROS 1.08E16 

RAD1 1.49E24 RAD2 1.76E24 RRAD 1.73E22 

from ill-conditioning out of the mono-exponential curve fitting which is an unavoidable

problem for every approach in MRI parameter mapping.

2. At the end of every SVC, one can see the SVC usually continuously descends to very

small singular values. This is another source of ill-conditioning for the forward operator

in (5.1). For some trajectories, such as EPI trajectories, RectSPR, and rosettes, the

knee point of the curve (the position to start descend) is late, i.e. close to the last

singular value entry. The knee points of the other trajectories appear to be earlier.
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This is very important to regularization. The former trajectories can be improved in

their conditioning with much smaller regularization than the latter trajectories. Details

for the theory about SVDs and regularization can be found in the book [45].

The second finding from studying the SVC is very important and may lead to further

research on regularization. Our experience shows that regularization is probably necessary

for any reconstruction algorithm applied to this problem. However, theory about what

regularization to choose and what parameter to choose for the regularization is somewhat

immature. An inappropriate regularization or an overly weighted regularization can cause

serious estimation bias. With the help of the SVD and the SVC, we may be able to find the

optimal regularization for each trajectory and find the optimal weight of the regularization

to balance the noise amplification and the regularization-induced bias.

5.3.3 Reconstruction accuracy

Table 5.2 shows the estimation accuracy of the phantom and the brain slice for all single-

shot trajectories. No noise was added to the k-t space data, and therefore the only error

present in the input may be the round-off error. Since we wanted to examine the condition-

ing of forward operator in (5.1), we did not use any regularization. Adding regularization

changes the conditioning, and then conditioning associated with the original problem would

be indistinguishable. OTR was kept running until activating the stopping rule that the

gradient becomes sufficiently small or the number of iterations exceeds 200. Our experience

shows that most algorithms can stop within 200 iterations for the phantom. For the human

brain slice, although some trajectories did not stop in 200 iterations, 200 has been large

enough to demonstrate their conditioning property.

The accuracy distributions with respect to the trajectories are quite consistent between

the phantom and the brain slice. REPI2 achieves the highest accuracy for the phantom,

and RectSPR achieves the highest one for the brain slice. However, both of then, as well

as REPI1, achieved very high accuracy for both objects. This result is consistent with

126



500 1000 1500 2000
-4
-2
0

lo
g 10

(s
.v

.)

500 1000 1500 2000
-1
0
1

500 1000 1500 2000
-3
-2
-1
0
1

500 1000 1500 2000
-1
0
1

lo
g 10

(s
.v

.)

500 1000 1500 2000
-15
-10

-5
0

500 1000 1500 2000
-15
-10

-5
0

500 1000 1500 2000
-15
-10

-5
0

lo
g 10

(s
.v

.)

500 1000 1500 2000
-15
-10

-5
0

500 1000 1500 2000
-15
-10

-5
0

500 1000 1500 2000
-15
-10

-5
0

lo
g 10

(s
.v

.)

500 1000 1500 2000
-10

-5
0

500 1000 1500 2000
-10

-5
0

500 1000 1500 2000
-15
-10

-5
0

lo
g 10

(s
.v

.)

s.v. entries
500 1000 1500 2000

-15
-10

-5
0

s.v. entries
500 1000 1500 2000

-15
-10

-5
0

s.v. entries

Figure 5.6: Singular value curves for all single-shot trajectories for the phantom. The tra-
jectories from left to right are: (1st row) EPI, REPI1, REPI2; (2nd row) RectSPR, SPR-
in, SPR-out; (3rd row) SPR-in-in, SPR-in-out, SPR-out-out; (4th row) SPR-out-in, ROS,
RROS; and (5th row) RAD1, RAD2, RRAD.

the findings in condition number and SVC analysis. RROS (underlined) performs much

better than ROS, but both of them perform better than the other non-Cartesian trajectories.

All repeating involved trajectories, including REPI1, REPI2, SPR-in-in, SPR-in-out, SPR-

out-out, SPR-out-in, RROS, and RRAD achieved higher accuracy than their non-repeating

counterparts. Therefore, all findings obtained in the condition number analysis have been

verified by running the reconstruction algorithm.

Figure 5.9-5.11 show the reconstructed maps from the 15 trajectories for the phantom,

and Figure 5.12-5.14 show the reconstructed maps for the human brain slice. The advantage

of REPI1, REPI2, and RectSPR in accuracy is clear by visual inspection. It is also apparent
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Figure 5.7: Singular value curves for all single-shot trajectories for the brain slice. The
trajectories from left to right are: (1st row) EPI, REPI1, REPI2; (2nd row) RectSPR, SPR-
in, SPR-out; (3rd row) SPR-in-in, SPR-in-out, SPR-out-out; (4th row) SPR-out-in, ROS,
RROS; and (5th row) RAD1, RAD2, RRAD.

that RROS is better than other non-Cartesian trajectories in suppressing the noise. The

advantage of repeating is also very obvious.

5.4 Discussion and conclusions

The results have manifested a high consistency between the condition number, the sin-

gular value curve, and the reconstruction accuracy from the OTR algorithm. The condition

number provides a quantity to approximate the conditioning of the forward operator in (5.1).

The singular value curve provides information about what causes the ill-conditioning and
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Figure 5.8: Singular value curves for the multi-echo version of all single-shot trajectories
for the brain slice. The trajectories from left to right are: (1st row) 2-echo, 4-echo, and
8-echo rosette; (2nd row) 2-echo, 4-echo, and 8-echo EPI; (3rd row) 2-echo, 4-echo, and 8-
echo spiral-out; and (4th row) 2-echo, 4-echo, and 8-echo radial. The explanations of the 16
multi-echo trajectories are shown in Appendix.

inspires usage of regularization and selection of the regularization weight. The reconstruc-

tion accuracy based on OTR verifies the previous analysis results and directly shows the

influence of conditioning on the reconstruction quality.

The results show that EPI or rectangular spiral has a much better conditioning than

other trajectories, such as rosette, spiral, and radial. We point out in the previous section

that this may be caused by the fact that only the EPI and rectangular spiral trajectories

sample every grid point in k-space. The other trajectories, however, only sample a circular

area inscribed within the modeled k-space. We explain the reason behind the inference by
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a simple example. Assume the complex frequency map ~z is a constant decay z over the

entire image space and assume only two k-space frames are incompletely sampled. Since ~z is

spatially constant, the second k-space frame equals ez∆t multiplied by the first frame, where

∆t is the time interval between the two frames. Assume the sampling of the two frames

skips one k-space grid point in both frames, similar to the way non-Cartesian trajectories

skip sampling of the peripheral region of k-space. Since all other grid points are sampled,

finding z is immediate. However, we can never obtain the spin density ~m map correctly

because the two skipped samples of the grid point can have any value as long as their

division result is ez∆t. Therefore, the forward operator in this case is singular, which implies

an infinite condition number. This simple example is shown by a two-echo EPI trajectory

with one sample replaced by another sample, which is shown in Figure 5.15(a) and (b). The

singular value curve is shown in Figure 5.15 (c). Twieg and Reeves also pointed out similar

observations in [103].

There are several limitations regarding the analysis. First, the analysis is restricted

to single-shot trajectories. However, due to practical factors such as eddy current, multi-

shot trajectories may be more practical [49]. The analysis for multi-shot trajectories is

therefore also desired. Second, regularization is not involved in the analysis. However,

since all of our algorithms used regularization, involving regularization in the analysis is

also important. Moreover, although EPI appears much less ill-conditioned than a rosette,

whether the advantage can hold with certain regularization terms remains unclear. Third, a

larger group of objects are highly desired since many of the analysis conclusions, such as EPI

outperforming rosette, are very new and need thorough verification. Fourth, the analysis

controls the readout time of all trajectories to be equal, which is not very possible in reality.

In [103], the authors concluded rosette outperforms a repeated EPI trajectory. The readout

time for the two trajectories are about 50 and 160 milliseconds, respectively. Hence, using

different readout time for each trajectory may results in different conclusions.
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This analysis may lead to finding an appropriate regularization for each trajectory such

as REPI1, REPI2, and RROS. The regularization should very effectively increase the small

singular values at the end of the singular value curve. However, the causes of the ill-

conditioning remain unclear. Therefore, proposing a suitable regularization is nontrivial.

Existing regularization methods, such as a finite difference penalty, also need further analy-

sis concerning their regularizing effect and efficiency.

In conclusion, we have presented a preliminary study on the influence of different tra-

jectories on the conditioning of the problem of jointly reconstructing spin density, R∗2 decay,

and off-resonance frequency maps. The study uses condition number, singular values, and

algorithm accuracy to examine the conditioning of the problem in the presence of differ-

ent objects and trajectories. The analysis has found that undersampling k-space can cause

severe ill-conditioning in this problem, and EPI therefore has a much better conditioning

than rosettes. This conclusion is very different from our intuition that a rosette should

outperform EPI since it samples the k-space origin multiple times, and therefore further

verification is needed. The analysis has also found that a rosette has better conditioning

than other non-Cartesian trajectories and repeated sampling of the same k-space point is

important in improving the conditioning. Future application of the analysis includes propos-

ing an optimal regularization for the reconstruction of the three parameter maps based on a

single-shot acquisition.

131



Table 5.2: Estimation error of various trajectories.

Trajectories 
Phantom Brain Slice 

Spin 
Density 

R2* 
Decay 

Off-
resonance 

Spin 
Density 

R2* 
Decay 

Off-
resonance 

EPI 0.9657 0.3691 0.1893 0.5740 0.1815 0.2035 

REPI1 0.0823 0.0813 0.0265 0.0747 0.1040 0.0696 

REPI2 0.0152 0.0143 0.0045 0.1141 0.1228 0.0772 

RectSPR 0.3649 0.1487 0.0538 0.0507 0.0428 0.0331 

SPR-in 0.8362 0.5151 0.2597 0.4847 0.3047 0.3070 

SPR-out 0.9566 0.435 0.27 0.5599 0.2735 0.3484 

SPR-in-in 0.8807 0.4276 0.1991 0.4007 0.2152 0.1868 

SPR-in-out 0.9334 0.4265 0.2155 0.4232 0.2388 0.2032 

SPR-out-out 1.0038 0.4921 0.2014 0.4629 0.2130 0.1856 

SPR-out-in 0.9734 0.5216 0.2003 0.4598 0.2927 0.1978 

ROS 0.9128 0.4805 0.179 0.3816 0.1938 0.1474 

RROS 0.6727 0.3888 0.1285 0.2893 0.1208 0.0615 

RAD1 1.0071 0.4847 0.2378 0.5507 0.2705 0.3002 

RAD2 0.9651 0.4986 0.2392 0.5257 0.2763 0.3001 

RRAD 0.929 0.4502 0.1887 0.4320 0.2261 0.1741 
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Figure 5.9: The true spin density map and its estimation from the 15 single-shot trajectories:
(1st row) ground truth, EPI, REPI1, REPI2; (2nd row) RectSPR, SPR-in, SPR-out, SPR-in-
in; (3rd row) SPR-in-out, SPR-out-out, SPR-out-in, ROS; (4th row) RROS, RAD1, RAD2,
RRAD.
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Figure 5.10: The true R∗2 decay map and its estimation from the 15 single-shot trajectories.
The images are arranged in the same order Figure 5.9 has.
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Figure 5.11: The true off-resonance frequency map and its estimation from the 15 single-shot
trajectories. The images are arranged in the same order Figure 5.9 has.

135



 

 

10 20 30 40 50 60

10

20

30

40

50

60 0

20

40

60

80

100

120

Figure 5.12: The true spin density map and its estimation from the 15 single-shot trajectories:
(1st row) ground truth, EPI, REPI1, REPI2; (2nd row) RectSPR, SPR-in, SPR-out, SPR-in-
in; (3rd row) SPR-in-out, SPR-out-out, SPR-out-in, ROS; (4th row) RROS, RAD1, RAD2,
RRAD.
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Figure 5.13: The true R∗2 decay map and its estimation from the 15 single-shot trajectories.
The images are arranged in the same order Figure 5.12 has.
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Figure 5.14: The true off-resonance frequency map and its estimation from the 15 single-shot
trajectories. The images are arranged in the same order Figure 5.12 has.
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Figure 5.15: The modified REPI1 trajectory replaces the sampling of the grid point on the
right upper corner of k-space (a) with a sampling of k-space origin. The condition number of
the modified REPI1 trajectory evaluated at the phantom is 7.93E17, which is dramatically
larger than the original REPI1.

139



Chapter 6

Conclusions

6.1 Summary of the dissertation

We have presented several studies on methods and properties of the problem of jointly

reconstructing spin density, R∗2 decay, and off-resonance images in MRI with a single-shot or

multi-shot acquisition. Specifically, the dissertation includes the following contributions to

this problem:

• We have developed two trust region methods to address the joint reconstruction prob-

lem. The two different linearization strategies cause the two methods to have their

own advantages. Overall, the ordinary trust region method is more stable in the face

of variation of parameters and therefore is more reliable. The trust region framework

helps the two algorithms maintain stability and converge fast in solving the nonlinear

optimization problem. We have demonstrated through both simulated phantom, real

phantom, and in vivo data that the proposed trust region algorithms outperform other

traditional methods.

• We have also developed a novel auxiliary variable method to solve the same problem in

a more efficient manner. We reformulated the problem as a constrained optimization

problem by employing an auxiliary variable and then transformed it to an uncon-

strained problem by the penalty method. An alternating direction method was used to

dramatically reduce the computational burden of evaluating the nonlinear cost function

and gradient in traditional gradient-based iterative methods. We identified a short-

coming of the generic formulation of the auxiliary variable method and sped up the

algorithm by using a combination of spatial and temporal regularization. Since the
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speed gradually decreases as the iteration proceeds, we proposed a hybrid minimiza-

tion scheme that uses the ordinary trust region method to refine the result from the

auxiliary variable method. The hybrid algorithm is robust to variation of initialization

and parameters. We showed through simulated and real in vivo data that the hybrid

algorithm is faster than the ordinary trust region method and nonlinear conjugate

gradients.

• We have proposed a novel non-fit estimator of spin density, R∗2 decay, and off-resonance

maps in the presence of multi-echo data. The new estimator is much faster than tra-

ditional log-scale curve fitting and the ordinary nonlinear curve fitting of the decaying

exponential model. With certain modifications, the estimator can also achieve simi-

lar accuracy and estimation variance compared to the curve fitting techniques in the

presence of a small number of echoes. The criterion that defines the estimator may

provide a new way of representing the mono-exponential model. Since the criterion is

of linear form, the criterion as well as the new estimator can be used in the auxiliary

variable method to accelerate the computation.

• We have presented a study of ill-conditioning for a variety of single-shot trajectories.

We used tools such as the condition number, singular value curve, and reconstruc-

tion accuracy from the ordinary trust region method to investigate the conditioning

associated with these trajectories. Our result shows that for a fixed readout time, re-

peated EPI has a better conditioning than repeated rosette. This advantage is mainly

due to the shortcoming of the rosette that only an inscribed circular area of k-space

is sampled. This shortcoming is also present for spiral and radial trajectories; how-

ever, we found that rosette trajectories are better than these trajectories in terms of

conditioning. We have also found that repeating samples can effectively improve the

conditioning. These findings can be useful for any algorithms developed for the joint
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reconstruction problem. These findings can also be very helpful for researchers to find

an optimal regularization and regularization weight for a particular trajectory.

6.2 Future work

The following future work is suggested by our previous studies on this problem:

• The auxiliary variable method still manifests slow convergence near the end of the

iteration. This problem calls for an early stopping of the auxiliary variable method

followed by an additional refinement algorithm. We suspect the problem is due to

use of the penalty method. Other algorithms that can change a constrained problem

to an unconstrained problem also exist, such as the alternating direction method of

multipliers. We would like to investigate whether this method can be applied to our

problem and to compare its performance with the current auxiliary variable method.

• The first step of the auxiliary variable method uses a preconditioned conjugate gradient

algorithm, which slows down the algorithm. Reducing the computation in the first step

can dramatically increase the speed. Therefore, we desire to find a new formulation of

the first step so that a direct solution is present.

• The novel linear formulation proposed in Chapter 4 can potentially be used to develop

a new auxiliary variable method. The new formulation can result in faster computation

and may also produce other good properties. Research on the new formulation as well

the geometric progression estimator is still immature. Continuing study on this topic

may bring a new avenue for solving the underlying joint reconstruction problem.

• Regularization is still an open question for this problem. The study of singular values

in Chapter 5 suggests we use SVD and generalized SVD [45] to investigate the creation

of an optimal regularization for each individual trajectory. A good regularization may

dramatically improve the conditioning. The selection of regularization weight can also

be studied with a similar approach.
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• Sparsity-promoting regularization has been used to reconstruct the parameter maps

given sparsely sampled multi-echo data. Despite its success in this approach, such reg-

ularization has never been applied to the joint reconstruction problem based on single-

shot or multi-shot acquisition. The main difficulty lies in increased computational

complexity; however, the auxiliary variable formulation may very well accommodate

the sparsity-promoting regularization while keeping the computation relatively easy.

• The reconstruction based on real data, especially in vivo data, still calls for improve-

ment. We have used a state-of-the-art trajectory calibration technique in our research;

however, the model mismatch is still very strong. This suggests perhaps we have some

remaining obstacles in trajectory design or in other real-world factors. A step-by-

step diagnosis process may need to be designed to find out the problem and enable

reconstruction with real data to achieve clinically acceptable accuracy.
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Appendix

Multi-echo trajectories

We extended the four types of trajectory, namely the rosette, EPI, spiral, and radial, to

multi-echo patterns and tested their conditioning. Notice that a multi-echo sampling means

that data of each echo is acquired at a single time point (the echo time) instead over a time

frame. Although this is impossible to realize, the error caused by violation of the assumption

is small as long as the readout time is no greater than 1 or 2 milliseconds, such as in a line-by-

line sampling scheme. However, when a trajectory is used for acquiring an echo, finishing a

single-shot trajectory in 1 or 2 milliseconds is generally impossible. Interleaving is therefore

required. In this chapter, since we work only on calculating condition numbers of multi-echo

trajectories, interleaving is ignored and we just assume each trajectory is finished instantly.

However, a real multi-echo acquisition may take much longer time to acquire all data.

• For rosette, 2-echo, 4-echo, and 8-echo rosette trajectories were simulated. In each

echo, we used a regular N2-long rosette trajectory. Notice that the samples of each

rosette trajectory must be collected at a single time point for a multi-echo acquisition.

All echoes were uniformly placed between 5 milliseconds and 25 milliseconds so that

the first and last echo were placed at 5 and 25 milliseconds respectively and the rest

echoes were equally placed within the time frame. The three trajectories are shown in

Figure 1. Their abbreviations are MEROS2, MEROS4, and MEROS8.

• Similarly, three multi-echo variants of the EPI trajectory were studied. They are 2-

echo, 4-echo, and 8-echo EPI trajectories. Their abbreviations are MEEPI2, MEEPI4,

and MEEPI8, and they are shown in Figure 2.
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• Three multi-echo spiral-out trajectories were studied, namely the 2-echo (MESPR2),

4-echo (MESPR4), 8-echo (MESPR8) spiral-out trajectories. They are shown in Figure

3.

• Three multi-echo radial trajectories were studied, namely the 2-echo (MERAD2), 4-

echo (MERAD4), 8-echo (MERAD8) radial trajectories. They are shown in Figure

3.
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Figure 1: The three multi-echo rosette trajectories: (a)MEROS2, (b)MEROS4, and
(c)MEROS8
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Figure 2: The three multi-echo EPI trajectories: (a)MEEPI2, (b)MEEPI4, and (c)MEEPI8
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Figure 3: The three multi-echo spiral-out trajectories: (a)MESPR2, (b)MESPR4, and
(c)MESPR8
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Figure 4: The three multi-echo radial trajectories: (a)MERAD2, (b)MERAD4, and
(c)MERAD8
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